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1 Chapter 1: Introduction 
 

1.1 Abstract: 
 

Background: GDM is a state of glucose intolerance first diagnosed in pregnancy. It is a 

pre-diabetes state, predisposing both the mother and offspring to future risk of diabetes. 

GDM is associated with increased risk to macrosomia, adiposity, Caesarean Section 

(CS) delivery, shoulder dystocia, and neonatal hypoglycaemia. SA have a greater than 

two fold risk of both GDM and future diabetes risk compared to WC. However, despite 

having higher levels of hyperglycaemia in pregnancy, SA babies are amongst the 

smallest babies in the world.  

The mechanism behind this increased glycaemic risk in SA is complex, multifactorial 

and unclear. Disordered hypothalamic-pituitary-adrenal axis (HPA) has been linked to 

adult diabetes, obesity and metabolic syndrome in WC but has not been studied in SA. 

The current management of GDM is largely based on evidence from studies in WC and 

has been extrapolated to other ethnic groups such as SA. This includes: diagnostic 

criteria to define GDM, postnatal screening methods for postpartum glucose 

abnormalities, effect of GDM on offspring birth weight (BW) and fetal growth in GDM. 

Through this research we aim to explore the ethnic differences between SA and WC in 

the applicability of diagnostic criteria, post partum screening methods, effect of GDM 

on BW, fetal growth patterns in GDM and also examine ethnic differences in HPA 

activity as a potential mechanism underlying the increased glycaemic risk in SA in 

pregnancy. 
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Methods: 

i. Retrospective analysis of a routinely collected multicentre data (n=14477) over a 

3-year period was used to study the applicability of various GDM diagnostic 

criteria and post partum screening methods. A subgroup analysis of the above 

data set was used to compare fetal growth between SA and WC (177 WC and 

160 SA).  

ii. A retrospective analysis of a large birth weight cohort (n=53,128) from 

Leicestershire between 1994 and 2006 was used to compare the effect of 

maternal diabetes and GDM on BW in SA and WC.  

iii. To examine fetal growth in SA, a retrospective case control analysis of serial 

fetal biometry was performed between GDM and control population from India. 

(178 controls and 153 GDM) 

iv. To explore underlying HPA dysfunction as a potential mechanism for increased 

glycemia in SA and ethnic differences in HPA behaviour a prospective cohort 

study comprising of high risk pregnant SA and WC women was performed. 

Diurnal salivary and urinary cortisol excretion was studied in relation to 

glycaemia in SA and WC (n=100, 50 SA, 50WC) 

Results:  

i. The newer IADPSG detects obese women with mild fasting hyperglycaemia. 

The benefits of treatment of hyperglycemia are not well established. The 

increase in detection rates of GDM with the new NICE and IADPSG criteria 

were uniform across ethnic groups in a selectively screened population.   
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ii. Postnatal screening with oral glucose tolerance test (OGTT) is associated with 

poor uptake in all ethnic groups, which improves substantially with using 

HbA1c. SA were more likely to attend postnatal screening with HbA1c 

compared to WC. Screening for postnatal diabetes using FPG is more likely to 

miss women of non-WC ethnicity owing to the larger proportion of post-load 

glucose abnormalities. 

iii. The BW increase associated with maternal diabetes was lower in SA by 139g 

compared to WC.  

iv. Important ethnic differences in fetal growth were noted. SA fetuses had overall 

smaller measures of head and abdomen circumferences, but with 

disproportionately smaller abdominal circumference compared to WC, 

signifying early evidence of a head sparing growth restricted pattern. 

v. SA fetuses of GDM mothers showed early evidence of increased abdominal 

adiposity at 20 weeks with smaller measures of other fat free mass and skeletal 

growth compared to non-GDM controls 

vi. SA had higher cortisol awakening responses compared to WC. First trimester 

waking cortisol was an independent predictor of glycaemia in the third trimester. 

Despite significantly lower BMI, SA had similar glucocorticoid (GC) excretion 

to WC. Urinary GC excretion was independently predicted by maternal adiposity 

and not BMI in SA. 

Conclusion: This research addresses important gaps in the literature in gestational 

diabetes in SA. There are important ethnic differences in the impact of maternal 

diabetes and gestational diabetes on BW and fetal growth, and evidence of early 
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increase in adiposity at the expense of lean body mass in SA. This research provides 

novel evidence to support the argument for ethnicity tailored management of GDM. 

Our research also provides novel evidence for disordered HPA activity as a possible 

mechanism for the increased glycemic risk in SA. Larger randomized prospective 

studies incorporating offspring outcomes in relation to HPA are needed. 
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1.2 Gestational Diabetes Mellitus and ethnicity: 

GDM is defined as glucose intolerance first diagnosed in pregnancy [3]. It can be 

regarded as a pre-diabetes state, which is unmasked by the relative diabetogenic 

hormonal milieu of pregnancy. Normal pregnancy is associated with about 60% 

decrease in insulin sensitivity, exaggerating the risk of clinical 

hyperglycemia/gestational diabetes in women with pre-existing undiagnosed metabolic 

dysfunction [4]. 

The prevalence of GDM is increasing at an alarming rate globally in line with the 

increase in prevalence of type 2 diabetes (T2D) [5, 6]. The prevalence of GDM varies 

between 2-22% in population based studies [7] depending on the screening criteria used 

and the population characteristics. 

GDM increases the future risk of T2D by 7-8 fold in mothers and 2-4 fold in the 

offspring [8]. GDM has also been associated with offspring risks such as macrosomia, 

neonatal jaundice, increased C-Section rates, neonatal hypoglycaemia and shoulder 

dystocia [9]. There is strong evidence to show that treatment of mild GDM reduces 

offspring risk [10, 11].  

While GDM has been associated with various traditional risk factors such as obesity and 

family history of T2D, ethnicity has been regarded as one of the independent risk factors 

in GDM and has several implications in GDM, in particular in South Asians (SA). 

1. Risk of GDM: The prevalence of GDM vary widely with ethnicity [12]. Using 

the same criteria, the prevalence is more than double in South Asians (SA) 

compared to White Caucasians (WC) despite lower BMIs in SA [13, 14]. While 

the incidence of GDM is increasing globally, this increase is disproportionately 
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higher in SA compared to WC [15], paralleling the increase in T2D in SA. It is 

not entirely clear why SA are at higher risk of GDM than WC. Several theories 

have been postulated as discussed in the next section. 

2. Diagnosis of GDM: Currently GDM is diagnosed between 24-28 weeks of 

pregnancy using various criteria across the world, with little consensus. The 

different criteria that have evolved since the 1960’s are purely based on studies 

in WC. How these criteria perform in different ethnic groups especially SA is 

unclear. Some groups have called for the use of ethnic specific cut offs in the 

diagnosis of GDM [16, 17]. 

3. The effect of GDM on birth weight (BW): It is well known that GDM increases 

the risk of macrosomia[9]. Large for gestational age (LGA)/macrosomia has 

been used to derive glycaemic cut offs for defining GDM, assuming that the risk 

of LGA/macrosomia are uniform across ethnic groups [9]. However it has been 

shown that the effect of GDM may not be uniform across different populations. 

Studies among Blacks and WC show that the effect of GDM on BW is 

significantly modulated by ethnicity [18]. Literature comparing the effects of 

GDM on BW in SA and WC is sparse. If proven this further strengthens the 

argument for having ethnic specific diagnostic criteria for GDM. 

4. Post-partum screening and risk of future GDM: The risk of post-partum diabetes 

and methods of post-partum screening practices vary significantly across 

populations. It has been reported that the prevalence of post-partum T2D after 

GDM varies with ethnicity. Blacks had higher post-partum T2D rates compared 

to WC, despite having a lower prevalence of GDM [19]. SA have up to a two 
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fold increased risk of developing T2D following GDM after adjusting for 

potential confounders [2, 20]. However characterisation of the type of postnatal 

abnormalities and applicability pf various postnatal screening strategies in the 

two ethnic groups has not been studied previously. Ethnicity tailored postnatal 

testing strategies may be indicated if these differences were observed. 

1.3 Increased metabolic risk in SA and theories 

South Asians (SA) are a diverse population originating from the Indian subcontinent, 

including India, Bangladesh, Nepal, Pakistan and Sri Lanka. According to the 2011 UK 

Census, South Asians were UKs largest ethnic minority and constituted around 4.9% of 

the population of UK and Wales.  

It is well known that SA have disproportionately higher risk of gestational diabetes, type 

2 diabetes, pre-diabetes, premature cardiovascular mortality and morbidity compared to 

WC. In the UK, the prevalence for T2D in SA is 4-6 times higher and develops 5-10 

years earlier compared to WC [21-25]. Coronary heart disease [26] and stroke are more 

prevalent in SA with a 40-50% higher mortality than in WC [27, 28], in part secondary 

to the higher prevalence of diabetes. After adjusting for age, BMI, family history and 

smoking status, the hazard ratios for T2D in SA vs WC were over 4.07 for Bangladeshi 

women, 2.15 for Pakistani women and 1.71 for Indian women [29]. This adverse risk is 

also seen in pregnancy, which has metabolic implications both for the mother and 

offspring. The prevalence of GDM, which is a pre-diabetes state, using the same criteria 

are more than double in SA compared to WC despite lower BMIs in SA [13]. 

The reasons for this wide disparity are far from clear, although socio-economic and 

cultural influences on health have been implicated. A few studies using self-reported 
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physical activity reported lower activity in SA, compared to other ethnic groups.[30-32]. 

However objective evidence for this, using activity monitors is lacking in SA. Others 

reporting dietary trends in India in relation to insulin resistance report higher intakes of 

carbohydrates, saturated fatty acids, n6-poly-unsaturated fatty acids (PUFA) and lower 

n3 PUFA and fibre compared to other populations [33, 34].  

Novel risk factors, including inflammatory markers such as highly sensitive-C-reactive 

protein, adipokines (e.g adiponectin and leptin), inflammatory cytokines like tumor 

necrosis factor (TNF) alpha, Interleukin (IL-6), and prothrombotic plasminogen 

activator inhibitor (PAI-1) may be related to the excess coronary heart disease [26] 

mortality rates in South Asians, but unfortunately have not been examined prospectively 

in South Asians [35-37].  Lipoprotein(a), has been reported in one study to confer an 

increased genetic predisposition to pre-mature CHD [37].  

While above factors could play a role in adult metabolic risk, this risk is evident in early 

childhood and even at birth. Studies conducted in the UK and in the US report the 

incidence of T2D in children and adolescents to be at least 3 fold higher in SA compared 

to WC [38, 39], associated with increased prevalence of childhood obesity as seen in the 

reports of the National Child Measurement program [40]. SA children have higher % of 

body fat and are more insulin resistant for any given body mass than matched WC 

controls [41, 42]. Yajnik and his colleagues from the Pune Maternal Nutrition Study 

(PMNS) coined the term ‘thin-fat Indian baby’ to depict increased abdominal adiposity 

seen even at birth despite smaller size [43, 44]. It is believed that this pattern of central 

obesity that is closely linked to future adult metabolic risk is determined at birth.  

Several theories have evolved to explain this high risk in SA seen at birth and early life. 
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1. Thrifty genotype theory:  In 1962 James Neel described a “thrifty genotype” that 

modified insulin regulation and glucose and fat storage to provide a survival 

advantage during periods of famine in the hunter-gatherer days [45]. With 

calorie abundance, this genetic disposition became maladaptive resulting in 

adverse metabolic risk. However, it is an improbable assumption that South 

Asians would have been more vulnerable than other races. 

2. Thrifty phenotype theory: In 1992 Barker and Hales reported that low birth 

weight (LBW) and thinness at birth was associated with high risk of T2D, 

proposing that intra-uterine nutritional insults induce foetal adaptations to confer 

a survival advantage in the short term, which became maladaptive when nutrition 

improved thereafter [46].  The 1998 Dutch Winter hunger study reported a high 

incidence of glucose intolerance in adults who were exposed to malnutrition in 

utero during the famine [47]. In 1999, Yajnik and Fall demonstrated that children 

who were smaller at birth were more insulin resistant with greater adiposity. 

[48]. In the majority of the studies low birth weight is used as a marker of under 

nutrition.  India has both the largest number of diabetics in the world and this 

could be related to the fact that Indian babies are amongst the smallest [49]. 

3. Fetal Insulin hypotheisis: In 1999, Hattersley proposed the theory that the same 

underlying genetic factors result in both the phenotype of a small baby and an 

adult with insulin resistance [50]. The association seen between fetal thinness 

and insulin resistance is thus explained as two manifestations of the same 

underlying cause. Although monogenic diabetes supports this theory this is 

relative rare and cannot explain the epidemic of T2D in SA. Considering the 
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predominant role of adulthood obesity in combination with LBW, a gene-

environment interaction in the peri-conceptional period is more a likely 

explanation. 

4. Thrifty Epigenotype: Another possibility is that of a relatively recent heritable 

modification of the Asian Indian epigenome or “thrifty epigenotype,” induced by 

a suboptimal intrauterine environment that could “program” the offspring for 

adult health outcomes [51]. These refer to changes in DNA other than gene 

sequence changes. Methylation of the CpG islands of DNA is a major epigenetic 

mechanism of gene silencing. The importance of methyl donors in nutritional 

programming is well studied in animals. Feeding Agouti mice with a methylating 

cocktail (B12 + Folate + Betaine + Choline) resulted in methylation of various 

candidate genes such as gluco-corticoid receptor and PPAR-γ genes involved in 

insulin and energy metabolism [52]. Another sheep model with periconceptional 

deficiency of methyl donors (methionine, vitamin B12 and folate) resulted in the 

methylation of a number of genes in the offspring leading to insulin resistance 

and obesity [53]. It has been shown that SA especially Indians have a high 

prevalence of B12 deficiency compared to WC, with studies reporting mean B12 

levels in SA nearly half of that in WC [54]. The Pune maternal nutrition study of 

675 women was the first clinical study to demonstrate the link between maternal 

vitamin B12 & folate status and offspring insulin resistance at 6 years [55]. It 

can therefore be hypothesized that SA have an altered epigenome at birth owing 

to a deficiency in various methyl donors especially Vitamin B12.  

5. Altered set points of regulatory systems: Hypothalamic-pituitary-adrenal axis 
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(HPA) hyperactivity and increased activity of 11 beta-hydroxy-steroid-

dehydrogenase-1 enzyme (HSD1) enzyme in adipose tissue resulting in 

hypercortisolemia has been linked to metabolic syndrome, diabetes and obesity 

[56, 57]. Exogenous maternal steroid administration during pregnancy has been 

linked to low BW in animal and human studies [58] and could be a possible 

explanation of the low birth size in SA. Variation in HPA and HSD1 activity has 

been described in different ethnic groups [59]. Reynolds reported lower 0900 

cortisol in SA men living in the UK compared to their WC counterparts [60]. 

However detailed HPA behaviour in SA has not been studied before in relation 

to GDM risk. 

In this study we will focus on the ethnic differences in GDM risk in particular between 

SA and WC. We will aim to study ethnic differences in applicability of different GDM 

diagnostic criteria, postnatal abnormalities after GDM, effects of GDM on foetal size 

and birth weight between SA and WC, and the role of the HPA in this risk in both ethnic 

groups. 
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2 Chapter 2: Diagnosis of GDM 

2.1 Abstract 

Background: There is intense debate surrounding the various defining criteria for 

gestational diabetes. There is reluctance worldwide to adopt the International 

Association of the diabetes and pregnancy study groups (IADPSG) guidelines 

despite endorsement from the WHO. The National Institute for Health and Care 

Excellence (NICE) 2015 guidelines recommend new criteria based on cost-

effectiveness analysis using observational data. Both these criteria recommend lower 

Fasting Plasma Glucose (FPG) thresholds than current practice. Our aim was to 

compare the performance of IADPSG and NICE-2015 criteria in a risk-factor based 

selectively screened population consisting of WC and SA. 

Methods: A retrospective analysis was performed for 14477 women undergoing 

antenatal oral-glucose-tolerance-test (OGTT) (2010-2012) across three UK centres 

that used NICE recommended risk-factor based selective screening. The IADPSG, 

NICE-2015 and the mWHO1999 diagnostic criteria were applied to this population 

and the outcomes assessed in the two ethnic groups. 

Results: The prevalence of GDM was similar by NICE (10.5%) and IADPSG 

(10.6%). Both detected older women with higher BMI, higher multiparty and 

stillbirth rates compared to controls and had higher risk of large-for-gestational-age 

(LGA) infants despite adjustment for maternal characteristics including body-mass-

index (BMI). Maternal BMI was a significant predictor of C-Section risk, in the 

IADPSG group. CS rates in the NICE group were comparable to controls. SA have 

higher OR of being detected by the IADPSG criteria compared to WC. 
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Conclusion: Both new criteria diagnose women with higher metabolic risk and 

adverse offspring outcome, with similar increases in prevalence of GDM. Maternal 

BMI appears to be an important contributor of adverse pregnancy outcome, 

especially CS. It is unclear if treating mild maternal hyperglycaemia in these obese 

women will reduce offspring risk. Until further interventional evidence is available, 

the change in practice leading to increased incidence of mild GDM cannot be 

justified. 
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2.2 Introduction 

2.2.1 History and evolution of various criteria for GDM 

Gestational Diabetes Mellitus is typically described as a state of glucose intolerance 

first recognised in pregnancy. The incidence of GDM is increasing rapidly in line 

with the increase in prevalence of type 2 diabetes (T2D) [5, 6]. The reported rates 

vary between 2-22% in population based studies [7] depending on the screening 

criteria used. It is associated with a multitude of maternal and offspring 

complications. The short-term risks include macrosomia, neonatal jaundice, neonatal 

hypoglycaemia and shoulder dystocia in the offspring [9] and preeclampsia [61] and 

higher likelihood of CS deliveries for the mother [62] [9]. In the long-term, the 

diagnosis of GDM is associated with at least 7 fold higher lifetime risk of T2D in 

the mothers and 2-4 fold higher risk of pre-diabetes and T2D in the offspring [8, 63, 

64]. There have been two well-designed multi-centre randomised controlled trials, 

which have demonstrated proven benefit of treatment in reducing short-term adverse 

outcomes in GDM [10, 11]. However, there is still intense debate on what should be 

the screening and diagnostic strategy for GDM with little consensus across the 

world. 

Historically O’Sullivan first defined GDM criteria in the 1964 using a 100g OGTT 

in a landmark study of 752 White Caucasian (WC) women in the second and third 

trimester. This criteria became the standard for GDM detection for the next decades 

although these threshold values were based on the predictive ability for subsequent 

development of maternal diabetes in the non-pregnant state among a second cohort 

of 1,013 women [65]. The O’Sullivan’s criteria was subsequently modified to 

convert the blood to plasma glucose values and adopted by the American NDDG 

group in 1979 [66]. However in 1982, Carpenter and Coustan following a study in 
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381 predominantly WC women recommended slightly lower cut offs to account for 

the change in the enzymatic method used to measure glucose in plasma since the 

1980s [67]. The evolution of various criteria for GDM diagnosis is shown in the 

table 1. 

 The WHO in 1985 for the first time recommended that a 75g OGTT [68].  

 The criteria for GDM diagnosis remained unchanged till this was further 

clarified in the fourth international workshop conference on GDM in 1998 

[3]. For the first time there was mention of risk stratification and selective 

screening for high-risk women who included ethnic minority women such as 

SA. They recommended the Carpenter-Coustan criteria. They also 

recommended criteria for 75g OGTT based on a large study by Sachs in a 

high risk population of 3505 predominantly WC women in Los Angeles and 

the recommendation of the European association for the Study of Diabetes 

based on observation in diverse European women [69].  

 Prior to HAPO other countries recommended slight variations of the NDDG 

criteria or the WHO criteria.  

 WHO (1999) recommended using a 75g OGTT to diagnose GDM in line 

with non-pregnant adults using cut offs to define GDM as either diabetes or 

IGT in pregnancy. It was acknowledged that the role of IFG was not very 

clear [70].  

 The HAPO was a landmark trial of 23,316 women across 9 countries 

between July 2000 and April 2006 [71]. 29.0% of women were termed 

“Asian or oriental” origin, however these participants were South East Asian 

from Honk Kong, Singapore and Thailand. There was no SA representation 

from India, Pakistan or Bangladesh where the prevalence rates are 
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disproportionately high. The HAPO study demonstrated an increased risk of 

macrosomia and increased cord c-peptide with increasing levels of 

glycaemia with no clear threshold at which risk escalates. The mean glucose 

values in this predominantly WC cohort were 4.5, 7.4 and 6.2 mmol/l at 

Fasting 1 and 2h respectively. The IADPSG met in 2008 to translate the 

HAPO study results to GDM criteria. It was decided that the diagnostic 

threshold would be the level of glycaemia at which the OR of adverse 

outcome such as LGA, increased cord C-Peptide and increased offspring 

body fat was 1.75. These levels corresponded to the IADPSG recommended 

criteria of GDM of FPG, 1hPG or 2hPG of 5.1, 10.0 or 8.5 respectively. 

 Following publication of the HAPO results the American diabetes 

Association (ADA), Australasian Diabetes in pregnancy society (ADIPS) 

and the WHO adopted the IADPSG criteria [72-74].  

 The ADA later reverted back to its original criteria due to lack of evidence of 

on reduction of C-Section rates [75].  

 In Feb 2015, NICE UK 2015 proposed new GDM diagnostic criteria using 

75g OGTT [76] (FPG: ≥5.6 and 2-hour: ≥7.8 mmol/l, one of two required for 

diagnosis) following a risk factor based selective screening process The 

recommendation was based on a health economic analysis that reported 

better cost-effectiveness for this new criteria. Their evidence was derived 

from routine observational data sets comprising of over 40,000 pregnant 

women across 14 centres, which included the HAPO centres in the UK and 

Australia, along with other centres in the UK. Majority of the centres used 

risk factor based selective screening with just over 12,000 women being 

screened by a universal screening process. NICE rejected the IADPSG 
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criteria deeming it not cost-effective based on health economic modelling in 

a subset (n=18,974) of these women for whom FPG, 1hPG and 2hPG values 

were available.  



