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ABSTRACT

Context. Magnetohydrodynamic waveguides such as dense coronal loops can support standing modes. The ratios of the periods of
oscillations for different longitudinal harmonics depend on the dispersive nature of the waveguide and so may be used as a seismo-
logical tool to determine coronal parameters.
Aims. We extend models of standing sausage modes in low β coronal loops to include the effects of loop curvature. The behaviour
of standing sausage modes in this geometry is used to explain the properties of observed oscillations which cannot be accounted for
using straight loop models.
Methods. We perform 2D numerical simulations of an oscillating coronal loop, modelled as a dense slab embedded in a potential
magnetic field. The loop is field-aligned and so experiences expansion with height in addition to being curved. Standing sausage
modes are excited by compressive perturbations of the loop and their properties are studied.
Results. The spatial profiles of standing sausage modes are found to be modified by the expanding loop geometry typical for flaring
loops and modelled by a potential magnetic field in our simulations. Longitudinal harmonics of order n ą 1 have antinodes which are
shifted towards the loop apex and the amplitude of antinodes near the loop apex is smaller than those near the loop footpoints.
Conclusions. We find that the observation of standing sausage modes by Nakariakov et al. (2003) is consistent with interpretation in
terms of the global mode (n “ 1) and third harmonic (n “ 3). This interpretation accounts for the period ratio and spatial structure of
the observed oscillations.
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1. Introduction

Fast magnetohydrodynamic (MHD) waves are highly disper-
sive in waveguides such as coronal loops. For propagating
modes generated by an impulsive driver, dispersion leads to
the generation of quasi-periodic wave trains. This process was
described by Roberts et al. (1983, 1984); Murawski & Roberts
(1994); Nakariakov & Roberts (1995) and later observed with
instruments such as the Solar Eclipse Coronal Imaging System
(SECIS) (Katsiyannis et al. 2003; Cooper et al. 2003) and the
Atmospheric Imaging Assembly (AIA) on board the Solar
Dynamics Observatory (SDO; e.g. Shen & Liu 2012; Liu et al.
2012; Yuan et al. 2013). The dispersion arises due to the pres-
ence of a characteristic transverse length scale and occurs for
both sausage (m “ 0) and kink (m “ 1) fast modes. For ex-
ample, Oliver et al. (2014) recently studied the dispersive evo-
lution of propagating kink waves in coronal loops. The disper-
sion of propagating fast MHD waves has also been considered
for current sheets (Edwin et al. 1986; Jelı́nek & Karlický 2012;
Jelı́nek et al. 2012), coronal holes (Pascoe et al. 2014), and flar-
ing active regions (Nisticò et al. 2014) (see also recent review by
Pascoe 2014).

For standing modes, the effect of dispersion is apparent in the
ratio of periods for different longitudinal harmonics. For a stand-
ing mode of wavelength λ in a loop of length L the footpoints are
nodes for the oscillation and so the longitudinal wavenumber k
must be an integer multiple of π{L i.e.

kn “
nπ
L

(1)

where n is the order of the harmonic. The global or fundamental
standing mode is n “ 1, while the n “ 2 mode is the first over-
tone, or second harmonic, and so on for higher order modes.
The period of oscillation for each mode may be denoted as Pn.
Andries et al. (2009) point out in their review of coronal seis-
mology using kink overtones that the term “harmonic” should
strictly be used in the dispersionless case of overtone frequencies
being exact multiples of the fundamental frequency. For clarity
we shall refer to the different standing modes using their order n
which corresponds to the number of antinodes in the longitudinal
spatial profile of the mode. The “nth harmonic” shall therefore
more generally refer to the oscillation with n antinodes.

Due to dispersion the period ratio P1{2P2 is less than unity
for fast MHD waves. Andries et al. (2005) considered the case
of kink waves in long loops, for which the thin tube approxi-
mation removes the effect of dispersion. The period ratio was
calculated to again be P1{2P2 ă 1 when longitudinal den-
sity structuring was introduced, allowing simultaneous obser-
vations of the multiple harmonics (e.g. Verwichte et al. 2004)
to be used as a seismological tool for determining the density
scale height. McEwan et al. (2006) demonstrated that longitudi-
nal structuring has the dominant effect on the period ratio and
calculated the density scale height of two of the loops reported
in Verwichte et al. (2004). McEwan et al. (2008) derived an an-
alytical expression for the dependence of the period ratio on
the density scale height, which was previously solved numeri-
cally by Donnelly et al. (2006) and Dı́az et al. (2007) for loops,
and by Donnelly et al. (2007) for a magnetic arcade. A spatially
resolved observation of the fundamental and second harmonic
standing kink modes in a coronal loop was recently reported by
Pascoe et al. (2016), with a period ratio P1{2P2 “ 1.15 ˘ 0.22.
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The ratio being greater than unity suggests a negative scale
height, also considered by Andries et al. (2005) for coronal loops
and Lomineishvili et al. (2014) for prominence threads.

