
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Original citation: 
Harper, Katie L. and Nazarenko, Sergey. (2016) Large-scale drift and Rossby wave turbulence. 
New Journal of Physics, 18. 085008 
Permanent WRAP URL: 
http://wrap.warwick.ac.uk/80452                      
       
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the 
University of Warwick available open access under the following conditions. 
 
This article is made available under the Creative Commons Attribution 3.0 (CC BY 3.0) license 
and may be reused according to the conditions of the license.  For more details see: 
http://creativecommons.org/licenses/by/3.0/   
 
A note on versions: 
The version presented in WRAP is the published version, or, version of record, and may be 
cited as it appears here. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk 
 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/80452
http://creativecommons.org/licenses/by/3.0/
mailto:wrap@warwick.ac.uk


New J. Phys. 18 (2016) 085008 doi:10.1088/1367-2630/18/8/085008

PAPER

Large-scale drift and Rossby wave turbulence

KLHarper and SVNazarenko
WarwickMathematics Institute, University ofWarwick, GibbetHill Road, Coventry, CV4 7AL, UK

E-mail: Katie.Harper@warwick.ac.uk and S.V.Nazarenko@warwick.ac.uk

Keywords:Rossbywaves, drift waves, turbulence, energy cascade, zonal jets

Abstract
We study drift/Rossbywave turbulence described by the large-scale limit of theCharney–Hasegawa–
Mima equation.Wedefine the zonal andmeridional regions as >≔ { ∣ ∣ }Z k kk : 3y x and

<≔ { ∣ ∣ }M k kk : 3y x respectively, where = ( )k kk ,x y is in a plane perpendicular to themagnetic
field such that kx is along the isopycnals and ky is along the plasma density gradient.We prove that the
only types of resonant triads allowed are « +M M Z and « +Z Z Z . Therefore, if the spectrum
ofweak large-scale drift/Rossby turbulence is initially inZ it will remain inZ indefinitely.We present
a generalised Fjørtoft’s argument tofind transfer directions for the quadratic invariants in the
two-dimensional k-space. Using direct numerical simulations, we test and confirmour theoretical
predictions for weak large-scale drift/Rossby turbulence, and establish qualitative differences with
cases when turbulence is strong.We demonstrate that the qualitative features of the large-scale limit
survivewhen the typical turbulent scale is onlymoderately greater than the Larmor/Rossby radius.

1. Introduction

Drift waves in plasmas andRossbywaves in the ocean and planetary atmospheres, though unrelated at the first
sight, have common features in their dynamics and statistics, which at a basic level can be described by the same
model—the Charney–Hasegawa–Mima (CHM) equation (2.1).Much of the research using thismodel has
concentrated on its small-scale limit, r  ¥, where ρ is the ion Larmor radius in plasmas or the Rossby radius
of deformation in oceans and atmospheres. This limit is applicable to sub-ion-Larmormotions in plasmas and
tomesoscaleflows in the Earth’s atmosphere, where ρ is of the order of a thousand of kilometres. However, the
large-scale limit ismore relevant tomany plasma regimes since the ion Larmor radius is very small, of the order
of just a fewmillimetres, whereas the tokamak diameter ismuch larger—severalmetres. Similarly, in amiddle-
latitude ocean ρ is tens of kilometres, and since Rossbywaves can be hundreds of kilometres in length, the large-
scale limit ismore appropriate. On giant planets like Jupiter and Saturn, ρ is not somuch larger than on Earth,
but the scale offlows is typicallymuch greater.

In the present paper, wewill study large-scale drift/Rossbywave turbulence (WT)within the large-scale
limit of the CHMmodel, r  0. First of all, wewill discuss a remarkable property of resonant triad interactions
related to a new invariant (semi-action) that has recently been found in this limit by Saito and Ishioka (2013).
Namely, defining the zonal region of wave vectors >≔ { ∣ ∣ }Z k kk : 3y x and themeridional region

<≔ { ∣ ∣ }M k kk : 3y x , we prove that the only allowed resonant triad interactions are « +M M Z and
« +Z Z Z . This property has profound effects on the nonlinear evolution. In particular, it leads to the claim

that the spectrumofweak large-scale drift/Rossby turbulence which is initially inZwill remain inZ indefinitely.
Wewill use this property and the semi-action invariant for revising Fjørtoft’s argument of Balk et al (1991)
aimed at predicting directions of the turbulent cascades in the two-dimensional (2D) scale space.We test and
confirmour theoretical predictions numerically and study their sensitivity to the strength of nonlinearity using
an approach previously introduced in the context of the small-scale CHMsystem inNazarenko andQuinn
(2009). Finally, we study robustness of our results for systemswhere the large-scale limit is not well satisfied, and
find thatmost qualitative features survive even forflowswith typical scales exceeding ρ only by a factor of two.
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2. TheCHMmodel

As alreadymentionedRossbywaves in geophysical fluids and electron-drift waves in plasmas are frequently
discussed together and can both be described by the same partial differential equation known as theCharney
equation in the geophysical context (Charney 1948) and theHaseqawa–Mima equation in the plasma context
(Hasegawa andMima 1978)—hence frequently referred to as theCHMequation:
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where y ( )tx, is the stream function, = ( )x yx , is in a plane perpendicular to themagnetic field such that x is
along the isopycnals and y is along the plasma density gradient, =F f gH2 is the inverse square of the
Larmor/Rossby radius,β is a constant proportional to the gradient of the plasma density or Coriolis parameter.
Equation (2.1) is similar to the 2DEuler equation and can bewritten in the formof an advection equation for the
potential vorticity. Aswe shall later see, like the 2DEuler equation, theCHMequation conserves two quadratic
invariants—the energy and potential enstrophy. However, the CHMequation differs from the Euler equation by
the presence of the linear term b y¶

¶
.

x
This extra termmeans that the CHMequation can support wavemotions,

unlike the Euler equation, and also has aweakly nonlinear limit since the linear term can be large comparedwith
the nonlinear one.However, the CHMequation is not only used to studyweakly nonlinear waves but also
strongly nonlinear structures such as solitons and vortices (Petviashvili and Pokhotelov 1992,Horton and
Ichikawa 1996).

