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Abstract

We study drift/Rossby wave turbulence described by the large-scale limit of the Charney—Hasegawa—
Mima equation. We define the zonal and meridional regions as Z := {k: |k,| > 3k} and

M= {k: k| < V3 k,} respectively, where k = (k,, k,)is in a plane perpendicular to the magnetic
field such that k. is along the isopycnals and k, is along the plasma density gradient. We prove that the
only types of resonant triads allowed are M <+ M + Z and Z < Z + Z.Therefore, if the spectrum
of weak large-scale drift/Rossby turbulence is initially in Z it will remain in Z indefinitely. We present
a generalised Fjortoft’s argument to find transfer directions for the quadratic invariants in the
two-dimensional k-space. Using direct numerical simulations, we test and confirm our theoretical
predictions for weak large-scale drift/Rossby turbulence, and establish qualitative differences with
cases when turbulence is strong. We demonstrate that the qualitative features of the large-scale limit
survive when the typical turbulent scale is only moderately greater than the Larmor/Rossby radius.

1. Introduction

Drift waves in plasmas and Rossby waves in the ocean and planetary atmospheres, though unrelated at the first
sight, have common features in their dynamics and statistics, which at a basic level can be described by the same
model—the Charney—Hasegawa—Mima (CHM) equation (2.1). Much of the research using this model has
concentrated on its small-scale limit, p — 00, where pis the ion Larmor radius in plasmas or the Rossby radius
of deformation in oceans and atmospheres. This limit is applicable to sub-ion-Larmor motions in plasmas and
to mesoscale flows in the Earth’s atmosphere, where p is of the order of a thousand of kilometres. However, the
large-scale limit is more relevant to many plasma regimes since the ion Larmor radius is very small, of the order
of just a few millimetres, whereas the tokamak diameter is much larger—several metres. Similarly, in a middle-
latitude ocean p is tens of kilometres, and since Rossby waves can be hundreds of kilometres in length, the large-
scale limit is more appropriate. On giant planets like Jupiter and Saturn, p is not so much larger than on Earth,
but the scale of flows is typically much greater.

In the present paper, we will study large-scale drift/Rossby wave turbulence (WT) within the large-scale
limit of the CHM model, p — 0. First of all, we will discuss a remarkable property of resonant triad interactions
related to a new invariant (semi-action) that has recently been found in this limit by Saito and Ishioka (2013).
Namely, defining the zonal region of wave vectors Z := {k: |k,| > /3 k,} and the meridional region
M= {k: k| < J3k,}, we prove that the only allowed resonant triad interactions are M <+ M + Z and
Z < Z + Z.This property has profound effects on the nonlinear evolution. In particular, it leads to the claim
that the spectrum of weak large-scale drift/Rossby turbulence which is initially in Z will remain in Z indefinitely.
We will use this property and the semi-action invariant for revising Fjortoft’s argument of Balk e al (1991)
aimed at predicting directions of the turbulent cascades in the two-dimensional (2D) scale space. We test and
confirm our theoretical predictions numerically and study their sensitivity to the strength of nonlinearity using
an approach previously introduced in the context of the small-scale CHM system in Nazarenko and Quinn
(2009). Finally, we study robustness of our results for systems where the large-scale limit is not well satisfied, and
find that most qualitative features survive even for flows with typical scales exceeding p only by a factor of two.
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2. The CHM model

As already mentioned Rossby waves in geophysical fluids and electron-drift waves in plasmas are frequently
discussed together and can both be described by the same partial differential equation known as the Charney
equation in the geophysical context (Charney 1948) and the Haseqawa—Mima equation in the plasma context
(Hasegawa and Mima 1978)—hence frequently referred to as the CHM equation:
oY Y IVH 9oV 0

9 o2y L
aﬁvzﬁ Fw%+ﬂa +

2.1
X Ox Oy dy Ox

where 1) (x, ) is the stream function, x = (x, ) is in a plane perpendicular to the magnetic field such that x is
along the isopycnals and y is along the plasma density gradient, F = f2? /gH is the inverse square of the
Larmor/Rossby radius, 3 is a constant proportional to the gradient of the plasma density or Coriolis parameter.
Equation (2.1) is similar to the 2D Euler equation and can be written in the form of an advection equation for the
potential vorticity. As we shall later see, like the 2D Euler equation, the CHM equation conserves two quadratic
invariants—the energy and potential enstrophy. However, the CHM equation differs from the Euler equation by
the presence of the linear term ﬁ%. This extra term means that the CHM equation can support wave motions,
unlike the Euler equation, and also has a weakly nonlinear limit since the linear term can be large compared with
the nonlinear one. However, the CHM equation is not only used to study weakly nonlinear waves but also
strongly nonlinear structures such as solitons and vortices (Petviashvili and Pokhotelov 1992, Horton and
Ichikawa 1996).

The CHM equation has many related models. Often it is argued that the modified CHM equation is more
relevant for drift waves in plasma. The modified CHM equation treats purely zonal modes (k, = 0) differently
by taking into account absence of an adiabatic response of the electric field. For the derivation of the modified
CHM model readers should refer to Dorland et al (1990). However, since in our paper we ignore purely zonal
flow and consider imperfect zonal flow with k, > k,, k, = 0 both models, the CHM and the modified CHM,
are equivalent with respect to the solutions that we consider. Note that pure zonal flows with k, = 0 will never
appear in a system if they are not present initially in the CHM model. For other basic models of the CHM family,
including models such as the Hasegawa—Wakatani equations, see Connaughton et al (2015).

For a discussion of the generation and importance of zonal flows, with more of an emphasis on plasma
applications, see Smolyakov et al (2000), Diamond et al (2005) and Giircan and Diamond (2015).