For straight models of coronal loops (without longitudinal
variations of parameters along z) standing modes are described
using sinusoidal profiles of the form sin pknzq. For such profiles
the nodes and antinodes are equidistant. This is no longer true
when additional effects such as longitudinal stratification or di-
vergence are included. In these cases the longitudinal wavenum-
ber kn represents an average value and the positions of the nodes
and antinodes are shifted in space in comparison with sinusoids.
Observations of these shifts could potentially be used for spa-
tial magneto-seismology as they depend on, e.g., the density
stratification (Erdélyi & Verth 2007; Verth et al. 2007), and lon-
gitudinal inhomogeneities (Verth & Erdélyi 2008) for transver-
sal coronal loop oscillations. Such shifts have also been investi-
gated for torsional Alfvén waves (Verth et al. 2010) and spicules
(Verth et al. 2011).

In contrast with the standing kink modes commonly ob-
served in long coronal loops (e.g. Aschwanden et al. 1999;
Nakariakov et al. 1999), standing sausage modes are expected
to be found in short, dense loops only, which there are fewer ex-
amples of (Aschwanden et al. 2004). This is due to the existence
of a cut-off wavelength (e.g. Roberts et al. 1983) which limits
the minimum aspect ratio a{L and density contrast ρ0{ρe for the
fundamental standing sausage mode to be supported as a trapped
mode (Nakariakov et al. 2003). When these constraints are not
satisfied, the sausage mode is leaky and can quickly decay (e.g.
Cally 1986; Pascoe et al. 2007b), with a period and damping
rate recently analytically derived by Vasheghani Farahani et al.
(2014).

Pascoe et al. (2009b) performed numerical simulations of
sausage oscillations in loops with a non-uniform cross-section
as a model for flaring loops which expand near the apex due
to heating. The period of the global sausage mode (P1) and
the third harmonic (P3) were considered and were found to be
most strongly determined by the minimum loop width. Strong
divergence was also found to lead to the coupling of the lon-
gitudinal harmonics. The period ratio has also been shown to
depend on loop expansion for the case of standing slow modes
(Luna-Cardozo et al. 2012).

The effect of flows on the behaviour of standing sausage
modes has been investigated by Li et al. (2013, 2014) who found
that they increase the minimum aspect ratio required for trapped
standing sausage modes to exist. However, the flows typically
only reduced the period ratio P1{2P2 by less than about 5%.

The effect of curvature on coronal loop oscillations has been
previously investigated by a number of authors (see review by
van Doorsselaere et al. 2009). Studies have demonstrated that
curved loops require a nonuniform equilibrium magnetic field
and consequently may introduce an additional damping mecha-
nism for oscillations in the form of lateral wave leakage due to
tunnelling of wave energy (e.g. Smith et al. 1997; Brady et al.
2006; Verwichte et al. 2006b). We note however that in our
model (Sect. 3) this mechanism is prohibited by our choice of
Alfvén speed profile (and the loop is sufficiently dense and thick
to be in the trapped regime).

Goossens et al. (2009) discuss how damping due to reso-
nant absorption dominates over that due leakage for kink waves
in straight loops with a finite inhomogeneous layer (see also
Goossens & Hollweg 1993). Terradas et al. (2006) performed
simulations of curved coronal loops and found that the effect
of resonant absorption remains stronger than lateral leakage.
Curvature is found to be unimportant for standing kink modes

due to their large aspect ratio L " a. However curvature might
be more important for sausage modes due to the condition that
they require sufficiently thick and dense loops to exist as trapped
modes.

Nakariakov et al. (2003) interpret the observation of quasi-
periodic pulsations by the Nobeyama Radioheliograph (NoRH)
in terms of standing sausage modes. The oscillations were mea-
sured in a flaring coronal loop on 12th of January 2000. The spa-
tial resolution of the observations allows two periodicities with
different spatial profiles to be identified. It was proposed that
these correspond to the global standing mode and the second har-
monic. However, this interpretation implies a large period ratio
P1{2P2 « 0.8 which has not been accounted for. Melnikov et al.
(2005) considered the same observation and proposed a num-
ber of alternative candidates for the shorter period mode, in-
cluding the third longitudinal harmonic of the sausage mode.
Observations of multiple sausage oscillations in a cool post-flare
loop have also been reported by Srivastava et al. (2008).

In this paper we consider the effect of curvature and loop ex-
pansion on the behaviour of standing sausage modes using 2D
numerical simulations of dense slabs embedded in a potential
magnetic field. In particular we consider the effect on the period
ratios and spatial profiles of the modes due to their potential seis-
mological application. In Sect. 2 we first review effects of coro-
nal loop parameters on the period ratio in the case of straight
coronal loops. We note, however, that these effects alone are in-
sufficient to account for the observations by Nakariakov et al.
(2003). In Sect. 3 we then present our results of numerical simu-
lations of standing sausage modes in curved and expanding coro-
nal slabs. Discussion of our results with regards to the obser-
vations of Nakariakov et al. (2003) and concluding remarks are
presented in Sect. 4.

2. Parametric study of period ratios

Here we discuss several parameters which are known to have
an effect on the period ratio of standing modes in coronal loops
modelled as straight waveguides.

