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CYLINDRICAL FRACTIONAL BROWNIAN MOTION

IN BANACH SPACES

ELENA ISSOGLIO AND MARKUS RIEDLE

Abstract. In this article we introduce cylindrical fractional Brownian
motions in Banach spaces and develop the related stochastic integration
theory. Here a cylindrical fractional Brownian motion is understood in
the classical framework of cylindrical random variables and cylindrical
measures. The developed stochastic integral for deterministic operator
valued integrands is based on a series representation of the cylindrical
fractional Brownian motion, which is analogous to the Karhunen-Loève
expansion for genuine stochastic processes. In the last part we apply
our results to study the abstract stochastic Cauchy problem in a Banach
space driven by cylindrical fractional Brownian motion.

1. Introduction

In the past decades, a wide variety of infinite dimensional stochastic
equations have been studied, due to their broad range of applications in
physics, biology, neuroscience and in numerous other areas. A compre-
hensive study of stochastic evolution equations in Hilbert spaces driven by
cylindrical Wiener processes, based on a semigroup approach, can be found
in the monograph of Da Prato and Zabczyk [8]. Various extensions and
modifications have been studied, such as different types of noises as well as
generalisations to Banach spaces. For the latter see for example Brzeźniak
[6] and van Neerven et al. [30, 31].

Fractional Brownian motion (fBm) has become very popular in recent
years as driving noise in stochastic equations, in particular as an alternative
to the classical Wiener noise. This is mainly due to properties of fBms,
such as long-term dependence, which leads to a memory effect, and self-

similarity, features which show great potential for applications, for example
in hydrology, telecommunication traffic, queueing theory and mathematical
finance. Since fBms are not semi-martingales, Itô-type calculus cannot be
applied. Several different stochastic integrals with respect to real valued
fBm have been introduced in the literature, e.g. Wiener integrals for deter-
ministic integrands, Skorohod integrals using Malliavin calculus techniques,
pathwise integrals using generalised Stieltjes integrals or integrals based on
rough path theory. For more details see e.g. [5, 19, 20] and references
therein.
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2 E. ISSOGLIO AND M. RIEDLE

The purpose of this paper is to begin a systematic study of cylindrical
fractional Brownian motion in Banach and Hilbert spaces and, starting from
this, to build up a related stochastic calculus with respect to cylindrical
fBm. Our approach is strongly based on the theory of cylindrical measures
and cylindrical random variables, as it was exploited by Kallianpur and
Xiong in [16] for the Wiener case and Metivier and Pellaumail in [18] for
the cylindrical martingale case. In this paper we consider an extension
beyond the martingale case, since fractional Brownian motion is not a semi-
martingale.The cylindrical approach enables us to develop a theory that
does not require a Hilbert space structure of the underlying space because
the cylindrical fBm is defined through finite dimensional projections. We
can characterise the cylindrical fBm by a series representation, which can be
considered as the analogue of the Karhunen-Loève expansion in the classical
situation of genuine stochastic processes. This representation is exploited
to define the stochastic integral of deterministic, operator valued integrands
with respect to a cylindrical fBm. The stochastic integral is defined as a
stochastic version of a Pettis integral, as accomplished in van Neerven and
Weis [31] for Wiener processes and in Riedle and van Gaans [25] for Lévy
processes.

We apply our theory to a class of parabolic stochastic equations in Banach
spaces of the form

dY (t) = AY (t) dt+ C dB(t), (1.1)

where B is a cylindrical fBm in a separable Banach space U , A is a generator
of a strongly continuous semigroup in a separable Banach space V and C is a
linear and continuous operator from U to V . We give necessary and sufficient
conditions for the existence and uniqueness of a weak solution, which is a
genuine stochastic process in the Banach space U . For comparison, we apply
our methods to an example often considered in the literature and typically
formulated in a Hilbert space setting.

There are several works in the literature devoted to a similar or related
problem, such as Brzeźniak et al. [7] for the case of a Banach space, and
Grecksch and Anh [13], Duncan and coauthors in a series of papers [9,
10, 11, 12], Tindel et al. [28], Maslowski and Nualart [17], Gubinelli et
al. [14] in the Hilbert space. Among these the papers [7] by Brzeźniak et
al. and [28] by Tindel et al. are the most related to our work, and thus, it
might be worth to comment on them in more detail in the sequel: in [7] the
authors consider an abstract Cauchy problems in Banach spaces driven by
a cylindrical Liouville fBm. The stochastic integral is defined by applying
the principle of extension by continuity. When applied to the parabolic
stochastic equations (1.1), it results in the requirement that the diffusion
operator C must be γ-radonifying, i.e. the random perturbation C dB(t)
becomes a genuine classical noise in the underlying Banach space. In our
case, by following strictly the Gaussian path, we can still have a cylindrical
noise. Furthermore, our cylindrical approach provides a natural candidate
for the solution of (1.1). Since this candidate has a cylindrical Gaussian
distribution, we can characterise the existence of a solution equivalently in
terms of the corresponding covariance operator being associated to a Radon
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measure. minimal requirment, corresponds to Brzezniak + Jan, ich fuer
cyli, extends to non-semimartingales.

It is shown that for H < 1/2 the theory for Liouville fBm is equivalent
to the one for fBm, while for H > 1/2 the space of integrable functions is
slightly different.

Since our paper is close to
Our methodology, based on cylindrical measures and cylindrical random

variables, has the advantage that it is intrinsic in the sense that it does not
require the construction of a larger space in which the cylindrical noise exists
as a genuine stochastic process. Due to the connection between cylindrical
measures and the theory of geometry of Banach spaces, our methodology
relates the study of fBm and stochastic differential equations driven by fBm
to other areas of mathematics, such as operator theory, functional analy-
sis and harmonic analysis, therefore providing a wider range of tools and
techniques.

Our long-term aim is to study general stochastic equations in Banach
spaces driven by cylindrical fBms, which involves stochastic integration for
random integrands. We are inspired by the paper of van Neerven et al.
[30] in which they deal with the Wiener case. Here, the approach is based
on a two-sided decoupling inequality which enables the authors to define
the stochastic integral for random integrands by means of the integral for
deterministic integrands. The latter is introduced in van Neerven and Weis
[31], and we hope that our present work will play an analogous role for
equations driven by fractional Brownian motions.

Only a few works deal with fBm in Banach spaces and related stochastic
integration theory. Brzeźniak et al. [7] consider abstract Cauchy problems
in Banach spaces driven by cylindrical Liouville fBm. It is shown that for
H < 1/2 the theory for Liouville fBm is equivalent to the one for fBm, while
for H > 1/2 the space of integrable functions is slightly different. In our
paper we extend their results related to the Cauchy problem, as we consider
mild and weak solutions and we obtain necessary and sufficient conditions
for the existence of a solution. In contrast to [7], we do not assume any
further regularity for the diffusion operator C, and therefore we keep the
irregular character of the cylindrical noise in the space where the equation
is considered. Note however, that in some special cases the authors in [7] get
around this restriction by means of interpolation techniques. Furthermore,
our approach enables us to guarantee the existence of a solution for H > 1/2
without any further constraints, whereas the results in this case in [7] are
restricted either to analytic semigroups or to Banach spaces of type larger
than 1. Another approach for the study of an evolution equation driven
by a fractional Brownian motion is considered by Balan in [4]. The author
considers a stochastic heat equation with infinite dimensional fractional noise
by using Malliavin calculus, but her approach is strictly limited to a Sobolev-
space context.

In the special case of Hilbert spaces, quite some literature on stochas-
tic evolution equations with fBm noise can be found – see amongst oth-
ers Grecksch and Anh [13], Duncan and coauthors in a series of papers
[9, 10, 11, 12], Tindel et al. [28], Maslowski and Nualart [17], Gubinelli et
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al. [14]. When restricted to the Hilbert space case, our approach is to some
extent similar to the one in [9, 11, 12]. But our method has the advantage of
providing not only sufficient, but also necessary conditions for the existence
of a solution, which turns out to be both mild and weak. Tindel et al. in
[28], who also provide necessary and sufficient conditions for the existence
of a solution, derive their results under a spectral gap assumption on the
semigroup, which is assumed to be self-adjoint. Our approach enables us to
avoid such kind of restrictive assumptions.

The paper is structured as follows. Section 2 contains a brief overview of
cylindrical measures and cylindrical processes in Banach spaces, with em-
phasis on cylindrical Gaussian processes. In Section 3 we recall the construc-
tion of the Wiener integral for real valued fBm and its relation to fractional
integral and derivative operators. In Section 4 we introduce cylindrical fBms
in separable Banach spaces and provide a characterisation in terms of a se-
ries representation. We illustrate our notion of fBm by several examples,
such as anisotropic fBm, i.e. spatially non-symmetric noise, and we give
conditions under which such cylindrical noises are genuine fBms in the un-
derlying space. Section 5 is dedicated to the construction and the study of
the stochastic integral in a Banach space. In Section 6 we use this integral
to construct the fractional Ornstein-Uhlenbeck process as the mild and weak
solution of a abstract stochastic Cauchy problem in a Banach space. Finally,
in Section 7 we consider the special case of the stochastic heat equation with
fractional noise in a Hilbert space and compare our results with the existing
literature.

2. Preliminaries

Throughout this paper, U indicates a separable Banach space over R with
norm ‖ · ‖U . The topological dual of U is denoted by U∗ and the algebraic
one by U ′. For u∗ ∈ U∗ we indicate the dual pairing by 〈u, u∗〉. If U is a
Hilbert space we identify the dual space U∗ with U . The Borel σ-algebra
on a Banach space U is denoted by B(U). If V is another Banach space
then L(U, V ) denotes the space of bounded, linear operators from U to V
equipped with the operator norm topology.

