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INVARIANT MEASURES FOR STOCHASTIC NONLINEAR BEAM

AND WAVE EQUATIONS

ZDZIS LAW BRZEŹNIAK, MARTIN ONDREJÁT, JAN SEIDLER

Abstract. Existence of an invariant measure for a stochastic extensible beam equation
and for a stochastic damped wave equation with polynomial nonlinearities is proved.
Toward this end, it is shown first that the corresponding transition semigroups map the
space of all bounded sequentially weakly continuous functions on the state space into itself
and then by a Lyapunov functions approach solutions bounded in probability are found.

1. Introduction

In this paper, we aim at showing existence of an invariant (probability) measure for
a stochastic extensible beam equation and for damped stochastic wave equations with
polynomial nonlinearities (both on Rd and on bounded domains).

Our approach is based on the classical Krylov-Bogolyubov procedure, let us recall it in
a context relevant for us. Let X be a separable Hilbert space and U = (Ut) a transition
semigroup on X. There exists an invariant measure for U , provided the semigroup is Feller,
that is, Ut maps the space Cb(X) of all bounded continuous functions on X into itself for
all t ≥ 0, and the set of measures

{
1

Tn

∫ Tn

0

U∗
s ν ds; n ≥ 1

}
(1.1)

is tight on X for some Tn ր ∞ and a probability measure ν on X. Transition semigroups
associated with stochastic partial differential equations may be quite often easily shown to
be Feller but tightness of the set (1.1) is a difficult problem for equations with solutions
of low spatial regularity like beam and wave equations. The situation completely changes
if the space X is endowed with its weak topology. Then tightness of the set (1.1) follows
from existence of a solution that is bounded in probability (in the mean) on [τ,∞) for some
τ > 0, a property which may be verified by direct calculations with Lyapunov functions in
many cases. On the other hand, it is not obvious why Utf should be weakly continuous
for a bounded weakly continuous function f on X. In fact, except for linear equations,
only sequential weak continuity can be usually established. Let us denote by bw the
bounded weak topology on X, i.e. the finest topology that agrees with the weak topology
on every closed ball; note that a real function on X is bw-continuous if and only if it
is sequentially weakly continuous and if and only if its restriction to any ball is weakly
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continuous. Hence to carry out the Krylov-Bogolyubov procedure in X with its weak
topology, it is necessary to check that Ut(Cb(X, bw)) ⊆ Cb(X, bw) for every t ≥ 0. We shall
call transition semigroups with this property bw-Feller.

It is straightforward to prove that a bw-Feller semigroup such that the set (1.1) is tight
on (X, bw) has an invariant probability measure (see [?, Proposition 3.1]), however, it is not
straightforward to identify stochastic PDEs for which the associated transition semigroups
are bw-Feller. Up to our knowledge, the first to address this problem was A. Ichikawa [?,
Theorem 3.1] who considered equations with coefficients depending only on finite dimen-
sional projections of solutions. G. Leha and G. Ritter ([?, ?]) studied thoroughly (yet in
different terms) general results concerning bw-Feller and related semigroups. In the field
of stochastic PDEs, however, they considered only a bit particular stochastic reaction-
diffusion equation. In [?] (see also [?]) the bw-Feller property was shown for semigroups
corresponding to parabolic problems in bounded domains and to equations reducible to
bw-Feller ones via the Girsanov transform, neither of these results applies to hyperbolic or
beam equations.

There are several other papers containing implicitly considerations related to the bw-
Feller property. E.g., J. U. Kim in [?], when studying invariant measures for the von
Karman equation with an additive white noise, used an argument which can be recast so
that it might fit within the scheme above, if bw is replaced with a suitable mixed topology
on X, but he proceeded in a different way. In [?], Kolmogorov operators L corresponding
to generalized Burgers equations (in one spatial dimension and with additive noise) are
studied in the space C(X, bw), in particular, invariant measures are find by solving the
equation L∗µ = 0; cf. also [?].
We shall establish bw-Feller property of transition semigroups corresponding to stochas-

tic nonlinear beam and wave equations by a new method, whose main ingredients are
bw-continuity of nonlinear terms on X (if the target space is endowed with a suitable
weak-type topology, this follows from the fact the equations of the second order in time are
dealt with), uniform boundedness in probability on compact intervals for solutions starting
in a given ball, and results on convergence of sequences of local martingales (invoked in a
form that was used in [?] to construct weak solutions of stochastic differential equations).
Combining results on the bw-Feller property with fairly standard estimates obtained in
terms of Lyapunov functions we arrive at theorems on existence of invariant measures;
these theorems are stated below in Section 1.1. The Lyapunov functions we employ are
direct generalizations to nonlinear problems of the one introduced by A. J. Pritchard and
J. Zabczyk (cf. [?, Proposition 3.5]).

It seems that no results on invariant measures for stochastic beam equations have been
hitherto available. Invariant measures for stochastic nonlinear wave equations were stud-
ied in several papers. In [?], a damped stochastic wave equation in a bounded domain
with nonlinear, but globally Lipschitz continuous nonlinear terms in drift and diffusion is
dealt with. If the Lipschitz constants are sufficiently small (compared with the damping
coefficient), existence, uniqueness and stability of an invariant measure are proved by the
“early start” method. A damped wave equation in a bounded domain in Rd, d ≤ 3, with
a drift of polynomial growth and additive noise is studied in [?]. An invariant measure is
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found, its uniqueness being established under an additional (quite restrictive) hypothesis
on the drift. If the noise is in addition finite dimensional, existence of an invariant mea-
sure is also a consequence of existence of a random attractor that was proved in [?]. An
invariant measure for a similar model, but with a nonlinear damping term of polynomial
growth, is constructed (under rather different sets of hypotheses) in [?] and [?], moreover,
in [?] a sufficient condition for uniqueness of the invariant measure is provided. Existence
of invariant measures for a damped wave equation on R3 with a polynomial drift and a
bounded Lipschitz continuous diffusion term is studied in [?]. Only the papers [?] and [?]
have a more substantial intersection with the present paper, we provide a more detailed
comparison after Theorem 1.2 and Theorem 1.3, respectively.

1.1. Main results. First, let us consider the stochastic extensible beam equation

utt + A2u+ βut +m(‖B1/2u‖2H)Bu = G(u) dW, (1.2)

assuming

(b1) A and B are selfadjoint operators on a separable Hilbert space H; W is a stan-
dard cylindrical Wiener proces on a real separable Hilbert space X , defined on a
stochastic basis (O,G, (Gt),P);

(b2) B > 0, A ≥ µI for some µ > 0, DomA ⊆ DomB and B ∈ L(DomA,H);
(b3) m : R+ → R+ is C1 and β ≥ 0;
(b4) G : DomA → L2(X , H) such that there exist constants L and (Ln) such that, for

every x, y, z ∈ DomA,

‖G(x)‖L2(X ,H) ≤ L(1 + ‖x‖DomA), ‖G(y)−G(z)‖L2(X ,H) ≤ Ln‖y − z‖DomA

holds for every ‖y‖DomA ≤ n, ‖z‖DomA ≤ n and every n ∈ N.

