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SUMMARY

Motivated by nano-scale experimental evidence on the dispersion characteristics of materials with a
lattice structure, a new multi-scale gradient elasticity model is developed. In the framework of gradient
elasticity, the simultaneous presence of acceleration- and strain-gradients has been denoted as dynamic
consistency. This model represents an extension of an earlier dynamically consistent model with an
additional micro-inertia contribution to improve the dispersion behaviour. The model can therefore be
seen as an enhanced dynamic extension of the Aifantis 1992 strain-gradient theory for statics obtained by
including two acceleration gradients in addition to the strain gradient. Compared to the previous dynamically
consistent model, the additional micro-inertia term is found to improve the prediction of wave dispersion
significantly and, more importantly, requires no extra computational cost. The fourth-order equations are

rewritten in two sets of symmetric second-order equations so that C
0-continuity is sufficient in the finite

element implementation. Two sets of unknowns are identified as the microstructural and macrostructural
displacements, thus highlighting the multi-scale nature of the present formulation. The associated energy
functionals and variationally consistent boundary conditions are presented, after which the finite element
equations are derived. Considerable improvements over previous gradient models are observed as confirmed
by two numerical examples.
Copyright c© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Classical continuum field theories do not suffice to reliably capture certain mechanical phenomena.

Experimental evidence and physical observations point out some intrinsic drawbacks and limitations

of the classical theory of elasticity in a number of problems, e.g. to define stress and strain

fields around sharp crack-tips or dislocation cores, the description of size effects and dispersive

wave propagation. The common characteristic of the above problems in which classical continuum

mechanics fails resides in the fact that nonlocal interactions play a major role in the deformation

process. The applicability of the standard continuum mechanics of Cauchy is indeed closely related

to the relevant length- and time-scales because it is implicitly assumed that the external length-

scales and time-scales are much larger than those of the dominant heterogeneities. If the external

length scale is of the same order of magnitude as the internal one, then long-range interactions

occurring in the material micro-structure have to be accounted for, which is not done by classical

continuum theory. In such circumstances, molecular/atomistic models do take into account nonlocal
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2 D. DE DOMENICO, H. ASKES

interactions between atoms by modelling every single microstructural component individually,

nevertheless such models are often computationally prohibitive or extremely demanding on memory

resources and thus unfeasible to cope with real engineering problems.

To bridge the gap between atomistic models and classical continuum mechanics theory, a variety

of theories and approaches have been studied as extensions of the classical continuum mechanics

for applications in microscopic space and time scale, e.g. Cosserat-like continuum theories [27]

(including theories of elasticity with couple stress, microcontinuum field theories, micromorphic

theory, micropolar elasticity), Mindlin microstructural theory [30], strongly nonlocal Eringen

theory [19, 22, 32], weakly nonlocal strain gradient theory [1], and peridynamic theory [35]. A

comprehensive review on generalised continuum mechanics theories can be found in [2, 8, 13, 27].

Microstructural enrichment is achieved via the introduction of internal length- and time-scales into

an enriched continuum formulation or, alternatively, by equipping the material point with additional

degrees of freedom.

In the present paper, attention is focused on gradient elasticity theories. Gradient elasticity models

are a special class of the above generalised theories [1, 8]; these models provide extensions of

classical elasticity theories in that additional higher-order spatial derivatives of strains, stresses

and/or accelerations are considered in the constitutive equations or in the equations of motion. A

mathematically complete set of higher-order gradients would be possible, cf. Mindlin [30], but it

has been found that a more limited set of higher-order gradients is often sufficient to capture the

physical phenomena in most practical engineering problems.

1.1. Goal and outline of the paper

In this paper, a new multi-scale gradient elasticity model is presented that can be used to describe

improved dispersion behaviour. This new model contains three gradient contributions, namely two

micro-inertia terms (acceleration gradients) and one higher-order stiffness term (strain gradient).

In the framework of gradient elasticity, the simultaneous presence of both acceleration and strain

gradients has been denoted as dynamic consistency in certain previous articles [5, 8–10, 28, 29].

Dynamically consistent models have been proven to be effective for the removal of singularities [8],

as well as for the prediction of dispersive wave propagation [9]. The analytical aspects of a few

relevant formats of gradient elasticity are summarised in Section 2. It has been demonstrated

that the dispersive capabilities of the dynamically consistent models are better than those of the

strain gradient theories: due to the presence of both acceleration and strain gradients, infinite

or imaginary phase velocities are avoided altogether [5, 8]. These aspects and the dispersive

properties of a class of gradient elasticity models are outlined in Section 3, which motivates a

new multi-scale gradient elasticity model as illustrated in Section 4. The present model, in fact,

represents an extension of an earlier dynamically consistent model presented in [9] that had only

two material parameters (identified as two independent length scales associated to the higher-order

inertia term and the higher-order stiffness term). Therefore, similarly to the previous dynamically

consistent model, the proposed model can be seen as an enhanced dynamic extension of the strain-

gradient elasticity theory developed by Aifantis and coworkers [1, 2, 33]. The resulting formulation

incorporates the previous dynamically consistent model as a special case and reduces to the well-

known Aifantis’ 1992 strain-gradient theory in the quasi-static limit. Compared to the previous

dynamically consistent model [9] with two gradient terms, the introduction of an additional micro-

inertia term is found to significantly improve the prediction of wave dispersion but requires no extra

computational cost.

Attention is then focused on how to apply the new model to solve boundary value problems.

Due to the fourth-order spatial derivatives entering the equations of motion (both in the inertia-

related additional contribution and in the higher-order stiffness term), spatial discretisation would

require C 1-continuity of the interpolation, i.e. continuity of the displacements as well as the

much more complicated continuity of the displacement derivatives. The fourth-order governing

equations are rewritten into two sets of (coupled and symmetric) second-order equations. The related

mathematical manipulations are discussed in Section 5. The symmetric format of the split second-

order governing equations facilitates the identification of the corresponding kinetic and potential

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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A NEW MULTI-SCALE DISPERSIVE GRADIENT ELASTICITY MODEL WITH MICRO-INERTIA 3

energy densities, which is illustrated in Section 6. Positive-definitiveness of the energy functionals

is discussed and is related to the relative magnitude of the three material length scale parameters;

then, variationally consistent boundary conditions are derived by making use of the Hamilton-

Ostrogradsky principle, and the corresponding discretised system of equations are presented in

Section 7.

In the coupled second-order equations, two sets of unknowns are identified as the displacements at

the macroscale and at the microscale. The simultaneous appearance of macroscopic and microscopic

displacements highlights the multi-scale nature of the present formulation, similarly to Mindlin’s

theory of elasticity with microstructure. The three higher-order terms are accompanied by three

non-standard material parameters that can be calibrated according to the problem being studied.

To this aim, in Section 8 two numerical examples are studied and a physically meaningful choice

of the material parameters is discussed. More specifically, we present procedures to link the three

constitutive coefficients to micro-structural properties. As regards the simulation of wave dispersion,

notable improvements of the present formulation over the previous gradient models are observed in

the investigated problems. Finally, conclusions are drawn in Section 9.

Notation

Throughout the paper, index tensor notation is used except for Section 7 for finite element

discretisation where the more compact matrix-vector notation is adopted. Subscripts denote

components with respect to an orthogonal Cartesian coordinate system, say xi (i = 1, 2, 3); the

Einstein summation convention for repeated indices holds. Spatial derivatives are denoted by the

comma notation, that is ui,j = ∂ui/∂xj (however, primes are adopted for derivatives with respect to

the spatial coordinate x in many instructive discussions related to simple one-dimensional models,

that is u′ = ∂u/∂x). A super-imposed dot denotes a material time derivative, that is u̇i = ∂ui/∂t.
The symbol := means equality by definition. In Section 7 where matrix-vector notation is employed,

∇ denotes the gradient operator, that is, ∇ = (∂/∂xj), and ∇2 = ∇T∇ is the Laplace operator.

Other symbols will be defined in the text at their first appearance.

2. DIFFERENT FORMATS OF GRADIENT ELASTICITY THEORIES

In principle, different formats of gradient elasticity theories may be studied depending on the

number of higher order terms considered in the energy functionals, namely in the potential energy

and in the kinetic energy. In this regard and in the spirit of Mindlin’s 1964 theory of linear elasticity

with microstructure, a general expression of the potential energy density and the kinetic energy

density that is of interest for this paper may be written as [8]

U
pot =

1

2
εijCijklεkl + H

pot(εkl,n; εkl,mn; . . .) (1a)

U
kin =

1

2
ρu̇iu̇i + H

kin(u̇i,n; u̇i,mn; . . .) (1b)

where Cijkl is a fourth-order tensor representing the material stiffness, εij =
1
2 (ui,j + uj,i) is the

usual strain tensor defined as the symmetric gradient of the displacement field ui, ρ is the mass

density and u̇i represents the velocity field. In the sequel we will restrict our attention to isotropic

materials for which Cijkl = λδijδkl + µδikδjl + µδilδjk, δij being Kronecker’s delta and λ, µ the

Lamé constants. In Eqs. (1) the higher-order functionals H pot and H kin represent the microscale

contributions to the potential and kinetic energy density, respectively. These two higher-order

contributions are assumed to depend on the gradients of the strain and velocity field.

Two classes of enrichments are therefore possible through the incorporation of higher order

gradients of the strain field into expression (1a) and/or higher order gradients of the velocity field

into expression (1b). The model dealt with in this paper includes the first-order gradient of the strain

field in the potential energy (1a) in addition to the first and second order gradient of the velocity

field in the kinetic energy (1b).

