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ON HEEGNER POINTS FOR PRIMES OF ADDITIVE

REDUCTION RAMIFYING IN THE BASE FIELD

DANIEL KOHEN AND ARIEL PACETTI

with an Appendix by Marc Masdeu

Abstract. Let E be a rational elliptic curve, and K be an imaginary quadratic
field. In this article we give a method to construct Heegner points when E has
a prime bigger than 3 of additive reduction ramifying in the field K. The ideas
apply to more general contexts, like constructing Darmon points attached to real
quadratic fields which is presented in the appendix.

Introduction

Heegner points play a crucial role in our nowadays understanding of the Birch and
Swinnerton-Dyer conjecture, and are the only instances where non-torsion points
can be constructed in a systematic way for elliptic curves over totally real fields
(assuming some still unproven modularity hypotheses). Although Heegner points
were heavily studied for many years, most applications work under the so called
“Heegner hypothesis” which gives a sufficient condition for an explicit construction
to hold. In general, if E is an elliptic curve over a number field F and K/F is any
quadratic extension, the following should be true.

Conjecture: If sign(E,K) = −1, then there is a non-trivial Heegner system at-
tached to (E,K).

This is stated as Conjecture 3.16 in [Dar04]. When F = Q, E is an elliptic curve
of square-free conductor N and K is an imaginary quadratic field whose discriminant
is prime to N , the conjecture is proven in Darmon’s book ([Dar04]) using both the
modular curve X0(N) and other Shimura curves. The hypotheses on N and K were
relaxed by Zhang in [Zha01], who proved the conjecture under the assumption that
if a prime p ramifies in K then p2 ∤ N .
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2 DANIEL KOHEN AND ARIEL PACETTI

When the curve is not semistable at some prime p the situation is quite more deli-
cate. An interesting phenomenon is that in this situation, the local root number at p
has no relation with the factorization of p in K. Still the problem has a positive an-
swer in full generality, due to the recent results of [YZZ13], where instead of working
with the classical group Γ0(N), they deal with more general arithmetic groups. The
purpose of this article is to give “explicit” constructions of Heegner points for pairs
(E,K) as above. Here by explicit we mean that we can compute numerically the
theoretical points in the corresponding ring class field, which restricts us to working
only with unramified quaternion algebras (since the modular parametrization is hard
to compute for Shimura curves). For computational simplicity we will also restrict
the base field to the field of rational numbers.

Let χ : K×\K×
A → C× be a finite order anticyclotomic Hecke character, and η be

the character corresponding to the quadratic extension K/Q. In order to construct
a Heegner point attached to χ in a matrix algebra, for each prime number p the
following condition must hold

ǫ(πp, χp) = χp(−1)ηp(−1),

where π is the automorphic representation attached to E, and ǫ(πp, χp) is the local
root number of L(s, π, χ) (see [YZZ13, Section 1.3.2]). If we impose the extra con-
dition gcd(cond(χ), N cond(η)) = 1, then at primes dividing the conductor of E/K
the equation becomes

εp(E/K) = ηp(−1),

where εp(E/K) is the local root number at p of the base change of E to K (it is equal
to εp(E)εp(E ⊗ η)). This root number is easy to compute if p 6= 2, 3 (see [Pac13]):

• If p is unramified in K, then ηp(−1) = 1 and

εp(E/K) =



















1 if vp(N) = 0,
(

p
disc(K)

)

if vp(N) = 1,

1 if vp(N) = 2,

where vp(N) denotes the valuation of N at p.



RAMIFIED HEEGNER POINTS 3

• If p is ramified in K then ηp(−1) =
(

−1
p

)

and

εp(E/K) =

(−1

p

)

·







































1 if vp(N) = 0,

εp(E) if vp(N) = 1,

εp(Ep) if vp(NEp
) = 1,

1 if E is P.S.,

−1 if E is S.C.,

where Ep denotes the quadratic twist of E by the unique quadratic extension
of Q unramified outside p; E is P.S. if the attached automorphic representa-
tion is a ramified principal series (which is equivalent to the condition that E
acquires good reduction over an abelian extension of Qp) and E is S.C. if the
attached automorphic representation is supercuspidal at p (which is equiv-
alent to the condition that E acquires good reduction over a non-abelian
extension).

Let E/Q be an elliptic curve. We call it Steinberg at a prime p if E has multi-
plicative reduction at p (and denote it by St.). In Table 1 we summarize the above
equations for p 6= 2, 3, where the sign corresponds to the product εp(E/K)ηp(−1).

p is inert p splits p ramifies

St −1 1 εp(E)

St ⊗χp 1 1 εp(Ep)

P.S. 1 1 1

Sc. 1 1 −1
Table 1. Signs Table

Our goal is to give an explicit construction in all cases where the local sign of
Table 1 equals +1. The cells colored in light grey correspond to the classical con-
struction, and the ones colored with dark grey are considered in the article [KP15].
In the present article we will consider the following cases:

• E has additive but potentially multiplicative reduction, and εp(Ep) = +1.
• E has additive but potentially good reduction over an abelian extension.

Remark. The situation for p = 2 and p = 3 is more delicate, although most cases
can be solved with the same ideas. For the rest of this article we assume p > 3.

The strategy is to build an abelian variety related to E/K (in general of dimension
greater than 1) and use a classical Heegner construction on such variety so that we
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can transfer the Heegner points back to our original elliptic curve. To clarify the
exposition, we start assuming that there is only one prime p ramifying in K where
our curve has additive reduction, and every other prime q dividing N is split in K.
The geometric object we consider is the following:

• If E has potentially multiplicative reduction, we consider the elliptic curve Ep
of conductor N/p which is the quadratic twist of E by the unique quadratic
character ramified only at p.

