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Origin of static and dynamic steps in exact Kohn-Sham potentials

M. J. P. Hodgson, J. D. Ramsden and R. W. Godby
Department of Physics, University of York and European Theoretical

Spectroscopy Facility, Heslington, York YO10 5DD, United Kingdom

(Dated: April 20, 2016)

Knowledge of exact properties of the exchange-correlation (xc) functional is important for im-
proving the approximations made within density functional theory. Features such as steps in the
exact xc potential are known to be necessary for yielding accurate densities, yet little is understood
regarding their shape, magnitude and location. We use systems of a few electrons, where the exact
electron density is known, to demonstrate general properties of steps. We find that steps occur at
points in the electron density where there is a change in the ‘local effective ionization energy’ of the
electrons. We provide practical arguments, based on the electron density, for determining the posi-
tion, shape and height of steps for ground-state systems, and extend the concepts to time-dependent
systems. These arguments are intended to inform the development of approximate functionals, such
as the mixed localization potential (MLP), which already demonstrate their capability to produce
steps in the Kohn-Sham potential.

PACS numbers: 31.15.E-, 71.15.Mb, 31.15.A, 73.63.-b

I. INTRODUCTION

Density-functional theory1 (DFT) and time-dependent
DFT2,3 have been applied widely to calculate the proper-
ties of ground-state and time-dependent systems of inter-
acting electrons. In some cases the approximations made
in practice perform extremely well; in others they become
less valid, and hence the accuracy of the approach suffers.
While the Kohn-Sham4 (KS) formulation of DFT is in
principle exact, the scope of practical DFT calculations
is limited by our understanding of the exact exchange-
correlation (xc) potential. Therefore identifying impor-
tant features that are missing from the common approx-
imations, and developing new approximations which in-
corporate these features, is crucial.

Steps in the xc potential (a jump in the level of the
xc potential over a relatively short distance) have been
shown to be crucial for an accurate description of the
electron density for a variety of ground-state and time-
dependent systems5–15, such as tunneling electrons and
charge transfer/excitations. Atomic structure calcula-
tions by van Leeuwen et al.6 demonstrated that steps
arise at the boundaries between atomic shells. Yang et

al.15, using ensemble DFT, showed how, as more atomic
KS orbitals are occupied, steps form in the exact xc po-
tential. However, much remains to be understood regard-
ing their position, shape and magnitude.

Common approximate functionals struggle to model
systems such as those above, as well as molecular dis-
sociation, Van der Waals interaction and open-shell
molecules16. Therefore improved functionals must be de-
veloped, thus understanding features, such as steps in the
xc potential, is of great importance.

We study the nature of steps that form in the KS po-
tential for asymmetric ground-state and time-dependent,
‘molecule-like’ systems (where the external potential
tends to zero far from any atom), and expand the concept
to symmetric systems. We examine the precise shape,

height and position of steps, and show how steps combine
to make other features in vxc, even in the time-dependent
regime.
In Section II we begin our analysis by considering the

thought experiment of Almbladh and von Barth5, where
a step in the xc potential forms for a finite system of two
spin- 12 electrons. By analyzing the effect of the step on
the electron density, we deduce the principles underlying
the position, height and shape of steps, applying even
when multiple KS orbitals are occupied. We then extend
these ideas to the time-dependent regime. We derive,
from these principles, arguments for the position and
magnitude of steps, to aid the development of approxi-
mate functionals which have the ability to produce steps
in vxc, such as the mixed localization potential (MLP)14.
In Sections III-VI we model finite systems in one di-

mension using our iDEA code12 in which we find the
exact xc potential by first solving the time-dependent
many-electron Schrödinger equation to obtain the fully
correlated wavefunction. From this we calculate the exact
electron density for ground-state, and subsequently time-
dependent, systems. We then reverse-engineer the KS
potential via an optimization algorithm which matches
the non-interacting density to the interacting density.
Our main calculations use spinless electrons in order to
explore systems with more correlation for a given compu-
tational cost, i.e. with each electron occupying a different
KS orbital. Our focus will be on nano-wires and devices
for which one-dimensional descriptions are appropriate,
and hence we use the appropriately softened Coulomb

repulsion (|x′ − x|+ 1)
−1

(in atomic units).

II. THE ALMBLADH-VON BARTH THOUGHT
EXPERIMENT

When using DFT to simulate neutral molecules, such
as that described below, the use of local and semilo-
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cal density functionals to approximate the xc potential
gives rise to errors that affect observables such as bind-
ing energy curves and energy surfaces. These errors arise
in part due to the inability of such approximations to
correctly predict the amount of charge on each atomic
site17–19, therefore it is essential for the development of
improved functionals to understand the role of the xc
step in accurately localizing the KS electrons within the
molecule.

We consider a one-dimensional double-well external
potential20, representing two separated open-shell atoms,
where the right well has single-particle energy states
that are lower than those of the left well21. Owing to
their Coulomb repulsion, two spin- 12 , interacting elec-
trons occupy different wells; however two noninteract-

ing electrons would both occupy the right-hand well; see
Fig 1(a). Hence, a step must form in the KS potential to
allow the KS electron density to match the many-body
density. This system has been studied for many years,
originally by Almbladh and von Barth5 and Perdew19.

If we consider each individual well separately, as a sub-
system, then the ground-state energies are equal to minus
the ionization energies of the respective atoms22 (wells)
since vext(|x| → ∞) = 0. (IR represents the ionization
energy of the right well and IL is that of the left well.
Considering the left and right atoms as individual sys-
tems, or subsystems, is valid for well separated atoms,
and in the disassociation limit the concept is exact.)