Here L2 denotes the ideal of Hilbert-Schmidt operators, DomA is equipped with the
graph norm and (1.2) is interpreted in a standard way as a system of two first-order
equations in the state space X = DomA×H. (See Section 11 for details and an example
showing that (1.2) really covers (a multidimensional version of) the stochastic extensible
beam equation with either clamped or hinged boundary conditions.) It was proved in [?]
that under the hypotheses (b1)–(b4) there exists a pathwise unique mild solution to (1.2)
for any deterministic initial condition in X and (1.2) defines a Feller Markov process on
X with a transition semigroup U . To show the bw-Feller property, we need two additional
assumptions (which are satisfied almost automatically in applications to the beam equation,
see again Example 11.8):

(b5) DomB is compactly embedded into H;
(b6) G : (DomA, ‖ · ‖DomB1/2) → L2(X , H) is continuous;

Finally, to find a solution bounded in probability via Lyapunov functions we employ the
hypothesis

(b7) Either β > 0 and ‖G‖L2(X ,H) is bounded on DomA, or L2 < β.

(Recall that the constant L is introduced in (b4).) Now we may state our result.
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Theorem 1.1. Let the hypotheses (b1)–(b6) be satisfied. Then the Markov transition
semigroup U defined by (1.2) is bw-Feller. If in addition (b7) holds then there exists an
invariant probability measure for U .

Further, let us turn to stochastic wave equations with polynomial nonlinearities. Analysis
of the linear case and of stochastic oscillators in finite dimensions indicates that one has to
consider damped equations in order to get finite invariant measures. Equations in bounded
domains and on the whole Rd may be studied simultaneously, see Section 12, for simplicity,
however, we state here results concerning the two cases separately. Let us start with the
Cauchy problem

utt = ∆u−m2u− au|u|p−1 − βut + F + ηg(u) Ẇ on Rd (1.3)

where m, β ≥ 0, a > 0, F ∈ L2(Rd), η ∈ L∞(Rd) and W is a standard cylindrical Wiener
process on a separable Hilbert space X , defined on a stochastic basis (O,G, (Gt),P). We
suppose

(w0) X is embedded continuously into L∞(Rd) and there exists a constant c such that

‖ξ 7→ hξ‖L2(X ,L2(Rd)) ≤ c‖h‖L2(Rd).

It is shown in Sections 12 that a spatially homogeneous Wiener process W with finite
spectral measure µ satisfies (w0) with c = (2π)−dµ(Rd). Note that if η ≡ 1 then (1.3)
is well-posed in L2(Rd) only if g(0) = 0. So looking for nontrivial invariant measures we
have either to resort to nontrivial weight function η or to work in local Sobolev spaces (see
[?]). The latter choice is much more interesting, but proofs become rather technical and
so results for local Sobolev spaces are deferred to a companion paper.

We shall need the following hypotheses.

(w1) p ∈ [1,∞) if d ∈ {1, 2} or p ∈ [1, d
d−2

] if d ≥ 3,
(w2) g : R → R is locally Lipschitz,

(w3) if d = 2 then |g′| grows polynomially, if d ≥ 3 then |g′(x)| ≤ c(1 + |x| 2

d−2 ) a.e.,
(w4) |g(x)|2 ≤ c0 + c1|x|2 + c2|x|p+1 for some c0, c1, c2 ∈ [0,∞) and all x ∈ R,
(w5) c0η ∈ L2(D),
(w6) c2c1‖η‖2L∞(D) < m2β and c2c2‖η‖2L∞(D) < aβ.

Note that (w6) may be satisfied only if m, β > 0. It was shown in [?] that under (w0)–(w5)
there exists a unique mild solution to (1.3) inX = W 1,2(Rd)×L2(Rd) for any G0-measurable
X-valued initial condition, hence (1.3) defines a transition semigroup U on X.

Theorem 1.2. Let the assumptions (w0)–(w5) be satisfied. Then the transition semigroup
U defined by (1.3) is bw-Feller on X. If (w6) is satisfied as well then there exists an
invariant probability measure for U .

The problem (1.3) for d = 3 was considered previously by J.U. Kim in [?]. He worked
with a standard cylindrical Wiener process W in L2(R3) but assumed that the diffusion
coefficient is a bounded globally Lipschitz continuous L2-valued function, p ∈ [1, 3) and
η ∈ L∞(R3)∩W 1,2(R3). Theorem 1.2 covers polynomially growing diffusion terms and the
border case p = 3, moreover we believe that our approach is simpler.
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Further let us turn to a wave equation in a bounded domain D ⊆ Rd with a C2-smooth
boundary ∂D. We consider an equation

utt = ∆u−m2u− au|u|p−1 − βut + F + g(u) Ẇ in D (1.4)

with a Dirichlet boundary condition

u = 0 on ∂D (1.5)

where now F ∈ L2(D) and we set X = W 1,2
0 × L2(D). We have to introduce modified

hypotheses:

(d0) X is embedded continuously into L∞(D) and there exists a constant c such that

‖ξ 7→ hξ‖L2(X ,L2(D)) ≤ c‖h‖L2(D).

(d6) c2c1 < (m2 − λ)β and c2c2 < aβ, where λ is the first eigenvalue of the Dirichlet
Laplacian ∆ in D.

The assumption (d6) still requires β > 0 but is compatible with m = 0.

Theorem 1.3. Suppose that (d0) and (w1)–(w4) hold then the transition semigroup U
defined by (1.4), (1.5) is bw-Feller on X. If (d6) is also satisfied then there exists an
invariant probability measure for U .

Equation (1.4) with a Neumann boundary condition may be studied analogously, see
again Section 12.

If g is constant then existence of an invariant measure for (1.4), (1.5) is shown in [?],
under a hypothesis upon X less stringent than (d0). Slightly more general assumptions on
the drifts are considered, which however coincide with (w1) for polynomial drifts.

2. Notation and Conventions

• T ∈ (0,∞).
• If Y is a topological space equipped with a σ-algebra Y and with a probability
measure µ on Y then we say that µ is Radon provided that

µ(A) = sup {µ(K) : K compact, K ⊆ A, K ∈ Y }, ∀A ∈ Y .

• If Y is a topological space then B(Y ) denotes the Borel σ-algebra over Y and
B∗(Y ) = {V ⊆ Y : V ∩K ∈ B(Y ), ∀K ⊆ Y compact}.

• If Y is a topological space then Cb(Y ) denotes the space of real bounded continuous
functions on Y .

• Denote by P∗(Y ) the space of Radon probability measures on B∗(Y ) and equip it
with the topology generated by the maps µ 7→

∫
Y
f dµ for f ∈ Cb(Y ).

• If Y is a Hilbert space then we denote by Yw = (Y,weak).
• If ξ : Ω → Y is a mapping to a topological space Y then we denote by σ(ξ) the
σ-algebra {ξ−1[B] : B ∈ B(Y )}, i.e. the σ-algebra generated by ξ.