• If E has potentially good reduction over an abelian extension, then we con-
sider an abelian surface of conductor N/p, which is attached to a pair (g, ḡ),
where g is the newform of level N/p corresponding to a twist of the weight 2
modular form Ef attached to E.

In both cases the classical Heegner hypothesis is satisfied (eventually for dimension
greater than one), and the resulting abelian varieties are isogenous to our curve or
to a product of the curve with itself over some field extension. Such isogeny is the
key to relate the classical construction to the new cases considered. Each case has a
different construction/proof (so they will be treated separately), but both follow the
same idea. In all cases considered we will construct points on (E(Hc)⊗ C)χ. These
points will be non-torsion if an only if L′(E/K, χ, 1) 6= 0 as expected by the results
of Gross-Zagier [GZ86] and Zhang [Zha01].

Our construction is interesting on its own, and can be used to move from a delicate
situation to a not so bad one (reducing the conductor of the curve at the cost of
adding a character in some cases). So, despite we focus on classical modular curves,
the methods of this article can be easily applied to a wide variety of contexts, for
example more general Shimura curves.

In recent years, following a breakthrough idea of Darmon there has been a lot of
work in the direction of defining and computing p-adic Darmon points, which are
points defined over certain ring class fields of real quadratic extensions using p-adic
methods. For references to this circle of ideas the reader can consult [Dar04], [Dar01],
[BD09], [BD07]. These construction are mostly conjectural (but see [BD09]), and
there has been a lot of effort to explicitly compute p-adic approximations to these
points in order to gather numerical evidence supporting these conjectures. The
interested reader might consult [DP06], [Gre09], [GM15], [GMŞ15], [GMŞ16].

In order to illustrate the decoupling of our techniques from the algebraic origin of
the points, in an appendix by Marc Masdeu it is shown how these can be applied to
the computation of p-adic Darmon points.

The article is organized as follows: in the first section we treat the case of a curve
having potentially multiplicative reduction, and prove the main result in such case.
In the second section we prove our main result in the case that we have potentially
good reduction over an abelian extension. In the third section, we explain how to
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extend the result to general conductors and in the fourth section we finish the article
with some explicit examples in the modular curves setting, including Cartan non-split
curves, as in [KP15]. Lastly, we include the aforementioned appendix.

Acknowledgments: We would like to thank Henri Darmon for many comments
and suggestions regarding the present article and Marc Masdeu for his great help
and contributions to this project. We would also like to thank the Special Semester
“Computational aspects of the Langlands program” held at ICERM for providing a
great atmosphere for working on this subject. Finally, we would like to thank the
referee for the useful remarks.

1. The potentially multiplicative case

Let E/Q be an elliptic curve of conductor p2 · m where p is an odd prime and
gcd(p,m) = 1. Suppose that E has potentially multiplicative reduction at the prime
p. Let K be any imaginary quadratic field satisfying the Heegner hypothesis at all

the primes dividing m and such that p is ramified in K. Let p∗ =
(

−1
p

)

p and let

Ep be the quadratic twist of E by Q(
√
p∗). We have an isomorphism φ : Ep → E

defined over Q(
√
p∗). The elliptic curve Ep has conductor p ·m and sign(E,K) =

sign(Ep, K)εp(Ep).
Recall that to have explicit constructions, we need to work with a matrix algebra so

we impose the condition εp(Ep) = 1 (see Table 1). Then, sign(E,K) = sign(Ep, K) =
−1 and the pair (Ep, K) satisfies the Heegner condition. Therefore, we can find
Heegner points on Ep and map them to E via φ. More precisely, let c be a positive
integer relatively prime to N ·disc(K) and let Hc be the ring class field associated to
the order of conductor c in the ring of integers of K. Let χ : Gal(Hc/K) → C× be
any character and let χp be the quadratic character associated to Q(

√
p∗) via class

field theory. Take a Heegner point Pc ∈ Ep(Hc) and consider the point

P χχp

c =
∑

σ∈Gal(Hc/K)

χ̄χ̄p(σ)P
σ
c ∈ (Ep(Hc)⊗ C)χχp.

Theorem 1.1. The point φ(P
χχp
c ) belongs to (E(Hc)⊗ C)χ and it is non-torsion if

and only if L′(E/K, χ, 1) 6= 0.

Proof. The key point is that since p | disc(K), Q(
√
p∗) ⊂ Hc (by genus theory). For

σ ∈ Gal(Q̄/Q), we have φσ = χp(σ)φ, hence,

φ(P χχp

c ) =
∑

σ

χ̄(σ)φ(Pc)
σ ∈ (E(Hc)⊗ C)χ.



6 DANIEL KOHEN AND ARIEL PACETTI

Finally note that by the Theorems of Gross-Zagier [GZ86] and Zhang [Zha01] the
point P

χχp
c is non-torsion if and only if L′(Ep/K, χχp, 1) = L′(E/K, χ, 1) 6= 0. Since

φ is an isomorphism the result follows.
�

2. The potentially good case (over an abelian extension)

Let E/Q be an elliptic curve of conductor p2 · m where p is an odd prime and
gcd(p,m) = 1. For simplicity assume that E does not have complex multiplication.
We recall some generalities on elliptic curves with additive but potentially good re-
duction over an abelian extension. Although such results can be stated and explained
using the theory of elliptic curves, we believe that a representation theoretical ap-
proach is more general and clear. Let fE denote the weight 2 newform corresponding
to E.

