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Abstract

In this paper, we study the local polynomial composite quantile regression (CQR) smooth-

ing method for the nonlinear and nonparametric models under the Harris recurrent Markov

chain framework. The local polynomial CQR regression method is a robust alternative to the

widely-used local polynomial method, and has been well studied in stationary time series. In

this paper, we relax the stationarity restriction on the model, and allow that the regressors

are generated by a general Harris recurrent Markov process which includes both the stationary

(positive recurrent) and nonstationary (null recurrent) cases. Under some mild conditions, we

establish the asymptotic theory for the proposed local polynomial CQR estimator of the mean

regression function, and show that the convergence rate for the estimator in nonstationary case

is slower than that in stationary case. Furthermore, a weighted type local polynomial CQR es-

timator is provided to improve the estimation efficiency, and a data-driven bandwidth selection

is introduced to choose the optimal bandwidth involved in the nonparametric estimators. Fi-

nally, we give some numerical studies to examine the finite sample performance of the developed

methodology and theory.
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1 Introduction

During the past three decades, there has been increasing interest in nonparametric smoothing tech-

niques to study time series data with possible nonlinearity, as the nonparametric methodology allows

the time series data “speak for themselves”, and thus provides a flexible tool to explore the rela-

tionship between variables and avoid some potential model misspecification problems. When the

observations satisfy certain stationarity condition, there have been extensive studies on various non-

parametric estimation approaches such as the local polynomial method (Fan and Gijbels, 1996) and

the penalized spline method (Ruppert et al, 2003). However, as pointed out in the literature, the

stationarity assumption seems too restrictive in practical applications. When tackling economic and

financial issues from a time perspective, we often deal with nonstationary components. For exam-

ple, neither the consumer price index nor the share price index, nor the exchange rates constitute

a stationary process. Hence, in recent years, several nonparametric smoothing methods such as the

Nadaraya-Watson kernel method, the local linear method and the series approximation method have

been developed to model time series data with nonstationarity. Existing studies include Park and

Hahn (1999), Karlsen and Tjøstheim (2001), Karlsen et al (2007), Cai et al (2009), Lin et al (2009),

Wang and Phillips (2009a, 2009b) and Chen et al (2012).

In this paper, we consider the nonparametric regression model defined by

Yt = m(Xt) + σ(Xt)et, t = 1, · · · , n, (1.1)

where {Xt} is generated by a Harris recurrent Markov process which will be defined in Section 2 below,

{et} is a sequence of independent and identically distributed (i.i.d.) random variables with mean zero,

m(·) is the conditional mean function, and σ2(·) is the conditional variance (or volatility) function.

For the case of stationary time series, model (1.1) has been extensively studied in the literature, see,

for example, Fan and Gijbels (1996), Härdle and Tsybakov (1997), and Fan and Yao (1998). Wang

and Wang (2013) studied model (1.1) when {Xt} is a unit root process, and Cai and Tjøstheim

(2015) estimated model (1.1) when {Xt} is null recurrent. In this paper, the Harris recurrence on

{Xt} provides a general framework for our study, and both the stationary and nonstationary cases

can be included. When {Xt} is nonstationary and σ(·) ≡ 1, model (1.1) reduces to the nonlinear

cointegration model, which has been extensively studied in the econometrics literature (c.f., Karlsen

et al, 2007; Wang and Phillips, 2009a, 2009b) since the publications of Granger (1981) and Engle and

Granger (1987). The main interest of this paper is to study the nonparametric estimation of m(·),
which is also the major focus of the existing literature on nonlinear time series with nonstationarity.

To estimate the conditional mean function, most of the existing literature considers the local least
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squares approaches such as the local linear smoothing method which is popular and convenient

especially when the error follows a stationary and normal distribution. However, it is well known

that the local least squares estimator is sensitive to outliers and does not perform well when the error

distribution is heavy-tailed as shown by Fan et al (1994) and Lin et al (2009). Outliers or aberrant

observations are common in nonstationary time series data from economics and many other applied

fields, and heavy-tailed distribution is an important feature of some nonstationary time series data

from finance. Hence, it is important to derive a robust and flexible estimation approach for the

conditional mean function m(·).
In this paper, to estimate m(·), we will develop a robust local estimation procedure which atten-

uates the lack of robustness of the local least squares estimator. The robust estimation methodology

is built on a combination of local polynomial smoothing and composite quantile regression (CQR),

and thus inherits the advantages from both the local polynomial smoothing and CQR techniques.

For the case of i.i.d. observations, Zou and Yuan (2008) proposed the CQR method to estimate the

regression coefficients in the classical linear regression model, and Kai et al (2010) developed local

CQR smoothers to estimate the nonlinear mean regression function and its derivatives. They have

shown that the CQR estimator could be much more efficient than the least squares based estimator

for i.i.d observations when the model error distribution is heavy-tailed. However, the restriction of

i.i.d. observations would limit the applicability of the CQR method in some applied fields, and thus it

is important for us to relax such restriction. To the best of our knowledge, there is virtually no work

on estimation of m(·) through using the local polynomial CQR method when {Xt} is a nonstationary

process. This paper aims to fill in this gap.

It is well known that a minimal condition for conducting the asymptotic analysis on local es-

timation of m(x0) is that, as the number of observations increases, there must be infinitely many

observations in any neighborhood of x0, which means that the process {Xt} must return to a neigh-

borhood of x0 infinitely often. To achieve this, in this paper, {Xt} is assumed to be φ-irreducible

Harris recurrent, making asymptotics for nonparametric local estimation procedure possible. The

assumption of Harris recurrence on {Xt} indicates that the process includes both stationary (positive

recurrent) and nonstationary (null recurrent) cases. Under some mild conditions, we establish the

asymptotic theory for the proposed local polynomial CQR estimator of the mean regression func-

tion, and show that the convergence rate for the estimator in nonstationary case is slower than that

in stationary case. A recent paper by Lin et al (2009) considered the local linear M-smoother for

model (1.1) with σ(·) ≡ 1 when {Xt} is a null recurrent Markov process. Hence, this paper provides

a more general framework than that in Lin et al (2009). On the other hand, compared with the

kernel estimation method for model (1.1) studied by Wang and Wang (2013) and Cai and Tjøstheim
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(2015) when {Xt} is nonstationary, the proposed local polynomial CQR estimation is more robust

and more efficient when the error term has a heavy-tailed distribution. Furthermore, a weighted type

local polynomial CQR estimator is provided to improve the estimation efficiency by appropriately

choosing the weights, and a data-driven bandwidth selection is introduced to choose the optimal

bandwidth involved in the nonparametric estimators. So far as we know, such two issues have not

been well addressed by the existing literature on nonstationary time series. Finally, we also give

both the simulation study and empirical application to explore the finite sample performance of the

proposed methodology and theory.

The rest of the paper is organized as follows. In Section 2, we introduce some basic theory

for Harris recurrent Markov process and the methodology of local polynomial CQR smoothing. In

Section 3, we establish the asymptotic theory for the proposed estimators. In Section 4, we discuss

some important issues such as the weighted local polynomial CQR method and bandwidth selection.

In Section 5, we give both the simulation study and empirical application of our methodology. Section

6 concludes this paper. The proofs of the main results are given in an appendix.

2 Methodology

In this section, we first introduce some basic definitions and properties for the Harris recurrent

Markov processes which generate the explanatory variables {Xt}, and then give the local q-order

polynomial CQR estimators of the mean regression function m(·) as well as its derivatives.

2.1 Harris recurrent Markov processes

Throughout this paper, let {Xt, t ≥ 1} be a φ-irreducible Markov chain on the state space (E, E) with
transition probability P, which means that for any set A ∈ E with φ(A) > 0, we have

∑
∞

t=1 P
t(x,A) >

0 for x ∈ E. We further assume that the φ-irreducible Markov chain {Xt} is Harris recurrent to

make asymptotic analysis for the local polynomial CQR estimation possible. The notation used in

this subsection is similar to that used by the existing literature such as Nummelin (1984) and Karlsen

and Tjøstheim (2001).

A Markov process {Xt} is Harris recurrent if, given a neighborhood Bv of v with φ(Bv) > 0, {Xt}
returns to Bv with probability one, v ∈ E. An important feature of the Harris recurrence is to allow

us to construct a split chain, which plays a critical role in the derivation of the asymptotic theory

(c.f., Karlsen and Tjøstheim, 2001; Karlsen et al, 2007; and Li et al, 2016). With the help of the split
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chain technique, we can decompose the partial sum of functions of {Xt} into blocks of i.i.d. parts

and two asymptotically negligible remaining parts. For the process {G(Xt) : t ≥ 1}, we define

Zk(G) =





τ∗0∑
t=1

G(Xt), k = 0,

τ∗
k∑

t=τ∗
k−1+1

G(Xt), 1 ≤ k ≤ T (n),

n∑
t=τ∗

T (n)
+1

G(Xt), k = T (n) + 1,

where G(·) is a real function defined on R, τ ∗k , k ≥ 1, are the regeneration times of the Markov

process, n is the number of observations and T (n) is the number of regenerations of the split chain.