Treated individually, both subsystem’s KS potential
decays to different, but approximately spatially constant,
values, therefore at their region of intersection in the
complete system a step exists whose height is the differ-
ence between those constants. We define the step height
as Sxc ≡ vxc

R
− vxc

L
= vKS

R
− vKS

L
, where vKS

R
and vKS

L
are

the constants of the KS potentials in the right and left
subsystems respectively, and likewise for the xc potentials
vxc
R

and vxc
L
. This definition is exact in the limit that the

wells are infinitely separated, as the xc potential tends to
a constant value far from the subsystem, hence the step
acts to shift vxc by Sxc between the subsystems. We find,
however, that the formula holds well for electrons with
only a few ångströms of separation; see Fig. 1(c).

We reverse-engineer the exact KS potential23 for this
system and, as predicted5,19, we observe a step in the
xc potential between the wells; see Fig. 1(c). The argu-
ment made by Almbladh and von Barth was that the step
must align the KS single-particle energy levels of the two
wells in order for the highest occupied molecular orbital
(HOMO) to have sufficient weight in each well, i.e. one
electron’s worth of charge per atom (well). Hence, the
step must have a magnitude which equals the difference
between the HOMO energies of the two wells.

While the above argument is robust for this system, we
may come to the same conclusion via a different point of
view. Consider now the form of the electron density far
from any atom. Even for the many-body case, the den-
sity will decay asymptotically like that of a single particle

occupying the well18,24 n(x) ∝ e−2
√
2Ix. As only one KS
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FIG. 1. (color online) (Two spin- 1
2
electrons in two separated

wells) — (a) The external potential (dotted-dashed blue), to-
gether with the electron density for two interacting, spin-
1

2
electrons (solid red). The horizontal gray lines show the

bound single-particle energy states of the potential and the
number adjoining each energy level indicates the degeneracy
of that state. (b) The natural logarithm of the density, allow-
ing the density minimum to be clearly identified. The decay
of ln (n) on either side of the density minimum is proportional
to the square root of the ionization energy of the well the elec-
tron occupies. (c) The exact KS potential (dashed green): the
step of height IR − IL (arrow) ensures that one electron is in
each well. Note that the step aligns the ground-state energies
of the two wells, as anticipated by Almbladh and von Barth5.

orbital is occupied for this system, the single orbital ap-
proximation (SOA)14,25 is exact (up to an additive con-
stant). Applying the SOA to the density of Fig. 1(a), we
find that at the density minimum the xc potential jumps
by IR − IL; see Fig. 1(b) and (c). The SOA is correctly
sensitive to the decay of the electron density either side

of the step when the density is of the form e−2
√
2Ix, a

result also observed by Helbig et al.7. Thus, at the inter-
face between the electrons, where the density decaying
from the left meets the density decaying from the right
(the density minimum), the potential jumps from IL to
IR; see Fig. 1(b). As this happens over a short range, a
sharp step forms. Therefore the step can be considered
to arise from this change in the decay of the electron den-
sity, which we will hence forth refer to as a change in the
‘local effective ionization energy’.

Below we study systems where more than one KS or-
bital is occupied. We find that a change in the local
effective ionization energy remains responsible for steps.
However, owing to the analog of this effect in the KS pic-
ture (see Section V), the magnitude and shape of steps
can change.
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III. THE ORIGIN OF STEPS

To begin this Section, we detail why, in general, the
magnitude of the step may change for systems with more
than one occupied KS orbital. In the following section
we explore the effect the magnitude of the step has on
the electron density, and whether the step height IR−IL
(given by the SOA in all cases) is a good approximation
for the step height in a general system.

We consider the form of the decay of the density ei-
ther side of the step for both the many-body picture
and the KS picture, in order to more fully understand
what determines the step’s magnitude in general. In the
many-body picture, the density decaying from the left-
hand subsystem (more generally – simply decaying from
the left), as the wells are separated far from one another,

is given by n′
L
(x) ∝ e−2

√
2ILx. Likewise, the right-hand

subsystem contributes n′
R
(x) ∝ e+2

√
2IRx. The decay of

the density coming from the left-hand subsystem in the

KS picture is nL(x) ∝ e
−2

√

2(vKS

L
−εL)x, where εL is the

energy of the highest occupied KS orbital that dominates
the asymptotic density of the left-hand subsystem. And

for the right-hand subsystem nR(x) ∝ e
+2

√

2(vKS

R
−εR)x,

where εR is defined correspondingly. As n′ = n, for the
exact KS potential, it must follow that vKS

L
= IL + εL

and vKS
R

= IR+ εR (within an overall additive constant).
Noting that the step height is Sxc = vKS

R
−vKS

L
, it follows

that

Sxc = (IR − IL) + (εR − εL), (1)

where a negative value indicates a step that drops when
going from left to right, and a positive value vice versa.
Equation 1 is exact in the limit that the atoms are in-
finitely separated, however, we have found the equation
to be accurate for separations of a few ångströms. (Eq. 1
requires knowledge of the exact KS eigenenergies εR and
εL, determined partially by the step, and hence cannot
be used to predict the step height.)

The energies εL and εR refer to the highest occupied
KS orbitals that dominate the density in the outer re-
gion of each subsystem. When the system consists of
localized, well-separated subsystems, this concept is well
defined, and it is in this case that a sharp step may form
in vKS. Where the subsystems are closer and the elec-
trons less localized, we find that the energies remain a
useful interpretive concept.