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
Prepared using nmeauth.cls DOI: 10.1002/nme



4 D. DE DOMENICO, H. ASKES

2.1. Aifantis’ 1992 strain gradient theory for statics

One of the simplest and most popular theories of gradient elasticity with strain gradients only

was developed by Aifantis and coworkers in the mid 1980s [1, 2, 33, 36]. In these articles one

additional parameter (proportional to the first gradient of the strain field εkl,n) is introduced in

the potential energy (1a) motivated by earlier studies in gradient plasticity and hyperelasticity to

describe localized deformation zones. By extending the potential energy with the aforementioned

additional parameter, the Laplacian of the strain field appears in the linear elastic constitutive

relations, and the associated equilibrium equations σij,j + bi = 0 in terms of displacements (in the

hypothesis of constant stiffness tensor, i.e. homogeneous material) read

Cijkl

(

uk,jl − ℓ2uk,jlnn

)

+ bi = 0 (2)

where bi are the body forces and ℓ is a length scale characterising the underlying material

microstructure. Indeed, the new parameter ℓ can be linked to microstructural properties—see [8]

for an overview. Since the additional energy contribution to U pot is positive-definite, uniqueness

and stability of the model given in Eq. (2) are guaranteed. This model has successfully been applied

to a range of boundary value problems, see e.g. [7, 8] for just a few examples.

As pointed out in [5], the model of Eq. (2) was developed for use in statics: it has gained popularity

and has extensively and effectively been used to remove strain singularities that appear at crack

tips [1, 2] and dislocation cores [24, 25] as well as to simulate the occurrence of size effects [7, 8].

As will be clarified in Section 3, its straightforward use in dynamics may lead to infinite phase

velocities, which is not realistic [5].

2.2. Extension to dynamics: dynamically consistent models

As introduced above, the model of Eq. (2) was developed for applications in statics and its use in

dynamics is not recommended as explained in Section 3. As an alternative, a different format of

gradient elasticity theories for use in dynamics incorporates mixed spatial-temporal derivatives, that

is, higher-order inertia contributions are considered in addition to strain gradient terms.

In order to present a class of such possible extensions of Eq. (2) for use in dynamics, we introduce

a general model that incorporates Eq. (2) as special case in the quasi-static limit. This general model

is obtained by adding some higher-order terms to the kinetic energy density U kin, so introducing

some higher-order inertia contributions in the equations of motion, while keeping the same format

for the potential energy density U pot and, thus, for the stiffness (strain-related) contribution. The

equations of motion of this model in the hypothesis of homogeneous material (constant density and

stiffness tensor) read

ρ
(

üi − αℓ2üi,nn + βℓ4üi,nnjj

)

= Cijkl

(

uk,jl − γℓ2uk,jlnn

)

. (3)

The model of Eq. (3) stems from considering additional higher-order contributions to the kinetic

energy density as expressed in Eq. (1b). These particular contributions are chosen proportional to

the first and second gradient of the velocity field in U kin.

In Eq. (3) α, β, γ are three coefficients to be calibrated according to the problem being studied.

These coefficients adjust the relative magnitudes between the various length scales appearing in

the strain gradient term and in the micro-inertia contributions. For instance, γℓ2 represents the

length scale entering the one-parameter Aifantis’ 1992 gradient elasticity theory described above,

cf. Eq. (2). Therefore, it can be stated that the model (3) has three independent parameters that are

three length scales representing the underlying material microstructure. Note that Eq. (2) is retrieved

from Eq. (3) if the inertia terms are ignored. Higher-order inertia terms have been motivated by

many researchers, see e.g. [1,3,4,17,21]. However, the peculiarity of Eq. (3) is that the higher-order

contributions appear simultaneously in the stiffness and in the inertia. This fact has been denoted

as dynamic consistency in a few previous articles, see e.g. [5, 8–10, 28]. Dynamically consistent

models have been seen to be effective when applied to statics, for the removal of singularities in

the elastic fields [8], as well as to dynamics, for the prediction of dispersive wave propagation [9].

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
Prepared using nmeauth.cls DOI: 10.1002/nme



A NEW MULTI-SCALE DISPERSIVE GRADIENT ELASTICITY MODEL WITH MICRO-INERTIA 5

A dynamically consistent model that is closely related to Eq. (3) has been studied in [9] with two

internal parameters, identified as two independent length scales in statics and dynamics, ls and lm,

respectively. By comparing the format of the dynamically consistent model given in [9] with that

of Eq. (3), these two length scales may easily be recognised as l2m ≡ αℓ2 and l2s ≡ γℓ2. Therefore,

the dynamically consistent model described by Eq. (3) and developed in this paper represents an

extensions of the one developed in [5, 9] with an additional higher-order inertia term (the β micro-

inertia contribution) to improve the prediction of wave dispersion as well as to allow for greater

flexibility in terms of shape of the corresponding dispersion curve—see Section 3.

Remark 1

An even more complex model may be considered by taking into account a contribution that is

proportional to the second-order spatial derivative of the strain in the expression of the potential

energy density U pot, as expressed by the term εkl,mn in Eq. (1a). This would result in a sixth-

order spatial derivative of the displacements in the right-hand side of the corresponding equations

of motion as shown below

ρ
(

üi − αℓ2üi,nn + βℓ4üi,nnjj

)

= Cijkl

(

uk,jl − γℓ2uk,jlnn + δℓ4uk,jlnnkk

)

(4)

where an additional higher-order strain gradient δ term appears besides the γ term so that

both stiffness and inertia include terms of order ℓ2 as well as ℓ4. As noted in [5], this would

severely complicate the formulation in terms of additional boundary conditions and finite element

implementation. Since the aim of this paper is to propose a simple C 0 formulation, we will not take

into account this term and we will restrict our attention to the enhanced gradient elasticity model as

given by Eq. (3).

3. DISPERSION ANALYSIS OF GRADIENT ELASTICITY MODELS

The main motivation for using gradient elasticity in dynamics has been the simulation of dispersive

wave propagation occurring in heterogeneous media. Therefore, with reference to the model

expressed by Eq. (3) it is worth reviewing the dispersive behaviour of this model and the relevance,

for dynamic applications, of a few special cases that may be retrieved from this particular format

of gradient elasticity theories. The signs entering the higher-order coefficients in Eq. (3) are chosen

such that the dispersive behaviour of the model is stable, i.e. the corresponding phase velocities are

real for all wave numbers.

For simplicity, we consider the one-dimensional format of the equation of motion as given in

Eq. (3), which reads

ρü− ραℓ2ü′′ + ρβℓ4ü′′′′ = Eu′′ − Eγℓ2u′′′′ (5)

where E is the Young’s modulus. Since ρ and E are assumed to be constant coefficients, Eq. (5)

admits solutions given by a general harmonic function

u(x, t) = U exp(i(kx− ωt)) (6)

where U is the amplitude, i the imaginary unit, k the wave number and ω the angular frequency.

Substituting this solution (6) into the one-dimensional equation of motion (5) yields

ρω2 + ραℓ2k2ω2 + ρβℓ4k4ω2 = Ek2 + Eγℓ2k4 (7)

that can be rewritten in dimensionless form by introducing the dimensionless wave number χ := kℓ

(

ωℓ

ce

)2

= χ2 1 + γχ2

1 + αχ2 + βχ4
(8)

where ce =
√

E/ρ is the one-dimensional bar velocity of classical elasticity. It can be observed that

for the long wavelength limit, i.e. χ→ 0, the phase velocity c→ ce irrespective of the relative

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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6 D. DE DOMENICO, H. ASKES

magnitudes between the three length scale parameters. Since we are assuming that α, β, γ are

positive coefficients, Eq. (8) leads to phase velocities that are real for all the wave numbers χ,

in line with the previous remark about the sign of the higher-order terms entering Eq. (3). Moreover,

the phase velocity c is also bounded by the elastic bar velocity ce if one postulates that α > γ, a

fact that has already been observed in [9] for an earlier dynamically consistent model. In the latter

paper, this relation between α and γ was also motivated by different arguments concerning the

positive-definitiveness of the associated kinetic energy functional, see again [9].
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Figure 1. Dispersion properties of the general class of gradient elasticity models given in Eq. (3)—
normalised angular frequency versus normalised wave number

A few special cases of model (3) may be considered concerning its dispersive behaviour as

expressed in Eq. (8). These cases are illustrated in Fig. 1 in terms of dispersion curve ω = ω(χ)
(for ℓ = 1). The curves are obtained for a particular choice of the relative magnitude between the

three parameters, namely α = 5, γ = 1 and two values of β, a value of β = 50 to describe the case

in which β > αγ and β = 2 to illustrate the dispersive behaviour for the case β < αγ. These cases

are summarised as follows:

(i) γ > 0, α = β = 0: model (3) reduces to Aifantis’ 1992 strain gradient theory developed

for statics, Eq. (2). Although the model is dynamically stable, the stable strain gradient

leads to frequencies that are larger than those of classical elasticity, which contradicts most

experimental evidence. This is why this formulation has been extensively used for statics and

not for dynamics;

(ii) α 6= 0, β = γ = 0: Eq. (3) yields a so-called ‘stable acceleration gradient’ model associated

with a positive definite kinetic energy density. In this case the dispersion curve ω = ω(χ) is

monotonically increasing, has a negative curvature and for χ→ ∞ approaches a horizontal

asymptote at angular frequency 1/
√
α;

(iii) α 6= 0, γ 6= 0, β = 0: Eq. (3) leads to the dynamically consistent model as presented in [9].

The dispersion curve shows a diagonal asymptote, the slope of which is governed by the ratio

γ/α; therefore, the case α = γ leads to a non-dispersive medium (for which the dispersion

curve is a straight line given by ω = cek). The case γ > αmeans that the higher wave numbers

travel faster than the lower wave numbers, which is not realistic as compared to a discrete

lattice or to several experiments performed on a range of engineering materials [34,37,39–41],

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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A NEW MULTI-SCALE DISPERSIVE GRADIENT ELASTICITY MODEL WITH MICRO-INERTIA 7

the case α > γ results in a realistic behaviour in terms of phase velocities and angular

frequency, in that the higher wave numbers travel slower than the lower wave numbers;

(iv) α 6= 0, β 6= 0, γ = 0: this particular format of (3) describes a model with two micro-

inertia contributions to capture wave dispersion more accurately than the ‘stable acceleration

gradient’ model as described in (ii). The dispersion curve shows an inflexion (change of

curvature), with a peak attained at χ = 1/ 4
√
β, and tends to zero for infinitely large wave

numbers.