• If X and Y are linear topological spaces then we denote by L(X, Y ) the space of
linear continuous operators from X to Y .
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• If X and Y are Hilbert spaces then we denote by L2(X, Y ) the space of Hilbert-
Schmidt operators from X to Y .

• C0([0, T ]) denotes the space {h ∈ C([0, T ]) : h(0) = 0}.
• If Y is a topological space and t ∈ [0, T ] then we denote by Bt(C([0, T ];Y )) the
smallest σ-algebra on C([0, T ];Y ) for which the mappings C(R+;Y ) → Y : h 7→
h(s), s ∈ [0, t] are B(Y )-measurable.

• All measures in this paper are σ-additive.

3. Quasi-Polish spaces

Let P be a topological space such that there exist a sequence of real continuous functions
(ξn) on P that separates points of P (such spaces will be called quasi-Polish in the sequel
for their similarity with Polish spaces, as far as many properties of which some are listed
below). Then P has many properties of Polish spaces. Considering the embedding ξ =
(ξn) : P → RN, we can easily prove that

(1) every compact in P is metrizable,
(2) a set in P is compact iff it is sequentially compact,
(3) the σ-algebra σ(ξ) contains σ-compact subsets of P , i.e. σ(compacts in P ) ⊆ σ(ξ),
(4) if B ∈ B∗(P ) and S is σ-compact then B ∩ S ∈ σ(ξ) and ξ[B ∩ S] ∈ B(RN),
(5) every probability measure on σ(ξ) sitting on a σ-compact has a unique extension

to a probability measure on B∗(P ),
(6) every probability measure on B∗(P ) sitting on a σ-compact is Radon,
(7) if (µn) is a tight sequence of probability measures on B∗(P ) then there exists a

subsequence nk and µ ∈ P∗(P ) such that µnk
→ µ in P∗(P ).

Remark 3.1. The claim (7) is an application of the Prokhorov theorem on RN. In fact, by
a straightforward generalization of the Mapping Theorem [?, Theorem 2.7] to sequences of
functions, we obtain the following result.

Proposition 3.2. Let P be a quasi-Polish space, let (µn) be a tight sequence of probability
measures converging to some µ in P∗(P ). Then the following holds: If hn, h : P → R are
uniformly bounded, B∗(P )-measurable and µ∗(D) = 0 where

D = {x ∈ P : ∃ xn ∈ P, xn → x, lim sup
n→∞

|hn(xn)− h(x)| > 0}

and µ∗ is the outer measure associated to µ then
∫

P

hn dµn →
∫

P

h dµ.

4. The path space C([0, T ];Xw)

These considerations lead us to formulate the following general conventions:

• X is a separable Hilbert space and we denote by Xw = (X,weak),
• we equip C([0, T ];Xw) with a locally convex topology generated by the system of
pseudonorms ‖h‖ϕ = supt∈[0,T ] |〈ϕ, h(t)〉X | where ϕ ∈ X,
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• we recall that BT (C([0, T ];Xw)) is the σ-algebra on C([0, T ];Xw) generated by the
mappings C([0, T ];Xw) → X : h 7→ h(s) for s ∈ [0, T ].

Remark 4.1. Observe that if ϕn ∈ X are such that

‖x‖X = sup {|〈ϕn, x〉| : n ∈ N}
then ξn,q : C([0, T ];Xw) → R : f 7→ ϕn(f(q)) for q ∈ Q+ ∩ [0, T ] and n ∈ N constitutes
a countable family of continuous functions separating points of C([0, T ];Xw) for which
σ(ξn,q) = BT (C([0, T ];Xw)). In particular, C([0, T ];Xw) is a quasi-Polish space and all
conclusions of Section 3 are valid and applicable to the σ-algebra BT (C([0, T ];Xw)).

Remark 4.2. Fix a ≥ 0. The rational span of {ϕn} is dense inX and Ba = {x ∈ X : ‖x‖X ≤
a} equipped with the weak topology is a compact space metrizable by a metric induced
by the pseudonorms x 7→ |〈ϕn, x〉|. The topology on C([0, T ];Xw) generated by the metric
ζ induced by the pseudonorms ‖ · ‖ϕn is weaker than that of C([0, T ];Xw) defined above,
B(C([0, T ];Xw), ζ) = BT (C([0, T ];Xw)), the traces of the topologies of C([0, T ];Xw) and
(C([0, T ];Xw), ζ) coincide on the ζ-closed set

Ka = {u ∈ C([0, T ];Xw) : sup
t≤T

‖u(t)‖X ≤ a}.

Since ζ is complete on Ka, it is a Polish space.

Corollary 4.3. Every probability measure on BT (C([0, T ];Xw)) is Radon.

In the following, define the modulus of continuity

δ(f, ε) = sup {|f(a)− f(b)| : a, b ∈ [0, T ], |a− b| ≤ ε}.
Proposition 4.4. If α ≥ 0, β = (βk

n)k,n∈N, limn→∞ βk
n = 0 for every k ∈ N, {φk}k∈N ⊆ X∗

separate points of X and Kα,β,φ is the set of all h ∈ C([0, T ];Xw) such that

• sup {‖h(t)‖X : t ≤ T} ≤ α
• δ(φk ◦ h, 1/n) ≤ βk

n for every k, n ∈ N

then Kα,β,φ is compact in C([0, T ];Xw). If K ⊆ C([0, T ];Xw) is compact and {φk}k∈N
separate points of X then there exist α, β such that K ⊆ Kα,β,φ.

Proof. The demonstration follows the proof of the Arzela-Ascoli theorem relying on the
fact that bounded sets in X are sequentially weakly compact. �

Remark 4.5. The sets Kα,β,φ will be called maximal compacts.

5. The stochastic equation

5.1. Solution. Let I = [0, T ] or I = R+. We consider a separable Hilbert space X , an
infinitesimal generator A of a C0-semigroup (eAt)t≥0 on X, Borel mappings F : X → X,
G : X → L2(X , X), a stochastic basis (O,G, (Gt), ν), a standard cylindrical (Gt)-Wiener
process W on X and an equation

du = (Au+ F(u)) dt+G(u) dW. (5.1)
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We impose a boundedness condition that will be assumed throughout the paper:

F : X → X and G : X → L2(X , X) are bounded on bounded sets of X. (5.2)

A (Gt)-adapted X-valued process u with weakly continuous trajectories is called a mild
solution of (5.1) provided that

u(t) = eAtu(0) +

∫ t

0

eA(t−s)F(u(s)) ds+

∫ t

0

eA(t−s)G(u(s)) dW (5.3)

holds ν-a.e. for every t ∈ I.
A (Gt)-adapted X-valued process u with weakly continuous trajectories is called a weak

solution of (5.1) provided that

〈ϕ, u(t)〉 = 〈ϕ, u(0)〉+
∫ t

0

〈A∗ϕ, u(s)〉 ds+
∫ t

0

〈ϕ,F(u(s))〉 ds+
∫ t

0

〈ϕ,G(u(s)) dW 〉 (5.4)

holds P-a.e. for every t ∈ I and every ϕ ∈ Dom(A∗).