Usually we need to assume that the function G(·) satisfies some integrability conditions when applying

the technique of the split chain to derive asymptotic theory. For example, when {Xt} is positive

recurrent, certain moment condition needs to be imposed on G(Xt); and when {Xt} is the random

walk process, G(·) is usually assumed to be an integrable function. It is easy to see that

n∑

t=1

G(Xt) = Z0(G) +
T (n)∑

k=1

Zk(G) + ZT (n)+1(G). (2.1)

From the result in Nummelin (1984), {Zk(G), k ≥ 1} is a sequence of i.i.d. random variables, and the

remaining two terms Z0(G) and ZT (n+1)(G) on the right hand side of (2.1) converge to zero almost

surely when they are divided by the number of regenerations T (n) by using Lemma 3.2 in Karlsen

and Tjøstheim (2001).

The general Harris recurrence only yields stochastic rates of convergence in asymptotic theory,

where the distribution and size of the number of regenerations T (n) have no a priori known structure

but fully depend on the underlying process {Xt}. For the positive Harris recurrent case, the order

of T (n) is the same as that of the sample size n. However, to obtain a specific rate of T (n) for the

null recurrent case, we need to impose some restrictions on the tail behavior of the distribution of

the recurrence times of the Markov chain {Xt}.
A Markov process {Xt} is β-null recurrent if there exist a small nonnegative function f(·), an

initial measure λ, a constant β ∈ (0, 1), and a slowly varying function Lf (·) such that

Eλ(
n∑

i=1

f(Xt)) ∼
1

Γ(1 + β)
nβLf (n), (2.2)

where Eλ stands for the expectation with initial distribution λ and Γ(1 + β) is the Gamma function

with parameter 1 + β. The definition of a small function f in the above definition can be found in
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some existing literature (see, for example, pp.15 in Nummelin 1984). Assuming the β-null recurrence

restricts the tail behavior of the recurrence time of the process to be a regularly varying function. If

{Xt} is generated by the random walk process, β = 1/2. For the stationary and positive recurrent

{Xt}, β = 1. Myklebust et al (2012) and Li et al (2016) further provided an example for a general

β-null recurrent Markov chain, where β could be any value between 0 and 1. The β-null recurrent

process also has the so-called invariance property that if {Xt} is β-null recurrent, then for a one-

to-one transformation T (·), {T (Xt)} is still β-null recurrent (Teräsvirta et al, 2010). Karlsen and

Tjøstheim (2001) proved that the regeneration number T (n) of the β-null recurrent Markov chain

{Xt} has the following asymptotic distribution

T (n)

nβLs(n)

d−→ Mβ(1), (2.3)

where Ls = Lf/(πsf), the function f(·) is πs-integrable such that
∫
|f(x)|πs(dx) < ∞, πs(·) is

an invariant measure of the Markov chain {Xt}, and Mβ(1) is the Mittag-Leffler distribution with

parameter β (c.f., Kasahara, 1984). As {Xt} is assumed to be Harris recurrent throughout the

paper, the invariant measure πs(·) exists and is unique up to a constant. Section 3.2 of Karlsen

and Tjøstheim (2001) provided a detailed introduction on how to construct and define the invariant

measure πs(·). In this paper, we further assume that πs(·) is absolutely continuous with respect to the

Lebesgue measure and let ps(·) be the corresponding density function such that ps(x)dx = πs(dx).

If {Xt} is the random walk process, ps(x) ≡ 1; and if {Xt} is stationary and positive recurrent, ps(·)
can be seen as a conventional density function. Since T (n) < n a.s. for the null recurrent case by

(2.3), it is expected that the rates of convergence for the nonparametric local estimators would be

slower than those for the stationary time series case (c.f., Karlsen et al, 2007; Gao et al, 2015).

2.2 Local polynomial CQR estimators

We start with the well-known local polynomial smoothing approach. Assuming that the mean re-

gression function m(·) has the (q+1)-th order continuous derivative function, by Taylor’s expansion,

we can approximate m(Xt) by

m(Xt) ≈ m(x0) +

q∑

j=1

m(j)(x0)

j!

(
Xt − x0

)j
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when Xt is in a small neighborhood of x0, where m
(j)(·) is the j-th derivative of m(·). As in Fan and

Gijbels (1996), define the local loss function by

L(b0, b1, · · · , bq) =
n∑

t=1

[
Yt − b0 −

q∑

j=1

bj(Xt − x0)
j
]2
K
(Xt − x0

h

)
, (2.4)

where K(·) is a kernel function and h is a bandwidth. Letting (̃b0, b̃1, · · · , b̃q)⊤ be the minimizer to

the local loss function L(b0, b1, · · · , bq), then m(x0) and m(j)(x0) can be estimated by b̃0 and j !̃bj,

respectively, j = 1, · · · , q. Such local q-order polynomial estimators can be seen as the extension

of the Nadaraya-Watson kernel estimator discussed in Karlsen et al (2007), when {Xt} belongs to a

class of Harris recurrent Markov processes. However, as mentioned in Section 1, the local polynomial

estimators are not robust and would break down when the error distribution does not have certain

moment conditions. To address the latter issue, we next give the local polynomial quantile regression

and CQR estimation methods.

Since introduced by Koenker and Bassett (1978), the quantile regression method has been widely

used in many disciplines such as economics and finance, and serves as a robust alternative to the

mean regression method. Koenker (2005)’s book gives a review on various methodologies in quantile

regression as well as their applications. Recently, Xiao (2009) studied the quantile regression for

nonstationary time series where {Xt} is generated by a unit root process. However, in this paper,

we focus on the Harris recurrent Markov process which is quite different from the unit root process,

as the latter process may be not Markovian. Furthermore, the technique developed for the unit root

process relies on the linear framework, and cannot be directly applied when the underlying process

is nonlinear (such as a nonlinear autoregressive Markov process).

For 0 < τ < 1, define ρτ (z) = τz − zI(z < 0). Let (b0, b1, · · · , bq)⊤ be the minimizer to

Q(b0, b1, · · · , bq) =
n∑

t=1

ρτ
[
Yt − b0 −

q∑

j=1

bj(Xt − x0)
j
]
K
(Xt − x0

h

)
. (2.5)

Then, m(x0) + κτ (x0) and m(j)(x0) can be estimated by b0 and j!bj, respectively, j = 1, · · · , q,

where κτ (x0) is the conditional τth quantile function of σ(Xt)et given Xt = x0.

The local polynomial CQR estimation method is to combine the information across multiple

quantile estimates, and thus improve the estimators of the mean regression function and its deriva-

tives. For a given positive integer M , let τk = k/(M + 1), k = 1, · · · , M . Define the local loss

function for local polynomial CQR smoothing by

QC(B0, b1, · · · , bq) =
M∑

k=1

n∑

t=1

ρτk
[
Yt − b0k −

q∑

j=1

bj(Xt − x0)
j
]
K
(Xt − x0

h

)
, (2.6)
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where B0 = (b01, · · · , b0M)⊤. Let (B̂0, b̂1, · · · , b̂q)⊤ be the minimizer to the local loss function

QC(B0, b1, · · · , bq) with B̂0 = (̂b01, · · · , b̂0M)⊤. Then, the local polynomial CQR estimators of

m(x0) and m(j)(x0) can be defined by

m̂(x0) =
1

M

M∑

k=1

b̂0k, m̂(j)(x0) = j !̂bj, j = 1, · · · , q. (2.7)

A crucial condition to ensure the unbiasedness of m̂(x) is that {et} is symmetric, as assumed in

Assumption 3 in Section 3 below. In practice, M is usually chosen as a positive odd integer (say

5 or 7). In such case, the median would be included (τk with k = (M + 1)/2) and the remaining

quantiles would be evenly spaced around the median. For the case of i.i.d. observations, Kai et al

(2010, 2011) have shown that the local polynomial CQR estimators enjoy nice asymptotic efficiency

properties compared with the local least squares estimator. In this paper, we will further show that

such nice properties hold for both stationary and nonstationary cases through theoretical analysis

and numerical studies.

3 Asymptotic theory

We start with some regularity conditions to establish the asymptotic properties of the estimation

method introduced in Section 2.

Assumption 1. The kernel function K(·) is a symmetric and continuous probability density func-

tion with compact support.

Assumption 2. Let πs(·) be the invariant measure of the Harris recurrent Markov process {Xt}
with continuous and positive density function ps(·). If {Xt} is null recurrent, we further assume

that it is β-null recurrent with 0 < β < 1.