For a measure space (S,S, µ) we denote by Lp
µ(S;U), p > 0, the space of

equivalence classes of measurable functions f : S → U with
∫
‖f(s)‖pU µ(ds) <

∞. If S ∈ B(R) and µ is the Lebesgue measure we use the notation Lp(S;U).
Next we recall some notions about cylindrical measures and cylindrical

random variables as it can be found in Badrikian [3] or Schwartz [27]. Let Γ
be a subset of U∗, n ∈ N, u∗1, . . . , u

∗
n ∈ Γ and B ∈ B(Rn). A set of the form

Z(u∗1, . . . , u
∗
n;B) := {u ∈ U : (〈u, u∗1〉, . . . , 〈u, u

∗
n〉) ∈ B},

is called a cylindrical set. We denote by Z(U,Γ) the set of all cylindrical
sets in U for a given Γ. It turns out this is an algebra. Let C(U,Γ) be
the generated σ-algebra. When Γ = U∗ the notation is Z(U) and C(U),
respectively. If U is separable then both the Borel σ-algebra B(U) and the
cylindrical σ-algebra C(U) coincide.
A function µ : Z(U) → [0,∞] is called a cylindrical measure on Z(U) if
for each finite subset Γ ⊆ U∗ the restriction of µ to the σ-algebra C(U,Γ)
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is a measure. It is called finite if µ(U) is finite and cylindrical probability

measure if µ(U) = 1.
For every function f : U → C which is measurable with respect to Z(U,Γ)

for a finite subset Γ ⊆ U∗, the integral
∫
f(u)µ(du) is well defined as a

complex valued Lebesgue integral if it exists. In particular, the characteristic
function ϕµ : U∗ → C of a finite cylindrical measure µ is defined by

ϕµ(u
∗) :=

∫

U
eı 〈u,u

∗〉 µ(du) for all u∗ ∈ U∗.

Let (Ω,A, P ) be a probability space. A cylindrical random variable Z in

U is a linear and continuous map

Z : U∗ → L0
P (Ω;R),

where L0
P (Ω;R) is equipped with the topology of convergence in probability.

The characteristic function of a cylindrical random variable Z is defined by

ϕZ : U∗ → C, ϕZ(u
∗) = E[exp(ı Zu∗)].

A cylindrical process in U is a family (Z(t) : t > 0) of cylindrical random
variables in U .

Let Z : U∗ → L0
P (Ω;R) be a cylindrical random variable in U . The

cylindrical distribution of Z is the cylindrical probability measure µ defined
by the prescription

µ(Z) := P ((Zu∗1, . . . , Zu∗n) ∈ B),

for a cylindrical set Z = Z(u∗1, . . . , u
∗
n;B) for u∗1, . . . , u

∗
n ∈ U∗ and B ∈ B(Rn).

The characteristic functions ϕµ and ϕZ of µ and Z coincide. Conversely, for
every cylindrical measure µ on Z(U) there exist a probability space (Ω,A, P )
and a cylindrical random variable Z : U∗ → L0

P (Ω;R) such that µ is the
cylindrical distribution of Z.

A cylindrical probability measure µ on Z(U) is called Gaussian if the
image measure µ ◦ (u∗)−1 is a Gaussian measure on B(R) for all u∗ ∈ U∗.
The characteristic function ϕµ : U∗ → C of a Gaussian cylindrical measure
µ is of the form

ϕµ(u
∗) = exp

(
ım(u∗)− 1

2s(u
∗)
)

for all u∗ ∈ U∗, (2.1)

where the mappings m : U∗ → R and s : U∗ → R+ are given by

m(u∗) =

∫

U
〈u, u∗〉µ(du), s(u∗) =

∫

U
〈u, u∗〉2 µ(du)−m(u∗)2.

Conversely, if µ is a cylindrical measure with characteristic function of the
form (2.1) for a linear functional m : U∗ → R and a quadratic form s :
U∗ → R+, then µ is a Gaussian cylindrical measure.

For a Gaussian cylindrical measure µ with characteristic function of the
form (2.1) one defines the covariance operator Q : U∗ → (U∗)′ by

(Qu∗) v∗ =

∫

U
〈u, u∗〉〈u, v∗〉µ(du)−m(u∗)m(v∗) for all u∗, v∗ ∈ U∗.

Contrary to Gaussian Radon measures, the covariance operator might take
values only in the algebraic dual of U∗, that is the linear map Qu∗ : U∗ → R

might be not continuous for some u∗ ∈ U∗. However often we exclude this
rather general situation by requiring that at least Qu∗ is norm continuous,
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that is Q : U∗ → U∗∗. Note that in this situation the characteristic function
ϕµ of µ in (2.1) can be written as

ϕµ(u
∗) = exp

(
ım(u∗)− 1

2〈u
∗, Qu∗〉

)
for all u∗ ∈ U∗.

A cylindrical random variable Z : U∗ → L0
P (Ω;R) is called Gaussian if its

cylindrical distribution is Gaussian. Since we require from the cylindrical
random variable Z to be continuous it follows that its characteristic function
ϕZ : U∗ → C is continuous. The latter occurs if and only if the covariance
operator Q maps to U∗∗.

3. Wiener integrals for Hilbert space valued integrands

In the following we recall the construction of the Wiener integral with
respect to a real valued fractional Brownian motion for integrands which
are Hilbert space valued deterministic functions. For real valued integrands
the construction is accomplished for example in [5] and for Hilbert space
valued integrands in [9, 11, 22].

We begin with recalling the definition of a fractional Brownian motion
(fBm) and for later purpose, we introduce it in Rn. A Gaussian process
(b(t) : t > 0) in Rn is an Rn-valued fractional Brownian motion with Hurst

parameter H ∈ (0, 1) if there exists a matrix M ∈ Rn×n such that

E
[
〈α, b(s)〉

]
= 0, E

[
〈α, b(s)〉〈β, b(t)〉

]
= 〈Mα, β〉R(s, t)

for all s, t > 0 and α, β ∈ Rn, where

R(s, t) := 1
2

(
s2H + t2H − |s− t|2H

)
for all s, t > 0.

The matrix M = (mi,j)
n
i,j=1 is called the covariance matrix of the fBm(

(b1(t), . . . , bn(t)) : t > 0) in Rn since it follows that

mi,j = E
[
bi(1)bj(1)

]
for all i, j = 1, . . . , n.

Thus, M is a positive and symmetric matrix. If M = Id then b is called
standard fractional Brownian motion. It follows from Kolmogorov’s conti-
nuity theorem by the Garsia-Rodemich-Rumsey inequality, that there exists
a version of a fBm with Hölder continuous paths of any order smaller than
H.

We fix for the complete work the Hurst parameter and assume H ∈ (0, 1)\
{1
2}. The covariance function has an integral representation given by

R(s, t) =

∫ s∧t

0
κ(s, u)κ(t, u) du for all s, t > 0, (3.1)

where the kernel κ has different expressions depending on the Hurst param-
eter, see e.g. [5] Chapter 2. If H > 1

2 then

κ(t, u) = bHu1/2−H

∫ t

u
(r − u)H−3/2rH−1/2 dr for all 0 6 u < t,
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where bH = (H(2H−1))1/2(β(2−2H,H−1/2))−1/2 and β denotes the Beta
function. If H < 1

2 , we have

κ(t, u) = bH

( (
t
u

)H−1/2
(t− u)H−1/2

−
(
H − 1

2

)
u1/2−H

∫ t

u
(r − u)H−1/2rH−3/2 dr

)
for all 0 6 u < t,

where bH = [2H/((1− 2H)β(1− 2H,H + 1/2))]1/2.
Let X be a separable Hilbert space with scalar product [·, ·]. A simple

X-valued function f : [0, T ] → X is of the form

f(t) =

n−1∑

i=0

xi1[ti,ti+1)(t) for all t ∈ [0, T ], (3.2)

where xi ∈ X, 0 = t0 < t1 < · · · < tn = T and n ∈ N. The space of all
simple, X-valued functions is denoted by E and it is equipped with an inner
product defined by

〈
m−1∑

i=0

xi1[0,si) ,
n−1∑

j=0

yj1[0,tj)

〉

M

:=
m−1∑

i=0

n−1∑

j=0

[xi, yj ]R(si, tj). (3.3)

Thus, E is a pre-Hilbert space. We denote the completion of E with respect
to 〈·, ·〉M by M.

Let (b(t) : t > 0) be a real valued fractional Brownian motion with Hurst
parameter H. For a simple, X-valued function f : [0, T ] → X of the form
(3.2) we define the Wiener integral by

∫ T

0
f db :=

n−1∑

i=0

xi
(
b(ti+1)− b(ti)

)
.

The integral
∫
f db is a random variable which characterises an equivalent

class in L2
P (Ω;X) (it will be denoted again by

∫
f db for simplicity). The

map f 7→
∫
f db defines an isometry between E and L2

P (Ω;X), since

∥∥∥∥
∫ T

0
f db

∥∥∥∥
2

L2
P

= ‖f‖2M. (3.4)

Consequently, we can extend the mapping f 7→
∫
f db to the space M and

the extension still satisfies the isometry (3.4).
There is an alternative description of the space M of possible integrands.

For that purpose, we introduce the linear operator K∗ : E → L2([0, T ];X),
which is defined for all t ∈ [0, T ] in case H < 1

2 by

(K∗f)(t) := f(t)κ(T, t) +

∫ T

t
(f(s)− f(t))

∂κ

∂s
(s, t) ds,

and in case H > 1
2 by

(K∗f)(t) :=

∫ T

t
f(s)

∂κ

∂s
(s, t) ds.
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The integrals appearing on the right-hand side are both Bochner integrals.
Since the operator K∗ satisfies

〈K∗f,K∗g〉L2 = 〈f, g〉M for all f, g ∈ E , (3.5)

it can be extended to an isometry K∗ between M and L2([0, T ];X). To-
gether with (3.4) we obtain

∥∥∥∥
∫ T

0
f db

∥∥∥∥
2

L2
P

= ‖K∗f‖2L2 = ‖f‖2M for all f ∈ M. (3.6)

The operator K∗ can be rewritten using the notion of fractional integrals
and derivatives. For this purpose, define for α > 0 the fractional integral

operator IαT− : L2([0, T ];X) → L2([0, T ];X) by

(
IαT−f

)
(t) :=

1

Γ(α)

∫ T

t
(s− t)α−1f(s) ds for all t ∈ [0, T ].