Proposition 5.1. Let (5.2) hold. A (Gt)-adapted X-valued process u with weakly contin-
uous trajectories is a weak solution of (5.1) iff u is a mild solution of (5.1).

Proof. See [?, Theorem 13]. �

Remark 5.2. Since X is assumed to be a separable Hilbert space, there always exists a
countable set H ⊆ Dom(A∗) which is dense in the graph norm of Dom(A∗). If H is any
such set then a (Gt)-adapted X-valued process u with weakly continuous trajectories is a
weak solution of (5.1) iff (5.4) holds P-a.e. for every t ∈ I and every ϕ ∈ H. In particular,
the infinite dimensional equation (5.1) is reduced to a countable number of real stochastic
equations (5.4).

In view of the above remark, we fix a suitable countable set {ϕγ}γ∈N ⊆ Dom(A∗) which
is dense in the graph norm of Dom(A∗) and plays the role of regular “test functions”,
we also fix an orthonormal basis (ξi) in X and we define nonlinearities fγ : X → R and
gγ = (gγ,i) : X → ℓ2 by

fγ(x) = 〈A∗ϕγ, x〉+ 〈ϕγ,F(x)〉, gγ,i(x) = 〈ϕγ,G(x)ξi〉, x ∈ X, γ, i ∈ N

and we consider a system of real valued equations

dϕγ(u(t)) = fγ(u(t)) dt+
∞∑

i=1

gγ,i(u(t)) dWi, t ∈ I, γ ∈ N (5.5)

where W = {W1,W2,W3 . . . } is a family of independent standard (Gt)-Wiener processes
defined by Wi = W (ξi).

Remark 5.3. A (Gt)-adapted X-valued process u with weakly continuous trajectories satis-
fies (5.5) iff u is a mild or weak solution of (5.1). We will therefore speak about a solution
of (5.1) from now on.
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Remark 5.4. Let (G0
t ) denote the augmentation of (Gt) by ν-zero sets in G. Then a family

(Wi) of independent standard (Gt)-Wiener processes defines a unique cylindrical (G0
t )-

Wiener process W on X such that W (ξi) = Wi for every i ∈ N.

Remark 5.5. The law of u under ν is always defined on the σ-algebra BT (C([0, T ];Xw)).

Theorem 5.6. Let (5.2) hold, let (O,G, (Gt), ν) be a stochastic basis, u an X-valued (Gt)-
adapted process on [0, T ] with weakly continuous paths, assume that there exist continuous
local (Gt)-martingales (wi) such that wi(0) = 0, the process

Mγ(t) = ϕγ(u(t))− ϕγ(u(0))−
∫ t

0

fγ(u(s)) ds

is a local (Gt)-martingale and 〈wi, wj〉t = tδij,

〈Mγ〉t =
∫ t

0

‖gγ(u(s))‖2ℓ2 ds, 〈Mγ, wi〉t =
∫ t

0

gγ,i(u(s)) ds

hold for every γ, i, j ∈ N and t ∈ [0, T ]. Then w1, w2, w3, . . . are independent standard
(Gt)-Wiener processes and (O,G, (Gt), ν, (wi), u) is a solution of (5.1) on [0, T ].

Proof. The processes (wi) are independent standard (Gt)-Wiener processes by the Lévy
characterization theorem and

〈Mγ −
∫ ·

0

gγ(u(s)) dw〉t = 〈Mγ〉t − 2
∑

i

∫ t

0

gγ,i(u(s)) d〈Mγ, wi〉t +
∫ t

0

‖gγ(u(s))‖2ℓ2 ds.

Since the right hand side equals 0 a.s., (5.5) holds. �

6. The working set-up

• Define a quasi-Polish space Ω = C([0, T ];Xw) × C0([0, T ];R
N) with the filtration

(Ft) where Ft = Bt(C([0, T ];Xw))⊗ Bt(C0([0, T ];R
N)) and

• a processes z : [0, T ]× Ω → X and Bj : [0, T ]× Ω → R

z(t, a, b) = a(t), Bj(t, a, b) = (b(t))j. (6.1)

All the statements in Section 3 hold for the quasi-Polish space Ω, especially the σ-algebra
FT contains all σ-compact subsets of Ω.

Definition 6.1. Introduce systems of stopping times τ, τ+ : (0,∞)× C0([0, T ]) → (0,∞]

τr(h) = inf {t ∈ [0, T ] : |h(t)| = r}, τ+r (h) = lim
ε→0+

τr+ε(h),

a set J = {(r, h) : τr(h) < τ+r (h)} and a mapping

Lr
t : C0([0, T ]) → [−r, r] : h 7→ h(t ∧ τr(h)), t ≥ 0, r > 0.

Remark 6.2. See [?] for the following observations:

• τ is lower-semicontinuous,
• r 7→ τr(h) is nondecreasing and left-continuous for every h ∈ C0([0, T ]),
• if τr(h) = τ+r (h) then τr and L

r are continuous at h,
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• J ∈ B(0,∞)⊗ B(C0([0, T ])),
• the cut-set Jh is at most countable for every h ∈ C0([0, T ]),
• Lr

t is Bt(C0([0, T ]))-measurable for every t ≥ 0 and r > 0.

Proposition 6.3. Let (µn) be a tight sequence of probability measures on B∗(Ω) converging
to some µ in P∗(Ω). Let M be a continuous (Ft)-adapted process on [0, T ] with M(0) = 0
and, for every n ∈ N, M is a continuous local (Ft)-martingale for µn. Let M(ωn) →M(ω)
in C0([0, T ]) whenever ωn → ω in Ω. Then M is a local (Ft)-martingale for µ.

Proof. Consider the sets

Dr,p = {ω : ∃ωn, ωn → ω, lim sup
n→∞

|Lr
p(M(ωn))− Lr

p(M(ω))| > 0}.

Then Dr,p ⊆ {ω : M(ω) ∈ Jr} so, for almost every r > 0, µ(Dr,p) = 0 holds for every
p ∈ [0, T ] by the Fubini theorem and, in particular,∫

Ω

GLr
p(M) dµn →

∫

Ω

GLr
p(M) dµ, ∀p ∈ [0, T ]

holds for every sequentially continuous G : Ω → [0, 1] by Proposition 3.2. If 0 ≤ s < t ≤ T
and G is also Fs-measurable then∫

Ω

[GLr
t (M)−GLr

s(M)] dµ = 0.

�

Lemma 6.4. LetM be a real (Ft)-adapted process on [0, T ] with continuous paths, M(0) =
0, let (O,G, (Gt), ν,W, u) be a solution of (5.1) on [0, T ], denote by µ the law of (u,W )
on FT and assume that (M(t, (u,W )))t∈[0,T ] is a local (Gt)-martingale. Then M is a local
(Ft)-martingale for µ.