Assumption 3. Let {et} be a sequence of i.i.d. random variables and independent of {Xt}. Fur-

thermore, {et} has a symmetric distribution with a cumulative distribution function Fe(·) and
a positive and continuous density function fe(·).

Assumption 4. The mean regression function m(·) has the (q+1)-th order continuous derivatives.

Assumption 5. The function σ2(·) is continuous and positive at point x0.
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Assumption 6. The bandwidth h satisfies that h → 0, and either nh
logn

→ ∞ when {Xt} is positive

recurrent or nβLs(n)h
logn

→ ∞ when {Xt} is β-null recurrent.

Assumption 1 is a mild condition on the kernel function when local polynomial smoothing is

used, and several commonly-used kernel functions such as the uniform kernel and the Epanechnikov

kernel satisfy Assumption 1. Assumption 2 is comparable to some corresponding conditions in

stationary case. For example, the condition on the invariant density function ps(·) is similar to

that on the density function in the stationary case. When {Xt} is generated by the random walk

process Xt = Xt−1 + xt where {xt} is i.i.d. and X0 = 0, {Xt} corresponds to the 1/2-null recurrent

Markov process with ps(·) ≡ 1 and Assumption 2 can be satisfied. Although we assume that {et}
is independent of {Xt} in Assumption 3, there exists a heteroscedasticity structure σ(Xt)et in our

model, which relaxes the homoscedasticity assumption in Gao et al (2015). Furthermore, the i.i.d.

condition on {et} in Assumption 3 can be replaced by the stationary and weakly dependent condition

such as a stationary and α-mixing dependence (c.f., Karlsen et al, 2007). As the quantile regression

is used in the developed estimation procedure, we do not need to impose any moment condition on

the error {et}, which is an advantage over the conventional local linear smoothing method. This

makes our methodology applicable to the case of heavy-tailed error distribution. It seems difficult to

relax the condition that {et} is independent of the regressor {Xt}, which is a standard assumption

in the literature (c.f., Karlsen et al, 2007; Gao et al, 2015; and Li et al, 2016). One possibility is to

replace the mutual independence assumption by the condition that the compound process {(Xt, et)}
is Harris recurrent, in which case the proofs of the asymptotic theorems in Appendix B need to be

substantially modified. Assumptions 4 and 5 are the same as those in Kai et al (2010), and the

bandwidth condition in Assumption 6 is also commonly used in nonparametric kernel estimators of

the Harris recurrent Markov processes.

Before giving the asymptotic theory for m̂(x0) and m̂(j)(x0), j = 1, · · · , q, we introduce some

notation. Let µi =
∫
ziK(z)dz and νi =

∫
ziK2(z)dz for i = 0, 1, · · · , ck = F−1

e (τk) with τk =

k/(M + 1), and

S(x0) =

[
S11(x0) S12(x0)

S⊤

12(x0) S22(x0)

]
, (3.1)

where S11(x0) is an M×M diagonal matrix whose diagonal element is s11(k) = fe(ck)ps(x0)µ0/σ(x0)

for k = 1, · · · ,M , S12(x0) is anM×q matrix whose (k, j)-th element is s12(k, j) = fe(ck)ps(x0)µj/σ(x0)

for k = 1, · · · ,M and j = 1, · · · , q, S22(x0) is a q× q matrix whose (j1, j2)-th element is s22(j1, j2) =

9



[∑M
k=1 fe(ck)

]
ps(x0)µj1+j2/σ(x0) for j1, j2 = 1, · · · , q. Let

Ω(x0) =

[
Ω11(x0) Ω12(x0)

Ω⊤

12(x0) Ω22(x0)

]
, (3.2)

where Ω11(x0) is anM×M matrix whose (k1, k2)-th element is ω11(k1, k2) = ps(x0)ν0(τk1∧τk2−τk1τk2),

Ω12(x0) is an M × q matrix whose (k, j)-th element is ps(x0)νj
∑M

k1=1(τk1 ∧ τk − τk1τk), and Ω22(x0)

is a q× q matrix whose (j1, j2)-th element is ps(x0)νj1+j2

∑M
k1=1

∑M
k2=1(τk1 ∧ τk2 − τk1τk2). Let eM+q,k

be an (M + q)-dimensional column vector with the k-th element being 1 and 0 elsewhere, and

EM =
[
eM+q,1, · · · , eM+q,M

]⊤
.

We give the asymptotic distribution theory for the local polynomial CQR estimators m̂(x0) and

m̂(j)(x0), j = 1, · · · , q, in the following theorem.

Theorem 3.1. Suppose that {Xt} is a Harris recurrent Markov chain, Assumptions 1–6 are satisfied

and the matrix S(x0) is non-singular.

(i) The local polynomial CQR estimator of m(x0) has the following asymptotic distribution:

√
T (n)h

{
m̂(x0)− E[m̂(x0)]

}
d−→ N

[
0, σ2

0(x0)
]
, (3.3)

where

σ2
0(x0) =

1

M2

M∑

k1=1

M∑

k2=1

σk1k2(x0),

σk1k2(x0) is the (k1, k2)-th element of the M ×M matrix EMS−1(x0)Ω(x0)S
−1(x0)E

⊤

M .

(ii) The local polynomial CQR estimator of m(j)(x0) has the following asymptotic distribution:

√
T (n)h2j+1

{
m̂(j)(x0)− E[m̂(j)(x0)]

}
d−→ N

[
0, σ2

j (x0)
]
, (3.4)

where σ2
j (x0) = e⊤M+q,M+jS

−1(x0)Ω(x0)S
−1(x0)eM+q,M+j.

From the above theorem, we find that the asymptotic variances for m̂(x0) and hjm̂(j)(x0) have

the stochastic convergence rates as the number of regeneration, T (n), is random, which is different

from the corresponding results in existing literature and provides a more general framework. For

example, when {Xt} is null recurrent, the above asymptotic normal distribution results (3.3) and

(3.4) can be seen as the nonstationary extension of Theorem 4 in Kai et al (2010), and our results

can also be seen as the robust generalization of the corresponding results in Karlsen et al (2007) and

Gao et al (2015) which considered the kernel and local linear estimation of the regression function.

10



When q = 1, the local polynomial CQR estimators reduce to the local linear CQR estimators.

Hence, from Theorem 3.1, we have the following asymptotic theory.

Corollary 3.1. Suppose that the conditions of Theorem 3.1 are satisfied with µ0 = 1 and let q = 1.

The local linear CQR estimator of m(x0) has the following asymptotic distribution:

√
T (n)h

{
m̂(x0)−m(x0)−

1

2
m(2)(x0)µ2h

2

}
d−→ N

[
0, σ2

∗
(x0)/ps(x0)

]
, (3.5)

and √√√√
n∑

t=1

K
(Xt − x0

h

){
m̂(x0)−m(x0)−

1

2
m(2)(x0)µ2h

2

}
d−→ N

[
0, σ2

∗
(x0)

]
, (3.6)

where

σ2
∗
(x0) =

ν0σ
2(x0)

M2

M∑

k1=1

M∑

k2=1

τk1 ∧ τk2 − τk1τk2
fe(ck1)fe(ck2)

.

From Theorem 3.1 and Corollary 3.1, it is clear that the asymptotic variance depends on the

choice of τks. In general, for a single given τ , inner quantiles (i.e., τ close to 0.5) may have similar

information with median and the estimation might be more accurate, while the estimation of tail

quantile (i.e., τ close to 0 or 1) is harder due to less information available. In practice, it may be

worth trying using more tail quantiles (1%, 5%, 95% or 99%) or more inner quantiles (25%, 40%,

60% or 75%) to examine the change of the resulting estimates. Following the literature (Zou and

Yuan, 2008; Kai et al, 2010, 2011), we choose τk = k/(M + 1) for a given positive odd integer M

throughout this paper.