Equation 1 shows that the step arises from two effects:
the change in the local effective ionization energy in the
many-body picture (IR − IL), and its counterpart in the
KS picture (εR − εL); see Section V later. Thus, the
overall step can be considered as the sum of two steps,
Sxc = SI

xc+Sε
xc, where S

I
xc = IR− IL and Sε

xc = εR− εL;
see Section VII.

The above argument applies to spin- 12 electrons as well
as spinless electrons. We note that if we apply the above
logic to a system consisting of spin- 12 electrons, where

there is an odd number of electrons on each site, the
highest occupied KS orbital must be spread over both
wells. Hence, in this case εR = εL, and therefore the
step height is that of the Almbladh-von Barth thought
experiment discussed above (Sxc = IR − IL).
When developing approximate xc functionals, there are

certain known exact properties that one aims to satisfy,
such as the derivative discontinuity of the xc energy with
respect to electron number18. The derivative disconti-
nuity predicts a jump in the xc potential by a constant
as the electron number passes through an integer, which
may lead one to connect steps in the xc potential with
the derivative discontinuity. However, it is apparent from
the above analysis that the magnitude of the step in vxc
is a result of the precise way in which the electron density
decays from each subsystem. The decay of the density,
in the many-body picture, and in the KS picture, has no
direct association with the electron affinity of the sub-
system (−εN+1(N + 1)), nor the affinity of the system
as a whole. We therefore conclude that the step which
forms in vxc is not attributed to the derivative disconti-
nuity. For example, in the Almbladh-von Barth system
this insensitivity to the affinity is complete.

IV. HEIGHT OF STEPS

Next we examine the effect that under- or overestimat-
ing the step height would have on the electron density.
For example, noting that any step given by the SOA is of
height IR−IL, we may ask whether this is an appropriate
value for the step height in a general system. To answer
this, one must consider the effect that altering the step
height has on the electron density.
For spin- 12 electrons in a separated double-well sys-

tem where the occupied KS orbitals are atomic orbitals,
changing the step height equates to adding a constant to
the potential within a given subsystem, and so usually
affects the density only in the region of the step (see be-
low). However, if the change in step is too large – enough
to alter the occupation of the wells – the electron density
will be affected everywhere. In the case where the high-
est occupied orbital is spread over both sites, the step
height must be exactly IR − IL.
Building on the arguments of Perdew19 for the range

of allowed energies of a system connected to a reservoir,
we find a range for our step height for our molecular
system consisting of spinless electrons. If we consider a
system where, in the KS picture, M states are filled in
the left well, and N states are filled in the right well, we
can place a range on the magnitude of the step that must
exist in vxc based on correctly filling the eigenstates of the
individual wells; see Fig. 2. For this case we are assuming
that the wells are sufficiently separated so that the single-
particle eigenenergies (ε) of each well are unaffected by
the electrons in the other well, other than the shift by a
constant due to the step – in all cases this degree of well
separation would be needed in order for a sharp step to
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form.
We know that the HOMO of the left well (εL

M
(M)),

plus the shift in energy due to the step (Sxc, without
loss of generality we set vKS

R
= 0), must be less than the

lowest unoccupied molecular orbital (LUMO) of the right
well (εR

N+1(N)), and vice versa, allowing the amount of
charge in each well to be correct. Thus, we can infer that

εLM (M)− εRN+1(N) < Sxc < εLM+1(M)− εRN (N). (2)

A schematic representation of the range is shown in
Fig. 2. The external potential has been chosen such that
the lowest two single-particle states are located in the
right-hand well, thus in the KS picture the step must
correct this to allow the lowest two energy states of the
overall system to be located in separate wells. The green
arrow indicates the minimum the step height can be,
whereas the red (long) arrow shows a step that is too
large. These limits define the allowed range for the step
height, in order for the electron density to be reasonably
accurate.
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FIG. 2. (color online) The external potential (dashed blue)
for the a general double-well molecule, the lines indicate the
bound single-particle energy levels of the individual wells,
where, in this case, M = N = 1. As it is, the external po-
tential in the absence of interaction would give the incorrect
filling of each well, i.e. both electrons in the right hand well.
The green arrow indicates the minimum step height to achieve
one electron per well, and the (longer) red arrow indicates a
step height that is too large. Any value of Sxc between the
two values would give a fairly accurate electron density.

Equation 2 applies also for spin- 12 electrons (noting
that the number of electrons will be different, as two elec-
trons may occupy each energy level), except for the case
where there is an odd number of electrons on each site.
In this case the above arguments do not apply, however
the step height is known exactly (Sxc = IR − IL; derived
above).

Finally, we look at how changes in the step height affect
the detailed electron density in the region of the step, and
hence show which features of the density determine the

exact step height. Consider a finite molecule that is very
similar to the Almbladh and von Barth thought experi-
ment (System 1), except two KS states are now occupied
as opposed to one; two spinless electrons, where the ex-
ternal potential is a double well26, designed such that the
first excited state of the right-hand well is lower than the
ground state of the left-hand well (Fig. 2). Hence, in the
absence of interaction, both spinless electrons would oc-
cupy the lowest two states of the right-hand well. As
the many-electron density has one electron’s worth of
charge in each well due to the Coulomb repulsion and
Pauli exchange, the exact KS potential must form a step
to achieve this in the KS density. The step acts to shift
the ionization energy of the two wells here, as opposed
to aligning them, allowing the ground-state of the left-
hand well to be lower in energy than the first excited
state of the right-hand well, in accordance with our range
(Fig. 2).
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FIG. 3. (color online) System 1 (two spinless electrons in an
asymmetric double well) — (a) The exact vHxc potential (solid
red) and two artificial stepped vHxc potentials (long-dashed
green and dashed blue). (b) Natural log of the density at the
density minimum. The natural log of the KS densities for
the ground-state (|φ1|

2) and the first excited state (|φ2|
2) are

shown. As the step height is decreased these densities change
(indicated by the arrows), and thus affect the overall den-
sity by increasing or decreasing the magnitude at the density
minimum (determined by the precise way the KS densities
superimpose). (c) The densities corresponding to the step
heights of (a), where the colors and line styles correspond.