(v) α 6= 0, β 6= 0, γ 6= 0: the complete version of model (3) represents an enhanced dynamically

consistent model similar to that described in (iii) but with an additional micro-inertia term to

improve the dispersion behaviour. If we assume that α > γ > 0 as suggested in (iii), then if

β > αγ the dispersion curve shows an inflexion like case (iv), with a peak attained at

χ =

√

γ +
√

γ2 + β − αγ

β − αγ
, (9)

whereas for β < αγ a monotonically increasing dispersion curve with negative curvature is

obtained. In either case, the dispersion curve tends to
√

γ/β for infinitely large wave numbers.

Note that unlike case (iii), the case α = γ does not result in a non-dispersive medium due to

the presence of the β term in the denominator of Eq. (8).

We can classify this particular class of gradient elasticity models according to the number of

parameters entering the constitutive relations: cases (i) and (ii) are one-parameter gradient elasticity

models, cases (iii) and (iv) comprise possible choices of two-parameter models, whereas case (v)

represents a more versatile three-parameter gradient elasticity model. Therefore, formulation and

finite element implementation of the model given by case (v) would implicitly include the other

models as special cases. This is the main aim of the present paper.

4. MOTIVATIONS FOR AN ENHANCED DYNAMICALLY CONSISTENT

GRADIENT ELASTICITY MODEL

On the basis of the dispersive properties of the general model given in Eq. (3), it has been found

that the inclusion of three free parameters in a gradient elasticity formulation enables a very flexible

dispersion curve that can be tailored for a broad variety of engineering materials. It is worth noting

that many real engineering materials, see e.g. [37, 39–41], do exhibit a change in the curvature of

the ω(k) curve as predicted by Eq. (8) for non-zero α, β, γ coefficients and for β > αγ, cf. Fig. 1.

The presence of the γ term allows for a horizontal asymptote at non-zero angular frequency for

large wave numbers, which is confirmed by experimental findings on phonons for a number of

engineering materials, see again [37, 39–41]. As an example, in Fig. 2 the experimental dispersion

curve of aluminium for phonons propagating in the longitudinal direction is depicted (after Yarnel

et al. [41]). Therefore, in order to achieve a qualitative match between numerical and experimental

results in terms of dispersive wave propagation, it is of interest to investigate the three parameter

gradient elasticity model with α, β and γ different from zero.

As said above, a dynamically consistent model with one higher-order inertia contribution (related

to the α term of Eq. (3)) and one strain gradient contribution (related to the γ term of Eq. (3)) has

already been investigated and a finite element implementation with C 0-continuous shape functions

has effectively been set up [5,8,9,11,15]. In this paper we will show that, according to the comments

of the previous Section, the inclusion of another micro-inertia contribution (the β term) significantly

improves the dispersion behaviour of the latter model and we will propose a formulation in which

such additional term does not imply any extra additional cost from a computational point of view

(i.e. with regard to the spatial discretisation and the resulting finite element implementation). The

proposed formulation may therefore be considered as an enhanced version of the earlier dynamically

consistent model, the latter being retrieved for a zero value of the β term.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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8 D. DE DOMENICO, H. ASKES

Figure 2. Experimental dispersion curve of aluminium for phonons propagating in the (longitudinal)
crystallographic direction [110] (after Yarnel et al. [41])

5. OPERATOR SPLIT

By inspection of Eq. (3) it emerges that fourth-order governing differential equations in the ui
unknowns have to be solved. Solving these fourth-order equations analytically can be an intricate

task. Furthermore, if numerical simulations are to be carried out with gradient models, an important

aspect concerns the requirements imposed on the discretisation. Formulations of gradient theories

that lend themselves to straightforward numerical implementation (e.g. with C 0 finite element

methods) are very welcome in this context and are therefore pursued in the present paper. Due to the

presence of fourth-order spatial derivatives in Eq. (3), the governing equations would require shape

functions that are C 1-continuous. This requirement is not impossible to meet, for example by using

Hermitian C 1 finite elements [43], discontinuous Galerkin methods [18], meshless methods [10]

or, alternatively, by discretising multiple fields, for instance the displacements and the micro-

deformations [42]. Without any criticism of these alternative approaches, an attractive feature of

the gradient elasticity model as given in Eq. (3) is related to the possibility to recast the fourth-order

differential equations, via a proper operator split, into a set of second-order differential equations so

that a standard finite element implementation with C 0-continuous interpolation functions suffices.

For the sake of clarity, we rewrite here the equations of motion as given by Eq. (3) in which

we highlight the multi-scale nature of the formulation. Since the equation of motion of the higher-

order model are expressed in terms of macroscopic variables, we append a superscript M to the

displacements as follows

ρ
(

üMi − αℓ2üMi,nn + βℓ4üMi,nnjj

)

= Cijkl

(

uMk,jl − γℓ2uMk,jlnn

)

. (10)

We will next rewrite the fourth-order equations of motion expressed by Eq. (10) so that only second-

order spatial derivatives of the displacements appear. We consider an auxiliary displacement field

umi that is related to the underlying material microstructure and therefore denoted with a superscript

m and we eliminate the fourth-order spatial derivative from the right-hand side of Eq. (10) as follows

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
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A NEW MULTI-SCALE DISPERSIVE GRADIENT ELASTICITY MODEL WITH MICRO-INERTIA 9

ρ
(

üMi − αℓ2üMi,nn + βℓ4üMi,nnjj

)

= Cijkl u
m
k,jl (11a)

uMi − γℓ2uMi,nn = umi (11b)

A justification of the terminology ‘microscopic displacements’ and ‘macroscopic displacements’

for the variables umi and uMi has been given in [15, 31].

It can be demonstrated that Eqs. (11) can be recast into the following symmetric formulation (see

Appendix B for the mathematical manipulations involved)

ρ

[

(

α

γ
− β

γ2

)

ümi − βℓ2

γ
ümi,nn −

(

α

γ
− β

γ2
− 1

)

üMi

]

= Cijkl u
m
k,jl (12a)

ρ

[

−
(

α

γ
− β

γ2
− 1

)

ümi +

(

α

γ
− β

γ2
− 1

)

üMi −
(

α− β

γ
− γ

)

ℓ2üMi,nn

]

= 0 . (12b)

The main peculiarity of this format of operator split is that a fully coupled set of second-order

equations are obtained in which both macroscopic and microscopic displacements appear in the

split Eqs. (12). Since both equations are second-order in space, a standard C 0 finite element

implementation can be used, which is illustrated in Section 7. Due to the symmetric format of

Eqs. (12) (i.e. the coefficient multiplying üMi in the first equation is equal to the coefficient

multiplying ümi in the second equation), the corresponding finite element implementation will lead

to symmetric system matrices.

Remark 2

The second-order equations of motion given in Eqs. (12) are an extension of those derived in [9]

for a two-parameter dynamically consistent gradient elasticity model. In fact, the latter model is

retrieved for the limit case β = 0.

6. ENERGY FUNCTIONALS AND BOUNDARY CONDITIONS

In order to study the dynamic response of the above developed higher-order model, boundary

conditions have to be formulated. To this aim, energy functionals will be identified and used to

derive boundary conditions that are variationally consistent with the equations of motion given

by Eqs. (12). The Hamilton-Ostrogradsky variational principle is applied by considering the

Lagrangian density L = U kin − U pot, where U kin and U pot are the kinetic and potential energy

densities of the higher-order continuum, respectively. The symmetric format of Eqs. (12) facilitates

the identification of such functionals, which can be expressed as

U
kin =

1

2
ρ
[

u̇mi +

(

α

γ
− β

γ2
− 1

)

(u̇mi − u̇Mi )2 +
βℓ2

γ
(u̇mi,n)

2 +

(

α− β

γ
− γ

)

ℓ2(u̇Mi,n)
2
]

(13)

and

U
pot =

1

2
εmijCijklε

m
kl (14)

where εmij is the microscopic strain field related to the microscopic displacement field umi . From

Eqs. (13) and (14) one may observe that both energy densities are positive definite provided that

α > β
γ
+ γ. For the limit case β = 0 the positive definitiveness of the kinetic energy is guaranteed

provided that the condition α > γ holds true, see [9].

The Lagrangian function of the body L is expressed as the integral over the volume of the body

of the Lagrangian density L , that is L =
∫

Ω
L dΩ. Hamilton’s principle [38] states that the true

evolution of the body Ω between two specified time instants t1 and t2 (assumed to be fixed) is a

stationary point (with a zero variation) of the following functional, denoted as action functional

S =

∫ t2

t1

Ldt =
∫ t2

t1

(
∫

Ω

L dΩ

)

dt. (15)
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While in a standard continuum the Lagrangian density is assumed to be a function of the space and

time coordinates xi and t, the displacement field ui and the first derivatives of the displacements with

respect to x and t, in a higher-order continuum such as the one developed in this paper higher-order

derivatives appear in L , i.e. mixed time-space derivatives as well as higher-order spatial derivatives.

After applying the operator split described in the Section 5, the coupled second-order equations

of motion (12) are obtained that are expressed in terms of both macroscopic and microscopic

displacements, uMi and umi , respectively. The Lagrangian density for this second-order model is a

function of variables at both macroscopic and microscopic scale of observation and can be expressed

as follows

L = L
(

xi, t, u̇
m
i , u̇

m
i,n, u

m
i,n, u̇

M
i , u̇

M
i,n

)

. (16)

We denote with uMi (xi, t) and umi (xi, t) the displacement fields describing the motion of the

body from instant t1 until instant t2 or, equivalently, representing a stationary point for the action

functional S given in Eq. (15). We can consider slightly perturbed displacements fields in the

following form

ũmi (xi, t) = umi (xi, t) + e ξi(xi, t) (17a)

ũMi (xi, t) = uMi (xi, t) + e ηi(xi, t) (17b)

where e is the amplitude of the perturbation and ξi(xi, t) and ηi(xi, t) are two normalised

perturbation fields. Since ũmi (xi, t) and ũMi (xi, t) also describe the motion of the body from t1 to

t2, the conditions ξi(xi, t1) = ξi(xi, t2) = 0 and ηi(xi, t1) = ηi(xi, t2) = 0 hold true. For the same

reasons, also their spatial derivatives should vanish at the limits of the time interval.