Proof. The result follows from the equality∫

O

[Lr
t (M(u,W ))− Lr

s(M(u,W ))]1A(u,W ) dν =

∫

A

[Lr
t (M)− Lr

t (M)] dµ

which holds for every 0 ≤ s < t ≤ T , A ∈ Fs and r > 0. �

Theorem 6.5. Let (5.2) hold, let (O,G, (Gt), ν,W, u) be a solution of (5.1) on [0, T ] and
µ is the law of (u,W ) on FT . Then (Ω,FT , (Ft), µ, B, z) is a solution of (5.1) on [0, T ].

Proof. We may apply Lemma 6.4 to

Mγ(t, ω) = ϕγ(z(t, ω))− ϕγ(z(0, ω))−
∫ t

0

fγ(z(s, ω)) ds (6.2)

M2
γ (t, ω) −

∫ t

0

‖gγ(s, z(s, ω))‖2ℓ2 ds, Bi, BiBj − δijt (6.3)

Mγ(t, ω)Bi(t, ω) −
∫ t

0

gγ,i(s, z(s, ω)) ds (6.4)

and then Theorem 5.6. �
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7. A tightness criterion

Here we prove that under (5.2), tightness of a set of laws of solutions on BT (C([0, T ];Xw))
is implied by mere uniform boundedness in probability of these solutions (which is also a
necessary condition for tightness, see Proposition 4.4). It is usually known whether so-
lutions are uniformly bounded in probability or not so, in this way, we can conclude
immediately tightness. For, if α ≥ 0, we define the closed set in C([0, T ];Xw)

Kα = {h ∈ C([0, T ];Xw) : sup
t≤T

‖h(t)‖X ≤ α} ∈ BT (C([0, T ];Xw)). (7.1)

Observe also that {ϕγ}γ∈N separates points of X as {ϕγ}γ∈N is assumed to be dense in
Dom(A∗) and Dom(A∗) is dense in X.

Proposition 7.1. Let α ≥ 0, ε > 0 and let (5.2) hold. Then there exist a maximal
compact K in C([0, T ];Xw) such that ν [u /∈ K, u ∈ Kα] ≤ ε holds for every solution
(O,G, (Gt), ν,W, u) of (5.1) on [0, T ].

Proof. Let λ and p be positive numbers such that p−1 < λ and λ + p−1 < 1
2
. Fix 0 <

ρ < λ − p−1, γ ∈ N and define B = {x ∈ X : ‖x‖X ≤ α}. Define the (Gt+)-stopping
time τ = inf {t ∈ [0, T ] : u(t) /∈ B} and the process ũ(t) = u(t ∧ τ). Then, by the
Garsia-Rodemich-Rumsey lemma [?], there exists Cγ such that the modulus of continuity
satisfies

E [δ(〈ϕγ, ũ〉, θ)]p ≤ Cγθ
λp, ∀θ ∈ [0, 1].

So, since [u ∈ Kα] ⊆ [τ ≥ T ], we get by the Tchebyschev inequality,

ν

(
[u ∈ Kα] ∩

∞⋃

n=1

[δ(〈ϕγ, u〉, n−1) > βn(ϑ)]

)
≤ cγϑ, ∀ϑ > 0

where βn(ϑ) = ϑ− 1

pn−ρ. Choosing ϑγ > 0 so that
∑∞

γ=1 cγϑγ ≤ ε, we can set K =

Kα,{βn(ϑγ)},{ϕγ}. �

8. bw-continuous dependence

Let us introduce a bw-continuity assumption:

fγ, gγ,i, ‖gγ‖ℓ2 are sequentially weakly continuous on X for every γ, i ∈ N (8.1)

We are going to study continuous dependence of solutions on the coefficients.

(a) Let (Ωn,F n, (F n
t ),P

n,W n, un) be solutions of (5.1) on [0, T ] such that the laws of
un on BT (C([0, T ];Xw)) are tight and denote by µn the laws of (un,W n) on FT

and extend them to B∗(Ω) (see Section 3).
(b) Let nk be some subsequence and µ ∈ P∗(Ω) such that µnk

→ µ in P∗(Ω).

Theorem 8.1. Let (a), (b), (5.2) and (8.1) hold. Then (Ω,FT , (Ft), µ, (Bi), z) is a solu-
tion of (5.1) on [0, T ].

Proof. By Theorem 6.5 and Proposition 6.3, the assumptions on Theorem 5.6 are satisfied.
�
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9. bw-Feller semigroup

(1) Let (5.1) have global solution (Ox,Gx, (Gx
t ),P

x,W x, ux) on R+ with ux(0) = x for
every x ∈ X.

(2) Let weak uniqueness hold for (5.1) in the class of solutions with the initial law δx,
whenever x ∈ X.

(3) Let for ∀ε > 0 ∀τ > 0 ∀r > 0 ∃R > 0 such that Px [supt∈[0,τ ] ‖ux(t)‖X ≥ R] ≤ ε
holds for every ‖x‖X ≤ r.

Define the Markov operators for bounded Borel functions ψ : X → R

(Utψ)(x) =

∫

Ox

ψ(ux(t)) dPx, t ∈ R+ (9.1)

and denote by µx the law of (ux|[0,T ],W
x|[0,T ]) on FT and extend it to B∗(Ω).

Remark 9.1. It is well known that (Ut)t≥0 is a well defined semigroup of operators on
bounded Borel functions on X under (1) and (2) above, see e.g. [?].

Remark 9.2 (Joint uniqueness in law). If (Ω,FT , (Ft), µ
i, B, z) are solutions of (5.1) for

i = 1, 2 and µ1 [z(0) = x] = µ2 [z(0) = x] = 1 for some x ∈ X then the condition (2) above
on weak uniqueness implies that µ1 = µ2 on FT by the Cherny theorem [?, Theorem 4].

Remark 9.3. Pathwise uniqueness of (5.1) implies the condition (2) above by the Yamada-
Watanabe theorem [?].

Theorem 9.4. Let (1)-(3) above hold, let (5.2) and (8.1) be satisfied and let tn → t in R+,
xn → x weakly in X and ψ : X → R is a bounded sequentially weakly continuous function.
Then Utnψ(xn) → Utψ(x).

Proof. We may assume that tn ≤ T holds for every n ∈ N. Then (Ω,FT , (Ft), µ
x, B, z)

is a solution of (5.1) on [0, T ] by Theorem 6.5. The measures µxn are tight on FT by
Proposition 7.1 and µxn → µx in P∗(Ω) by Theorem 8.1 and Remark 9.2. Now apply
Proposition 3.2. �

10. Invariant measure

Let us recall a consequence of Proposition 3.1 in [?].

Theorem 10.1. Under the assumptions of Thereom 9.4, let there exist a global solution
(O,G, (Gt), ν, u,W ) of (5.1) such that, for every ε > 0, there exists R > 0 and

lim sup
t→∞

1

t

∫ t

0

ν [‖u(s)‖X ≥ R] ds ≤ ε. (10.1)

Then there exists an invariant measure for (Ut)t≥0 defined in (9.1).
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11. Stochastic beam equation

Consider the equation

utt + A2u+ βut +m(‖B1/2u‖2H)Bu = G(u) dW, (11.1)

with the hypotheses (b1)-(b4) set up in Section 1.1 and define X = DomA×H.