2.1. Loop geometry and aspect ratio

Figure 1 shows the phase speed ω{k of trapped modes as a func-
tion of normalised wavenumber ka. The solid lines corresponds
to the slab geometry (Edwin & Roberts 1982) and the dashed
lines to the cylindrical geometry (Edwin & Roberts 1983). The
sausage mode is weakly dependent on the choice of geometry in
comparison to the kink mode in the case of loops modelled as
straight slabs or cylinders. For both cylindrical and slab geome-
tries the trapped sausage mode phase speed is limited by CA0
at ka Ñ 8 and increases to CAe at kca where kc is the cut-off
wavenumber. In the long wavelength limit the kink mode also
has a phase speed CAe for the slab geometry, but for the cylindri-
cal geometry tends to the kink speed Ck (middle dotted line).

The existence of the sausage mode cut-off in the long wave-
length limit means observations with a large Q-factor (i.e. a
large number of oscillation cycles) require sufficiently thick and
dense coronal loops so that standing modes to fall into the
trapped regime. The density contrast of ρ0{ρe “ 50 used in
Fig. 1 (and subsequent figures) satisfies this condition, and is
taken from Nakariakov et al. (2003) who use this estimate for
their interpretation of NoRH observations. The effect of varying
the density contrast is considered in Sect. 2.2. The requirement
of sufficiently large loop aspect ratio a{L for trapped sausage
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Fig. 1. Phase speedω{k as a function of normalised wavenumber
ka for the trapped sausage (top) and kink (bottom) modes in a
loop with density contrast ρ0{ρe “ 50 (and plasma β “ 0). The
solid lines are for the slab geometry and the dashed lines are
for the cylindrical geometry. The lower and upper dotted lines
correspond to the internal Alfvén speed CA0 and external Alfvén
speed CAe, respectively. In the lower panel the middle dotted line
corresponds to the kink speed Ck.

modes also introduces the effect of geometrical dispersion so
that the period ratios of the standing modes depend on the loop
parameters and may therefore be used for seismological pur-
poses. Figure 2 shows the period ratios P1{2P2 and P1{3P3 as
a function of the loop aspect ratio for sausage modes in slab
and cylinder geometries. The effect of dispersion is stronger for
wavenumbers closer to the cut-off.

Macnamara & Roberts (2011) produced analytical expres-
sions for the period ratio P1{2P2 of the sausage and kink modes
in a magnetic slab. For the transverse density structure they con-
sidered an Epstein profile (Eq. (7) with p “ 1). They give the
square of the wave speed for the sausage mode in their Eq. (32)
as

c2 “
C2

A0

2C2
Aek2a2

`

2C2
Aek2a2 ` 4C2

Ae ´ 9C2
A0

`3
b

9C4
A0 ´ 4C2

A0C2
Aek2a2 ´ 8C2

A0C2
Ae ` 4C4

Aek2a2

˙

.

(2)

This can be used to calculate the period ratio.
Macnamara & Roberts (2011) define the loop length to be
2L whereas we use L, so our equivalent of their Eq. (33) is

Fig. 2. Period ratio P1{2P2 for slab (solid) and cylinder (dashed)
geometries and P1{3P3 for slab (dotted) and cylinder (dot-
dashed).

ˆ

P1

2P2

˙2

“

ˆ

c2

c1

˙2

“
1
4

˜

4 ` 8ϵ ´ 9χ` 3
a

9χ2 ´ 16χϵ ´ 8χ` 16ϵ

4 ` 2ϵ ´ 9χ` 3
a

9χ2 ´ 4χϵ ´ 8χ` 4ϵ

¸

(3)

where ϵ “ pπa{Lq
2 and χ “ pCA0{CAeq

2. If we consider the limit
of high density contrast we have χÑ 0 and the approximation

P1

2P2
“

ˆ

1 ` 2ϵ ` 3
?
ϵ

4 ` 2ϵ ` 6
?
ϵ

˙1{2

. (4)

Since this approximation excludes the effects of a finite density
contrast it no longer describes the sausage mode cut-off. In the
limit of the aspect ratio a{L Ñ 0 the effect of geometrical dis-
persion is also removed and the period ratio P1{2P2 Ñ 1{2 as
in Macnamara & Roberts (2011). Similarly, for the ratio P1{3P3
we obtain
ˆ

P1

3P3

˙2

“
1
4

˜

4 ` 18ϵ ´ 9χ` 3
a

9χ2 ´ 36χϵ ´ 8χ` 36ϵ

4 ` 2ϵ ´ 9χ` 3
a

9χ2 ´ 4χϵ ´ 8χ` 4ϵ

¸

(5)
and for χÑ 0 the approximation

P1

3P3
“

ˆ

4{9 ` 2ϵ ` 2
?
ϵ

4 ` 2ϵ ` 6
?
ϵ

˙1{2

(6)

which tends to 1{3 in the limit a{L Ñ 0.
Figure 3 shows period ratios as a function of aspect ratio

for sausage modes in a slab geometry with an Epstein density
profile. The behaviour is similar to that for the slab with the
step function profile (Fig. 2). The symbols represent ratios calcu-
lated from the periods of the relevant harmonics, while the lines
represent the derived expressions and approximations discussed
above.