Young’s inequality guarantees that IαT−f ∈ L2([0, T ];X) and that the oper-

ator IαT− is bounded on L2([0, T ];X). We define the space

Hα
T−([0, T ];X) := IαT−(L

2([0, T ];X))

and equip it with the norm
∥∥IαT−f

∥∥
Hα

T−

:= ‖f‖L2 for all f ∈ L2([0, T ];X).

It follows that the space Hα
T−([0, T ];X) is a Hilbert space and it is continu-

ously embedded in L2([0, T ];X).
For α ∈ (0, 1) the fractional differential operator Dα

T− : Hα
T−([0, T ];X) →

L2([0, T ];X) is defined by

(Dα
T−f)(t) :=

1

Γ(1− α)

(
f(t)

(T − t)α
+ α

∫ T

t

f(t)− f(s)

(s− t)α+1
ds

)

for all t ∈ [0, T ]. The fractional integral and differential operators obey the
inversion formulas (see e.g. [26] or [15, Section 2.1]):

IαT−(D
α
T−f) = f for all f ∈ Hα

T−([0, T ];X),

and

Dα
T−(I

α
T−f) = f for all f ∈ L1([0, T ];X).

Let pH−1/2 denote the function pH−1/2(t) = tH−1/2 for all t ∈ [0, T ]. The
operator K∗ can be rewritten in the case H > 1/2 as

(K∗f)(t) = bHΓ
(
H − 1

2

)
t1/2−HI

H−1/2
T−

(
pH−1/2f

)
(t) (3.7)

for all t ∈ [0, T ] and in the case of H < 1/2 in the form

(K∗f)(t) = bHΓ
(
H + 1

2

)
t1/2−HD

1/2−H
T−

(
pH−1/2f

)
(t). (3.8)

It can be seen from (3.7) that M contains distribution for H > 1
2 . Thus it

became standard to consider a smaller space of integrands in place of the
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space M, see for example [5, 11, 23]. It turns out that an appropriate choice
is the function space

|M| :=

{
f : [0, T ] → X :

∫ T

0

∫ T

0
‖f(s)‖‖f(t)‖|s− t|2H−2 ds dt < ∞

}
,

equipped with the norm

‖f‖2|M| := H(2H − 1)

∫ T

0

∫ T

0
‖f(s)‖‖f(t)‖|s− t|2H−2 ds dt.

The space |M| is complete and it is continuously embedded inM. The proof
of this fact is analogous to the real valued case, see e. g. [5, Pro.2.1.13]. If
H > 1

2 then the covariance function R is differentiable with

∂2R

∂s∂t
(s, t) = H(2H − 1) |s− t|2H−2 for all s, t > 0,

and we can rewrite (3.3) as

〈f, g〉M = H(2H − 1)

∫ T

0

∫ T

0
[f(s), g(t)] |s− t|2H−2 ds dt (3.9)

for all simple functions f, g ∈ E . Since E is dense in |M|, equation (3.9) is
true for all f, g ∈ |M|, see [11, Eq.(2.14)].

We summarise the two cases by defining

M̂ :=

{
M if H ∈ (0, 1/2),

|M| if H ∈ (1/2, 1).
(3.10)

Recall that M̂ is a Banach space and the operator K∗ satisfies

‖K∗f‖L2 6 c ‖f‖
M̂

for all f ∈ M̂ (3.11)

for a constant c > 0. Inequality (3.11) follows from (3.6) and, if H > 1
2 ,

from the continuous embedding |M| →֒ M. If H < 1
2 we can choose c = 1.

In the sequel, we collect some properties of the spaces M and |M|. Recall
that the time interval [0, T ] is fixed. In our first result the coincidence of
the spaces are well known, whereas we are only aware that the equivalence
of the norms is stated in [7] but without a proof.

Proposition 3.1. For H < 1
2 the spaces M and H

1/2−H
T− ([0, T ];X) coincide

and the norms are equivalent.

Proof. The fact that the spaces coincide is shown in [1, Pro.6]. The proof of
the equivalence of the norms is based on the following relation, which can
be found in the proof of [1, Pro.6]:

K∗f = a
(
D

1/2−H
T− f

)
+Rf for all f ∈ M, (3.12)

where a := bHΓ(H+ 1
2) and R : L2([0, T ];X) → L2([0, T ];X) is a linear and

continuous operator. Since H
1/2−H
T− ([0, T ];X) is continuously embedded in

L2([0, T ];X) there exists a constant c > 0 such that for each f ∈ M we have

‖f‖M = ‖K∗f‖L2 6 a
∥∥∥D1/2−H

T− f
∥∥∥
L2

+ ‖Rf‖L2 6 (a+ c ‖R‖) ‖f‖
H

1/2−H
T−

.
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On the other hand, the Hardy-Littlewood inequality in weighted spaces guar-
antees that M is continuously embedded in L1/H([0, T ];X). More specifi-
cally, by choosing p = 2, α = 1

2 − H,m = 0, q = 1
H , µ = 2α, ν = qα in [26,

Th.5.4], we obtain for f ∈ M

‖f‖Lq =

(∫ T

0
‖f(t)‖q dt

)1/q

=

(∫ T

0
tν
∥∥t−αf(t)

∥∥q dt

)1/q

=

(∫ T

0
tν
∥∥(IαT−D

α
T−p

−αf)(t)
∥∥q dt

)1/q

6 c

(∫ T

0
tµ
∥∥(Dα

T−p
−αf)(t)

∥∥p dt

)1/p

= c(bHΓ(H + 1
2))

−1/p ‖K∗f‖L2

= c(bHΓ(H + 1
2))

−1/p ‖f‖M , (3.13)

for a constant c > 0. Consequently, together with the continuous embedding
of L1/H([0, T ];X) in L2([0, T ];X), it follows from (3.12) that each f ∈ M
satisfies

a ‖f‖
H

1/2−H
T−

6 ‖K∗f‖L2 + ‖Rf‖L2 =
(
1 + c(bHΓ(H + 1

2))
−1/2 ‖R‖

)
‖f‖M ,

which completes the proof. �

Proposition 3.2. For every t ∈ [0, T ] there exists a constant ct > 0 such

that each f ∈ M̂ obeys:

(a) 1[0,t]f ∈ M̂ and
∥∥1[0,t]f

∥∥
M

6 ct ‖f‖M.

(b) 1[0,t]f(t− ·) ∈ M̂ and
∥∥1[0,t]f(t− ·)

∥∥
M

=
∥∥1[0,t]f

∥∥
M
.

Proof. IfH > 1
2 , both properties (a) and (b) follow from (3.9) with ct = 1 for

all t ∈ [0, T ]. If H < 1
2 , note that it is known for f ∈ H

1/2−H
T− ([0, T ];X) that

1[0,t]f and 1[0,t]f(t− ·) are in H
1/2−H
T− ([0, T ];X), see [26, Th.13.9, Th.13.10,

Re.13.3] or [7, Le.2.1, Le.2.2]. Furthermore, there exists a constant at > 0
such that

∥∥1[0,t]f
∥∥
H

1/2−H
T−

6 at ‖f‖H1/2−H
T−

.

Thus Proposition 3.1 implies part (a) and 1[0,t]f(t − ·) ∈ M̂. To show the
norm equality in part (b), note the identity

〈g, h〉 = eH

〈
D

1/2−H
− g, D

1/2−H
+ h

〉
L2

for all g, h ∈ M, (3.14)

where eH denotes a constant depending only on H, see [21, page 286]. Here
Dα

± denote the right-sided/left-sided Weyl-Marchaud fractional derivatives
defined by

D
α
±g(r) :=

α

Γ(1− α)

∫ ∞

0

g(r)− g(r ∓ s)

s1+α
ds for all r ∈ R.
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It follows from (3.14) that
∥∥1[0,t]f(t− ·)

∥∥2
M

= eH
〈(
D

1/2−H
− 1[0,t]f(t− ·)

)
(·),

(
D

1/2−H
+ 1[0,t]f(t− ·)

)
(·)
〉

= eH
〈(
D

1/2−H
+ 1[0,t]f

)
(t− ·),

(
D

1/2−H
− 1[0,t]f

)
(t− ·)

〉

=
∥∥1[0,t]f

∥∥2
M

,

which completes the proof. �

In the following we prove a technical result that links the real case, that is
X = R in the above, with the Hilbert case. For this reason we will stress the
dependence on the underlying space by writing either K∗

R
or K∗

X . Analogous

notation will be adopted for the space M̂.

Proposition 3.3.

(a) Let f be in M̂R and x ∈ X. Then

F : [0, T ] → X, F (t) = x f(t),

belongs to M̂X satisfying (K∗
XF )(·) = x(K∗

R
f)(·).

(b) Let F be in M̂X and x ∈ X. Then

f : [0, T ] → R f(t) = [F (t), x],

belongs to M̂R satisfying 〈K∗
XF (·), x〉 = (K∗

R
f)(·).

Proof. We prove only part (a) as part (b) can be done analogously. If H <
1
2 then by Proposition 3.1 there exists ϕf ∈ L2([0, T ];R) such that f =

I
1/2−H
T− ϕf . Since xϕf ∈ L2([0, T ];X) and F = xI

1/2−H
T− ϕf = I

1/2−H
T− xϕf ,

it follows that F ∈ M̂X . If H > 1
2 , the assumption f ∈ |M |R implies

F ∈ |M |X . In both cases, the very definition of K∗
X and K∗

R
shows K∗

XF =
xK∗

R
f . �

4. Cylindrical fractional Brownian motion

We define cylindrical fractional Brownian motions in a separable Banach
space U by following the classical approach of cylindrical processes. In the
same way, one can introduce cylindrical Wiener processes, see for instance
[16, 18, 24], and recently, this approach has been accomplished in [2] to give
the first systematic treatment of cylindrical Lévy processes.