From the above asymptotic distribution theory, the asymptotic bias term for the local linear CQR

estimator is exactly the same as that derived in Theorem 1 of Kai et al (2010), and has the same

order for both the stationary and nonstationary cases. As the stochastic order T (n) is determined

by the Harris recurrent process {Xt}, the asymptotic distributions in (3.3)–(3.5) belongs to the

self-normalized central limit theorems. Note that

1

T (n)h

n∑

t=1

K
(Xt − x0

h

)
= ps(x0) + oP (1),

by Theorem 5.1 of Karlsen and Tjøstheim (2001) if µ0 = 1. Hence, the asymptotic distribution result

(3.6) in Corollary 3.1 can be easily proved by using (3.5) and the asymptotic variance σ2
∗
(x0) in (3.6)

does not rely on ps(x0).
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From (3.5) in Corollary 3.1 above, we can also calculate the conditional asymptotic mean squared

error (AMSE) for the local linear CQR estimator given Fn(X) = σ(X1, · · · , Xn):

AMSE1 [x0, h|Fn(X)]
P∼
[
1

2
m(2)(x0)µ2

]2
h4 +

σ2
∗
(x0)

T (n)hps(x0)
=:

1

4
b2m(x0)h

4 +
σ2
∗
(x0)

T (n)hps(x0)
, (3.7)

where an
P∼ bn denotes an

bn
= 1 + oP (1) and bm(x0) = m(2)(x0)µ2. The proof of (3.7) will be given in

the appendix. It is easy to see that the optimal bandwidth for the local linear CQR estimator is

hopt1(x0)
P∼
[

σ2
∗
(x0)

b2m(x0)ps(x0)

]1/5
T−1/5(n) (3.8)

and

AMSE1

[
x0, hopt1(x0)|Fn(X)

] P∼ 5

4

[
σ2
∗
(x0)b

1/2
m (x0)

ps(x0)

]4/5
T−4/5(n). (3.9)

Similarly, for the local linear estimator, by Corollary 1 in Lin et al (2009), we can show that the

conditional AMSE for the local linear estimator given Fn(X) is

AMSE2

[
x0, h|Fn(X)

] P∼ 1

4
b2m(x0)h

4 +
σ2
♦(x0)

T (n)hps(x0)
, σ2

♦(x0) = ν0σ
2(x0). (3.10)

Hence, the optimal bandwidth for the local linear estimator is

hopt2(x0)
P∼
[

σ2
♦(x0)

b2m(x0)ps(x0)

]1/5
T−1/5(n) (3.11)

and

AMSE2

[
x0, hopt2(x0)|Fn(X)

] P∼ 5

4

[
σ2
♦(x0)b

1/2
m (x0)

ps(x0)

]4/5
T−4/5(n). (3.12)

By (3.9) and (3.12), the asymptotic relative efficiency of the local linear CQR estimator with respect

to the local linear estimator is

ARE
[
x0|Fn(X)

]
=

AMSE2

[
x0, hopt2(x0)|Fn(X)

]

AMSE1

[
x0, hopt1(x0)|Fn(X)

] P∼
[
σ2
♦(x0)

σ2
∗
(x0)

]4/5
= R−4/5(M), (3.13)

where

R(M) =
1

M2

M∑

k1=1

M∑

k2=1

τk1 ∧ τk2 − τk1τk2
fe(ck1)fe(ck2)

.

Table 1 in Kai et al (2010) calculated the values of R−4/5(M) corresponding to different values of

M for various cases of error distribution, and it showed that for most of the heavy-tailed error
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distributions including the t-distribution and mixture of normal distributions, the local linear CQR

estimation with M = 5 is significantly better than that with M = 1 (which reduces to the local

linear absolute deviation estimation). In practical applications, the local linear CQR estimation

using relatively small M is often suggested. Furthermore, Theorem 2 in Kai et al (2010) proved

that R(M) → 1 as M → ∞, which indicates that the local linear CQR estimation would not lose

efficiency even if a very large M is used.

Note that the order of T (n) for the stationary case is different from that in the nonstationary case,

which would lead to different convergence rates for the local polynomial CQR estimators. Hence, we

next give the convergence rates of the local linear CQR estimator m̂(x0) under two different scenario:

positive recurrence and β-null recurrence, which correspond to the stationary and nonstationary

cases, respectively.

Corollary 3.2. Suppose that the conditions in Theorem 3.1 are satisfied and let q = 1.

(i) When {Xt} is positive recurrent, we have

m̂(x0)−m(x0) = OP

(
h2 +

1√
nh

)
. (3.14)

(ii) When {Xt} is β-null recurrent with 0 < β < 1, we have

m̂(x0)−m(x0) = OP

(
h2 +

1√
nβLs(n)h

)
. (3.15)

As 0 < β < 1 and Ls(n) is a positive and slowly varying function, from the above corollary, we

can see that the convergence rate of m̂(x0) for the nonstationary case is slower than that for the

stationary case when the bandwidth h is appropriately chosen. This is mainly because in the β-null

recurrent case, the amount of time spent by the time series around any particular point is of order

nβLs(n) rather than n for the stationary time series case.

As T (n) is random, the asymptotic normal distribution results in Theorem 3.1 and Corollary

3.1 are the self-normalized central limit theorems. By using the convergence result in (2.3), we may

replace the stochastic normalization rate in (3.5) by a deterministic normalization rate and obtain

the following corollary.

Corollary 3.3. Suppose that the conditions of Corollary 3.1 are satisfied. The local linear CQR

estimator of m(x0) has the following asymptotic distribution:

√
nβLs(n)h

{
m̂(x0)−m(x0)−

1

2
m(2)(x0)µ2h

2

}
d−→
[

σ2
∗
(x0)

ps(x0)Mβ(1)

]1/2
N, (3.16)
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where σ2
∗
(x0) is defined as in Corollary 3.1 and N is a standard normal distribution independent of

the Mittag-Leffler distribution Mβ(1).

The above result can be proved by combining (2.3) in Section 2.1 and (3.5) in Corollary 3.1 and

using the condition that {et} is independent of {Xt}. Noting that the Mittag-Leffler distribution can

be regarded as a scaled local time of the underlying Markov process, the result (3.16) is comparable

to the asymptotic result (3.11) in Wang and Phillips (2009b) who used the local time technique.

4 Weighted local CQR smoothing and bandwidth selection

In this section, we further introduce a weighted local linear CQR smoothing technique which could

be more efficient than the ordinary local linear CQR estimation studied in the previous sections.

Meanwhile, a local bandwidth selection criterion is also provided to choose the optimal bandwidth

in the local CQR estimation. In this section, we mainly focus on the local linear CQR smoothing

estimation as the extension to the local polynomial CQR smoothing case is straightforward.

4.1 Weighted local linear CQR smoothing

Note that in (2.7), m̂(x0) is constructed by taking a simple average of b̂0k, k = 1, · · · ,M , obtained

by minimizing (2.6). It is well known that the efficiency of the estimator might be improved by

considering a weighted average of b̂0k and choosing the optimal weights (c.f., Bradic et al, 2011).

Motivated by this, we introduce the following weighted local linear CQR estimator:

m̂w(x0) =
M∑

k=1

wkb̂0k with
M∑

k=1

wk = 1. (4.1)

It is easy to see that m̂w(x0) reduces to m̂(x0) when wk =
1
M
. Following the proof of Theorem 3.1 in

the appendix, we may prove that

√
T (n)h

{
m̂(x0)−m(x0)−

1

2
m(2)(x0)µ2h

2

}
d−→ N

[
0, σ2

w(x0)
]
. (4.2)

where

σ2
w(x0) =

ν0σ
2(x0)

ps(x0)

M∑

k1=1

M∑

k2=1

wk1wk2

τk1 ∧ τk2 − τk1τk2
fe(ck1)fe(ck2)

.
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In order to improve the estimation efficiency, we have to carefully choose the optimal w =

(w1, · · · , wM)⊤. The aim is to minimize the quantity

M∑

k1=1

M∑

k2=1

wk1wk2

τk1 ∧ τk2 − τk1τk2
fe(ck1)fe(ck2)

subject to
∑M

k=1 wk = 1. Letting Ωτ be an M ×M matrix whose (k1, k2)-th element is
τk1∧τk2−τk1τk2
fe(ck1 )fe(ck2 )

,

we have
M∑

k1=1

M∑

k2=1

wk1wk2

τk1 ∧ τk2 − τk1τk2
fe(ck1)fe(ck2)

= w⊤Ωτw. (4.3)

Then, the optimal weights can be obtained through

wopt = argmin
w

{
w⊤Ωτw

∣∣
M∑

k=1

wk = 1

}
. (4.4)

By the Lagrange multiplier calculation as in Kim et al (2012), we can derive the explicit form of wopt:

wopt =
Ω−1

τ 1M

1⊤

MΩ−1
τ 1M

, (4.5)

where 1M is an M -dimensional column vector with each element being 1. Replacing w by wopt, we

get the optimal weighted local linear CQR estimator of m(x0) by

m̂o(x0) = (̂b01, · · · , b̂0M) · wopt (4.6)

whose asymptotic variance given Fn(X) is

1

T (n)h

ν0σ
2(x0)

ps(x0)1⊤

MΩ−1
τ 1M

.

In practice, we may obtain the feasible optimal weights by replacing Ωτ in (4.5) by Ω̂τ , where Ω̂τ is

an M ×M matrix whose (k1, k2)-th element is

τk1 ∧ τk2 − τk1τk2

f̂e(ck1)f̂e(ck2)
, f̂e(c0) =

1

nb

n∑

t=1

L
( êt − c0

b

)
,

L(·) is a kernel function, b is a bandwidth, êt =
[
Yt − m̂(Xt)

]
/σ̂(Xt), σ̂

2(·) is the nonparametric

estimation of the conditional variance function (c.f., Fan and Yao, 1998).
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4.2 Bandwidth selection

It is well known that nonparametric kernel estimators are sensitive to the choice of the bandwidth.

