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RLS adaptive filter with inequality constraints

Vı́tor H. Nascimento†, Senior Member, IEEE, and Yuriy Zakharov ††, Senior Member, IEEE

Abstract—In practical implementations of estimation algo-
rithms, designers usually have information about the range in
which the unknown variables must lie, either due to physical
constraints (such as power always being nonnegative) or due to
hardware constraints (such as in implementations using fixed-
point arithmetic). In this paper we propose a fast (that is, whose
complexity grows linearly with the filter length) version of the
dichotomous coordinate descent recursive least-squares adaptive
filter which can incorporate constraints on the variables. The
constraints can be in the form of lower and upper bounds on each
entry of the filter, or norm bounds. We compare the proposed
algorithm with the recently proposed normalized non-negative
least mean squares (LMS) and projected-gradient normalized
LMS filters, which also include inequality constraints in the
variables.

Index Terms—adaptive filter, box constraint, inequality con-
straint, non-negativity, RLS-DCD.

I. INTRODUCTION

In estimation problems of practical importance, one often

has a priori information about the range in which the solution

must lie. This knowledge may take the form of equality

constraints, such as the requirement that the solution lies in

a given subspace (as in the case of the generalized sidelobe

canceller [1]), or may take the form of inequality constraints.

One important example of the latter is box constraints, that is,

imagine that one must compute estimates h(i) for an unknown,

possibly time-varying parameter vector ho(i) ∈ R
N taking

into account constraints of the type

an ≤ hn(i) ≤ bn, (1)

with known bounds −∞ < an < bn < ∞, where hn(i)
represents the n-th entry of vector h(i). Note that either the

lower or upper bound might not be present (e.g., we might

require only a non-negativity constraint hn(i) > 0 [2]).

The constraints may arise from physical limitations on the

variables [3]—such as the maximum range of an actuator [4]—

or the non-negativity of image pixels and sound intensities

[5], or may be due to design choices and limitations in the

hardware used to implement the estimator itself (such as in

fixed-point implementations). The use of constraints has a

number of advantages — it may [6]:

• allow the use of simpler models [3];

• avoid the appearance of “unfeasible” or “un-physical”

solutions that could arise due to noisy measurements;

• reduce the variance of estimates;
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• increase the convergence speed of algorithms.

Although modified Kalman filters with inequality con-

straints have received considerable attention [7], in the adap-

tive filtering literature the focus has been on equality con-

straints [8]. Adaptive filtering algorithms with non-negativity

constraints have recently been proposed in [2], [6], [9], and

can also be obtained through appropriate model choices using

projection onto convex sets as described in [10] (see also

[2]). The non-negative least mean squares (NNLMS) algorithm

and its variants proposed in [2], [6], [9] perform well, but

may be sensitive to outliers due to a term proportional to

the power 1 + γ of the weight entries (i.e., h1+γ
n (i)) with

0 < γ ≤ 1 in their update laws. This may lead to instability,

similarly to what occurs for the constant-modulus algorithm

(CMA) [11]. This supra-linear term makes the stability of the

algorithm dependent on the initial condition h(0) [6], as also

occurs in the CMA algorithm [11]. The projected-gradient

NLMS algorithm also described in [2] allows for more general

(convex) inequality constraints and does not suffer from this

problem, but can converge slowly when the input signal is

highly correlated.

In this paper we describe a novel approach for adaptive

filtering with either box constraints, as in (1), or norm con-

straints, as in (2) below. Our algorithm is a modification of the

RLS-DCD algorithm proposed in [12], which is a numerically-

stable, low-cost alternative to the recursive least-squares al-

gorithm (RLS) based on the dichotomous coordinate-descent

(DCD) method for solving least-squares and other convex opti-

mization problems. Being based on a Hessian (RLS) approach,

instead of a gradient (LMS) approach as in [2], [6], [9],

the algorithms proposed here converge faster than gradient-

based algorithms. The DCD and RLS-DCD algorithms are

optimized for implementation using finite-precision arithmetic

(particularly in custom or semi-custom implementations, such

as in FPGAs) [13], [14]. The use of DCD makes the algorithms

numerically stable with low cost (linear on the filter length N ),

and also allows for easy implementation in hardware.