2.2. Density profile steepness and contrast ratio

In the previous section the density profile was taken to be ei-
ther a step function, switching discontinuously from its internal
value ρ0 to its external value ρe at the loop radius x “ a, or the
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Fig. 3. Period ratios P1{2P2 (triangles) and P1{3P3 (squares) as
a function of the aspect ratio a{L. The symbols represent nu-
merical calculations. The solid lines correspond to the analytical
expressions for the ratios (Eqs. 3 and 5), while the dashed lines
represent approximations for a high density contrast (Eqs. 4 and
6).

Epstein profile considered by Macnamara & Roberts (2011). It
has recently been established that the transverse profile steep-
ness affects the period of sausage modes quite significantly
(Nakariakov et al. 2012). Here we consider the effect of vari-
ous smooth density profiles in more detail. A convenient density
profile for this study is the generalised symmetric Epstein profile
(e.g. Nakariakov & Roberts 1995)

ρ pxq “ pρ0 ´ ρeq sech2
„

|x|

a

ȷp

` ρe, (7)

where ρ0 is the density at the loop axis, ρe is the external density
at x Ñ 8, the width of the loop is 2a, and p is the steepness
parameter. As a result of this profile, the Alfvén speed increases
from a local minimum of CA0 at the centre to CAe at infinity, and
so forms a waveguide for fast MHD waves. Our monolithic slab
model ignores the effect of fine structuring of the loop which
may be present. NoRH observes flaring, hot loops for which
multi-threaded structuring is not detected. Pascoe et al. (2007a)
demonstrate that the period of oscillation for standing sausage
modes is not affected by very fine structuring of the slab density
profile.

Figure 4 shows examples of density profiles given by Eq. (7)
for a loop with contrast ratio ρ0{ρe “ 50. The solid line is the
Epstein profile with steepness parameter p “ 1 (e.g. Fig. 3). The
dashed line corresponds to p “ 2, while the dotted line is a step
function profile obtained for p Ñ 8. Analytical solutions for
the dispersion relation are known for the step profile and for the
Epstein profile with β “ 0. For all other p the solutions must be
calculated numerically. As in Pascoe et al. (2007a) we solve the
sausage mode dispersion relation by the shooting method (based
on a fourth-order Runge–Kutta technique).

Figure 5 shows the dependence of the period of oscillation
for n “ 1, 2 and 3 as a function of the density profile steepness
parameter p. A loop length of L “ 25 Mm and density contrast
ρ0{ρe “ 50 have been assumed. For increasing p, each period
starts at the value for the Epstein profile and then tends, from be-
low, to the value for a step profile. Figure 6 shows that the period
ratios P1{2P2 and P1{3P3 tend to the value for the step profile
more quickly than the individual periods do. The step function

Fig. 4. Density profiles for a loop with contrast ratio ρ0{ρe “

50 and different steepness parameters p. The solid line is the
Epstein profile (p “ 1). The dashed line corresponds to p “ 2,
while the dotted line is a step function profile (p Ñ 8).

Fig. 5. Period of oscillation as a function of the density profile
steepness parameter. P1, P2 and P3 are represented by plus signs,
triangles and crosses, respectively. The symbols represent nu-
merical calculations. The dotted and dashed lines correspond to
the analytical expressions for the Epstein and step profiles, re-
spectively.

Fig. 6. Period ratios P1{2P2 (triangles) and P1{3P3 (squares) as
a function of the density profile steepness parameter. The sym-
bols represent numerical calculations. The dotted and dashed
lines correspond to the analytical expressions for the Epstein and
step profiles, respectively.
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Fig. 7. Period ratios P1{2P2 and P1{3P3 as a function of the den-
sity contrast ρ0{ρe for p “ 1 (diamonds), p “ 2 (squares) and
a step function density profile (crosses). The solid and dashed
lines represent the analytical solutions for the Epstein and step
function density profiles, respectively.

Fig. 8. Period ratios P1{2P2 and P1{3P3 as a function of the in-
ternal plasma beta β0 for p “ 1 (diamonds), p “ 2 (squares)
and a step function density profile (crosses). The dashed lines
represent the analytical solutions for the step function density
profile.

period ratios are therefore good approximations for profiles with
steepness parameter p ≳ 3.

Next we consider the effect of varying the loop density con-
trast ratio ρ0{ρe. Figure 7 shows the period ratios P1{2P2 and
P1{3P3 as a function of density contrast for p “ 1 (diamonds),
p “ 2 (squares) and a step function density profile (crosses).
The solid and dashed lines represent the analytical solutions
for the Epstein and step function density profiles, respectively.
In all cases the period ratios saturate to a constant value for
ρ0{ρe ≳ 50.