Figure 3 shows how an artificially imposed change in
step height affects the electron density. We observe that
the change to the electron density is small, provided the
step height is in the range given by Eq. 2. The change
in step height has the effect of reducing or increasing the
density minimum very slightly. Precisely how the density
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minimum is affected is determined by the individual KS
densities, i.e. n1 = |φ1|

2
and n2 = |φ2|

2
. As the magni-

tude of the step is decreased, less of the right-hand KS
density tunnels through to the left, and the opposite ef-
fect happens for the left-hand KS density. Thus we can
conclude that the step height ultimately determines the

degree to which the left-hand electron occupies the right

well and vice versa – this applies to all cases. Thus, local
and semilocal approximations to the xc potential must be
exceedingly sensitive to changes in the density at the lo-
cation of the step, or else a fully nonlocal approximation
must be employed.

V. POSITION OF STEPS

We consider the xc potential far from a molecule (i.e.
several subsystems), hence the subsystems are no longer
distinguishable. And therefore, the density must decay
with the ionization energy of the whole molecule, which
in the case of a molecule comprised of separated atoms
is the lowest ionization energy all the wells. This means
that for any subsystem’s density which does not decay
with the ionization energy of the whole system, there
must be a second change in the local effective ioniza-
tion energy far from the system, and therefore another
step must form. This second step was first observed by
Perdew19 and also by Makmal et al.27 in the exact ex-
change potential for LiF, where they attribute the steps
to shifts in the KS eigenvalues. They discuss the ‘do-
main’ of each atom being dominated by the HOMO of
that atom, resulting in a plateau to correct for the non-
zero asymptotic limit caused by the HOMO eigenvalue
being non-zero. This is the analog of the change in the
local effective ionization energy in the KS picture. Hence,
generally, this causes a step in the exact KS potential in
accordance with our derivation of Eq. 1. Thus, the ‘over-
all’ step in the exact xc potential is a combination of the
steps caused by the change in local effective ionization
energy and the crossover of the single-particle KS densi-
ties (see below). When correlation effects are taken into
account both these effects must also be considered.

We define, as a function of space, Ĩ(x) = 1
8n2

(

∂n

∂x

)2

(which is the second term in the SOA expression for the
KS potential [Eq. 1 in Ref. 14], hence showing the correct
sensitivity of the SOA to the ionization energy), which
represents the local effective ionization energy when the
density decays asymptotically, which is true for regions
of the density near the edge of a subsystem. Hence, in
such a region Ĩ(x) = I, and between subsystems Ĩ(x)
may have a step demonstrating the change in the local
effective ionization energy. (While in this paper we apply
this formula to spinless electrons, the concept applies to
spin- 12 electrons also.)

Figure 4(a) shows a molecular system (System 2)28

where we observe the second, postulated step far from
the molecule; see Fig. 4(b). In Ref. 27 the correcting
step is observed for the exact exchange potential. Our
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FIG. 4. (color online) System 2 (two spinless electrons in a
molecule) — (a) The electron density (solid red) and exter-
nal potential (dashed blue). (b) The Hxc potential (dashed
green), the arrows indicate where the steps are. One step
forms at the density minimum, where the KS single-particle
densities cross. The second step forms far from the molecule,
again where the KS densities cross. (c) There are two changes
in the local effective ionization energy (black dotted) in the
many-body density, each corresponding to a step in vxc, the
gray lines indicate the ionization energies of the subsystems
(IL and IR). (d) The natural log of the KS densities, blue
short-dashed is the first excited KS density and red dashed
is the ground-state KS density. As the decay rate of the first
excited-state must be less than that of the ground-state, far
from the molecule the densities must cross.

step is, in part the same as this correcting step, however
it superimposes with the a step which forms as a result of
a change in local effective ionization energy at the same
point in space. Also in Ref. 7 the second step was de-
duced to exist, however, was not observed. Our findings
show that their thinking was correct, as our argument
here applies to the spin- 12 case (as well as for our spinless
electrons). Furthermore, Fig. 4(c) and (d) show that the
step forms at the point where there is a crossover of the
single-particle KS densities, i.e. where the dominant con-
tributing single-particle density switches (applying also
to spin- 12 electrons for systems where more than one KS
orbital is occupied). This is consistent with the findings
of Ref. 27 (discussed above) and Ref. 6, where the xc po-
tential has “a clear step structure and is constant within
the atomic shell and changes rapidly at the atomic shell
boundaries” (also where the local ionization energy can
change). Reference 15 also found that a step structure
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forms when more than one orbital begins to be occupied.
Here we observe that the change in the local effective

ionization energy and the crossover in the KS single-
particle densities manifest at the same point, hence the
two steps superimpose (Sxc = SI

xc + Sε
xc). In general, a

change in the dominant single-particle KS density corre-
sponds to a change in the local effective ionization en-
ergy, but not necessarily vice versa. For example, in the
Almbladh-von Barth system there is a change in the lo-
cal effective ionization energy without a crossover of the
localized KS densities, since only one orbital is occupied
(εR = εL ⇒ Sxc = IR − IL).