TheCHMequation hasmany relatedmodels. Often it is argued that themodifiedCHMequation ismore
relevant for drift waves in plasma. ThemodifiedCHMequation treats purely zonalmodes ( =k 0y ) differently
by taking into account absence of an adiabatic response of the electric field. For the derivation of themodified
CHMmodel readers should refer toDorland et al (1990). However, since in our paper we ignore purely zonal
flow and consider imperfect zonalflowwith > ¹k k k, 0y x y bothmodels, theCHMand themodifiedCHM,
are equivalent with respect to the solutions thatwe consider. Note that pure zonalflowswith =k 0y will never
appear in a system if they are not present initially in theCHMmodel. For other basicmodels of theCHM family,
includingmodels such as theHasegawa–Wakatani equations, seeConnaughton et al (2015).

For a discussion of the generation and importance of zonalflows, withmore of an emphasis on plasma
applications, see Smolyakov et al (2000), Diamond et al (2005) andGürcan andDiamond (2015).

Let the systembe a periodic box, with length L in both directions. The Fourier transformof the stream
function is:
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k

k xi

with Fourier coefficients:
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where = ( )k kk ,x y is a 2Dwave vector with components taking discrete values
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L
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Equation (2.1) becomes:
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is the Kronecker symbol which is one if - - =k k k 01 2 and zero otherwise. The

wave frequency is given by the following dispersion relation:
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is the nonlinear interaction coefficient.
TheCHMequation conserves two quadratic invariants, energyE and enstrophyΩ:
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k
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and:

å yW = +( ) ∣ ˆ ∣ ( )k F . 2.8
k

k
2 2 2

Let us introduce thewaveaction variable

b
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Substituting (2.9) into (2.4) gives:
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and the nonlinear interaction coefficient is now:
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This symmetric formof the interaction coefficient is valid only on the resonantmanifold, i.e. such that both the
wavenumber triads k k k, ,1 2 in the nonlinear sum satisfy the following resonance conditions:

w w w- - = - - = ( )k k k 0, 0. 2.12k k k1 2 1 2

Thewave vectors can either be discrete or a continuous limit could be taken. Forweakly nonlinear waves in an
unbounded domain,  ¥L , k becomes a continuous vector. Therefore, any k may be amember of infinitely
many resonant triads. This is known as the kineticWT regime (L’vov andNazarenko 2010,Nazarenko 2011). In
bounded domains, where thewave amplitudes are very small the discrete k-space structure remains important.
This is the discreteWT regime (L’vov andNazarenko 2010,Nazarenko 2011). Resonant conditions 2.12 define
the dominant nonlinear interactions in both kinetic and discreteWT regimes.

3. Conservation laws inweakWT

The nonlinear interactions in both kinetic and discreteWT regimes are weak, so in both cases we deal with the
so-calledweakWT. The discreteWT regime is described byCHMwaveaction inwhich non-resonant terms are
discarded from the nonlinear sum.

Themain equation governing the kineticWT regime, the kinetic equation, can be derived from (2.10) by
assuming randomphases and taking a large-box limit followed by the limit of weak nonlinearity. It is written
below in symmetric form as:
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is thewaveaction spectrum (related to the energy spectrum via w= ∣ ∣E nk k k)
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k k k12 12
2
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andR R,k k12 2 1 are obtained by respective permutations of k k k, ,1 2 inR .k12 Sincewe are considering real
variables in theCHMequation, y ( )tx, , thewave vectors k and-k represent the samemode via the property of

the Fourier transformof real functions y y=-ˆ ˆ *.k k As a result we only need to consider half of the Fourier space,
i.e. k k k, , 0.x x x1 2 Wecan further neglect =k 0x as purely zonal flows are not weakly nonlinear—the
condition required for us to study triad interactions.

In terms of thewaveaction density, n ,k the energy and enstrophy become:
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w= =

W=

> >

>
( )

E E n
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x
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x

where wk is now the density of the energy and kx the density of the enstrophy. Note that in this caseΩ coincides
with the x-component of themomentum invariant—it is strictly positive since >k 0x . The y-component of the
momentum is also conserved, but it is not strictly positive since its density kymay change sign.

3
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Generally, one canwrite for a conserved quantityΛwith density lk :

ò lL =
>

( )n kd . 3.5
k

k k
0x

If the spectral density of quantity (3.5) satisfies condition:

l l l- - = ( )0, 3.6k 1 2

on the resonantmanifold (2.12) thenΛ is conserved, i.e. L = const. (Zakharov and Schulman 1980, 1988). For
the energy andmomentum, lk is wk and k respectively, and the resonant condition (3.6) is obviously satisfied,
- - =k k k 01 2 and w w w- - = 0k 1 2 , due to the respective δ-functions in the kinetic equation (3.1), which

proves conservation of these quantities. The same condition (3.6)was shown to be necessary and sufficient for
the existence of quadratic invariants (3.5) in the case of discreteWT inHarper et al (2013).