Let the system be a periodic box, with length L in both directions. The Fourier transform of the stream
function is:

P(x, 1) = >k, )elkx, 2.2)
k
with Fourier coefficients:
g _ 1 —ikx
b= [ v e 23)

where k = (k,, k,)isa 2D wave vector with components taking discrete values
k = ZT/T (mx’ my)) (mx’ my 6 Z)‘
Equation (2.1) becomes:
M . » A
% = —lwkl/Jk + ZTl](i,kzwlqwkz 611:1,1(2’ (2.4)
ki, k

where 6§ka = k — k; — kyisthe Kronecker symbol whichisoneif k — k; — k, = 0 and zero otherwise. The
wave frequency is given by the following dispersion relation:

_ﬁkx
wk = , 2.5
“TRFF @)
k = |k|and:
(k x ko), (ki — k3)
Tll((l,kz == 22 - 2, (2.6)
k*+F
is the nonlinear interaction coefficient.
The CHM equation conserves two quadratic invariants, energy E and enstrophy {2:
E =32k + Bl 2.7)
k
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and:
Q = S"(k* + F2luf. (2.8)
k
Let us introduce the waveaction variable
k> 4+ F 4
ax = k- (2.9)
Bk
Substituting (2.9) into (2.4) gives:
0 .
% = —iwyag + Z\G‘;alazéﬁ, (2.10)
12

where for short Z b= gk = iy 2 = ax, and the nonlinear interaction coefficient is now:

ki k> k

VE = 1| Bk, ki kox [/ A A — A (2.11)
12 |ﬁx1x 2x| k12+F k22+F k2+F

This symmetric form of the interaction coefficient is valid only on the resonant manifold, i.e. such that both the

wavenumber triads k, k;, k; in the nonlinear sum satisfy the following resonance conditions:

k—k -k, =0, wgx—wk— wg=0. (2.12)

The wave vectors can either be discrete or a continuous limit could be taken. For weakly nonlinear waves in an
unbounded domain, L — 00, k becomes a continuous vector. Therefore, any k may be a member of infinitely
many resonant triads. This is known as the kinetic WT regime (L’vov and Nazarenko 2010, Nazarenko 2011). In
bounded domains, where the wave amplitudes are very small the discrete k-space structure remains important.
This is the discrete WT regime (L’vov and Nazarenko 2010, Nazarenko 2011). Resonant conditions 2.12 define
the dominant nonlinear interactions in both kinetic and discrete WT regimes.

3. Conservation laws in weak WT

The nonlinear interactions in both kinetic and discrete WT regimes are weak, so in both cases we deal with the
so-called weak WT. The discrete WT regime is described by CHM waveaction in which non-resonant terms are
discarded from the nonlinear sum.

The main equation governing the kinetic WT regime, the kinetic equation, can be derived from (2.10) by
assuming random phases and taking a large-box limit followed by the limit of weak nonlinearity. It is written
below in symmetric form as:

0
Tk f Rk — Rz — R dkidky, (ke > 0), 3.1
ot kixokax >0
where:
L 2
me= (=)l (32)
2

is the waveaction spectrum (related to the energy spectrum via Ey, = |wy|ny)
Rizk = 27‘-“/11;'26{(26 (wWk — w1 — wyp)(mny — neny — niny) (3.3)

and Ry,, Roi are obtained by respective permutations of ky, k,, k in Ryy. Since we are considering real
variables in the CHM equation, 9 (X, t), the wave vectors k and —k represent the same mode via the property of
the Fourier transform of real functions ¢ = 12): . As aresult we only need to consider half of the Fourier space,
i.e. ky, kix, kox = 0. We can further neglect k, = 0 as purely zonal flows are not weakly nonlinear—the
condition required for us to study triad interactions.

In terms of the waveaction density, ny, the energy and enstrophy become:

E= Ekdk = f wknkdk,
k>0 k>0

Q= kyny dk, (3.4)
k>0
where wy is now the density of the energy and k, the density of the enstrophy. Note that in this case {2 coincides
with the x-component of the momentum invariant—it is strictly positive since k, > 0. The y-component of the
momentum is also conserved, but it is not strictly positive since its density k, may change sign.
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Generally, one can write for a conserved quantity A with density Ax:
A= f Aeredk. (3.5)
kx>0
If the spectral density of quantity (3.5) satisfies condition:
Ak — N — =0, (3.6)

on the resonant manifold (2.12) then A is conserved, i.e. A = const. (Zakharov and Schulman 1980, 1988). For
the energy and momentum, Ay is wy and k respectively, and the resonant condition (3.6) is obviously satisfied,
k — k; — k; = 0and wy — w; — w; = 0, dueto the respective d-functions in the kinetic equation (3.1), which
proves conservation of these quantities. The same condition (3.6) was shown to be necessary and sufficient for
the existence of quadratic invariants (3.5) in the case of discrete WT in Harper et al (2013).

For a generic wave system no other invariant besides the energy and momentum have been found to exist in
the kinetic WT regime. However, it was discovered in Balk et al (1990), Nazarenko (1990) and Balk eral (1991)
that for a system of Rossby waves, one extra conserved quantity exists, the zonostrophy. It was first found for
three special cases: large-scale turbulence (pk < 1), small-scale turbulence (pk > 1) and anisotropic
turbulence (k,| > |k,|). After this it was generalised to all of k-space in Balk (1991) where the zonostrophy
invariant was found to be

T = dk, 3.7
Jo, am (3.7)
with density:
k, + ko3 ky — ki3
() = arctan ﬂ — arctan Q (3.8)
Pk pk*

and p = 1/+/F is the Rossby radius of deformation.

