
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Original citation: 
Qiu, Song, Guo, Weisi, Li, Bin, Wu, Yue, Chu, Xiaoli, Wang, Siyi and Dong, Yin. (2016) Long 
range and duration underwater localization using molecular messaging. IEEE Transactions on 
Molecular, Biological and Multiscale Communications . 
 
 

Permanent WRAP URL: 
http://wrap.warwick.ac.uk/80238                
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for  profit 
purposes without prior permission or charge.  Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
“© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting 
/republishing this material for advertising or promotional purposes, creating new collective 
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component 
of this work in other works.” 
 
A note on versions: 
The version presented here may differ from the published version or, version of record, if 
you wish to cite this item you are advised to consult the publisher’s version.  Please see the 
‘permanent WRAP url’ above for details on accessing the published version and note that 
access may require a subscription. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/42624087?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/80238
mailto:wrap@warwick.ac.uk


Long Range and Long Duration Underwater
Localization using Molecular Messaging

Song Qiu1, Weisi Guo1,5, Bin Li2, Yue Wu3, Xiaoli Chu3, Siyi Wang4, Yin Dong6

Abstract—In this paper, we tackle the problem of how
to locate a single entity with an unknown location in a vast
underwater search space. In under-water channels, tradi-
tional wave-based signals suffer from rapid distance- and
time-dependent energy attenuation, leading to expensive
and lengthy search missions. In view of this, we investigate
two molecular messaging methods for location discovery:
a Rosenbrock gradient ascent algorithm, and a chemical
encoding messaging method. In absence of explicit diffusion
channel knowledge and in presence of diffusion noise, the
Rosenbrock method is adapted to account for the blind
search process and allow the robot to recover in areas
of zero gradient. The two chemical methods are found to
offer attractive performance trade-offs in complexity and
robustness. Compared to conventional acoustic signals, the
chemical methods proposed offers significantly longer prop-
agation distance (1000km) and longer signal persistence
duration (months).

Index Terms—under-water communications, molecular
communications, localization, chemical noise

I. INTRODUCTION

Terrestrial long-range wireless communication sys-

tems have operated successfully on land, offering a vari-

ety of broadcast and multi-cast services. Reliable wire-

less communication systems usually have knowledge of

(i) the distance or location area of the receiver, and (ii)

the channel for successful long term radio planning and

real-time dynamic transmission adjustments. However,

challenges remain in scenarios where the transmitters

and receivers are separated by a long distance, have

no knowledge of each others’ location areas, and little

knowledge is available about the propagation channel

dynamics. This is especially the case in search and

rescue services (e.g. for locating an underwater crashed

object such as a submarine or an aircraft). Such a

localization problem has two distinctive characteristics:
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(i) a hidden transmitter (the crashed object), and (ii)

absence of receivers in the vicinity of the transmitter.

We call this the hidden transmitter and absent receiver

(HTAR) problem, as detailed in our previous paper [1].

The transmitter blindly broadcasts a distress signal, in

the hope that receivers can detect it. Knowledge of either

where the transmitter is, or presence of the receiver in

the vicinity of the transmitter within a set time frame

would solve the localization problem. The time frame

constraint arises from the finite energy of the transmitter

as well as other reasons.

A. Review of Underwater Systems

In underwater environments, the propagation of wave

based and molecular signals can be slow and hence

both the distance- and time-dependent dimensions are

considered. Current black box and other underwater

communications utilize acoustic waves to transmit in-

formation in the form of 10ms sharp pulses on a 37.5

kHz carrier frequency. A typical battery supply can last

up to 30 days with proposals for 90 days for future

systems. The current receiver technologies (180dB and

1μPa) can reliably detect the signal at a range of 5km

(normal conditions) and 7km (good conditions) [2]. The

fundamental problem with all wave-based communica-

tions is that once the signal pulse is transmitted, the

pulse’s energy decays with propagation distance over

time. There is both a finite distance (approx. 10 to

30km) and time (approx. a few seconds after the last

transmission), beyond which the receiver cannot reliably

receive the signal. Therefore, the absence of receivers

in the reception zone during the short transmission time

period will lead to the loss of transmitters’ location. In

order to solve this time-constrained HTAR problem, the

transmitter must send messages that can persist for a

long period and over long distances.