Hamilton’s stationary principle (15) applied to the perturbed displacement fields (17) requires

that

d

de

(
∫ t2

t1

∫

Ω

L dΩdt

)
∣

∣

∣

∣

e=0

= 0 (18)

By taking into account the general expression of the Lagrangian density L as given in (16) and

separating terms in microscopic and macroscopic displacements, Eq. (18) can be elaborated as the

following two equations

∫ t2

t1

∫

Ω

(

∂L

∂u̇mi
ξ̇i +

∂L

∂u̇mi,n
ξ̇i,n +

∂L

∂umi,n
ξi,n

)

dΩdt = 0 (19a)

∫ t2

t1

∫

Ω

(

∂L

∂u̇Mi
η̇i +

∂L

∂u̇Mi,n
η̇i,n

)

dΩdt = 0 (19b)

that represent Eqs. (12) in the Lagrangian form. The aim is now to rewrite Eqs. (19) such that

no time or mixed time-space derivatives of ξi and ηi appear and in which the contributions of the

spatial boundaries are collected, so as to identify essential and natural boundary conditions that are

variationally consistent. To this aim, we perform integration by parts which results in

∂L

∂u̇mi
ξ̇i = −ξi

∂

∂t

∂L

∂u̇mi
+
∂

∂t

(

∂L

∂u̇mi
ξi

)

(20a)

∂L

∂u̇mi,n
ξ̇i,n = −ξi,n

∂

∂t

∂L

∂u̇mi,n
+
∂

∂t

(

∂L

∂u̇mi,n
ξi,n

)

=

= ξi
∂2

∂t ∂xn

∂L

∂u̇mi,n
− ∂

∂xn

(

ξi
∂

∂t

∂L

∂u̇mi,n

)

+
∂

∂t

(

∂L

∂u̇mi,n
ξi,n

)

(20b)

∂L

∂umi,n
ξi,n = −ξi

∂

∂xn

∂L

∂umi,n
+

∂

∂xn

(

∂L

∂umi,n
ξi

)

(20c)
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with reference to Eq. (19a) and, similarly,

∂L

∂u̇Mi
η̇i = −ηi

∂

∂t

∂L

∂u̇Mi
+
∂

∂t

(

∂L

∂u̇Mi
ηi

)

(21a)

∂L

∂u̇Mi,n
η̇i,n = −ηi,n

∂

∂t

∂L

∂u̇Mi,n
+
∂

∂t

(

∂L

∂u̇Mi,n
ηi,n

)

=

= ηi
∂2

∂t ∂xn

∂L

∂u̇Mi,n
− ∂

∂xn

(

ηi
∂

∂t

∂L

∂u̇Mi,n

)

+
∂

∂t

(

∂L

∂u̇Ni,n
ηi,n

)

(21b)

with reference to Eq. (19b).

Substituting Eqs. (20) into Eq. (19a) yields
∫

Ω

(

ξi
∂L

∂u̇mi
+ ξi,n

∂L

∂u̇mi,n

)

dΩ

∣

∣

∣

∣

t2

t1

+

∫ t2

t1

∮

Γ

ξi

(

∂L

∂umi,n
− ∂

∂t

∂L

∂u̇mi,n

)

nndΓdt

−
∫ t2

t1

∫

Ω

ξi

(

∂

∂t

∂L

∂u̇mi
− ∂2

∂t ∂xn

∂L

∂u̇mi,n
+

∂

∂xn

∂L

∂umi,n

)

dΩdt = 0 (22)

where the divergence theorem has been applied to rewrite the second integral as a surface integral,

in which Γ denotes the boundary surface of the volume Ω and nn is the outward normal to Γ. In a

similar manner, substituting Eqs. (21) into Eq. (19b) leads to
∫

Ω

(

ηi
∂L

∂u̇Mi
+ ηi,n

∂L

∂u̇Mi,n

)

dΩ

∣

∣

∣

∣

t2

t1

−
∫ t2

t1

∮

Γ

ηi

(

∂

∂t

∂L

∂u̇Mi,n

)

nndΓdt

−
∫ t2

t1

∫

Ω

ηi

(

∂

∂t

∂L

∂u̇Mi
− ∂2

∂t ∂xn

∂L

∂u̇Mi,n

)

dΩdt = 0. (23)

From Eqs. (22) and (23) we note that, following the considerations made above, the first integral

vanishes as ξi, ηi, ξi,n and ηi,n are zero at the limits of the time interval. Thus, the sum of the second

and third integrals in Eqs. (22) and (23) should vanish. Since this should hold for any arbitrary

domain, it is required that each integral vanishes separately [28]. Therefore, from the third integral

in (22) and (23) we derive the Lagrangian format of the equations of motion for the developed

gradient elasticity model

∂

∂t

∂L

∂u̇mi
− ∂2

∂t ∂xn

∂L

∂u̇mi,n
+

∂

∂xn

∂L

∂umi,n
= 0 (24a)

∂

∂t

∂L

∂u̇Mi
− ∂2

∂t ∂xn

∂L

∂u̇Mi,n
= 0. (24b)

It can easily be verified that these conditions are fulfilled by the Lagrangian density L = U kin −
U pot, where U kin and U pot are given in (13) and (14). On the other hand, from the second integral

in (22) and (23) we can derive variationally consistent boundary conditions (cf. [28]):

- essential boundary conditions are given through prescribed values of

umi = ūmi (25a)

uMi = ūMi (25b)

such that ξi = 0 and ηi = 0 over the boundary surface;

- natural boundary conditions are given through prescribed values of

−nn
(

∂L

∂umi,n
− ∂

∂t

∂L

∂u̇mi,n

)

= nn

(

Cijklε
m
kl + ρ

βℓ2

γ
ümi,n

)

(26a)

nn

(

∂

∂t

∂L

∂u̇Mi,n

)

= nn ρ

(

α− β

γ
− γ

)

ℓ2üMi,n (26b)

such that the second integrals in (22) and (23) vanish when integrated over the time interval.
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7. FINITE ELEMENT IMPLEMENTATION

In this section we will discuss the finite element implementation of Eqs. (12) in the most general

3D case. Since both equations are second-order in space, a standard C 0-continuity of the shape

functions is sufficient. Only for this Section we will employ the more compact matrix-vector

notation in place of the index tensor notation adopted in the remainder of the paper. For the sake of

generality, discretisation of the micro- and macro-displacements um and u
M is performed with two

classes of shape functions Nm
i and NM

i , respectively, that are collected in two matrices as follows

N
m =





Nm
1 0 0 Nm

2 0 0 . . .
0 Nm

1 0 0 Nm
2 0 . . .

0 0 Nm
1 0 0 Nm

2 . . .





N
M =





NM
1 0 0 NM

2 0 0 . . .
0 NM

1 0 0 NM
2 0 . . .

0 0 NM
1 0 0 NM

2 . . .





(27)

The continuum micro- and macro-displacements u
m = [umx , u

m
y , u

m
z ]T and u

M = [uMx , u
M
y , u

M
z ]T

are related to the nodal displacements d
m = [dm1x, d

m
1y, d

m
1z, d

m
2x, d

m
2y, d

m
2z . . .] and d

M =

[dM1x, d
M
1y , d

M
1z , d

M
2x, d

M
2y , d

M
2z , . . .] via u

m = N
m
d
m and u

M = N
M
d
M . The coupled set of second-

order equations (12) in matrix-vector notation reads

ρ

[

(

α

γ
− β

γ2

)

ü
m − βℓ2

γ
∇2

ü
m −

(

α

γ
− β

γ2
− 1

)

ü
M

]

− L
T
CLu

m = 0 (28a)

ρ

[

−
(

α

γ
− β

γ2
− 1

)

ü
m +

(

α

γ
− β

γ2
− 1

)

ü
M −

(

α− β

γ
− γ

)

ℓ2∇2
ü
M

]

= 0 (28b)

where the usual differential operators ∇ and L are employed that in the general 3D case are defined

as follows

∇T =
[

∂
∂x

∂
∂y

∂
∂z

]

, L
T =





∂
∂x

0 0 ∂
∂y

0 ∂
∂z

0 ∂
∂y

0 ∂
∂x

∂
∂z

0

0 0 ∂
∂z

0 ∂
∂y

∂
∂x



 (29)

such that ε
m = Lu

m, while ∇2 = ∇T · ∇ is the Laplace operator. Given two vectors of test

functions w = [wx, wy, wz]
T and v = [vx, vy, vz]

T , we take the the weak form of Eqs. (28)

∫

Ω

w
T ρ

[

(

α

γ
− β

γ2

)

ü
m −

(

α

γ
− β

γ2
− 1

)

ü
M

]

dΩ

−
∫

Ω

w
T ρ

βℓ2

γ
∇2

ü
mdΩ−

∫

Ω

w
T
L
T
CLu

mdΩ = 0 (30a)

∫

Ω

v
T ρ

[

−
(

α

γ
− β

γ2
− 1

)

ü
m +

(

α

γ
− β

γ2
− 1

)

ü
M

]

dΩ

−
∫

Ω

v
T ρ

(

α− β

γ
− γ

)

ℓ2∇2
ü
MdΩ = 0. (30b)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2010)
Prepared using nmeauth.cls DOI: 10.1002/nme



A NEW MULTI-SCALE DISPERSIVE GRADIENT ELASTICITY MODEL WITH MICRO-INERTIA 13

Integrating the last two terms of Eq. (30a) and the last term of Eq. (30b) by parts leads to

∫

Ω

w
T ρ

[

(

α

γ
− β

γ2

)

ü
m −

(

α

γ
− β

γ2
− 1

)