 40 

 

 

 

Table 1: Evolution of various GDM screening and diagnostic criteria

Criteria Recommendation Criteria 

O’Sullivan – (1964) 
Study of 752 WC women 

50g Glucose challenge followed by 100g OGTT for those 
with a 1hPG ≥7.8mmol/l. Universal screening 

FPG ≥ 5.3, 1hPG ≥10, 2hPG ≥ 8.6 or 3hPG ≥ 7.7 mmol/L (2 
or more values) 

NDDG modification of O’Sullivan (1979) (to obtain plasma 
G from blood G values) 

 50g G challenge followed by 100g OGTT for those with a 
1hPG ≥7.8mmol/l. Universal  screening 

FPG ≥ 5.8, 1hPG ≥10.6, 2hPG ≥ 9.2 or 3hPG ≥ 8.0 mmol/L 
(2 or more values) 

Carpenter Couston (1982): Study of 381 WC women. 50g G challenge followed by 100g OGTT for those with a 
1hPG ≥7.8mmol/l. Universal  screening 

FPG ≥ 5.3, 1hPG ≥10, 2hPG ≥8.6 or 3hPG ≥ 7.8 mmol/L (2 
or more values) 

Second International Workshop on Gestational Diabetes 
Mellitus (1984) 

Recommended the NDDG criteria. Universal screening.[77] 

WHO (1985) Recommended 75g OGTT as in non-pregnant. Selective 

screening 

FPG ≥ 7 or 2hPG ≥ 7.8 

Fourth international workshop conference on GDM (1998) -Risk stratification  
-100g OGTT or 75gOGTT 

- Carpenter Coustan criteria for 100gOGTT 
- FPG≥5.3, 1hPG≥10 or 2hPG≥8.6 mmol for 75gOGTT  

International Association of Diabetes and Pregnancy Study Groups (IADPSG) formed in 1998 

ADIPS (1998)  A 50g G challenge and a 75g OGTT for those with a 1hPG 
≥7.8. Universal screening 

FPG ≥ 5.5 and 2hPG≥8.0mmol/l 

New Zealand  Same as above FPG ≥ 5.5 and 2hPG≥9.0mmol/l 

CDA  Same as above  FPG ≥ 5.3, 1hPG≥10.6, 2hPG≥8.9mmol/l (Any 2 or more) 

WHO (1999) 75g OGTT in line with non-pregnant diagnosis of IGT. 
Selective screening 

FPG ≥ 7 or 2hPG ≥ 7.8 

HAPO trial of 23,316 women across 9 countries between July 2000 and April 2006.  

ADA (2004) Universal screening with 100 or 75gOGTT Carpenter Coustan criteria for 100gOGTT 
- FPG≥5.3, 1hPG≥10 or 2hPG≥8.6 mmol for 75gOGTT 

IADPSG (2008) Universal screening with 75gOGTT FPG, 1hPG or 2hPG≥5.1, 10.0 or 8.5 respectively 

NICE (2008) Selective screening with 75gOGTT- As per WHO - 1999 Same as WHO 1999 

ADA (2011) Adopted IADPSG 

ADIPS (2013) Adopted IADPSG 

WHO (2013) Adopted IADPSG 

CDA (2013) 50 g GCT followed by a 75 g OGTT using the glucose 
thresholds that result in an OR of 2.00.   Universal screening 

FPG ≥5.3 mmol/L, 1hPG ≥10.6 mmol/L, 2hPG ≥9.0 mmol/L 
(any 1) or 1-step 75 g OGTT IADPSG recommended criteria.  

ADA (2014) Recommends either 2 step using 50gOGTT -NDDG / or 
universal screening with IADPSG 

NDDG or IADPSG. 

NICE [78] Selective screening using risk factors. Diagnosis by 75g 

OGTT 

FPG ≥5.6 mmol/L or 2hPG ≥7.8 mmol/l 
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2.2.2 Applicability of GDM screening criteria among various ethnic groups 

The decision to adopt the IADPSG criteria globally and in particular in SA has been 

contentious for several reasons.  

1. Firstly the IADPSG is associated with significantly increased prevalence. 

The expected increase is to up to 17.8% varying across populations between 

9.3-25% (22). This is thought to be secondary to the lowering of the FPG cut 

off in those countries where the WHO-1999 criteria is used and to the lack of 

the initial 50 g glucose challenge in regions using the Carpenter-Coustan 

criteria. In countries like India where the previous WHO criteria and the 2 

step Carpenter and Coustan [79] criteria are prevalent, the impact of 

changing to IADPSG may be significant. Studies have reported upto a three 

times increase in the prevalence of GDM by the IADPSG criteria in 

Asians[80]. 

2. Secondly, without including SA in the HAPO study it is impossible to say 

whether the odds of LGA in SA are comparable to WC at a particular 

glycaemic level. Considering that the prevalence of LGA in SA is far lower 

than WC, the corresponding level of glycaemia to result in the odds ratio 

(OR) of LGA of 1.75 could in fact be higher. Also, it has been shown that 

the effect of glycaemia on birth weight varies with ethnic groups [18, 81]. 

One recent study that compared the effect of the IADPSG criteria on a large 

population including SA minority in fact recommended lower GDM 

diagnostic thresholds for SA than in WC[82].  

3. Thirdly, there is evidence from the DECODE study that SA have a greater 

proportion 2hPG abnormalities compared to FPG abnormalities and it is 

possible that raising the 2hPG cut off might miss a significant proportion of 
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the SA minority group [83]. In the HAPO study 55% of women were 

diagnosed based on FPG alone, however this was as low as 24-26% in 

Bangkok and Hong Kong, and up to 47% in Singapore reflecting ethnic 

differences in the prevalence of fasting and post-prandial hyperglycaemia. 

The highest rates of diagnosis by FPG were in Barbados and America (74 

and 73%). Although lowering the FPG cut off to 5.1 is expected to identify 

women who are likely to be missed by the increased 2hPG cut off of 

8.5mmol/l, this has not been assessed systematically in mixed ethnic 

populations.  

4. Fourthly, it is now increasingly recognised that maternal obesity is a more 

significant and independent player for LGA and C-Section rates than 

maternal glucose except at the highest glucose category [71, 84, 85]. In fact 

75% of LGA in the HAPO study were born to mothers without with normal 

glucose tolerance. The long-term risks of obesity and glucose intolerance in 

offspring associated with GDM were lost when maternal BMI is factored 

into the analysis [86]. With significantly lower prevalence of obesity in SA, 

it is conceivable that the OR of foetal outcome, especially LGA in the 

different glycaemic categories would be very different. 

5. Lastly, evidence of treatment benefit in this newly diagnosed additional 

population with mild fasting hyperglycaemia is lacking. Two intervention 

studies, the ACHOIS and MFMU trials published in 2005 and 2009 showed 

the benefit of treating mild GDM, using 75g OGTT [10] and 100g OGTT 

[11] respectively. It is important to note that neither of these intervention 

studies included the same outcomes used to define the IADPSG criteria as 

their composite primary outcome, except the C-peptide level in the MFMU 
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study [11]. The ACHOIS trial screened women using either risk factor based 

selective screening or 50g glucose challenge test (GCT) to select women 

with a 1hPG ≥ 7.8mmol/l for the 75g OGTT. They defined mild GDM as 

FPG <7.8mmol/L with 2hPG between 7.8 & 11.1mmol/l on 75g OGTT. 95% 

of women in the ACHOIS study had a fasting plasma glucose (FPG) levels 

between 3.4mmol to 6.2mmol, with median (IQR) 2-hour glucose value of 

8.6 (8.1-9.3) mmol/l after a 75g OGTT [10]. The MFMU trial used an initial 

screening test of 50g GCT to select women with 1hPG between 7.5 and 

11.1mmol/l to undergo a subsequent 100g OGTT. Mild GDM was defined as 

FPG<5.3mmol/l with one of 3 other thresholds that include 1hPG, 2hPG, and 

3hPG values greater than 10.0, 8.6 and 7.8mmol/l respectively. In the 

MFMU trial 95% of the women in the intervention arm had a FPG between 

4.5 and 5.1mmol/l with a 2-hour value ranging between 7.2 and 12.1mmol/l 

after a 100g OGTT [11]. Therefore, while there was some overlap in the 

glycaemic ranges with the proposed IADPSG criteria in both these trials, a 

direct extrapolation of the results from the available interventional studies is 

difficult given the differences in screening methods and selection criteria 

used. Again both these trials were conducted in a predominantly WC 

population. 

With both the NICE and IADPSG criteria recommending lower FPG thresholds than 

the prevalent mWHO99 criteria there is increased pressure among care providers to 

adopt a change in practice [87]. If universal screening is followed, the incidence of 

GDM is expected to increase to up to 17.8% with the new IADPSG criteria [88], 

identifying a larger proportion of women with mild fasting glucose abnormalities. 

However, many countries and around 90% of the units in the UK still use risk factor 
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based selective screening, with a majority using the WHO / mWHO-99 criteria for 

diagnosis with a 75g OGTT [89]. Only 4% of UK centres adopted the IADPSG 

criteria [89].  

Meek et al were the first to compare the likely impact of the NICE and IADPSG 

criteria in a retrospective cohort. The centre used a random blood glucose in early 

pregnancy, and subsequent glucose challenge test (GCT) at 26-28 weeks for 

screening followed by a diagnostic 75gOGTT at 26-28 weeks [90]. They reported 

the highest risk of LGA and CS in the group diagnosed by IADPSG and NICE 

criteria compared to control women who did not have OGTT. While this study 

added additional critical evidence for the diagnosis of GDM, this may not be 

applicable to the UK and other countries that follow risk factor based selective 

screening and not a GCT. The impact of the new NICE guidelines should ideally be 

studied on a selectively screened population, on which the evidence for the guideline 

is largely based.  
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2.3 Hypotheses and research questions 

We hypothesised that moving to the new IADPSG criteria is likely to preferentially 

miss a larger number of SA with adverse foetal outcome compared to WC. 

2.4 Aims  

Our aim was to compare between SA and WC the impact of changing to the 

IADPSG and new NICE criteria in a risk factor based selectively screened multi-

ethnic in UK.  

2.5 Objectives 

 Compare the prevalence of GDM by various criteria 

 Compare short-term adverse pregnancy outcomes by various criteria 
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2.7 Methods 

2.7.1 Subjects: 

This was a retrospective study of all pregnant women who attended for antenatal 

OGTT across three National Health Service (NHS) hospitals in the West Midlands 

(Coventry, Nuneaton and Warwick) between Jan 2010 and Dec 2012. OGTT results 

were collected from the pathology database of Warwickshire. Maternal and 

offspring data were collected for these women from the Perinatal Institute database 

for each trust. The maternal, offspring and pathology databases were cleaned and 

merged to obtain data for all singleton pregnancies during this period. For the 

purpose of this study, ethnicity was grouped into South Asians (SA -Indian, 

Bangladeshi, Pakistani, Sri Lankan, Nepali), White Caucasian (WC - British / 

European) and others (Chinese, Black, Middle Eastern, Mixed).  

2.7.2 Data cleaning and merging 

 

 

 

 

 

 

 

 

        

Original OGTT Dataset (all OGTTs between Jan 2010 – 
Dec 2012 across three hospitals) 

n = 30,068 

 

Antenatal OGTT n=14477. Complete fasting and 2hPG 

available for n=14371 

Biochemistry database Maternity database – Perinatal Institute database  

(GEH / UHCW / Warwick) 

Maternal database 

2010, 2011, 2012, 197 

maternal variables per centre. 

Offspring database 

2010, 2011, 2012: 

39 variables 

Mother and baby data merged separately for every 

year for each centre, multiple pregnancy excluded 

Total deliveries 2010-2012: 

Warwick – 8624, UHCW – 15567, GEH - 7032 

Laboratory database and maternity database merged separately for each year 

Final database with maternal and offspring outcome data n=8785 
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2.7.3 GDM screening and criteria  

All these centres used the selective screening based on at least one of the following 

risk factors recommended by NICE: BMI≥30, first-degree relative with diabetes, 

previous GDM, previous unexplained stillbirth, previous baby with birth weight ≥ 

4.5 kg or women of ethnic minority origin. During this period, the centres used 

modified WHO-1999 criteria (mWHO-99) for the clinical diagnosis of GDM 

following a 75g OGTT: FPG ≥6.1 and/or 2hPG ≥7.8mmol/l, one of two readings 

sufficient for diagnosis. Treatment was based on the mWHO-99 criteria. 

2.7.4 Statistical analysis 

The new NICE criteria (FPG ≥5.6 or 2hPG ≥7.8mmol/l), mWHO-99 and the 

modified IADPSG criteria (FPG ≥5.1 or 2hPG ≥8.5mmol/l) were applied to this 

population. Several subgroups were identified as shown in the results section. 

Maternal characteristics and offspring outcomes were compared across the groups. 

Student t test, chi-square test and fisher exact test were used to compare means and 

proportions between any two groups. A significance level of p ≤ 0.001 was 

considered significant, with p≤0.01 being considered a trend when making multiple 

comparisons. Logistic regression was used to assess the predictors of LGA and CS. 

SPSS version 22.0 was used for analysis. 

2.7.5 Laboratory analysis 

Venous samples were used for glucose testing. Venous blood was collected using 

fluoride oxalate tubes and the plasma glucose is analyzed using a hexokinase 

method in our laboratory accredited by UKAS. 

 



 48 

2.7.6 Definitions  

Macrosomia was defined was birth weight >4000g. Multiparty was defined as 

having had 2 or more live births beyond 24 weeks gestation. Pre-eclampsia was 

defined as systolic blood pressure ≥140 mmHg and/or diastolic blood pressure ≥90 

mmHg on two or more occasions with proteinuria ≥1+ on dipstick. LGA and SGA 

were defined as BW ≥90
th
 and ≤ 10

th
 centile for gestational age respectively. WHO 

centile calculator using mean BW of 3,542 g (SD 437 g) at 40 weeks was used and 

available from the link below. 

www.who.int/reproductivehealth/topics/best_practices/weight_percentiles_calculato

r.xls [91-93].   

2.8 Results 

Of the 14,477 pregnancies during this period, both FPG and 2hPG values were 

available for 14,371. Of these 8785 women had maternal and offspring data. The 

baseline maternal and offspring characteristics of all women undergoing OGTT split 

by ethnicity are shown in Table 2.  

The incidence of GDM with the mWHO-99 criteria was 9.4% (1347/14371). The 

incidence with the IADPSG and new NICE would have been 10.6% (1525/14371) 

and 10.5% (1505/14371), respectively. Fig 1 shows the control population as well as 

the relative numbers of women diagnosed by each criterion.  

 

In the WHO group, 7.1% of women were diagnosed by FPG alone, 81.6% by 2hPG 

alone, and 11.3% were diagnosed by both FPG and 2hPG readings. In the IADPSG 

group 52.6% of diagnosis was based on FPG alone, 26.2% on 2hPG alone and 

21.2% on both abnormal readings. In the NICE group, these figures were 15.8%, 

65.9% and 18.3% respectively. 

http://www.who.int/reproductivehealth/
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Out of the 1347 GDM women diagnosed by mWHO-99, the IADPSG criteria will 

miss 440 women (group 1) but diagnoses an additional 618 women (group 3 and 4). 

NICE diagnoses an additional 158 (group 3), in addition to the 1347 GDM women 

by the mWHO-99 criteria (total n=1505) but will miss 460 women diagnosed by 

IADPSG alone (group 4). We studied the maternal and offspring characteristics of 

women in the IADPSG (group 3+4), NICE (group 3) in comparison to the currently 

used mWHO-99 (group1) and controls to assess the impact of changing from the 

current mWHO-99. We also compared the untreated groups by NICE (group 3) with 

the IADPSG alone (group 4). 

  



 50 

 

 

 

 

Table 2: Baseline maternal and offspring characteristics of the whole cohort of women undergoing antenatal OGTT. 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

P* values represent differences between SA and WC. 

  

 Total (n=14477) SA (n=1209) WC (n=6060) P* 

Age in years: Mean(SD) 30.37(5.89) 31.01(4.7) 30.11(6.20) <0.0001 

Height in cm:  Mean(SD) 163.81(7.49) 159.78 (6.39) 164.78 (7.25) <0.0001 

BMI (Kg/cm2):   Mean(SD) 28.53 (6.91) 25.26 (5.3) 29.52 (7.13) <0.0001 

Multiparity (≥2): % (n) 24.9 (2170/8708) 27.0 (324/1202) 23.4 (1412/6044) 0.008 

Smoking: % (n) 13.8 (1202/8712) 2.1 (25/1209) 17.9 (1083/6040) <0.0001 

FPG in mmol/l:  Mean(SD) 4.41(0.56) 4.48 (0.65) 4.41(0.52) <0.0001 

2hPG in mmol/l:  Mean(SD) 5.78(1.49) 5.85 (1.64) 5.78 (1.53) 0.142 

Pre-eclampsia: % (n) 6.7 (203/3024) 9.1 (25/232) 5.5 (142/2566) 0.028 

Still birth 0.3 (24/ 6914) 0.6 (6/1049) 0.3 (14/4584) 0.405 

Birth weight in grams:  Mean(SD) 3360.70 (632.1) 3092.09(580.10) 3431.25 (630.98) <0.0001 

Gestational age (days):  Mean(SD) 276.11(13.59) 274.39(13.54) 276.39(13.56) <0.0001 

Macrosomia: % (n) 13.6  (939/6890) 4.3 (45/1049) 16.5 (752/4561) <0.0001 

LGA: % (n) 12.2 (757/6208) 4.4 (43/984) 15.0 (612/4076) <0.0001 

SGA: % (n) 13.2 (933/7079) 25.1 (267/1062) 10.3  (487/4723 <0.0001 

Congenital Anomalies: % (n) 1.9 (127/6680) 2.0 (2/1018) 1.9 (85/4435) 0.920 

C-Section: % (n) 34.5 (2384/6903) 35.3 (370/1047) 33.9 (1552/4578) 0.376 

Special care: % (n) 4.5 (81/1801) 2.2 (3/134) 4.7 (74/1559) 0.181 

1 min APGAR score: <7 % (n) 6.8 (468/6861) 4.4 (46/1043) 7.2 (325/4544) 0.001 
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Fig 1: Representation of populations detected by IADPSG, NICE and mWHO-

99 criteria.  

 

 

 

 

 

  

1 2 3 4 

 

1: mWHO-99 positive-NICE positive-IADPSG negative (2HPG 7.8-8.4 and FPG < 5.1mmol/l): n=440 

(3.06%), 100% treatment 

2: mWHO-99 positive-NICE positive-IADPSG positive (2HPG ≥8.5 or FPG ≥ 6.1mmol/l): n=907 (6.3%), 

100% treatment 

3: mWHO-99 negative-NICE positive-IADPSG positive (FPG 5.6-6.0 and 2hPG <7.8mmol/l): n=158 
(1.1%) , 0% treatment  

4: IADPSG positive-NICE negative-mWHO-99 negative (FPG 5.1-5.5 and 2hPG<7.8mmol/l): n = 460 

(3.2%) , 0% treatment 

Control group. Risk factor positive but GDM negative by all criteria (FPG<5.1 and 2hPG<7.8mmol/l):  

n=12406 (86.3%), 0% treatment 

Total population represents all women undergoing antenatal OGTT: n=14371 

Control 
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2.8.1 Comparison of mWHO-99, IADPSG and NICE criteria 

Table 3 shows the key maternal and offspring outcomes in the various subgroups 

and the control population. Additional women who were detected with the IADPSG 

(group 3&4) and NICE criteria (group 3) had significantly higher BMI and rates of 

multiparity than controls and mWHO-99 groups (group 1). The offspring in both 

groups also had significantly higher crude birth weight, rates of macrosomia and 

LGA. CS rates in the untreated IADPSG group (group 3&4) were higher than that of 

the controls but similar to that of the treated GDM women (group 1). CS rates in the 

NICE group (group 3) were no higher than that in controls and mWHO-99 groups. 

Both NICE (group 3) and IADPSG (group 3&4) groups had significantly higher still 

birth rates compared to controls and the treated mWHO-99 groups, with the highest 

rates seen in the NICE group (4.1%, 3/73).  

2.8.2 Comparison of NICE and IADPSG criteria  

There were no significant differences in maternal or offspring risk characteristics 

between additional women diagnosed by NICE (group 3) (FPG 5.6-6.0 and 2hPG 

<7.8mmol/l) and IADPSG (group 4) (FPG 5.1-5.5 and 2hPG <7.8mmol/l) (table 2). 

Still birth rates were the higher in the additional women diagnosed by NICE (group 

3) compared to the IADPSG group (group 4).  

2.8.3 Risk of LGA and CS 

Women in the IADPSG women (group 3&4) had significantly higher odds of CS 

and LGA rates compared to controls (table 4). The differences in rates of LGA 

persisted even after the adjustment for maternal age, smoking, parity, ethnicity and 

BMI. However, the differences in CS rates became non significant after the 

adjustment for maternal BMI. Although there were higher overall CS rates, there 

were no differences in the rates of emergency CS between the groups (group 3&4 vs 
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control: 7.4 vs 8.2%, p=0.486). Similar observations were seen in additional GDM 

women diagnosed by NICE (group 3; n=158) for LGA, however there were no 

differences in CS risk between controls and the NICE in any of the models. The 

odds of LGA and CS in the IADPSG group was no different from that in the NICE 

group both in adjusted and unadjusted models (table 5) 

2.8.4 Impact of the newer criteria on SA  

There were no significant differences in the ethnic composition of women detected 

by any criteria. The proportion of SA women in the mWHO-99 group (group 1&2) 

was significantly higher than in the control group. However there were no 

significant differences in ethnic composition between any other groups. 