For a generic wave systemno other invariant besides the energy andmomentumhave been found to exist in
the kineticWT regime.However, it was discovered in Balk et al (1990), Nazarenko (1990) andBalk et al (1991)
that for a systemof Rossbywaves, one extra conserved quantity exists, the zonostrophy. It wasfirst found for
three special cases: large-scale turbulence (rk 1 ), small-scale turbulence (rk 1 ) and anisotropic
turbulence (∣ ∣ ∣ ∣k ky x ). After this it was generalised to all of k-space in Balk (1991)where the zonostrophy
invariant was found to be
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and r = F1 is the Rossby radius of deformation.

4. The large-scale limit of theCHMequation

Let us turn our attention to the large-scale limit r k 0 or, for simplicity, r  0. The large-scale dispersion
relation can be found byTaylor expanding the general dispersion relation (2.5):

w b r r r= - - +( ) ( ) ( )k k O1 . 4.1xk
2 2 2 6

In amoving frame of reference, and assuming for simplicity that br = 1,4 we can replace the dispersion relation
(4.1)with a simpler expression:

w r= + ( ) ( )k k O . 4.2xk
2 2

Wecan do this as in the large-scale limit the problem is scale-invariant—hence these situations with different
br4 can be obtained from each other by rescaling and no generality is restricted by assuming this. Thewaveaction
variable for the large-scale limit is:

y
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Substituting this the into (2.4) gives us (2.10) but nowwith the interaction coefficient:
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This can be rearranged as:
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Assuming that the frequency resonance condition is satisfied, i.e. + =k k k k k k ,x x x1 1
2

2 2
2 2 we get:
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Again, we emphasise that this symmetric formofV k
12 is only valid on the resonantmanifold, i.e. for weakWT

(kinetic or discrete).
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4.1.Quadratic invariants
In the large-scale limit, the zonostrophy density becomes (Balk et al 1991):

z =
-

( )k

k k3
. 4.6x

y x
k

3

2 2

The densities of invariants E andΩ are wk (=k kx
2 in this case) and kx respectively.

It has recently been discovered in Saito and Ishioka (2013) that expression (4.6) arises in r( )O 1 in the Taylor
expansion of (3.8) for r  0,whereas another previously unknown invariant arises in r( )O .0 This additional
invariant is defined as:
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Both invariantsϒ andΦ are conserved independently for w = k kxk
2 since this expression for the frequency is

valid up to order r2 corrections in the original expression (2.5). The new expression has since been named semi-
action inConnaughton et al (2015) because its density coincides with the one of waveaction in the sectorwhere it
is not zero. It is worthmentioning that even though it is tempting to discuss the physicalmeaning of the
zonostrophy and semi-action, it is still unclear andwould be premature. This is an interesting problem for the
future.

Figure 1 shows the distribution ofjk in 2Dwavenumber space. The dividing line is = ∣ ∣k k3 ,y x jk is

equal to zero in the shaded region >(∣ ∣ )k k3y x which is the zonal regionwith zonal (Z)modes andjk is equal

to one outside this region ( <∣ ∣k k3y x)where themodes aremeridional (M)modes. The dividing line is very
important in the proposition that follows because of the structure of themanifold for the large-scale limit—for
example the zonostrophy invariant is singular there. As can be seen fromour proof of the proposition in
appendix A, the dividing line plays an important role in showing certain triads are prohibited.

4.2. Prohibited triads
In order for the semi-action (4.8) to be conserved itmust satisfy the resonance condition (3.6). Sowe have
= +1 1 0 for triads of type « +M M Z and = +0 0 0 for « +Z Z Z . In otherwords, an excitation that is

in aM-mode can be transferred to aM- and aZ-mode but not to twoM-modes ¹ +( )1 1 1 or twoZ-modes
¹ +( )1 0 0 otherwise (3.6)would not be satisfied.On the other hand, an excitation that is in aZ-mode can only

move to otherZ-modes and not toM-modes. This behaviour follows from the conservation of semi-action, but
wewould like to prove the following proposition directly.

Figure 1.The distribution of jk in 2Dwavenumber space.
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Proposition 1. Let <≔ { ∣ ∣ }M k kk : 3y x be the set ofmeridionalmodes and >≔ { ∣ ∣ }Z k kk : 3y x be the set
of zonalmodes of the systemwith frequency w = k kxk

2. Then the following triad processes are prohibited:

(1) « +M M M,

(2) « +M Z Z ,

(3) « +Z M Z ,

(4) « +Z M M.

Depending onwhetherwe are considering the kinetic or discrete regime, either one or several of the
following triad processesmay be realised, « +M M Z and/or « +Z Z Z.

This proposition is proven in appendix A.Note that part (4) of the proposition trivially follows from the
wavenumber condition alone—it is included here solely for completeness.

4.3. Cascade directions
It was shown in Balk et al (1991) for drift/RossbyWT in the case of zonally dominated turbulence, ∣ ∣ ∣ ∣k ky x ,
and in the case of large-scale turbulence, rk 1 , that the presence of an additional quadratic invariant
(zonostrophy) allows us to predict the directions offluxes in the k-space of the three quadratic invariants. This is
similar to the famous Fjørtoft’s argument for 2Dhydrodynamic turbulence where the presence of enstrophy is
shown to forbid energy toflow to small scales, and the presence of energy—to forbid enstrophy flow to large
scales (Fjørtoft 1953). InNazarenko andQuinn (2009) this argumentwas extended to small-scale drift/Rossby
turbulence, rk 1 . Cascade boundaries were found for the energy, enstrophy and zonostrophy: it was
predicted that each of the invariants was forced by the other two to cascade into its own anisotropic sector of
k-space. A numerical study of theCHMequationwas carried outwhich confirmed this prediction.