Let W (Qp) be the Weil group of Qp, and ω1 be the unramified quasi-character
giving the action of W (Qp) on the roots of unity. Using the normalization given by
Carayol ([Car86]), at the prime p the Weil-Deligne representation corresponds to a
principal series representation on the automorphic side and to a representation

ρp(f) = ψ ⊕ ψ−1ω−1
1 ,

on the Galois side for some quasi-character ψ : W (Qp)
ab → C×. Note that since the

trace lies in Q, ψ satisfies a quadratic relation, hence its image lies in a quadratic
field contained in a cyclotomic extension (since ψ has finite order). This gives the
following possibilities for the order of inertia of ψ: 1, 2, 3, 4 or 6.

• Clearly ψ cannot have order 1 (since otherwise the representation is unrami-
fied at p).

• If ψ has order 2, ψ must be the (unique) quadratic character ramified at
p. Then E is the twist of an unramified principal series, i.e., Ep has good
reduction at p.

• If ψ has order 3, 4 or 6, there exists a newform g ∈ S2(Γ0(p ·m), ε), where
ε = ψ−2, such that fE = g ⊗ ψ. In particular ε has always order 2 or 3.

In the last case, the form has inner twists, since the Fourier coefficients satisfy that
ap = apε

−1(p) (see for example [Rib77, Proposition 3.2]).

Remark 2.1. The newform g can be taken to be the same for E and Ep.

2.1. The case ψ has order 2. This case is very similar to the one treated in the
previous section. The curve Ep has good reduction at p, and is isomorphic via φ to E.
It is quite easy to see that under these conditions sign(E,K) = sign(Ep, K) = −1.
Exactly as before we can construct Heegner points on Ep and transfer them to E.
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2.2. The case ψ has order 3, 4 or 6. Let d be the order of ψ. Let g ∈ S2(Γ0(p ·m), ε)
as before. Suppose its q-expansion at the infinity cusp is given by g =

∑

anq
n. Fol-

lowing [Rib04], we define the coefficient field Kg := Q({an}).
Remark 2.2. Kg is an imaginary quadratic field generated by the values of ψ. It is
equal to Q(i) if d = 4 and to Q(

√
−3) if d = 3 or d = 6.

There is an abelian variety Ag defined over Q attached to g via the Eichler-Shimura
construction, with an action of Kg on it, i.e. there is an embedding θ : Kg →֒
(EndQ(Ag)⊗Q). The variety Ag can be defined as the quotient J1(p ·m)/IgJ1(p ·m)
where Ig is the annihilator of g under the Hecke algebra acting on the Jacobian.
Moreover, the L-series of Ag satisfies the relation

L(Ag/Q, s) = L(g, s)L(g, s).

The variety Ag has dimension [Kg : Q] = 2 and is Q-simple. However, it is not
absolutely simple. The variety Ag is isogenous over Q to the square of an elliptic
curve (called a building block for Ag, see [GL01] for the general theory).

Under our hypotheses we have an explicit description. Let L = Q
ker(ε)

(which is
the splitting field of Ag). It is a cubic extension if d = 3, 6 (and in particular p ≡ 1
(mod 3)) and the quadratic extension Q(

√
p) if d = 4 (which implies p ≡ 1 (mod 4)).

Let M be the extension Q
ker(ψ)

.

Proposition 2.3. • There exists an elliptic curve Ẽ/L and an isogeny, defined

over L, ω : Ag → Ẽ2. Furthermore, if d = 3 (resp. d = 6) Ẽ = E (resp.

Ẽ = Ep) while if d = 4, Ẽ is the quadratic twist of E/Q(
√
p) by the unique

quadratic extension unramified outside p.
• In any case, there exists an isogeny ϕ : Ag → E2 defined over M .

Proof. Ag ≃ E2 over M because (on the representation side) the twist becomes
trivial while restricted to M , so the L-series of Ag becomes the square of that of E
(over such field) and by Falting’s isogeny Theorem there exists an isogeny (defined
over M). If d = 3, ε = ψ2 and M = L, while if d = 6, starting with Ep (whose
character has order 3) gives the result. If d = 4, it is clear (on the representation

side) that L(Ag, s) = L(Ẽ, s) over L, where Ẽ is the twist of E (while looked over
Q̄ker(ε) = Q(

√
p)) by the quadratic character ψ2. Then Falting’s isogeny Theorem

proves the claim. �

Proposition 2.4. Let σ ∈ Gal(Q̄/Q). Then ϕσ : Ag → E2 is equal to ϕκ(σ|M),
where κ is some character of Gal(M/Q) of order [M : Q].

Proof. Since ϕ and ϕσ are isogenies of the same degree there exists an element aσ ∈
End(Ag)⊗Q = Kg of norm 1 such that ϕσ = ϕaσ. The map κ(−|M) : Gal(Q̄/Q) →
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K×
g , given by sending κ(σ|M) 7→ aσ is a character, since the endomorphism aσ is

defined over Q. Clearly κ has the predicted order since otherwise the isogeny ϕ
could be defined over a smaller extension (given by the fixed field of its kernel),
which is not possible. �

In order to explicitly compute Heegner points it is crucial to have a better under-
standing of the isogenies ω and ϕ. Let us recall some basic properties of Atkin-Li
operators for modular forms with nebentypus, as explained in [AL78]. Let N be a
positive integer, and let P | N be such that gcd(P,N/P ) = 1. Let N ′ = N

P
and de-

compose ε = εPεN ′ , where each character is supported in the set of primes dividing
the sub-index.