2.3. Plasma beta

A common approximation when studying fast MHD waves in
the corona is a cold plasma i.e. β “ 0. Here we consider the
effect of a finite plasma beta which is particularly relevant for
oscillations in hot flaring loops. The effect of finite plasma beta
on the period of sausage modes was investigated by Inglis et al.
(2009) who found that the period of the global sausage mode
(P1) varied by less than 5% for 0 ă β ă 1. An expression for

the dependence of the cut-off wavenumber kc on β was derived
for a magnetic slab with a step function profile, and this was also
found to exhibit weak dependency for coronal loops having low
values of external plasma beta.

Figure 8 shows the period ratios P1{2P2 and P1{3P3 as a
function of the internal plasma beta β0 for p “ 1 (diamonds),
p “ 2 (squares) and a step function density profile (crosses).
The dashed lines represent the analytical solutions for the step
function density profile (the analytical solution for the Epstein
profile is known for β “ 0 only). The period ratios are weakly
dependent on the internal plasma beta which is consistent with
the study by Inglis et al. (2009).

3. Numerical simulations of standing sausage
modes in a curved slab

In this section we present results of 2D numerical simulations of
standing sausage modes in curved and expanding coronal slabs.
Simulations were performed using Lare2d (Arber et al. 2001) to
solve the ideal MHD equations. The numerical domain is com-
posed of 2000 ˆ 1000 grid points. Results were checked by con-
vergence tests using resolutions of 4000ˆ2000 and 8000ˆ4000,
with no significant changes (e.g. periods of oscillation varying
by less than 1%). The boundary conditions are line-tied to al-
low reflections at the base of the corona. Reflections from other
boundaries were removed using damping layers. In normalised
units, the numerical domain has a size 2πˆ π and the runtime is
t̃ “ 500. The conversion of results to physical units is discussed
in Sect. 3.1.

The magnetic field used in our model is a potential field (see
also Nisticò et al. 2014) given by

B “ B0 exp p´y{l0q rcos px{l0q ēx ´ sin px{l0q ēys , (8)

where B0 is a constant determining the magnitude of the field
and l0 is the normalisation factor for the spatial size. The density
profile for the field-aligned coronal loop is based on the gener-
alised symmetric Epstein profile (Eq. (7)) with additional mod-
ifications to take into account the loop curvature and expansion
(the increase in width at the apex). The density profile is also
stratified in the vertical direction with a scale height Λ;

ρ “

„

pρ0 ´ ρeq sech2
ˆ

r
a psq

˙p

` ρe

ȷ

exp
ˆ

´
y ` π

Λ

˙

, (9)

where r is the distance from the loop axis (along the local
equipotential line) and a psq is the local loop semi-width which
is a function of the distance along the loop axis s “ r0, Ls.

The behaviour of MHD waves in a potential arcade model
has also been considered by previous authors. For the case of
an arcade with a constant Alfvén speed and a spatially peri-
odic perturbation the analytic solution for fast waves was de-
rived by Cadez et al. (1996). Smith et al. (1997) examined the
effect of curvature on fast MHD waves and found that it caused
leakage. Terradas et al. (1999) studied the influence of the verti-
cal Alfvén speed profile and the nonpotentiality of the field on
the behaviour of fast modes. In the case of the Alfvén speed
decreasing with height fast energy was again found to leak
upwards, which was also investigated by Smith et al. (1997);
Verwichte et al. (2006a,b); Brady et al. (2006). Verwichte et al.
(2006c) used this model to develop a seismological tool to
determine the transverse density structuring from observations
of vertically polarised kink modes damped by lateral leakage.
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Fig. 9. Equilibrium used in our numerical simulations of stand-
ing sausage modes in curved coronal slabs. The line contours
show the magnetic field lines. Top: The colour contours show the
(logarithm of) density, which has an enhancement describing a
curved field-aligned loop with density contrast ratio ρ0{ρe “ 50
and an aspect ratio of a{L “ 0.12 at its apex. Bottom: The colour
contours show the Alfvén speed which is constant inside and
outside the loop.

Oliver et al. (1998) performed numerical simulations of impul-
sively excited linear and nonlinear fast MHD waves in a coronal
arcade. Arregui et al. (2004) investigated the effect of mode cou-
pling which is introduced when the arcade is sheared. The impul-
sive excitation of vertical kink oscillations of a dense loop in a
potential arcade was modelled by Gruszecki & Murawski (2008)
while Gruszecki et al. (2008) simulated the influence of a pho-
tospheric layer with finite density rather than assuming line-tied
boundary conditions. The damping rate of vertical kink oscilla-
tions was found to increase by this additional route for energy
leakage.

The particular loop parameters we choose are based on the
observations by Nakariakov et al. (2003) i.e. a density contrast
ratio is taken to be ρ0{ρe “ 50 and aspect ratio a{L “ 0.12 at
the loop apex (decreasing to a{L “ 0.066 at the loop footpoints).
The density steepness parameter is taken to be p “ 8, which is
a good approximation for the slab profile but remains numer-
ically well-resolved. The plasma beta in the numerical simu-
lations is taken to be small β ă 10´3. However, the plasma
beta itself is known to have a small effect of the period of os-
cillation (see Sect. 2.3). Our loop geometry may therefore be
considered to represent models in which high beta plasma at
the loop apex causes expansion of the magnetic field there (e.g.
Zaitsev & Stepanov 1982). The equilibrium magnetic field and
density profiles are shown in Fig. 9. The line contours show the
magnetic field lines while the colour contours show the density
(top panel) and Alfvén speed (bottom panel). The coronal loop is

Table 1. Period of oscillation (in seconds) of standing sausage
modes from numerical simulations of curved coronal loops and
the analytical calculation for a straight loop.