Remark 11.1. If C is a closed operator on H then we consider DomC as a Hilbert space
with ‖x‖2DomC = ‖x‖2X + ‖Cx‖2X for x ∈ DomC.

Remark 11.2. We may also define DomA = DomA2 ×DomA,

A =

(
0 I

−A2 0

)
, F(u, v) =

(
0

−m(‖B1/2u‖2H)Bu− βv

)
, G(u, v)ξ =

(
0

G(u)ξ

)

and rewrite (11.1) as a stochastic evolution equation

dφ = (Aφ+ F(φ)) dt+G(φ) dW (11.2)

in the Hilbert space X. On the other hand, let (hγ)γ∈N be some dense subset in DomA2,
(ξi) an orthonormal basis in X and define, for γ, i ∈ N and (u, v) ∈ X,

fγ(u, v) = −〈u,A2hγ〉H − 〈m(‖B1/2u‖2H)Bu+ βv, hγ〉H , f−γ(u, v) = 〈v, hγ〉H

gγ,i(u, v) = 〈G(u)ξi, hγ〉H , g−γ(u, v) = 0, ϕ−γ(u, v) = 〈u, hγ〉H , ϕγ(u, v) = 〈v, hγ〉H .

Now, according to Remark 5.3, the equation (11.2) is equivalent to

dϕγ(u(t)) = fγ(u(t)) dt+
∞∑

i=1

gγ,i(u(t)) dWi, t ∈ I, γ ∈ N (11.3)

where Wi = W (ξi).

Remark 11.3. By [?], the equation (11.1) has a global solution for every (G0)-measurable
X-valued initial condition, pathwise uniqueness holds and every solution has X-continuous
paths almost surely.

11.1. Weak sequential continuity. Let us consider the additional hypotheses (b5) and
(b6) introduced in Section 1.1.

Lemma 11.4. Let (b1), (b2), (b5) and (b6) hold. Then fγ, gγ,i and ‖gγ‖2ℓ2 are sequentially
weakly continuous for every γ ∈ Z \ {0} and i ∈ N.

Proof. The claim is obvious as

‖B1/2x‖2H = 〈Bx, x〉H ≤ ‖Bx‖H‖x‖H , ∀x ∈ DomA

and DomB is compactly embedded in H. In particular, if xn → x weakly in DomA then
xn → x in DomB1/2. �
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11.2. Weak tightness. Under (b1)-(b4), define M(r) =
∫ r

0
m(s) ds for r ≥ 0,

V (w) =
1

2
‖w‖2X +M(‖B1/2w1‖2), w = (w1, w2) ∈ X,

qk = inf {V (w) : ‖w‖X ≥ k}, let φx be the unique global mild solution of (11.2) with
P [φx(0) = x] = 1 and τxk = inf {t ≥ 0 : ‖φx(t)‖X ≥ k} for x ∈ X.

In the course of the proof of Theorem 1.1 in [?], it is shown that

EV (φx(t ∧ τxk )) ≤ V (x) + 2L2

∫ t

0

(1 + EV (φx(s ∧ τxk ))) ds, t ≥ 0

hence

P [τxk ≤ t] ≤ e2L
2t

qk
(1 + V (x)), t ≥ 0. (11.4)

by the Gronwall inequality. In particular, if ε > 0 and R > 0 are given, there exists α ≥ 0
such that P [φx /∈ Kα] ≤ ε holds for every ‖x‖X ≤ R where Kα was defined in (7.1). Now,
as a consequence of Proposition 7.1, we get the following tightness result:

Lemma 11.5. Let R > 0 and ε > 0. Then there exists a maximal compact K in
C([0, T ];Xw) (see Remark 4.5) such that P [φx ∈ K] > 1− ε holds whenever ‖x‖X ≤ R.

11.3. Weak sequential Feller property. Under (b1)-(b6), φx denotes the unique mild
solution of (11.2) starting from x ∈ X and we define UtF (x) = EF (φx(t)) for (t, x) ∈
R+ ×X.

Theorem 11.6. Let (b1)-(b6) hold. Then (Ut)t≥0 is a semigroup on bounded Borel mea-
surable functions on X and if tn → t in R+ and xn → x weakly in X and F is a bounded
sequentially weakly continuous function on X then UtnF (xn) → UtF (x).

Proof. The assumptions of Theorem 9.4 are satisfied. �

11.4. Boundedness in probability. Assuming (b1)-(b4) hold, set

P =

(
β2A−2 + 2I βA−2

βI 2I

)
∈ L(X,X), M(r) =

∫ r

0

m(s) ds, r ≥ 0

and

V (w) =
1

2
〈w,Pw〉X +M(‖B1/2w1‖2), w = (w1, w2) ∈ X.

Then V ≥ 0, V ∈ C2(X) and, for w ∈ DomA2 ×DomA,

LV (w) = 〈Aw + F(w), V ′(w)〉X +
1

2

∞∑

i=1

〈V ′′(w)Gi(w1),Gi(w1)〉

≤ −β‖w‖2X + ‖G(w1)‖2L2(ℓ2,H).

Therefore

lim
R→∞

[sup {LV (w) : w ∈ DomA2 ×DomA, ‖w‖X ≥ R}}] = −∞

provided the hypothesis (b7) in Section 1.1 holds.
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Formal calculations following [?, Theorem 3.7] show that any solution u to (11.1) with
u(0) deterministic is bounded in probability in the mean on the interval [1,∞), that is,
(10.1) holds. These calculations may be justified in a straightforward manner by invoking
the approximations used in [?, Section 3].
Altogether, we have obtained the following result as a consequence of Theorem 10.1:

Theorem 11.7. Let (b1)-(b7) hold. Then there exists an invariant measure for (11.1).

Plainly, Theorem 1.1 follows from Theorems 11.6 and 11.7.

Example 11.8 (Section 4 in [?]). Let D ⊆ Rn be a bounded domain with a C∞-boundary
and Π : D × R× Rn → R a Borel function. Let us consider a multidimensional version of
the extensible beam equation

∂2u

∂t2
−m

(∫

D

|∇u|2 dx
)
∆u+ γ∆2u+ β

∂u

∂t
= Π(x, u,∇u)Q1/2 Ẇ

with either the clamped boundary condition

u =
∂u

∂ν
= 0 on ∂D (11.5)

or the hinged boundary condition

u = ∆u = 0 on ∂D (11.6)

where Q ≥ 0 is a selfadjoint bounded trace class operator on L2(D) and W is a cylindrical
Wiener process on L2(D). This equation may be rewritten in the form (11.1), a fortiori
(5.5). Set γ = 1 without loss of generality and define H = X = L2(D), let B = −∆ be the
Dirichlet Laplacian on D with DomB = W 1,2

0 (D) ∩W 2,2(D). Further, set A = B for the
boundary condition (11.6) and A = C1/2 for the boundary condition (11.5) where C = ∆2

and DomC = {ψ ∈ W 4,2(D) : ψ = ∂u
∂ν

= 0 on ∂D}. Then (b1), (b2) and (b5) are satisfied.
Now let us turn to the stochastic term. It was shown in [?] that if Π is bounded, does

not depend on the last variable, 1 ≤ n ≤ 3 and |Π(x, r) − Π(x, r̃)| ≤ L|r − r̃| for almost
every x ∈ D and every r, r̃ ∈ R and G(ψ) = Π(·, ψ)Q1/2 then G : DomA→ L2(X , H) is a
Lipschitz map and (b4) holds. If, moreover, n = 1 then

‖G(ψ)−G(ψ̃)‖L2(X ,H) ≤ c‖ψ − ψ̃‖W 1,2(D) (11.7)

owing to the embeddingW 1,2(D) →֒ L∞(D). Consequently, (b6) is satisfied since the norm
of DomB1/2 is equivalent to the W 1,2(D)-norm.