Themost straightforward application of Fjørtoft’s argument can be done to strictly positive quadratic
invariants. This boils down to saying that an invariant is not allowed to dissipate in parts of the k-space where its
spectral density ismuch less than the spectral density of at least one other invariant—otherwise the latter
invariant would have to be dissipatedmuch faster than it is produced at the forcing scales, which is impossible.
This splits the entire k-space into non-intersecting sectors towhich the considered invariants are allowed to
cascade. Under some circumstances Fjørtoft’s argument can be extended to invariants whose densitymay
change sign, provided that such invariants remain sign-definite in their own cascade sector of the k-space.

Below, wewill return to Fjørtoft’s argument for the large-scale drift/Rossby turbulence, and revise the
results of the Balk et al (1991) paper by taking into account yet another quadratic invariant—the semi-actionΦ.
Wewillmodify Fjørtoft’s argument (usually formulated for a stationary forced and dissipated system) adopting
it to evolving turbulence in a non-dissipative system. This is because our subsequent numerical simulationswill
be precisely in such an evolving non-dissipative set-up. The picture is qualitatively different depending onwhich
sector the initial spectrum is in—zonal ormeridional. Therefore, wewill consider these two cases separately.

4.3.1. Initial spectrum in the zonal sector
First, let us put the initial spectrum (at t=0) in the zonal sector near awavenumber = Î( )k k Zk ,x y0 0 0 (i.e.

>k k 3y x0 0 ). Since the semi-action density is zero in theZ-modes, no turbulence is allowed to leave this
sector, as this wouldmean that initially zero semi-actionΦwould become finite, contradicting its conservation.
(Recall that there is no resonance triads of type + «Z Z M.)But the zonostophyϒ in the large-scale limit (4.6)
is positive in theZ-modes.

Therefore,ϒ can be used in Fjørtoft’s argument alongwith the other two positive invariants, E andΩ (Φwill
not be involved in this argument as it is zero in this case). Namely, let us suppose ad absurdum that at >t 0 a
significant proportion of a particular invariant (of the order of its total value) hasmoved into the vicinity of a
scale k where the density of this invariant ismuch less than the density of at least one of the other two invariants.
But then the amount of such an invariant with the dominant density would have at the scales around k an
amountwhich is greatly exceeding its total initial value. This would contradict conservation of this invariant
and, is therefore, impossible.

Thus, the entire k-space could be divided into three sectors towhich respective invariants are allowed to
flow. The boundaries of these sectors are ‘soft’ in a sense that the invariants are allowed to cross into each other’s
sector but not too deeply. These boundaries can be found by equating the ratios of densities for each pair of
invariants to their initial value, i.e.:

• WE : =k k ,2
0
2
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The resulting cascade picture is summarised infigure 2. It can been seen that the energy cascades to large k,
the enstrophy to small k, both becoming progressivelymore zonal, and the zonostrophy flows towards theZ/M
boundary =k k3y x (without crossing it).

4.3.2. Initial spectrum in themeridional sector
Let us nowput the initial spectrum (at t=0) in themeridional sectorMnear awavenumber

= Î( )k k Mk ,x y0 0 0 (i.e. <k k 3y x0 0 ). It is clear that invariantΦmust remain inM because its density is zero
outside of this sector. However, E andΩ are free toflow fromM toZ. In this case zononstophyϒ is not sign-
definite and, therefore, cannot restrict the fluxes of the other quadratic invariants. On the other hand, semi-
actionΦ is nownon-zero and positive and, therefore,must be used in Fjørtoft’s argument alongwith the other
two positive invariants, E andΩ.

In this case, the cascade boundaries obtained by the pairwise equating of the invariant densities are:

• WE : =k k ,2
0
2

• FE : = Îk k k k Mk, ,x x
2

0 0
2

• WF: = Îk k Mk, .x x0

The WE boundary separates the E- and theΩ-cascades: as before itmeans thatE cannot be transferred to
k k0 andΩ—to k k0 . Further, since the FE and the WF boundaries are only inM, we have  k k k2 x .
So, because the boundaries are ‘soft’, we can take ~k kx , andfind that all three boundaries, WE , FE and WF,
approximately coincide inM. Thismeans thatΦ cannot flow to large k, and, assuming that it shouldmove far
from the initial scale k0, itmustmove tomodeswith small k (while remaining inM). On the other hand,Ω
cannot be transferred to neither large nor small wave vectors inM. The only remaining choice forΩ is toflow to
small wave vectors inZ. The latter choice does not contradict conservation ofΦ because its density is zero inZ. A
summary for the allowed cascade directions for this case is given infigure 3.

5.Numerics

In order to test numerically our theoretical predictions, a pseudo-spectral code using a third-order Runge–Kutta
time integration algorithm, originally used for the small-scale case inNazarenko andQuinn (2009), has been
used after adapting it to the large-scale limit—(3.1)with frequency w = k kxk

2 and interaction coefficient (4.4).

Figure 2.Cascade directions when the initial spectrum is in theZ sector. Dashed line is theZ/M boundary. Bold solid lines are the
WE , W¡ and ¡E boundaries.
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Similarly to the original set-up, we use initial condition:

y = +
f

=
+-

ˆ ∣ ( )
∣ ∣

*

⎜ ⎟⎛
⎝

⎞
⎠Ae image, 5.1tk 0

i
k

k k
k

0 2

2

—aGaussian spot centred at k0 withwidth k* and itsmirror imagewith respect to the kx-axis. Phases fk are are
chosen to be randomusing a randomnumber generator and independent andA is a constant controlling the
level of nonlinearity. For simplicity we take the size of the periodic box as p=L 2 .Wewill consider cases when
the initial spectrum is in the zonal sectorZ and in themeridional sectorM (theGaussian is suitably truncated to
ensure that the initial condition is fully concentrated in one sector only), and cases with bothweak and strong
nonlinearity. Our theoretical set up is such that interactions areweak.However,more typically nonlinearity is
not alwaysweak in all of the k-space andmay become strong in some isolated parts of it. Therefore numerics are
important to check if our prediction holdswhenwe do not have a purely weakly nonlinear system.