B. Review of Chemical Messaging

Originally, we proposed to encode the location of

the transmitter inside the chemical composition of bio-

molecules [1], and allow the molecules to diffuse across



oceans. This only then requires the receiver to chemically

detect and decode the chemical structure to reveal the lo-

cation of the transmitter. It was found that unlike acoustic

communications, molecular communications provide a

viable solution to solve the HTAR problem. Information

molecules are able to diffuse long distances (∼ 1000km)

and achieve long endurance for detection (∼ years).

However, the bio-molecules suffer from high complexity

in encoding and rapid biological degradation in sea

water. This leads to a rapid decay in concentration and

a shortened detection distance and signal persistence

time. Hence, in this paper, we propose the chemical

gradient localization as an alternative low complexity

solution. Unlike the previous solution, the transmitter

releases a non-biological chemical tracer, which contains

no embedded information. A search robot is used to seek

out the transmitter through a gradient descent approach.

C. Related Work and Contribution

Animals and insects use olfaction to trace the loca-

tion of the odour source for foraging or reproductive

activities. The problem of finding the source of the

odour plumes is known as Chemical Plume Tracing

(CPT). Odour plumes are created when odour molecules

are released from their source and taken away by a

combination of diffusion and random turbulent flow

caused by temperature gradients. This combined process

can be modeled on a macroscopic scale as diffusion

with empirical diffusivity parameters that reflect the

random turbulent flow [3], [4]. The basic approach

for CPT is to calculate a concentration gradient with

subsequent plume tracing based on gradient ascent.

However, gradient-based algorithms are only feasible

in environments where flow can be approximated by

diffusion (low Reynolds numbers), resulting in a chem-

ical concentration field that is reasonably well defined

by a continuous function with a peak near the source

[5], [6]. Existing researches on localization based on

chemical gradients have largely considered a homoge-

neous diffusion environment where the diffusivity D
is a constant and the search space is a plane [7], [8].

This assumption is valid for small volumes of search

space or on a single plane (constant depth). However,

the diffusivity will vary significantly in a vast ocean

[3], creating potential zones of zero gradient. In this

paper, we improve over previous under water gradient

localization methods by proposing a multi-stage gradient

algorithm that can recover from zones of zero gradient.

A search robot with a chemical sensor is employed to

search for the crashed object, similar to [9]–[11]. The

advantages of this method over the chemical information
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Fig. 1. Illustration of Underwater Diffusion Model.

carrier method in [1] are: (i) no longer necessary to

embed the location information in the chemical, and

(ii) possible to employ a simple non-organic tracing

chemical that doesn’t suffer from degradation in sea

water.

The rest of the paper is organised as follows. In

Section II, we define the diffusion process in the oceans,

in particular we discuss the heterogeneous diffusivity

characteristics and noise models. In Sections III, we

present the proposed gradient localization method.

In Section IV, we compare the performance between

underwater communication systems and analyze the

trade-off between detection probability and robustness.

II. SYSTEM MODEL

A. Diffusion Channel

In this section, we present the underwater diffusion

channel and the receiver sensitivity definition. We con-

sider underwater diffusion in the context of oceans for

the HTAR problem, e.g., an aircraft or a submarine has

crashed into the ocean and sunk to a certain depth.