Della Sala and Görling showed that for a three dimen-
sional system, along a direction r which corresponds to
a nodal surface of the HOMO, the exact xc potential
will approach a non-zero constant29. Our analysis can
be generalized to 3D, and agrees with this result; if the
HOMO is zero in the direction r, then, as r → ∞, the
dominant contribution to the overall density from the
single-particle KS densities must come from the highest
occupied KS orbital that does not correspond to a nodal
surface. Hence, the non-zero KS density and the ‘true’
HOMO KS density cannot cross. Thus the counteract-
ing step we observe in Fig. 4 will not manifest and the
xc potential may tend to a non-zero constant.

The role of the KS orbitals in this argument is reminis-
cent of the appearance of KS orbitals in meta-GGA30,31

functionals and the Becke-Edgecombe electron localiza-
tion function (ELF)32, and draws attention to the power
of the KS orbitals in improving density functionals. Our
MLP approximation, likewise, makes use of the KS or-
bitals in defining the degree of localization.

A. Time-dependence

We look at the single-particle time-dependent KS den-
sities for two electrons in an asymmetric double-well ex-
ternal potential33, where for t ≥ 0 a perturbing field
(0.1 |x|) pushes the electrons together (System 3)34, and
find that the dynamic steps also occur at the points where
the individual KS densities cross, showing that, to some
degree, the dynamic steps occur as a result of this phe-
nomenon; Fig. 5. However, this concept is less well de-
fined for the time-dependent case, as the idea of a well
defined ionization energy is no longer applicable.

The step here does correspond to a peak in the velocity
field (current density divided by electron density), which
in turn forms as a result of a minimum in the electron
density, as in Ref. 12. We find that in the system studied
in Ref. 12 there are density minima, and thus peaks in
the velocity field, that do not correspond to steps in the
time-dependent xc potential. We have confirmed that
this is because these density minima do not correspond
to KS single-particle densities crossing.

Thus, the question remains; why do the KS single-
particle densities seem to always cross at density minima?
For dynamic finite systems interference ‘ripples’ in the
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FIG. 5. (color online) System 3 (dynamic double-well) —
Two electrons in an asymmetric double-well external poten-
tial, where a perturbing field (0.1 |x|) pushes the electrons
together for t ≥ 0. (a) The natural logarithm of the single-
particle KS densities (ground-state – solid red, first excited-
state – dashed blue), with the time-dependent part of the Hxc
potential (short-dashed green) at t = 4.6 a.u. (b) The same
as (a) but at t = 5 a.u. and the single-particle KS densities
have crossed, causing a time-dependent step to form in the
Hxc potential at the point where the densities cross.

density are likely to occur12, hence if an orbital density
develops an extremum, there is an enhanced likelihood of
it crossing an adjacent orbital density. Thus, minima in
the dynamic electron density may also serve to indicate
where steps will form. However, as the energy levels are
not well defined in the dynamic regime the magnitude
of the step may vary from that given by Eq. 1. But, if
the system is in the adiabatic limit then our arguments
for the ground-state steps would approximately apply for
the time-dependent system.

B. The role of density minima for ground-state
systems

A turning point often occurs when the dominant con-
tribution shifts from one electron to another. Thus a
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density minimum is likely to correspond to a change in
the local effective ionization energy and/or a crossover of
the single-particle KS densities. Hence, in our calcula-
tions we observe that density minima are usually good
indicators of where steps will form. Next we will show
that steps do not form at all density minima, as some
density minima can not correspond to a change in the lo-
cal effective ionization energy or this concept is not well
defined. However, we demonstrate below how certain
density minima, which also represent the interface be-
tween localized electrons, are indicators for where in the
electron density steps will form for ground-state systems.

Consider a subsystem where the majority of the elec-
tron density corresponds to one strongly localized elec-
tron. If there is a minimum in the density within the
subsystem it cannot correspond to a change in the local
effective ionization energy, because there is only one oc-
cupied energy state. Thus, there can never be an overall
step in vxc for a minimum within a subsystem consist-
ing of one electron. This then shows that not all density
minima correspond to steps in the xc potential. Yet, the
question remains; which density minima will give rise to
steps?

In systems containing well-separated subsystems, the
local effective ionization energy is well defined near the
boundary of each subsystem, but can change from one
value to another as the boundary is crossed. If the num-
ber of electrons in this subsystem integrates to an inte-
ger (which is usual for localized systems), we can define
the integer electron point (IEP) as an indicator of this
boundary, and hence of where a step may form. (We
note that as a given subsystem may contain several, lo-
calized electrons, features in vxc within the subsystem
may correspond to IEPs due to changes in the local ef-
fective ionization energy and/or crossing single-particle
KS densities. However the possible delocalization due to
the electrons being confined within the subsystem may
cause these features to be unrecognisable as steps; see
Sections VI and VII, and Fig. 7.) Therefore, if, in 1D,

the density minima (a and b) satisfy
∫ b

a
n(x)dx = N ,

where N is an integer, those density minima are good
indicators of where steps (or other features) may form,
provided that the IEPs and density minima tend to co-
incide (which we observe them to). We show below how
the Coulomb repulsion and the degree of localization in
the system are responsible for density minima and IEPs
being at approximately the same point. We note that
in the time-dependent regime (as observed above and in
Ref. 12), owing to energy levels being less well defined,
the IEP is not an indicator of a density minimum that
may correspond to a step.