We follow themotion of the invariants in the k-space by tracking the paths followed by their centroids
defined as amean k weighted on the density of the respective invariant, i.e.:
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Herewe took into account (4.3) according towhich y= ∣ ˆ ∣n kxk k
2 (remember that p=L 2 ). The centroids

mark the position k aroundwhichmost of the respective invariant is concentrated in the k-space at time t.

5.1. Initial spectrum in the zonal sector
Let us put the initial spectrum in the zonal sector and start withweak nonlinearity.We take the following
parameters: b= = = = ´ -( ) *k Ak 20, 65 , 8, 10, 5 100

5 and a resolution of 5122. Figure 4 shows the
evolution of the total energy, enstrophy and zonostrophy.Here, time t is normalised to the period of themode
k0, i.e. p w= ( )T k2 0 . It can be seen that the energy, enstrophy and zonostrophy are conserved towithin
1.7%, 0.3% and 18% respectively. Conservation of the energy and enstrophy is a good test of the numerical
method because these are exact invariants of the underlying equations in the periodic box for any level of
nonlinearity. Slightly poorer conservation of the energy is expected since this quantity has a higher contribution
from the large k-modes which evolve faster and, therefore, aremore sensitive to the error due to afinite time
step.On the other hand, zonostrophy is an approximate invariant whose conservation depends on the
nonlinearity level.

For the resolutionwe initially used 2562 and found that the results are very similar suggesting that there is not
much sensitivity to resolution, except for better conservation of the energy and the potential enstrophy at 512 .2

Figure 3.Cascade directions when the initial spectrum is in theM sector. Dashed line is theZ/M boundary. Bold solid line—
coinciding WE , FE and WF boundaries.
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Although itmay seem that this resolution ismodest for theses days, to simulate weakly nonlinear systems it is not
as they take a long time, evolving very slowly.

Figure 5 shows the ratio of the semi-action to the total action in the system. This ratio is chosen as an
indicator of the semi-action conservation, obviously, considering the relative change of this invariant based on
its initial valuewould bemeaningless as the latter is zero. From this plot we see that the prediction that weak
turbulence initially contained if the zonal sector will remain there indefinitely holdswith very high accuracy.
Indeed, less than 0.6% of action escapes into themeridional sector.

Figure 6 shows paths of the centroids of the energy, enstrophy and zonostrophy normalised to the initial
position k0. One can see that the invariantsmove into the sectors predicted in section 4.3.1.

Theψ-spectrum in 2D k-space is shown infigure 7. As previously seen infigure 5, the spectrum remains in
the zonal sector. The spectrum evolves towards the origin with zonalflow forming at two distinct places—
stronger one in a low k region and aweaker onewith high kʼs. The latter forms near the zonal scale ~ ( )kk 0, y0

in agreementwith a theoretical prediction ofNazarenko (1991).
In our next run the amplitudewas increased to = ´ -A 1 10 3 so as tomake the system strongly nonlinear.

Figure 8 shows evolution of the total energy and enstrophy. Like before, we see that the enstrophy is conserved
considerably better than the energy. On the other hand, zonostrophy is not conserved at all and, therefore, not
shown (its variations exceed 300%of its initial value). Figure 9 shows the ratio of the semi-action to the total
action in the system.We can see that the semi-action is not conserved, and turbulence is no longer contained in
the zonal sector.

Centroid paths of the energy and enstrophy are shown infigure 10. As the zonostropy is not conserved, it is
not expected to restrict the energy and enstrophy fluxes, and, therefore, we are not showing its centroid. On the
other hand, the energy and enstrophy still restrict transfer directions of each other in accordancewith the
predictions of Fjørtoft’s argument (which reduces to the standard argument as in 2D turbulence in this case).

Drastic differences with theweakly nonlinear system are particularly evident on the 2D spectra shown in
figure 11.Now that nonlinearity is strong and three-wave resonances are no longer dominant, proposition 1 no

Figure 4.Evolution of the energy, enstrophy and zonostrophywhen the initial spectrum is in the zonal sector andnonlinearity is weak.

Figure 5.Plot showing the ratio of action nk in themeridional sector (semi-action) to that in thewhole of k-spacewhen the initial
spectrum is in the zonal sector and nonlinearity is weak.
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Figure 6.Centroid paths of the energy, enstrophy and zonostrophywhen the initial spectrum is in the zonal sector and nonlinearity is
weak.

Figure 7.Three frames of theψ-spectrum in 2D k-spacewhen the initial spectrum is in the zonal sector and nonlinearity is weak.

Figure 8.Evolution of the energy and enstrophywhen the initial spectrum is in the zonal sector and nonlinearity is strong.
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longer confines turbulence to the zonal sector only. It can be seen that the spectrummoves into themeridional
sector, initially exciting near-meridionalmodeswithwavenumbers close to the sumof the dominant
wavenumbers in the initial Gaussian and its image. Subsequent evolution is characterised by isotropisation of
the spectra.