SA were more likely than WC (OR: 1.862 (1.152, 3.012), p = 0.011) to be in the 

IADPSG group (group 3&4) than in the WHO group (group 1) after adjustment for 

maternal BMI, smoking, parity and age. In the unadjusted model, ethnicity did not 

predict the risk of being in either groups (Table 6).  

Ethnicity was not an independent predictor of being diagnosed by the new NICE 

criteria, i.e of being in group 3 compared to group 1 either in the adjusted or 

unadjusted model.
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Table 3: Comparison of maternal characteristics and pregnancy outcomes by mWHO-1999, IADPSG and NICE Criteria. 

P* Comparison between control and respective groups, P** comparison between group 1 and group (3&4), P***comparison between group 3 and group (1&2) 

P¥ comparison between group 3 and group 4

 

Normal (0% 

treatment) 

n=12406 

mWHO1999  positive -

IADPSG negative (group 1) 

(100% treatment) n=440 

IADPSG Positive -mWHO1999  

negative  

(group 3+4) (0% treatment) (n=618) 

mWHO1999 positive-

NICE positive (100% 

treatment) (group 1 +2) 

n= 1347 

mWHO1999  negative-NICE positive 

(0% treatment) (group 3) n= 158 

IADPSG positive-NICE Negative (group 4) 

(0% treatment) (n=460) 

Mean or % Mean or % 
P* (vs 

control) 
Mean or % 

P* (vs 

control) 

P** (vs 

group 1) 
Mean or % 

P*(vs 

control) 
Mean or % 

P* (vs 

control) 

P*** (vs 

group 1+ 

2) 

Mean or % P* 
P¥   (vs  group3 

) 

Maternal Age 30.10 (5.89) 31.78 (5.58) <0.0001 31.54 (5.67) <0.0001 0.579 
32.28 

(5.63) 

<0.0001 
31.66 (6.15) 0.028 0.365  31.52 (5.56) <0.0001 0.85 

Height cm 163.91 (7.63) 161.89 (7.79) <0.0001 
164.30 

(6.74) 
0.218 <0.0001 

162.53 

(6.76) 

<0.0001 
162.99 (6.96) 0.207 0.561 164.60 (6.66) 0.048 0.05 

BMI in Kg/cm2 28.15 (6.91) 28.16 (7.25) 0.985 32.85 (7.19) <0.0001 <0.0001 29.62 (7.04) <0.0001 34.05 (7.11) <0.0001 <0.0001 32.59 (7.20) <0.0001 0.09 

Multiparty 
24.3 

(1802/7403) 
23.4 (62/265) 0.724 

33.6 

(160/476) 
<0.0001 0.004 

25.3(204/80

5) 
0.675 42.5 (37/87) <0.0001 0.001 31.6 (123/389) 0.001 0.05 

FPG 4.9 (0.4) 4.5 (0.4) <0.0001 5.4 (0.2) <0.0001 <0.0001 5.2 (1.3) <0.0001 5.7 (0.1) <0.0001 <0.0001 5.3 (0.1) <0.0001 <0.0001 

2hPG 5.4 (1.1) 8.0 (0.2) <0.0001 6.0 (1.1) <0.0001 <0.0001 8.9 (1.7) <0.0001 5.9 (1.1) <0.0001 <0.0001 6.0 (1.1) <0.0001 1.000 

Smoking at booking 
14.2 

(1054/7403) 
8.2 (22/265) 

 

0.006 

15.1 

(72/476) 
0.586 0.007 9.5 (76/803) <0.0001 20.7 (18/87) 0.086 0.001 13.9 (54/389) 0.845 0.11 

Ethnicity % (SA; 

WC; others) 

13.4; 69.7; 16.9 

(7404) 

15.5; 67.4; 17.0 

(264) 
0.598 

14.9; 68.6; 

16.6 (477) 
0.674 0.950 

16.8; 66.4; 

16.8 (804) 
0.032 

18.4; 69.0; 

12.6 (87) 
0.292 0.601 

14.1; 68.5; 17.4 

(390) 
0.872 0.39 

Pre-eclampsia 6.4 (161/2533) 6.1 (5/82) 0.925 9.3 (19/205) 0.106 0.381 8.4 (25/296) 0.213 10.0 (3/10) 0.446 0.772 9.1 (16/175) 0.149 0.88 

Still birth 0.3 (17/5877) 0 (0/194) 1.000 1.2 (5/413) 0.012 0.049 0.3 (2/620) 0.702 4.1 (3/73) 0.002 0.01 0.6 (2/340) 0.271 0.041 

BW in g 
3366.12 

(625.18) 
3147.09 (625.30) <0.0001 

3542.36 

(700.30) 
<0.0001 <0.0001 

3199.86 

(611.618) 

<0.0001 3463.54 

(897.62) 
0.416 0.017 3559.05 (651.34) <0.0001 0.39 

Gestational age in 

days 
276.9(13.31) 269.70 (14.46) <0.0001 

274.31(14.9

3) 
<0.0001 <0.0001 

269.09 

(13.479) 
<0.0001 270.31 (19.16) 0.002 0.564 275.2 (13.69) 0.012 0.03 

Macrosomia 

(>4000g) 
13.7 (800/5858) 5.2 (10/191) 0.001 

24.3 

(100/412) 
<0.0001 <0.0001 7.0 (43/616) <0.0001 26.4 (19/72) 0.003 <0.0001 23.8 (81/340) <0.0001 0.65 

LGA 10.9 (570/5213) 11.1 (21/190) 0.959 
27.1 

(102/377) 
<0.0001 <0.0001 

14.2 

(87/614) 
0.017 26.1 (18/69) <0.0001 0.009 27.3 (84/308) <0.0001 0.84 

SGA 13.6 (822/6030) 17.2 (33/192) 0.159 8.0 (34/423) 0.001 0.001 
12.8 

(79/619) 
0.547 8.1 (6/74) 0.168 0.249 8.0 (28/249) 0.003 0.98 

Congenital 

anomalies 
1.9 (108/5)693 1.1 (2/183) 0.483 2.3 (9/393) 0.583 0.328 2.0 (12/586) 0.795 4.5 (3/67) 0.126 0.209 1.8 (6/326) 0.942 0.19 

CS 
33.3 

(1954/5870) 
39.1 (75/192) 0.09 

40.0 

(165/413) 
<0.006 0.835 

42.5 

(262/616) 
<0.0001 41.1 (30/73) 0.16 0.81 39.7 (135/340) 0.015 0.83 

Special Care 4.7 (72/1534) 2.2 (1/46) 0.422 4.5 (5/111) 0.927 0.488 4.3 (7/162) 0.842 6.3 (1/16) 0.765 0.72 4.2 (4/95) 0.828 0.72 

1 min APGAR  <7 6.7 (391/5839) 6.3 (12/189) 0.851 8.6 (35/371) 0.137 0.339 7.4 0.538 8.5 (6/71) 0.557 0.74 8.7 (29/335) 0.166 0.96 
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Table 4: Risk of LGA and CS in IADPSG (group 3&4) and NICE (group 3) groups compared to controls  
 

 

 

 

Table shows OR of LGA and CS in the 

IADPSG and the NICE group compared 
to women in the control group 

 

 

 

Table 5: Risk of LGA and CS in IADPSG (group 4) compared to NICE groups (group 3) 
 

 

All OR are in comparison to controls. 
aUnadjusted,  bAdjusted for age, ethnicity, 

parity, smoking, cModel 2+ BMI, *All 

models include offspring sex for LGA 

analysis 

 

 

 

 

Table 6: Predictors of being in group (3 & 4) vs being in group 1  
aUnadjusted model, bMultivariable 

regression after adjustment for age, parity, 

smoking, BMI and ethnicity in the same 

model.

 Control IADPSG  NICE  

  OR (CI) p OR (CI) p 

LGA* 1.00 (Ref) 2.989a (2.340, 3.818) <0.0001 2.889 (1.668, 5.003) <0.0001 

 3.056b (2.374, 3.934) <0.0001 3.123 (1.770, 5.513) <0.0001 

 2.989c (2.340, 3.818) <0.0001 2.677 (1.508, 4.751)   0.001 

CS 1.00 (Ref) 1.333a (1.087, 1.636) 0.006 1.398 (0.874, 2.236) 0.162 

 1.262b (1.025, 1.555) 0.029 1.352 (0.838, 2.180) 0.217 

 1.134c (0.917, 1.402) 0.245 1.198 (0.740, 1.937) 0.463 

 NICE IADPSG  

 OR (CI) OR (CI) p 

LGA* 1.00 (Ref) 1.043 (0.573, 1.897)a 0.892 

 0.963 (0.519, 1.790)b 0.906 

 0.985 (0.529, 1.834)c 0.985 

CS 1.00 (Ref) 0.944 (0.564, 1.579)a 0.826 

 0.917 (0.543, 1.548)b 0.745 

 0.929 (0.550, 1.570)c 0.783 

 OR (CI)a p OR (CI)b p 

SA (WC ref) 0.943 (1.443, 0.616) 0.786 1.862 (1.152, 3.012) 0.011 

BMI 1.117 (1.086, 1.149) <0.0001 1.128 (1.094, 1.163) <0.0001 

 Age 0.988 (0.960, 1.017) 0.410 1.005 (0.972, 1.038) 0.785 

 Parity 0.663 (0.456, 0.964) 0.031 0.744 (0.496, 1.116) 0.153 

Smoking 0.592 (0.353, 0.992) 0.047 0.591 (0.335, 1.041) 0.068 
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2.9 Discussion 

Our study reports the impact of the new NICE and IADPSG criteria on a large risk 

factor based selectively screened multi-ethnic British population. Considering that 

the majority of UK centres still practice risk factor based selective screening and use 

the mWHO-99 criteria [76, 89], our data provides crucial evidence for UK and other 

centres that follow the same. Compared to the mWHO-99 criteria, the NICE criteria 

detect an additional cohort of 158 women with isolated mild fasting hyperglycaemia. 

(Group 3: FPG 5.6-6.0mmol/l, and 2hPG<7.8mmol/l) The IADPSG detects a larger 

cohort of 618 women with isolated mild fasting hyperglycaemia (group 3&4: FPG 

5.1-6.0 & 2hPG<7.8) at the expense of missing 440 women with mild 2-hPG 

abnormalities (group 1: 2hPG: 7.8-8.4 mmol/L & FPG <5.1mmol/l) Both the criteria 

resulted in similar increases in the incidence of GDM compared to the mWHO-99 

criteria. 

2.9.1 Impact of changing to NICE or IADPSG   

Both NICE (group3) and IADPSG (group 3&4) groups diagnosed additional women 

with mild fasting hyperglycaemia with characteristics of higher maternal metabolic 

risk (higher BMI and multiparity) and higher rates of adverse pregnancy outcomes 

(LGA, still births) compared to controls and the currently practiced mWHO-99 

group.  

Women in the IADPSG but not the NICE group had a significantly higher risk of CS 

compared to controls. Despite higher overall CS rates, the proportion of emergency 

CS in the IADPSG group was similar to that in controls. Both the groups had similar 

CS rates to treated women in the mWHO-99 groups (group 1) despite not being 

labelled as GDM in routine care.  
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A comparison of the untreated NICE (group 3) and IADPSG (group4) groups 

revealed no differences in maternal characteristics, LGA or CS risk (table 3, table 6), 

with the exception of higher still birth rates in NICE group. However, the overall 

numbers of stillbirths were small to make any meaningful conclusions. The 

Cambridge study reported higher rates of LGA and CS in the IADPSG group when 

compared to the NICE group [90]. However it must be remembered that they 

compared untreated women in IADPSG group with the treated women in the NICE 

positive/IADPSG negative group, making treatment differences a likely explanation 

for their results.   

The higher risk of CS and LGA with the IADPSG criteria were reported in two other 

observational studies in the UK: The ATLANTIC-DIP study using universal 

screening and a more recent retrospective study from Cambridge using 50gGCT 

screening [90, 94]. Other studies comparing the IADPSG to the Carpenter-Coustan 

criteria in the setting of a 50g GCT based screening [95-97] also depicted higher CS 

rates in the IADPSG group, but LGA rates were similar to non-GDM controls. The 

variation in these results is likely due to the differences in screening and hence 

detection of a different control population, against which these criteria were 

compared.  

2.9.2 Predictors of higher CS and LGA risk 

The higher LGA risk in both groups, persisted despite adjustment for maternal 

characteristics including BMI (table 4). It is difficult to say if this risk is entirely 

mediated by glycaemic differences or by the altered metabolic milieu of an obese 

pregnancy such as higher circulating free fatty acids which have been shown to 

independently correlate with LGA risk [98]. In our study, the difference in mean 

glycaemia between controls and the IADPSG group was 0.5 mmol/l with FPG and 
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0.6 mmol/l with 2hPG, which although statistically significant, could be argued not 

to be clinically significant to contribute to a three fold higher risk of LGA. 

From our data, it also appears that the risk of CS in the IADPSG group is largely 

mediated by BMI. The higher risk of CS in the IADPSG group was no longer 

significant after adjustment for maternal BMI, signifying that maternal BMI played 

an important role in determining this risk (table 4). The higher rates of primary, as 

well as repeat CS in obese women has been reported previously, with obese women 

having difficulty completing the second stage of labour owing to soft tissue dystocia 

[99]. Our results are also in agreement with the HAPO post hoc analysis and other 

studies where maternal obesity has been shown to be a more significant predictor of 

CS rates than maternal glucose except in women with the highest degree of 

hyperglycaemia [71, 84, 85, 90, 100].  

Despite detection of a higher risk cohort with more adverse offspring outcome, the 

question of whether treatment of glycaemia in the IADPSG or NICE group would 

indeed improve outcomes such as LGA or CS still remains unanswered. Two non-

randomised observational studies observed a reduction in LGA rates with treatment 

in the IADPSG group, however only one study showed a reduction in CS rates [101, 

102]. Both these trials compared the IADPSG groups (using universal screening) 

with the Carpenter-Coustan criteria, which uses a 50g GCT screening strategy, 

hence making it difficult to make direct comparisons. In fact women in the above 

studies had far lower BMI than seen in our study, owing to the risk factor based 

selective screening used in our study.  Evidence form the MFMU trial showed that 

women who benefited from intervention in GDM gained significantly less weight in 

pregnancy than those in the control arm [11]. Hence it is conceivable that the benefit 

of treatment came from weight lowering rather than glucose lowering effects of the 
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intervention. While it may be prudent to risk stratify and intervene on women with 

high BMI to reduce these risks, the available intervention trials on the overweight 

and obese pregnant women have failed to show a benefit in reduction of perinatal 

risk, especially LGA [103, 104].  

2.9.3 Effect of IADPSG and NICE on SA ethnicity 

Contrary to our hypothesis SA were not more likely to be missed by the higher 

2hPG cut off of the IADPSG group. The ethnic compositions of all groups were 

similar. Again BMI but not ethnicity was the most important predictor of being 

detected by the IADPSG criteria in univariate linear regression analysis (table 6). 

After adjustment for BMI, SA had a higher OR of being in the IADPSG group 

(group 4&5) compared to group 1, indicating that BMI was the main driver for mild 

FPG abnormalities in the WC ethnic group. It is possible that our selective screening 

strategy influenced the lack of ethnic differences between the groups and that a more 

significant ethnic difference might have been more apparent in a universally 

screened population. Only one other study compared the impact of the IADPSG 

criteria on a mixed ethnic group. Our results are in agreement with another study 

that reported that SA minority was an independent predictor of being diagnosed by 

the IADPSG criteria [86]. Some studies have reported up to a threefold increase in 

the prevalence in GDM using the new IADPSG criteria compared to the prevalent 

criteria in Asians [80] 

In summary, further randomised interventional trials are therefore needed to 

investigate the real benefit of detection and treatment of mild fasting 

hyperglycaemia (whether by NICE or IADPSG) in reducing offspring risks. Such 

trials should not only include the cost effectiveness of treating GDM with respect to 

short-term adverse outcomes but also incorporate the increase in CS rates, which is 
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likely to accompany a diagnosis of GDM. We therefore believe that without such 

evidence to support the detection of milder forms of hyperglycaemia, the change in 

diagnostic criteria cannot be supported purely based on adverse offspring outcome 

in observational studies.  

Our study has important limitations: it is retrospective in nature, lacks data on 

glycemic control or treatment during pregnancy and 1hPG values in the IADPSG 

criteria were not available. The key strength of our study is the real life data from a 

large multi-ethnic population in which the NICE recommended selective screening 

criteria were used. The selective screening method and our diagnostic criteria for 

GDM (mWHO-99) is still widely used in the UK and other centers across the world, 

making it more relevant to current practice. 

2.10 Future directions and gaps in the evidence 

 Prospective studies are needed to assess the risk of adverse offspring 

outcome using various criteria in SA 

 Prospective randomised interventional studies are needed both in SA and 

WC to assess the real benefit of treating GDM based on the IADPSG criteria 

 Above studies should incorporate cost effectiveness analysis 

 GDM diagnostic criteria should be evaluated in the light of screening 

strategies. Studies are needed to assess the impact of different GDM criteria 

in universal vs selective screening settings. 
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3 Postnatal screening in GDM 

3.1 Abstract 

Background: The ideal test for postnatal screening after gestational diabetes mellitus 

is still under debate. Most international guidelines continue to recommend a 

postnatal oral glucose tolerance test (OGTT). In contrast, the new National Institute 

of health and Care Excellence (NICE), UK guidance recommends fasting plasma 

glucose (FPG) or HbA1c but not an OGTT for postnatal testing. Our aim was to 

compare the performance of FPG (using both the WHO and ADA definitions of 

IFG) with OGTT and the uptake rates of OGTT with HbA1c in SA and WC.  

Research Design and Methods: Multicentre retrospective study of 1289 women with 

GDM referred for postnatal OGTT between 2008 and 2012. Subsequent data was 

collected from one centre for 339 women referred for postnatal HbA1c between Dec 

2013 and Dec 2014. Sensitivity and ROC analysis was performed. 

Results: 630 (48.8%) attended postnatal OGTT. FPG at the cut point of 6.1mmol/l 

(WHO criteria for impaired fasting glycaemia - IFG) would miss 88% of IGT and 

16.7% of diabetes. The ADA criteria for IFG (FPG of ≥5.6 mmol/l) would detect 

100% diabetes in both ethnic groups but would still miss 64% IGT. The uptake 

improved to 62.8% with subsequent use of postnatal HbA1c.  

Conclusion: FPG at the ADA threshold of ≥5.6 mmol/l has high sensitivity to detect 

persisting postnatal diabetes even in SA ethnic minority groups. Postnatal HbA1c 

shows promising increase in uptake compared to OGTT. The new NICE 

recommendation for postnatal screening is therefore a welcome change to improve 

care of these high-risk women.  
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3.2 Introduction 

3.2.1 Risk of post-natal diabetes – summary of literature and variation with 

ethnicity 

Gestational Diabetes is a recognised ‘pre-diabetes’ state associated with a 7-8 fold 

higher lifetime risk of developing type 2 diabetes compared to those without GDM 

[8]. The risk of developing type 2 diabetes (T2D) increases rapidly within the first 5 

years of index delivery, the incidence of which can range from 2.5 to 16.7% in the 

first year after delivery [105]. This risk is higher in South Asians (SA) who have up 

to a 5-fold higher risk of T2D compared to White Caucasians (WC) [106].  

Literature comparing the risks of postnatal T2D incidence between SA and WC is 

sparse. A systematic review of 20 studies compared the relative risk (RR) of 

developing diabetes post GDM across different nationalities [8]. (Table 1). The RR 

of T2D in India was significantly higher than the pooled RR (22.7 (10.09, 51.08) vs 

7.43 (4.79, 11.51)).  

Table 1: Relative risk of postnatal diabetes following GDM. 

 

Table 1: Forest plot shows the Relative risk of postnatal diabetes following a GDM pregnancy across 

the world. Reproduced with permission from a systematic review by Bellamy et al [8] 
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Table 2: Summary of literature comparing the risk of post-partum T2D after 

GDM between SA and WC: 

 
Study Time of follow up post GDM Results 

Bellamy et al [8]  Systematic review of varying 

time periods post GDM 

RR: India: 22.7 (10.09, 51.08), Cumulative: 

7.43 (4.79, 11.51)  

Sinha et al [106] 6-12 weeks post partum Incidence: 7% in WC, 5% in Black, 35% in 

SA  

Mukerji et al [2] Median FU period 7.6 years post 

GDM 

Cumulative incidence of diabetes was 16.5% 

for Chinese, 31.8% for SA and 25.7% for WC 

Krishnaveni et al [79] 5 years follow up  Incidence of Diabetes: GDM vs control. 37% 

versus 2% 

 

Figure 1: Cumulative incidence of diabetes following GDM: 

 

A summary of other literature comparing the risk of post-partum diabetes after 

GDM is shown in table 2. All other studies apart from the systematic review 

reported incidence rates and not relative risk. However the incidence of post-partum 

T2D was significantly higher in SA compared to WC. Figure 1 shows the 

cumulative incidence of T2D in women with and without GDM, across SA, Chinese 

and WC ethnicities. This study reported that although the overall incidence of T2D 

Figure 1 shows the 
cumulative incidence of 
diabetes following a 
diagnosis of GDM between 
SA, WC, and Chinese 
ethnic groups. 
Reproduced with 
permission from Mukerji et 

al [2]  
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was higher in SA in both categories, the presence of GDM conferred a 13 fold 

higher risk in WC compared to 9-10 fold risk in SA [2]. 

In summary, postnatal screening in women with GDM provides a unique 

opportunity for early detection of diabetes, intervention to prevent T2D and for 

timely pre-conception care for subsequent pregnancies. This assumes greater 

importance in SA who have a significantly higher risk of postnatal diabetes 

compared to WC.  