Definition 4.1. A cylindrical process (B(t) : t > 0) in U is a cylindrical
fractional Brownian motion with Hurst parameter H ∈ (0, 1) if

(a) for any u∗1, . . . , u
∗
n ∈ U∗ and n ∈ N, the stochastic process
(
(B(t)u∗1, . . . , B(t)u∗n) : t > 0

)

is a fractional Brownian motion with Hurst parameter H in Rn;

(b) the covariance operator Q : U∗ → U∗∗ of B(1) defined by

〈Qu∗, v∗〉 = E
[(
B(1)u∗

)(
B(1)v∗

)]
for all u∗, v∗ ∈ U∗,

is U -valued.
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By applying part (a) for n = 2 it follows that a cylindrical fBm (B(t) :
t > 0) with covariance operator Q obeys

E
[
(B(s)u∗)(B(t)v∗)

]
= 〈Qu∗, v∗〉R(s, t)

for all s, t > 0 and u∗, v∗ ∈ U∗. Note that if H = 1
2 then Definition 4.1

covers the cylindrical Wiener process as defined in [16, 18, 24].
Definition 4.1 involves all possible n-dimensional projections of the pro-

cess, but since we are dealing with Gaussian processes the condition can be
simplified using only two-dimensional projections.

Lemma 4.2. For a cylindrical process B := (B(t) : t > 0) in U the following

are equivalent:

(a) B is a cylindrical fractional Brownian motion with Hurst parameter

H ∈ (0, 1);
(b) B satisfies:

(i) for each u∗, v∗ ∈ U∗ the stochastic process
(
(B(t)u∗, B(t)v∗) :

t > 0
)
is a two-dimensional fBm;

(ii) the covariance operator of B(1) is U -valued.

Proof. We have to prove only the implication (b) ⇒ (a). For u∗1, . . . , u
∗
n ∈

U∗ define the stochastic process Y =
(
(B(t)u∗1, . . . , B(t)u∗n) : t > 0

)
. It

follows that Y is Gaussian and satisfies E[〈α, Y (t)〉] = 0 for all t > 0 and
α = (α1, . . . , αn) ∈ R

n since

〈α, Y (t)〉 =

n∑

i=1

αiB(t)u∗i = B(t)

(
n∑

i=1

αiu
∗
i

)
.

Let M = (mi,j)
n
i,j=1 be the n-dimensional matrix defined by

mi,j = E
[(
B(1)u∗i

)(
B(1)u∗j

)]
, i, j = 1, . . . , n.

Since it follows from (b) that E
[
(B(s)u∗i )(B(t)u∗j )

]
= mi,jR(s, t) for all

s, t > 0 and i, j = 1, . . . , n we obtain

E
[
〈α, Y (s)〉〈β, Y (t)〉

]
= E




n∑

i=1

n∑

j=1

αiβj
(
B(s)u∗i

)(
B(t)u∗j

)



=

n∑

i=1

n∑

j=1

αiβjmi,jR(s, t)

= 〈Mα, β〉R(s, t)

for each α = (α1, . . . , αn) and β = (β1, . . . , βn) in R
n. �

The following result provides an analogue of the Karhunen-Loève expan-
sion for cylindrical Wiener processes.

Theorem 4.3. For a cylindrical process B := (B(t) : t > 0) the following

are equivalent:

(a) B is a cylindrical fractional Brownian motion with Hurst parameter

H ∈ (0, 1);
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(b) there exist a Hilbert space X with an orthonormal basis (ek)k∈N, i ∈
L(X,U) and a sequence (bk)k∈N of independent, real valued standard

fBms with Hurst parameter H ∈ (0, 1) such that

B(t)u∗ =
∞∑

k=1

〈iek, u
∗〉bk(t) (4.1)

in L2
P (Ω;R) for all u∗ ∈ U∗ and t > 0.

In this situation the covariance operator of B(1) is given by Q = ii∗ : U∗ →
U .

Proof. The implication (a) ⇒ (b) can be proved as Theorem 4.8 in [2]. For
establishing the implication (b) ⇒ (a), it is immediate that the right hand
side of (4.1) converges. Fix u∗1, . . . , u

∗
n ∈ U∗ and define the n-dimensional

stochastic process Y := (Y (t) : t > 0) by

Y (t) : = (B(t)u∗1, . . . , B(t)u∗n) for all t > 0.

It follows that Y is Gaussian and satisfies E[〈α, Y (t)〉] = 0 for all t > 0 and
α = (α1, . . . , αn) ∈ R

n since

〈α, Y (t)〉 =

n∑

i=1

αiB(t)u∗i = B(t)

(
n∑

i=1

αiu
∗
i

)
.

Let M = (mi,j)
n
i,j=1 be the n × n-dimensional covariance matrix of the

random vector Y (1), that is mi,j := E
[
(B(1)u∗i )(B(1)u∗j )

]
. The definition

of Y yields

mi,j =
∞∑

k=1

∞∑

ℓ=1

〈iek, u
∗
i 〉〈ieℓ, u

∗
j 〉E[bk(1)bℓ(1)] =

∞∑

k=1

〈iek, u
∗
i 〉〈iek, u

∗
j 〉.

Let α = (α1, . . . , αn) ∈ Rn and β = (β1, . . . , βn) ∈ Rn. By using the
independence of bk and bℓ for each k 6= ℓ we obtain for every s, t > 0

E
[
〈α, Y (s)〉〈β, Y (t)〉

]

= E



(

n∑

i=1

αi

∞∑

k=1

〈iek, u
∗
i 〉bk(s)

)


n∑

j=1

βj

∞∑

ℓ=1

〈ieℓ, u
∗
j 〉bℓ(t)






=

n∑

i=1

n∑

j=1

αiβj

∞∑

k=1

∞∑

ℓ=1

〈iek, u
∗
i 〉〈ieℓ, u

∗
j 〉E [bk(s)bℓ(t)]

=

n∑

i=1

n∑

j=1

αiβj

∞∑

k=1

〈iek, u
∗
i 〉〈iek, u

∗
j 〉E [bk(s)bk(t)]

=

n∑

i=1

n∑

j=1

αiβjmi,jR(s, t)

= 〈Mα, β〉R(s, t).

It is left to prove that B(1) : U∗ → L0
P (Ω;R) is continuous and its covariance

operator Q : U∗ → U∗′ is U -valued. By independence of bk and bℓ for k 6= ℓ
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it follows for u∗ ∈ U∗ that

ϕB(1)(u
∗) =

∞∏

k=1

E
[
exp (ı 〈iek, u

∗〉bk(1))
]

=
∞∏

k=1

exp
(
−1

2〈iek, u
∗〉2
)
= exp

(
−1

2‖i
∗u∗‖2X

)
.

Thus, the characteristic function ϕB(1) : U
∗ → C is continuous, which entails

the continuity of B(1) by [29, Pro. IV.3.4]. Moreover, it follows that Q = ii∗,
that is the covariance operator Q is U -valued and of the claimed form. �

Example 4.4. Let U be a Hilbert space with orthonormal basis (ek)k∈N,
identify the dual space U∗ with U , and let (qk)k∈N ⊆ R be a sequence
satisfying supk∈N |qk| < ∞. It follows by Theorem 4.3 that for an arbitrary
sequence (bk)k∈N of independent, real valued standard fBms, the series

B(t)u :=

∞∑

k=1

qk〈ek, u〉bk(t), u ∈ U,

defines a cylindrical fBm (B(t) : t > 0) in U . The covariance operator Q is
given by Q = ii∗, where i : U → U is defined as iu =

∑∞
k=1 qk〈ek, u〉ek.

Example 4.5. For a set D ∈ B(Rn) let (ek)k∈N ⊆ L2(D;R) be an or-
thonormal basis and let (τk)k∈N be a sequence of functions τk ∈ L2(D;R)

satisfying
∑∞

k=1 ‖τk‖
2
L2 < ∞. Applying Cauchy-Schwarz inequality twice

shows that

i : L2(D;R) → L1(D;R), if =
∞∑

k=1

〈ek, f〉τk(·)ek(·) (4.2)

defines a linear and continuous mapping. It follows from Theorem 4.3 that
for an arbitrary sequence (bk)k∈N of independent, real valued standard fBm,
the series

B(t)f :=

∞∑

k=1

〈iek, f〉bk(t), f ∈ L∞(D;R),

defines a cylindrical fBm (B(t) : t > 0) in L1(D;R) with covariance operator
Q = ii∗ : L∞(D;R) → L1(D;R).

Example 4.6. A special case of Example 4.5 is obtained by choosing the
functions τk ∈ L2(D;R) as τk = qk1Ak

for qk ∈ R and Ak ∈ B(D) satisfying∑∞
k=1 q

2
k Leb(Ak) < ∞. Then the cylindrical fBm of Example 4.5 has the

form

B(t)f =

∞∑

k=1

qk〈1Ak
ek, f〉bk(t).

This process can be considered as an anisotropic cylindrical fractional Brow-
nian sheet in L1(D;R) since its covariance structure might vary in different
directions.

In the final part of this section we consider the relation between cylindrical
and genuine fractional Brownian motion in a separable Banach space U . For
this purpose, we generalise the definition of a fractional Brownian motion
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in Rn to Banach spaces. This definition is consistent with others in the
literature, in particular the one in [9] for Hilbert spaces.

Definition 4.7. A U -valued Gaussian stochastic process (Y (t) : t > 0) is

called a fractional Brownian motion in U with Hurst parameter H ∈ (0, 1)
if there exists a mapping Q : U∗ → U such that

〈Y (t), u∗〉 = 0, E
[
〈Y (s), u∗〉〈Y (t), v∗〉

]
= 〈Qu∗, v∗〉R(s, t)

for all s, t > 0 and u∗, v∗ ∈ U∗.

By taking s = t = 1 it follows that

〈Qu∗, v∗〉 = E
[
〈Y (1), u∗〉〈Y (1), v∗〉

]
for all u∗, v∗ ∈ U∗.

Thus, Q is the covariance operator of the Gaussian measure PY (1) and it
must be a symmetric and positive operator in L(U∗, U).