Theorem 2.5. Assuming the previous hypotheses, there exists an operator WP :
S2(Γ0(N), ε) → S2(Γ0(N), εP εN ′) which satisfies the following properties:

• W 2
P = εP (−1)εN ′(P ).

• If g is an eigenvector for Tq for some prime q ∤ N with eigenvalue aq, then
Wp(g) is an eigenvector for Tq with eigenvalue εP (q)aq.

• If g ∈ S2(Γ0(N), ε) is a newform, then there exists another newform h ∈
S2(Γ0(N), εP εN) and a constant λP (g) such that WP (g) = λP (g)h.

• The number λP (g) is an algebraic number of absolute value 1. Furthermore,

if aP , the P -th Fourier coefficient of the newform g, is non-zero then

λP (g) = G(εP )/aP ,

where G(χ) denotes the Gauss sum of the character χ.

The number λP (g) is called the pseudo-eigenvalue of WP at g.

Proof. See [AL78, Propositions 1.1, 1.2, and Theorems 1.1 and 2.1]. �

In our setting N = p · m, P = p, εN ′ is trivial, and Wp is an involution (i.e.
W 2
p = 1) acting on the differential forms of Ag.
If η is an endomorphism of J(Γ1(N)) (or one of its quotients), we denote η∗

the pullback it induces on the differential forms. Given an integer u let αu be the
endomorphism of J(Γ1(N)) corresponding to the action of the matrix

(

1 u/p
0 1

)

on
differential forms. Such endomorphism is defined over the cyclotomic field of p-th
roots of unity.

Let τ ∈ Gal(Kg/Q) denote complex conjugation. Recall that τaq = aqε
−1(q) for

all positive integers q prime to p ·m. Following [Rib80] we define

ητ =
∑

u (mod p)

ε(u)αu.

Since ε(u) ∈ OKg
, via the map θ we think of ητ as an element in EndL(Ag). To

normalize ητ we follow [GL01]. Let ap ∈ Kg be the p-th Fourier coefficient of g.
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Lemma 2.6. The element ap has norm p.

Proof. Looking at the curve E over Qp, the coefficient ap is one of the roots of the
characteristic polynomial attached to the Frobenius element in the minimal (totally
ramified) extension where E acquires good reduction (see for example Section 3 of
[DD11]). Since the norm of the local uniformizer in such extension is p (because the
extension ramifies completely) the result follows. �

We then consider the normalized endomorphism ητ
ap
.

Remark 2.7. Our choice is a particular case of the one considered in [GL01], since
our normalization corresponds to the splitting map β : Gal(Kg/Q) → K×

g given by
β(τ) = ap.

Theorem 2.8. The operator Wp coincides with
(

ητ
ap

)∗
.

Proof. It is enough to see how it acts on the basis {g, g} of differential forms of Ag.
By Theorem 2.5 (since ap is non-zero), Wp(g) = λpg, where λp = G(ε)/ap. On the

other hand, ητ (f) = G(ε)f , by [GL01, Lemma 2.1]. Exactly the same argument

applies to g, using the fact that G(ε) = G(ε), since ε is an even character. �

Corollary 2.9. The Atkin-Li operator Wp is defined over L, i.e. it corresponds to an

element in EndL(Ag)⊗Q. Its action decomposes as a direct sum of two 1-dimensional

spaces.

Let
ω : Ag → (Wp + 1)Ag × (Wp − 1)Ag.

Then both terms are 1-dimensional, and the isogeny ω gives a splitting as in Propo-
sition 2.3.

Remark 2.10. The explicit map ω satisfies the first statement of Proposition 2.3. In
order to get the second statement we need to eventually compose it the isomorphism
between Ẽ and E. Recall that E = Ẽ if d = 3 and Ẽ is a quadratic twist of it
otherwise, so in any case the isomorphism is easily computed.

2.3. Heegner points. This section follows Section 4 of [DRZ12], so we suggest
the reader to look at it first. Keeping the notations of the previous sections, let
ε : (Z/p)× → C× be a Dirichlet character. Extend the character to (Z/p ·m)× by
composing with the canonical projection (Z/p ·m)× → (Z/p)× and define

Γε0(p ·m) := {( a bc d ) ∈ Γ0(p ·m) : ε(a) = 1} .
Let Xε

0(p ·m) be the modular curve obtained as the quotient of the extended upper
half plane H∗ by this group. This modular curve has a model defined over Q and it
coarsely represents the moduli problem of parameterizing quadruples (E,Q,C, [s])
where
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• E is an elliptic curve over C,
• Q is a point of order m on E(C),
• C is a cyclic subgroup of E(C) of order p,
• [s] is an orbit in C \ {0} under the action of ker(ε) ⊂ (Z/p)×.

Remark 2.11. There is a canonical map Φ : Xε
0(p · m) → X0(p · m) which is the

forgetful map in the moduli interpretation. This map has degree ord(ε).