The underwater diffusion propagation model is shown

in Fig.1. We assume that the molecules used are of the

same density as water and the vertical forces exerted

to the molecules are entirely related to diffusion and

ocean currents. The propagation process of molecules

released at the origin can be modeled by solving Fick’s

laws of diffusion. In oceans, the rate of diffusion is non-
isotropic. If the molecules are released at the time instant

t = 0, the impulse response (hitting probability density



function) φ at a given point (x, y, z) of a hemisphere is:

φ (x, y, z, t) =
2 exp

(
− x2

4Dxt
− y2

4Dyt
− z2

4Dzt

)
(4πt)

3/2 √
DxDyDz

, (1)

where Dx, Dy and Dz are the diffusivities of x, y, z
directions respectively. Since the diffusivity is non-

isotropic in oceans, we consider specific ocean diffu-

sivity values found in [3]. For a depth of 3-5km, the

diffusivity is constant for the horizontal and vertical

directions, i.e., Dx = Dy and Dz are approximately

constants.

We assume the crashed object has a transmitter that

releases molecules continuously for a time period T at a

constant magnitude M . We consider the input molecular

signal x(t) can be modelled as a rectangular pulse with

magnitude M and pulse width T given as: x(t) =
M [u(t)−u(t−T )], where u(t) is the Heaviside function.

The channel output without noise can be calculated as

the convolution of the input signal x(t) and the channel

response in Eq.1 given as

p (t) = x(t) ∗ φ(x, y, z, t)
=

M

2πDR

[
erfc

(
R

2
√
Dt

)
− erfc

(
R

2
√
D(t− T )

)]
,

(2)

where D is the equivalent diffusion coefficient given

as D =
(
DxDyDz

) 1
3 , R is the equivalent molecular

propagation distance given as R = 1
D (DxDyz

2 +
DxDzy

2+DyDzx
2)1/2 and erfc () is the complementary

error function (see Appendix A).

B. Detection and Noise

The mobile robot’s receiver will detect an instanta-

neous signal p(t) given in Eq. 2, and exploit it for

gradient based localization. Unlike most molecular sig-

naling channels, the absence of channel knowledge and

synchronization means that the peak signal is not rele-

vant. In sensing chemical concentrations, the receiver’s

sensitivity is defined by the Limit of Detection (LOD)

value. The LOD which is defined as the quantity of

compound that gives a signal intensity that is a factor

of 3 greater than the standard deviation of the back-

ground signal [12]. The unit of LOD is parts-per notion
which is a set of pseudo units to describe small values

of miscellaneous dimensionless quantities. For a given

receiver sensitivity LOD threshold, we define the Arrival
Time for Detection as the total time which the molecule

needs to diffuse in the environment until the molecule

concentration exceeds the threshold.

In terms of noise, existing communication research

has focused on counting noise [13], which is approxi-

mately Gaussian distributed. However, when we consider

molecule motion in an ocean, we are more interested

in the dominant LOD and the background chemical

noise. It has been shown that the background chemical

noise is Gaussian distributed [14] ∼ N
(
0, (LOD

3 )2
)

.

By transferring the units in parts-per notation [ppq] to

concentration [molecules/m3] 1, the calculation of time-

varying instantaneous SNR is given as:

SNR =
Psignal

Pnoise

=
|p(t)|2
σ2

=
9|p(t)|2
LOD2 . (3)

III. CHEMICAL GRADIENT LOCALIZATION

Inspired by animal’s method of locating objects (e.g.,

prey) using smell, we propose a search-and-rescue robot

that homes in on the chemical emitted by a crashed

object. Existing localization methods using chemical

concentration gradients have largely considered a homo-

geneous diffusion environment where the diffusivity D is

a constant in all directions. This assumption is valid for

small volumes of search space or on a single plane but

not for a vast ocean where the diffusivity in different

directions will vary significantly [3] creating potential

zones of near zero gradient. For example, in Fig. 2, an

emitter located at [0, 0, 0] emits a rectangular pulse with

magnitude M of chemicals and after a certain time the

diffusion varies at various depths and distances. The rate

of diffusion on a plane is much faster than across planes

[3], and hence the robot may find a viable gradient at a

deeper depth (smaller z value) but not enough gradient

at lower regions. In this paper, we improve over previous

under water gradient localization methods by proposing

a multi-stage gradient algorithm that can recover from

zones of zero gradient.