To explore the relationship between density minima
and integer electron points (IEPs) in the ground state,
we examine how a system may be split into subsystems.
With a sufficient degree of localization for all electrons in
a system, IEPs indicate the crossover from one electron
to the next. In the limit of complete electron localization,
the IEPs are definite intersections between the electrons,

hence giving a clear boundary between the subsystems.
As the electrons delocalize, some of the on-site electron
spreads into the neighboring sites. This delocalization,
and the effect it has on the shape of steps in the xc po-
tential at the IEPs, is studied below.
We observe in calculations of electron densities that an

IEP typically occurs approximately at a minimum in the
electron density. To show that the Coulomb repulsion is
largely responsible for this phenomenon, we introduce a
2-electron system (System 4), where the IEP and den-
sity minimum are designed to be significantly different
for non-interacting electrons; see Fig. 6(a). With two
interacting electrons in the same external potential we
observe the IEP and the density minimum tending to
the same point; see Fig. 6(b).
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FIG. 6. (color online) System 4 (crafted external potential)
— (a) The non-interacting electron density (dashed green) for
two electrons in the external potential of (c). The IEP (see
text) is shown by the downward facing arrow at x ∼ −2.8
a.u. and the density minimum is by the upward facing arrow
at x ∼ 0.13 a.u. (b) The interacting electron density (solid
red) for two electrons in the external potential of (c). Again
the IEP is shown by the upward facing arrow at x ∼ −0.39
a.u. and the density minimum by the downward facing arrow
at x ∼ −0.26 a.u. The interaction acts to draw the IEP and
density minimum together. (c) Shows the external potential
for this system. This potential has been crafted so that, for
noninteracting electrons, the density minimum and IEP are
very different.

To understand this, we imagine artificially increasing
the interaction strength between the electrons: the like-
lihood of finding the left electron in the right subsystem,
i.e. to the right of the IEP, and vice versa, reduces owing
to the electron repelling the other from its vicinity. Thus,
the electrons localize and the density at the IEP tends to
zero. For a non-negative quantity, such as the electron
density, any zero point must correspond to a minimum.
For the physical interaction strength, it is possible for
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a system (e.g. System 5 below) to have an IEP that does
not correspond to a minimum in the density of interacting
electrons. However, achieving this requires a carefully
crafted external potential which causes the appropriate
degree of delocalization.
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FIG. 7. (color online) System 5 (crafted external potential)
— (a) The electron density for two interacting electrons (solid
red) in a potential crafted such that the IEP (defined by the
condition that the electron density to the left of the point
integrates to exactly one electron) is distinctly different from
the density minimum. The downward facing arrow indicates
the IEP at x ∼ −1.2 a.u., and the upward facing arrow indi-
cates the density minimum at x ∼ 0.24 a.u. (b) The Hartree
exchange-correlation potential (dotted green): the predomi-
nant feature of the potential – not a step – is at the IEP. (c)
The external potential (dashed-dotted blue).

Figure 7 shows that the predominant feature in the
Hartree exchange-correlation (Hxc) potential (vH + vxc)
forms at the IEP, however there is no step as the local
effective ionization energy does not have a well defined
value on each side of the feature – a characteristic of the
exact functional shared by the SOA in more delocalized
systems such as this one.

To summarize, a change in the local effective ioniza-
tion energy is required for a step to form – usually in-
dicated by a density minimum corresponding to an IEP.
The IEP and density minimum will be at approximately
the same point in the electron density owing to the degree
of localization in the system coupled with the Coulomb
repulsion. Future improved density functionals may ex-
ploit this approximate functional relationship to include
features of the exact KS potential examined above.

VI. SHARPNESS OF STEPS: EFFECT OF
DELOCALIZATION

Considering how the step forms, it is apparent that
the more abrupt the switch between dominant KS or-
bitals (correlated with localization), and between local
effective ionization energies, the sharper the step will be.
Therefore, next we test what happens to the shape of
a step as the region of delocalization increases. (We
note that the step forms in the region of highest delo-
calization, which corresponds to the interface between
the electrons35.) Tempel at al. considered a singlet case
where two potentials were seperated, and the effect on
the step was observed36. Their findings are in agree-
ment with our concept of the local effective ionization
energy. They find that as the molecule dissociates the
step becomes clear as the separation increases, i.e. as the
local effective ionization energy becomes well defined (i.e.

Ĩ(x) → I).
We introduce another system (System 6), which has

the usual form: two spinless electrons in an asymmetric
double well37. Figure 8(b) shows the Hxc potential for
System 6 – note the sharp step.
Figure 8 shows that as the localization decreases the

‘sharpness’ of the step decreases also. This observation
is in agreement with our above analysis – sharp steps
cannot form in regions where there is not a well-defined
difference in ionization energy. Note the second, very dif-
fuse step about x ∼ 11 a.u. where the KS single-particle
densities cross once more; see Fig. 8(d). Here the effect
is to counteract the step between the electrons so that
there is no net step. (In Fig. 8(b) the system is not large
enough for the KS densities to cross twice, hence there is
only one step.)
We apply the Hartree-Fock (HF) approximation to

System 6 as a means of determining the role that ex-
change plays in these systems. We reverse-engineer the
HF electron density using iDEA to find the local poten-
tial which describes the density (HF-KS potential). In
this way we can compare the steps of the HF-KS poten-
tial to those of the exact KS potential. For some systems
– where the KS HOMO and LUMO are distinctly dif-
ferent – we observe the HF-KS potential to have a step
which is almost perfect, as for System 6. Whereas for
systems where the KS HOMO and LUMO energies are
close, correlation is stronger, and the HF-KS potential’s
step (and other features) are less accurate. Thus both ex-
change and correlation may be important in determining
the properties of the steps.