We initially describe our method in terms of box constraints

(1), and later extend it to bounded norm constraints such as

‖Dh(i)‖ ≤ τ, (2)

where D = diag(d1, . . . , dN ) for any constants dn > 0 and

τ > 0. ‖·‖ is a vector norm, such as ℓ1, ℓ2 or ℓ∞. For example,

sparsity-inducing algorithms [15]–[18] can be obtained using

the ℓ1 norm in (2); using the ℓ2 (Euclidean) norm and dn = 1
is equivalent to requiring that the solution h(i) stay inside a

sphere of radius τ ; and using the ℓ∞ (maximum) norm, (2)

reduces to (1) with −an = bn = τ/dn.

A box-constrained version of the DCD algorithm is de-
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scribed in [19], applied to multiuser detection. In Section II we

first briefly describe the RLS-DCD algorithm and then propose

modifications to the box-constrained DCD algorithm from [19]

that allow for general bound constraints (such as in (2)) and

make it more suitable for adaptive filtering. We then use this

result to propose an RLS-DCD algorithm incorporating box

(1) or bound (2) constraints. In Section III, we compare our

algorithms with those proposed in [2]. Finally, in Section IV

we conclude the paper.

II. CONSTRAINED RLS-DCD ALGORITHM

Given two sequences
{
z(i) ∈ R

}∞

i=1
and

{
x(i) ∈ R

N
}∞

i=1
,

we seek a vector h(i) that solves the constrained least-squares

(LS) problem

h(i+ 1)
∆
= arg min

h∈Ai

i∑

k=1

λi−k
[
z(k)− xT (k)h

]2
+ λiδ‖h‖22,

(3)

where 0 < λ < 1 is a forgetting factor, δ > 0 is a

regularization term, and Ai is a convex constraint, such as

(1) or (2). The index i in Ai indicates that, in general, the

constraint may change over time. However, we only consider a

time-invariant A in this paper. For each time instant i, the cost

function in (3) is a convex, differentiable cost function with

convex constraints, a kind of problem for which coordinate

descent optimization converges and performs well [20], [21].

An iterative solution to (3) can be found by modifying the

derivation of the RLS-DCD algorithm [12] as follows. Define

the autocorrelation matrix R(i) and cross-correlation vector

p(i) by the recursions for i ≥ 1

R(i) = λR(i− 1) + x(i)xT (i), R(0) = δI, (4)

p(i) = λp(i− 1) + z(i)x(i), p(0) = 0. (5)

Since z2(k) does not depend on h, (3) can be rewritten as

h(i+ 1) = argmin
h∈A

{
1

2
hTR(i)h− hTp(i)

}
. (6)

Assuming that an approximation ĥ(i) to h(i) is available, we

now search for an updated approximation ĥ(i + 1). Let h =
ĥ(i)+∆h. Disregarding the terms that do not depend on ∆h,

the argument of (6) can be written as

1

2
∆hTR(i)∆h+∆hTR(i)ĥ(i)−∆hTp(i)

=
1

2
∆hTR(i)∆h− λ∆hTr(i) + e(i)∆hTx(i),

were the residue r(i) and error e(i) at time i are given by

r(i)
∆
= p(i− 1)−R(i − 1)ĥ(i), e(i)

∆
= z(i)− xT (i)ĥ(i).

Define q(i) = λr(i) + e(i)x(i). We conclude that (6) is

equivalent to letting h(i+ 1) = ĥ(i) +∆h(i), where

∆h(i) = arg min
∆h, s.t.