A. Multi-Stage Gradient Algorithm

To operate in a non-isotropic diffusion environment

and without an explicit function of the gradient, we

propose a Rosenbrock gradient based search method [16]

as detailed in Algorithm 1 and described below as a

two-stage process. Each stage is a general process that

comprises of multiple robot steps.

1We assume the molecules has a similar molar mass of 200 in [15].
Thus the transferring is given as LOD = 1ppq = 10−3ppt = 10−3×
1ng/L = 10−12g/L = 10−12

200
× 6 × 1023 × 103molecules/m3 =

3× 1012molecules/m3



• 1. blind search stage: In this initialization stage we

have to find a feasible searching area where there

is sufficient chemical gradient to initiate the correct

start direction. The robot begins at position P0.

• 2. repetitive search stage: the robot searches in the

sea according to the Rosenbrock method. The robot

waits a certain time period (stays stationary) before

it re-calculates a new search direction vector. If the

new search vector is in agreement with previous

vector, the robot increases the waiting period by

α-fold. If not, it increases the waiting period by

β-fold. The starting waiting period is given by e.

Each step will remember the location of previous

calculation Ps and update it with the new location

Pe. Once the Rosenbrock searching process stops:

1) it stops in the vicinity of the transmitter and the

robot surfaces to report its location and the whole

searching process terminates successfully; or 2) it

is still far away but can not find a gradient to action

upon. In this case, the robot stops and we set it to

a new start point (xn, yn, zn + h) and start another

Rosenbrock searching process with the blind search

stage detailed above. We repeat this step until the

robot reaches the crashed object.

The reason we use the Rosenbrock algorithm is that, in

the considered scenario the location of the transmitter is

unknown so that we cannot obtain the analytic function

of the molecular concentration varying along the loca-

tions. Therefore, although we have formulated the target

location problem as an optimization problem, we cannot

obtain the analytic objective function. Other gradient

based schemes e.g. the conjugate gradient algorithm and

the Newton algorithm which are all premised on the ana-

lytic gradient function, cannot be applied in our scenario.

Therefore, we have to use the numerical search scheme

to obtain the optimum point on the objective function.

Rosenbrock algorithm is specially designed for such a

realistic problem. For example, in our simulation, the

robot will obtain various molecular concentration values

from the hidden objective function during both blind

search step and repeat search step. Based on the receipted

concentration values, the proposed Rosenbrock search

algorithm can construct their approximate gradient so

that to trace the hidden object.
Fig. 2 shows an example of the robot movement

path in finding the transmitter. Each numbered point

represents the algorithm re-calculating a new movement

vector. At point 0, the algorithm performs blind search

to find the correct initial vector and travels along it

for a period of e. Then it reaches point 1, whereby

the algorithm has verified that the new direction agrees

with the previous one and increases the travel duration

Algorithm 1 Rosenbrock gradient search algorithm.

function SEARCHINGTRANSMITTER(P0)

Initialise α← 2; β ← −0.5; e← 1;

ξ1 ←
⎡
⎣10
0

⎤
⎦; ξ2 ←

⎡
⎣01
0

⎤
⎦; ξ3 ←

⎡
⎣00
1

⎤
⎦;

Blind Search ξs ← INITIALDIRECTION(P0);

Ps ← P0;

repeat � Start searching

Pe ← ROSENBROCKSEARCHING(Ps, α, β, e,

ξs);

Ps ← Pe +
[
0 0 h

]
;

ξs ←
[
ξ1 ξ2 −ξ3

]
;

until Receiver robot stops in vicinity of the trans-

mitter, i.e., Pe ∈ P
return Pe;

end function
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Fig. 2. Plot of chemical concentration (molecules per m3) at various
distances away from source for t = 347days

by a factor of α. Upon reaching point 2, the algorithm

discovers that no viable gradient can be found and the

algorithm performs a reset. At the reset, it surfaces

h = 50m upwards to find a gradient (slower rate of

diffusion) at point 3, whereby it proceeds to find the

crash object at point 4. The reason why the robot moves

upwards is because the horizontal planar diffusion is

less progressive (likelihood of sharper gradient) at lower

depths of the ocean. The number of search iterations is

defined as the number of distinctive stages it took for the

robot to find the transmitter (4 in the case of Fig. 2). A

repeat stage is defined as the robot losing the gradient

and repeating the first part of the algorithm to regain the

gradient (1 occurrence in the case of Fig. 2). The total
trace distance is defined as the total distance travelled
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by the search robot (including any repeat stages).