VII. BUMPS AND OTHER SUPERPOSITIONS
OF STEPS

In the following model systems we demonstrate that
the steps in vxc in symmetric systems in effect coalesce
to form ‘bumps’ in the potential, for systems with some
degree of delocalization.
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FIG. 8. (color online) System 6 (increase separation of wells)
— (a) The external potential (dotted blue) and electron den-
sity (solid red). (b) The Hartree exchange-correlation (Hxc)
potential has a step; this ensures that both KS electron oc-
cupy just one well each. (c) The external potential and elec-
tron density for System 6′. The system is that of System 6,
except that the wells have been brought closer together. (d)
The Hxc potential for System 6′ shows a step, like that of
System 6, but because the delocalization is stronger the step
is less sharp.

We demonstrate this by studying two examples – one
time-dependent and one ground-state – each comprised
of three systems (A, B and C). The external potential
for the third System (C), in each case, is given by vCext =
1
2

(

vAext + vBext
)

. From this we can find the relationship
between the KS potentials for the three systems. We
write (to first order)38

vCKS = vAKS +
δvKS

δvext

(

vCext − vAext
)

and likewise with A replaced by B. If we add the two
together and divide by two we get

vCKS =
1

2

[

vAKS + vBKS +
δvKS

δvext

(

2vCext − vAext − vBext
)

]

thus, provided the systems are sufficiently similar in char-
acter to have similar response functions

(

δvKS

δvext

)

C

≈

(

δvKS

δvext

)

B

≈

(

δvKS

δvext

)

A

, (3)

we can infer that

vCKS ≈ 1
2

(

vAKS + vBKS

)

. (4)

In the present context the bump potential of system C is
the sum of two oppositely-stepped potentials A and B.

A. Ground-state example

We study three systems to demonstrate, using the
above linearity, how positive and negative steps may
manifest in a symmetric system as a bump. The bump
we observe is very similar in character to that of Ref. 39,
where a ‘peak’ in the xc potential arises between atomic
shells. Reference 8 describes peaks/bumps forming with
steps for molecular systems like our own. We show below
how steps and bumps both manifest through the super-
position of steps in the xc potential. Reference 27 also
observed a peak in the exact exchange potential at ‘the
crossover point of orbital domination.’
System 7A (Fig. 9(a)) is the usual two spinless elec-

trons in an asymmetric external potential40 designed to
give a step, System 7B (Fig. 9(b)) is the same as System
7A but reflected about x = 0 (explained below), and the
symmetric System 7C (Fig. 9(c)) is the superposition of
7A and 7B (as described above).
We choose our second system (System 7B) to be the

mirror image of System 7A, so that 7C is symmetric. Fi-
nally, we construct System 7C from System 7A and 7B
(as stated above). The density minimum is aligned at
x = 0 in all three systems. As System 7C is symmet-
ric, no overall steps can form in the exact xc potential
of C; instead a bump forms at the density minimum; see
Fig. 9(d) and (e). This bump acts to ‘push’ the elec-
trons apart, recreating the effect of the Coulomb repul-
sion. Figure 9(d) shows the xc potential given by Eq. 4 as
well as the exact xc potential for Systems 7C, 7B and 7A.
We observe the precision with which the xc potential of
System 7C is replicated by the superposition of steps, as
well as the self-interaction correction either side of this
central feature. This accuracy is due to Eq. 4 holding
well (in itself a striking result). We have also shown that
the symmetric bump feature in the exact xc potential of
System 7C can be thought of as the sum of positive and
negative steps; see Fig. 9(e) for close up.
We stress that Systems 7A and 7B satisfy the require-

ment that their differences from System 7C may be de-
scribed within a linear-response framework (Eq. 3). In
this sense, there are several sets of systems which would
demonstrate the above superposition of steps to form a
bump. We also point out that had System 7A not cor-
responded to the reflection of 7B about x = 0, then 7C
could be asymmetric and hence may have an overall step.
We have simulated this scenario and found that two dif-
ferently sized steps superimpose to give a step-and-peak
combination for System C, reminiscent of the step and
peak of Fig. 1(c).
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FIG. 9. (color online) System 7A, 7B and 7C — (a) The
external potential (dotted-dashed blue) and the electron den-
sity (solid red) for System 7A. (b) The same for System 7B.
(c) The external potential (dotted-dashed blue), defined by
averaging the external potentials of 7A and 7B, with the elec-
tron density (solid red). (d) The xc potential (vAxc) for System
7A (dotted green), with the xc potential (vBxc) for System 7B
(dashed blue). The xc potential for System 7C (solid red) is
compared against 1

2
(vAxc + vBxc) (short-dashed black). We note

the good agreement between the two, and how well the bump
in the potential is reproduced by the superposition of steps.
(e) is a close up of the bump and steps in (d).

B. Time-dependent example

We extend this concept of superimposing steps to dy-
namic systems. We once again consider three systems:
the first (System 8A), a symmetric double well? in its
ground state, designed such that, for t ≥ 0, a dynamic
steps grows (Fig. 10(a)); the second (System 8B) the mir-
ror image of the first (Fig. 10(b)), and the third (System
8C) is symmetric (Fig. 10(c)). Once again we align the
origins of the three systems at the density minima.
System 8A, in the ground-state, is comprised of two

electrons in a double well. At t = 0 we apply a perturb-
ing field which excites the left electron by increasing the
depth of the left well allowing the left electron to explore
excited states – a dynamic step grows at the density min-
imum as a result. System 8B is the same, but reflected
about x = 0. And System 8C (defined in the same way
as the ground-state example) is symmetric, so both elec-
trons explore excited states. As two dynamic steps form,
they correctly superimpose at all times to create a feature
which oscillates between a bump and a dip; see Fig. 10(d)
and (e).