Clearly every fBm in a Banach space U is a cylindrical fBm in U and
thus, it obeys the representation (4.1). However, the operator i, or in other
words the embedding of the reproducing kernel Hilbert space, must yield a
Radon measure in U , which basically leads to the following result:

Theorem 4.8. For a U -valued stochastic process Y := (Y (t) : t > 0) the

following are equivalent:

(a) Y is a fBm in U with Hurst parameter H ∈ (0, 1);
(b) there exist a Hilbert space X with an orthonormal basis (ek)k∈N,

a γ-radonifying operator i ∈ L(X,U) and independent, real valued

standard fBms (bk)k∈N such that

Y (t) =

∞∑

k=1

iek bk(t)

in L2
P (Ω;U) for all t > 0.

In this situation the covariance operator of Y (1) is given by Q = ii∗ : U∗ →
U .

Proof. The result can be proved as Theorem 23 in [24]. �

In the literature a fractional Brownian motion in a Hilbert space is often
defined by a series representation as in Theorem 4.8, in which case the space
of γ-radonifying operators coincides with Hilbert-Schmidt operators.

If (B(t) : t > 0) is a cylindrical fBm which is induced by a U -valued
process (Y (t), t > 0), i.e.

B(t)u∗ = 〈Y (t), u∗〉 for all t > 0, u∗ ∈ U∗, (4.3)

then Y is a U -valued fBm. Vice versa, if Y is a U -valued fBm then B defined
by (4.3) is a cylindrical fBm, and in both cases the covariance operators
coincide. This can be seen by the fact that (4.3) determines uniquely the
characteristic functions of

(
B(s), B(t)

)
and

(
Y (s), Y (t)

)
for all s, t > 0.

Moreover, a cylindrical fBm with the representation (4.1) is a U -valued fBm
if and only if the embedding i is γ-radonifying. This result can be established
as in [24, Th.25].
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Example 4.9. If we assume in Example 4.5 that the functions τk are in
L∞(D;R) and satisfy

∑
‖τk‖∞ < ∞ then the mapping i, defined in (4.2),

maps to L2(D;R). Moreover, i is a Hilbert-Schmidt operator, as

∞∑

k=1

‖iek‖
2
L2 =

∞∑

k=1

‖τkek‖
2
L2 6

∞∑

k=1

‖τk‖
2
∞.

Since γ-radonifying and Hilbert-Schmidt operators coincide in Hilbert spaces,
Theorem 4.8 implies that the cylindrical fBm in Example 4.9 is induced by
a genuine fractional Brownian motion in L2(D;R).

5. Integration

In this section we introduce the stochastic integral
∫
Ψ(s) dB(s) as a

V -valued random variable for deterministic, operator valued functions Ψ :
[0, T ] → L(U, V ), where V is another separable Banach space. Our approach
is based on the idea to introduce firstly a cylindrical random variable ZΨ :
V ∗ → L0

P (Ω;R) as a cylindrical integral. Then we call a V -valued random
variable IΨ : Ω → V the stochastic integral of Ψ if it satisfies

ZΨv
∗ = 〈IΨ, v

∗〉 for all v∗ ∈ V ∗.

In this way, the stochastic integral IΨ can be considered as a stochastic Pet-

tis integral. This approach enables us to have a candidate of the stochastic
integral, i.e. the cylindrical random variable ZΨ, under very mild condi-
tions at hand because cylindrical random variables are more general objects
than genuine random variables. The final requirement, that the cylindri-
cal random variable ZΨ is in fact a classical Radon random variable, can
be equivalently described in terms of the corresponding covariance operator
and thus, it solely depends on geometric properties of the underlying Banach
space V .

For defining the cylindrical integral, recall the representation of a cylin-
drical fBm (B(t) : t > 0) with Hurst parameter H ∈ (0, 1) in the Banach
space U , according to Theorem 4.3:

B(t)u∗ =
∞∑

k=1

〈iek, u
∗〉bk(t) for all u∗ ∈ U∗, t > 0. (5.1)

Here, X is a Hilbert space with an orthonormal basis (ek)k∈N, i : X → U is
a linear, continuous mapping and (bk)k∈N is a sequence of independent, real
valued standard fBms. If we assume momentarily that we have already in-

troduced a stochastic integral
∫ T
0 Ψ(t) dB(t) as a V -valued random variable,

then the representation (5.1) of B naturally results in

∞∑

k=1

∫ T

0
〈Ψ(t)iek, v

∗〉 dbk(t) for all v∗ ∈ V ∗. (5.2)

By swapping the terms in the dual pairing, the integrals can be considered
as the Fourier coefficients of the X-valued integral

∫ T

0
i∗Ψ∗(t)v∗ dbk(t),
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which we introduce in Section 3. This results in the minimal requirement
that the function t 7→ i∗Ψ∗(t)v∗ must be integrable with respect to the real
valued standard fBm bk for every v∗ ∈ V ∗ and k ∈ N, that is the function
Ψ must be in the linear space

I := {Φ : [0, T ] → L(U, V ) : i∗Φ∗(·)v∗ ∈ M̂ for all v∗ ∈ V ∗ }.

Here, M̂ = M̂X denotes the Banach space of functions f : [0, T ] → X
introduced in Section 3. For this class of integrands we have the following
property.

Proposition 5.1. For each Ψ ∈ I the mapping

LΨ : V ∗ → M̂, LΨv
∗ = i∗Ψ∗(·)v∗

is linear and continuous.

Proof. The operator L = LΨ is linear and takes values in M̂ by definition
of I. We prove that L is continuous by the closed mapping theorem. For

this purpose, let v∗n → v∗0 in V ∗ and Lv∗n → g ∈ M̂. We consider the cases
H < 1/2 and H > 1/2 separately.

Case H < 1/2. From the Hardy-Littlewood inequality in weighted spaces,
see (3.13), it follows that

‖f‖Lq 6 c(bHΓ(H + 1
2))

−1/2 ‖f‖M for all f ∈ M

for a constant c > 0 and q = 1
H . Consequently, the convergence Lv∗n → g in

M implies that there exists a subsequence (nk)k∈N ⊆ N such that Lv∗nk
(t) →

g(t) as k → ∞ for Lebesgue almost all t ∈ [0, T ]. On the other hand, we have
i∗Ψ∗(t)v∗nk

→ i∗Ψ∗(t)v∗0 inX as k → ∞ for all t ∈ [0, T ], because i∗ and Ψ∗(t)
are continuous. Consequently, we arrive at g(t) = i∗Ψ∗(t)v∗0 for Lebesgue
almost all t ∈ [0, T ], and thus, g = Lv∗0 as functions in L2([0, T ];X).

Case H > 1/2. In this case M̂ = |M|. Let us remark, that if f ∈ |M|
then f ∈ L1([0, T ];X) and

(2T )2H−2‖f‖2L1 = (2T )2H−2

∫ T

0

∫ T

0
‖f(s)‖‖f(t)‖ ds dt

6

∫ T

0

∫ T

0
‖f(s)‖‖f(t)‖|s− t|2H−2 ds dt

=
1

H(2H − 1)
‖f‖2|M|.

Using this fact, the convergence Lv∗n → g in |M| implies that Lv∗nk
(t) → g(t)

as k → ∞ for Lebesgue almost all t ∈ [0, T ] for a subsequence (nk)k∈N ⊆ N.
The continuity of the mapping v∗ 7→ i∗Ψ∗(t)v∗ for all t ∈ [0, T ] shows that
g(t) = i∗Ψ∗(t)v∗0 for Lebesgue almost all t ∈ [0, T ] and thus, g = Lv∗0 in
|M|. �

Before we establish the existence of the cylindrical integral as motivated
in (5.2), we introduce an operator which will turn out to be the factorisation
of the covariance operator of the cylindrical integral.
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Lemma 5.2. For every Ψ ∈ I we define

〈ΓΨf, v
∗〉 =

∫ T

0
[K∗(i∗Ψ∗(·)v∗)(t), f(t)] dt for all f ∈ L2([0, T ];X), v∗ ∈ V ∗.

In this way, one obtains a linear, bounded operator ΓΨ : L2([0, T ];X) → V ∗∗.

Proof. Proposition 5.1, together with equation (3.11), implies

|〈ΓΨf, v
∗〉| = |〈K∗(i∗Ψ∗(·)v∗), f〉L2 |

6 c1 ‖i
∗Ψ∗(·)v∗‖

M̂
‖f‖L2 6 c2 ‖v

∗‖V ∗ ‖f‖L2 ,

for some constants c1, c2 > 0, which shows boundedness of ΓΨ. �

Proposition 5.3. Let the fBm B be represented in the form (5.1). Then

for each Ψ ∈ I the mapping

ZΨ : V ∗ → L2
P (Ω;R), ZΨv

∗ :=
∞∑

k=1

∫ T

0
〈Ψ(t)iek, v

∗〉 dbk(t) (5.3)

defines a Gaussian cylindrical random variable in V with covariance operator

QΨ : V ∗ → V ∗∗, factorised by QΨ = ΓΨΓ
∗
Ψ. Furthermore, the cylindrical

random variable ZΨ is independent of the representation (5.1).

Proof. Since 〈Ψ(·)iek, v
∗〉 = [ek, i

∗Ψ∗(·)v∗] and i∗Ψ∗(·)v∗ ∈ M̂ for every
v∗ ∈ V ∗, Proposition 3.3 guarantees that the one-dimensional integrals in
(5.3) are well defined, and it implies that

‖ZΨv
∗‖2L2

P
=

∞∑

k=1

E

∣∣∣∣
∫ T

0
〈Ψ(t)iek, v

∗〉dbk(t)

∣∣∣∣
2

=
∞∑

k=1

∫ T

0

∣∣K∗
R

(
〈Ψ(·)iek, v

∗〉
)
(t)
∣∣2 dt

=
∞∑

k=1

∫ T

0

∣∣K∗
R

(
[ek, i

∗Ψ∗(·)v∗]
)
(t)
∣∣2 dt

=
∞∑

k=1

∫ T

0

∣∣[ek,K∗
X

(
i∗Ψ∗(·)v∗

)
(t)]
∣∣2 dt

=

∞∑

k=1

∫ T

0

[
ek,
(
Γ∗
Ψv

∗
)
(t)
]2

dt

= ‖Γ∗
Ψv

∗‖2L2 .