4. The large-scale limit of the CHM equation

Let us turn our attention to the large-scale limit kp — 0 or, for simplicity, p — 0. The large-scale dispersion
relation can be found by Taylor expanding the general dispersion relation (2.5):

wi = —Fkep*(1 — p*k3) 4+ O(p°). (4.1)

In a moving frame of reference, and assuming for simplicity that 3p* = 1, we can replace the dispersion relation
(4.1) with a simpler expression:

wi = kk? + O(pd). (4.2)

We can do this as in the large-scale limit the problem is scale-invariant—hence these situations with different
Bp* can be obtained from each other by rescaling and no generality is restricted by assuming this. The waveaction
variable for the large-scale limit is:

o = 2 (4.3)
Ikl
Substituting this the into (2.4) gives us (2.10) but now with the interaction coefficient:
k klx k2x /2 2 2
V]z - (klkay - klyk2x)(k1 - kz) (4-4)
X
This can be rearranged as:
k, ko kykix
— ki /2 [kakf = Sk Rk = S k]

Assuming that the frequency resonance condition is satisfied, i.e. ki ki + kyk? = ko k2, we get:

VS = —lkickackd/2 (kiyk? + Kok — K k). (4.5)

Again, we emphasise that this symmetric form of VX is only valid on the resonant manifold, i.e. for weak WT
(kinetic or discrete).
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/ ky = \/gk:v
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N —k, = \/3k,

Figure 1. The distribution of ¢, in 2D wavenumber space.

4.1. Quadratic invariants
In the large-scale limit, the zonostrophy density becomes (Balk et al 1991):
k 3
o= 5. (4.6)
k; — 3k}
The densities of invariants E and ) are wy, (=k,k? in this case) and k, respectively.
It has recently been discovered in Saito and Ishioka (2013) that expression (4.6) arises in O (p!) in the Taylor
expansion of (3.8) for p — 0, whereas another previously unknown invariant arises in O (p°). This additional

invariant is defined as:
d = dk, 4.7
with density:
L, k| < V3 ks,
o =140, |kJ| > 3k, (4.8)
%) |k)/| = \/gkx

Both invariants T and ® are conserved independently for wy = k, k? since this expression for the frequency is
valid up to order p? corrections in the original expression (2.5). The new expression has since been named semi-
action in Connaughton et al (2015) because its density coincides with the one of waveaction in the sector where it
is not zero. It is worth mentioning that even though it is tempting to discuss the physical meaning of the
zonostrophy and semi-action, it is still unclear and would be premature. This is an interesting problem for the
future.

Figure 1 shows the distribution of ¢, in 2D wavenumber space. The dividing lineis |k,| = & 3k oy s
equal to zero in the shaded region (|k,| > V3 k,) which is the zonal region with zonal (Z) modes and ¢, is equal
to one outside this region (k,| < V3 k) where the modes are meridional (M) modes. The dividing line is very
important in the proposition that follows because of the structure of the manifold for the large-scale limit—for
example the zonostrophy invariant is singular there. As can be seen from our proof of the proposition in
appendix A, the dividing line plays an important role in showing certain triads are prohibited.

4.2. Prohibited triads

In order for the semi-action (4.8) to be conserved it must satisfy the resonance condition (3.6). So we have

1 =1+ Ofortriadsoftype M < M + Zand 0 = 0 + Ofor Z <« Z + Z.In other words, an excitation that s
in a M-mode can be transferred to a M- and a Z-mode but not to two M-modes (1 = 1 + 1) or two Z-modes

(1 = 0 + 0) otherwise (3.6) would not be satisfied. On the other hand, an excitation that is in a Z-mode can only
move to other Z-modes and not to M-modes. This behaviour follows from the conservation of semi-action, but
we would like to prove the following proposition directly.

5
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Proposition 1. Let M = {k: |k,| < 3k} be the set of meridional modes and Z = {k : |ky| > 3k} bethe set
of zonal modes of the system with frequency wy = k. k?. Then the following triad processes are prohibited:

(DM < M + M,
)M < Z + Z,
(3)Z < M+ Z,
(4)Z — M+ M.

Depending on whether we are considering the kinetic or discrete regime, either one or several of the
following triad processes may be realised, M <+ M + Z and/or Z « Z + Z.

This proposition is proven in appendix A. Note that part (4) of the proposition trivially follows from the
wavenumber condition alone—it is included here solely for completeness.

4.3. Cascade directions

It was shown in Balk et al (1991) for drift/Rossby WT in the case of zonally dominated turbulence, |k, | > |k.],
and in the case of large-scale turbulence, pk < 1, that the presence of an additional quadratic invariant
(zonostrophy) allows us to predict the directions of fluxes in the k-space of the three quadratic invariants. This is
similar to the famous Fjertoft’s argument for 2D hydrodynamic turbulence where the presence of enstrophy is
shown to forbid energy to flow to small scales, and the presence of energy—to forbid enstrophy flow to large
scales (Fjortoft 1953). In Nazarenko and Quinn (2009) this argument was extended to small-scale drift/Rossby
turbulence, pk > 1. Cascade boundaries were found for the energy, enstrophy and zonostrophy: it was
predicted that each of the invariants was forced by the other two to cascade into its own anisotropic sector of
k-space. A numerical study of the CHM equation was carried out which confirmed this prediction.

The most straightforward application of Fjertoft’s argument can be done to strictly positive quadratic
invariants. This boils down to saying that an invariant is not allowed to dissipate in parts of the k-space where its
spectral density is much less than the spectral density of at least one other invariant—otherwise the latter
invariant would have to be dissipated much faster than it is produced at the forcing scales, which is impossible.
This splits the entire k-space into non-intersecting sectors to which the considered invariants are allowed to
cascade. Under some circumstances Fjortoft’s argument can be extended to invariants whose density may
change sign, provided that such invariants remain sign-definite in their own cascade sector of the k-space.

Below, we will return to Fjgrtoft’s argument for the large-scale drift/Rossby turbulence, and revise the
results of the Balk et al (1991) paper by taking into account yet another quadratic invariant—the semi-action ®.
We will modify Fjortoft’s argument (usually formulated for a stationary forced and dissipated system) adopting
it to evolving turbulence in a non-dissipative system. This is because our subsequent numerical simulations will
be precisely in such an evolving non-dissipative set-up. The picture is qualitatively different depending on which
sector the initial spectrum is in—zonal or meridional. Therefore, we will consider these two cases separately.