As in the classical case, there exists a modular parametrization

Xε
0(p ·m)

Φ
��

Ψ
//

Ψg

33Jac(Xε
0(p ·m))

π
// Ag

X0(p ·m)

55

where Ψ(P ) = (P )− (∞) (the usual immersion of the curve in its Jacobian) and π
is the Eichler-Shimura projection onto Ag. These maps are defined over Q, as the
cusp ∞ is rational. Our strategy is to construct Heegner points on Xε

0(p · m) and
push them through the modular parametrization Ψg to the abelian variety Ag and
finally project them onto the elliptic curve E. To construct points on Xε

0(p ·m), we
consider the canonical map

Φ : Xε
0(p ·m) → X0(p ·m),

and look at preimages of classical Heegner points on X0(p ·m).
Since the conductor p · m satisfies the classical Heegner hypothesis with respect

to K there is a cyclic ideal n of norm p · m. Let c be a positive integer such that
gcd(c, p ·m) = 1. Then, a classical Heegner point on X0(p ·m) corresponds to a triple
Pa = (Oc, n, [a]) ∈ X0(p ·m)(Hc), where [a] ∈ Pic(Oc). Such point is represented by
the elliptic curve Ea = C/a and its n torsion points Ea[n] (which are isomorphic to
(an−1/a)) are defined over Hc.

The action of Gal(Q/Hc) on Ea[n] gives a map Gal(Q/Hc) → (an−1/a)×. Com-
posing such map with the character ε gives

ρ : Gal(Q/Hc) → (an−1/a)×
ε→ C×.

Its kernel corresponds to an extension H̃c of degree ord(ε) of Hc. Let H̃c = HcM .

Proposition 2.12. The ord(ε) points Φ−1(Pa) lie in X
ε
0(p ·m)(H̃c) and are permuted

under the action of Gal(H̃c/Hc).

Proof. By complex multiplication H̃c lies in the composition of Hc and the ray class
field Kp, where p is the unique prime of K dividing p. The composition HcKp equals
Hc(ξp), where ξp is a p-th root of unity. Note that Q(

√
p∗) ⊂ Hc and the extension
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Hc/K is unramified at p. Therefore, the unique extension of degree ord(ε) of Hc

lying inside H(ξp) is given by HcQ̄
ker(ψ) = HcM . �

Using the aforementioned moduli interpretation, points on Xε
0(p · m) represent

quadruples (Oc, n, [a] , [t]) where [t] is an orbit under ker(ε) inside (Oc/(n/p))
×.

Remark 2.13. Let σ ∈ Gal(H̃c/K). Its action on Heegner points is given by

σ · (Oc, n, [a], [t]) = (Oc, n, [ab
−1], [dt]),

where σ |Hc
= Frobb, and d = ρ(σ) ∈ Oc/(n/p)

×.

2.4. Zhang’s formula.

Theorem 2.14 (Tian-Yuan-Zhang-Zhang). Let K be an imaginary quadratic field

satisfying the Heegner hypothesis for p · m and let χ̃ : A×
K → C× be a finite order

Hecke character such that χ̃ |A×
Q
= ε−1. Then L(g, χ̃, s) vanishes at odd order at s = 1.

Moreover, if such order equals 1, (Ag(H̃c))⊗ C))χ̃ has rank one over Kg ⊗ C.

More precisely, consider the Heegner point ([a] , n, 1) ∈ Xε
0(p ·m)(H̃c) and denote

by Pc its image under the modular parametrization Ψg. Then

P χ̃ =
∑

σ∈Gal(H̃c/K)

¯̃χ(σ)P σ
c ∈ (Ag(H̃c)⊗ C)χ̃

generates a rank one subgroup over Kg ⊗ C.

Proof. See [TZ03, Theorem 4.3.1], [Zha10], and [YZZ13, Theorem 1.4.1]. �

Let c be a positive integer relatively prime to disc(K) · p ·m, and let χ be a ring

class character of Gal(Hc/K). Since κ̄2 = ε±1, the character χ̃ : Gal(H̃c/K) → C×

given by χ̃ = χκ̄ satisfies the hypothesis of Theorem 2.14 (for either g or its conjugate
ḡ). Summing up, we get the following theorem:

Theorem 2.15. The point ϕ(P χκ̄) belongs to (E2(Hc ⊗ C))χ. In addition, it is

non-torsion if and only if L′(E/K, χ, 1) 6= 0.

Proof. By definition and Proposition 2.4.

ϕ(P χκ̄) =
∑

σ∈Gal(H̃c/K)

χ̄(σ)ϕ(κ(σ)P σ) =
∑

σ∈Gal(H̃c/K)

χ̄(σ)ϕ(P )σ,

so it lies in the right space. Since ord(κ) = ord(ψ) and κ̄2 = ε±1 we get κ̄ = ψ±1.
We know that g ⊗ ψ = ḡ ⊗ ψ−1 = fE, therefore, using g or ḡ, we obtain L(g, χ̃, s) =
L(E, χ, s). Theorem 2.14 and the previous result imply that ϕ(P χκ̄) ∈ (E2(Hc⊗C))χ

is non-torsion if and only if L′(E/K, χ, 1) 6= 0. �

Once we construct a non-torsion point on E × E we can project it to some coor-
dinate in order to obtain a non-torsion point on E.
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2.5. Heegner systems. As in the classical case, the family of Heegner points con-
structed using different orders satisfy certain compatibilities.

Proposition 2.16. Let ℓ be a prime such that ℓ ∤ N and ℓ is inert in K. Then for

every Heegner point Pcℓ ∈ Ag(H̃cℓ) there exists a Heegner point Pc ∈ Ag(H̃c) with

(1) TrH̃cℓ/H̃c
Pcℓ = θ(aℓ)Pc,

where aℓ is the ℓ-th Fourier coefficient of g.