ĥ(i)+∆h∈A

{
1

2
∆hTR(i)∆h−∆hTq(i)

}
. (7)

An approximate solution to (7) can be obtained efficiently

using the DCD algorithm [22]. DCD is a coordinate descent

optimization method, with parameters adjusted so that mul-

tiplications and divisions are avoided (replaced by additions

and bit shifts), making the algorithm easy to implement in

semi-custom hardware [4], [13], [23]. In general ‖∆h(i)‖∞
will be small compared to ‖ĥ(i)‖∞, which implies that only

a few DCD iterations applied to the problem (7) are necessary

to obtain a ∆̂h(i) such that ĥ(i + 1)
∆
= ĥ(i) + ∆̂h(i) is a

good approximation to h(i+1). Note that for implementations

in general-purpose computers or in DSPs, other versions

of coordinate-descent optimization algorithms [21] would be

equally effective.

The DCD algorithm in [12] does not take constraints into

account. Fortunately, the inclusion of convex constraints in

coordinate descent algorithms is simple [20]: at each DCD

iteration, we need to check if the new candidate solution

lies within the constraints. If it does not, the update is not

performed. A box-constrained version of DCD was proposed

in [19], but based on a cyclic version of DCD, which is not

the best for adaptive filtering [12].

In Table I we introduce a leading box-constrained DCD

algorithm (BDCD). At each iteration a better approximation to

(7) is computed, updating a single entry of h. The coordinate

chosen for update is the one corresponding to the largest

absolute entry in the current residue r (steps 1 and 12 in

Table I). Note that the algorithm in Table I is designed to

operate directly on h, not on ∆h, thus simplifying the check

of the constraints in step 7.

The algorithm’s inputs are a matrix R, vector q, initial

guess h, and parameters H , Mb and Nu. The initial step size

α = H > 0 should be a power of two to reduce complexity

(so all multiplications and divisions become bit shifts). The

algorithm will work with any value of H , but will need fewer

iterations when H corresponds to the most significant bit

required to store h. Choosing H as a power of two, Mb will

be the number of bits used to represent the solution. Nu is the

maximum number of vector operations (operations that involve

N additions, see steps 1, 9 and 12 in Table I); Nu is used to

limit the computational cost of the algorithm. Steps 14-16 in

Table I are used to avoid the algorithm getting stalled when a

constraint becomes active, that is, if the test in step 7 is false.

In this case the algorithm reverts to a cyclic DCD scheme for

one iteration.

The main loop of the adaptive filtering algorithm, which we

call the RLS-BDCD algorithm, is described in Table II. Step

5 is a call to the BDCD algorithm of Table I.

We need now to consider the update of R(i− 1) in step 3

of Table II. The update of R(i − 1) following directly (4) is

an O(N2) task. However, if x(i) is a tap-delay line, that is,

if x(i) =
[
x(i) x(i − 1) . . . x(i−N + 1)

]T
, then R(i)

can be computed in O(N) operations, as follows [12]

R(i) =

[
[ρ(i)]1,1

[
ρT (i)

]
2:N

[ρ(i)]2:N [R(i− 1)]1:N−1,1:N−1

]
, (8)

where [a]m:n represents the entries m to n from vector a, and

similarly for matrices, and vector ρ(i) is the first column of

R(i), with update ρ(i) = λρ(i − 1) + x(i)x(i).

The complexity of the RLS-BDCD algorithm is upper
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TABLE I
LEADING BOX-CONSTRAINED DCD ALGORITHM (BDCD).

Step Inputs: h, q, R, Nu, Mb, constraint set.
Initialization: r ← q; m← 0; µ← 1; α← H , jc ← 1

1 j = argmaxn=1,...,N |rn|
2 if |rj | < (α/2)Rj,j , then
3 α← α/2 and m← m+ 1
4 if m > Mb, then the algorithm stops
5 else,
6 w = hj + sign(rj)α
7 if w ∈ [aj , bj ]
8 hj = w

9 r ← r − sign(rj)αR
(q)

10 µ← µ+ 2
11 if µ > Nu the algorithm stops
12 j = argmaxn=1,...,N |rn|
13 else,
14 j = jc
15 if jc < N , then jc ← jc + 1
16 else, jc ← 1
17 Go to step 2

TABLE II
RLS-BDCD ALGORITHM.