Hence, it is important to choose the optimal data-driven bandwidth for the proposed local linear

CQR estimation. A larger bandwidth would lead to an oversmoothed estimation which incurs larger

bias, and a smaller bandwidth could reduce the bias but the variance of the proposed estimator

could be larger since fewer data are used in the kernel estimation. Hence, a good choice of the

bandwidth should be a tradeoff between these two types of drawback. Many useful methods have

been introduced to select the optimal bandwidth in nonparametric kernel estimation for stationary

time series data, see, for example, Fan and Gijbels (1995), Ruppert (1997), and Yao and Tong

(1998). However, there is relatively fewer literature on the bandwidth selection for nonparametric

kernel estimation with possible nonstationary regressors.

It is well known that the invariant measure of the null recurrent {Xt} does not have a compact

support, which is commonly assumed in stationary case. For example, when Xt = Xt−1 + xt with

X0 ≡ 0 and {xt} being i.i.d. standard normal, Xt follows N(0, t). Thus, for this 1/2-null recurrent

Markov process, the range of Xt would be expanding as t increases. It may be not reasonable to

use a universal bandwidth to handle Xt with such wide range when the unknown regression function

has a complicated structure. Hence, we next propose a variable bandwidth selection method for the

local linear CQR estimator.

Our bandwidth selection is based on the idea of the “leave-one-out” cross validation, which is

quite useful in assessing the performance of estimators via estimating their prediction errors. Define

CVx0(h) =
n∑

t=1

[
Yt − m̂h,−t(Xt)

]2
H
(Xt − x0

b∗

)
, (4.7)

where m̂h,−t(Xt) is the local linear CQR estimated value of m(Xt) with bandwidth h, by using

the observations (Ys, Xs), s 6= t, H(·) is a density function with a compact support and b∗ → 0

is pre-determined which indicates that we only assess the estimation performance for Xt in a very

small neighborhood of x0. Then, the local optimal bandwidth for the local linear CQR estimator is

obtained by h(x0) = argminh CVx0(h).

5 Numerical study

In this section, we give both the simulated and empirical examples to illustrate the proposed method-

ology and theory.
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Example 5.1. Consider a nonlinear regression model defined by

Yt = m(Xt) + et, m(x) = sin(x) + 2 exp{−16x2}, t = 1, · · · , n, (5.1)

which was also studied by Kai et al (2010) for the i.i.d. observations. Here, the regressor {Xt} is

generated by one of the following three Markov processes: (i) the AR(1) process: Xt = 0.5Xt−1 +

xt, (ii) the random walk process: Xt = Xt−1 + xt, and (iii) the threshold AR(1) process: Xt =

0.5Xt−1I(|Xt−1| ≤ 1) +Xt−1I(|Xt−1| > 1) + xt. In the above three Markov processes, we let X0 = 0

for simplicity and {xt} be a sequence of i.i.d. standard normal random variables. It is easy to see

that {Xt} is positive recurrent when generated by the AR(1) process (i), and 1/2-null recurrent when

generated by the random walk process (ii) or the threshold AR(1) process (iii) (Gao et al, 2013).

Let {et} be independent of {xt} and be taken from one of the following distributions: (i) standard

normal distribution, (ii) Laplace distribution, (iii) t distribution with degree 3, and (iv) a mixture

of two normal distributions 0.95N(0, 1) + 0.05N(0, 102).

In this simulation, we consider the sample size n = 200 with 200 replications. In the simulation,

we compare the performance of three nonparametric methods to estimate the regression function

m(·): local linear method, local linear CQR estimator and weighted local linear CQR estimator

with the weights chosen as in Section 4.1. The number of quantiles in the CQR estimation method,

M , was chosen as 5 and 7, and the optimal bandwidths for the local linear and the local linear

CQR estimations were selected by using the cross-validation method introduced in Section 4.2. For

simplicity, we used the same bandwidth for both the local linear CQR estimator and the weighted

local linear CQR estimator. The measure for the performance of the estimators was taken to be the

mean squared error (MSE) of the form:

MSE(m) =
1

20

20∑

l=1

[
m(zl)−m(zl)

]2
, (5.2)

where m(·) is the estimated value of the true regression function m(·) by using one of the three

nonparametric methods mentioned above, and zl, l = 1, · · · , 20, are twenty equally-spaced grid

points taken between 0.1 and 0.9 quantiles of Xt in each replication. To compare the performances

of the three different estimation methods, we calculated the ratio of the MSE for the local linear

CQR estimates to that for the local linear estimates (denoted by R(CQR)), and also the ratio of the

MSE for the weighted local linear CQR estimates to that of the local linear estimates (denoted by

R(WCQR)).

Insert Table 1 here
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Insert Table 2 here

In Table 1, we give the mean values of both R(CQR) and R(WCQR) over 200 replications

for different cases as well as the associated standard errors (SE) when M is 5. The results in

Table 1 indicate that the local linear CQR and weighted local linear CQR methods outperform the

local linear method, except for the standard normal error case where the values of R(CQR) and

R(WCQR) are slightly larger than 1. In particular, the improvement by using the local linear CQR

and weighted local linear CQR methods is very significant when the error terms follow a mixture

normal distribution. Such finding is consistent with our asymptotic analysis. Furthermore, the values

of R(WCQR) indicate that the weighted local linear CQR estimation method generally outperforms

the other two local estimation methods. Table 2 reports the results for the case when M is 7, and

the same finding as above can be obtained.

Example 5.2. We next apply the proposed local linear CQR and weighted local linear CQR estima-

tion methodology to study the relationship between the UK to US export data and the real exchange

rates (US/UK). The data (available at https://www.uktradeinfo.com/) were collected monthly from

January 1996 to August 2013, and thus the sample size is n = 212. The same data set was also

studied by Li et al (2016) by using the parametric nonlinear modelling framework and least squares

estimation method. We next consider more flexible nonparametric nonlinear modelling, and estimate

it by using the three nonparametric methods as in Example 5.1.

Let {Yt} denote the logarithm of the export value (in million pounds) and let Xt be defined by

Xt = log(Et) + log(pt,UK)− log(pt,US),

where Et is the monthly average of the nominal exchange rate (dollars per pound), and pt,UK and

pt,US are the consumption price indices of UK and US, respectively. We plot the data {Yt} and {Xt}
in Figure 5.1. The empirical applications in both Gao et al (2013) and Li et al (2016) suggested

that the real exchange rates {Xt} follow the nonstationary threshold AR (1) process and belong to

a 1/2-null recurrent Markov process.

Insert Figure 5.1 here

We fitted the data with model (1.1) and estimated the regression function m(·) using the three

nonparametric approaches. The choice of the kernel function and selection of the bandwidth are the

same as those in Example 5.1. The estimated plots of the regression function are provided in Figure

5.2, where the dotted line is the local linear estimated curve, the solid line is the local linear CQR
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estimated curve (with M = 5) and the dashed line is the weighted local linear CQR estimated curve.

From Figure 5.2, we can see that the three estimated curves have similar pattern with the weighted

local linear CQR estimated curve slightly above the other two. To make further comparison, we also

calculated the mean squared prediction error (MSPE) defined by

MSPE(m) =
1

n

n∑

t=1

[
Yt −m(Xt)

]2
, n = 212,

where m(x) is the estimated value of the true regression function m(x) by using one of the three

nonparametric methods. The value of MSPE for the local linear method is 0.0859, which is larger than

0.0847, the MSPE value for the local linear CQR method. And the value of MSPE for the weighted

local linear CQR method is 0.0801, which is the smallest one. This indicates that the weighted local

linear CQR method is the most efficient one among the three nonparametric estimation methods,

and this is also consistent with our asymptotic theory and finite sample behavior in simulation.

Insert Figure 5.2 here

Insert Figure 5.3 here

To further study the robust property of the CQR estimation methodology, we deliberately gen-

erated an outlier by tripling the value of Yt in February 2012 (the value of Xt remains unchanged).

The estimated plots of the regression function are provided in Figure 5.3. From the figure, we can see

that the local linear estimation of the regression function is seriously affected by the contaminated

value of Yt in February 2012. However, the local linear CQR and the weighted local linear CQR

estimated curves have the pattern similar to those in Figure 5.2. This provides a further evidence

that the local linear CQR estimation or weighted local linear CQR estimation is more robust than

the local linear estimation.

6 Conclusion and discussion

In this paper, we have studied the local polynomial CQR smoothing method, a robust alternative

to the local polynomial smoothing method, for the nonlinear and nonparametric models under the

Harris recurrent Markov chain framework which includes both the stationary and nonstationary
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cases. Under some mild conditions, we establish the asymptotic theory for the proposed local CQR

estimator of the mean regression function, and show that the convergence rate for the estimator in

nonstationary case is slower than that in stationary case. Meanwhile, we also introduce a weighted

local CQR estimation method which can further improve the estimation efficiency, and provide a data-

driven bandwidth selection criterion to choose the optimal bandwidth involved in the nonparametric

estimators with possible nonstationary regressors.