4.3.1. Initial spectrum in the zonal sector

First, let us put the initial spectrum (at ¢ = 0) in the zonal sector near a wavenumber ko = (k. ko)) € Z (i.e.
ko / kox > ~/3). Since the semi-action density is zero in the Z-modes, no turbulence is allowed to leave this
sector, as this would mean that initially zero semi-action ® would become finite, contradicting its conservation.
(Recall that there is no resonance triads of type Z + Z < M.) But the zonostophy T in the large-scale limit (4.6)
is positive in the Z-modes.

Therefore, T can be used in Fjortoft’s argument along with the other two positive invariants, E and €2 ($ will
not be involved in this argument as it is zero in this case). Namely, let us suppose ad absurdum thatat ¢ > O a
significant proportion of a particular invariant (of the order of its total value) has moved into the vicinity of a
scale k where the density of this invariant is much less than the density of at least one of the other two invariants.
But then the amount of such an invariant with the dominant density would have at the scales around k an
amount which is greatly exceeding its total initial value. This would contradict conservation of this invariant
and, is therefore, impossible.

Thus, the entire k-space could be divided into three sectors to which respective invariants are allowed to
flow. The boundaries of these sectors are ‘soft’ in a sense that the invariants are allowed to cross into each other’s
sector but not too deeply. These boundaries can be found by equating the ratios of densities for each pair of
invariants to their initial value, i.e.:

- EQ: K =k,
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(N
L4

kyx

Figure 2. Cascade directions when the initial spectrum is in the Z sector. Dashed line is the Z/M boundary. Bold solid lines are the
EQ, QY and EY boundaries.

. . ky 2 - k()y 2
(i) = ()
. (&Y 2 () 2
ET: [(k—) - 3]k - [(k—) ~ 3|k
The resulting cascade picture is summarised in figure 2. It can been seen that the energy cascades to large k,

the enstrophy to small k, both becoming progressively more zonal, and the zonostrophy flows towards the Z/M
boundary k, = 3 k, (without crossing it).

4.3.2. Initial spectrum in the meridional sector
Let us now put the initial spectrum (at t = 0) in the meridional sector M near a wavenumber
ko = (ko koy) € M (i.e. ko, / kox < ~/3).Itis clear that invariant ® must remain in M because its density is zero
outside of this sector. However, E and (2 are free to flow from M to Z. In this case zononstophy Y is not sign-
definite and, therefore, cannot restrict the fluxes of the other quadratic invariants. On the other hand, semi-
action ¢ is now non-zero and positive and, therefore, must be used in Fjortoft’s argument along with the other
two positive invariants, E and 2.

In this case, the cascade boundaries obtained by the pairwise equating of the invariant densities are:

« EQ:k? =k,
© E®:kk? = kockd, ke M,
- Qb kx: kOxa kEM

The EQ boundary separates the E- and the (2-cascades: as before it means that E cannot be transferred to
k < koand 2—to k > k. Further, since the E® and the 2® boundaries are onlyin M, we have k/2 < k, < k.
So, because the boundaries are ‘soft’, we can take k, ~ k, and find thatall three boundaries, ES2, E® and Q®,
approximately coincide in M. This means that ® cannot flow to large k, and, assuming that it should move far
from the initial scale kg, it must move to modes with small k (while remaining in M). On the other hand,
cannot be transferred to neither large nor small wave vectors in M. The only remaining choice for 2 is to flow to
small wave vectors in Z. The latter choice does not contradict conservation of ® because its density is zero in Z. A
summary for the allowed cascade directions for this case is given in figure 3.

5. Numerics

In order to test numerically our theoretical predictions, a pseudo-spectral code using a third-order Runge—Kutta
time integration algorithm, originally used for the small-scale case in Nazarenko and Quinn (2009), has been
used after adapting it to the large-scale limit—(3.1) with frequency wy = k,k? and interaction coefficient (4.4).

7
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Figure 3. Cascade directions when the initial spectrum is in the M sector. Dashed line is the Z/M boundary. Bold solid line—
coinciding ES2, E® and 2® boundaries.

Similarly to the original set-up, we use initial condition:

N lk—kol? | :
1/}k|t:o=Ae( k2 +l¢k)

+ image, (5.1)

—a Gaussian spot centred at ko, with width k, and its mirror image with respect to the k,-axis. Phases ¢, are are
chosen to be random using a random number generator and independent and A is a constant controlling the
level of nonlinearity. For simplicity we take the size of the periodic box as L = 27. We will consider cases when
the initial spectrum is in the zonal sector Z and in the meridional sector M (the Gaussian is suitably truncated to
ensure that the initial condition is fully concentrated in one sector only), and cases with both weak and strong
nonlinearity. Our theoretical set up is such that interactions are weak. However, more typically nonlinearity is
not always weak in all of the k-space and may become strong in some isolated parts of it. Therefore numerics are
important to check if our prediction holds when we do not have a purely weakly nonlinear system.

We follow the motion of the invariants in the k-space by tracking the paths followed by their centroids
defined as a mean k weighted on the density of the respective invariant, i.e.:

1 A
keg(t) = — kk? 2dk,
(0= j; Tk

X

1 .
ko(t) = — k| )?dk,
o(t) ka>0 [l

X

1 k2 A
k ) = — k—x de,
=7 el

1 |
ko(t) = — kK dk. 5.2
#() P ka>0,|ky|<ﬁkx ky 58

Here we took into account (4.3) according to which ny = |1,7)k|2 / k, (remember that L = 27). The centroids
mark the position k around which most of the respective invariant is concentrated in the k-space at time z.