B. Performance Results

We now evaluate the algorithm’s robustness in three

areas: (i) the effect that the transmission duration has on

the concentration gradient, (ii) the amount of ambient

chemical noise in the ocean, and (iii) the starting location

of the robot. The parameters used in the analysis and

numerical simulations are found in Table.I.

1) Robust Concentration Gradient: In the first part,

we show that unlike wave-based communications, the

gradient of molecular concentration is not strongly af-

fected by the transmission period. In acoustic wave

communications, the power of the acoustic signal will

decay to below noise level after less than 1 minute of

propagation. As shown in Fig. 3, not only will there be

a significant gradient (
∂p(t)
∂R [molecules per m4]) after

several years, but also the shape of the gradient doesn’t

vary between a transmission period of T =15 days, and

T=360 days.

2) SNR Threshold (based on LOD): In Section II, we

defined the macroscopic ocean noise as a function of the

LOD, and the SNR is defined in Eq. (3). The main effect

of noise is to cause false gradients and causing incorrect

search direction decisions. Fig. 4 shows the simulation

for total number of search iterations as a function of the

SNR. Monte-Carlo simulations were performed for each

SNR value ranging from 140dB to 240dB, for different

transmission durations T . It is found that if the SNR falls

below a threshold value of 140dB, the number of search
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Fig. 4. Plot of search iterations as a function SNR. The receiver starts
at x =100km, y =100km, z =1000m away from the transmitter.

TABLE I
THE DEFINITION OF PARAMETERS WITH THE SIMULATION VALUES

IN THE MODEL

Parameters Values
Transmitted Molecule Magnitude (M ) 1 [mol/s]

Transmission Period (T ) 30 [days]

Sea Depth (H) 5 [km]

Reception Zone Radius (r) 1 [m]

Limit of Detection (LOD) 1 [ppq]

Depth Adjustment (h) 50 [m]

Horizontal Distance (x, y) 0− 1000 [km]

Vertical Distance (z) 0− 2000 [m]

Horizontal Diffusivity (Dx, Dy) 250 [m2/s]

Vertical Diffusivity (Dz) 4.5× 10−5 [m2/s]

iterations required grows rapidly. For an SNR value of

200 or over, the algorithm is robust enough to always

find the hidden object with approximately 24 search

iterations. The results also reinforce the earlier claim that

increasing the transmission duration doesn’t significantly

affect the number of search iterations’ sensitivity to

noise.

3) Starting Location: In terms of where the robot

initially starts, we consider how the number of search

iterations vary in according to the horizontal distance

x, y and the vertical distance z. In Fig. 5(a) and (b), we

show the total number of search iterations (steps) for

different (a) horizontal distance (where vertical distance

fixed at 1000m) and (b) vertical distance range (where

horizontal distance fixed at 100km). The results show
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Fig. 6. Boxplot of total trace distance travelled by the robot as
a function of (top) horizontal distance range and (bottom) vertical
distance range.

that the number of search iterations is largely uncorre-

lated with the horizontal distance, but rises significantly

for a vertical distance of over 1300m. In Fig. 5(c) and

(d), we show the number of search iterations (steps)

for different number of repeat stages (as a result of

different horizontal and vertical distances). The results

show that the search iterations are positively correlated

with the repeat stages at both distances. A repeat stage

can significantly increase the search distance of the

robot, and we show this next. In Fig. 6, we show the

total trace distance as a function of the horizontal and

vertical distance. The results show that the total trace

distance is positively correlated with both the vertical

and horizontal distance. In terms of the outliers, they

are more exasperated for the vertical distance due to the

existence of a high number of repeat stages described

above.