ü
M

]

dΩ

+
∑

ξ=x,y,z

∫

Ω

∂wT

∂ξ
ρ
βℓ2

γ

∂üm

∂ξ
dΩ +

∫

Ω

(

Lw
)T

CLu
mdΩ =

∫

Γn

w
T
t dΓ (31a)

∫

Ω

v
T ρ

[

−
(

α

γ
− β

γ2
− 1

)

ü
m +

(

α

γ
− β

γ2
− 1

)

ü
M

]

dΩ

+
∑

ξ=x,y,z

∫

Ω

∂vT

∂ξ

(

α− β

γ
− γ

)

ℓ2
∂üM

∂ξ
dΩ =

∮

Γ

v
T ρ

(

α− β

γ
− γ

)

ℓ2
(

n · ∇ü
M
)

dΓ. (31b)

In Eqs. (31) t = [tx, ty, tz]
T are the user-prescribed tractions on the Neumann part Γn that, in line

with Eq. (26a), are expressed as t = N
T
(

CLu
m + ρ βℓ

2

γ
∇ü

m
)

, where the matrix N contains the

components of the outward normal vector n = [nx, ny, nz]
T to the boundary Γ and is arranged

similarly to the L operator reported in (29). Ignoring the boundary integrals related to the inertia

terms appearing in the right-hand side of Eq. (31b) and by using the displacement shape functions

N
m and N

M also for the two test functions, the semi-discretised format of Eqs. (31) (i.e. discretised

in space) can be rewritten as

[

M11 −M12

−M
T
12 M22

] [

d̈
m

d̈
M

]

+

[

K11 0

0 0

] [

d
m

d
M

]

=

[

fext

0

]

(32)

where

M11 =

∫

Ω

N
mT ρ

(

α

γ
− β

γ2

)

N
mdΩ +

∑

ξ=x,y,z

∫

Ω

∂NmT

∂ξ
ρ
βℓ2

γ

∂Nm

∂ξ
dΩ (33a)

M12 =

∫

Ω

N
mT ρ

(

α

γ
− β

γ2
− 1

)

N
MdΩ (33b)

M22 =

∫

Ω

N
MT

ρ

(

α

γ
− β

γ2
− 1

)

N
MdΩ +

∑

ξ=x,y,z

∫

Ω

∂NMT

∂ξ
ρ

(

α− β

γ
− γ

)

ℓ2
∂NM

∂ξ
dΩ

(33c)

K11 =

∫

Ω

B
mT

CB
mdΩ (33d)

fext =

∫

Γn

N
mT

t dΓ (33e)

and B
m = LN

m. Stability issues of the proposed finite element implementation are discussed in

Appendix A. Interestingly, stability of the finite element implementation is guaranteed even if the

energy functionals discussed in Section 6 are not positive-definite.

For the time discretisation of Eqs. (32) the unconditionally stable constant average acceleration

variant of the Newmark scheme can be used so as to have no restrictions on the time step.

Remark 3

The equations of motion presented in (3) can be derived from a constitutive relation having the

following format

σij = Cijkl(εkl − γℓ2εkl,nn) + ρ(αℓ2üi,j − βℓ4üi,jkk) (34)

where higher-order contributions appear simultaneously in the stiffness-related and in the inertia-

related part. In fact, the two natural boundary conditions appearing in Eqs. (31), consistent with

expressions (26), involve two contributions to the stress tensor of the proposed model, i.e. a
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‘stiffness’ contribution

σst
ij = Cijklε

m
kl + ρ

βℓ2

γ
ümi,n = Cijklε

m
kl + η ε̈mij (35)

consisting of the Hookean stress plus an additional term depending on the β microstructural

parameter, and a pure ‘inertia’ contribution

σin
ij = ρ

(

α− β

γ
− γ

)

ℓ2üMi,n (36)

that is affected by the macroscopic acceleration field. The natural choice has been to set the

‘stiffness’ traction associated to σst
ij equal to the externally applied traction, and to assume

homogeneous natural boundary conditions corresponding to the ‘inertia’ traction σin
ij (cf. also [8,9]).

Remark 4

Although the operator split applied to the original equations (10) results in a two-field formulation,

this is not a reducible form. The reason is that time derivatives have been taken in arriving at

Eq. (B1), therefore the original formulation of Eq. (3) can no longer be retrieved. Therefore, the

proposed formulation is not a mixed formulation and the restrictions on the interpolation as follow

from the Babuška-Brezzi (or inf-sup) condition do not apply. Since the interpolation regards two

displacement fields (and not displacement and strain fields, as for example in [6], or displacements

and micro-deformations, as in [42]), an obvious choice is to use the same shape functions for both

the variables, which is done in all the numerical examples of the paper.

8. NUMERICAL EXAMPLES

In this section, dynamic problems are investigated with the aim to assess the effectiveness and

accuracy of the proposed enhanced gradient elasticity formulation in capturing the dispersive wave

propagation. For simplicity and brevity, we only focus on one-dimensional problems to validate the

developed gradient elasticity formulation by comparison with results given by reference solutions

as well as by other formats of gradient elasticity. Multi-dimensional examples as well as additional

computational aspects regarding the accuracy of the numerical solution and the optimal choice of

the time-step and the element size of the proposed model will be discussed in a follow-up study.

The test set-up is shown in Fig. 3, namely a one-dimensional bar having length L, subjected to a

force F at its left hand end and fixed at the opposite right hand end. The length of the bar, direction

and time history of the applied force, the material properties as well as the higher-order coefficients

characterising the gradient elasticity model are specified for each particular example.

  

L
F

Figure 3. One-dimensional dynamic bar problem: geometry, loading and boundary conditions

With reference to the simple model given in Fig. 3, two physical phenomena are numerically

simulated, namely the dispersive wave propagation in a discrete chain of masses and springs and

the dispersive wave propagation occurring in a periodically heterogenous composite laminate.

A physically meaningful choice of the three material length scale parameters is discussed for

these two problems. More specifically, we elaborate procedures to link the three constitutive

coefficients to micro-structural properties. We will show that considerable improvements of the

present formulation over previous formats of gradient models are observed in the investigated

problems, which is due to the additional micro-inertia β contribution in the gradient elasticity

formulation.
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8.1. Discrete chain of masses and springs

In many studies, gradient elasticity theories have been derived from the continualisation of the

response of a discrete lattice, see e.g. [5, 10, 16, 23, 28, 29]. It is, thus, interesting to investigate

to which extent the dynamic behaviour of such discrete lattice can be captured by the proposed

gradient elasticity formulation.

Figure 4. One-dimensional discrete lattice consisting of mass particles connected by springs

We consider the one-dimensional chain of mass particles being connected by springs that is

depicted in Fig. 4. All particles have mass M and all springs have stiffness K; furthermore, the

particle spacing is denoted with ℓ. The equation of motion for the central particle n is written as

Mün(t) = K
(

un−1(t)− 2un(t) + un+1(t)
)

. (37)

where un(t) is the displacement of the mass particle n initially located at xn. Continualisation is

performed by translating the response of the discrete particle un(t) into the continuous displacement

u(x, t). For the neighbouring particles this implies un±1(t) = u(x± ℓ, t), due to the fact that

xn±1 = xn ± ℓ. The continuous counterpart of the equation of motion given in Eq. (37) is therefore

written as

ρAℓ ü(x, t) =
EA

ℓ

(

u(x− ℓ, t)− 2u(x, t) + u(x+ ℓ, t)
)

. (38)

where ρ is the mass density, E is the Young’s modulus and A is the cross-sectional area. By using

Taylor expansions for u(x− ℓ, t) and u(x+ ℓ, t), Eq. (38) can be rewritten as

ρ ü(x, t) = E
(

u′′(x, t) +
1

12
ℓ2u′′′′(x, t) +

1

360
ℓ4u′′′′′′(x, t)

)

+O(ℓ6). (39)

As indicated, Eq. (39) is asymptotically accurate up to O(ℓ6).
Following the discussion in Section 3 regarding the sign of the higher-order contributions in

gradient elasticity models, we note that the positive sign of the u(x, t)′′′′ term is destabilising and

would result in loss of uniqueness in boundary value problems and dynamic instability. This term

can be replaced by a stable higher-order inertia term as follows: the second space derivative is taken

from Eq. (39), the result is multiplied with 1
12ℓ

2 and subtracted from Eq. (39). By omitting, for

simplicity, the space and time dependence of the displacement, that is, u = u(x, t), and by ignoring

terms beyond or including O(ℓ6), the mathematical manipulations described above yield

ρ
(

ü− 1

12
ℓ2ü′′

)

= E
(

u′′ − 1

240
ℓ4u′′′′′′

)

+O(ℓ6). (40)

Again, since the negative sign of the u′′′′′′ term is destabilising, cf. Eq. (4), we eliminate this term

as follows: the fourth space derivative is taken from Eq. (39), the result is multiplied with 1
240ℓ

4

and added to Eq. (40). Ignoring terms beyond or including O(ℓ6), the mathematical manipulations

described above lead to

ρ
(

ü− 1

12
ℓ2ü′′ +

1

240
ℓ4ü′′′′

)

= Eu′′ +O(ℓ6). (41)

Note that the truncation error of Eqs. (39) and (41) is the same, namely O(ℓ6), but the latter equation

contains only stable terms.

By comparing Eq. (41) obtained via the continualisation procedure of a discrete lattice, and

Eq. (5) representing the one-dimensional format of the equation of motion of the proposed enhanced
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gradient elasticity model, the three model parameters α, β and γ are identified for this problem as

α =
1

12
, β =

1

240
, γ = 0. (42)

Therefore, for the numerical simulation of the dispersive wave propagation occurring in a discrete

lattice of masses and springs as depicted in Fig. 4, the length scale parameter ℓ is set equal to the

particle spacing, the values of α and β are given in (42) and an infinitely small value of γ should be

assumed accordingly.