3.2.2 Poor uptake of postnatal screening: 

Postnatal testing following GDM is poor with uptake rates of OGTT being between 

23 and 58% [107]. This is in sharp contrast to high uptake (94%) of other postnatal 

screening programs such as cervical screening done at similar time interval post-

delivery [108]. A few studies have examined the impact of ethnicity on postnatal 

uptake rates [109-111] (table 3). All the three studies show that SA and non-WC 

ethnicity was associated with higher rates of uptake for postnatal testing.  

Table 3: Summary of relevant studies comparing uptake of postnatal screening 

between ethnic groups. 
 

Studies Type of 

test 

Sample 

size 

Uptake rates by ethnicity 

Lawrence et al FPG 
(79.1%) or 
OGTT 
(18.2%), 

both 
(2.7%). 
 

n = 11,825,  

 

Whole cohort 50.2% 

WC 47.7%; SA 59.0%; Black 27.2%; Hispanic 51.1%; Others 

47.8 % 

Ferrara et al OGTT or 
FPG 

n = 14,448  

 

Whole cohort:  38.2 % 

WC 33.2%; SA 45.5%; Black 26.1%; Hispanic, 40.5%; 
Other/Unknown, 34.1% 

Kwong et al FPG 
(4.8%) or 
OGTT 
(95.2%) 

n = 909 Overall 48.2 % 

WC 46.7%; Non-Caucasian 50.1%. 
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3.2.3 Various postnatal screening strategies  

 

OGTT, FPG and HbA1c are three tests that have been used for postnatal screening 

following GDM. The Fifth International Workshop Conference on GDM [112], 

Australasian Diabetes in Pregnancy Society (ADIPS) [73] and the Canadian 

Diabetes Association [113] recommend an OGTT as the gold standard at 6 weeks 

post-partum. The ADA guidelines recommend “post-partum screening at 6-12 

weeks using non-pregnancy OGTT criteria” to detect diabetes and specifically 

mention not to do HbA1c due to the potential effects of antepartum treatment [114]. 

The American College of Obstetrics and Gynaecology (ACOG) guidelines are 

ambiguous and recommend either a FPG or OGTT at 6 weeks [62]. Although most 

international guidelines recommend an OGTT as the postnatal test of choice 

following GDM, there is considerable debate about replacing this with either FPG or 

HbA1c, due to poor uptake, cost, complexity and question of the real rationale for a 

OGTT [115, 116]. The latest NICE guidelines now categorically and unambiguously 

recommend either FPG or HbA1c but not an OGTT for postnatal screening[117]. 

The lack of consensus among recommendation is also reflected in clinical practice. 

A survey of ACOG fellows reported that only 50·8% of obstetricians used an OGTT 

for postnatal screening with 27·4% using FPG and the remaining relying on other 

tests [118]. Similarly, only 54% of practitioners in North Carolina reported using 

OGTT of the 27% of respondents who performed any form of postnatal screening 

for GDM [119]. A cross sectional survey of Australian women with a recent history 

of GDM women revealed use of various postnatal screening tests nationally, i.e. 

OGTT (56·4%), FPG (32·6%), capillary blood glucose (23.5%), random plasma 

glucose (6.1%), and HbA1c (2·4%) [120]. 
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While there is no doubt that FPG or HbA1c are one-step alternatives to a 

cumbersome and more expensive OGTT, it is not known whether using these tests 

to simplify postnatal screening would indeed improve uptake. Several studies also 

depict poor sensitivity of FPG to detect overall postnatal abnormalities [107]. This 

could especially be a problem in SA who are known to have a higher prevalence of 

postprandial abnormalities compared to WC [121]. Only a few studies have 

examined the sensitivity of the lowered definition of normal FPG of 5.6mmol/l to 

detect diabetes and IGT in populations with SA and other ethnic minority groups 

[122]. 

3.3 Aims and objectives 

The primary aim of this study is to compare the performance of FPG (according to 

WHO and ADA IFG criteria) with that of OGTT in the postnatal period, in a multi-

ethnic British population. We also assessed the change in uptake rates with postnatal 

HbA1c compared to OGTT in a sequential retrospective observational cohort study. 

3.4 Methods 

3.4.1 Subjects  

Routine clinical data from two independent cohorts of pregnant women were 

collected from across three NHS hospitals in the West Midlands (Coventry, 

Nuneaton and Warwick). A total of 14,477 pregnant women underwent OGTT as a 

part of their antenatal testing for GDM between 2009 and 2012. Of these, 8.9% of 

the women (n=1289) were diagnosed with GDM (OGTT cohort). Women in the 

OGTT cohort were requested to attend postnatal OGTT around 6 weeks postpartum.  

The second cohort (HbA1c cohort) contained 339 women with history of GDM, 

who delivered between Nov 2013 and Dec 2014. These women were recommended 
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to undergo a postnatal HbA1c instead of OGTT, following a change in clinical 

practice in one of the hospitals (Coventry). 

3.4.2 GDM screening and diagnostic criteria 

All these centres used the selective screening based on the risk factors recommended 

by NICE: BMI ≥ 30Kg/cm
2
, first-degree relative with diabetes, previous GDM, 

previous unexplained stillbirth, previous macrosomia (≥ 4.5 kg) or women of ethnic 

minority origin. Women meeting any one of the above criteria underwent a 75 g 

OGTT between 26-28 weeks. During this period all centres used the modified WHO 

1999 criteria for the diagnosis of GDM following a 75g OGTT: FPG ≥6.1mmol/l 

and/or 2-hour plasma glucose (2hPG) ≥7.8mmol/l. Obstetric and neonatal 

characteristics were obtained for all women undergoing an OGTT. BMI was 

measured at the booking visit.  

3.4.3 Definitions 

For the purpose of this study, ethnicity was grouped into South Asians (SA -Indian, 

Bangladeshi, Pakistani, Sri Lankan and Nepali), White Caucasian (WC - British / 

European) and Other (Chinese, Black, Middle Eastern, Mixed).  

Multiparity was defined as ≥2 live previous pregnancies that progressed beyond 24 

weeks gestation. Macrosomia was defined as BW≥4000g. 

3.4.4 Definitions of postnatal glucose abnormalities 

 Impaired glucose tolerance (IGT) was defined as a 2hPG ≥7.8 but <11.1mmol/l, 

with FPG <7.0mmol/l. IFG was defined either as FPG ≥5.6 or ≥6.1mmol/L as per 

the ADA and WHO definitions, respectively with 2hPG <11.1mmol/L. Isolated IFG 

(iIFG) was defined as IFG with normal 2hPG (<7.8mmol/L). Isolated IGT (iIGT) 

was defined as IGT with a normal FPG (ADA <5.6 or WHO <6.1mmol/L). Diabetes 
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was defined as either FPG ≥ 7.0 or 2hPG ≥ 11.1 mmol/l or both. We applied both 

the WHO and the ADA cut points for IFG to evaluate the performance of FPG 

compared to OGTT to detect postnatal abnormalities.  

3.4.5 Statistical methods 

Student’s t test and Chi square test were used to compare means and proportions 

respectively. Post hoc testing and Bonferroni adjustment was performed to enable 

comparisons between multiple groups. Receiver operating characteristics and 

sensitivity analysis were used to assess the performance of FPG to detect IGT and 

diabetes as diagnosed by OGTT. SPSS version 22.0 was used for analysis. 

3.5 Results 

3.5.1 Uptake rates with OGTT and HbA1c 

Baseline characteristics of the women who were invited for OGTT (OGTT cohort) 

are shown in table 4.  

630 (48.9%) women attended postnatal OGTT. 627 had full OGTT, 2 women had 

FPG >14mmol (hence OGTT was abandoned) and one had only FPG but did not 

complete the OGTT. The mean timing of postnatal OGTT was 9.39 ± 4.17 weeks 

post-delivery.  

 In Coventry, 213 (62.8%) women attended for postnatal HbA1c tests, compared to 

only 48.7% (381/783) for OGTT testing (p<0.0001).  The mean timing of post-

partum HbA1c testing was 16.21±9.65 weeks post-delivery. 

Comparisons of characteristics of women who attended and did not attend postnatal 

testing by OGTT and HbA1c are shown in the table 5. Women who failed to attend 

postnatal OGTT were younger and more likely to be smokers, multiparous and have 

macrosomic offspring compared to those who attended. There were no differences in 
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characteristics between women who attended and failed to attend postnatal HbA1c 

except a significantly higher proportion of SA compared to WC among the 

attenders. 

Table 4: Baseline characteristics of women invited for postnatal OGTT 

*Available data on variables in indicated by (n) for continuous variables and as a proportion for 

categorical variables. 
¥ 

  Post hoc testing revealed significant differences in proportions of WC and other minority ethnic 

groups only but not of SA.  

 

Table 5: Characteristics of women who attended and did not attend post-natal 

testing 

 
Baseline maternal characteristics obtained at booking and offspring birth weight of women who 

attended and failed to attend postnatal testing by both HbA1c and OGTT.  

* Data was available for 392 (62.2%) women. ¥ Data was available for 369 (55.9%) women.  
a BMI was available for 182 (85.4%) and 98 (77.7%) of women who attended and did not attend 

respectively 
b Height was available for 187 (87.7%) and 107 (84.9%) of  women who attended and did not attend 

respectively 
c Post-hoc testing revealed significant differences in the proportions of SA and WC only.  

Mean (SD) or % (n) for proportions 

Baseline characteristics Total n=1289 

Age in years  31.97 (5.50) (1288) 

BMI (kg/cm2) 29.64 (6.93) (n=761)* 

Height (cm) 162.45 (6.72) (n=761)* 

Multiparity (parity≥2) 26.3 (200/761) 

Smoking 9.2 (70/759) 

Macrosomia (>4 Kg) 9.2 (70/757) 

Ethnicity (WC; SA; others) 65.5; 27.2; 7.3  (n=1281)* 

 Mean (SD) or % (n) for proportions 

 OGTT cohort HbA1c cohort 

Attended 

(n=630) 
 

Not attended 

(n=659) 
 

P value Attended 

(n=213) 
 

Not attended 

(n= 126) 
 

P value 

Age 32.35 (5.25)  31.61 (5.7) 0.016 33.19 (5.09) 31.99 (6.18) 0.069 

BMI 29.64 (6.61)* 29.63 (7.26)¥ 0.974 29.04 (6.79)a 29.66 (7.99)a 0.516 

Height 161.87 (7.02)* 163.07 (6.33)¥ 0.013 161.96 (7.24)b 162.29 (6.03)b 0.671 

Smoking  4.9 (19/390) 13.8 (51/369) <0.0001 5.3 (11/207) 8.5 (10/118) 0.265 

Ethnicity    (WC; 

SA; others)  

64.4; 27.8; 7.8 
(627) 

66.5; 26.8; 6.7 
(654) 

0.654 43.5; 33.8; 22.7 
(207) 

58.7; 21.5; 19.8 
(121) 

0.02c 

Multiparity  

(Parity ≥ 2) 

21.0 (82/391) 31.9 (118/370) 0.001 46.4 (97/209) 49.2 (60/122) 0.626 

Macrosomia  

(≥4000g)  

5.9 (23/391) 12.8 (47/366) 0.001 8.6 (18/210) 8.0 (10/125) 0.855 
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3.5.2 Postnatal abnormalities with OGTT by ethnicity 

Table 6 shows the relative proportions of isolated FPG, isolated 2hPG and 

concomitant FPG and 2hPG abnormalities using both the ADA and WHO 

definitions of IFG.   

By WHO criteria of IFG: Seventy-eight (12.4%) had abnormal OGTT results. The 

overall prevalence of diabetes was 1.9%. iIGT was the most common abnormality 

accounting for 56.4% (44/78) of the abnormal results.  88% (44/50) of IGT and 

16.7% (2/12) of diabetes had normal FPG. On post-hoc testing, WC had 

significantly lower proportion of overall abnormalities (10% vs 19.2%, p<0.05) and 

isolated 2hPG abnormalities compared to the other minority ethnic group (5.0 vs 

15.4%, p<0.05). SA tended to have higher overall abnormalities (p=0.032) and also 

isolated 2hPG abnormalities (p = 0.02) compared to WC however on applying the 

Bonferroni correction this difference ceased to be significant. 

By ADA criteria of IFG: One hundred and fourteen (18.1%) had abnormal OGTT 

results. iIFG was the most common abnormality accounting for 45.6% (52/114) of 

the abnormal results. 64% (32/50) of women with IGT but none of those with 

diabetes had normal FPG. Again, WC had lower proportions of 2hPG abnormalities 

compared to the other minority ethnic group (3.2 vs 15.4%, p<0.05). SA tended to 

have higher overall abnormalities (p = 0.03) compared to WC but had similar 

proportion of 2hPG abnormalities to WC. 
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Table 6: Categories of postnatal abnormalities based on Fasting and 2hPG abnormalities 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

All categories also include diabetes (d) based on FPG, 2hPG values  

* Indicate significant difference between WC and other ethnic group in respective categories on post-hoc testing. 

 

  

Category of abnormality  Total population 

(629) 

 n (%) 

SA  

(174) 

n (%) 

WC  

(403) 

n (%) 

Others 

(52) 

n (%) 

p value 

WHO 

Normal 551 (87.6)  146 (83.9) 363 (90.0)* 42 (80.8)* 0.027 

Isolated FPG abnormalities   
(FPG≥6.1 & 2HPG<7.8) 

17 (2.7)  
(1d) 

4 (2.3)  
(0d) 

12 (3.0) 
(1d) 

1 (1.9)  
(0d) 

Isolated 2hPG abnormalities  
(2HPG≥7.8 & FPG<6.1) 

46 (7.3)  
(2d) 

18 (10.4)  
(0d) 

20 (5.0)* 
(2d) 

8 (15.4) * 
(0d) 

Both FPG and 2hPG abnormalities 
(2HPG≥7.8 & FPG≥6.1)  

15 (2.4)  
(9d) 

6 (3.4) 
(4d) 

8 (2.0) 
(5d) 

1 (1.9) 
(0d) 

ADA 

Normal 515 (81.9)  134 (77.1) 341 (84.6) 39 (75.0) 0.001 

Isolated FPG abnormalities  
(FPG≥5.6 & 2HPG<7.8) 

53 (8.4)  
(1 d) 

16 (9.2) (0d) 34 (8.4) (1d) 4 (7.7) (0d) 

Isolated 2hPG abnormalities  
(2HPG≥7.8 & FPG<5.6) 

32 (5.1) (0d) 
 

11 (6.3) (0d) 13 (3.2)* (0d) 8 (15.4)*  (0d) 

Both FPG and 2hPG abnormalities 
(2HPG≥7.8 & FPG≥5.6) 

29 (4.6)  
(11 d) 

13 (7.5) (4d) 15 (3.7) (7d) 1 (1.9) (0d) 
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Sensitivity analysis 

We conducted a ROC analysis to assess the ability of FPG to detect diabetes and 

IGT as defined by OGTT (figure 2). ROC analysis revealed that postnatal FPG was 

an excellent predictor of overall postnatal diabetes (AUC=0.983, CI: 0.966-1.00, 

p<0.0001) and in both SA and WC. FPG was a moderate predictor of IGT 

(AUC=0.697, CI: 0.620-0.773, p<0.0001). ROC curves with AUC for SA and WC 

are presented in figure 3 and 4 for IGT and diabetes respectively. 

The Sensitivity, specificity, positive predictive value (PPV) and negative predictive 

Value (NPV) of various postnatal FPG cut offs to predict postnatal IGT and diabetes 

are shown in table 7. FPG of 6.1mmol/l will miss up to 88% of IGT and 16.7% of 

diabetes. While FPG of 5.6mmol/l will detect 100% diabetes, it would miss 64% of 

IGT. Only 13% of women had a FPG≥5.6mmol/l. Therefore performing 

confirmatory OGTT only in those women with FPG ≥5.6mmol/l will reduce the 

need for OGTT by 87%. In order to obtain 100% sensitivity for detection of IGT, 

the FPG threshold will have to be lowered to 4 mmol/l, with over 98% of women 

needing a second confirmatory OGTT. 
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Table 7: Sensitivity analysis for various thresholds of FPG to detect IGT and diabetes 

 
Sensitivity, specificity, 

positive predictive value 
(PPV) and negative 

predictive value (NPV) 

of various thresholds of 

FPG to detect diabetes 

and IGT.  

* The proportion of women in the respective FPG ranges. 

 

Figure 2: Receiver operating characteristics curve for fasting plasma glucose concentrations to identify persistent postnatal glucose 

abnormalities  

                                                                                                    

a: FPG as a predictor of postnatal IGT        b: FPG as a predictor of postnatal  diabetes 

   AUC=0.697, CI: 0.620-0.773, p<0.0001                               AUC=0.983, CI: 0.966-1.00, p<0.00 

FPG threshold 
(mg/dl) 

 IGT Diabetes % meeting 
criteria* 

 Sensitivity Specificity PPV NPV Sensitivity Specificity PPV NPV  

FPG ≥4.0 100.0 2.3 8.3 100.0 100.0 2.1 1.9 100.0 97.9 

FPG ≥4.5 94.0 24.3 9.9 97.9 100.0 22.9 2.5 100.0 77.5 

FPG ≥5.0 63.8 70.0 14.6 96.0 100.0 61.1 4.8 100.0 40 

FPG ≥5.6 36.0 90.8 25.7 94.1 100.0 88.7 14.6 100.0 13 

FPG ≥6.1 12.0 97.2 27.3 92.6 83.3 96.4 31.3 99.7 5.1 
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Figure 3: ROC curves for FPG to detect IGT by ethnicity 

                   

 

Figure 4: ROC curves for FPG to detect diabetes by ethnicity 

                                       

 

 

 

 

 

  a) WC: AUC: 0.705 (0.591, 0.819)   b) SA: AUC: 0.726 (0.610, 0.841)    c) Others: AUC: 0.623 (0.418, 0.829) 

                    p=0.002         p=0.001     p=0.256 

a) WC: AUC 0.983 (0.960, 1.000)                       b) SA: AUC 0.991 (0.974, 1.000) 

                    p<0.0001               p=0.001 
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3.6 Discussion 

3.6.1 Uptake rates with HbA1c and OGTT 

Our study involving a large multi-ethnic population of high-risk women with GDM 

showed that the uptake for OGTT was just under 50%, in agreement with world-

wide reported rates [107, 123]. Although reasons for the poor attendance for OGTT 

have not been not widely studied, time constraints of the OGTT were the most 

commonly cited reasons in surveys of GDM women [124]. It is possible that 

simplifying the postnatal test to a one-step FPG or HbA1c might improve uptake 

although direct evidence for this is lacking. The first 12-month data from one of our 

centres showed an encouraging increase in uptake with HbA1c. To our knowledge, 

we are the first to show that uptake rates for postnatal HbA1c were higher than that 

for OGTT. Women who failed to attend postnatal OGTT also had features of higher 

metabolic risk such as smoking, macrosomia and multiparity, despite a younger age. 

It was reassuring to note that unlike with postnatal OGTT, women who failed to 

attend HbA1c testing had similar metabolic risk characteristics to those who 

attended.  SA were more likely to attend postnatal HbA1c than WC. This is in 

agreement with previously summarised studies that non-WC ethnicity, especially 

SA were more likely to attend postnatal screening than WC. 

3.6.2 FPG as a postnatal test to detect diabetes 

Our study showed that FPG at the ADA definition of IFG of FPG≥5.6mmol/l had 

100% sensitivity to detect postnatal diabetes even in populations with SA and other 

ethnic minority groups. However, the NICE and WHO recommended definition of 

IFG at FPG ≥6.1mmol/l would miss 16.7% of diabetes. Whilst our data is in 

agreement with some studies reporting a high sensitivity of FPG at 5.6 mmol/l of 
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98-100% to detect diabetes [122, 125, 126], other studies have reported a lower 

performance of FPG [105, 127]. This variation in sensitivity is probably due to the 

variation in the screening and diagnostic criteria used to diagnose GDM, and hence 

in the population characteristics of the women screened. In our study about 4% of 

women with FPG between 5.6 and 7.0 mmol/l had 2hPG values diagnostic of 

diabetes (≥11.1mmol/l). Both the ADA and the WHO recommend that the diagnosis 

of diabetes in asymptomatic, high-risk population should not be based on a single 

test alone [128, 129]. Therefore we recommend that women with postnatal FPG ≥ 

5.6mmol/l, should have a confirmatory OGTT for diagnosis of diabetes. This will 

substantially reduce the need for OGTT by 87% (Table 7).  

3.6.3 FPG as a postnatal test to detect IGT 

On the other hand, despite the high sensitivity to detect diabetes, our study showed 

that FPG threshold of ≥5.6mmol/l and ≥6.1mmol/l would miss 64% and 88% of 

IGT, respectively. Such low sensitivity of FPG to detect IGT has been confirmed in 

other studies [107, 130]. In addition, our data also showed that iIGT was seen in a 

higher proportion of ethnic minority groups who were therefore more likely to be 

missed if FPG alone used for postnatal testing (Table 6). Older studies in non-

postnatal adults using a FPG cut off of ≥7.1mmol/l showed that 2hPG abnormalities 

were more common in SA than WC thereby limiting the utility of using FPG to 

detect concomitant IGT in SA at these thresholds [121]. Although SA had a greater 

proportion of 2hPG abnormalities this did not reach statistical significance probably 

owing to the small numbers in the groups.  

Do we really need to worry about missing isolated postnatal IGT following GDM? It 

has been argued that the real purpose of postnatal screening is to detect women with 

overt diabetes and not those “at risk of diabetes” such as IGT [115, 125]. The 
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diagnosis of GDM already places these women in the category of those “at risk” of 

future diabetes thereby making postnatal detection of IGT redundant practice.  