Proof. The proof mimics the classical case one (see [Gro91, Proposition 3.7]). �

To construct a point on E, we first apply the isogeny ϕ to a point in Ag and then
project onto one of the coordinates (call πi the projection to the i-th coordinate).
But Kg does not act on E! To overcome this problem, we restrict to primes ℓ which
split completely in L. Let Qc := πi(TrH̃c/Hc

ϕ(Pc)) ∈ E(Hc).

Proposition 2.17. Let ℓ be a prime such that ℓ ∤ N , ℓ is inert in K and ℓ splits

completely in L. Then for every Heegner point Qcℓ ∈ E(Hcℓ) there exists a Heegner

point Qc ∈ E(Hc) such that

TrHcℓ/Hc
Qcℓ = aℓQc.

Proof. Applying πi(TrH̃c/Hc
ϕ) to equation (1), since ϕ commutes with the trace and

aℓ ∈ Q (because ℓ splits completely in L) we get

πi(TrH̃c/Hc
TrH̃cℓ/H̃c

ϕ(Pcℓ)) = aℓQc.

Also
πi(TrH̃c/Hc

TrH̃cℓ/H̃c
ϕ(Pcℓ)) = πi(TrHcℓ/Hc

TrH̃cℓ/Hcℓ
ϕ(Pcℓ)),

but since πi is defined over Q, this expression equals TrHcℓ/Hc
Qcℓ as claimed. �

The previous results are enough for proving a Kolyvagin-type theorem.

Theorem 2.18 (Kolyvagin, Bertolini-Darmon). If πi(ϕ(P
χκ̄)) is non-torsion, then

dimC(E(Hc))
χ = 1.

Proof. The proof is very similar to the one given in [BD90] (Theorem 2.2) with the
following remarks (using their notation and terminology): any p-descent prime is
automatically unramified in L hence K(E[p]) and L are disjoint. We also require
special rational primes ℓ to split completely in L/Q. Recall that L is totally real,
hence such condition is compatible with the other ones and special primes do exist.
The first assertion of Proposition 3.2 in [BD90] is exactly our Proposition 2.17,
and the second one follows from [Gro91] (proof of Proposition 3.7). With these
modifications, the proof of [BD90] holds. �
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3. General case

While considering the case of many primes ramifying in K, it is clear that the po-
tentially multiplicative case works similarly. Some extra difficulties arise in the other
cases. To make the exposition/notation easier, we start considering the following
two cases:
Case 1: Suppose that the conductor of E equals p21 · · · p2r ·m where:

• E has potentially good reduction at all pi’s over an abelian extension,
• all characters ψpi have the same order,
• all pi’s are ramified in K,
• m satisfies the classical Heegner hypothesis.

Let P =
∏r

i=1 pi. There are 2
r newforms of level P ·m which are twists of f (obtained,

following the previous section notation, by twisting fE by all possible combinations
of {ψpi, ψpi}). Working with all of them implies considering an abelian variety of
dimension 2r, but the coefficient field has degree 2 so such variety is not simple over
Q.

Instead, take “any” newform g ∈ S2(Γ0(P ·m), ε), and consider the abelian surface
Ag attached to it by Eichler-Shimura. The only Atkin-Li operator acting on (the
space of holomorphic differentials of) such variety is the operator WP , which again is
an involution, so we can split the space in the ±1 part and proceed as in the previous
case considered (where the splitting map is determined by β(τ) =

∏r
i=1 api).

The ambiguity on the choice of g is due to the following: the operators Wpi act
transitively on the set of all newforms g. In particular they “permute” the different
abelian surfaces (note that such operators are not involutions, but have eigenvalues
in the coefficient field Kg which is independent of g). Although surfaces attached to
different choices of g are in general not isomorphic (the traces of the Galois repre-
sentations are different), they become isomorphic over M hence all of them give the
same Heegner points construction.

Case 2: Suppose the conductor of E equals p2 · q2 ·m, where

• E has potentially good reduction at p and q over an abelian extension,
• the order of ψp equals 4 and that of ψq equals 3,
• both p and q ramify in K,
• m satisfies the classical Heegner hypothesis.

With such assumptions the coefficient field Kg equals Q(
√
−1,

√
−3). Let g ∈

S2(Γ0(pqm), ε) be any twist of f , obtained by choosing local characters ψp at p
and ψq at q (so ε = ψ2

pψ
2
q ). By Eichler-Shimura there exists a 4 dimensional abelian

variety Ag defined over Q (attached to g) and an embedding Kg →֒ End(Ag) ⊗ Q.
The Atkin-Li operators Wp and Wq do act on the differential forms of Ag although
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not necessarily as involutions. Since their eigenvalues lie in Kg, we can diagonalize
them.

Let σi denote the Galois automorphism of Kg which fixes
√
−3 and σ√−3 be the

one fixing
√
−1 (so their composition is complex conjugation). We have the following

analogue of Theorem 2.8.

Theorem 3.1. With the previous notations:

(1) the operator Wp coincides with
(

ησi
ap

)∗
,

(2) the operator Wq coincides with
(

ησ√−3

aq

)∗
,

(3) the operator Wpq coincides with
(

ησiσ√−3

apaq

)∗
.

Proof. The proof mimics that of Theorem 2.8. Consider the basis of differential forms
given by {g, g, h, h}, where h ∈ S2(pqm, εpεq) equals σi(g). By Theorem 2.5:

Wp g =
G(εp)

ap
h, Wp g =

G(εp)

ap
h, Wp h =

G(εp)

ap
g, Wp h =

G(εp)

ap
g.