IV. PERFORMANCE COMPARISON

This section compares the performance of the chem-

ical gradient localization method proposed in this paper

with chemical information carrier method in [1] and

conventional communication systems (i.e., acoustic and

optical). In particular, we focus on the energy attenuation

and latency performance metrics.

A. Molecular Communication

1) Chemical Gradient Localization (CGL): The pro-

posed method in this paper is based on a gradient as-

cend localization method using the chemical gradient in

oceans. The received molecular energy can be considered

as the total number of molecules accumulated over time.

We consider a narrow pulse transmission and an infinite
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time reception. The energy at a CGL receiver can be

expressed by integrating Eq.1 over time:

ECGL =

∫ ∞

0

φ(R, t)dt =
M

2πDR
(4)

Therefore, using Eq. 4, the energy attenuation for chem-

ical gradient localization is ∝ 1
R , and the time delay to

peak amplitude is ∝ R2 [1].

2) Chemical Information Carriers (CIC): In the

chemical information carrier method [1], biological com-

ponents (peptides and N-linked glycan), which are em-

ployed as sufficiently complex chemical information

carriers, will be detected as food by the bacteria in

the oceans. Thus, the information components can be

damaged during the propagation in the ocean. Ac-

cordingly, we consider that CIC molecules have a life

expectancy with a molecule degradation, which can

be modelled as an exponential distribution [17], and

the concentration with degradation φ (t) is modeled as

φ (t) = φ0 exp (−λt) , where: λ = ln(2)
Λ1/2

. φ0 is the

non-degraded concentration found in Eq. (1), λ is the

rate of degradation, and Λ1/2 is the corresponding half-

life of the message molecule. Therefore, the energy of

CIC is given as

ECIC =

∫ ∞

0

φ(R, t) exp(−λt) dt

=
M

4πDR

[
1.84 exp(−R

√
λ

D
) + 0.16 exp(R

√
λ

D
)

]
.

(5)
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Fig. 8. Plot of energy attenuation as function of propagation distance
(top) and plot of latency as function of propagation distance (bottom)
for acoustic, wireless optical, chemical gradient localization and chem-
ical information carrier

The time delay to peak amplitude delay is the same as

CGL.

Fig. 7 shows the results of chemical concentration as

a function of diffusion time for the two methods under

consideration at an equivalent distance R = 20km. It

is found that the concentration of CIC is very sensitive

to molecule half-life time Λ1/2, but the receiver will im-

mediately know the location after decoding the chemical

message. On the other hand, CGL does not suffer from

molecular degradation because no information needs to

be encoded in bio-molecules. The detection period is suf-

ficient long (above LOD threshold), but the search robot

has to wait a long time before the concentration reaches

above receiver sensitivity, and wait a further longer time

before the robot can locate the transmitter after many

search iterations. In summary, CIC provide the exact

location information for the receiver so that once one

information carrier is captured and decoded, the location

can be found. However, the complexities of assembling

the carriers and the carrier life expectancy need to be

carefully considered. CGL, on the other hand, doesn’t

suffer from the complexity and degradation issues, but

is sensitive to the noise in the ocean environment and

the need for waiting a longer period in order to initialize

the search start.



B. Conventional Communication

In Fig. 8, we show the energy attenuation and latency

as a function of propagation distance for both molecular

and conventional systems (see Appendix B). Fig. 8

(top) show that conventional systems suffer faster energy

attenuation than molecular communications. This means

rescue nodes are far more likely to detect molecular

messages at long distances than either acoustic or optic

signals. Fig. 8 (bottom) shows the latency (the peak

pulse’s arrival time) increases quadratically for molecular

communications, whereas acoustic and optical waves’ la-

tency increase linearly. This means the nodes that expect

molecular signals need to wait significantly longer.