Step Given ĥ(1), R(0) = δI , δ > 0

Let r(1) = −R(0)ĥ(1)
Repeat for i ≥ 1:

1 y(i) = ĥ
T
(i)x(i)

2 e(i) = z(i)− y(i)
3 Update R(i− 1) to R(i)
4 q(i) = λr(i) + e(i)x(i)
5 Apply the BDCD algorithm to the problem in

(7) with h← ĥ(i), R← R(i), q ← q(i),
and appropriate constraint set to obtain

ĥ(i+ 1)← h and r(i+ 1)← r

bounded by 5N multiplications plus (Nu + 3)N additions.

If λ = 1 − 2−b with an integer b > 0, then the complexity is

upper bounded by 3N multiplications and (Nu+5)N additions

(see [12] for more details).

Norm constraints

With norm constraints as in (2), it is convenient to introduce

a new variable c to store the current value of the constraint

measure. The algorithm in Table I is modified as follows to

obtain the NDCD algorithm of Table III:

• Initialization: Let c ← ‖Dĥ(1)‖1 (if using ℓ1 norm) or

c← ‖Dĥ(1)‖22 (if using ℓ2 norm).

• Step 5: Apply the norm-constrained DCD algorithm

(NDCD) from Table III with ĥ(i), R(i) and q(i) to obtain

ĥ(i+1), r(i+1), and the updated constraint measure c.

The NDCD algorithm, summarized in Table III, is similar

to the BDCD algorithm, but with an extra step to update c
(step 7). This can be implemented cheaply in the case of ℓ1
or ℓ2 norms, since only one entry of h is modified.

ℓ1 norm: c← c+ dj(|hj + sign(rj)α| − |hj |).
ℓ2 norm: c← c+ d2j(2sign(rj)αhj + α2).

Replacing the call to the BDCD algorithm in step 5 in Table II

with a call to the NDCD algorithm, we arrive at the RLS-

NDCD algorithm. Multiplications are avoided if the dn are

TABLE III
LEADING NORM-CONSTRAINED DCD ALGORITHM (NDCD).

Step Inputs: h, q, R, c, Nu, Mb, constraint set.
Initialization: r ← q; m← 0; µ← 1; α← H , jc ← 1

1 j = argmaxn=1,...,N |rn|
2 if |rj | < (α/2)Rj,j , then
3 α← α/2 and m← m+ 1
4 if m > Mb, then the algorithm stops
5 else,
6 w = hj + sign(rj)α
7 s← updated constraint
8 if s ≤ τ
9 hj = w, c = s

10 r ← r − sign(rj)αR
(q)

11 µ← µ+ 2
12 if µ > Nu the algorithm stops
13 j = argmaxn=1,...,N |rn(i)|
14 else,
15 j = jc
16 if jc < N , then jc ← jc + 1
17 else, jc ← 1
18 Go to step 2
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Fig. 1. MSD performance of RLS, RLS-DCD and RLS-BDCD, σ2 = 4.

chosen as powers of two. In this case, the computational

complexity of the RLS-NDCD algorithm is similar to that of

the RLS-BDCD algorithm.

III. NUMERICAL RESULTS

We now compare the proposed algorithms with uncon-

strained RLS [8], [24], unconstrained RLS-DCD [12], and with

the NNLMS and projected gradient NLMS algorithms of [2] in

identification scenarios, i.e., when z(i) = hT
o x(i)+v(i), where

ho is an unknown weight vector, and v(i) is additive white

noise. We plot ensemble-average estimates of the mean-square

deviation (MSD), i.e., the expected value E{‖ĥ(i) − ho‖
2
2},

against the time index i. The weight vector ho is modified

at the middle of the simulation run in order to compare the

tracking ability of the algorithms.