5.2. Initial spectrum in themeridional sector
Let us nowput the initial spectrum in themeridional sector. Namely, we take the initial spectrum as in (5.1)with

= Î( ) Mk 40, 200 andwith awidth of =*k 8. In our next run the initial amplitudewas chosen as
= ´ -A 1.875 10 4 so as tomake the runweakly nonlinear. The resolutionwas 2562.
Figure 12 shows the evolution of the energy, enstrophy, zonostrophy and semi-action. The energy,

enstrophy and semi-action arewell conserved towithin 3%, 1% and 7% respectively. The zonostrophy is also
conserved initially, but its conservation breaks down rather abruptly in the second half the runtime. This
probably happens when the turbulent spectrum reaches the zonal/meridional boundary at which the
zonostrophy density (4.6) becomes singular, which has a detrimental effect for the conservation conditions.

Figure 13 shows the cascade directions of energy E, enstrophyΩ and semi-actionΦ plotted in terms of the
centroid paths. It can be seen that each invariant cascades in the direction predicted in section 4.3.2.However,Ω
has not reached its designated low-k corner of the zonal sector. Interestingly, to get to this sector the centroid of
Ωhas to cross the region of low-kmeridional scales which is forbidden in a sense that no significant amount ofΩ
can be present in it at any time. But thismeans that the transfer occurs nonlocally—passing directly from the
initial to the destination scales. At intermediate times this would correspond to two spots in the 2D k-spacewith

Figure 9.Plot showing the ratio of action nk in themeridional sector to that in the whole of k-spacewhen the initial spectrum is in the
zonal sector and nonlinearity is strong.

Figure 10.Centroid paths of the energy and enstrophywhen the initial spectrum is in the zonal sector and nonlinearity is strong.
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Figure 11.Three frames of theψ-spectrum in 2D k-spacewhen the initial spectrum is in the zonal sector and nonlinearity is strong.

Figure 12.Evolution of the energy, enstrophy, zonostrophy and semi-actionwhen the initial spectrum is in themeridional sector and
nonlinearity is weak.

Figure 13.Centroid paths of the energy, enstrophy and semi-actionwhen the initial spectrum is in themeridional sector and
nonlinearity is weak.
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significant concentration ofΩ, both of whichwould contribute to the centroid ofΩ placing it somewhere in
between, i.e. inmeridional scales.

Figure 14 shows three frames of theψ-spectrum in 2D k-space at the start, during and at the end of the run.
As described in the previous paragraph, we see signs of nonlocal excitation of turbulence bypassing intermediate
regions of the k-space. The scales excited are actually on theZ/M boundary, which is allowed by Fjørtoft’s
argument (recall that the cascade boundaries are ‘soft’). Evolution of initiallymeridional spectrum toward the
Z/M boundary was previously reported by Saito and Ishioka (2013).

To seewhat happenswhen nonlinearity is increased, we perform a runwith initial amplitude
= ´ -A 1 10 3, andwith the rest of the parameters as before. Figures 15–17 show the evolution of the invariants,

cascade directions and theψ-spectrum respectively. The zonostrophy line has been removed from the evolution
plot as it quickly looses conservation. The energy, enstrophy and semi-action are conserved towithin 3.5%, 1%
and 17% respectively. Aword of caution is due about the 17%conservation of the semi-action, whichmight not
seembad at thefirst sight. Imagine a situationwhen the final spectrum is fully isotropic: thewaveaction loss into
the zonal sector would only be 30% in this case.

Secondly, one has to be cautious interpreting the cascade directions infigure 16which seem to be quite
similar to theweakly nonlinear case. In fact, the spectrum evolution seen infigure 17 is drastically different than
before: the spectrum evolution ismore gradual/local andwith a strong tendency to isotropisation, which is
expected for strongly nonlinear systems. It is this isotropisation that explains themotion of the centroids in
figure 16 (alongwith the usual tendency forE andΩ to go to the large and small kʼs respectively).

Figure 14.Three frames of theψ-spectrum in 2D k-spacewhen the initial spectrum is in themeridional sector and nonlinearity is
weak.

Figure 15.Evolution of the energy, enstrophy and semi-actionwhen the initial spectrum is in themeridional sector and nonlinearity is
strong.
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6. Finite-ρ effects

So farwe have studied the large-scale limit (r  0) for whichwe proved proposition 1 about the forbidden
triads. However, wewould also like to seewhat happenswhen ρ is small butfinite. It turns out that some
+ «Z Z M triads which are forbidden for r  0 start to appear. They containwave vectors close to theZ/M

boundary forwhich the deviation of k ky x from 3 shrinks as r  0. In otherwords, as ρ increases, the angle
containing forbidden triads around theZ/M boundary also increases. See below. Fixing q q= ( )k cos , sin in the
resonant conditions (2.12), in figure 18we plot -k k 3y x for resonant + «Z Z M triads as a function of r2

for three different values of θ.We see that the closer θ is to the boundary, the bigger the angle containing
+ «Z Z M triads.
We have further found that the triads + «M M M and + «M Z Z (and obviously + «M M Z )

forbidden in r  0 limit, continue to be absent forfinite but small ρ.
To check if our numerical results obtained for the large-scale limit are robust when ρ is increased, we

performed simulations of the full CHMequation (2.1)with =F 100 000. For our typicalmodes this
corresponds to rk in the range from0.1 to 0.4, which is not so small for formal validity of the r k 0 limit.We

Figure 16.Centroid paths of the energy, enstrophy and semi-actionwhen the initial spectrum is in themeridional sector and
nonlinearity is strong.

Figure 17.Three frames of theψ-spectrum in 2D k-spacewhen the initial spectrum is in themeridional sector and nonlinearity is
strong.
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use the full CHMequation (2.4) in Fourier spacewith frequency (2.5) and interaction coefficient (2.6). Again, we
considered a set of four cases when the initial spectrumwas in the zonal andmeridional sectors, and alsowhen
the nonlinearity was bothweak and strong. The results of this study are reported in appendix B: they reproduce
all of the qualitative features of the results obtained for the large-scale limit. This demonstrates that, at least
qualitatively, themechanisms discovered for the r  0 limit remain at work for large-scale turbulence
with r k 0.4.