Curved Straight
P1 15.0 15.0
P2 12.3 12.9
P3 10.6 11.4
P4 9.5 10.1
P5 8.5 9.1

P1{2P2 0.61 0.58
P1{3P3 0.47 0.44
P1{4P4 0.40 0.37
P1{5P5 0.35 0.33

defined as a field-aligned density enhancement with ρ0{ρe “ 50.
The density varies with height in accordance with Eq. (9) and for
simplicity we choose Λ “ 0.5 which ensures that the loop struc-
ture provides the only variation in Alfvén speed i.e. the Alfvén
speed is constant inside and outside the loop, only varying in the
thin transition layer between the loop and the environment. This
makes comparison of our loop model with an equivalent straight
slab (Edwin & Roberts 1982) easier and also removes the effect
of leakage due to tunnelling present when the external Alfvén
speed varies with height.

Standing sausage modes are excited by applying velocity
perturbations which approximate the eigenmode, based on mod-
ifying the solutions for a straight coronal loop (e.g. Cooper et al.
2003). In the r-direction perpendicular to the loop axis, the trans-
verse velocity vr is anti-symmetrical about the loop axis to excite
(compressive) sausage waves. In the longitudinal direction s, the
perturbation has a sinusoidal profile with a wavenumber corre-
sponding to the harmonic we choose to generate. The radial ve-
locity perturbation is decomposed into its Cartesian components
for use in Lare2d;

vr “ A
sinh pr{aq

coshν pr{aq
sgn pxq sin pnπs{Lq

vx “ vr sin px{l0q

vy “ vr cos px{l0q (10)

where the amplitude A “ 0.001 is chosen to be small to approx-
imate the linear regime. The parameter ν determines the radial
scale of the perturbation. In the case of a straight loop an exact
solution can be calculated by solving the dispersion relation to
obtain the phase speed. In our simulations we do not have such a
solution for our geometry and instead choose ν “ 2 which pro-
vides a perturbation of the appropriate spatial scale to efficiently
excite oscillations. We note the velocity perturbation is only de-
fined within the range ´π{2 ă x{l0 ă π{2 consistent with the
loop location (see Fig. 9).

3.1. Period ratios

Numerical simulations were performed for velocity perturba-
tions with n “ 1, 2 and 3. In each case the density perturbation
was recorded at several points inside the coronal loop and anal-
ysed using a periodogram to obtain the period/s of oscillation
present. The results of the numerical simulations are summarised
in Fig. 10 and Table 1.

The conversion of dimensionless numerical results to phys-
ical units is done by choosing appropriate normalisation con-
stants for speed (v0), time (t0), and length (l0 “ v0t0). Our

6
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Fig. 10. Spectral power of sausage oscillations in a curved coro-
nal loop, excited by drivers with n “ 1 (solid line), 2 (blue dot-
ted line) and 3 (red dashed line). The vertical dotted lines cor-
respond to the frequencies for n “ 1–5 calculated for a straight
loop (Table 1).

normalisation is based on the observations of Nakariakov et al.
(2003). The loop is estimated as L “ 25 Mm (taken to be the
length along its axis) which defines our normalising length scale
(l0 “ 8.79 Mm). For the observation, the external Alfvén speed
was estimated in the range 4.5 – 5.3 Mm/s. For convenience, we
choose a normalising speed of 4.36 Mm/s which is slightly lower
but gives a period of oscillation for the global mode P1 that is
equal to the analytical solution for a straight slab (with the same
density contrast and aspect ratio at the apex). We note that the
choice of normalising constant has no effect on the calculated
period ratios. It is then apparent from Table 1 that our curved
and expanding loop geometry has the effect of modifying the
periods of oscillation such that the period ratios are greater than
the case of a straight loop. For each period ratio the modification
is ≳ 5%.

Figure 10 shows the spectral power of oscillations excited
by drivers with different values of n (Eq. (10)). The lines have
been normalised for visibility. The driver with n “ 1 (solid line)
excites the global mode alone. The n “ 3 driver (red dashed
line) excites the global and n “ 5 modes in addition to n “ 3.
The driver for n “ 2 does not excite any odd modes but also
weakly excites n “ 4. We note that the frequency of the global
mode is the same whether excited by a driver with n “ 1 or 3, as
expected. The vertical dotted lines correspond to the frequencies
for harmonics n “ 1–5 calculated for a straight loop, which are
equal for n “ 1 by our choice of normalisation constants.