On the contrary, it could be argued that a further risk stratification of GDM women 

in the postnatal period might help to identify a sub-group of women who may 

benefit more from lifestyle intervention and/or metformin. The post-hoc analysis of 

the DPP showed that both intensive lifestyle intervention and metformin therapy 

significantly reduced the risk of future diabetes risk in GDM women with postnatal 

IGT [131] compared to those without GDM. However this conclusion warrants 

closer inspection. Women in the DPP were at an average of 12 years post partum 

and did not have isolated IGT. Their mean FPG and HbA1c were 5.9 (SD: 0.5) 

mmol/l and 5.87 (SD: 0.5) % (29.7-51.6mmol/l), respectively, implying a significant 

overlap between IGT, IFG and pre-diabetes by HbA1c criteria. Therefore, this 

evidence cannot be extrapolated to assume direct benefit for isolated IGT in the 

immediate postpartum period. Additionally, such risk stratification can also be also 

performed using FPG or HbA1c. Thus both the ADA and the NICE guidance for the 

prevention of diabetes post GDM recommend metformin [132] and  intensive 

lifestyle intervention [132, 133] for women with IFG (FPG 5.6-6.9mmol/l) or pre-

diabetes using HbA1c (5.7-6.4%) (39 - 47 mmol/mol).  

Furthermore, the argument for detection of postnatal IGT for the purpose of 

intervention should be taken in context with the poor uptake of OGTT across the 

world. Not having any postnatal test would mean that a large number of women 

would miss the opportunity for postnatal risk stratification and hence engagement in 

any form of preventive intervention that has proven benefit. Therefore, we believe 

that persevering with a complex test with poor uptake rates for the sole purpose of 

detecting postnatal IGT is not justified.  
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The key strength of the study is the large sample size, and real-world evidence in a 

mixed ethnic population. Our study has important limitations. The newly proposed 

IADPSG or NICE criteria were not used for diagnosing GDM. Data from our study 

therefore cannot be extrapolated to populations where these criteria are already 

adopted for diagnosis GDM. However, several centres in Europe and most of the 

UK still follow the old WHO criteria for diagnosis [134] where our results will be 

relevant. Our study is observational and retrospective and therefore prone to missing 

data. Prospective randomised trials are needed to assess the real effect of FPG or 

HbA1c on uptake of postnatal screening and to inform the ideal timing of postnatal 

HbA1c in the context of antepartum treatment for GDM, postpartum anaemia and 

volume shifts during pregnancy.  

In conclusion, we welcome the new NICE recommendation to replace postnatal 

OGTT by FPG or HbA1c. Simplifying postnatal testing may improve uptake, enable 

further risk stratification and hence better engagement in further preventive 

strategies. However, the FPG threshold of ≥6.1mmol/l recommended by NICE 

should be lowered to the ADA defined threshold of ≥5.6mmol/l to improve 

detection of postnatal diabetes. FPG at this lowered cut off is a highly sensitive test 

to detect diabetes even in a population with SA.  

3.7 Future directions 

 Prospective randomised studies comparing the uptake rates of HbA1c and 

FPG with OGTT in a mixed ethnic population 

 Cost effectiveness analysis for long term follow up of women with GDM 

using HbA1C 
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 Exploring effectiveness of other interventions to improve uptake of postnatal 

testing – currently in the process of conducting a systematic review to apply 

for funding for Health-Technology-Appraisal (HTA) project. 
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4 Effect of maternal diabetes on offspring birth weight 

(BW) in SA and WC 

4.1 Abstract 

Background: Both gestational and pre-gestational diabetes are associated with 

adverse offspring outcomes particularly macrosomia, with a continuous relationship 

between glucose and birth weight (BW). This evidence from studies in White 

Caucasians (WC) is extrapolated to other ethnic groups, under the assumption that 

the relationship between maternal glycaemia and BW is uniform across ethnic 

groups. We compared the impact of maternal diabetes on BW between South Asians 

(SA) and WC. 

Methods: A Retrospective analysis was conducted for all SA and WC singleton, live 

births across Leicester from 1994-2002 (n=53,128). Ethnic specific BW z-scores 

and centiles were derived from this dataset. The increase in BW and the odds-ratio 

of large-for-gestational-age with maternal diabetes was compared between SA and 

WC using regression analyses with interaction terms.  

Results: SA had a higher prevalence of both GDM (SA vs WC: 2.9% vs 0.8%, 

p<0.0001) and pre-gestational diabetes (SA vs WC: 0.6% vs 0.4%, p<0.0001) than 

WC. Both gestational and pre-gestational diabetes were significant predictors of 

offspring BW and LGA after adjustment for confounding maternal characteristics. 

The increase in offspring BW with pre-gestational diabetes was 139.24g lower in 

SA compared to WC (p=0.034 for interaction). Similar results persisted with ethnic 

specific BW z-scores. (p=0.013 for interaction). The effect of maternal GDM on 

BW and LGA was similar across both ethnic groups. 
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Conclusion: The relationship between maternal diabetes and BW differs with 

ethnicity. The increase in BW with pre-gestational diabetes was significantly lower 

in SA. Our results emphasize the need for ethnic specific glycaemic targets in 

pregnancy. 
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4.2 Introduction 

The prevalence of diabetes among women of childbearing age and the incidence of 

gestational diabetes mellitus is increasing alongside the epidemic of type 2 diabetes 

(T2D) and obesity[5] [135] [12] [13]. This is especially higher in certain ethnic 

minority populations[136].  South Asians (SA) have a 2-4 fold higher risk of T2D 

and GDM compared to White Caucasians (WC) [12] [137] [138] [139]. While the 

prevalence of T2D doubled in the USA over 40 years[140], this has tripled in Indian 

populations in just 14 years[141]. Studies in the UK also show an alarming increase 

in the incidence of T2D in young people with a three-fold higher prevalence in SA 

compared to WC [38]. 

Poorly controlled maternal diabetes and GDM are known to be associated with a 

number of perinatal complications such as macrosomia, congenital malformations 

and increased perinatal mortality[9, 142] with evidence of a continuous relationship 

between maternal glucose and adverse offspring outcome[9, 143]. Most evidence for 

this risk comes from studies in WC[9, 142, 143]. In fact, the International 

Association of Diabetes and Pregnancy Study Groups (IADPSG) based the 

definition of GDM on glycaemic thresholds of increased risk of large for gestation 

age (LGA), increased cord C-Peptide and adiposity observed in the Hyperglycaemia 

and Adverse Pregnancy Outcomes (HAPO) study
11

. Despite their significantly 

higher metabolic risk, SA were poorly represented in the HAPO group, except for a 

cohort of South East Asian women from Singapore[9]. The IADPSG criteria to 

define GDM were therefore based on the questionable assumption that the effect of 

glucose on birth weight is uniform across different ethnic groups. Furthermore, 

similar glycaemic targets are set in pregnancy (both GDM and pre-gestational 

diabetes) for all ethnic groups under the same premise.  
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However, there is emerging evidence that the magnitude of the impact of maternal 

glycaemia on offspring size may differ with ethnicity. Maternal diabetes results in a 

larger increase in birth weight (BW) and increased odds of LGA in Blacks despite 

their overall lower mean BW[18, 81, 144, 145] when compared to non-Hispanic 

Whites. While the odds of macrosomia in WC was 2.5 fold higher in mothers with 

diabetes compared to those without, the corresponding odds were 6 fold higher in 

Blacks[144], suggesting that ethnicity significantly modified the relationship 

between maternal glycaemia and BW.  

Conversely, despite higher levels of maternal glycaemia [146-148], SA offspring are 

amongst the smallest babies in the world [13, 149-151]. A few studies have 

compared the impact of GDM on BW between SA and WC with conflicting results. 

Table 1 shows a summary of all the relevant studies comparing the impact of 

maternal diabetes on BW across ethnic groups. These studies lacked appropriate 

adjustment for maternal characteristics [148, 152], failed to use ethnic specific BW 

centiles [137, 145, 149] or included a heterogeneous ‘Asian’ population that 

included both SA and South East Asians [14, 15, 137]. Only one study examined the 

effects of pre-gestational diabetes on offspring BW in SA and WC, but used the 

same population centiles for both ethnic groups and included a heterogeneous Asian 

population[149].  

Our aim was to compare the impact of both pre-gestational diabetes and GDM on 

offspring BW between SA and WC in a large population based, bi-ethnic pregnancy 

cohort from Leicestershire, UK
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Table 1: Summary of literature comparing the impact of maternal diabetes on offspring birth weight

 Subjects Maternal 

diabetes  

type 

Key results Confounding variables adjusted for SA 

included 

Ethnic 

centiles 

Contr

ols 

Xiang [153]  29,544 women (9 ethnic 

groups) 

GDM LGA in Asians*: RR: 1.24 (0.98, 1.58), p =0.07 (WC reference) 

*Heterogeneous group including SA 

Maternal age, education, insurance type, presence of comorbidity, 

pre-eclampsia/eclampsia, anti-hyperglycemic drug use, smoking, 

BMI, gestational weight gain. 

Yes*  Yes No 

Hedderson[14]  n =7648 (SA & WC) GDM Odds of LGA in Asian* 1.19 (0.98, 1.46) (Ref WC) 

*Heterogeneous group including SA 

Parity, age, gestational age, education, BMI, sex, medication Yes* Yes No 

Mocarski[145]  536,084, 4 Ethnic groups  GDM Adjusted OR of macrosomia SA: 1.1 (0.9, 1.2), WC: 1.1 (1.0, 1.2). Maternal age, being foreign born, insurance, education, parity, 

tobacco use during pregnancy, and pre-pregnancy weight. 

Yes No Yes 

Makgoba [154]  130 549 (SA, Blacks WC) GDM Prevalence of LGA in SA vs WC 9.2% vs 18.8% (p<0.001) None. (Adjustment made only for analysis of effects of BMI) Yes No Yes 

Rosenberg[149]  329 988 (4 ethnic groups) GDM and pre-

gestational 

Diabetes 

Adjusted OR for low birth weight (LBW) in Asian* vs WC: 

Pregestational 2.28 (1.42, 3.68) vs 1.59 (1.01, 2.05)  

GDM: 1.17 (0.99, 1.39) vs 1.06 (0.87, 1.28). Only LBW was 

reported. *Heterogeneous group including SA 

Maternal age, marital status, mothers education, birth place, 

prenatal care, parity, social risk, pre-pregnancy weight, pregnancy 

weight gain, hypertension and pre-eclampsia 

Yes No Yes 

Dunne[152]  312 WC and 128 Indo-Asian GDM, T2DM, 

T1DM 

Prevalence of 25% LGA in SA vs 37% in WC. No OR/RR reported. None Yes No No 

Nguyen [137]  32,193 – North California GDM OR for LGA in Asian* compared to WC 0.40 (0.33, 0.48). 

*Heterogeneous group including SA 

Maternal age, obesity, education, prenatal care, nulliparity and 

hypertension.  

Yes No No 

Wong[148]  5 Ethnic groups (n=869) GDM Prevalence of LGA: SA vs WC- 11.0 vs 13.9 (p: non significant) None Yes Yes No 

Dalfra[155]  Native Italian and immigrant  GDM Adjusted OR for LGA. Immigrants vs Native Italian 1.63 (0.97, 

2.74), p=0.06 

Age, pre-pregnancy BMI, Insulin therapy, Weight gain in 

pregnancy, 

No Yes No 

Homko [156]  103 African and 36 Latino GDM Higher risk of macrosomia in Latino compared to African (RR = 

2.68) 

BMI, weight gain, Glycaemic control, therapy. No No No 

Kieffer[144]  Blacks and Whites: 

111,044 infants of diabetic 

mothers and 

5,008,970 infants of non-

diabetic mothers 

GDM and T2D 

and T1D 

Offspring weight gain with maternal diabetes: Black vs Whites: 220g 

vs 96g, adjusted OR of macrosomia: Blacks: 3.24 (95% CI 3.09–

3.38), WC: 1.66 (95% CI 1.63–1.68). 

Gestational age, maternal hypertension status, prenatal 

care use, and maternal socio-demographic characteristics. No BMI 

adjustment. 

No No Yes 

Hunt [18]  92,233 NHB and 151,957 

NHW births 

GDM and pre-

gestational 

Diabetes 

Adjusted RR for LGA: GDM: NHW vs NHB: 1.21 (1.15, 1.29) vs 

1.94 (1.77, 2.13). Pre-gestational diabetes: NHW vs NHB: 1.61 

(1.48, 1.76) vs 2.22 (1.98, 2.49) 

Maternal age, offspring sex, BMI, maternal tobacco use, 

hypertension status, education and prenatal care 

No No Yes 

Sandana[81]  1190 WC and 865 Blacks GDM and IGT Adjusted OR for LGA: WC vs Blacks: 1.4 (0.7–2.7) vs 1.6 (0.6–4.2) Pre-pregnancy BMI, age and height No Yes Yes 

D 

Simmons[157]  

529 European, 540 Maori, 

916 Pacific Islanders 

Normal Glucose 

tolerance 

Population attributable fraction (PAF) for relationship of macrosomia 

with maternal glycaemia: Europeans vs Maori vs Pacific: 16.7 vs 

17.0 vs 18.7%, p  = 0.567. 

Gestational age, smoking and maternal weight tertiles No No NA 

Scholl et al[158] 

et al 

African-American (n = 

1,040), Hispanic (n = 750), 

White 

(n = 282) 

Normal Glucose 

tolerance 

Adjusted β for relationship between BW & Maternal glucose level 

(mg/dl) African American: 1.56 (0.63 0.34), Hispanic: 2.19 (0.66 

0.89), White: 1.98 (0.95 0.11). 

Age, parity, smoking (cigarettes/day), pregravid BMI, gestational 

weight gain, clinic payment status, a prior low birth weight infant, 

and duration of gestation 

No No NA 

Farrar et al [82] 9509 women (4821 SA and 

3888 WC) 

Normal Glucose 

tolerance 

Relationship between BW LGA and glycaemia not significantly 

different between SA and WC (interaction term 0.90) 

Gestational age at oral glucose tolerance test, family history of 

diabetes, family history of hypertension, previous GDM, previous 

macrosomia, smoking status, alcohol consumption during 

pregnancy, maternal age and BMI, maternal education, baby sex, 

and parity. 

Yes No NA 
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4.3 Methods 
A retrospective analysis of all deliveries between 1994-2006 was conducted across 

Leicester Royal Infirmary (1994-2002) and University Hospitals of Leicester (2002-

2006). Detailed maternal demographic and offspring data was extracted from 

routinely collected electronic booking and delivery records respectively. Only term, 

singleton, live births from WC and SA pregnancy were included for this analysis. 

Pre-term deliveries (less than 37 weeks of gestation) were excluded because of the 

possibility of alternate underlying pathology. Pregnancies coded as “diabetes 

developed in pregnancy” were considered as GDM and “diabetes before pregnancy” 

as pre-gestational diabetes. 

4.3.1 Data Cleaning 

The original data set comprising of 92, 685 deliveries from the original excel file 

containing 32 variables was cleaned as explained in the flow chart below. 

 

 

 

  

Original birthweight Dataset 

N = 92,685, 32 variables 

Identify 12 predictor variables for cleaning 

 Sex of baby 

 Gestational period 

 Ethnicity of baby 

 Height of mother (use to calculate BMI) 

 Weight of mother (use to calculate BMI) 

 Postcode (use to calculate IMD, rural/urban indicator) 

 Age of mother at delivery 

 Gravida 

 Parity 

 Whether the mother smoked during pregnancy 

 Whether mother had diabetes during pregnancy 

 Blood pressure (diastolic and systolic) 

Data exported and merged from Excel sheets 
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Clean postcode 
Match with IMD using census data at 

http://geoconvert.mimas.ac.uk 

N = 57, 458 

Clean smoking status 

Unknown n = 21, 306, assume non-smoker 

N = 57, 458 

Extract diabetes from medical problems 

N = 57, 458 

Only look at Indian and White ethnicity 

N = 53, 128 (final) 

 

        

  

Clean ethnicity 

N = 77, 254 

Clean blood pressure 

36,039 missing data (ignored) 

Clean mother height 

N = 69,103 

Clean mother weight 

N = 57, 879 

Clean gestational age 

N = 57, 782 

Clean age at delivery 

N = 57, 779 

Clean gravida 

N = 57, 750 

Clean sex of baby 

N = 57, 748 

Clean outcome (birth weight) 

N = 57, 735 

Clean parity 

51,599 missing data (ignored) 

 Majority of data lost during ethnicity and 
mother’s weight/height cleaning 

 During ethnicity cleaning we lose data from 

LRI 1994, LRI 1995 and half of data from LRI 

1996 (no such pattern with height, weight of 

mother) 

 If we decide to reinstate parity or blood 

pressure at the end we lose another 22,867 or 

20,304 respectively. Or about 30,000 if we 

include both 
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4.3.2 Definitions  

SA were defined as women of Indian, Pakistani, Sri Lankan, Nepali and 

Bangladeshi origin. LGA and SGA were defined as birth weight ≥90
th
 centile and 

≤10
th
 centile respectively using gestational age, ethnicity and sex standardised z 

scores. L, M and S values derived from this dataset were used to calculate ethnicity 

specific BW z scores as described previously[159]. In brief the L (Box-Cox power), 

M (median) and S parameters were estimated using the GAMLSS package in R 

version 2.9 as recommended by the World Health Organization (WHO). This 

method uses smoothed values of L, M and S to transform the observed distribution 

of birth weights to a standard normal distribution [160].  

Multiparity was defined as parity more than two, i.e. two or more live births beyond 

24 weeks gestation. Data on parity was incomplete hence gravidity was used to 

calculate parity, when parity was not available, under the assumption that previous 

pregnancies were singleton and progressed beyond 24 weeks. Obesity was defined 

was BMI ≥30kg/cm
2
. Ethnicity specific obesity definitions were also used where 

appropriate[161], depicted by obesity
e
. Obesity

e 
was defined as BMI ≥27.5kg/cm

2
 

for SA and BMI ≥30kg/cm
2 

for WC.  

Relative levels of deprivation scores were calculated using the The English Indices 

of Deprivation 2004 from the Department for Communities and Local 

Government[162] . IMD ranks were split into standard quintiles for the purpose of 

all analysis according to national standards with quintile 5 being the most deprived 

and 1 being the least deprived.  

4.3.3 Screening and definition of GDM 

During this period risk factor based selective screening was performed using any 

one of the following criteria: Previous macrosomia (offspring BW ≥4.5kg), booking 



 

 

 

 88 

weight ≥85kg, family history of diabetes, previous GDM or a diagnosis of 

polycystic ovarian syndrome. The diagnostic criteria varied during the study period: 

1994-1999: FPG ≥5.8mmol/l or 2hPG ≥8.5mmol/l, 2000 - 2006: FPG ≥5.5mmol/l or 

2hPG ≥ 8.0mmol/l. 

4.3.4 Statistical analysis 

Student-t test and Chi
2
 test were used to compare continuous variables and 

proportions between ethnic groups. Multivariable linear and logistic regression 

models were used with birth weight and LGA as outcome variables to study the 

predictors of birth weight. Interaction terms between ethnicity and diabetes were 

calculated to assess the differential role of diabetes on birth weight in the two ethnic 

groups. Statistical significance was set at the 5% level. SPSS version 22.0 was used 

for analysis. 

4.4 Results 

A total of 88,606 deliveries were recorded during this time period. We limited our 

analysis to the two main ethnic groups i.e SA and WC, because of small numbers in 

other ethnic groups. A complete dataset on all variables of interest was available for 

a total of 53,128 singleton, term and live births of WC or SA origin over a period of 

13 years.  SA and WC comprised of 15.9% and 84.1% of the whole population.   

There were significant differences between SA and WC with respect to most 

maternal and offspring characteristics with the exception of offspring sex and 

multiparity (Table 2). Overall SA were younger, shorter, had lower BMI, less likely 

to be smokers, had a higher prevalence of maternal diabetes (GDM and pre-

gestational diabetes), had lower offspring BW with lower proportion of macrosomia 
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and higher proportion of LBW. SA were more likely to live in deprived 

neighbourhoods compared to WC. 

The baseline characteristics of women with GDM and pre-gestational diabetes split 

by ethnicity are shown in Table 3. The proportion of LGA and SGA infants did not 

differ between the SA and WC in either in GDM or pre-gestational diabetes. Ethnic 

differences in height, BMI, smoking, obesity and deprivation seen in the general 

pregnant population persisted even among women with diabetes. 

 

Table 4 depicts the predictors of BW, LGA and SGA in both ethnic groups using 

simple linear and logistic regression analyses. After adjustment for age, height, 

BMI, year of birth, multiparity, smoking and deprivation maternal diabetes was an 

independent predictor of BW, associated with a significant increase in BW and the 

odds of LGA in both SA and WC. However, the increase in BW and odds of LGA 

with maternal diabetes differed in the two ethnic groups. To investigate this further, 

we subdivided maternal diabetes into GDM and pre-gestational diabetes, and studied 

their interactions with ethnicity (Table 5). 

Table 5 shows the increase in BW and odds of LGA with both GDM and pre-

gestational diabetes in both ethnic groups. Both GDM and pre-gestational diabetes 

was associated with an increase in offspring weight in both ethnic groups. The effect 

of pre-gestational diabetes on offspring BW was more marked than that of GDM.   

4.4.1 Interactions of maternal diabetes with ethnicity 

Compared to pregnancies without diabetes, the BW increase seen with pre-

gestational diabetes was 139.24g lower in SA compared to WC, after adjusting for 

year of birth, maternal age, BMI, height, IMD rank, multiparity, smoking status and 

offspring gestational age and sex (Table 5, p=0.034 for interaction effect). A similar 
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difference was seen in the effect of pre-gestational diabetes on BW z scores between 

the two ethnic groups (0.378 points lower in SA; p=0.013 for interaction effect; 

Table 5). The OR for LGA in SA with pre-gestational diabetes was 1.7 fold lower 

than the corresponding OR in WC (3.69 vs 5.49, Table 5). However, this interaction 

term did not reach statistical significance (p=0.103 for interaction effect).  