5.1. Initial spectrum in the zonal sector
Let us put the initial spectrum in the zonal sector and start with weak nonlinearity. We take the following
parameters: ko = (20, 65), ky = 8, 3= 10, A = 5 x 107> and aresolution of 5122, Figure 4 shows the
evolution of the total energy, enstrophy and zonostrophy. Here, time ¢ is normalised to the period of the mode
ky,i.e. T = 2w /w (k). It can be seen that the energy, enstrophy and zonostrophy are conserved to within
1.7%, 0.3% and 18% respectively. Conservation of the energy and enstrophy is a good test of the numerical
method because these are exact invariants of the underlying equations in the periodic box for any level of
nonlinearity. Slightly poorer conservation of the energy is expected since this quantity has a higher contribution
from the large k-modes which evolve faster and, therefore, are more sensitive to the error due to a finite time
step. On the other hand, zonostrophy is an approximate invariant whose conservation depends on the
nonlinearity level.

For the resolution we initially used 256 and found that the results are very similar suggesting that there is not
much sensitivity to resolution, except for better conservation of the energy and the potential enstrophy at 5122,

8



10P Publishing

NewJ. Phys. 18 (2016) 085008 KLHarperand SV Nazarenko

108 T T T T T
o 1.04 B
S |
=) E —_—A
S 0.9 1Q—=—
C: Y —6—
s 0.92 E
u
w 0.88 4

0.84 1 1 1 1 1

0 50 100 150 200 250 300
T

Figure 4. Evolution of the energy, enstrophy and zonostrophy when the initial spectrum is in the zonal sector and nonlinearity is weak.
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Figure 5. Plot showing the ratio of action ny in the meridional sector (semi-action) to that in the whole of k-space when the initial
spectrum is in the zonal sector and nonlinearity is weak.

Although it may seem that this resolution is modest for theses days, to simulate weakly nonlinear systems it is not
as they take a long time, evolving very slowly.

Figure 5 shows the ratio of the semi-action to the total action in the system. This ratio is chosen as an
indicator of the semi-action conservation, obviously, considering the relative change of this invariant based on
its initial value would be meaningless as the latter is zero. From this plot we see that the prediction that weak
turbulence initially contained if the zonal sector will remain there indefinitely holds with very high accuracy.
Indeed, less than 0.6% of action escapes into the meridional sector.

Figure 6 shows paths of the centroids of the energy, enstrophy and zonostrophy normalised to the initial
position k. One can see that the invariants move into the sectors predicted in section 4.3.1.

The -spectrum in 2D k-space is shown in figure 7. As previously seen in figure 5, the spectrum remains in
the zonal sector. The spectrum evolves towards the origin with zonal flow forming at two distinct places—
stronger one in alow k region and a weaker one with high k’s. The latter forms near the zonal scale k ~ (0, k)
in agreement with a theoretical prediction of Nazarenko (1991).

In our next run the amplitude was increased to A = 1 x 1072 so as to make the system strongly nonlinear.
Figure 8 shows evolution of the total energy and enstrophy. Like before, we see that the enstrophy is conserved
considerably better than the energy. On the other hand, zonostrophy is not conserved at all and, therefore, not
shown (its variations exceed 300% of its initial value). Figure 9 shows the ratio of the semi-action to the total
action in the system. We can see that the semi-action is not conserved, and turbulence is no longer contained in
the zonal sector.

Centroid paths of the energy and enstrophy are shown in figure 10. As the zonostropy is not conserved, it is
not expected to restrict the energy and enstrophy fluxes, and, therefore, we are not showing its centroid. On the
other hand, the energy and enstrophy still restrict transfer directions of each other in accordance with the
predictions of Fjertoft’s argument (which reduces to the standard argument as in 2D turbulence in this case).

Drastic differences with the weakly nonlinear system are particularly evident on the 2D spectra shown in
figure 11. Now that nonlinearity is strong and three-wave resonances are no longer dominant, proposition 1 no
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Figure 6. Centroid paths of the energy, enstrophy and zonostrophy when the initial spectrum is in the zonal sector and nonlinearity is

150

100

50

-100

-150

0 20 40 60 80100

kx

T,

3

0 20 40 60 80100

kx

0 20 40 60 80100

kx

3.5e-09

3e-09

2.5e-09

2e-09

1.5e-09

1e-09

5e-10

0

Figure 7. Three frames of the ¢-spectrum in 2D k-space when the initial spectrum is in the zonal sector and nonlinearity is weak.

E/Eq, QIQ,

0.99
0.98
0.97
0.96
0.95
0.94
0.93

0.5

1)

Figure 8. Evolution of the energy and enstrophy when the initial spectrum is in the zonal sector and nonlinearity is strong.

10




10P Publishing

NewJ. Phys. 18 (2016) 085008 KLHarperand SV Nazarenko

0.35 ; . .

03 .

0.25 | 1

0.2 .

0.15 1

0.1t .

0.05 .

O 1 1 1 1
0 0.5 1 1.5 2 25

vT

Figure 9. Plot showing the ratio of action ny in the meridional sector to that in the whole of k-space when the initial spectrum is in the
zonal sector and nonlinearity is strong.

1.1

09 |

0.8

ky/Koy

0.7

Ky /Koy

Figure 10. Centroid paths of the energy and enstrophy when the initial spectrum is in the zonal sector and nonlinearity is strong.

longer confines turbulence to the zonal sector only. It can be seen that the spectrum moves into the meridional
sector, initially exciting near-meridional modes with wavenumbers close to the sum of the dominant
wavenumbers in the initial Gaussian and its image. Subsequent evolution is characterised by isotropisation of
the spectra.

5.2. Initial spectrum in the meridional sector

Let us now put the initial spectrum in the meridional sector. Namely, we take the initial spectrum as in (5.1) with
ko = (40, 20) € M and with a width of kx = 8. In our next run the initial amplitude was chosen as

A = 1.875 x 10~*s0 as to make the run weakly nonlinear. The resolution was 256°.