The hypotheses upon Π may be relaxed considerably provided that H has a basis
{ẽi}i∈N of eigenvectors of Q satisfying supi∈N ‖ẽi‖L∞(D) < ∞. Suppose that |Π(x, r, s) −
Π(x, r̃, s̃)| ≤ c(|r − r̃| + |s − s̃|) for almost every x ∈ D and every r, r̃ ∈ R and s, s̃ ∈ Rn.
Setting G(ψ) = Π(·, ψ,∇ψ)Q1/2 then, as shown in [?], G : DomA → L2(X , H) satisfies
(11.7) as well.
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12. Stochastic wave equation

In [?], existence of global mild solutions to stochastic wave equations was proved in
general domains for coefficients of polynomial growth. [?, Example 10] can be seen as a
stochastic generalization of classical by now papers by K. Jörgens [?], F. Browder [?], I.
Segal [?] and W. Strauss [?]. Below we will show that a damped version of that equation
has an invariant measure. Let us begin by stating the corresponding result from [?].

Let us consider an equation

utt = −A2u− au|u|p−1 − βut + F + ηg(u) Ẇ on D (12.1)

where either D = Rd or D is a bounded domain in Rd and A is a positive selfadjoint
operator on L2(D) with 0 ∈ ̺(A) and with DomA being a closed subspace in W 1,2(D),
a > 0, p ≥ 1, β ≥ 0, F ∈ L2(D), η ∈ L∞(Rd). The equation is considered on some
stochastic basis (O,G, (Gt),P) with a cylindrical (Gt)-Wiener process on a separable Hilbert
space X embedded continuously in L∞(D) such that there exists a constant c for which

‖ξ 7→ hξ‖L2(X ,L2(D)) ≤ c‖h‖L2(D) (12.2)

holds for every h ∈ L2(D). If D = Rd then we also assume that

{ϕ ∈ DomA2 : ess-suppϕ is compact} is dense in DomA2. (12.3)

Remark 12.1. We can consider the operator A =
√
−∆+m2I for some m > 0 if D = Rd or

D ⊆ Rd is bounded with a C2-smooth boundary and ∆ is the Neumann Laplace operator,
or with m ≥ 0 if D is bounded with a C2-smooth boundary and ∆ is the Dirichlet Laplace
operator.

Remark 12.2. If D = Rd then spatially homogeneous (Gt)-Wiener processes W with finite
spectral measures µ satisfy (12.2). In other words, W can be an S ′(Rd)-valued process
where S (Rd) denotes the Schwartz space of smooth rapidly decreasing real functions on

Rd and Ŝ the Fourier transform of a tempered distribution S, such that

• Wtϕ is a real (Gt)-Wiener process for every ϕ ∈ S (Rd),
• Wt(cϕ1 + ϕ2) = cWt(ϕ1) +Wt(ϕ2) a.s. for ∀c ∈ R, ∀t ∈ R+ and ∀ϕ1, ϕ2 ∈ S (Rd),
• E {Wtϕ1Wtϕ2} = t〈ϕ̂1, ϕ̂2〉L2(µ) for all t ≥ 0 and ϕ1, ϕ2 ∈ S (Rd),

see [?, ?] for further details and examples of spatially homogeneous Wiener processes.
Let X ⊆ S ′(Rd) be the reproducing kernel Hilbert space of the S ′(Rd)-valued random
vector W (1), see e.g. [?]. Then W is a cylindrical Wiener process on X , i.e. if we fix an
orthonormal basis (ξi) in X then there exist standard real-valued (Gt)-Wiener processes
(Wi) such that

Wt(ϕ) =
∑

i

Wi(t)〈ϕ, ξi〉, t ≥ 0, ϕ ∈ S (Rd). (12.4)

Moreover, see [?, ?], if we denote by L2
s(R

d, µ) the complex subspace of L2
C(R

d, µ) of all ψ

such that ψ = ψs where ψs(x) = ψ(−x), then

X = {ψ̂µ : ψ ∈ L2
s(R

d, µ)}, 〈ψ̂µ, ϕ̂µ〉X = 〈ψ, ϕ〉L2(µ), ψ, ϕ ∈ L2
s(R

d, µ).
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In fact, according to [?], X is continuously embedded in Cb(R
d) and if h ∈ L2(Rd) then

the multiplication operator ξ 7→ hξ is Hilbert-Schmidt from X to L2(Rd) and (12.2) holds
with c2 = (2π)−dµ(Rd) even as an equality.

Remark 12.3. If D ⊆ Rd is bounded then the restriction of spatially homogeneous (Gt)-
Wiener process with finite spectral measure on D satisfies (12.2).

Remark 12.4. Stochastic integration with respect to a spatially homogeneous Wiener pro-
cess is understood in the standard way, see e.g. [?], [?] or [?].

We define the state space X := DomA× L2(D) which we equip with the Hilbert norm
‖(u, v)‖2X = ‖Au‖22 + ‖v‖22. Then the equation (12.1) can be written in an equivalent form
as a first order in time evolution equation

dz = Az dt+ F(z) dt+G(z) dW (12.5)

on X where, for z = (u, v) ∈ X, ξ ∈ X and with DomA = DomA2 ×DomA,

A =

(
0 I

−A2 0

)
, F(z) =

(
0

−au|u|p−1 − βv + F

)
, G(z)ξ =

(
0

ηg(u)ξ

)
.

Let us consider the following hypotheses:

(w1) p ∈ [1,∞) if d ∈ {1, 2} or p ∈ [1, d
d−2

] if d ≥ 3,
(w2) g : R → R is locally Lipschitz,

(w3) if d = 2 then |g′| grows polynomially, if d ≥ 3 then |g′(x)| ≤ c(1 + |x| 2

d−2 ) a.e.,
(w4) |g(x)|2 ≤ c0 + c1|x|2 + c2|x|p+1 for some c0, c1, c2 ∈ [0,∞) and all x ∈ R,
(w5) c0η ∈ L2(D),
(w6) c2c1‖η‖2L∞(D)‖A−1‖2L(L2(D)) < β and c2c2‖η‖2L∞(D) < aβ.

The following was proved in [?].

Theorem 12.5. Let (w1)-(w5) hold. Then the equation (12.5) has a unique X-valued
continuous mild solution for every G0-measurable X-valued initial condition.