The prediction of wave dispersion in a discrete chain of masses and springs has already been

investigated in [11] by means of two different gradient elasticity models, namely a so-called

‘α-model’ with a higher-order inertia contribution proportional to ü′′ (obtained by the proposed

model for a zero value of the β term) and a so-called ‘causal model’ in which, in addition to the

aforementioned ü′′-term (α term), a contribution proportional to the fourth-order time derivative
....
u was considered to retain causality of the formulation (more details can be found in the quoted

paper [11]).
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Figure 5. Dispersion properties of three gradient elasticity models compared to the dispersion properties of
a discrete chain of masses and springs—normalised angular frequency versus normalised wave number

Since we are interested in evaluating the performance of the proposed formulation and the

improvements over previous gradient elasticity models, in Fig. 5 the dispersion curves of the three

gradient elasticity models are plotted and compared to the reference dispersion curve of the discrete

medium. The dispersion curve of the discrete medium may easily be obtained by considering a

general harmonic function for the central particle n in the form

un(x, t) = U exp(i(kxn − ωt)). (43)

Substituting Eq. (43) into the equation of motion of the central particle n, Eq. (37), yields

ω2 = 4
K

M
sin2

(kℓ

2

)

. (44)

On the other hand, the dispersion curve of the α-model is obtained by Eq. (8) for α = 1
12 , β = γ = 0,

whereas that of the causal model is expressed as [11]

ω2 = c2e
1 + 2

15ℓ
2k2 ±

√

(1 + 2
15ℓ

2 k2)
2 − 1

5ℓ
2 k2

1
10ℓ

2
(45)
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that gives rise to two branches in the ω–k plane, a primary (or acoustical) branch that passes through

the origin (by taking the negative sign of the square root term) and a secondary (or optical) branch

that starts at a finite cut-off frequency. Only the former branch is considered in the comparison of

Fig. 5. The dispersion properties of the three gradient elasticity models are scrutinised in Fig. 5 in

terms of dispersion curve ω = ω(χ), where χ = kℓ. As can be seen from this Figure, a significantly

better description of the dispersive curve of the discrete medium, Eq. (44), is obtained through the

proposed formulation.
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Figure 6. Wave propagation, in terms of ε
M , in a discrete chain of masses and springs simulated with α-

model and causal model described in [11] and proposed model compared to the exact solution given in [12]
at t = 40 s (top) and t = 80 s (bottom)

To assess the accuracy of the proposed gradient formulation, we compare the numerical results

with a reference solution for this problem. In [12] a semi-infinite cascade of mass-spring systems has

been studied that is subjected to a compressive force (that is, directed in the opposite direction as

compared to that of Fig. 3) expressed as F = F0 U(t), where F0 is a constant stepforce at time

t = 0 (we assume F = 1N) and the function U(t) represents the Heaviside unit-step function.

For the case with a uniform distribution of mass M (we assume M = 1kg) and stiffness K (we

assume K = 1N/m), an exact solution for the acceleration of the nth particle at the time instant t
is expressed as [12]

ün(t) =
2n− 1

t
J2n−1(2t) (46)
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where J2n−1(2t) is the Bessel function of the first kind of order 2n− 1, evaluated at time 2t.
Given the solution in terms of acceleration, a solution in terms of displacements may be found

from the equation of motion of the particle n, see Eq. (37). The exact solution obtained via (46)

(with a negative sign) has been compared to the solution given by the proposed gradient elasticity

model for the problem sketched in Fig. 3. The length of the bar is assumed to be L = 100m, the

cross-sectional area A = 1m2 and the particle spacing ℓ = 1m. By considering the latter parameters

and the values of the mass and spring stiffness of the discrete model, M = 1kg and K = 1N/m,

equivalence of the discrete model (37) and the continuous counterpart (38) implies that ρ = 1kg/m3

andE = 1N/m2. As to the finite element model, the bar is discretised with 500 linear finite elements

(element size h = 0.2m) and the time step of the Newmark constant average acceleration scheme

is taken as ∆t = 0.2 s. In Fig. 6 the results obtained by the proposed model are reported in terms

of (macroscopic) strain εM for two time instants, namely t = 40 s and t = 80 s. In Fig. 6 we have

superimposed the numerical results obtained for the same problem by the numerical implementation

of the α-model and the causal model discussed above. Note that the discretisation parameters and all

the other data of this problem have been chosen so as to allow a consistent comparison with results

already published in previous papers, cf. Fig. 5 reported in [11]. By inspection of Fig. 6, we can

observe that all the gradient elasticity solutions show a reasonably good agreement with the exact

solution of the discrete model. However, especially away from the wave front, the proposed model

gives a more accurate prediction of the dispersive wave propagation than the other two gradient

elasticity models.

8.2. Periodically heterogeneous composite laminate

Elastic wave propagation through heterogeneous media is generally dispersive due to successive

reflection and refraction of the waves between the interfaces of the material (the so-called

impedance mismatch zones). In this case attenuation of the wave propagation occurs when the

signal travels from one end of the medium to the other, which may be explained by taking into

account the interaction between the incident, reflected and transmitted waves at the discontinuity

zones. This physical phenomenon is more significant when the wavelength of the travelling

signal is comparable to the characteristic length of the microstructure, as noted in Section 1, and

cannot be captured by classical elasticity theory that predicts a uniform phase velocity of every

individual harmonic component. When impedance mismatch zones (e.g. material discontinuities)

are introduced periodically in a medium, interesting wave dynamic characteristics can arise, for

instance, one can control the frequency bands over which waves are allowed to pass or stop, the

so-called Pass and Stop-bands [34]. In this paper we study the dispersive wave propagation of a

composite laminate modelled as a one-dimensional rod of length L (see again Fig. 3), and whose

microstructure is depicted in Fig. 7.

The microstructure of the considered composite rod consists of parallel, homogeneous layers

alternating periodically along its length. These layers are assumed to be perfectly bonded along

plane interfaces across which there is continuity of displacements. Moreover, the composite rod

is considered to be very long so that the wave propagation in its periodic layer can be studied

by analysing the behaviour of its ‘unit cell’. Due to the periodical microstructure of the laminate,

piecewise homogeneous material characteristics are assumed: material 1 is defined by mass density

ρ1 and Young’s modulus E1, whereas the analogous quantities for material 2 are denoted as ρ2 and

E2. The volume fractions of the two materials in each unit cell are governed by the parameter a,

with 0 ≤ a ≤ 1 (the limits being representative of a homogeneous medium).

Many researchers have made effort to derive effective homogeneous models in which the local

fluctuations due to the heterogeneities do not appear explicitly in the equation of motion, see

e.g. [3, 4, 17, 21]. Indeed, the study of the original heterogeneous medium can be simulated

by a homogeneous one with certain homogenised (so-called effective) material properties. Such

approximation is more realistic when the microscopic size ℓ of heterogeneities is significantly

smaller than the macroscopic length L, at the limit ǫ = ℓ/L = 0, where ǫ denotes the rate of

heterogeneities of the composite laminate. In reality, 0 < ǫ≪ 1 and microstructural scale effects

take place that cannot be predicted by simple homogenisation schemes, but higher order asymptotic
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homogenisation approaches are required, i.e. homogenisation with multiple length scales (and/or

time scales).

For example, in [3] an effective solution has been obtained by considering the displacements

entering the equations of motion as an asymptotic expansion

ui = u
(0)
i (x) + ǫu

(1)
i (x, y) + ǫ2u

(2)
i (x, y) + . . . (47)

where the first term u
(0)
i (x) represents the homogenised part of the solution, and y = x/ǫ is a

microscopic spatial length variable or fast spatial scale, as opposed to the slow coordinate variable

x. Therefore, increasingly accurate solutions may be found by considering corrections of u
(0)
i (x) of

the order ǫj by adding next terms u
(j)
i (j=1,2,3, . . . ). These extra terms are necessary to account for

local variations of the displacements on the scale of heterogeneities. The macroscopic equation of

motion at O(1), that is, when considering the homogenised part of the solution only, are written as

ρ̄ ü = Ēu′′ (48)

where ρ̄ and Ē are the effective mass density and the effective Young’s modulus that are related to

the component properties through the following relations [3, 17]

ρ̄ = aρ1 + (1− a)ρ2 (49a)

Ē =
E1E2

(1− a)E1 + aE2
. (49b)

Note that such an effective homogeneous continuum model, up to leading order O(1), is non-

dispersive since the equations of motion (48) are of the same format as in classical elasticity.

1 1,E ρ
2 2,E ρ



a (1 )a− 

,E ρ

Figure 7. Sketch of a two-component laminate with periodically heterogenous microstructure

By introducing some correction terms in the asymptotic expansion (47), the macroscopic equation

of motion at O(ǫ2) reads

ρ̄ü = Ē

(

u′′ +
1

12
θ2ℓ2u′′′′

)

+O(ǫ4) (50)

where the dimensionless coefficient θ captures the contrast in acoustic impedance of the two

materials and is expressed as

θ =
a(1− a)(E1ρ1 − E2ρ2)

ρ̄
(

(1− a)E1 + aE2

) . (51)

Equation (50) has been derived in [3] and [17,21] by means of different reasonings. The term 1
12 Ēθ

2

may be considered as the O(ǫ2) effective modulus that characterizes the effect of the microstructure

on the macroscopic behaviour. Note that the θ term in the right-hand side of Eq. (50) predicts the

effect of wave dispersion caused by the scattering of the global wave at the local heterogeneities

of the composite laminate [3]. A non-dispersive medium is obtained when the O(ǫ2) effective

modulus vanishes. This occurs either if the material is homogeneous (a = 0 or a = 1), or if the

acoustic impedances of the two components are identical (E1ρ1 = E2ρ2), which means that no

wave reflections at the component interfaces take place.
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We are interested in considering a more general formula than Eq. (50) by adding some further

contributions in the asymptotic expansions (47). Indeed, to tailor the coefficients of the gradient

elasticity model developed in this paper, in particular the β term underlying the additional micro-

inertia contribution, we need to take into account higher-order terms up to O(ǫ4). The higher-order

homogenisation up to O(ǫ4) has been reported in [20] and reads

ρ̄ü = Ē

(

u′′ +
1

12
θ2ℓ2u′′′′ − 1

360
θ2ψ2ℓ4u′′′′′′

)

+O(ǫ6) (52)

where 1
360 Ēθ

2ψ2 may be regarded as the O(ǫ4) effective modulus and the new coefficient ψ is

defined as

ψ =

√
c1

ρ̄
(

(1− a)E1 + aE2

) (53a)

c1 = a2E2
2

[

2a2ρ21 − (1− a)2ρ22 + 6a(1− a)ρ1ρ2
]

+ 2a(1− a)E1E2

[

3a2ρ21 + 3(1− a)2ρ22

+ 11a(1− a)ρ1ρ2
]

− (1− a)2E2
1

[

a2ρ21 − 2(1− a)2ρ22 − 6a(1− a)ρ1ρ2
]

. (53b)

Some mathematical manipulations are required to replace the unstable higher-order stiffness term
1
12θ

2ℓ2u′′′′ with a stable higher-order inertia term and to identify the three coefficients of the

developed gradient elasticity model. To this aim, the second space derivative is taken from Eq. (52),

the result is multiplied with 1
12 (θ

2 + ζ2)ℓ2 (where ζ is a coefficient) and subtracted from Eq. (52).