The analysis of BW in the GDM group showed that the BW gain was 31.9g lower in 

SA after adjustment as above. Similar, trends were seen with BW z scores and LGA 

rates in SA with GDM, but the interaction did not reach statistical significance in 

any of these analyses (Table 5). 
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Table 2: Baseline maternal and offspring characteristics by ethnicity 

 
 SA (n = 8471) WC (n = 44657) P 

Age 28.1 (5.08) 28.6 (5.806) <0.0001 

Height 158.2(6.38) 164.3(6.78) <0.0001 

BMI 23.5(4.64) 24.9(5.3) <0.0001 

Obesity  9.1 (775) 14.1 (6291) <0.0001 

Obesitye 17.2 (1457) 14.1 (6291) <0.0001 

IMD 1 (least 
deprived) 

11.4 (964) 29.8 (13299) 

 

2 10.3 (875) 20.9 (9327) 

3 13.3 (1129) 15.0 (6687) 

4 32.5 (2755) 14.8 (6611) 

5 (most 
deprived) 

32.4 (2748) 19.6(8733) 

Smoking 1.6 (139) 19.2 (8580) <0.0001 

Gestational Diabetes 2.9 (247) 0.8 (375) <0.0001 

Pre-existing diabetes 0.6 (55) 0.4 (160) <0.0001 

Multiparity  34.7 (5528) 35.4 (28866) 0.275 

Birth weight 3102.4 (453.36) 3444.6 (487.66) <0.0001 

Gestational age 277.2 (8.1) 279.6 (8.28) <0.0001 

Sex of baby m:f % 50.6: 49.4 51.6: 48.4 0.700 

Macrosomia (>4000g) 2.9 (249) 12.6 (5639) <0.0001 

Low birth weight (LBW) 

(<2500g) 

8.5 (722) 2.6 (1154) 

<0.0001 

 

Data are presented as mean (SD) or % (n) for continuous and categorical variables respectively. 

Comparisons between ethnicities are made using the Student t-test for continuous variables and the 

Chi-Squared test for categorical variable 

 
Table 3: Baseline maternal and offspring characteristics by type of maternal 

diabetes in SA and WC 

 

 SA (247) WC (375) 

 

p SA (55) WC (160) 

 

p 

GDM mean (SD) or % Pre-gestational diabetes 

Age 31.7 (4.9) 31.3 (5.8) 0.391 30.58 (5.51) 29.77(5.27) 0.342 

Height 156.9 (5.94) 163.4(6.80) <0.0001 157.63 (5.92) 164.13 (6.59) <0.0001 

BMI 27.8 (5.9) 30.3 (7.3) <0.0001 27.27 (5.89) 28.43 (6.22) 0.219 

Smoking 1.6 10.9 <0.0001 1.8 16.9 0.004 

Multiparity 46.6 43.2 0.410 40 40 1.000 

Obesity 34.0 47.2 0.001 27.3 31.3 0.580 

Obesity
e
 47.8 47.2 0.889 45.5 31.3 0.057 

BW 3309.6 (540.4) 
3634.8 
(591.5) 

<0.0001 3270.9(599.5
) 

3671.1(577.1
) 

<0.0001 

Gestational 

age 274.2 (6.9) 273.2 (7.5) 
0.090 270.9 (5.7) 269.4 (6.7) 0.103 

LGA 26.3 31.5 0.168 27.3 40.6 0.077 

SGA 3.2 5.9 0.134 3.6 3.8 0.969 

IM

D 

1 10.5 30.7 <0.0001 7.3 23.1 0.016 

2 8.5 21.6 14.5 21.9 

3 12.1 12.0 14.5 13.8 

4 32.0 16.0 29.1 14.4 

5 36.8 19.7 34.5 26.9 
 

Data are presented as mean (SD) or % (n) for continuous and categorical variables respectively. 

Comparisons between ethnicities are made using the Student t-test for continuous variables and the 

Chi-Squared test for categorical variable 
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Table 4: Predictors of birth weight by ethnicity 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

Table shows results of multivariable linear (BW z scores) and logistic (LGA, SGA) regression for studying the predictors of BW, LGA and SGA. Age, height and BMI were treated as 
continuous variables. Diabetes is any diabetes in pregnancy including GDM and pre-gestational. IMD was divided into quintiles as described in methods section. In linear regression: β 

coefficient represents change in BW per quintile change in IMD. In logistic regression IMD quintile 1 (least deprived quintile) was used as reference category.  OR represents the Odds of LGA 
and SGA in IMD quintile 5 (most deprived) compared to IMD quintile 1 (least deprived). 
 

Table 5: Effect of GDM and pre-existing diabetes on BW and LGA in SA and WC 
 Controls (mothers without 

diabetes) 

Pre-existing diabetes Gestational diabetes 

  SA WC SA WC 

BW*: β (95% CI) 0.00 (ref) 263.436 (153.665, 373.208) 402.677 (338.245, 467.109) 212.232 (159.582, 264.883) 240.133 (197.672, 282.594) 

BW z score:  β (95% CI) 0.00 (ref) 0.610 (0.354, 0.866) 0.987 (0.837, 1.137) 0.466 (0.343, 0.589) 0.571 (0.472, 0.669) 

LGA: OR (95% CI) 1.00 (ref) 3.69 (1.660-5.672) 5.488 (3.926, 7.670) 2.697 (1.984, 3.667) 2.825 (2.231, 3.577) 

Table shows results of multivariable linear (BW and BW z scores) and logistic regression (LGA) using GDM and pre-gestational diabetes as covariates in separate models.  
β and OR represent adjusted β coefficients and Odds Ratios of outcome in women with diabetes compared to controls as reference. All models included adjustment for year of birth, maternal 
age, height, BMI, IMD rank, multiparity and smoking status. LGA are >90th centile for gestational age, sex and ethnicity.* Adjusted for above and gestational age and sex of baby.  All values 
are significant with p <0.0001.   

 

Birth weight Z scores LGA  SGA 

SA WC SA WC SA WC 

β coeff (95% CI) p 

β coeff (95% 

CI) 
p 

OR 
p 

OR 
p 

OR 
p 

OR 
p 

Year 

-0.006 

(-0.12, 0.0) 0.06 

0.001 

(-0.001,0.003) 
0.454 

0.992 

(0.970,1.14) 0.456 

0.997 

(0.989, 1.006) 0.513 

1.011 

(0.989, 1.033) 0.340 

0.995 

(0.987, 1.004) 0.279 

Age 

0.004 

(0.0-0.08) 0.109 

0.004 

(0.003, 0.006) 

<0.0001 1.024 

(1.007, 1.041) 0.005 

1.019 

(1.012, 1.025) 

<0.0001 1.007 

(0.990,1.024) 0.400 

1.005 

(0.999, 1.11) 0.110 

Height 

0.032 

(0.28, 0.35) <0.0001 

0.031 

(0.029, 0.032) 

<0.0001 1.071 

(1.058, 1.084) <0.0001 

1.066 

(1.061, 1.071) 

<0.0001 0.946 

(0.934, 0.957) <0.0001 

0.945 

(0.940, 0.949) <0.0001 

BMI 

0.042 

(0.37, 0.46) <0.0001 

0.036 

(0.035, 0.038) 

<0.0001 1.095 

(1.079, 1.111) <0.0001 

1.080 

(1.074,1.086) 

<0.0001 0.916 

(0.897, 0.935) <0.0001 

0.943 

(0.936, 0.950) <0.0001 

Multiparity 

0.198 

(0.245, 0.151) <0.0001 

0.160 

(0.180, 0.140) 

<0.0001 1.423 

(1.206, 1.679) <0.0001 

1.385 

(1.293, 1.483) 

<0.0001 0.701 

 (0.584, 0.842) <0.0001 

0.780  

(0.725, 0.840) <0.0001 

Diabetes in 

pregnancy 

0.486 

(0.372, 0.601) <0.0001 

0.661 

(0.578, 0.774) 

<0.0001 2.660 

(1.988,3.559) <0.0001 

3.413 

(2.812, 4.141) 

<0.0001 0.496  

(0.268, 0.918) 0.026 

0.671  

(0.456, 0.989) 0.044 

Smoking 

-0.267 

(-0.429,-0.106) 0.001 

-0.323 

(-0.347,0.299) 

<0.0001 0.682 

(0.357, 1.30) 0.245 

0.571 

(0.516, 0.632) 

<0.0001 1.451  

(0.849, 2.482) 0.174 

2.131  

(1.975, 2.300) <0.0001 

IMD   

-0.017 

(-0.001, 0.033) 0.035 

-0.044 

(-0.037, -0.05) 

<0.0001 1.0 

(0.768, 1.303) 0.999 

0.701 

(1.284, 1.585) 

<0.0001 1.394 

(1.053, 1.845) 0.020 

1.59 

(1.43, 1.75) <0.0001 
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4.5 Conclusion 

Our study depicts important differences in characteristics of SA and WC pregnant 

women. Overall SA were younger, shorter, had lower BMI, less likely to be 

smokers, had a higher prevalence of maternal diabetes (GDM and pre-gestational 

diabetes), had lower offspring BW with lower macrosomia rates and higher rates of 

LBW. In line with literature especially in the UK and the midlands[163], it was 

noted that SA with and without diabetes tended to live in more deprived 

neighbourhoods than WC. More than a third of SA lived in the most deprived 

neighbourhoods compared to just under a fifth of WC. 

4.5.1 Pre-gestational diabetes 

Pre-gestational diabetes was associated an increase in BW and LGA risk in both 

ethnic groups. Our study shows that ethnicity significantly modulates the impact of 

maternal diabetes on offspring BW. The increase in BW attributable to pre-

gestational diabetes was lower in SA compared to their WC counterparts after 

adjustment for likely confounding maternal variables including deprivation (Table 

5). This corresponds to 11.7% and 8.5% of the mean BW in WC and SA, 

respectively. This result was also confirmed using ethnic specific BW z scores. The 

odds of LGA with pre-gestational diabetes also tended to be lower in SA compared 

to WC, however this difference did not reach statistical significance (Table 5). We 

believe that our results from the linear analysis of BW and BW z scores reflect a true 

difference between ethnic groups and the lack of differential effect on LGA could 

simply be the result of thresholds chosen to define LGA.  
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Only two other studies have compared the effects of pre-gestational diabetes on 

offspring BW, with only one including SA. Both were conducted in American 

population. Hunt et al showed a higher risk of LGA with pre-gestational diabetes in 

Blacks compared to WC, (RR of LGA compared to controls: WC vs Blacks: 1.61 vs 

2.22)[18]. Rosenberg et al reported higher odds of LBW in a heterogeneous 

population of ‘Asian’ women compared to WC[149]. Both these studies used crude 

BW and did not use ethnic specific centiles (Table 1).  

To the best of our knowledge our study was the first to systematically compare 

between SA and WC, the impact of pre-gestational diabetes on birth weight and 

LGA risk, using ethnic specific centiles. Contrary to what was seen in Blacks in the 

literature presented above[18], our study showed that pre-gestational diabetes had a 

lower effect on BW in SA after adjusting for important maternal variables including 

deprivation. The reasons for this differential effect of diabetes on BW in different 

ethnic groups are unclear. We believe that these are independent effects of maternal 

ethnicity on BW, not mediated by smaller maternal size or deprivation. Other less 

studied factors such as inflammation or vascular dysfunction in diabetes that occur 

more commonly in SA [164] could in addition play a role in determining the effect 

of diabetes on BW. 

4.5.2 GDM 

The effect of GDM on BW or LGA did not differ between SA and WC. The overall 

BW increase and odds of LGA in offspring of GDM mothers was lower than that 

seen with pre-gestational diabetes in both ethnic groups.  

Our results are in agreement with three of four studies that reported that the odds of 

LGA in SA [14, 145, 153] was similar to WC. Nguyen [137] et al reported lower 
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odds of LGA but in a heterogeneous ‘Asian’ population compared to WC, using 

unadjusted BW centiles. 

We present a summary of the literature examining the effects of GDM, pre-

gestational diabetes on BW across ethnic groups and the associated mechanistic 

flaws associated with them, to summarise why our study provides unique 

complementary data to support previous observations (Table 1). Firstly, they failed 

to adjust for maternal size [148, 152], which is a well-recognised predictor of 

offspring BW. Secondly, several studies used crude BW and did not use ethnic 

specific centiles[137, 145, 149]. Thus they failed to account for the constitutional 

“smallness” or “largeness” of certain races, wrongly attributing this to pathological 

influences such as diabetes. Finally, many lacked a control population without 

diabetes making it was difficult to compare the BW increase attributable to diabetes 

across ethnic groups[14, 137]. The two studies that adjusted for maternal 

characteristics and used ethnic specific centiles included a heterogeneous “Asian” 

group without clear separation of South East Asians from South Asians [14, 153].  

Of the three studies [158, 165] that examined the effect of maternal glycaemia on 

BW in women with normal glucose tolerance between ethnicities, only one recent 

cohort included women of SA ethnicity [82]. There was no significant interaction 

between ethnicity and maternal glycaemia with respect to BW as an outcome. It is 

likely this difference was not apparent in GDM because of the milder degrees of 

glucose intolerance and a shorter duration of hyperglycaemia compared to diabetes. 

We believe that ours is the first study to examine the effects of both GDM and pre-

gestational diabetes separately in SA and WC, accounting for all above-mentioned 

mechanistic issues.  
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The strengths of our study are its large size and long period of study spanning over 

12 years, in a region of the UK with a large SA population. Limitations of our study 

include its retrospective nature, hence its liability to coding errors and incomplete 

data. There was no data on type of pre-gestational diabetes (type 1 or type 2), 

glycaemic control, details of treatment or maternal weight gain in pregnancy. Data 

on BP was incomplete and hence was omitted form analysis. In addition, the country 

of birth of the SA women was not available, which would have helped understand 

the effect of migration on adverse metabolic risk better. 

Implications of these findings are several. The results of our study question the 

traditional glucocentric goal of management of maternal diabetes, wherein intensive 

glycaemic control is advocated to all mothers. There is evidence to show that such 

intensive glycaemic control in pregnancy may increase the risk of SGA [166]. Early 

induction and tight control of maternal diabetes may further increase SGA risk and 

adversely impact future offspring health in SA, who are already known to be smaller 

at birth. Ethnic specific glycaemic goals should be considered based on the impact 

of maternal glycaemia on offspring BW. Our study provides further support to the 

argument of taking into account fetal size [167] when optimising glycaemic control 

in pregnancy. 

4.6 Future Directions 

 Further randomized prospective studies are needed to assess the impact of 

glycaemia of offspring BW in SA and WC, to guide management targets in 

the two ethnic groups 

 The above studies could examine not only overall BW but also objective 

measures of infant body composition and adiposity eg densitometry. 
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 The impact of insulin on metformin on offspring body weight and adiposity 

should be studied in different ethnic groups to individualize treatment goals. 
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5 Ethnic differences in fetal growth in GDM: 

5.1 Abstract 
 

Background: The effect of maternal diabetes on offspring BW is not uniform across 

ethnic groups. BW is however a crude composite outcome of fetal growth. The 

growth of individual fetal parameters in GDM has not been compared between 

ethnic groups. We aimed to study differences in fetal growth between SA and WC in 

GDM pregnancies. 

Methods: A retrospective study of pregnancies with GDM between 2009 & 2012 of 

White Caucasian or South Asian ethnicity from University Hospital Coventry & 

Warwickshire in the West Midlands of the United Kingdom. Fetal growth 

parameters i.e. Head Circumference [168], Abdominal Circumference (AC), and 

Femur Length (FL) at 28, 32 and 36 weeks were recorded for all women.  

Results: 177 WC and 160 SA were included in the analysis. SA mothers were 

shorter had lower BMI and multiparous compared to WC.  SA had lower AC at 28, 

32 and 36 weeks compared to WC, but other skeletal parameters such as FL and HC 

remained similar to WC. SA also had higher HC/AC and FL/AC ratios, with HC/AC 

remaining > 1 even at 36 weeks.  

Conclusions: It appears that SA fetuses of mothers with GDM had features of 

asymmetric growth when compared to WC. The SA offspring displayed head and 

femur sparing phenotype with smaller abdomens suggesting a possible asymmetric 

intrauterine growth restriction. Standard intensive glucocentric treatment may need 

to be tailored to ethnicity based on differences in fetal growth. 
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5.2 Introduction 

Estimated fetal weight (EFW) and hence prediction of macrosomia has been used as 

a part of management of GDM pregnancies and mothers with GDM are advised 

serial growth scans to monitor fetal growth [78]. Both the Shepard’s [169] and the 

Hadlock’s formula [170] for estimating fetal weight using a combination of 

Abdominal Circumference (AC), Femur Length (FL) and Biparietal diameter 

(BPD), were derived from populations of healthy WC women. However, there is 

evidence of a disproportionate and accelerated growth in diabetic pregnancies [171] 

[172] and therefore this relationship between various fetal parameters and EFW may 

not be the same. Wong found that there was underestimation of BW in 26.3 % of 

pregnancies with diabetes by more than 15 %, compared to 5.4% in the control 

group. Studies in type 1 diabetes show that EFW at term could be in error by up to 

900g [173].  

This estimation is especially erroneous in babies with macrosomia [174, 175].  

Hence there is increasing interest in studying individual components of fetal body 

composition rather than EFW. Special focus has been on the measurement of the 

AC, which was found to be a better predictor of macrosomia than EFW [176] and 

associated complications such as shoulder dystocia [177]. Altered HC/AC 

trajectories with reduced HC/AC ratio was also noted in offspring of maternal pre-

gestational diabetes and GDM [171].  

It is to be remembered that this link between GDM and altered fetal growth, i.e. 

disproportionate growth and altered growth velocities been explored predominantly 

in WC [172] and extrapolated to other ethnic groups for clinical practice.  

Despite having greater degrees of hyperglycaemia in pregnancy [146-148], SA 

babies are amongst the smallest in the world [13, 149-151]. There is evidence to 
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show that the effect of maternal glycaemia on BW may vary with ethnicity [137, 

149, 153]. Sparse evidence in SA suggests that the effect of maternal diabetes on 

BW may be smaller in SA compared to WC [137]. In Chapter 4, we reported that the 

effect of maternal diabetes on offspring BW was lower in SA compared to WC. 

Therefore it is possible that GDM can affect fetal growth differently in SA and WC. 

Despite the high risk of GDM in SA, studies examining fetal growth in GDM in SA 

are sparse [178]. In chapter 6, we report disproportionate fetal growth in SA living 

in India. There are no studies comparing fetal growth between SA and WC. 

5.3 Hypotheses 
 

SA foetuses have different growth patterns compared to WC in GDM pregnancies 

5.4 Aims 

To study the differences in fetal growth between SA and WC in GDM pregnancy 

5.5 Objectives 
 

To compare the growth of fetal growth parameters i.e HC, AC and FL in SA and 

WC in GDM pregnancies 

5.6 Methods 

This was a retrospective study of all pregnancies with GDM between 2009 & 2012 

of White Caucasian or South Asian ethnicity from University Hospital Coventry & 

Warwickshire in the West Midlands of the United Kingdom.  

All these centres used the selective screening based on the risk factors recommended 

by NICE: BMI ≥ 30Kg/cm
2
, first-degree relative with diabetes, previous GDM, 

previous unexplained stillbirth, previous macrosomia (BW ≥ 4.5 kg) or women of 

ethnic minority origin. Women meeting any one of the above criteria underwent a 75 
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g OGTT between 24-28 weeks. During this period all centres used the modified 

WHO 1999 criteria for the diagnosis of GDM following a 75g OGTT: FPG 

≥6.1mmol/l and/or 2-hour plasma glucose (2hPG) ≥7.8mmol/l. Obstetric and 

neonatal characteristics were obtained for all women undergoing an OGTT. BMI 

was measured at the booking visit. For the purpose of this study, ethnicity was 

grouped into South Asians (SA -Indian, Bangladeshi, Pakistani, Sri Lankan), White 

Caucasian (WC - British / European). Multiparity was defined as ≥2 live previous 

pregnancies that progressed beyond 24 weeks gestation.  

Routine fetal ultrasound was performed at 28 weeks, 32 weeks and 36 weeks 

gestation for all GDM women. Head circumference, abdomen circumference (AC) 

and femur length (FL) were recorded for all women electronically from View-point 

software, version 2.0.   

Statistical analysis: Mean and SD and student t tests were used to compare maternal 

and offspring characteristics between the two groups. Linear regression was used to 

compare the fetal biometry parameters between the two ethnic groups after 

adjustment for maternal age, BMI, gestation, sex of the baby and plasma glucose. A 

repeated measures ANOVA was performed to examine the differences in the trends 

of growth of individual fetal parameters. SPSS version 22.0 was used for analysis. 

LGA and SGA centiles at birth were calculated based on the customised Gestation 

Related Optimum weight (GROW) centiles obtained from the Bulk centile 

calculator available online at www.gestation.net.  These centiles are ethnic specific 

centiles for gestational age and sex of baby, adjusted for maternal height, weight and 

parity. 

5.7 Results 

Initial data for WC was obtained from pregnancies of GDM mothers between March 

http://www.gestation.net/
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2011 and 2013. Of total 212 babies born during this period, complete sonographic 

data was available for 177 WC women, after excluding 8 sets of twins, 2 sets of 

triplets.  

To obtain a similar number of SA women, this time period was extended back to 

April 2009. Of 192 babies born to SA mothers with GDM, 160 had complete scan 

data after excluding women with multiple pregnancy. 

Table 1 shows baseline characteristics of the two ethnic groups. SA were 

significantly leaner, shorter, had a higher prevalence of multiparity, and had 

significantly higher FPG and 2hPG at OGTT compared to WC. 