Consequently, the sum in (5.3) converges in L2
P (Ω;R) and the limit is a zero

mean Gaussian random variable. The continuity of the operator Γ∗
Ψ : V ∗ →

L2([0, T ];X) implies the continuity of ZΨ : V ∗ → L2
P (Ω;R). It follows for

the characteristic function of ZΨ that

ϕZΨ
(v∗) = exp

(
−1

2 ‖Γ
∗
Ψv

∗‖2L2

)
for all v∗ ∈ V ∗.

Since Lemma 5.2 implies that

‖Γ∗
Ψv

∗‖2L2 = 〈ΓΨΓ
∗
Ψv

∗, v∗〉 for all v∗ ∈ V ∗,

it follows that the covariance operator QΨ of ZΨ obeys QΨ = ΓΨΓ
∗
Ψ.



CYLINDRICAL FRACTIONAL BROWNIAN MOTION 19

The independence of ZΨ of the representation (5.1) can be established as
in [24, Le.2]. �

For Ψ ∈ I we call the cylindrical random variable ZΨ, defined in (5.3),
the cylindrical integral of Ψ. Apart from the restriction of the space M of

all integrable distributions to M̂, the condition for a mapping Ψ to be in I is
the minimal requirement to guarantee that the real valued integrals in (5.2)
exist. Thus without any further condition the cylindrical integral ZΨ exists
in the Banach space U . However, in order to obtain that the cylindrical
integral ZΨ extends to a genuine random variable in U , the integrand must
exhibit further properties.

Definition 5.4. A function Ψ ∈ I is called stochastically integrable if there
exists a random variable IΨ : Ω → V such that

ZΨv
∗ = 〈IΨ, v

∗〉 for all v∗ ∈ V ∗,

where ZΨ denotes the cylindrical integral of Ψ. We use the notation

IΨ :=

∫ T

0
Ψ(t) dB(t).

In other words, a function Ψ ∈ I is stochastically integrable if and only if
the cylindrical random variable ZΨ is induced by a Radon random variable.
This occurs if and only if the cylindrical distribution of ZΨ extends to a
Radon measure. In Sazonov spaces this is equivalent to the condition that
the characteristic function of ZΨ is Sazonov continuous. However, since the
cylindrical distribution of ZΨ is Gaussian, one can equivalently express the
stochastic integrability in terms of the covariance operator.

Theorem 5.5. For Ψ ∈ I the following are equivalent:

(a) Ψ is stochastically integrable;

(b) the operator ΓΨ is V -valued and γ-radonifying.

Proof. (b) ⇒ (a). Let γ be the canonical Gaussian cylindrical measure on
L2([0, T ];X). It follows from Proposition 5.3 that the cylindrical distribution
of ZΨ is the image cylindrical measure γ◦Γ−1

Ψ . According to [29, Thm.IV.2.5,
p.216], the cylindrical random variable ZΨ is induced by a V -valued random
variable if and only if its cylindrical distribution γ ◦Γ−1

Ψ extends to a Radon
measure on B(V ), which is guaranteed by (b).

(a) ⇒ (b). The proof follows closely some arguments in the proof of
Theorem 2.3 in [31]. Let Q : V ∗ → V be the covariance operator of the
Gaussian random variable

∫
Ψ(t) dB(t). Proposition 5.3 implies that Q =

ΓΨΓ
∗
Ψ : V ∗ → V . Define the set S := {K∗(i∗Ψ∗(·)v∗) : v∗ ∈ V ∗}, which

is a subset of L2([0, T ];X). By the very definition of ΓΨ, a function f ∈
L2([0, T ];X) is in ker ΓΨ if and only if f ⊥ S, which yields

L2([0, T ];X) = S̄ ⊕ ker ΓΨ. (5.4)

Since for all v∗, w∗ ∈ V ∗ we have

〈ΓΨK
∗(i∗Ψ∗(·)v∗), w∗〉 = 〈ΓΨΓ

∗
Ψv

∗, w∗〉 = 〈Qv∗, w∗〉,

it follows that ΓΨK
∗(i∗Ψ∗(·)v∗) = Qv∗ for all v∗ ∈ V ∗. Consequently,

ΓΨf ∈ V for all f ∈ S and the decomposition (5.4) implies that ΓΨf ∈ V
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for all f ∈ L2([0, T ];X). Clearly, since Q is a Gaussian covariance operator,
the operator ΓΨ is γ-radonifying, which completes the proof. �

Corollary 5.6. If Φ and Ψ are mappings in I satisfying

‖i∗Φ∗(·)v∗‖M 6 c ‖i∗Ψ∗(·)v∗‖M for all v∗ ∈ V ∗,

for a constant c > 0 and if Ψ is stochastically integrable then Φ is also

stochastically integrable.

Proof. The proof follows some arguments in the proof of Theorem 2.3 in [31].
Define the operator Q := ΓΦΓ

∗
Φ : V ∗ → V ∗∗. The isometry (3.6) implies for

every v∗ ∈ V ∗ that

〈v∗, Qv∗〉2 = 〈Γ∗
Φv

∗,Γ∗
Φv

∗〉2L2 =
∥∥K∗

(
i∗Φ∗(·)v∗

)∥∥2
L2

= ‖i∗Φ∗(·)v∗‖2M

6 c ‖i∗Ψ∗(·)v∗‖2M = c〈ΓΨΓ
∗
Ψv

∗, v∗〉.

Since ΓΨΓ
∗
Ψ and Q are positive, symmetric operators in L(V ∗, V ∗∗) and the

first one is V -valued according to Theorem 5.5, it follows by an argument
based on a result of the domination of Gaussian measures, see [31, Sec.1.1],
that Q is also V -valued and a Gaussian covariance operator. As in the proof
of the implication (a) ⇒ (b) in Theorem 5.5 we can conclude that ΓΦ is
V -valued. �

If the mapping Ψ ∈ I is stochastically integrable, Proposition 3.2 implies
for each t ∈ [0, T ] that 1[0,t]Ψ ∈ I and it satisfies

∥∥1[0,t]i∗Ψ∗(·)v∗
∥∥
M

6 ct ‖i
∗Ψ∗(·)v∗‖M for all v∗ ∈ V ∗,

for a constant ct > 0. Corollary 5.6 enables us to conclude that 1[0,t]Ψ is
stochastically integrable, and thus we can define

∫ t

0
Ψ(s) dB(s) :=

∫ T

0
1[0,t](s)Ψ(s) dB(s) for all t ∈ [0, T ].

The integral process
( ∫ t

0 Ψ(s) dB(s) : t ∈ [0, T ]
)
is continuous in p-th mean

for each p > 1. In order to see that let tn → t as n → ∞ for tn > t and

let Q
(n)
Ψ denote the covariance operator of the Gaussian random variable∫ tn

t Ψ(s) dB(s). It follows for each v∗ ∈ V ∗ that

〈Q
(n)
Ψ v∗, v∗〉 =

∥∥K∗(1[t,tn](·)i
∗Ψ∗(·)v∗)

∥∥2
L2 =

∥∥1[t,tn](·)i∗Ψ∗(·)v∗
∥∥2
M

.

Each f ∈ M̂ satisfies
∥∥1[t,tn](·)f

∥∥
M

→ 0 as tn → t which follows from (3.9)

in case H > 1
2 and from results in [26, Ch.13.3] in case H < 1

2 , see also

Proposition 3.2. Consequently, we obtain that 〈Q
(n)
Ψ v∗, v∗〉 → 0 as tn → t

and we can conclude as in the proof of Corollary 2.8 in [31] that the integral
process is continuous in p-th mean.
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6. The Cauchy problem

In this section, we apply our previous results to consider stochastic evo-
lution equations driven by cylindrical fractional Brownian motions of the
form

dY (t) = AY (t) dt+ C dB(t), t ∈ (0, T ],

Y (0) = y0.
(6.1)

Here B is a cylindrical fBm in a separable Banach space U , A is a generator
of a strongly continuous semigroup (S(t), t > 0) in a separable Banach space
V and C is an operator in L(U, V ). The initial condition y0 is an element
in V .

The paths of a solution exhibit some kind of regularity, which is weaker
than P -a.s. Bochner integrable paths:

Definition 6.1. A V -valued stochastic process (X(t) : t ∈ [0, T ]) is called

weakly Bochner regular if for every sequence (Hn)n∈N of continuous func-

tions Hn : [0, T ] → V ∗ it satisfies:

sup
t∈[0,T ]

‖Hn(t)‖ → 0 ⇒

∫ T

0
|〈X(t), Hnk

(t)〉|2 dt → 0 P -a.s. for k → ∞,

for a subsequence (Hnk
)k∈N of (Hn)n∈N.

Definition 6.2. A stochastic process (Y (t) : t ∈ [0, T ]) in V is called a weak
solution of (6.1) if it is weakly Bochner regular and for every v∗ ∈ D(A∗)
and t ∈ [0, T ] we have P -a.s.,

〈Y (t), v∗〉 = 〈y0, v
∗〉+

∫ t

0
〈Y (s), A∗v∗〉 ds+B(t)(C∗v∗). (6.2)

From a proper integration theory we can expect that if the convoluted
semigroup S(t − ·)C is integrable for all t ∈ [0, T ] then a weak solution
of (6.1) exists and can be represented by the usual variation of constants
formula. Recall that the space of integrands is

I := {Φ : [0, T ] → L(U, V ) : i∗Φ∗(·)v∗ ∈ M̂ for all v∗ ∈ V ∗ }.

Theorem 6.3. Assume that S(·)C is in I. Then the following are equiva-

lent:

(a) the Cauchy problem (6.1) has a weak solution Y ;

(b) the mapping S(·)C is stochastically integrable.