7. Conclusion

For the large-scale limit of the CHMequation, a new quadratic invariant has recently been discovered in Saito
and Ishioka (2013) for weakly nonlinear systems; it is called the semi-actionΦ in the present paper—see (4.7)
and (4.8). Prompted by the fact of its conservation, we have proposed and proven that the following resonant
triads are prohibited, « + « + « +M M M M Z Z Z M Z, , and « +Z M M , whereZ andM are the
zonal andmeridional sets ofmodes defined in proposition 1. This proposition has a drastic consequence for the
weakly nonlinear dynamics of the large-scale CHMsystems: spectrum initially fully concentrated in the zonal
sectorZ cannot ever leave this sector (noM-modes can be excited).

Another additional quadratic invariant of the large-scale CHMequation, known since 1990 (Balk et al 1990,
Nazarenko 1990 andBalk et al 1991)—is zonostropyϒ defined in (3.7) and (4.6). In these papers it was used in a
generalised Fjørtoft’s argument resulting in a triple cascade picture of anisotropic drift/Rossby turbulence. In
the present paper, we have used the newly discovered semi-action invariant to revise Fjørtoft’s argument. The
latter is nowpresented in amodified version for evolving non-dissipative systems assuming that the quadratic
invariants will eventuallymove to scales which are greatly separated from the initial scale k0. If the initial
spectrum is inZ then it remains inZ, but the invariants are transferred among the zonal scales. Namely, the
energy cascades to large zonal kʼs, the enstrophy—to small zonal kʼs, and the zonostrophy—towards the the
Z/M boundary, =k k3y x . If the initial spectrum is inM then energy cascades towards large kʼs, enstrophy—
to small zonal kʼs, and semi-action—to smallmeridional kʼs (by definition, the latter cannot leaveM).

We have tested and confirmed our theoretical predictions numerically. In particular, we have confirmed
conservation of the semi-action and zonostrophy invariant.We also confirmed thatwhen nonlinearity is weak
(three-wave interactions dominate) turbulence which is initially inZ remains inZwith remarkable a 0.6%
accuracy. In this case, it is redistributedwithin the zonal sectorwith the energy, enstrophy and zonostrophy
moving in the 2D k-space as predicted by Fjørtoft’s argument. The 2D spectrumdevelops two distinct
components: themain spot that spreads to zonal scales with smaller kʼs and a smaller spot formingwith large-k
zonal scales near ~ ( )kk 0, y0 (formation of the latter was predicted inNazarenko (1991)).

When nonlinearity is weak and turbulence is initially in M, the spectrum tends tomove towards and
concentrate near theZ/M boundary, =k k3 .y x Such a behaviourwas previously reported in Saito and Ishioka
(2013). The cascade directions appear to be qualitative predictions of Fjørtoft’s argument. Notably, conservation
of the zonostrophy, which holds initially, is suddenly broken downwhen the spectrum reaches theZ/M
boundary onwhich the density of this invariant is singular.

When nonlinearity is increased, as expected, for both zonal andmeridional initial conditions, conservation
of the semi-action and (especially) zonostropy deteriorates. In particular, initially zonal turbulence is no longer

Figure 18.The angle from theZ/M line containing resonant + «Z Z M triads as a function of r2 for q p p= 5 16, 10 31 and
p100 301.
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contained in the zonal sector. Turbulence evolution shows tendency to isotropisation, as expected for strongly
nonlinear CHM, because the linear term is the only source of anisotropy in thismodel. In general, the system
evolves similar to the classical 2D turbulence, butwith reversal of roles of the energy and the enstrophy—they
cascade to the small and large scales respectively in our case.

We have also studied sensitivity of our results to increasing values of ρ, so that formally theCHMsystem is
not in the large-scale limit.We showed that even for small values of ρ, some resonant triads of type « +M Z Z
(but not the other types forbidden in the large-scale limit) exist. They appearwithwavenumbers close to the
Z/M boundary, and the sector inwhich they exist grows as ρ increases. Thus, forfinite but small ρ, ‘leakage’
between theZ andM sectors occurs primarily near theZ/M boundary only. Using direct numerical simulations
of theCHMequation, we have found thatmost of the qualitative and even quantitative features of the large-scale
limit survive for our numerical set-ups up to values r k 0.4.

Acknowledgments

Katie LouiseHarper gratefully acknowledges EPSRCDTA funding of her PhD studies.

AppendixA. Proof of proposition 1

Let = ( )p qk , , >p 0 and w = +( )p p q .2 2 Let us begin bywriting out the frequency resonance condition,
w w w= +1 2, inwhichwe substitute thewavenumber resonance condition, = +k k k1 2:
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It can be seen that =p 01 is the extremum location for both +q p1 1 and -q p1 1 and hence no extrema exist in
the range < <p p0 1 .

16

New J. Phys. 18 (2016) 085008 KLHarper and SVNazarenko



Now let us do the same for q p .2 2 Rewriting (A.4) using = -p p p1 2 gives:
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Rearranging and setting the result to zero, we have:
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fromwhich it can be seen that =p 0,2 so again there are no extrema in the range < <p p0 ,2 which is the same
as < <p p0 .1

Thus, we have proven that q p1 1 and q p2 2 aremonotonic functions in the interval < <p p0 1,2 . Now,
we need tofind outwhether q p1 1 and q p2 2 aremonotonically increasing ormonotonically decreasing
functions of p .1 Todo this wemust compare their values at p 01 and p p.1
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Therefore we can see that q p1 1 aremonotonously decreasing functions and q p2 2 aremonotonously
increasing functions of p1.