Table 2 shows the comparison of fetal biometry between the two groups. SA had 

significantly lower AC at all time points despite similar skeletal measures of FL and 

HC, with the exception at 32 weeks when HC was also lower in SA. FL/AC was 

significantly higher in SA compared to WC at all times. H/C was also higher in SA 

than WC at 28 weeks and at 36 week. As expected the BW in SA was significantly 

lower than in WC, however on using the customized GROW centiles the two groups 

had similar proportion of LGA and SGA. 
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Table 1: Baseline characteristics of WC and SA women  

 WC: Mean (SD): n=177 SA: Mean (SD): n=160 p 

Age in years 31.27 (6.01) 31.87 (4.87) 0.131 

BMI (Kg/cm2) 32.21 (7.42) 28.57 (6.14) <0.0001 

Height (cm) 164.35 (6.48) 158.90 (6.55) <0.0001 

Multiparity (≥ 2) 28.2 % 42.8 % <0.0001 

FPG (mmol) 5.11 (0.76) 5.27 (0.71) 0.003 

2hPG (mmol) 7.64 (1.89) 8.07 (2.13) 0.007 

Table 1 shows the differences in baseline characteristics between SA and WC 

 

Table 2: Differences in fetal biometry between SA and WC according to 

gestation 
 WC: Mean (SD) SA: Mean (SD) p 

AC1 (28 weeks) mm 248.80(18.46) 242.67(19.29) 0.016 

HC1 (28 weeks) mm 269.04 (16.108) 267.21(15.247) 0.381 

FL1 (28 weeks) mm 53.25(3.57) 53.89(4.06) 0.197 

HC/AC 1.08 (0.06) 1.10 (0.06) 0.008 

FL/AC 0.21 (0.01) 0.22 (0.01) <0.0001 

Gestation 1 (28 weeks) 28.38 (1.06) 28.32 (1.16) 0.653 

AC2 (32 weeks) mm 297.17 (21.21) 288.11 (21.03) 0.001 

HC2 (32 weeks) mm 307.86 (14.25) 301.82 (14.78) 0.001 

FL2 (32 weeks) mm 63.05 (4.17) 62.35 (4.45) 0.199 

HC/AC 1.04 (0.06) 1.05 (0.08) 0.154 

FL/AC 0.21 (0.01) 0.22(0.02) 0.031 

Gestation scan 2 32.77 (1.06) 32.50 (1.09) 0.048 

AC 3 (36weeks) mm 330.47 (20.09) 322.62 (19.08) 0.002 

HC 3 (36 weeks) mm 327.20 (29.48) 325.08 (10.77) 0.46 

FL 3 (36 weeks) mm 68.68 (2.77) 68.60 (3.10) 0.199 

HC/AC 0.99 (0.098) 1.01 (0.05) 0.057 

FL/AC 0.21 (0.01) 0.21(0.01) 0.001 

Gestation at scan 3 35.97 (0.80) 35.98 (1.00) 0.957 

Birth weight (g) 3419.41 (630.28) 3223.55 (586.58) <0.0001 

Gestation at birth [179] 38.81 (1.81) 38.68 (1.82) 0.369 

LGA (GROW centiles) 14.8 % 14.1% 0.829 

SGA (GROW centiles) 10.9 % 8.8 % 0.449 

 Table 2 shows the differences in fetal biometry at the various gestational ages along with the birth 

weight data in SA and WC  
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A mixed, between subjects ANOVA (repeated measures ANOVA) was conducted to 

assess the main effect of ethnicity on the growth of AC, HC and FL with gestational 

age and also the interaction of ethnicity with gestational age. 

Figure 1 and table 3 show the results of the repeated measures ANOVA. There was 

a significant main effect of time on AC, HC and FL, showing as expected a 

significant change of the above with time. Only AC but not HC and FL showed a 

significant main effect of ethnicity. The trend in the change of AC, HC and FL with 

time was similar between both ethnic groups, with no significant effect of 

interaction between ethnicity and gestational age. Figure 2 and table 4 shows the 

results of repeated measures ANOVA for HC/AC and FL/AC ratio in SA and WC.    

Finally a multivariable linear regression showed that the differences in AC, HC/AC 

and HC/FL ratio between the two ethnic groups that was seen on descriptive 

analysis persisted following adjustment for maternal age, BMI, FPG at OGTT, 

gestational age, and baby’s sex all time points (Table 5). HC/AC ratio at 32 weeks 

was similar between the two ethnic groups as seen previously in descriptive 

analysis. Table 6 showed that AC was independently determined by FPG 
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Table 3 Trends of change of AC, HC and FL with time and ethnicity 

A mixed between-within subject’s analysis of variance (repeated measures ANOVA) shows that the change in AC, HC and FL with time was similar across both ethnic 

groups. While HC and FL were not affected by ethnicity, the main effect of ethnicity on AC was significant, indicating a significant ethnic difference in AC. 

 

 

Figure 1: Trend of change of fetal biometry: AC, HC and FL in SA and WC 

 

            

                1a) AC                    1b) HC               1c) FL 

 
Figure 1 depicts graphical representation of the repeated measures ANOVA showing trend of change of fetal biometry i.e AC, HC and FL in SA and WC. Green line 

represents WC, Blue line represents SA. In line with table 3 only the trend of AC with was significantly different between the two groups. 

 

 

 

 AC HC FL 

Gestational age Wilks’ Lambda = 0.054,  
F (2, 122) = 1069.67, p <0.0001 

Wilks’ Lambda = 0.107,  
F (2, 119) = 493.99, p <0.0001 

Wilks’ Lambda =0.062,  
F (2, 122) = 920.516 
p < 0.0001 

Ethnicity F (1, 123) = 8.45, p = 0.004 F (1, 120) = 0.279, p =0.599 F (1, 123) = 0.377,  
p = 0.540 

Interaction of Gestational age with 

ethnicity 

Wilks’ Lambda = 0.988,  
F (2, 122) = 755, p = 0.472 

Wilks’ Lambda = 0.983,  
F (2, 119) = 1.023 
p = 0.363 

Wilks’ Lambda = 0.964,  
F (2, 122) = 2.274,   
P=0.107 
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Figure 2: Trend of change of fetal biometry: HC/AC and FL/AC in SA and WC 

 

                                     

           2a)  HC/AC ratio                              2b)    FL/AC ratio  

 
Figure 2 depicts graphical representation of the repeated measures ANOVA showing trend of change of HC/AC and FL/AC in SA and WC. Green line represents WC, Blue 

line represents SA. In line with table 4, the trend of  HC/AC but not FL/AC was significantly different between the two groups. 

 

Table 4: Trends of change of HC/AC and FL/AC with time and ethnicity 
  

A mixed between-within subject’s analysis of variance (repeated measures ANOVA) shows that the change in HC/AC and FL/AC with time was similar across both ethnic 

groups. While FL/AC was not independently affected by ethnicity, the main effect of ethnicity on HC/AC was significant, indicating a significant ethnic difference in 

HC/AC. 

  

 HC/AC ratio FL/AC ratio 

Gestational age Wilks’ Lambda = 0.054, F (2, 122) = 1069.67, p <0.0001 Wilks’ Lambda = 0.107, F (2, 119) = 493.99, p <0.0001 

Ethnicity F (1, 123) = 8.45, p = 0.004 F (1, 120) = 0.279, p =0.599 

Interaction of Gestational age with ethnicity Wilks’ Lambda = 0.988,  F (2, 122) = 755, p = 0.472 Wilks’ Lambda = 0.983, F (2, 119) = 1.023, p = 0.363 
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Table 5: Ethnic differences in fetal growth after adjustment for confounders 

 
 28 weeks 32 weeks 36 weeks 

 β coefficient (95% CI) 

AC 1.964 (0.488, 3.440), p=0.009 2.585 (0.945, 4.226), p=0.002 2.468 (0.864,4.071), p=0.003 

HC/AC -0.007 (-0.013, -0.002), p=0.006 -0.004 (-0.010, 0.002), p=0.157 -0.002 (-0.003, -0.001), p=0.002 

FL/AC -0.003 (-0.004,-0.002), p<0.0001 -0.002 (-0.004, -0.001), p=0.002 -0.002 (-0.003, -0.001), p=0.002 

 

Multivariable linear regression was performed with AC as dependent variable and ethnicity as independent variable, after adjustment for maternal age, BMI, FPG, gestational 

age at scans and sex of baby. SA were the reference group: SA had a significantly lower AC at all gestations after full adjustment as shown below.  
 

Table 6: Effect of Fasting plasma glucose on AC in SA and WC 

 Whole group SA WC 

 β coefficient (95% CI) 

28  0.267 (-2.57, 3.107), p = 0.853 -1.41 (-5.69, 2.87), p=0.515 1.90 (-2.09, 5.88), p=0.348 

32 4.99 (1.76, 8.23), p = 0.003 3.21 (-1.29, 7.70), p = 0.160 7.38 (2.48, 12.29), p=0.003 

36 5.31 (2.27, 8.34), p = 0.001 3.83 (-0.006, 7.665), p=0.05 7.79 (2.64, 12.95), p=0.003 

 

Multivariable linear regression was performed with AC as dependent variable and FPG as independent variable, after adjustment for maternal age, BMI, ethnicity, gestational 

age at scans and sex of baby. FPG was an independent predictor of AC at 32 and 36 weeks after adjustment as shown. When analysed separately in the two ethnic groups, 

this relationship between FPG and AC was only significant in WC, not SA.  
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5.8 Discussion 

Our study is the first to compare patterns of fetal growth between SA and WC in 

GDM pregnancies. We report several important findings. 

Firstly we showed that SA with GDM have significantly smaller AC but largely 

similar skeletal growth (HC, FL) than WC foetuses despite having significantly 

lower maternal BMI and height than WC. The lower AC is seen as early as 28 

weeks despite the higher FPG and 2hPG in SA.  

These findings agree with the Intergrowth data in healthy women [180] and to the 

Sparks theory [181] that show that skeletal growth is largely conserved across race. 

The intergrowth study is a large study of fetal growth in healthy women without 

GDM of different ethnic groups, which explored ethnic differences in patterns of 

fetal growth. This study observed that skeletal parameters are fairly similar across 

ethnic groups and are unaffected by ethnicity. Country of origin explained only 1.9-

3.5% of variance in skeletal growth, i.e. crown-rump length, fetal head 

circumference, and newborn birth length in healthy pregnancies [180]. This study 

however did not report on AC, which is very closely related to Birth Weight (BW) 

especially in diabetic pregnancies. 

Our results are also partly in line with other observations in healthy SA and WC 

new-borns, where SA were observed to have a significantly lower AC at birth [43, 

182]. However, the Pune study also reported smaller skeletal parameters such as HC 

in contrast to our data that only showed differences in AC, with relative sparing of 

HC and FL. The Pune study differed from our study in two respects, which could 

contribute in this disparity in results. One: The Pune Maternal nutrition study only 

recruited healthy women without diabetes. Two: Offspring of SA women living in 
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India in the Pune study were overall smaller with lower BW compared to SA living 

in the UK in our study.  

This difference in AC appears to be an independent effect of ethnicity and persists 

despite adjustment for maternal age, BMI and FPG. It appears that this difference in 

AC largely drives the difference in offspring BW in the two ethnic groups. FPG but 

not 2hPG appears to be an independent predictor of AC at 32 and 36 weeks in WC 

but not in SA. Again, in line with our results in chapter 10, maternal glycaemia 

appears to have a less significant impact on fetal size in SA than WC. 

Furthermore, the growth in SA fetuses was asymmetric compared to WC. Increased 

HC/AC and FL/AC ratios with head and femur sparing and smaller abdomen, have 

been used in traditional sonographic fetal biometry to describe asymmetric fetal 

growth [183-185]. It has been shown previously that in healthy fetuses HC/AC 

exceeds 1.0 before 32 weeks, is approximately1.0 at 32 to 34 weeks, and is less than 

1 beyond 34 weeks [184]. An elevated HC/AC ratio, which remains greater than 1 

after 32-34 weeks is regarded as a sign of asymmetric intrauterine growth restriction 

(IUGR) [185]. HC/AC and FL/AC ratios were markedly higher in SA compared to 

WC. SA with GDM displayed higher HC/AC ratios, which remained >1 even at 32, 

and 36 weeks depicting a picture of asymmetric IUGR.  

The significance of smaller abdomen in SA fetuses of mothers with GDM is unclear. 

The lower AC is a cumulative effect of subnormal liver and adipose tissue growth 

[184]. However it has been shown that SA neonates had higher intra-abdominal and 

subcutaneous abdominal adipose tissue than WC [44], despite overall lower birth 

weight. Hence it is plausible that the lower AC is the result of poor visceral i.e. liver 

growth in SA. Whether this disproportionate growth is simply an effect of ethnicity 
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or the difference in effect of maternal GDM is unknown. Whether lower AC is an 

indicator of future metabolic risk akin to lower BW needs to be assessed.  

Lastly, these findings have important implications on the management of GDM in 

SA. We have shown that FPG has an insignificant effect on AC and also on BW as 

shown in chapter 6. Hence it could be speculated that standard intensive treatment 

goals may aggravate disproportionate IUGR in SA. These findings raise the question 

of whether ethnic specific treatment goals are required for the management of GDM. 

 

5.9 Future directions 

 Larger randomised studies in both ethnic groups incorporating GDM and 

control groups to study the effect of GDM on fetal growth in the two ethnic 

groups. 

 Studies incorporating other measures of fetal growth including fetal 

adiposity and liver length. 

 Above studies to add evidence to the argument for the incorporation of 

ethnic specific treatment targets. 

 Long term follow up of offspring of these mothers to study the link between 

lower AC and future metabolic risk. 

 

  



 

 

 

111 

 

6 Early impact of GDM on fetal adiposity in SA 

6.1 Abstract 

Background: Increased fetal growth is an important complication of GDM leading to 

both short-term delivery complications and long-term risks of obesity in adulthood. 

Intensive glycaemic management regimens in GDM aim to reduce overall offspring 

BW. Recent evidence in WC points to altered body composition and asymmetric 

fetal growth in infants of GDM mothers, with preferential increase in fetal adiposity. 

Despite having the highest risk of GDM and future metabolic risk evidence of fetal 

growth abnormalities in GDM is largely lacking in SA. We aimed to assess changes 

in fetal body size and adiposity in GDM in a SA population. 

Methods: A retrospective study of 153 GDM and 178 controls from an obstetric 

centre in Chennai, India. Serial scans data were obtained at 11, 20 and 32 weeks for 

all women along with maternal and offspring demographic data.  Traditional 

biometry including fetal HC, AC and FL at 11, 20 and 32 weeks and anterior 

abdominal wall thickness (AAWT) was measured as a measure of central adiposity 

at 20 and 32 weeks in all women. 

Results: Offspring of GDM women had significantly higher AAWT at both 20 (2.63 

(0.51) vs 2.39 (0.41) mm, p<0.0001) and 32 week (4.67 (0.81) vs 4.37 (0.67) mm, 

p=0.001) scan despite lower measures of AC, HC and FL at 32 weeks. Both groups 

had similar BW at term. FPG was an independent predictor of AAWT at both 20 

and 32 weeks after adjustment for age, maternal BMI, parity and gestational age. 

Conclusion: We present novel evidence of the early origins of adult obesity in 

offspring of SA women with GDM. Foetuses of GDM mothers show evidence of 

disproportionate fetal growth with increased adiposity and reduced lean body mass 

as early as 20 weeks gestation.  Increased abdominal wall thickness could serve as 
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an early marker of GDM. Therapy in GDM should be guided by fetal body 

composition.  
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6.2 Introduction 

6.2.1 GDM and offspring risk 

Gestational Diabetes Mellitus is typically described as a state of glucose intolerance 

first recognised in pregnancy. The incidence of GDM is increasing rapidly in line 

with the increase in prevalence of type 2 diabetes (T2D) [5, 6]. GDM is associated 

with a multitude of offspring complications that include macrosomia, neonatal 

jaundice, neonatal hypoglycaemia and shoulder dystocia [9] for the offspring and 

preeclampsia [61] in the mother. Offspring of mothers with GDM have a 2-4 fold 

higher future risk of T2D and adult onset obesity [63, 64, 186]. Macrosomia, is the 

most important consequence of the altered metabolic milieu of GDM pregnancies 

[187, 188] occurring in about 10-20% of GDM pregnancies[189, 190]. Fetal 

macrosomia is closely related to several other neonatal complications such as 

shoulder dystocia[191], caesarean delivery, stillbirth, neonatal mortality, neonatal 

asphyxia and birth injury [192]. Hence most international guidelines recommend 

serial fetal US at 28, 32 and 36 weeks gestation to monitor for increased foetal 

growth [76, 193].  

However macrosomia is a crude composite outcome of the growth of both fat mass 

and fat free mass, determined by a variety of genetic, maternal and environmental 

factors and it is to be remembered that the infant of a diabetic mother has 

significantly different body proportion from the general population [175]. Offspring 

with disproportionate macrosomia have been shown to have greater morbidity with 

higher risk of hypoglycaemia and hyperbilirubinemia compared to those with 

proportionate macrosomia [194]. Furthermore, the common formulae [170] derived 

for the estimated fetal weight (EFW) were derived from normal populations and are 

poor predictors of fetal weight in diabetic pregnancies and especially in in LGA 
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babies[174, 175]. Therefore there is renewed interest in studying individual 

components of fetal body composition, and fetal growth trajectories in GDM. 

6.2.2 Normal fetal growth 

The intrauterine growth trajectory is the composite outcome of substrate availability, 

genetic make up and hormonal milieu of the intrauterine environment. Changes in 

the intra-uterine environment largely determine the growth of fetal fat, while the fat 

free mass is determined by genetic factors [181, 195]. Fetal fat and hence fetal 

weight increases exponentially in the second half of pregnancy [196]. The 

differences in body composition between SGA and LGA neonates are largely 

determined by differences in adiposity rather than that of fat free mass, with fetal 

adiposity contributing to upto 50% of variance in birth weight [197, 198].  

6.2.3 Changes in fetal growth in GDM 

As a result of increased nutrient bioavailability and the permissive environment of 

fetal hyperinsulinism there is accelerated fetal growth of both fat and lean mass in 

later pregnancy [172]. However, more recently evidence points towards a 

preferential growth of insulin sensitive adipose tissue mass compared to growth of 

fat free lean tissues [199] with higher total fat mass and fat/lean mass ratio[172] in 

GDM offspring compared to normal.  Preferential increase in fetal adiposity has 

been reported in several studies in offspring of women with both pre-existing and 

gestational diabetes [199, 200]. Abdominal subcutaneous obesity, often measured as 

anterior abdominal wall thickness (AAWT) could in-fact be an early marker of 

gestational diabetes and its associated fetal risk [201]. However all the above studies 

examined fetal adiposity predominantly in the third trimester or at birth [172]. 
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Our aim was to assess the difference in fetal body composition and abdominal wall 

thickness between GDM and controls in early pregnancy to enable early pregnancy 

prediction of GDM and risk to the offspring. 

6.3 Hypothesis 

1. GDM is associated with altered fetal body composition 

6.4 Aims 

1. To compare differences in fetal biometry i.e. head circumference [168], 

abdominal circumference (AC) and femur length (FL) between GDM and 

control population 

2. To compared difference in fetal adiposity between GDM and control population 

6.5 Materials and methods 

This is a retrospective case control study of all pregnant women diagnosed with 

GDM and controls booked at Seethapathy clinic & hospital, Chennai, India from 

September 2011 to December 2013.  

All pregnant women had OGTT with 75 g glucose 22-26 weeks. GDM was 

diagnosed based on the IADPSG criteria i.e. Fasting plasma glucose (FPG) ≥ 

5.1mmol/l, 1hour PG (1hPG) ≥ 10.0 or 2hour PG (2hPG) ≥ 8.5 mmol/l. Diet and 

lifestyle advice was given to all women with GDM. The optimal targets was a FPG 

< 5.1 and a 1hPG < 7.8mmol/l. If glycaemic control was not achieved with diet, 

insulin was started. 

Ultrasound scans were performed at two centres, Mediscan and Seethapathy 

hospital. All patients underwent a dating scan at 11 weeks, a detailed anomaly scan 

at 20 weeks where fetal biometry (BPD, HC, AC and FL) was documented. A 

subsequent scan was done for assessing fetal growth at 28 and 32 – 34 weeks for 
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GDM women. For Control women a routine growth scan was performed at 32 

weeks. Measurement of the abdominal wall thickness (AAWT) was done 

retrospectively, on images archived from Sonocare, an ultrasound reporting and 

imaging software. The AAWT was measured at both the 20
th
 week and at 32 weeks, 

by two operators using standardised technique as described previously[202].  

The plane of the abdominal circumference was taken, with optimum gain control, as 

per standard described protocol. The abdominal wall was identified and the 

thickness of the echogenic rim was measured. Care was taken not to include the 

hypo echoic area between the abdominal wall and the liver. In addition traditional 

biometry measures such as bi-parietal diameter (BPD), AC, HC, and FL were 

measured at every time point. 

Patients with GDM on insulin were induced at 38 weeks. Patients with GDM on diet 

with good glycaemic control were induced at 40 weeks. Control women were 

induced at 40 
+ 5

 weeks if spontaneous labour did not occur. The nature and mode of 

delivery, the gestational age, sex and weight of the baby were documented.  

Statistical analysis: Parametric tests i.e student t test was used to compare means 

between the two groups. Multivariable linear regression was used to study 

differences in fetal growth parameters after adjustment for confounders.  Repeated 

measures ANOVA were used to study the difference in trend of growth of individual 

parameters between the 2 groups. SPSS version 22.0 was used for analysis. 