Ignoring terms beyond or including O(ǫ6), the mathematical manipulations described above yield

ρ̄
(

ü− 1

12
(θ2 + ζ2)ℓ2ü′′

)

= Ē
(

u′′ − 1

12
ζ2ℓ2u′′′′ − 1

720
(2θ2ψ2 + 5θ4 + 5θ2ζ2) ℓ4u′′′′′′

)

+O(ǫ6).

(54)

Since the negative sign of the u′′′′′′ term is destabilising, cf. Eq. (4), we eliminate this term

as follows: the fourth space derivative is taken from Eq. (52), the result is multiplied with
(2θ2ψ2+5θ4+5θ2ζ2)

720 ℓ4 and added to Eq. (54). Ignoring terms beyond or including O(ǫ6), the

mathematical manipulations described above lead to

ρ̄
(

ü− 1

12
(θ2 + ζ2)ℓ2ü′′ +

1

720
(2θ2ψ2 + 5θ4 + 5θ2ζ2) ℓ4ü′′′′

)

= Ē
(

u′′ − 1

12
ζ2ℓ2u′′′′

)

+O(ǫ6).

(55)

Note that the truncation error of Eqs. (52) and (55) is the same, namely O(ǫ6), but the latter equation

contains only stable terms.

The meaning of the ζ coefficient has already been given in other papers, see e.g. [15,23]. Indeed,

if we focus on the term 1
12ζ

2ℓ2 on the right-hand side of Eq. (55), this can be assumed as the square

of an internal length scale in statics, say ℓ2stat (cf. with Eq. (2) of the Aifantis’ 1992 strain gradient

theory). It has been demonstrated that ℓstat can be related to the size of the RVE in statics, say LRVE.

On the basis of the homogenisation of a RVE of heterogeneous material, it has been found that

ℓ2stat ≡ 1
12L

2
RVE [23] and, thus, one can write

ℓ2stat =
1

12
ζ2ℓ2 ≡ 1

12
L2

RVE. (56)

Since the size of the RVE of a strictly periodic laminate is equal to the size of the unit cell, that is,

LRVE ≡ ℓ, Eq. (56) holds if, and only if, ζ = 1, from which this coefficient is uniquely determined.

Substituting the value ζ = 1 into Eq. (55) results in

ρ̄
(

ü− 1

12
(θ2 + 1)ℓ2ü′′ +

1

720
(2θ2ψ2 + 5θ4 + 5θ2) ℓ4ü′′′′

)

= Ē
(

u′′ − 1

12
ℓ2u′′′′

)

+O(ǫ6). (57)

By comparing Eq. (57) obtained via the higher-order asymptotic expansion of a strictly periodic

laminate, and Eq. (5) representing the one-dimensional format of the equation of motion of the

proposed enhanced gradient elasticity model, the three model parameters α, β and γ are uniquely
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identified for this problem as

α =
1

12
(θ2 + 1), β =

1

720
(2θ2ψ2 + 5θ4 + 5θ2), γ =

1

12
. (58)

Therefore, for the numerical simulation of the dispersive wave propagation occurring in a strictly

periodic laminate as depicted in Fig. 7, we assume the effective mass density ρ̄ and the effective

Young’s modulus Ē as given in Eqs. (49), the length scale parameter ℓ is set equal to the size of the

unit cell, and the values of α, β and γ are given in (58), where θ is the coefficient given in (51) and

ψ is the coefficient given in (53). As a result, all constitutive parameters of the proposed gradient

elasticity model are expressed entirely in terms of the properties of the given composite laminate.

The dispersive wave propagation through periodically heterogeneous composite laminates has

already been studied in [15] by means of a dynamically consistent gradient elasticity model that is

basically the model expressed by Eq. (50) and representing the asymptotic homogenisation up to

the O(ǫ2) term. This model contains only the α and γ term of the present formulation and we can

retrieve these results by setting β = 0 in (58). Two periodic laminates with different wave dispersion

characteristics were investigated in [15] by varying the material properties of the unit cell. It seems

interesting to take into account the material data reported in the mentioned paper so as to make a

consistent comparison and to assess the improvements achieved by the proposed formulation.

By assuming a common volume fraction a = 1
2 for the two laminates, unitary macroscopic

(effective) material properties are considered, i.e. ρ̄ = 1kg/m3 and Ē = 1N/m2. Therefore, for

given properties E1, ρ1 of the material 1 the corresponding ones for material 2, namely E2, ρ2, are

obtained by means of Eqs. (49). The two investigated laminates are characterised by the following

properties: (i) the limit case of a laminate with strong contrast between the two materials by

considering material 1 as a stiff, dense material, with E1 = 106 N/m2 and ρ1 = 1.9999 kg/m3,

associated to a contrast of impedance between the two materials θ = 0.99995; (ii) a heterogeneous

laminate with weak contrast having E1 = 10N/m2 and ρ1 = 1.2 kg/m3, associated with θ = 0.55.

Note that the stronger the heterogeneities (in terms of impedance mismatch), the more dispersive

the wave propagation, therefore we expect a more dispersive behaviour for case (i) than for case

(ii).
Before analysing the numerical results obtained for the discretised model, it is interesting to

compare the dispersion curve of the proposed model with the exact dispersion curve of the

periodically heterogeneous laminate. The latter can be derived by applying the Floquet theorem

to the periodic equations of motion (see [14]) and by imposing continuity of displacements and

stresses at the interfaces and periodicity of the problem, which results in the following trigonometric

dispersion equation [3, 14, 34]

cos(k̄ℓ) = cos(Ω) cos(Ωτ)− ξ2 + 1

2ξ
sin(Ω) sin(Ωτ) (59)

where k̄ is the effective wave number that quantifies the nature of the wave propagation along

the rod. If one introduces the phase velocities in the two materials, c1 and c2, and the lengths of

the two materials within the unit cell, L1 = aℓ and L2 = (1− a)ℓ, in Eq. (59) Ω = ωL1/c1 is the

product of the angular frequency and the time required for the wave to cross one layer of material 1,

τ = L2c1/L1c2 is the ratio of the times taken by a wave to cross the layers of the composite and

ξ =
√
E1ρ1/

√
E2ρ2 represents the relative impedance of the composite. The exact dispersion curves

of the two analysed periodically heterogeneous laminates are reported in Fig. 8 and compared with

increasing orders of asymptotic homogenisation of the periodic laminate. More specifically, in Fig. 8

we report the dispersion curves of the non-dispersive O(1) homogenisation given by Eq. (48),

the O(ǫ2) homogenisation given by Eq. (50), which corresponds to the gradient elasticity model

discussed in [15], and the proposed model with O(ǫ4) accuracy given by Eq. (52). For the case

with strong contrast the proposed model gives a very precise description of the dispersion curve of

the heterogeneous medium, and the introduction of the β term leads to significant improvements

as compared to the O(ǫ2) gradient model. For the case with weak contrast the accuracy of the

proposed model is not as apparent as for the previous laminate, however encouraging improvements

are observed when comparing the O(ǫ4) and the O(ǫ2) models.
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Figure 8. Dispersion curves of periodically heterogeneous laminates with strong contrast (top) and weak
contrast (bottom)

To assess the accuracy of the proposed model we compare the numerical results with a reference

solution obtained by explicitly modelling the variation of the material properties within the

periodically heterogenous laminate. With reference to Fig. 3, we consider a bar having length

L = 300m and cross-sectional area A = 1m2. The bar is fixed at the right hand end and subjected

to a (compressive) unit-pulse at its left hand end, that is, a force expressed by F = F0 δ(t), with

δ(t) the Dirac’s delta and F0 = −1N the unit-pulse applied at t = 0 (the negative sign is consistent

with the direction of the force in the mechanical model sketched in Fig. 3). The bar is discretised

with 1500 elements (so assuming a uniform element size h = 0.2m as in the previous example)

and the time step of the Newmark constant average acceleration scheme is taken as ∆t = 0.2 s. The

heterogeneous elastic solution (i.e. the solution in which the microstructure is modelled explicitly)

is instead obtained by a more refined finite element model, that is, by using 6000 linear elements of

length 0.05m with periodically alternating groups of 10 elements having material properties E1, ρ1
and E2, ρ2. As a result, we assume a unit cell size ℓ = 1m. The time step for the heterogeneous

solution is set equal to ∆t = 0.05 s.
In Fig. 9 we can see the profile of the macroscopic displacement u ≡ uM at t = 280 s for the two

analysed laminates. As expected, the O(1) model is non-dispersive, all wave numbers travel with

the same phase velocity. The theoretical wave profile in this case should be a Heaviside function,

however some numerical dispersion takes place due to the spatial and time discretisation. On the

other hand, both the O(ǫ2) and O(ǫ4) predict wave dispersion due to the heterogeneities in the
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Figure 9. Wave propagation, in terms of u
M , in a periodically heterogeneous laminate with strong (top)

and weak contrast (bottom). Simulation with increasing orders of asymptotic homogenisation: homogenous