3.2. Spatial structure

Next we consider the spatial profiles of the standing modes. For
our curved loop we have a variation in parameters in the longi-
tudinal direction, and so can expect the modes to be modified
accordingly. In Figs 11 and 12 the crosses show the oscillation
amplitude along the loop axis for the different longitudinal har-
monics in Table 1. For each harmonic, a periodogram routine
was used to calculate the spectral power at the particular (fixed)
frequency. When calculating the spectral amplitude as the square
root of the power, the sign is added by hand for comparison with
the dashed sinusoidal profiles corresponding to the solutions for
a straight loop. The effect of the curved and expanding loop ge-
ometry causes a shift of antinodes towards the loop apex. For

Fig. 11. Oscillation amplitude along the axis of a curved coronal
loop for the n “ 1 (top), 2 (middle) and 3 (bottom) sausage
modes. The dashed lines show the sinusoidal profiles corre-
sponding to the solutions for a straight loop.

n ą 2 there is also a decrease in the amplitude of antinodes near
the loop apex compared with those near the loop footpoints.

3.3. Dependence on stratification height

The modification of the spatial profiles and increase in period
ratio is qualitatively similar to that seen by Pascoe et al. (2009b)
in their model of a straight loop with an expanding cross-section
(in particular the n “ 1 and n “ 3 modes also considered by
those authors). In the model presented in this paper the poten-
tial magnetic field links the curvature and expansion of the loop.
The expansion at the apex being common to both these studies
suggests this feature may be more important than the curvature.

7
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Fig. 12. Same as Fig. 11 but for modes n “ 4 (top) and n “ 5
(bottom).

The model of Pascoe et al. (2009b) also includes the longitudinal
variation of the internal Alfvén speed, in contrast to the constant
internal Alfvén speed in the current model. To investigate this
effect, Figure 13 shows the effect of varying the vertical stratifi-
cation paramaterΛ (Eq. (9)). Increasing the value ofΛ above 0.5
causes the Alfvén speed to vary along the loop axis, becoming
smaller at the loop apex than at the loop footpoints, as shown in
the top panel of Fig. 13. The effect of a lower average Alfvén
speed causes the periods of the harmonics to increase (middle
panel) although the period ratios remain roughly constant (bot-
tom panel).

4. Discussion and conclusions

The spatial profile of the standing modes is modified by the
curved and expanding loop geometry. In particular we see that
the n “ 3 longitudinal harmonic has an anti-node at the loop
apex which is smaller in amplitude and spatial extent than the
sinusoidal profile for a straight loop. On the other hand the spa-
tial extent of the antinodes at the loop legs is larger than for a
straight loop. This suggests the possibility that observations with
a low spatial resolution could more easily confuse the n “ 2 and
n “ 3 standing modes in curved (and expanding) coronal loops.
In particular we reconsider the observations of Nakariakov et al.
(2003) who report the observation of sausage modes at three spa-
tial locations. Their interpretation is in terms of the n “ 1 and
n “ 2 harmonics. The global (n “ 1) mode is identified as
having a larger spectral amplitude near the loop apex than near
the loop footpoints. This spatial distribution is reproduced by
any three observations points along the loop so long as the cen-

Fig. 13. Dependence of loop parameters as a function of the den-
sity stratification parameter Λ. Top: Ratio of Alfvén speed at the
loop apex and loop footpoint. Middle: Period of oscillation; P1,
P2 and P3 are represented by plus signs, triangles and crosses, re-
spectively. Bottom: Period ratios P1{2P2 (triangles) and P1{3P3
(squares).

tral observation point is indeed the one closest to the loop apex.
The n “ 2 mode is identified by having a lower spectral ampli-
tude near the loop apex than near the loop footpoints. We have
demonstrated with our results that this spatial dependence may
also be satisfied by an n “ 3 mode in a curved an expanding
coronal loop.

To further illustrate this point Fig. 14 shows the amplitudes
of the n “ 1 and n “ 3 modes from our numerical simulations
(see Fig. 11) as solid lines (here we ignore the sign for n “

3). The vertical dashed lines correspond to observation points
which would reproduce qualitatively the spatial dependence of

8
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Fig. 14. Spatial dependence (solid lines) of the n “ 1 and n “ 3
standing sausage modes in a curved coronal loop (see Fig. 11).
The vertical dashed lines represent three points of constant sep-
aration which qualitatively reproduce the spatial dependence of
the oscillations observed by Nakariakov et al. (2003).

the two periodicities reported by Nakariakov et al. (2003). For
the observations at “Foot 1”, “Loop top” and “Foot 2” the longer
period mode has a ratio of spectral amplitudes of approximately
0.8 : 1 : 0.6, while the shorter period mode has a ratio of 1 :
0.5 : 0.8. Taking the vertical dashed lines to be the location of
these three observation points gives ratios of spectral amplitudes
of 0.6 : 1 : 0.3 for n “ 1 and 1 : 0.5 : 0.9 for n “ 3. As proposed
by Melnikov et al. (2005), we therefore consider the possibility
of the shorter period mode being the n “ 3 standing mode rather
than n “ 2, having demonstrated with our numerical simulations
that we can qualitatively reproduce the spatial dependence of
the observed oscillations. A more precise account for the spatial
dependence would require a full 3D simulation with forward-
modelled radio emission.