VIII. CONCLUSIONS

Knowledge of how the positions, magnitudes and shape
of xc potential steps depend on features of the density,
such as the locations of minima and the local ionization
energies, provides an important basis for the construction
of improved density functionals.
We have introduced the concept of the ‘local effective

ionization energy’ which applies in regions far from an
atom, where the ionization energy associated with the a
single electron is well defined. At an interface between
localized electrons the local effective ionization energy
can change; when this happens over a short range it
gives rise to a step in the exchange-correlation (xc) po-
tential with a magnitude equal to the difference in ioniza-
tion energies. For systems with more than one occupied
Kohn-Sham (KS) orbital, the analog of this effect, in the
KS picture, arises from the crossover from one localized
single-particle KS density to another. At this point, the
dominant contributing KS orbital to the overall electron
density changes. This effect also gives rise to a step, even
in the time-dependent regime.
We build on the thought experiment of Almbladh and

von Barth5 by considering the above effects far from a
pair of separated atoms. One step forms between the
atoms and corrects the number of electrons on each atom.
The second step, far from the molecule, also corresponds
to a change in the local effective ionization energy and a
crossover of the single-particle KS densities.
We also derive from this fundamental understanding

of steps a practical means of approximating where steps
in the electron density will form, and provide a range for
the step height to ensure accurate electron densities. We
find that steps usually require a minimum in the electron
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FIG. 10. (color online) System 8A, 8B and 8C — (a) The
external potential (dotted-dashed blue) and the electron den-
sity (solid red) for System 8A at t = 0. The gray lines in-
dicate the perturbed potential and the electron density at
t = 2.5 a.u. (b) The same for System 8B. (c) The external
potential (dotted-dashed blue), defined by averaging the ex-
ternal potentials of 8A and 8B (as for the perturbed potential
shown in gray), with the electron density (solid red) and at
t = 2.5 a.u. (gray). (d) The dynamic part of the Hxc po-
tential (vAHxc(t)− vAHxc(t = 0)) for System 8A (dotted green),
with the same potential for System 8B (dashed blue). The
same potential for System 8C (solid red) is compared against
the averaged potential (short-dashed black) at t = 1.25 a.u.
We note the good agreement between the two, and how well
the ‘dip’ in the potential is reproduced by the superposition
of steps. (e) The same graph for t = 2.5 a.u., the dip has now
become a bump.

density in order to form; however not all density minima
yield steps, as the minimum must correspond to the in-
terface of at least two localized electrons. By integrating
over a region of electrons which is localized relative to
other electrons in the system, we can define an integer
electron point, i.e. the point in the density where this
crossover occurs thus a step can form. Localization indi-
cates which systems will require steps, while the degree
of localization affects the shape of the steps. Further,
linear-response theory shows how various other features
in the KS potential can be interpreted as the superposi-
tion of steps, even in time-dependent systems.
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THE ALMBLADH-VON BARTH THOUGHT EXPERIMENT

The external potential is (we use Hartree atomic units)

vext = − 6
5e

− 1

125
(x−a)4 − 9

10e
− 1

10
(x+a)2 , (1)

where a = 10 a.u. For this system converged results are obtained with δx = 0.1 a.u.

SYSTEM 1 (TWO SPINLESS ELECTRONS IN AN ASYMMETRIC DOUBLE WELL)

The external potential is the same as the Almbladh-von Barth thought experiment, with a grid spacing δx = 0.1
a.u.

SYSTEM 2 (MOLECULE)

The external potential is of the same form as Eq. 1 with a = 4 a.u. The wells are brought together so that the
second crossover of the single-particle KS densities occurs while the density is within machine precision. The grid
spacing δx = 4

30 a.u.

SYSTEM 3 (DYNAMIC DOUBLE-WELL)

The ground-state external potential is

vext = − 13
20e

− 1

2
(x−3)2 − 1

2e
− 1

10
(x+3)2 . (2)

For t ≥ 0 a perturbing field (0.1 |x|) pushes the electrons together. The grid spacings are δx = 0.1 a.u. and δt = 1×10−4

a.u.

SYSTEM 4

The external potential was optimized in order to give a non-interacting density where the integer electron point
and density minimum are distinctly different, and hence has no analytical form.

SYSTEM 5

The external potential was optimized in order to give an interacting density where the integer electron point and
density minimum are distinctly different, and hence has no analytical form.

SYSTEM 6

The first system (System 6) has an external potential of the form of Eq. 1 with a = 5 a.u. The second system
(System 6′) has an external potential of the form of Eq. 1 with a = 3.5 a.u. The wells have been brought closer
together so that the electrons are more delocalized in the region of the step.
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SYSTEMS 7A, 7B AND 7C (GROUND-STATE)

The external potential of 7A is of the same form as Eq. 1, with a = 5 a.u. The external potential of 7B is the
mirror of 7A, i.e. a → −a. And the third system’s (System 7C) external potential is given by vCext =

1
2

(

vAext + vBext
)

.
For these three systems converged results were found with δx = 0.05 a.u.

SYSTEMS 8A, 8B AND 8C (TIME-DEPENDENT)

The ground-state of System 8A (t < 0) has an external potential of the form

vext = − 1
2e

− 1

5
(x+3)2 − 1

2e
− 1

5
(x−3)2 . (3)

For t ≥ 0 the external potential is

vext(t ≥ 0) = −e−
1

5
(x+3)2 − 1

2e
− 1

5
(x−3)2 . (4)

Hence the left well is reduced in depth. This causes the left electron to explore excited energy states.
System 8B is the mirror of System 8A, and again System 8C’s external potential is given by vCext(t) =

1
2

(

vAext(t) + vBext(t)
)

. For these three systems converged results were found with δx = 0.05 a.u. and δt = 5× 10−5 a.u.