Figure 12 shows the evolution of the energy, enstrophy, zonostrophy and semi-action. The energy,
enstrophy and semi-action are well conserved to within 3%, 1% and 7% respectively. The zonostrophy is also
conserved initially, but its conservation breaks down rather abruptly in the second half the runtime. This
probably happens when the turbulent spectrum reaches the zonal /meridional boundary at which the
zonostrophy density (4.6) becomes singular, which has a detrimental effect for the conservation conditions.

Figure 13 shows the cascade directions of energy E, enstrophy €2 and semi-action ® plotted in terms of the
centroid paths. It can be seen that each invariant cascades in the direction predicted in section 4.3.2. However, )
has not reached its designated low-k corner of the zonal sector. Interestingly, to get to this sector the centroid of
Q has to cross the region of low-k meridional scales which is forbidden in a sense that no significant amount of 2
can be present in it at any time. But this means that the transfer occurs nonlocally—passing directly from the
initial to the destination scales. At intermediate times this would correspond to two spots in the 2D k-space with

11



10P Publishing

NewJ. Phys. 18 (2016) 085008

KL Harperand S V Nazarenko

150

100

50

-100

-150

kx

0 20 40 60 80100

0 20 40 60 80100

kx

0 20 40 60 80100
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Figure 15. Evolution of the energy, enstrophy and semi-action when the initial spectrum is in the meridional sector and nonlinearity is
strong.

significant concentration of €2, both of which would contribute to the centroid of 2 placing it somewhere in
between, i.e. in meridional scales.

Figure 14 shows three frames of the ¢-spectrum in 2D k-space at the start, during and at the end of the run.
As described in the previous paragraph, we see signs of nonlocal excitation of turbulence bypassing intermediate
regions of the k-space. The scales excited are actually on the Z/M boundary, which is allowed by Fjertoft’s
argument (recall that the cascade boundaries are ‘soft’). Evolution of initially meridional spectrum toward the
Z/Mboundary was previously reported by Saito and Ishioka (2013).

To see what happens when nonlinearity is increased, we perform a run with initial amplitude
A =1 x 1072, and with the rest of the parameters as before. Figures 15—17 show the evolution of the invariants,
cascade directions and the ¥-spectrum respectively. The zonostrophy line has been removed from the evolution
plotasit quickly looses conservation. The energy, enstrophy and semi-action are conserved to within 3.5%, 1%
and 17% respectively. A word of caution is due about the 17% conservation of the semi-action, which might not
seem bad at the first sight. Imagine a situation when the final spectrum is fully isotropic: the waveaction loss into
the zonal sector would only be 30% in this case.

Secondly, one has to be cautious interpreting the cascade directions in figure 16 which seem to be quite
similar to the weakly nonlinear case. In fact, the spectrum evolution seen in figure 17 is drastically different than
before: the spectrum evolution is more gradual /local and with a strong tendency to isotropisation, which is
expected for strongly nonlinear systems. It is this isotropisation that explains the motion of the centroids in
figure 16 (along with the usual tendency for E and {2 to go to the large and small k’s respectively).
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strong.

6. Finite-p effects

So far we have studied the large-scale limit (o — 0) for which we proved proposition 1 about the forbidden
triads. However, we would also like to see what happens when p is small but finite. It turns out that some
Z + Z < M triads which are forbidden for p — 0 start to appear. They contain wave vectors close to the Z/M
boundary for which the deviation of ky /k, from /3 shrinks as p — 0.Inother words, as p increases, the angle
containing forbidden triads around the Z/M boundary also increases. See below. Fixing k = (cos 8, sin 8) in the
resonant conditions (2.12), in figure 18 we plot k,, / k, — /3 forresonant Z + Z < M triads as a function of p?
for three different values of §. We see that the closer 6 is to the boundary, the bigger the angle containing
Z + Z < M triads.

We have further found that the triads M + M <~ M and M + Z < Z (and obviously M + M « 2)
forbiddenin p — 0 limit, continue to be absent for finite but small p.

To checkif our numerical results obtained for the large-scale limit are robust when p is increased, we
performed simulations of the full CHM equation (2.1) with F = 100 000. For our typical modes this
corresponds to pk in the range from 0.1 to 0.4, which is not so small for formal validity of the pk — 0 limit. We
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use the full CHM equation (2.4) in Fourier space with frequency (2.5) and interaction coefficient (2.6). Again, we
considered a set of four cases when the initial spectrum was in the zonal and meridional sectors, and also when
the nonlinearity was both weak and strong. The results of this study are reported in appendix B: they reproduce
all of the qualitative features of the results obtained for the large-scale limit. This demonstrates that, at least
qualitatively, the mechanisms discovered for the p — 0 limit remain at work for large-scale turbulence

with pk < 0.4.

7. Conclusion

For the large-scale limit of the CHM equation, a new quadratic invariant has recently been discovered in Saito
and Ishioka (2013) for weakly nonlinear systems; it is called the semi-action @ in the present paper—see (4.7)
and (4.8). Prompted by the fact of its conservation, we have proposed and proven that the following resonant
triads are prohibited, M < M + M, M < Z + Z, Z < M + Zand Z < M + M, where Zand M are the
zonal and meridional sets of modes defined in proposition 1. This proposition has a drastic consequence for the
weakly nonlinear dynamics of the large-scale CHM systems: spectrum initially fully concentrated in the zonal
sector Z cannot ever leave this sector (no M-modes can be excited).