A splitting map is given by

β(σi) = ap, β(σ√−3) = aq, β(σiσ√−3) = apaqψp(q)ψq(p),(2)

By [GL01, Lemma 2.1] we have
(

ησi
ap

)∗

g =
G(εp)

ap
h,

(

ησi
ap

)∗

g =
G(εp)

ap
h,

(

ησi
ap

)∗

h =
G(εp)

ap
g,

(

ησi
ap

)∗

h =
G(εp)

ap
g.

The same computations proves the second statement, and the last one follows from
the fact that if χ, χ′ are two characters of conductors N and N ′ with (N : N ′) = 1,
then

(3) G(χ · χ′) = χ(N ′)χ′(N)G(χ)G(χ′).

�

Then we can split Ag into four pieces over M as in the previous section.

Although we considered only two particular cases, the general construction follows
easily from them. Just split the primes into three sets: the ones with potentially
multiplicative reduction, the ones with potentially good reduction with characters of
order 4 and the ones with potentially good reduction with characters of order 3 or
6. Treat each set as in Case 1, and use Case 2 to mix them. Note that in any case
the abelian surface Ag has dimension 1, 2 or 4.
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4. Examples

In this section we show some examples of our construction, which were done using
[GP 14]. The potentially multiplicative case is straightforward since we only have to
find the corresponding quadratic twist and then construct classical Heegner points.
The potentially good case is a little more involved. We consider the following two
cases:
• The case where ord(ψp) = 2 works exactly the same as the previous one, since we
only have to find the quadratic twist.
• In the case ord(ψp) = 3, 4 or 6 we start by applying Dokchitser’s algorithm [DD11]
(see also the appendix in [KP15]) to find ψp as well as the corresponding Fourier
coefficient ap (which give the q-expansion of g). We compute Ag using the Abel-
Jacobi map, and then we split it following Section 2.2.

Each factor is isomorphic to E over M . To find the isomorphism explicitly, we
compare the lattices of E and the one computed and find one α ∈ M sending one
lattice to the other.

N E St Ps K ord(ψp) ap τ P

52 · 29 .a1 {5, 29} ∅ Q(
√
−5) 45+

√
−45

145
[8, 8]

52 · 23 .e1 {23} {5} Q(
√
−5) 4 2− i 15+

√
−5

5·23 [−1637
26

, −28−3·52·127
√
−5

29
]

22 · 72 .b2 ∅ {7} Q(
√
−7) 3 −5+

√
−3

2
21+

√
−7

7·23 [−139
4
, 581

√
−7

8
]

2 · 32 · 72 .a1 {2} {7} Q(
√
−7) 3 −1+3

√
−3

2
21+

√
−7

28
[39, 15]

52 · 72 .d2 ∅ {5} Q(
√
−35) 4 1− 2i −35+

√
−35

70
[−15, 15+175

√
−35

2
]

{7} 3 1−3
√
−3

2

Table 2. Examples of ramified primes

The computations are summarized in Table 2. The table is organized as follows:
the first two columns contain the curve conductor and its label (following [LMF13]
notation). The next two columns list the principal series and the Steinberg primes
of the curve (following [Pac13] algorithm). The fifth column contains the imaginary
quadratic field. For the computations we just considered the whole ring of integers.
The sixth and seventh columns contain the order of the character and the number
ap for the principal series primes ramifying in K. Finally the last two columns show
the Heegner points considered in the upper-half plane and the point constructed in
E(K).

Some remarks regarding the examples considered:

• The first example corresponds to a potentially multiplicative case. The class
number of OK is 2 and H = Q(

√
5, i). If χ5 denotes the non-trivial char-

acter of the class group, we can trace with respect to it and get the point

[9, −9+15
√
5

2
] ∈ E(H)χ5.

http://www.lmfdb.org/EllipticCurve/Q/725.a1
http://www.lmfdb.org/EllipticCurve/Q/575.e1
http://www.lmfdb.org/EllipticCurve/Q/196.b2
http://www.lmfdb.org/EllipticCurve/Q/882.a1
http://www.lmfdb.org/EllipticCurve/Q/1225.d2
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• The second and third examples correspond to elliptic curves with only one
potentially good reduction prime ramifying in K. The former has ord(ε) = 2
while the latter has ord(ε) = 3

• The fourth example is quite interesting, since the prime 2 splits in K (so we
use an Eichler order at 2), the prime 3 is inert in K (so we use a Cartan
order at 3), and the prime 7 is ramified in K. This is a mixed case of the
Cartan-Heegner hypothesis (as in [KP15]) and the present one. We compute
the q-expansion of g (as explained in the aforementioned article) as a form in
S2(Γ0(2 · 72) ∩ Γns(3)) and then twist by the character ψ7 (of order 3) to get
a form in S2(Γ

ε
0(2 · 7) ∩ Γns(3)). The results of Section 2.2 apply to give the

corresponding splitting.
• The last example corresponds to an elliptic curve with two primes of po-
tentially good reduction ramifying in K, hence the coefficient field is Kg =
Q(

√
−1,

√
−3).