In this situation the solution (Y (t) : t ∈ [0, T ]) can be represented by

Y (t) = S(t)y0 +

∫ t

0
S(t− s)C dB(s) for all t ∈ [0, T ]. (6.3)

Proof. (b) ⇒ (a): Proposition 3.2 guarantees for each t ∈ [0, T ] that the
mapping 1[0,t]S(t− ·)C is in I and that there exists a constant ct > 0 such
that

∥∥1[0,t]i∗C∗S∗(t− ·)v∗
∥∥
M

6 ct ‖i
∗C∗S∗(·)v∗‖M for all v∗ ∈ V ∗.
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Thus Corollary 5.6 guarantees that 1[0,t]S(t−·)C is stochastically integrable,
which enables to define the stochastic integral

X(t) :=

∫ t

0
S(t− s)C dB(s) for all t ∈ [0, T ].

It follows from representation (5.3) that the real valued stochastic process
(〈X(t), v∗〉 : t ∈ [0, T ]) is adapted for each v∗ ∈ V ∗. Pettis’ measurability
theorem implies that X := (X(t) : t ∈ [0, T ]) is adapted.

By linearity we can assume that y0 = 0. The stochastic Fubini theorem
for real valued fBm implies for each v∗ ∈ D(A∗) and t ∈ [0, T ], that

∫ t

0
〈X(s), A∗v∗〉 ds =

∞∑

k=1

∫ t

0

∫ s

0
〈S(s− r)Ciek, A

∗v∗〉 dbk(r) ds

=

∞∑

k=1

∫ t

0

∫ t

r
〈S(s− r)Ciek, A

∗v∗〉 ds dbk(r)

=

∞∑

k=1

∫ t

0
〈S(t− r)Ciek − Ciek, v

∗〉 dbk(r)

= 〈

∫ t

0
S(t− r)C dB(r), v∗〉 −

∞∑

k=1

〈iek, C
∗v∗〉bk(t)

= 〈X(t), v∗〉 −B(t)(C∗v∗),

which shows that the process X satisfies (6.2). In order to show that X is
weakly Bochner regular define Ψt := 1[0,t](·)S(t − ·)C for each t ∈ [0, T ].
Note that Proposition 3.2 guarantees that there exists a constant ct > 0
such that

∥∥Γ∗
Ψt
v∗
∥∥
L2 =

∥∥1[0,t](·)i∗C∗S∗(t− ·)v∗
∥∥
M

6 ct ‖i
∗C∗S∗(·)v∗‖M

for every v∗ ∈ V ∗. Since the derivation of the constant ct in [26, Ch.13.3]
shows that supt∈[0,T ] ct < ∞, the uniform boundedness principle implies that

supt∈[0,T ]

∥∥Γ∗
Ψt

∥∥
V ∗→L2

< ∞. Thus for a sequence (Hn)n∈N of continuous

mappings Hn : [0, T ] → V ∗ we obtain

E

[∣∣∣∣
∫ T

0
〈X(t), Hn(t)〉 dt

∣∣∣∣
2
]
6 T

∫ T

0
E
[
|ZΨtHn(t)|

2
]
dt

= T

∫ T

0

∥∥Γ∗
Ψt
Hn(t)

∥∥2 dt

6 T 2 sup
t∈[0,T ]

∥∥Γ∗
Ψt

∥∥2
V ∗→L2 sup

t∈[0,T ]
‖Hn(t)‖

2 ,

which shows the weak Bochner regularity.
(a) ⇒ (b): by applying Itô’s formula for real valued fBm, see e.g. [5, Thm

6.3.1], one deduces for every continuously differentiable function f : [0, T ] →
R and real valued fBm b

∫ T

0
f ′(s)b(s) ds = f(T )b(T )−

∫ T

0
f(s) db(s) P -a.s., (6.4)
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where the integral on the right-hand side can be understood as a Wiener
integral, since f is deterministic. Let Y be a weak solution of (6.1) and

denote by A⊙ the part of A∗ in D(A∗). Then D(A⊙) is a weak∗-sequentially
dense subspace of V ∗. From the integration by parts formula (6.4) it follows
as in the proof of Theorem 7.1 in [31] that

〈Y (T ), v∗〉 = ZΨv
∗ for all v∗ ∈ D(A⊙), (6.5)

where ZΨ denotes the cylindrical integral of Ψ := S(T − ·)C. It remains
to show that (6.5) holds for all v∗ ∈ V ∗, for which we mainly follow the
arguments of the proof of Theorem 2.3 in [31]. Observe that the random
variable Y (T ) is Gaussian since the right hand side in (6.5) is Gaussian for
each v∗ ∈ D(A⊙) and Gaussian distributions are closed under weak limits.
Let R : V ∗ → V and Q : V ∗ → V ∗∗ denote the covariance operators of Y (T )
and ZΨ, respectively. Since R is the covariance operator of a Gaussian
measure there exists a Hilbert space H which is continuously embedded by
a γ-radonifying mapping j : H → V such that R = jj∗. Equality (6.5)
implies

〈Rv∗, v∗〉 = 〈Qv∗, v∗〉 for all v∗ ∈ D(A⊙). (6.6)

Let (v∗n)n∈N be a sequence in D(A⊙) converging weakly∗ to v∗ in V ∗. Thus
limn→∞ j∗v∗n = j∗v∗ weakly in H since H is a Hilbert space and j∗ is weak∗

continuous. As a consequence of the Hahn-Banach theorem one can con-
struct a convex combination w∗

n of the v∗n such that limn→∞ j∗w∗
n = j∗v∗

strongly in H and limn→∞w∗
n = v∗ weakly∗ in V ∗. Since w∗

m − w∗
n is in

D(A⊙) for all m,n ∈ N, inequality (6.6) implies

‖i∗C∗S∗(T − ·)(w∗
m − w∗

n)‖
2
M = ‖K∗ (i∗C∗S∗(T − ·)(w∗

m − w∗
n))‖

2
L2

= 〈Q(w∗
m − w∗

n), w
∗
m − w∗

n〉

= 〈R(w∗
m − w∗

n), w
∗
m − w∗

n〉

= ‖j∗(w∗
m − w∗

n)‖H → 0 as m,n → ∞.

Thus,
(
i∗C∗S∗(T − ·)w∗

n

)
n∈N

is a Cauchy sequence in M and therefore it
converges to some g ∈ M. By the same arguments as in the proof of Proposi-
tion 5.1 it follows that there is a subsequence such that limk→∞ i∗C∗S∗(T −
s)w∗

nk
= g(s) for Lebesgue almost all s ∈ [0, T ]. On the other hand, the

weak∗ convergence of (w∗
nk
)k∈N implies that limk→∞〈i∗C∗S∗(T−s)w∗

nk
, x〉 =

〈i∗C∗S∗(T−s)v∗, x〉 for all x ∈ X and s ∈ [0, T ], which yields g = i∗C∗S∗(T−
·)v∗. It follows that

〈Rw∗
nk
, w∗

nk
〉 =

∥∥i∗C∗S∗(t− ·)w∗
nk

∥∥2
M

→ ‖i∗C∗S∗(t− ·)v∗‖2M = 〈Qv∗, v∗〉,

as k → ∞. Therefore the covariance operators R and Q coincide on V ∗,
which yields that the cylindrical distribution of ZΨ extends to a Radon
measure. �

If H > 1
2 then the first condition in Theorem 6.3, i.e. S(·)C ∈ I, is

satisfied for every strongly continuous semigroup as L2([0, T ];X) ⊆ M̂. If
H < 1

2 this condition is not obvious but an important case is covered by the
following result.
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Proposition 6.4. Let H < 1
2 . If (S(t), t > 0) is an analytic semigroup of

negative type, then the mapping S(·)C is in I.

Proof. Define for arbitrary f ∈ L2([0, T ];X) the function

Gf (s) (6.7)

:= bH

(
f(s)

(T − s)
1

2
−H

+

(
1

2
−H

)
s

1

2
−H

∫ T

s

sH− 1

2 f(s)− tH− 1

2 f(t)

(t− s)
3

2
−H

dt

)

for all s ∈ (0, T ]. It follows from (3.8) that a function f ∈ L2([0, T ];X) is
in M if and only Gf ∈ L2([0, T ];X), in which case ‖f‖M = ‖Gf‖L2 . By
the same computations as in the proof of [22, Le.11.7] one derives that there
exists a constant c1 > 0 such that

∫ T

0
‖Gf (s)‖

2 ds 6 c1

(∫ T

0

‖f(s)‖2

(T − s)1−2H
ds+

∫ T

0

‖f(s)‖2

s1−2H
ds

+

∫ T

0

(∫ T

s

‖f(t)− f(s)‖

(t− s)
3

2
−H

dt

)2

ds

)
. (6.8)

We check that each term on the right hand side of (6.8) is finite for f =
i∗C∗S∗(·)v∗, v∗ ∈ V ∗. The growth bound of the semigroup guarantees that
there exist some constants β, c2 > 0 such that

‖S(s)‖ 6 c2e
−βs for all s ∈ [0, T ].

It is immediate that the first two integrals on the right hand side in (6.8)
are finite since 1 − 2H < 1. In order to estimate the last term, recall that,
as S is analytic, there exists for each α > 0 a constant c3 > 0 such that for
every 0 < s 6 t we have

‖S(t)− S(s)‖ = ‖(S(t− s)− Id)S(s)‖ 6 c3(t− s)αs−αe−βs.