Fig. 1 compares the RLS-BDCD (with constraints 0 ≤ hn ≤
1), unconstrained RLS-DCD, and classical RLS algorithms.

Vector ho contains N = 100 taps uniformly distributed in the

interval [0, 1]. The length of h(i) is also N = 100. The input
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Fig. 2. Comparison of MSD performance for RLS-BDCD, normalized
NNLMS and projected gradient NLMS.

signal x(i) is white Gaussian with unit variance. All filters use

λ = 0.99; Nu is set to 8; and the noise variance is σ2 = 4.

When the noise variance is small, the RLS-DCD and RLS-

BDCD algorithms behave similarly (not shown here); however

with a large noise variance the use of the box constraints helps

reduce the variance of the estimate, without compromising the

convergence speed, as seen in Fig. 1.

Fig. 2 compares the RLS-BDCD algorithm (Nu = 2,

λ = 0.992) with the normalized NNLMS (N-NNLMS)

(η = 0.9444) and projected-gradient NLMS (PG-NLMS) (µ =
0.2160) algorithms from [2]. In this example the filter length is

N = 15, the input x(i) is an autoregressive process with unit

variance, generated as x(i) = 0.95x(i−1)+w(i), where w(i)
is a zero-mean iid Gaussian process. ho was generated from a

uniform distribution in the interval [0, 1]. The constraints for

the RLS-BDCD and PG-NLMS algorithms were set to 0 ≤ hn

(no upper bound) to match the behavior of N-NNLMS, which

enforces positive entries to the estimated vector. The adaptive

filters start from an initial condition at the origin, except for the

normalized NNLMS, which is initialized with all coefficients

set to 0.1 (NNLMS should not be initialized at the origin). The

noise variance is σ2 = 0.01. The filter parameters were chosen

to guarantee the same steady-state MSD. It can be seen that

the RLS-BDCD algorithm outperforms both the normalized

NNLMS and the PG-NLMS algorithms.

In Fig. 3, ho contains one random negative element. In this

case, the optimum constrained solution h
∗

to (3) is not ho.

We computed h∗ theoretically to plot the ensemble-average

learning curves E{‖ĥ(i)−h∗‖22}. The conditions are the same

as those of Fig. 2, except that η = 0.4 for N-NNLMS and

µ = 0.15 for PG-NLMS. The RLS-BDCD algorithm again

converges faster.

An example of the performance of the RLS-NDCD algo-

rithm is presented in Fig. 4. In this case the signal is generated

using a vector ho of length N = 100 in which only ten

random entries are nonzero. Each nonzero entry is obtained

randomly, using a Gaussian distribution. The vector ho is then

normalized to unit ℓ2 norm (the resulting ℓ1 norm is 2.49). The

same vector ho is used for all simulation trials. We consider
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Fig. 3. Comparison of MSD performance when the signal is generated by a
model in which ho contains one negative entry. The MSD is computed with
respect to the solution to the constrained optimization problem.

the unconstrained RLS-DCD and ℓ1-constrained RLS-NDCD

algorithms, with λ = 0.992, and constraint bounds τ = 2.6
and 3.5. Fig. 4 shows that the norm constraint results in

improved performance, either in terms of convergence rate or

steady-state MSD.
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Fig. 4. Comparison of MSD performance of RLS-DCD and RLS-NDCD
using ℓ1-norm with τ = 2.6 and τ = 3.5, for the estimation of a sparse
vector.

IV. CONCLUSION

We described a new family of adaptive filters that is able

to easily incorporate different kinds of inequality constraints,

such as box constraints or norm bounds. Several different

norm bounds can be used, such as ℓ1 and ℓ2 norms. The

algorithms are extensions of the RLS-DCD algorithm, and thus

have fast convergence and low cost (their computational com-

plexity grows only linearly with filter length), while remaining

numerically stable.

The new algorithms were compared to other methods de-

scribed in the literature through simulations, showing advan-

tages in terms of convergence rate and steady-state perfor-

mance.
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