The estimation methodology and asymptotic results developed in this paper are limited to the

univariate regressor case. A possible future topic is to generalize the theory and method to the case

with multivariate regressors. For example, we can consider the stationary VAR processes as the

regressors (which belong to the positive recurrent Markov framework under some mild conditions),

or a mixture of one nonstationary regressor and other stationary regressors. Myklebust et al (2012)

gave some examples for the latter case, which belong to the 1/2-null recurrent Markov framework.

However, when the dimension of the regressors is larger than three, the local CQR estimation may

suffer from the so-called “curse of dimensionality” issue, which indicates that an alternative modelling

framework and estimation approach would be needed. This would be a good topic for future research.
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Appendix: Proofs of the main results

Before proving the main results, we introduce some notation to simplify the presentation. Let

uk =
√
T (n)h

[
b0k −m(x0)− σ(x0)ck

]
, vj = hj

√
T (n)h

[
bj − (j!)−1m(j)(x0)

]
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for k = 1, · · · , M and j = 1, · · · , q, where ck = F−1
e (τk) and Fe(·) is the cumulative distribution

function of the error {et}. Let

∆t,k =
1√

T (n)h

[
uk +

q∑

j=1

vj
(Xt − x0

h

)j]
,

dt,k = ck
[
σ(Xt)− σ(x0)

]
+ rt(x0),

rt(x0) = m(Xt)−m(x0)−
q∑

j=1

m(j)(x0)
(Xt − x0)

j

j!
,

δt,k = σ(Xt)(et − ck) + dt,k,

ηt,k = I
(
et ≤ ck − dt,kσ

−1(Xt)
)
− τk.

With the above notations, it is easy to see that

Yt − b0k −
q∑

j=1

bj(Xt − x0)
j = σ(Xt)(et − ck) + dt,k −∆t,k. (A.1)

Proof of Theorem 3.1. Letting

QC(x0) =
M∑

k=1

n∑

t=1

ρτk

[
σ(Xt)(et − ck) + dt,k

]
K
(Xt − x0

h

)
,

it is straightforward to show that minimizing QC(B0, b1, · · · , bq) is equivalent to minimizing

LC(B0, b1, · · · , bd) := QC(B0, b1, · · · , bd)−QC(x0),

=
M∑

k=1

n∑

t=1

{
ρτk

[
σ(Xt)(et − ck) + dt,k −∆t,k

]

−ρτk

[
σ(Xt)(et − ck) + dt,k

]}
K
(Xt − x0

h

)
, (A.2)

as B0, b1, · · · , bd are not involved in QC(x0).

Note that the identity result:

ρτ (x− y)− ρτ (x) = y
[
I(x ≤ 0)− τ

]
+

∫ y

0

[
I(x ≤ z)− I(x ≤ 0)

]
dz,

see, for example, Knight (1998). Letting x = σ(Xt)(et − ck) + dt,k = δt,k and y = ∆t,k in the above
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equality and Ktj(x0) =
(
Xt−x0

h

)j
K
(
Xt−x0

h

)
, LC(B0, b1, · · · , bd) can be rewritten as

LC(B0, b1, · · · , bd) =
M∑

k=1

uk

[
n∑

t=1

ηt,kKt0(x0)√
T (n)h

]
+

q∑

j=1

vj

[
M∑

k=1

n∑

t=1

ηt,kKtj(x0)√
T (n)h

]
+

M∑

k=1

n∑

t=1

Kt0(x0)

∫ ∆t,k

0

[
I
(
et ≤ ck +

z − dt,k
σ(Xt)

)
− I
(
et ≤ ck −

dt,k
σ(Xt)

)]
dz.

Let θn = (u1, · · · , uM , v1, · · · , vq)⊤ and Wn =
(
Wn1, · · · ,WnM ,W ∗

n1, · · · ,W ∗

nq

)⊤
with

Wnk =
1√

T (n)h

n∑

t=1

ηt,kKt0(x0), W ∗

nj =
1√

T (n)h

M∑

k=1

n∑

t=1

ηt,kKtj(x0)

for k = 1, · · · , M and j = 1, · · · , q. Then, we have

M∑

k=1

uk

[ n∑

t=1

ηt,kKt0(x0)√
T (n)h

]
+

q∑

j=1

vj

[ M∑

k=1

n∑

t=1

ηt,kKtj(x0)√
T (n)h

]
= W⊤

n θn. (A.3)

We next consider LC(θn) which is defined by

LC(θn) =
M∑

k=1

n∑

t=1

Kt0(x0)

∫ ∆t,k

0

[
I
(
et ≤ ck +

z − dt,k
σ(Xt)

)
− I
(
et ≤ ck −

dt,k
σ(Xt)

)]
dz.

Recalling that Fn(X) = σ{X1, · · · , Xn}, it is easy to see E
[
LC(θn)

]
= E

{
E
[
LC(θn)|Fn(X)

]}
. Note

that Fe(x+ z)− Fe(x) = zfe(x) + o(z) when z is sufficiently small, and fe(ck − dt,k/σ(Xt)) → fe(ck)

as fe(·) is continuous and dt,k → 0 when |Xt − x0| = O(h) = o(1). By using these two facts and the
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condition that {et} is independent of {Xt} in Assumption 3, we can prove that

E
[
LC(θn)|Fn(X)

]
=

M∑

k=1

n∑

t=1

Kt0(x0)

∫ ∆t,k

0

[
Fe

(
ck +

z − dt,k
σ(Xt)

)
− Fe

(
ck −

dt,k
σ(Xt)

)]
dz

= (1 + oP (1))
M∑

k=1

n∑

t=1

Kt0(x0)

∫ ∆t,k

0

z

σ(Xt)
fe

(
ck −

dt,k
σ(Xt)

)
dz

= (1 + oP (1))
M∑

k=1

n∑

t=1

Kt0(x0)

[
∆2

t,k

2σ(Xt)
fe(ck)

]

P∼ 1

2

M∑

k=1

u2
k

[
fe(ck)

T (n)h

n∑

t=1

σ−1(Xt)Kt0(x0)

]
+

M∑

k=1

q∑

j=1

ukvj

[
fe(ck)

T (n)h

n∑

t=1

σ−1(Xt)Ktj(x0)

]
+

1

2

q∑

j1=1

q∑

j2=1

vj1vj2

[
M∑

k=1

fe(ck)

T (n)h

n∑

t=1

σ−1(Xt)Kt,j1+j2(x0)

]

=:
1

2
θ
⊤

nSn(x0)θn, (A.4)

where

Sn(x0) =

[
Sn11(x0) Sn12(x0)

S⊤

n12(x0) Sn22(x0)

]
,

Sn11(x0) is an M ×M diagonal matrix whose diagonal element is

sn11(k) =
fe(ck)

T (n)h

n∑

t=1

σ−1(Xt)Kt0(x0) for k = 1, · · · ,M,

Sn12(x0) is an M × q matrix whose (k, j)-th element is

sn12(k, j) =
fe(ck)

T (n)h

n∑

t=1

σ−1(Xt)Ktj(x0) for k = 1, · · · ,M and j = 1, · · · , q,

and Sn22(x0) is a q × q matrix whose (j1, j2)-th element is

sn22(j1, j2) =
M∑

k=1

fe(ck)

T (n)h

n∑

t=1

σ−1(Xt)Kt,j1+j2(x0) for j1, j2 = 1, · · · , q.
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As {Xt} is Harris recurrent, we could use the split chain technique introduced in Section 2.1 to

derive the limit for Sn(x0). Let

Zi(σ,K, j) =





τ∗0∑
t=1

σ−1(Xt)Ktj(x0), k = 0,

τ∗i∑
t=τ∗i−1+1

σ−1(Xt)Ktj(x0), 1 ≤ i ≤ T (n),

n∑
t=τ∗

N(n)
+1

σ−1(Xt)Ktj(x0), i = T (n) + 1.

We next only derive the limit for Sn11(x0) as the proofs for Sn12(x0) and Sn22(x0) are analogous. By

Lemma 3.2 in Karlsen and Tjøstheim (2001), we have

sn11(k) =
fe(ck)

T (n)h

[
Z0(σ,K, 0) +

T (n)∑

i=1

Zi(σ,K, 0) + ZT (n)+1(σ,K, 0)
]

P∼ fe(ck)

T (n)h

T (n)∑

i=1

Zi(σ,K, 0). (A.5)

By Assumptions 1, 2 and 5, Bochner’s lemma (c.f., Chapter 9 in Wheeden and Zygmund, 1977) and

some standard calculation, we can prove that

E
[
h−1Zi(σ,K, 0)

]
= ps(x0)µ0/σ(x0) +O(h2). (A.6)

On the other hand, as mentioned in Section 2.1, {Zi(σ,K, 0)} is a sequence of i.i.d. random variables.