Another additional quadratic invariant of the large-scale CHM equation, known since 1990 (Balk et al 1990,
Nazarenko 1990 and Balk et al 1991)—is zonostropy Y defined in (3.7) and (4.6). In these papers it was used in a
generalised Fjortoft’s argument resulting in a triple cascade picture of anisotropic drift/Rossby turbulence. In
the present paper, we have used the newly discovered semi-action invariant to revise Fjortoft’s argument. The
latter is now presented in a modified version for evolving non-dissipative systems assuming that the quadratic
invariants will eventually move to scales which are greatly separated from the initial scale k. If the initial
spectrum is in Z then it remains in Z, but the invariants are transferred among the zonal scales. Namely, the
energy cascades to large zonal k’s, the enstrophy—to small zonal k’s, and the zonostrophy—towards the the
Z/Mboundary, k, = \/3k,.Ifthe initial spectrum is in M then energy cascades towards large k’s, enstrophy—
to small zonal k’s, and semi-action—to small meridional k’s (by definition, the latter cannot leave M).

We have tested and confirmed our theoretical predictions numerically. In particular, we have confirmed
conservation of the semi-action and zonostrophy invariant. We also confirmed that when nonlinearity is weak
(three-wave interactions dominate) turbulence which is initially in Z remains in Z with remarkable a 0.6%
accuracy. In this case, it is redistributed within the zonal sector with the energy, enstrophy and zonostrophy
moving in the 2D k-space as predicted by Fjartoft’s argument. The 2D spectrum develops two distinct
components: the main spot that spreads to zonal scales with smaller k’s and a smaller spot forming with large-k
zonal scales near k ~ (0, kg,) (formation of the latter was predicted in Nazarenko (1991)).

When nonlinearity is weak and turbulence is initially in M, the spectrum tends to move towards and
concentrate near the Z/Mboundary, k, = 3 k,. Such a behaviour was previously reported in Saito and Ishioka
(2013). The cascade directions appear to be qualitative predictions of Fjortoft’s argument. Notably, conservation
of the zonostrophy, which holds initially, is suddenly broken down when the spectrum reaches the Z/M
boundary on which the density of this invariant is singular.

When nonlinearity is increased, as expected, for both zonal and meridional initial conditions, conservation
of the semi-action and (especially) zonostropy deteriorates. In particular, initially zonal turbulence is no longer
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contained in the zonal sector. Turbulence evolution shows tendency to isotropisation, as expected for strongly
nonlinear CHM, because the linear term is the only source of anisotropy in this model. In general, the system
evolves similar to the classical 2D turbulence, but with reversal of roles of the energy and the enstrophy—they
cascade to the small and large scales respectively in our case.

We have also studied sensitivity of our results to increasing values of p, so that formally the CHM system is
notin the large-scale limit. We showed that even for small values of p, some resonant triads of type M «— Z + Z
(but not the other types forbidden in the large-scale limit) exist. They appear with wavenumbers close to the
Z/Mboundary, and the sector in which they exist grows as p increases. Thus, for finite but small p, leakage’
between the Z and M sectors occurs primarily near the Z/M boundary only. Using direct numerical simulations
of the CHM equation, we have found that most of the qualitative and even quantitative features of the large-scale
limit survive for our numerical set-ups up to values pk < 0.4.
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Appendix A. Proof of proposition 1

Letk = (p, q), p > 0Oand w = p(p* + ¢?). Let us begin by writing out the frequency resonance condition,
w = w; + wy, in which we substitute the wavenumber resonance condition, k = k; + k;:

p(P*+ ) =p(p>+ a) + (p — p)((p — p)* + (g — a)?. (A.1)

Solving the quadratic equation, we have for ¢q;:
a1
Gy ="+ —\/? (A.2)
p p

with:
D
e pra* + 3p’pp, + pipa’ (A.3)

Taking g > 0 wecanseethatq, . > Oandq,_ < 0.Usingg,, = q — q,, gives:

b4 1 |D
_ - - |—, A4
9+ » + o\ 4 (A4)

whereq,, < 0andg, > 0.
We must first prove that g, , /p, and g, , /p, are monotonic functions in the interval 0 < p, , < p,i.e.they
have no local extrema in this range. From (A.2) and (A.3) we have:

ql_i:i_ii

1
—((p} — pp + PPG* + 3p*p (p — P2 (A.5)
n o m P PP

Differentiating with respect to p;

2

PP,
a*@2p, — p) + 3p° — 6p°p,
20p, ((p} — pyp + PP 4> + 3p*p, (p — p))'/?

i(‘h_i) 4 @ P I - p)
o\ p P12

(A.6)
and setting the result to zero, we get:
9 3 1
2 4 4 2,2 4
_Zpt 2 - = =0. A7
by (q 4P X P K ) (A7)

Itcanbe seen that p; = 0is the extremum location for both ¢, , /p, and g, _/p, and hence no extrema exist in
therange 0 < p, < p.

16



I0OP Publishing NewJ. Phys. 18 (2016) 085008

Now let us do the same for g, /p, . Rewriting (A.4) using p, = p — p, gives:

2

De _ P = P)A %[qz L3 —pp? | p(p = p)E

P pp, P, p;
SR (q (p; + p* — ppy) + 3p°p, — 3pipH'/2
P, p PP,

Differentiating with respect to p,, we get:

i(qz_i] o, @t =) + 3, — )
8P2 2 P22 pp22
a’(2p, — p) +3p> — 6p,p°

q: .
2pp, (@*(p; + p* — ppy) + 3p°p, — 3p;pH)/?

Rearranging and setting the result to zero, we have:

32
zz(i 9P+ p

4 4 q?

KLHarperand SV Nazarenko

(A.8)

(A9)

(A.10)

from which it can be seen that p, = 0, so again there are no extrema in therange 0 < p, < p, which is the same

as0 < p, <p.

Thus, we have proven that g, _/p, and g, /p, are monotonic functions in the interval 0 < p, , < p.Now,
we need to find out whether g, /p, and g,  /p, are monotonically increasing or monotonically decreasing

functions of p,. To do this we must compare their valuesat p; — 0and p;, — p.