Let us denote = >x q p 0. For the right-hand sides of (A.13) and (A.18)we have:
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+q p2 2 is always - 3 (the equal sign is realisedwhen k is on theZ/M boundary, =x 3 .

Let us consider the case >q p 3 , i.e. Î Zk . A graph summarising ourfindings for this case is presented in
figure A1. It can be seen that:
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these inequalitiesmean that Î Zk1 and Î Zk2 . Thus, we have proven parts (3) and (4) of proposition 1.
Let us consider now the case <q p 3 , i.e. Î Mk . A graph summarising ourfindings for this case is

presented infigure A2.We can see that all curves change between the sets «M Z at some points p1 within the
range < <p p0 .1 Weneed to prove that these points coincide for +q p1 1 and +q p2 2 (wewill call it +

*p ) aswell
as for -q p1 1 and -q p2 2 (wewill call it -
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2

as:

- = + +( ) ( )p p p q p q p p p p pq3 3 . A.231 2
2

2
2 2 2

1 2 1
2

Since at the intersection ¹p 01 , we get:

= = + = -+ ( )*p p
p q

p
p q

2 2 3
or

2 2 3
. A.241 2

From this we can see that:

< + < « < ( )p p p
q

p q pif
3

2 3 , A.251

i.e. the intersection exists when Î Mk , as it is the considered case.

Figure A1.Graph summarising the casewhen >q p 3 .
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Now consider intersection:

= - = -+ ( )q p
p q

p p

D
3

1

4
, A.262 2

1

leading to:

+ = + +( ) ( )p p p q p q p p p p pq3 3 A.272 1
2

2
2 2 2

1 2 1
2

and:

= - ( )p
p q

2 2 3
. A.282

Thus, we have proven that this intersection point is the same as (A.24), as required.
Similarly, one proves that intersections =-q p 31 1 and =-q p 32 2 are achieved at the same point

= -
*p p1 given by:

= -- ( )*p
p q

2 2 3
. A.29

But thismeans that k1 and k2 cannot be simultaneously inM, nor they can be simultaneously inZ. Sowe have
proven parts (1) and (2) of the proposition 1.

Appendix B.Numerical results for the caseswhenρ is small butfinite

Let us consider a casewhen the initial spectrum is in the zonal sector. For theweak nonlinearity run, we chose a
resolution of b= = =( ) *kk512 , 20, 65 , 8, 102

0 and = ´ -A 7.5 10 9. Figures B1–B3 show the
conservation and cascade directions of the energy, enstrophy and zonostrophy and theψ-spectrum respectively.

For the strongly nonlinear runwe increased the amplitude to = ´ -A 1 10 7. The numerical plots are
presented infigures B4–B6.

For theweakly nonlinear runwith ameridional initial condition the resolutionwas
b= = =( ) *kk256 , 40, 20 , 8, 102

0 and = ´ -A 1.875 10 8. Figures B7–B9 show the conservation of the
energy, enstrophy, zonostrophy and semi-action, the cascade directions of the energy, enstrophy and semi-
action and the 2Dψ-spectrum respectively.

For the strongly nonlinear run figures B10–B12, we increased the amplitude to = ´ -A 1 10 6 and kept the
remaining parameters the same.

We see a remarkable agreement of the above plots obtained for bothweak and strong initial conditions in
both zonal andmeridional sectors with the respective plots reported in themain text of the large-scale limit
simulations.

Figure A2.Graph summarising the casewhen <q p 3 .
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Figure B1. Evolution of the energy, enstrophy and zonostrophywhen the initial spectrum is in the zonal sector, nonlinearity is weak
and ρ is small butfinite.

Figure B2.Centroid paths of the energy, enstrophy and zonostrophywhen the initial spectrum is in the zonal sector, nonlinearity is
weak and ρ is small butfinite.

Figure B3.Three frames of theψ-spectrum in 2D k-spacewhen the initial spectrum is in the zonal sector, nonlinearity is weak and ρ is
small butfinite.
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Figure B4. Evolution of the energy and enstrophywhen the initial spectrum is in the zonal sector, nonlinearity is strong and ρ is small
but finite.

Figure B5.Centroid paths of the energy and enstrophywhen the initial spectrum is in the zonal sector, nonlinearity is strong and ρ is
small butfinite.

Figure B6.Three frames of theψ-spectrum in 2D k-spacewhen the initial spectrum is in the zonal sector, nonlinearity is strong and ρ
is small butfinite.
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Figure B7. Evolution of the energy, enstrophy, zonostrophy and semi-actionwhen the initial spectrum is in themeridional sector,
nonlinearity is weak and ρ is small butfinite.

Figure B8.Centroid paths of the energy, enstrophy and semi-actionwhen the initial spectrum is in themeridional sector, nonlinearity
is weak and ρ is small butfinite.

Figure B9.Three frames of theψ-spectrum in 2D k-spacewhen the initial spectrum is in themeridional sector, nonlinearity is weak
and ρ is small butfinite.
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Figure B10. Evolution of the energy, enstrophy and semi-actionwhen the initial spectrum is in themeridional sector, nonlinearity is
strong and ρ is small butfinite.

Figure B11.Centroid paths of the energy, enstrophy and semi-actionwhen the initial spectrum is in themeridional sector,
nonlinearity is strong and ρ is small but finite.

Figure B12.Three frames of theψ-spectrum in 2D k-spacewhen the initial spectrum is in themeridional sector, nonlinearity is
strong and ρ is small butfinite.
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