Note that T (n) ∼ n for the positive recurrent case, and following the proof of Corollary 3.2 below,

we can prove that Cln
βLs(n) ≤ T (n) ≤ Cun

βLs(n) in probability for the β-null recurrent case with

0 < Cl < Cu < ∞. By some tedious calculations, we can prove that

sn11(k) = fe(ck)ps(x0)µ0/σ(x0) + oP (1) = s11(k) + oP (1). (A.7)

The detailed proof of (A.7) will be given later in this appendix. Similarly, we can also prove that

sn12(k, j) = fe(ck)ps(x0)µj/σ(x0) + oP (1) = s12(k, j) + oP (1) (A.8)

and

sn22(j1, j2) =
[ M∑

k=1

fe(ck)
]
ps(x0)µj1+j2/σ(x0) + oP (1) = s22(j1, j2) + oP (1). (A.9)

Letting S(x0) be defined in (3.1), equations (A.4) and (A.7)–(A.9) lead to

E
[
LC(θn)

]
=

1

2
θ
⊤

nS(x0)θn(1 + o(1)). (A.10)
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Meanwhile, noting that {et} is i.i.d. and independent of {Xt} by Assumption 3 and following

some standard calculations (c.f., the proof of Lemma 3 in Kai et al, 2010), we have

Var
[
LC(θn)|Fn(X)

]
= oP

( M∑

k=1

n∑

t=1

K2
t0(x0)∆

2
t,k

)
. (A.11)

Furthermore, similarly to the proof of (A.7), we can prove that

Var
[
LC(θn)

]
= o(1). (A.12)

Equations (A.3), (A.10) and (A.12) imply that

LC(B0, b1, · · · , bd) = W⊤

n θn +
1

2
θ
⊤

nS(x0)θn + oP (1). (A.13)

Note that LC(B0, b1, · · · , bd)−W⊤

n θn converges in probability to 1
2
θ
⊤

nS(x0)θn, which is a convex

function. Then, by Pollard (1991)’s convexity lemma, the minimizer to LC(B0, b1, · · · , bd) satisfies

θ̂n
P∼ S−1(x0)Wn, (A.14)

where θ̂n is defined as θn with b0k and bj replaced by b̂0k and b̂j, respectively, for k = 1, · · · ,M and

j = 1, · · · , q.
Let Wn♦ be defined as Wn with ηt,k replaced by ηt,k♦ = I(et ≤ ck)− τk. Then,we have

Wn − E[Wn] = Wn♦ − E[Wn♦] +Wn −Wn♦ − E[Wn −Wn♦]. (A.15)

Note that

Var (Wn −Wn♦) = O

(
E
{ 1

T (n)h

n∑

t=1

[ q∑

j=0

K2
tj(x0)

]
E
[
(ηt,k − ηt,k♦)

2|Fn(X)
]}
)

= O

(
E
{ 1

T (n)h

n∑

t=1

[ q∑

j=0

K2
tj(x0)

][
Fe(ck − dt,kσ

−1(Xt))− Fe(ck)
]}
)

= O

(
E
{ 1

T (n)h

n∑

t=1

[ q∑

j=0

K2
tj(x0)

]
fe(ck)

dt,k
σ(Xt)

})

= o

(
E
{ 1

T (n)h

n∑

t=1

q∑

j=0

K2
tj(x0)

})

by using the fact that dt,k = o(1) when |Xt − x0| = O(h) = o(1). Then, similar to the proof of (A.7),

we can prove that Var
(
Wn −Wn♦

)
= o(1), which indicates that the leading term of Wn − E[Wn] is

Wn♦ − E[Wn♦]. Hence, to prove (3.3) and (3.4), we only need to prove

Wn♦ − E[Wn♦]
d−→ N

(
0, Ω(x0)

)
, (A.16)
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where Ω(x0) is defined in (3.2). By the so-called Cramér-Wold device (Billingsley, 1968), to prove

(A.16), it suffices to prove

α
⊤
{
Wn♦ − E[Wn♦]

} d−→ N
(
0, α

⊤Ω(x0)α
)
, (A.17)

where α = (α1, · · · , αM+q)
⊤. Recall that

Wn♦ =
1√

T (n)h

n∑

t=1

wnt

with

wnt =
[
ηt,1♦Kt0(x0), · · · , ηt,M♦Kt0(x0), (

M∑

k=1

ηt,k♦)Kt1(x0), · · · , (
M∑

k=1

ηt,k♦)Ktq(x0)
]⊤

.

Letting Gnt = σ(Xs1 , es2 : 1 ≤ s1 ≤ n, s2 ≤ t), we can find that {(wnt,Gnt)} is a sequence of

martingale differences as E(wnt|Gnt−1) = 0 a.s. Note that

E
[
ηt,k1♦ηt,k2♦|Gnt−1

]
= τk1 ∧ τk2 a.s.

for 1 ≤ k1, k2 ≤ M . Then, we can show that

Var(α⊤Wn♦|Gnt−1) = α
⊤Ω(x0)α+ oP (1). (A.18)

On the other hand, it is easy to check that

n∑

t=1

E
[ 1

T (n)h
(α⊤wnt)

2I(|α⊤wnt| > ǫ
√

T (n)h)|Gnt−1

]

= OP

( 1

T 2(n)h2

n∑

t=1

[ q∑

j=0

K4
tj(x0)

])
= oP (1). (A.19)

Then, by (A.18), (A.19) and the central limit theorem for martingale differences (Hall and Heyde,

1980), we can complete the proof of (A.17). �

Proof of Corollary 3.1. To prove (3.5), we only need to derive the asymptotic bias term for the

local linear CQR estimator. Note that
∑M

k=1 ck = 0 as the distribution of et is symmetric,

E
[
ηt,k − ηt,k♦|Fn(X)

]
= Fe(ck − dt,kσ

−1(Xt))− Fe(ck)
P∼ fe(ck)dt,k/σ(Xt),

and

S(x0) = diag
{fe(c1)ps(x0)µ0

σ(x0)
, · · · , fe(cM)ps(x0)µ0

σ(x0)
,
[
∑M

k=1 fe(ck)]ps(x0)µ2

σ(x0)

}
.
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Then, by some elementary calculations, we can show that

E[m̂(x0)]−m(x0) =
1

2
m(2)(x0)µ2h

2(1 + o(1)), (A.20)

which completes the proof of (3.5). The asymptotic distribution (3.6) can be proved using (3.5). �

Proof of Corollary 3.2. As T (n) has the same order of n for the positive recurrent case, (3.14)

can be proved by using Corollary 3.1. We next only consider the β-null recurrent case. The proof is

similar to the proof of Corollary 3.2 in Li et al (2016). By the definition of Mittag-Leffler distribution,

there exist two positive constants 0 < Cl < Cu < ∞ such that P
(
Cl < Mβ(1) ≤ Cu

)
≥ 1− ǫ

2
for any

small ǫ > 0. By (2.3) in Section 2.1, we have for n large enough, we have

P
( T (n)

nβLs(n)
≤ Cu

)
− P

(
Mβ(1) ≤ Cu

)
≥ − ǫ

4
, (A.21)

P
( T (n)

nβLs(n)
≤ Cl

)
− P

(
Mβ(1) ≤ Cl

)
≥ − ǫ

4
, (A.22)

Thus, (A.21) and (A.22) imply for large enough n

P
{
Jn(β)

}
≥ 1− ǫ, (A.23)

where Jn(β) is the event
{
Cln

βLs(n) ≤ N(n) ≤ Cun
βLs(n)

}
. Let C∗ be a positive constant and

J c
n(β) be the complement of Jn(β). Observe that

P
{∥∥m̂(x0)−m(x0)

∥∥ ≥ C∗[h
2 + 1/

√
nβLs(n)h]

}

= P
{∥∥m̂(x0)−m(x0)

∥∥ ≥ C∗[h
2 + 1/

√
nβLs(n)h], Jn(β)

}
+

P
{∥∥m̂(x0)−m(x0)

∥∥ ≥ C∗[h
2 + 1/

√
nβLs(n)h], J c

n(β)
}

≤ P
{∥∥m̂(x0)−m(x0)

∥∥ ≥ C∗[h
2 + 1/

√
nβLs(n)h], Jn(β)

}
+ P

{
J c
n(β)

}
.