(i) Letus first consider thelimit p, — 0 (p, — p).
From (A.5) we have:

2

/
De 4 444 [ C ) _q)p)12
P '

b h P pq
(3p* — g%
— i q + [ —P zq p1:|
b P D 2pq
Therefore, we can see that:
)2 b

(since p; — 0)and:
4- ., 4 %
Py p 2q
Respectively
e, 4

T
b, p

(i) Now, let us consider thelimit p, — p (p, — 0).
From (A.8), ignoring p22 terms, we have:

ﬁqmi[<ng]
2 b
p

po P 2pq’
which gives:
e 44
b p
and:
oo
2 1z

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)
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q/p

Figure Al. Graph summarising the case when g > p+/3.

G 4 _ 3P (A.18)
2 2p 2q

Therefore we can see that g, /p, are monotonously decreasing functions and g, , /p, are monotonously
increasing functions of p;.
Letus denote x = q/p > 0. For the right-hand sides of (A.13) and (A.18) we have:

1
fx)= —Ex— i (A.19)
This function has a single maximum at x = +/3 atwhich f = —+/3. Hence, the maximum value of g, /p, and
4,../P, is always <—+/3 (the equal sign is realised when k is on the Z/M boundary, x = J3.
Let us consider the case g > p~/3,i.e. k € Z. A graph summarising our findings for this case is presented in
figure A1. It can be seen that:

e 1, 3, 259 53 (A.20)
b P b, P
Together with the relations:
he cfe—v3, Brcro 3 (A21)
b b,

these inequalities mean that k; € Z and k, € Z. Thus, we have proven parts (3) and (4) of proposition 1.

Let us consider now the case g < p+/3,i.e. k € M. A graph summarising our findings for this case is
presented in figure A2. We can see that all curves change between the sets M < Z at some points p; within the
range 0 < p, < p.We need to prove that these points coincide for g, , /p, and g, /p, (we will call it pj) aswell
asforq, /p andq, /p,(wewillcallit p).

For this we will first rewrite the intersection condition:

1 |D
d4 = \/gp1 = % + —\/;, (A.22)

p
as:
(3pp — p,@* = p;a° + 3p°pip, + pypa’. (A.23)
Since at the intersection p; = 0, we get:
% p q p q
_p = Py -2 41 A24
pl p+ 2 2\/§ or p2 2 2\/5 ( )
From this we can see that:
p<p if p+%<2p<—>q<p\/§, (A.25)

i.e. the intersection exists when k € M, asitis the considered case.
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Figure A2. Graph summarising the case when g < p~/3.

Now consider intersection:

D4 1 |D

_ 3y b1 1D A.26
Qo 123 » o\ 2 ( )

leading to:
(V3p,p + p@)? = p;a* + 3p*pp, + Ppq? (A.27)

and:
)4 q

== - —. A.28
123 2 23 ( )

Thus, we have proven that this intersection point is the same as (A.24), as required.
Similarly, one proves that intersections q, /p, = /3 andq, /p, = /3 areachieved at the same point

p, = p* givenby:
== - 1 (A.29)

But this means that k; and k, cannot be simultaneously in M, nor they can be simultaneously in Z. So we have
proven parts (1) and (2) of the proposition 1.

Appendix B. Numerical results for the cases when p is small but finite

Let us consider a case when the initial spectrum is in the zonal sector. For the weak nonlinearity run, we chose a
resolution of 5122, kg = (20, 65), kx = 8, 3 = 10and A = 7.5 x 107°. Figures B1-B3 show the
conservation and cascade directions of the energy, enstrophy and zonostrophy and the ¢/-spectrum respectively.

For the strongly nonlinear run we increased the amplitude to A = 1 X 1077. The numerical plots are
presented in figures B4-B6.

For the weakly nonlinear run with a meridional initial condition the resolution was
2562, ko = (40, 20), ky = 8, 3 = 10and A = 1.875 x 10~%. Figures B7-B9 show the conservation of the
energy, enstrophy, zonostrophy and semi-action, the cascade directions of the energy, enstrophy and semi-
action and the 2D t-spectrum respectively.

For the strongly nonlinear run figures B10-B12, we increased the amplitude to A = 1 x 10~¢ and kept the
remaining parameters the same.

We see a remarkable agreement of the above plots obtained for both weak and strong initial conditions in
both zonal and meridional sectors with the respective plots reported in the main text of the large-scale limit
simulations.

19



NewJ. Phys. 18 (2016) 085008 KL Harperand S V Nazarenko

E/Eq, QIQq, YIY,

Figure B1. Evolution of the energy, enstrophy and zonostrophy when the initial spectrum is in the zonal sector, nonlinearity is weak
and p is small but finite.
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Figure B2. Centroid paths of the energy, enstrophy and zonostrophy when the initial spectrum is in the zonal sector, nonlinearity is
weak and p is small but finite.
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Figure B3. Three frames of the ¢)-spectrum in 2D k-space when the initial spectrum is in the zonal sector, nonlinearity is weak and p is
small but finite.
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Figure B4. Evolution of the energy and enstrophy when the initial spectrum is in the zonal sector, nonlinearity is strong and p is small
but finite.
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Figure B5. Centroid paths of the energy and enstrophy when the initial spectrum is in the zonal sector, nonlinearity is strong and p is
small but finite.
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Figure B6. Three frames of the ¢)-spectrum in 2D k-space when the initial spectrum is in the zonal sector, nonlinearity is strong and p
is small but finite.
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Figure B9. Three frames of the 1/-spectrum in 2D k-space when the initial spectrum is in the meridional sector, nonlinearity is weak
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Figure B10. Evolution of the energy, enstrophy and semi-action when the initial spectrum is in the meridional sector, nonlinearity is
strong and p is small but finite.
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Figure B11. Centroid paths of the energy, enstrophy and semi-action when the initial spectrum is in the meridional sector,
nonlinearity is strong and p is small but finite.
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Figure B12. Three frames of the ¢-spectrum in 2D k-space when the initial spectrum is in the meridional sector, nonlinearity is
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