We summarize the difference between the 4

underwater communication metrics as follows: optical

wireless has a high data rate (Mbits/s), but the free-space

transmission distance is strictly limited to a few metres

underwater. Acoustic systems are widely used for

search and rescue nowadays due to its low complexity

and reasonable detection distance (10-30km). However,

when the search space is large and the search duration

is prolonged, acoustic systems can not reliably allow

the rescuers to find the hidden crashed object (as it is

in the MH370 case). The persistence time of the signal

after transmission is a few seconds, indicating that the

search time is limited by the battery life of the system.

Compared to the aforementioned conventional systems,

both of the chemical methods have the advantages of

higher signal persistence time (months to years) and

longer propagation distance (1000km or more).

V. CONCLUSION

In this paper, we tackle an underwater rescue problem

of trying to locate a single hidden object. Current state-

of-the-art acoustic systems can be received up to 30km

away and each signal pulse persists for only a few

seconds to a minute after transmission. Typical plane

crash search radius can be up to 500km and the search

duration can take from several months to years. The

rapid energy attenuation of acoustic waves in under-

water channels leads to expensive and lengthy long range

search and recovery missions.

Therefore, we are motivated to propose a chemi-

cal based signalling method. Previously, we proposed

to embedd the location information inside the chemi-

cal composition of bio-molecules. These suffered rapid

degradation in the ocean as a food source for bacteria. As

a result, an alternative method is proposed in this paper,

whereby no information is embedded in the chemical

molecules. Instead, the molecules serve as a chemical

concentration gradient to aid a robot to find the trans-

mitter through gradient ascent. An adapted Rosenbrock

algorithm is implemented to achieve the blind search

process. A reset element is employed to account for the

heterogeneous diffusivity characteristic of oceans, which

can cause regions of zero gradient. The key discovery is

that the transmission duration is not important, but the

Limit of Detection (LOD) is important for minimizing

the search duration. This means one would want to

design a molecular transmitter that can transmit high

concentration for a shorter time interval..

In comparing the two methods, it is found that:

the previously proposed chemical messaging method

is more complex, but is reliable against diffusion

channel variations in the ocean channel; whereas the

gradient ascent method proposed in this paper has

a low implementation complexity but is sensitive to

the the Limit of Detection and chemical noise. In

summary, both chemical messaging methods offer

superior performances in search distance and duration

when compared against conventional acoustic systems.

APPENDIX

A. Channel Step Response

We consider the Laplace transform of the channel

impulse response φ(R,D, t) is:

Lt

⎡
⎣ 2

(4πDt)
3/2

exp

(
− R2

4Dt

)⎤
⎦ =

e−R
√

s
D

2πDR
. (6)

Therefore, a step response with delay τ is an inverse

Laplace transform of exp(−τs)/s × Eq. 6:

S (R, t, τ) =
M

2πDR
erfc

(
R

2
√
D(t− τ)

)
. (7)

B. Conventional System Propagation in Under-Water
Channel

1) Acoustic Communication (AC): In an underwater

acoustic channel over a propagation distance R [km],

the propagation channel’s energy attenuation A [dB] is

statistically characterised by [18]:

AAC(R, fa) = k10 log10(R)+R(a(fa))+10 log10(A0),
(8)

where A0 is a constant, and k is an acoustic spreading

factor (typically 2). The function a(fa) characterizes the

absorption coefficient which is a function of frequency

fa [kHz]. The time delay to peak amplitude’s arrival is

∝ R.



2) Underwater Wireless Optical Communication
(UWOC): In an underwater wireless optical channel over

a propagation distance R [km], the attenuation of the

light beam in water can be quantified with beam light

attenuation coefficient c(v/fo) in [19]:

AUWOC(fo, R) = exp

(
−c

(
v

fo

)
R

)
, (9)

where fo is the frequency of the light beam, v is the

speed of light in sea water. The time delay to peak

amplitude’s arrival is ∝ R.
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