Nakariakov et al. (2003) report P1 of 14 – 17 s and P2 of 8
– 11 s and so the period ratio P1{2P2 is approximately 0.64 –
1.06 with an average of 0.8. In comparison the numerical sim-
ulations and straight loop estimates give 0.61 and 0.58, respec-
tively, for P1{2P2 (Table 1). If instead we consider the shorter
period mode to be n “ 3 then we can calculate the observational
period ratio P1{3P3 of approximately 0.42 – 0.71 with an aver-
age of 0.53. This compares more favourably with 0.47 for our
numerical simulations and 0.44 for the straight loop analytical
estimate. The interpretation using n “ 3 therefore more read-
ily accounts for the large ratio of the two observed periodicities.
For comparison, to account for such a period ratio without in-
troducing curvature we can consider the dependence on the loop
aspect ratio calculated by Macnamara & Roberts (2011) and de-
scribed in Sect. 2.1. Figure 3 shows that P1{3P3 « 0.53 requires
a{L « 0.2, which is approximately twice that which is observed
by Nakariakov et al. (2003).

We have shown that the effect of our curved and expanding
loop acts to increase the period ratios in comparison with those
for a straight loop. In the case of a straight loop a 3D (cylin-
drical) rather than 2D (slab) geometry causes a decrease in the
period ratios (e.g. Fig. 2). We might expect a similar decrease for
the period ratios of 3D curved coronal loops compared with our
2D simulations. On the other hand, the effect of expansion on the
standing mode would also be greater in 3D than in 2D and this
effect might prove to be stronger, causing the period ratios to
increase further rather than decrease. Additionally, for straight
loops the sausage mode is weakly dependent on the choice of

slab or cylindrical geometry (e.g. Edwin & Roberts 1982, 1983).
However, this does not necessarily remain once curvature is in-
troduced, which has the effect of breaking the azimuthal symme-
try.

An additional factor that might favour the interpretation us-
ing n “ 3 concerns the symmetry of the initial perturbation and
the selectivity of the different standing modes. The n “ 1 and
n “ 3 are both excited in the case of a perturbation with odd
symmetry such as one localised near the loop apex (e.g. Fig. 10).
This perturbation would only weakly excite the n “ 2 and other
even harmonics. Since we assume in any case the n “ 1 mode
is excited, it is reasonable that the n “ 3 mode should also
be excited to some extent. This is particularly true in the case
of expanding loops increases the coupling between harmonics
(Pascoe et al. 2009b). For the n “ 1 and n “ 2 modes to be
exited simultaneously requires a driver that excites both odd and
even modes (with standing modes n ą 2 apparently being too
weak to be observed) such as one which is significantly off-
set from the loop apex (e.g. Pascoe et al. 2009a, for the case of
standing kink modes).

In addition to the event discussed in detail in this
paper, another multi-periodic observation was reported by
Inglis & Nakariakov (2009). NoRH observations of a solar flare
on 3 July 2002 revealed oscillations with periods of approxi-
mately 28 ˘ 2, 18 ˘ 1 and 12 ˘ 1 s. The observations were
not resolved spatially, although the two longest periods were
also observed in RHESSI data. Taking these periods to be P1,
P2, and P3, respectively, gives the ratios P1{2P2 « 0.78 and
P1{3P3 « 0.78. These ratios are larger than would be expected
even taking into account the effects discussed in this paper.
Inglis & Nakariakov (2009) proposed an interpretation of the
observations in terms of magnetic reconnection being periodi-
cally triggered by kink mode oscillations. We may again recon-
sider these periods in terms of higher order (odd) harmonics. If
the periods correspond to P1, P3, and P5 the ratios (Table 1)
would be expected to be P1{3P3 « 0.47 and P1{5P5 « 0.35. If
we take into account the errors reported by Inglis & Nakariakov
(2009) on the observed periods, the equivalent observational ra-
tios could be as low as 0.46 and 0.40, respectively. The ratio
for the shortest period oscillation therefore still remains signifi-
cantly higher than expected for P1{5P5.
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Verth, G., Erdélyi, R., & Goossens, M. 2010, ApJ, 714, 1637
Verth, G., Goossens, M., & He, J.-S. 2011, ApJ, 733, L15
Verth, G., Van Doorsselaere, T., Erdélyi, R., & Goossens, M. 2007, A&A, 475,

341
Verwichte, E., Foullon, C., & Nakariakov, V. M. 2006a, A&A, 446, 1139
Verwichte, E., Foullon, C., & Nakariakov, V. M. 2006b, A&A, 449, 769
Verwichte, E., Foullon, C., & Nakariakov, V. M. 2006c, A&A, 452, 615
Verwichte, E., Nakariakov, V. M., Ofman, L., & Deluca, E. E. 2004, Sol. Phys.,

223, 77
Yuan, D., Shen, Y., Liu, Y., et al. 2013, A&A, 554, A144
Zaitsev, V. V. & Stepanov, A. V. 1982, Soviet Astronomy Letters, 8, 132

10