To be precise only the case β = 0, F = 0, η = 1 was considered in [?] but the same
proof literally applies to the general case as it was later showed in a much more general
setting in [?]. In the next two results (with a joint proof) we will show that solutions to
the equation (12.1) are locally uniformly bounded in probability and globally bounded in
probability under some natural assumptions.

Theorem 12.6. Let (w1)-(w5) hold and fix r > 0 and t > 0. Then there exits a number
Cr,t such that

P [sup
s≤t

‖z(s)‖X ≥ R, ‖z(0)‖X ≤ r] ≤ R−2Cr,t, ∀R > 0

holds for every solution z of (12.1).

Theorem 12.7. Let (w1)-(w6) hold and r > 0 is fixed. Then there exists a constant Cr

such that
P [‖z(t)‖X ≥ R, ‖z(0)‖X ≤ r] ≤ R−2Cr, ∀R > 0, ∀t ≥ 0

holds for every solution z of (12.1).
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Proof. As in the case of the beam equation, the proof of this result will be based on the
Pritchard-Zabczyk trick. Consider the operator P from Section 11.4. Then

√
〈Pz, z〉X is

an equivalent norm on X. With the notation ‖ · ‖r = ‖ · ‖Lr(D), define next the Lyapunov
functional for z = (u, v) ∈ X by

Φ(z) =
〈Pz, z〉X

2
+

2a

p+ 1
‖u‖p+1

p+1 = ‖Au‖22 +
1

2
‖v‖22 +

1

2
‖βu+ v‖22 +

2a

p+ 1
‖u‖p+1

p+1.

The map Φ is of C2-class on X and, analogously to [?] and [?] we have,

Φ(z(t)) = Φ(z(0)) +M(t)−
∫ t

0

V (z(s)) ds, M(t) =

∫ t

0

〈βu(s) + 2v(s), ηg(u(s)) dW 〉2

where, for a splitting β = β1 + β2 to some β1, β2 > 0,

V (z) = β‖z‖2X + aβ‖u‖p+1
p+1 − 〈βu+ 2v, F 〉2 − ‖ηg(u)‖2L2(X ,L2(D)) (12.6)

≥ β1‖Au‖2 + [(β2‖A−1‖−2
L(L2(D)) − c2c1‖η‖2∞)‖u‖22 − β‖F‖2‖u‖2]

+ (aβ − c2c2‖η‖2∞)‖u‖p+1
p+1 + [β‖v‖22 − 2‖F‖2‖v‖2]− c2c0‖η‖22

≥ δΦ(z)− κ

for some δ > 0 and κ > 0 by (w6). If (w6) is not assumed or β = 0 then V (z) ≥ δ‖z‖2X −κ
holds for some δ ∈ R and κ > 0. Assume that ‖z(0)‖X ≤ r holds, without imposing (w6).
Since there exists γ > 0 such that

d〈M〉
dt

≤ γ(1 + Φ(z(t)))2, ∀t ≥ 0

we conclude by the Itô formula that there exist constants Ck, Kr and Kk,r

E [Φ(z(t))]k ≤ eCkt(1 + E [Φ(z(0))]k) ≤ Kk
r e

Ckt, t ≥ 0

for every k ∈ N and, consequently, by the Doob maximal inequality, for some ϑk > 0,

E sup
t∈[0,T ]

[Φ(z(t))]k ≤ Kk,re
tϑk , t > 0, k ∈ N.

In particular, E [Φ(z)]k is continuous on R+ for every k ∈ N. Now, assuming (w6), we may
conclude from (12.6) that

EΦ(z(t2)) ≤ EΦ(z(t1)) +

∫ t2

t1

[κ− δEΦ(z(s))] ds

holds for every 0 ≤ t1 ≤ t2. Hence, by the comparison theorem for ODEs,

EΦ(z(t)) ≤ e−δtEΦ(z(0)) +
κ

δ
(1− e−δt), t ≥ 0.

�

We fix a countable dense subset {hγ} of DomA2 assuming additionally, only if D = Rd,
that each hγ has a compact support, and an orthonormal basis {ξi} in X . Now define, for
γ, i ∈ N and z = (u, v) ∈ X,

fγ(z) = −〈u,A2hγ〉L2(D) + 〈F − au|u|p−1 − βv, hγ〉L2(D), f−γ(z) = 〈v, hγ〉L2(D) (12.7)
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gγ,i(z) = 〈ηg(u)ξi, hγ〉L2(D), g−γ(z) = 0, ϕ−γ(z) = 〈u, hγ〉L2(D), ϕγ(z) = 〈v, hγ〉L2(D).

According to Remark 5.3, the equation (12.5) is equivalent to

dϕγ(u(t)) = fγ(u(t)) dt+
∞∑

i=1

gγ,i(u(t)) dWi, t ∈ I, γ ∈ N (12.8)

where (Wi) were defined in (12.4).

Remark 12.8. Denote by φx the unique mild solution of (12.5) for a deterministic inital
condition x ∈ X and UtF (x) = EF (φx) for (t, x) ∈ R+ ×X and F : X → R bounded and
measurable.

Corollary 12.9. The laws of φx|[0,T ] for ‖x‖X ≤ r are tight in BT (C([0, T ];Xw)), for
every r > 0.

Proof. Apply Theorem 12.6 and the tightness criterion Proposition 7.1 which is applicable
as 5.2 holds. �

Lemma 12.10. Let (w1) - (w3) hold. Then fγ, gγ,i and ‖gγ‖2ℓ2 are sequentially weakly
continuous for every γ ∈ Z \ {0} and i ∈ N.

Proof. We use the Sobolev and the Rellich embedding theorems here. Indeed, if un → u
weakly in W 1,2(D) and l : R → R satisfies (w2) and (w3) then l(un) converges to l(u) in
Lr(D), resp. Lr

loc(R
d) if D = Rd, for every r ∈ [1, 2), and l(un) is bounded in L2(D), resp.

L2
loc(R

d) if D = Rd. Setting l(x) = ax|x|p−1 and l(x) = g(x), this is sufficient to conclude
bw-continuity of fγ and gγ,i as (hγ) belong to L2+ε(D) by the Sobolev embedding and are
compactly supported if D = Rd. Concerning the term ‖gγ‖2ℓ2 , if zn → z weakly in X, we
have a majorant |gγ,i(zn)| ≤ κ‖ηξihγ‖L2(D). So ‖gγ‖2ℓ2 is bw-continuous by the Lebesgue
dominated convergence theorem as (12.2) holds. �

Theorem 12.11. Let (w1)-(w5) hold. Then (Ut)t≥0 is a semigroup on bounded Borel
measurable functions on X and if tn → t in R+ and xn → x weakly in X and F is a
bounded sequentially weakly continuous function on X then UtnF (xn) → UtF (x).

Proof. The assumptions of Theorem 9.4 are satisfied. �

Finally, we have obtained the following result as a corollary of Theorem 10.1:

Theorem 12.12. Let (w1)-(w6) hold. Then there exists an invariant measure for (12.5).
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