Appendix A. Computation of a Darmon point (by Marc Masdeu)

Let E denote the elliptic curve [LMF13, 147.c2], of conductor 3 · 72 which has
potentially good reduction over an abelian extension at the prime 7. Let K =
Q(

√
35), which has class number 2. The prime 3 is inert in K, while 7 ramifies. It

is easy to see that sign(E,K) = −1.
Let p = 3 and consider the Dirichlet character χ of conductor 7 which maps

3 ∈ (Z/7Z)× to ζ6 = eπi/3. Let Γ denote the group

Γ = Γχ0 (7)[1/3] =
{

( a bc d ) ∈ SL2 (Z [1/3]) | c ∈ 7Z[1/3], χ(a) = 1
}

.

In the page http://github.com/mmasdeu/ there is code available to make com-
putations with such groups.

There is a 2-dimensional irreducible component in the plus-part of H1(Γχ0 (21),Z),
which corresponds to the abelian surface Ag. Let {g1, g2} be an integral basis of this
subspace, normalized such that its basis vectors are not multiples of other integral
vectors. Following the constructions of [GMŞ15] with the non-standard arithmetic
groups, each of these vectors yield a cohomology class

ϕ
(i)
E ∈ H1(Γ,Ω1

H3
), i = 1, 2.

Here H3 denotes the 3-adic upper half-plane and Ω1
H3

is the module of rigid-analytic
differentials with 3-adically bounded residues.

The ring of integers OK of K embeds into M2(Z) via

√
35 7→ ψ(

√
35) =

(

15 10

−19 −15

)

.

http://www.lmfdb.org/EllipticCurve/Q/147.c2
http://github.com/mmasdeu/
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The fundamental unit of K is uK =
√
5 + 6, which is mapped to the matrix

ψ(uK) =

(

21 10

−19 −9

)

.

In order to obtain an element of Γχ0 (7) we need to consider u14K , which maps to

γK = ψ(uK)
14 =

(

−3057309462214237 −4524404717310744

2852342104391556 4221080735198699

)

∈ Γχ0 (7).

The matrix γK fixes a point τK in H3,

τK = 680113883076491926203393+ 188920523076803312834276α3+O(350),

where α3 denotes a square root of 35 in K3, the completion of K at 3.
We present the above groups using Farey symbols so as to solve the word problem

for them. Although the homology class of γK⊗τK might not lie inH1(Γ
χ
0 (7),Div0H3),

its projection into the Ag isotypical component is. It can be seen that such projection
is given by the operator (T 2

2 − 3T2 + 3)(T2 + 3), where T2 is the 2-th Hecke operator
(just by computing the characteristic polynomial of the Hecke operator T2 in the
whole space and computing its irreducible factors). This allows to represent (T 2

2 −
3T2 + 3)(T2 + 3)(γK ⊗ τK) by a cycle of the form

(−6 1
−7 1

)

⊗D1 +
(

15 −4
49 −13

)

⊗D2 + ( 1 1
0 1 )⊗D3 +

(

22 −9
49 −20

)

⊗D4 +
( −13 5
−21 8

)

⊗D5,

where Di are divisors of degree 0 obtained by the aforementioned code (each divisor
has support consisting of more than a thousand points in H3).

This class was integrated against the cohomology classes ϕ
(i)
E using an overconver-

gent lift as explained in [GMŞ15] giving a point in Ag(C3) which can be projected
onto E(C3) by choosing an appropriate linear combination of the basis elements. In
the generic case any projection would work. We have taken in this case the projection

onto g1. Concretely, the integral corresponding to ϕ
(1)
E resulted in the 3-adic element

J = 2+(α3+2)·3+32+(2·α3+1)·33+(α3+1)·35+(α3+2)·36+(α3+1)·37+· · ·+O(3120)
If we apply Tate’s uniformization (at 3) to such point, we obtain a point in E(K3)
which coincides up to the working precision of 3120 with

14 ·13 ·P = 14 ·13 ·
(

164850
√
7

2809
+

610894

2809
,
63872781

√
35
√
7

297754
+

96772060
√
35

148877
− 1

2

)

.

Note that P ∈ E(H), where H = K(
√
7) = Q(

√
35,

√
7) is the Hilbert class field of

K as would be predicted by the conjectures. The factor 14 appears because we took
the 14th power of the fundamental unit, while the factor 13 is due to the fact that
the point would naturally lie in the elliptic curve 147.c1, which is 13-isogenous to E.

http://www.lmfdb.org/EllipticCurve/Q/147.c1


18 DANIEL KOHEN AND ARIEL PACETTI

Finally, if one takes the trace of P to K one obtains:

PK = P + P σ =

(

63367

2000
,
5823153

200000

√
35− 1

2

)

, Gal(H/K) = 〈σ〉,

and one can check that PK is non-torsion and thus generates a subgroup of finite
index in E(K).
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[GL01] Josep González and Joan-C. Lario. Q-curves and their Manin ideals. Amer. J. Math.,
123(3):475–503, 2001.

[GM15] Xavier Guitart and Marc Masdeu. Elementary matrix decomposition and the computation
of Darmon points with higher conductor. Mathematics of Computation, 84(292):875–893,
2015.
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[TZ03] Ye Tian and Shou-wu Zhang. Euler system of CM-points on Shimura curves. preparation,
2003.

[YZZ13] Xinyi Yuan, Shou-Wu Zhang, and Wei Zhang. The Gross-Zagier formula on Shimura
curves, volume 184 of Annals of Mathematics Studies. Princeton University Press, Prince-
ton, NJ, 2013.

[Zha01] Shou-Wu Zhang. Gross-Zagier formula for GL2. Asian J. Math., 5(2):183–290, 2001.
[Zha10] Shou-Wu Zhang. Arithmetic of Shimura curves. Sci. China Math., 53(3):573–592, 2010.
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