O(1) as per Eq. (48); gradient model O(ǫ2) given by Eq. (50); proposed model O(ǫ4) given by Eq. (52)

laminate microstructure. Considerable improvements are obtained by the proposed formulation

as compared to the O(ǫ2) gradient model discussed in [15] due to the additional micro-inertia

contribution. For the case with strong contrast it can be observed that the wave profile of the

proposed O(ǫ4) model and that of the heterogeneous model in which the local variations of the

material properties are modelled explicitly are basically coincident for a very large range of wave

numbers. We emphasize that the former solution is obtained with a significant saving in terms of

computational resources and CPU times as compared to the heterogeneous solution owing to the

different h and ∆t parameters involved in the finite element model. For the case with weak contrast

we still obtain some good agreement with the heterogeneous solution, and the improvements of the

proposed O(ǫ4) model compared to the O(ǫ2) gradient model are noticeable not only around the

wave front but also away from it where the latter model deviates more. However, the accuracy of the

gradient solution is less striking than in the previous case, which has already been pointed out when

comparing the dispersion curves, cf. Fig. 8. In this regard, it is worth noting that the comparison in

terms of dispersion curves serves to assess to what extent the results of the numerical finite element

model given in Fig. 9 are reflected and supported in their physical counterpart. These results are

definitely consistent with each other.
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9. CONCLUDING REMARKS

In this contribution, a new multi-scale gradient elasticity model has been developed. The proposed

model contains three higher-order terms (accompanied by three material length scale parameters)

that involve both the inertia and the stiffness terms in the equations of motion. As compared to a

previous dynamically consistent model containing two gradient terms (a micro-inertia and a strain

gradient) [5, 9], the developed model presents an additional micro-inertia term that is found to

significantly improve the prediction of wave dispersion. The motivations for this model are, in fact,

related to experimental observations concerning the dispersion characteristics of materials with

a lattice structure. In order to achieve a qualitative match between numerical and experimental

dispersion curves, such additional micro-inertia term turn out to be necessary. However, we have

proposed a formulation in which this additional term does not imply any extra additional cost from

a computational point of view (i.e. with regard to the spatial discretisation and the resulting finite

element implementation). Similarly to the earlier dynamically consistent model, the fourth-order

equations of motion are split into a set of second-order equations so that the requirement on the

interpolation is C 0-continuity rather than C 1-continuity. According to the proposed formulation,

the earlier dynamically consistent model with two parameters is retrieved for a zero value of the

additional micro-inertia term.

Two sets of unknowns, identified as the displacements at the macroscale and at the microscale,

appear simultaneously (i.e. in a coupled fashion) in the resulting split second-order equations, which

highlights the multi-scale nature of the proposed formulation. A few mathematical manipulations are

introduced to express the coupled equations in a symmetric format. Accordingly, the potential and

kinetic energy densities are presented and variationally consistent boundary conditions are derived

using the Hamilton-Ostrogradsky principle. The corresponding system matrices in the finite element

discretised equations are symmetric and positive-definite provided that certain restrictions on the

relative magnitudes between the three material length scale parameters are met. However, we have

pointed out that numerical stability of the finite element implementation is guaranteed regardless of

these restrictions.

Two simple 1D numerical examples have been analysed to show the effectiveness of the proposed

formulation for the prediction of wave dispersion and to highlight the improvements over previous

gradient models. A physically meaningful choice of the three material length scales is also discussed

so as to link the model coefficients to micro-structural properties. Multi-dimensional examples as

well as additional computational aspects of the proposed model will be discussed in a forthcoming

study.

APPENDIX A. STABILITY OF THE FINITE ELEMENT IMPLEMENTATION

Even if an unconditionally stable time integration algorithm is adopted to solve the equations

of motion of the semi-discretised system, Eqs. (32), numerical instability may arise when the

eigenfrequencies of the finite element are not real. It is of interest to check whether such a condition

can be obtained when using the proposed finite element implementation and, more importantly,

whether some specific conditions are required for this to be avoided, in particular on the three

coefficients (α, β, γ) entering the element mass matrix and the element stiffness matrix of the present

formulation. In this regard, some conditions have already been derived for guaranteeing positive

definitiveness of the kinetic energy, see Section 6.

For the sake of simplicity, we discuss only the one-dimensional case and we assume that the

same shape functions for the macroscopic and microscopic displacements are the same, that is,

N
m ≡ N

M = N. With reference to Eq. (32), the free vibrations of a single finite element are studied

through the following linear homogenous equation

Md̈(t) +Kd(t) = 0 (A1)

where d = [dm,dM ]T is a vector collecting the microscopic and macroscopic displacements

representing the degrees of freedom of each finite element and M and K are the corresponding
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(element) mass matrix and (element) stiffness matrix whose blocks are reported in (33). Introducing

a general harmonic solution d(t) =
∑

i vi exp(i ωit) into Eq. (A1) (where ωi are the natural

vibration frequencies and vi 6= 0 the corresponding vibration mode shapes) yields the well-known

eigenvalue problem in ω2
i , whose values are determined as the roots of the characteristic polynomial

det[−ω2
i M+K] = 0. (A2)

For a two-noded bar element of length h and unitary cross-section, using linear shape functions N,

the element (consistent) mass matrix and element stiffness matrix entering the eigenvalue problem

(A2) are expressed as (cf. Eqs. (32) and (33))

M =





(

α
γ
− β

γ2

)

Mc +
βℓ2

γ
Mg −

(

α
γ
− β

γ2 − 1
)

Mc

−
(

α
γ
− β

γ2 − 1
)

Mc

(

α
γ
− β

γ2 − 1
)(

Mc + γℓ2 Mg

)



 , K =

[

Kc 0

0 0

]

(A3)

where 0 is a 2-by-2 zero matrix, Mc and Kc are the classical (consistent) mass matrix and stiffness

matrix, respectively, while Mg is a gradient contribution:

Mc =
ρh

6

[

2 1
1 2

]

, Kc =
E

h

[

1 −1
−1 1

]

, Mg =
ρ

h

[

1 −1
−1 1

]

. (A4)

One may easily note that using a lumped mass matrix formulation for this format of gradient

elasticity would cancel the gradient contribution Mg and, in turn, would nullify the gradient effects

(although some remedies have been proposed to overcome this drawback, e.g. in [26]): indeed,

the two displacement fields would be coincident with each other, dm ≡ d
M , and would obey the

equations of classical elasticity (in other words, the length scale terms would cancel out).

Inserting the expressions of M and K given by Eqs. (A3) and (A4) into the eigenvalue problem

(A2) leads to the following eigenvalues

ω2
1 = ω2

2 = ω2
3 = 0

ω2
4 =

12c2e
h2

(

1 + 12 γ
(

ℓ
h

)2

1 + 12α
(

ℓ
h

)2
+ 144β

(

ℓ
h

)4

)

(A5)

where c2e = E/ρ and the zero eigenvalues characterise some rigid body motions (each node being

equipped with two degrees of freedom, namely the displacements at the microscale and at the

macroscale). It can be observed that the non-zero eigenvalue is always positive, and therefore

the corresponding eigenfrequency is always real, for any choice of the model coefficients α, β, γ,

provided that these coefficients are positive. It is worth noting that this condition holds true even if

the energy functionals are not positive definite. Indeed, if one assumes a set of the three coefficients

such that α ≯ β
γ
+ γ (in contrast to the recommendations of Section 6 with regard to the positive-

definitiveness of the kinetic energy), the relation ω4 > 0 still holds true and, thus, numerical stability

is not violated.

Finally, since in classical elasticity the non-zero eigenfrequency for a two-noded finite element

with linear shape function is ω2
c = 12c2e/h

2, relation (A5) can be regarded as the eigenfrequency of

the classical elasticity multiplied with the bracketed correction factor that is related to the gradient

effects.

APPENDIX B. SYMMETRIC FORMULATION OF EQS. (11)

In order to turn Eqs. (11) into a symmetric formulation, a few mathematical manipulations are

necessary that are listed below:

1) Take the second time derivative of Eq. (11b) and rewrite this equation in terms of accelerations

rather than displacements, that is

üMi − γℓ2üMi,nn = ümi (B1)
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2) Multiply Eq. (B1) with α/γ and use this result to replace the αℓ2üMi,nn term in Eq. (11a)

αℓ2üMi,nn =
α

γ
(üMi − ümi ) (B2)

3) Multiply Eq. (B1) with βℓ2/γ and derive twice in space so as to obtain a βℓ4üMi,nnjj term to

be used in Eq. (11a)

βℓ4üMi,nnjj =
βℓ2

γ
(üMi,nn − ümi,nn) (B3)

4) Use Eq. (B1) again to eliminate üMi,nn from Eq. (B3) as follows

βℓ4üMi,nnjj =
βℓ2

γ

[ 1

γℓ2
(üMi − ümi )− ümi,nn

]

=
β

γ2
(üMi − ümi )− βℓ2

γ
ümi,nn (B4)

5) Substitute Eq. (B2) and (B4) into Eq. (11a) so as to obtain

ρ
[

üMi − α

γ
(üMi − ümi ) +

β

γ2
(üMi − ümi )− βℓ2

γ
ümi,nn

]

= Cijkl u
m
k,jl (B5)

6) Finally, collect terms in the microdisplacements and macrodisplacements in Eq. (B5) and

multiply Eq. (B1) with −ρ
(

α
γ
− β

γ2 − 1
)

so as to obtain a set of second-order coupled

equations that reads

ρ

[

(

α

γ
− β

γ2

)

ümi − βℓ2

γ
ümi,nn −

(

α

γ
− β

γ2
− 1

)

üMi

]

= Cijkl u
m
k,jl (B6a)

ρ

[

−
(

α

γ
− β

γ2
− 1

)

ümi +

(

α

γ
− β

γ2
− 1

)

üMi −
(

α− β

γ
− γ

)

ℓ2üMi,nn

]

= 0 (B6b)

which is the sought symmetric formulation of Eqs. (11).
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