By letting C∗ sufficiently large and using (3.5) in Corollary 3.1, we have

P
{∥∥m̂(x0)−m(x0)

∥∥ ≥ C∗[h
2 + 1/

√
nβLs(n)h], Jn(β)

}
→ 0 (A.24)

as n → ∞. On the other hand, by (A.23) and letting ǫ → 0, we also have

P
{
J c
n(β)

}
→ 0. (A.25)

By (A.24)–(A.25), we can complete the proof of (3.15). �
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Proof of Corollary 3.3. The asymptotic distribution result in (3.16) can be proved by using (2.3)

in Section 2.1, (3.5) in Corollary 3.1 as well as the condition that {et} is independent of {Xt} in

Assumption 3. Details are omitted here. �

Proof of (A.7). Throughout this proof, we let C denote a positive constant whose value may

change from line to line. We only consider the case that {Xt} is β-null recurrent as the proof of the

positive recurrent case is analogous and simpler.

Observe that for any ǫ > 0

{∣∣∣ 1

T (n)

T (n)∑

i=1

[Zi(σ,K, 0)

h
− ps(x0)µ0

σ(x0)

]∣∣∣ > ǫ
}

⊂
{∣∣∣ 1

T (n)

T (n)∑

i=1

[Zi(σ,K, 0)

h
− ps(x0)µ0

σ(x0)

]∣∣∣ > ǫ, Jn(β)
}
∪ J c

n(β), (A.26)

where Jn(β) and J c
n(β) are defined as in the proof of Corollary 3.2 above. By (A.25), in order to

prove (A.7), it suffices to show that as n → ∞

P
{∣∣∣ 1

T (n)

T (n)∑

i=1

[Zi(σ,K, 0)

h
− ps(x0)µ0

σ(x0)

]∣∣∣ > ǫ, Jn(β)
}
→ 0. (A.27)

As {Zi(σ,K, 0) : i ≥ 1} is i.i.d., we next use Bernstein’s inequality (van der Vaart and Wellner,

1996) to prove (A.27). By Assumptions 1 and 5, we have
∣∣∣Zi(σ,K,0)

h

∣∣∣ ≤ Ch−1 for some C < ∞. On

the other hand, similarly to the proof of (A.6), we have E
[
Z2
i (σ,K,0)

h2

]
≤ Ch−1. Then, by Assumption

6 and using Bernstein’s inequality, we can prove

P
{∣∣∣ 1

T (n)

T (n)∑

i=1

[Zi(σ,K, 0)

h
− ps(x0)µ0

σ(x0)

]∣∣∣ > ǫ, Jn(β)
}

≤
CunβLs(n)∑

k=ClnβLs(n)

P
{∣∣∣1

k

k∑

i=1

[Zi(σ,K, 0)

h
− ps(x0)µ0

σ(x0)

]∣∣∣ > ǫ
}

≤
CunβLs(n)∑

k=ClnβLs(n)

exp{−Ckh}

≤
CunβLs(n)∑

k=ClnβLs(n)

exp{−C∗ log k} = o(1),

where C∗ can be taken sufficiently large. We then complete the proof of (A.27). �
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Proof of (3.7). As in the proof of Corollary 3.1, for the local linear CQR estimation with q = 1,

we may show that S(x0) is an (M + 1)× (M + 1) diagonal matrix, i.e.,

S(x0) = diag
{fe(c1)ps(x0)

σ(x0)
, · · · , fe(cM)ps(x0)

σ(x0)
,
[
∑M

k=1 fe(ck)]ps(x0)µ2

σ(x0)

}

as µ0 = 1 and µ1 = 0. Let θ̂M = (û1, · · · , ûM)⊤ with ûk =
√

T (n)h
[̂
b0k − m(x0) − σ(x0)ck

]
. By

(A.14) in the proof of Theorem 3.1,

θ̂
⊤

M
P∼
{[

fe(c1)ps(x0)

σ(x0)

]−1

· 1√
T (n)h

n∑

t=1

ηt,1Kt0(x0), · · · ,
[
fe(cM )ps(x0)

σ(x0)

]−1

· 1√
T (n)h

n∑

t=1

ηt,MKt0(x0)

}
.

(A.28)

Noting that
∑M

k=1 ck = 0, we have

m̂(x0)−m(x0)
P∼ 1

T (n)h

n∑

t=1

ξtKt0(x0), (A.29)

where

ξt =
1

M

M∑

k=1

[
fe(ck)ps(x0)

σ(x0)

]−1

ηt,k =
1

M

M∑

k=1

[
fe(ck)ps(x0)

σ(x0)

]−1 [
I
(
et ≤ ck − dt,kσ

−1(Xt)
)
− τk

]
.

Then we may show that

E
{
[m̂(x0)−m(x0)]

2 |Fn(X)
} P∼ 1

T (n)h
E


 1

T (n)h

(
n∑

t=1

{ξt − E [ξt|Fn(X)]}Kt0(x0)

)2

|Fn(X)


+

[
1

T (n)h

n∑

t=1

E [ξt|Fn(X)]Kt0(x0)

]2

=: Πn1 +Πn2. (A.30)

Denote

ξt♦ =
1

M

M∑

k=1

[
fe(ck)ps(x0)

σ(x0)

]−1

ηt,k♦ =
1

M

M∑

k=1

[
fe(ck)ps(x0)

σ(x0)

]−1 [
I
(
et ≤ ck

)
− τk

]
.

Following the proof of Corollary 3.1 above, we have

Πn2 =

[
1

T (n)h

n∑

t=1

{E [ξt|Fn(X)]− E [ξt♦|Fn(X)]}Kt0(x0)

]2

P∼
[
1

2
m(2)(x0)µ2

]2
h4 =:

1

4
b2m(x0)h

4. (A.31)
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On the other hand, by the argument in the proof of Theorem 3.1, we have

Πn1
P∼ 1

T (n)h
E


 1

T (n)h

(
n∑

t=1

{ξt♦ − E [ξt♦|Fn(X)]}Kt0(x0)

)2

|Fn(X)


 =

σ2
∗
(x0)

T (n)hps(x0)
, (A.32)

where σ2
∗
(x0) is defined in Corollary 3.1. We then complete the proof of (3.7) by (A.30)–(A.32). �
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Table 1. Ratios of MSEs for the simulated example with M = 5

Error distribution R(CQR) SE(CQR) R(WCQR) SE(WCQR)

The regressor Xt is generated in case (i)

N(0, 1) 1.1608 0.3217 1.1536 0.3172

Laplace 0.9062 0.3173 0.8708 0.4110

t(3) 0.7910 0.3058 0.7734 0.3301

0.95N(0, 1) + 0.05N(0, 102) 0.5196 0.3005 0.5178 0.2987

The regressor Xt is generated in case (ii)

N(0, 1) 1.1200 0.4132 1.1190 0.4124

Laplace 0.9082 0.2609 0.8986 0.3834

t(3) 0.8863 0.4115 0.8547 0.4033

0.95N(0, 1) + 0.05N(0, 102) 0.5661 0.3061 0.5632 0.2925

The regressor Xt is generated in case (iii)

N(0, 1) 1.1076 0.3210 1.1048 0.3136

Laplace 0.9325 0.2468 0.9217 0.3765

t(3) 0.9172 0.4156 0.9030 0.4392

0.95N(0, 1) + 0.05N(0, 102) 0.5929 0.2862 0.5925 0.2875
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Table 2. Ratios of MSEs for the simulated example with M = 7

Error distribution R(CQR) SE(CQR) R(WCQR) SE(WCQR)

The regressor Xt is generated in case (i)

N(0, 1) 1.1045 0.2610 1.0988 0.2589

Laplace 0.9008 0.2816 0.8553 0.3778

t(3) 0.8027 0.2759 0.7723 0.3165

0.95N(0, 1) + 0.05N(0, 102) 0.5308 0.2886 0.5214 0.2854

The regressor Xt is generated in case (ii)

N(0, 1) 1.0815 0.2994 1.0795 0.2979

Laplace 0.9262 0.1991 0.9042 0.3640

t(3) 0.8442 0.2424 0.8125 0.3034

0.95N(0, 1) + 0.05N(0, 102) 0.5748 0.2693 0.5645 0.2526

The regressor Xt is generated in case (iii)

N(0, 1) 1.0698 0.2522 1.0670 0.2432

Laplace 0.9194 0.2466 0.9036 0.3654

t(3) 0.9154 0.3734 0.9002 0.4373

0.95N(0, 1) + 0.05N(0, 102) 0.6070 0.2817 0.5996 0.2806
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Figure 5.1: Plots of {Yt} and {Xt}.
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Figure 5.2: Estimated plots of the regression function for the original series, the dotted line is the local

linear estimated curve, the solid line is the local linear CQR estimated curve and the dashed line is the

weighted local linear CQR estimated curve.
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Figure 5.3: Estimated plots of the regression function for the series with an outlier, the dotted line is the

local linear estimated curve, the solid line is the local linear CQR estimated curve and the dashed line is

the weighted local linear CQR estimated curve.
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