Fix some α ∈ (12 − H, 12). The third summand on the right hand side of
(6.8) can be estimated by

∫ T

0

(∫ T

s

‖i∗C∗S∗(t)v∗ − i∗C∗S∗(s)v∗‖

(t− s)
3

2
−H

dt

)2

ds

6 (c3 ‖i‖ ‖C‖ ‖v∗‖)2
∫ T

0

(∫ T

s

e−βs

sα
(t− s)α

(t− s)
3

2
−H

dt

)2

ds

6 (c3 ‖i‖ ‖C‖ ‖v∗‖)2
(∫ T

0

e−2βs

s2α
ds

)(∫ T

0

1

t
3

2
−H−α

dt

)2

6 (c3 ‖i‖ ‖C‖ ‖v∗‖)2(2β)2α−1Γ(1− 2α)T 2(H+α− 1

2
),

which completes the proof. �

Another example of a semigroup satisfying S(·)C in I is considered in Sec-
tion 7. Further examples can be derived using the known fact that the space
of Hölder continuous functions of index larger than 1

2 − H is continuously
embedded in M.
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Example 6.5. If V is a Hilbert space then a function Ψ ∈ I is stochasti-
cally integrable if and only if ΓΨ is Hilbert-Schmidt, according to Theorem
5.5. Thus, if (fk)k∈N denotes an orthonormal basis of V , the function Ψ is
stochastically integrable if and only if the adjoint operator Γ∗

Ψ is Hilbert-
Schmidt, that is

∞∑

k=1

‖Γ∗
Ψfk‖

2
L2 =

∞∑

k=1

‖K∗(i∗Ψ∗(·)fk)‖
2
L2 =

∞∑

k=1

‖i∗Ψ∗(·)fk‖
2
M < ∞.

In the case H > 1
2 we obtain that there exists a weak solution of (6.1) if

∞∑

k=1

∫ T

0

∫ T

0
‖i∗C∗S∗(s)fk‖ ‖i

∗C∗S∗(t)fk‖ |s− t|2H−2 ds dt < ∞.

For the case H < 1
2 assume that the semigroup (S(t), t > 0) is analytic and

of negative type. A similar calculation as in the proof of Proposition 6.4
shows that if there exists a constant α ∈ (12 −H, 12) such

∫ T

0

‖S(s)Ci‖2HS

s2α
ds < ∞,

then S(·)C is stochastically integrable. Here ‖·‖HS denotes the Hilbert-
Schmidt norm of an operator U : L2([0, T ];X) → V .

7. Example: the stochastic heat equation

As an example we consider a self-adjoint generator A of a semigroup
(S(t), t > 0) in a separable Hilbert space V such that there exists an or-
thonormal basis (ek)k∈N of V satisfying Aek = −λkek for some λk > 0 for
all k ∈ N and λk → ∞ as k → ∞. Thus the semigroup satisfies

S(t)ek = e−λktek for all t > 0 and k ∈ N.

A specific instance is the Laplace operator with Dirichlet boundary condi-
tions on V = L2(D;R) for a set D ∈ B(Rn). We assume that C = Id and
we identify the dual space V ∗ with V , i.e. we consider the Cauchy problem

dY (t) = AY (t) dt+ dB(t) for all t ∈ [0, T ]. (7.1)

The system (7.1) is perturbed by a cylindrical fBm B in V which is inde-
pendent along the orthonormal basis (ek)k∈N of eigenvectors ek of A, that
is we consider the cylindrical fBm (B(t) : t > 0) in V from Example 4.4:

B(t)v =
∞∑

k=1

〈iek, v〉bk(t) for all v ∈ V, t > 0,

where (bk)k∈N is a sequence of independent, real valued standard fBms of
Hurst parameter H ∈ (0, 1) and the embedding i : V → V is defined by

iv =

∞∑

k=1

qk〈ek, v〉ek

for a sequence (qk)k∈N ⊆ R satisfying supk |qk| < ∞. Note that in this case
X = V .
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Theorem 7.1. Let A be a self-adjoint generator satisfying the conditions

described above. If

∞∑

k=1

q2k
λ2H
k

< ∞,

then equation (7.1) has a weak solution (Y (t) : t ∈ [0, T ]) in V . The solution

can be represented by the variation of constants formula (6.3).

Proof. Note that in this situation we have

i∗S∗(t)ek = qke
−λktek for each k ∈ N and t ∈ [0, T ]. (7.2)

According to Theorem 5.5 and Theorem 6.3 we have to establish that S(·)
is in I and the operator Γ : L2([0, T ];V ) → V defined by

〈Γf, v〉 =

∫ T

0

[
K∗
(
i∗S∗(·)v

)
(s), f(s)

]
ds for all f ∈ L2([0, T ];V ), v ∈ V

is γ-radonifying. Since V is a separable Hilbert space, the operator Γ is
γ-radonifying if and only if it is Hilbert-Schmidt.

If H > 1
2 then S(·) is in I and equality (7.2) yields for each k ∈ N

‖i∗S∗(·)ek‖
2
M̂

= H(2H − 1)

∫ T

0

∫ T

0
‖i∗S∗(t)ek‖ ‖i

∗S∗(s)ek‖ |s− t|2H−2 ds dt

= H(2H − 1)q2k

∫ T

0

∫ T

0
e−λkte−λks |s− t|2H−2 ds dt. (7.3)

The iterated integral can be estimated by
∫ T

0
e−λkt

∫ T

0
e−λks |s− t|2H−2 ds dt = 2

∫ T

0
e−λkt

∫ t

0
e−λks |s− t|2H−2 ds dt

= 2

∫ T

0
e−2λkt

∫ t

0
eλkss2H−2 ds dt

= 2

∫ T

0
eλkss2H−2

∫ T

s
e−2λkt dt ds

6
1

λk

∫ T

0
e−λkss2H−2 ds

6
1

λ2H
k

Γ(2H − 1). (7.4)

Since inequality (3.11) guarantees that there exists a constant c > 0 such
that

∞∑

k=1

‖Γ∗ek‖
2
L2 =

∞∑

k=1

∥∥K∗
(
i∗S∗(·)ek

)∥∥2
L2 6 c

∞∑

k=1

‖i∗S∗(·)ek‖
2
M̂

,

we can conclude from (7.3) and (7.4) that Γ∗ and thus Γ are Hilbert-Schmidt
operators.

If H < 1
2 Proposition 6.4 guarantees that S(·) is in I. As in the proof of

Proposition 6.4 it follows that there exists a constant c1 > 0 such that for
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all k ∈ N

‖K∗(i∗S∗(·)ek)‖
2
L2 6 c1

(∫ T

0

‖i∗S∗(s)ek‖
2

(T − s)1−2H
ds+

∫ T

0

‖i∗S∗(s)ek‖
2

s1−2H
ds

+

∫ T

0

(∫ T

s

‖i∗S∗(t)ek − i∗S∗(s)ek‖

(t− s)
3

2
−H

dt

)2

ds

)
. (7.5)

Equality (7.2) implies for the first integral the estimate

∫ T

0

‖i∗S∗(s)ek‖
2

(T − s)1−2H
ds 6 q2k

∫ T

0

e−2λks

(T − s)1−2H
ds

=
q2k

(2λk)2H

∫ 2λkT

0

e−s

(2λkT − s)1−2H
ds

6
q2k

(2λk)2H

(
1 +

1

2H

)
. (7.6)

Here, the estimate of the integral follows from the fact that if 2λkT 6 1 then

∫ 2λkT

0

e−s

(2λkT − s)1−2H
ds 6

∫ 2λkT

0

1

(2λkT − s)1−2H
ds 6

1

2H
,

and if 2λkT > 1 then

∫ 2λkT

0

e−s

(2λkT − s)1−2H
ds 6

∫ 2λkT−1

0
e−s ds+

∫ 2λkT

2λkT−1
(2λkT − s)2H−1 ds

6 1 +
1

2H
.

The second integral in (7.5) can be bounded by

∫ T

0

‖i∗S∗(s)ek‖
2

s1−2H
ds 6 q2k

∫ T

0

e−2λks

s1−2H
ds 6 Γ(2H)

q2k
(2λk)2H

. (7.7)

Another application of equality (7.2) yields for the third term in (7.5)

∫ T

0

(∫ T

s

‖i∗S∗(t)ek − i∗S∗(s)ek‖

(t− s)
3

2
−H

dt

)2

ds

= q2k

∫ T

0

(∫ T

s

∣∣e−λkt − e−λks
∣∣

(t− s)
3

2
−H

dt

)2

ds

= q2k

∫ T

0
e−2λks

(∫ T−s

0

1− e−λkt

t
3

2
−H

dt

)2

ds. (7.8)
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Applying the changes of variables λks = x and λkt = y yields
∫ T

0
e−2λks

(∫ T−s

0

1− e−λkt

t
3

2
−H

dt

)2

ds

=
1

λ2H
k

∫ λkT

0
e−2x

(∫ λkT−x

0

1− e−y

y
3

2
−H

dy

)2

dx

=
1

λ2H
k

∫ λkT

0
e−2(λkT−x)

(∫ x

0

1− e−y

y
3

2
−H

dy

)2

dx

6
1

λ2H
k

c2, (7.9)

where c2 > 0 denotes a constant only depending on H but not on λk. The
finiteness of the constant c2 and its independence of λk follow from the
following three estimates:

∫ 1

0
e−2(λkT−x)

(∫ x

0

1− e−y

y
3

2
−H

dy

)2

dx 6

∫ 1

0

(∫ 1

0

1− e−y

y
3

2
−H

dy

)2

dx,

∫ λkT

1
e−2(λkT−x)

(∫ 1

0

1− e−y

y
3

2
−H

dy

)2

dx 6
1

(H + 1
2)

2

∫ λkT

1
e−2(λkT−x) dx,

∫ λkT

1
e−2(λkT−x)

(∫ x

1

1− e−y

y
3

2
−H

dy

)2

dx 6
1

(H − 1
2)

2

∫ λkT

1
e−2(λkT−x)x2H−1dx

6
1

(H − 1
2)

2

∫ λkT

1
e−2(λkT−x) dx.

By applying the estimates (7.6)–(7.9) to (7.5), it follows that there exists a
constant c3 > 0 such that

‖Γ∗ek‖
2
L2 = ‖K∗(i∗S∗(·)ek)‖

2
L2 6 c3

q2k
λ2H
k

for all k ∈ N.

As before we can conclude that Γ is Hilbert-Schmidt. �

Consider now the special case of the heat equation with Dirichlet bound-
ary conditions driven by a cylindrical fractional noise with independent com-
ponents, that is with Q = Id. In this case qk ≡ 1 and the eigenvalues of the
Laplacian behave like λk ∼ k2/n so that the condition for the existence of a
weak solution becomes the well known n/4 < H < 1. This result is in line
with the literature, see for example [7, 12, 17].
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