6.6 Results 
 

A total of 178 controls and 153 GDM women were recruited (total n= 331). The first 

dating scan was performed at 11-14 weeks. The second fetal biometry scan was 

performed at a mean of 20.9 (SD: 1.1) (scan 2) and again at 32.5 (SD: 1.6) weeks 

(scan 3). For Scan 2 fetal biometry was available for 325 women, and for scan 3 for 
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316 women in total. AAWT was available for 322 and 324 women for scan1 and 2 

respectively. GDM diagnosis was made at 24.7 (SD: 2.45) weeks. 

Baseline characteristics of the two groups are shown in table 1. GDM women had 

higher BMI and maternal weight than controls. They had significantly higher 

measures of glycaemia at OGTT at all time points. Nearly half of the women had 

family history or maternal or paternal diabetes. 

Table 2 shows the differences in fetal biometry and AAWT between the GDM and 

control groups. At 11-week scan both groups had similar measures of all biometry. 

At scan 2 GDM women had higher AAWT, but smaller HC and BPD. All other 

traditional fetal parameters were similar in both the groups. At Scan 3 the significant 

differences in AAWT persisted despite smaller measures of AC, HC, BPD and FL. 

Birth weight was similar in the two groups. With multivariable linear regression the 

above differences in traditional biometry and AAWT between the two categories 

persisted even after adjustment for maternal BMI, age, gestational age at scan and 

parity (table 3). 
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Table 1: Baseline characteristics of GDM and control groups 
 GDM: Mean (SD) Controls: Mean (SD) p 

Age 28.5 (3.8) 28.8 (4.2) 0.610 

BMI (KG/cm2) 25.9 (5.8) 23.7 (6.6) 0.002 

Ht cm 155.2 (19.1) 150.8 (33.40) 0.142 

Weight in Kg 65.9 (12.5) 60.6 (16.0) 0.001 

FPG (mmol) 5.3 (0.7) 4.4 (0.5) <0.0001 

1hPG (mmol) 9.7 (1.9) 7.0 (1.5) <0.0001 

2hPG (mmol) 8.1 (1.8) 5.9 (1.2) <0.0001 

Multiparity (>1) 4.6 % (7 / 145) 1.7 % (3 / 175) 0.123 

Previous GDM 3.9 (6 / 153) 0 (0/178) 0009 

Family H/O diabetes 49.1 (75/153) 33.1 (59 / 178) 0.003 

Table 1 shows the difference in baseline characteristics between GDM and control women. 

 

Table 2: Fetal biometry in GDM and control groups 

Table 2 shows the difference in fetal biometry between GDM and Control groups at various 

gestational ages. 

 

Table 3: Differences in fetal biometry between GDM and controls after 

adjustment for maternal characteristics and gestational age  

Multivariable linear regression was performed with fetal biometry parameters as dependent variable 

and glycaemic category (GDM vs control) as independent variable after adjustments made for age, 

BMI, parity and gestational age at scan. 

  

 GDM:  Mean (SD) Controls  Mean: (SD) p 

AC (11-14 weeks) mm 52.3 (25.1) 51.7 (22.9) 0.820 

HC (11-14 weeks) mm 66.2 (28.7) 65.5 (29.6) 0.824 

FL (11-14 weeks) mm 7.5 (7.3) 7.5 (7.5) 0.930 

BPD (11-14 weeks) mm 18.5 (7.9) 19.2 (9.9) 0.488 

AC1 (20 weeks) mm 154.4 (11.1) 156.6 (11.6) 0.084 

HC1 (20 weeks) mm 178.1 (11.7) 181.4 (11.2) 0.010 

FL1 (20 weeks) mm 34.3 (4.3) 34.9 (2.8) 0.153 

BPD1 (20 weeks) mm 48.9 (3.1) 49.9 (3.3) 0.004 

AAWT1 (20 weeks) mm 2.6 (0.5) 2.4 (0.4) <0.0001 

Gestation at scan 2  21.1 (1.2) 20.7 (0.9) 0.007 

AC 2 (32 weeks) mm 250.3 (66.3) 268.9 (49.9) 0.005 

HC 2 (32 weeks) mm 265.6 (71.6) 289.3 (51.6) 0.002 

FL 2 (32 weeks) mm 55.4 (16.9) 60.9 (11.2) 0.001 

BPD 2 (32 weeks) mm 74.4 (22.4) 80.9 (14.6) 0.002 

AAWT 2 (32 weeks) mm 4.7 (0.8) 4.4 (0.7) 0.001 

Gestation at scan 3 32.1 (1.8) 32.9 (1.4) <0.0001 

Birth weight (Kg) 3.0 (0.5) 3.1 (0.4) 0.070 

Gestational age at birth 
[179] 

38.5 (1.5) 38.8 (1.1) 0.056 

Fetal biometry parameters in mm B coefficient (95% CI) p 

AAWT1 (20 weeks) 0.25 (0.15,0.35) <0.0001 

HC1 (20 weeks) -4.47 (-6.46, -2.48) <0.0001 

BPD1 (20 weeks) -1.31 (-1.91, -0.72) <0.0001 

AC 2 (32 weeks) -3.50 (-6.78, -0.219) 0.037 

HC 2 (32 weeks) -8.64 (-15.53,  -1.74) 0.014 

FL 2 (32 weeks) -1.94(-3.43, 0.46) 0.010 

BPD 2 (32 weeks) -2.11 (-4.05, -0.16) 0.034 

AAWT 2 (32 weeks) 0.50 (0.35, 0.65) <0.0001 
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A repeated measures ANOVA was conducted to examine the differences in trend of 

change of AAWT, AC, HC and FL in the two groups across three time points of the 

gestational age: 11-14 weeks, 20 weeks and 32 weeks. Figure 1 shows the trend in 

change of AAWT, AC, HC and FL in the two groups. Table 4 shows the results of 

repeated measures ANOVA showing a significant effect of both gestational age and 

glycaemic category for all measures of fetal growth. The trend of change of HC, AC 

and FL with gestational age differed significantly between GDM and controls, with 

a significant interaction effect between ethnicity and category of glycaemia. 

However, the trend for AAWT was similar in both controls and GDM, with AAWT 

being greater in GDM group at all gestations. 
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Table 4: Fetal growth trends in GDM and controls: Repeated measures 

ANOVA 

A repeated measures ANOVA shows that there was a significantly different trend of change of AC, 

HC and FL with gestational age between GDM and control group. While the AAWT was different 

between the two groups at all time points, the change in AAWT with gestational age followed a 

similar pattern. 

 

Figure 1: Differences in fetal growth between GDM and controls 

     

               1a) HC                1b) AC   1c) FL 

 

There was a significant and independent relationship between glycaemia and fetal 

adiposity. Table 5 shows the relationship between fasting glycaemia at OGTT and 

measures of foetal adiposity at 20 and 32 weeks respectively. FPG at OGTT was 

significantly associated with AAWT at 20 and 32 weeks after adjustment for 

 HC AC FL AAWT 

Gestational age Wilks’ Lambda = 
0.037,  

F (2, 301) = 
3598.959, p = 0.001 

Wilks’ Lambda = 
0.018,  

F (2, 301) = 
8207.319, p 
<0.0001 

Wilks’ Lambda 
=0.036,  

F (2, 301) = 
3982.09,  
p < 0.0001 

Wilks’ Lambda 
=0.119,  

F (1, 313) = 
2306.40,  
p < 0.0001 

Category (GDM vs 

controls) 

F (2, 301) = 11.615, 
p = 0.001 

F (1, 302) = 9.042, 
p =0.003 

F (1, 302) = 11.067,  
p = 0.001 

F (1, 313) = 24.853,  
p < 0.0001 

Interaction of 

Gestational age 

with category 

Wilks’ Lambda = 
0.951,  

F (2, 301) = 7.749,   
p =0.001 

Wilks’ Lambda = 
0.941,  

F (2, 301) = 9.498,   
p <0.0001 

Wilks’ Lambda = 
0.949,  

F (2, 301) = 8.116,   
p <0.0001 

Wilks’ Lambda = 
0.998,  

F (1, 313) = 514, 
 p = 0.474 

1d) AAWT 

Figure 1: Trend of AC, HC, FL, AAWT in 

GDM and controls. AC, HC and FL measured 

at 11, 20 and 32 weeks. AAWT measured 

between 20 and 32 weeks.  

Blue lines indicate GDM 

Green lines indicate Controls 
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maternal age, parity, BMI and gestational age at scan. 1 and 2hPG were not 

independent predictors of abdominal adiposity. 

Table 5: Relationship between Fasting Glycaemia and abdominal adiposity 

 B coefficient (95% CI) p 

AAWT1 (20 weeks) mm 0.145 (0.073, 0.217) <0.0001 

AAWT 2 (32 weeks) mm 0.248 (0.140, 0.356) <0.0001 

Multivariable linear regression was performed with FPG as dependent variable and fetal biometry 

parameters as independent variable after adjustments made for maternal age, BMI, parity and 

gestational age at scan.  

6.7 Discussion 

Our results provide novel evidence for the increased fetal adiposity seen in offspring 

of GDM mothers as early as 20 weeks gestation, in a South Asian population. Our 

most significant finding was that of increased AAWT in GDM fetuses despite 

similar or lower measures of other traditional fetal biometry in the second trimester, 

pointing towards disproportionate fetal growth. This increased adiposity persisted 

despite correction for age, BMI, gestational age and parity and was closely related to 

maternal FPG. We also noted that similar measures of fetal adiposity persisted at 32 

weeks of pregnancy despite treatment of GDM. Several studies reported differences 

in AAWT in the third trimester, well beyond 26 weeks of pregnancy [172, 199-201, 

203, 204] (Table 6). Ours is the first study to report early differences in adiposity at 

20-22 weeks, even prior to diagnosis of GDM with OGTT. Larcipete [205] 

compared GDM women with high-risk controls at 20 weeks by serial scans but 

abdominal fat differences were not evident till 37 weeks. Hence sonographic 

measurement of AAWT at 20 week scan, which is routinely performed for anomaly 

screening and hence available for all pregnant women, could be incorporated into 

risk stratification, screening or early diagnostic process for GDM.
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 Table 6: Summary of the literature studying fetal biometry and fat mass in GDM

 Sample size Gestational weeks Adiposity Other fetal biometry BW GDM diagnostic 
criteria 

Larciprete[2
05] 

85 GDM,  
218 controls 

Enrolled at 20-22 
weeks 

No difference seen prior to 31 weeks. Abdominal fat mass higher at 
39-40 weeks, Mid-arm fat and  Supra-scapular fat mass higher at 31 

weeks, mid-thigh fat higher at 37 weeks in GDM 

Mid-thigh lean mass 
higher at 20-22 weeks 

Higher in GDM  NDDG criteria 

Aksoy[201] 55 GDM,  
69 controls 

26-28 weeks AAWT: 4.07 ± 0.46  vs 3.28 ± 0.37 (controls), p<0.0001 No difference Higher in GDM IADPSG criteria 

Tantanasis[
200] 

20 GDM,  
15 control 

24 and 26 weeks Increased Subcutaneous fat at Abdomen GDM: 5.30 (0.52) vs 
Controls: 2.94 (0.58) 

Not reported Not reported (FPG: 7mmol/l & 
2hPG:11.1mmol/l) 

De-

Santis[172] 

43 controls,  

171 GDM 

20 – 38 week serial 

measurements (only 
15 scans <22 weeks) 

Significantly higher fat mass (abdominal, supra-scapular, arm and 

thigh fat) 

HC and BPD similar. 

Faster growth of AC and 
FL 

Higher BW z 

score, similar 
length 

Carpenter Coustan 

Catalano[19
9] 

195 GDM,  
220 controls 

At birth Restricting comparisons between infants appropriate for gestational 
age with GDM and controls: Fat mass in g: (371 ± 163 g vs 329 ± 
150 g, p = 0.02) (GDM vs controls), p=0.0002: Body fat (%):11.4% 
± 4.6% vs 9.9% ± 4.0%, p = .002 (GDM vs controls).  

No difference in lean 
mass, HC, leg length, AC. 
(Whole GDM group vs 
controls) 

Higher 
proportion of 
LGA in GDM 
group. 
 

NDDG criteria 

Enzi[203] 17 GDM,  
17 controls 

At birth % body fat: GDM(17% ± 1.7%) vs controls (12.2% ± 0.5% ). 
(newborn anthropometry) 

Not reported No difference Whites 
Classification  

Vedavathi 
[178] 

30 GDM,  
30 controls 

32-40 Not Studied Higher AC and HC Higher in GDM Carpenter Coustan 

Hammoud 
[171] 

99 GDM, 
145 Controls 

17 weeks, 37 weeks Not studied Similar AC, HC, FL  Not reported 100g GTT ADA 

Nasrat [204] 51 GDM,  
501 controls 

At birth Increased skim fold: Biceps, subscapular, suprailiac, sum of all skin 
folds. 

Similar HC and AC Higher in GDM ADA  
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A point to note in our study is that these differences in adiposity were observed in 

the two groups despite similar overall BW at term, signifying an asymmetric growth 

pattern even in offspring of relatively well-controlled GDM. Most other studies that 

have reported increased fetal adiposity in utero have also reported overall larger BW 

in GDM offspring compared to controls (table 6). Our results provide further early 

evidence to Catalano’s observation of increased adiposity at term in the two groups 

of comparable weight [199]. 

The other intriguing finding in our study is that fetuses of GDM mothers displayed 

decreased lean mass, as early as 20 weeks. Both HC and BPD were significantly 

lower in GDM at 20 weeks even after adjustment for maternal characteristics and 

gestational age. AC displayed a trend to be lower than the controls at 20 weeks but 

this did not reach statistical significance. At 37 weeks all traditional parameters 

including AC, HC and FL were significantly smaller in GDM fetuses, with the 

difference more marked than at 20 weeks. These findings are in contradiction to 

most previous studies that either showed an increase [172, 178] or no difference 

[171, 199, 201, 204] in traditional fetal parameters. However in all of the above 

studies the offspring of GDM were either macrocosmic or had significantly greater 

BW than control fetuses (see table 6). Therefore it is conceivable that if the 

comparison was restricted to fetuses of similar overall weight, the reduced 

parameters of other fetal biometry would be more apparent. In fact, a study from the 

United states [199] reported similar lean fetal mass between GDM and controls, but 

on restricting the comparison to GDM fetuses who were appropriate for gestational 

age (AGA), the latter had lower lean mass than controls. Such early growth delay 

with lower BPD has also been reported in fetuses of mothers with pre-gestational 

diabetes [174, 206]. It is therefore possible our SA women with GDM had more 
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severe hyperglycemia or undiagnosed pre-gestational diabetes and therefore display 

features of early growth delay akin to women with pre-gestational diabetes. 

The smaller fetal biometry at 37 weeks in addition can be explained by the influence 

by treatment of GDM. Since the groups had similar BW, the increase in adiposity 

combined with decreased lean mass could be a consequence of tight maternal 

glycemic control coupled with the effect of medication such as insulin. Aggressive 

treatment of maternal glycaemia has been shown to increase the risk of overall small 

for gestational age neonates [166]. It has been shown that known that maternal 

treatment with insulin preferentially favors that increase of fetal adiposity over lean 

mass [199]. When compared to offspring of GDM mothers on diet alone, the 

offspring of GDM mothers on insulin have significantly greater skin fold thickness, 

greater total body fat mass and % body fat but similar measures of lean body mass 

[199]. Therefore it can be conceived that intensive treatment goals with insulin 

regimens may in fact reduce lean body mass and increase adiposity. 

Other possible explanations of the smaller overall size could be the presence of 

underlying placental dysfunction impairing the growth of skeletal and visceral 

growth. 

This is the first study examining early fetal growth in GDM along with measures of 

adiposity in SA. It is possible that this asymmetry in fetal growth is a feature that is 

more marked in glucose intolerant SA.   

Our study had few important limitations. It was retrospective and hence liable to 

incomplete data. Detailed information of treatment and glycemic control, which 

affects late pregnancy fetal growth, was not available. However this could not have 

influenced our results at 20 weeks.  

The implications of these results are several.   
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Firstly, fetal abdominal adiposity could be a useful marker of GDM in early 

pregnancy even prior to the traditional diagnosis using the OGTT. Hence a 

sonographic measure of AAWT could be used as an early marker. Further more 

AAWT measurements could be used to detect women who would benefit from early 

treatment of GDM. The effect of metformin in modulating fetal adiposity and hence 

disproportionate growth should be explored in future studies. 

Secondly, this study is evidence for the early origins of adult adiposity and 

metabolic risk in infants of GDM, and that this is apparent even in fetuses with 

comparable BW to controls. Previous studies have shown that increased adiposity in 

term infants of GDM mothers is linked to future adult obesity and diabetes risk [186, 

207]. Further studies are needed to extend this observation to measures of adiposity 

in early fetal life. 

Thirdly, our results raise the question if intensive treatment regimens to reduce 

overall fetal size will truly reduce fetal adiposity or in fact do more harm to worsen 

the asymmetry between lean and fat tissue. There is also evidence to show that 

gestational age is the strong predictor of fat free mass [208]. Treatment of GDM 

with insulin, coupled with early induction, may increase fetal adiposity and reduce 

lean mass further. It may be that tight glycemic control especially in SA may do 

more harm. Finally our evidence therefore encourages a more detailed study of 

adiposity and fetal composition to tailor therapy in GDM and move away from the 

glucocentric or fetal weight based approach. Again our study could not examine the 

effect of treatment, such as metformin, however future studies are needed to 

investigate this role. 
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6.8 Future directions 
 

 Need for larger prospective studies comparing early fetal body composition 

including AAWT between GDM and controls in SA and other ethnic groups 

and incorporation of this into early diagnosis, screening and risk 

stratification and early treatment of GDM.  

 Need for examining the role of GDM therapeutic regimens including 

metformin, insulin and diet on fetal and neonatal body composition and 

usefulness of fetal body composition to guide therapy in GDM 

 Long term follow up of neonates with increased fetal adiposity to assess 

future risk of childhood and adolescent obesity and insulin resistance 

 Studies assessing the role of other non glycaemic factors – eg Amino acids, 

cytokines and Free fatty acids in fetal growth, adiposity and lean mass.
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7 Differences in Hypothalamic Pituitary adrenal Axis 

(HPA) activity between SA and WC in relation to GDM 

7.1 Abstract 

Introduction: SA have more the double the prevalence of GDM even at lower levels 

of obesity. The mechanisms for increased risk of GDM in SA are still unclear. 

Hyperactive HPA with altered diurnal cortisol rhythms have been observed in 

metabolic syndrome, obesity and diabetes. We hypothesised that differences in HPA 

activity contribute to increased risk of GDM in SA. 

Methods:  A prospective multicentre study of high-risk SA and WC women was 

conducted (PRiDE-HPA study). All women of SA or WC origin less than 16 weeks 

of gestation, meeting selective screening criteria for GDM were recruited, after 

excluding topical, oral, inhaled steroids and multiple pregnancy. 

Maternal data, anthropometry, blood are obtained with timed salivary collections 

and a 24 hour urine. Saliva is collected at waking, 30 min after, 4pm and bedtime 

twice in pregnancy. At oral glucose tolerance test (OGTT) blood samples fasting 

and 2 hour plasma glucose was estimated. The differences in salivary cortisol 

behaviour and urinary excretion were studied in SA and WC in relation to glycaemia 

in later pregnancy. 

Results: SA had a significantly greater cortisone awakening response than WC and a 

more enhanced conversion of cortisol to cortisone because of increased renal HSD2 

activity. Waking and peak cortisone in early pregnancy correlated independently 

with fasting plasma glucose at 24 weeks. While BMI was an independent predictor 

of total GC excretion in WC, adiposity but not BMI independently predicted total 

glucocorticoid excretion in SA. 
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Conclusion: There are distinct differences in HPA activity and cortisol clearance 

between SA and WC in early pregnancy. Early pregnancy waking salivary cortisone 

was an independent predictor of glycaemia in later pregnancy and could be used as 

an early predictor of GDM. It is possible that the differences in the HPA activity and 

cortisol clearance could in part explain the higher risk of GDM and overall 

metabolic risk in SA. 
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7.2 Introduction 

7.2.1 Ethnic differences in GDM risk 

GDM is a pre-diabetes state, associated with 7-8 fold increase in maternal risk and 

2-4 fold increase in offspring risk of type 2 diabetes (T2D)[207, 209]. Currently 

GDM is diagnosed at 24-28 weeks of gestation with a 75g oral glucose tolerance test 

(OGTT). Early prediction of GDM is poor and the search for reliable early 

biomarkers in GDM is ongoing. It is well known that SA have more than double the 

prevalence of GDM and T2D than WC, even at lower levels of obesity [13, 14]. 

Mechanisms for this heightened susceptibility are not fully understood.  

7.2.2 Cortisol and its metabolism 

Cortisol is a steroid hormone produced by the zona-fasciculata of the adrenal gland. 

It has several functional roles which includes regulation of inflammatory and 

immune responses, energy metabolism i.e glucose and fat metabolism, and 

regulation of vascular function. Its secretion is controlled by the Adreno Cortico 

Trophic Hormone (ACTH), secreted by the anterior pituitary, which in turn is 

controlled by Corticotropin releasing hormone (CRH) from the hypothalamus. 

(Figure1).  
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Cortisol in circulation is largely bound to cortisol binding globulin (CBG) and in 

basal conditions less then 5% of cortisol is unbound [210]. It is metabolized in the 

body to inactive Cortisone by the enzyme 11β hydroxy-steroid dehydrogenase (HSD 

2) present in the kidneys [211] and the salivary glands and the female reproductive 

system including the placenta [212]. This enzyme assumes special importance in 

mineralocorticoid sensitive tissues such as the kidneys to prevent the excessive 

mineralocorticoid action of cortisol. In the renal tubules cortisol is also metabolised 

to tetra-hydro cortisol (THF) and αTHF by 5β and 5α reductase respectively. 

Cortisone is further metabolised by 5β reductase to tetra-hydro cortisone (THE). 

(Figure 2).  11β hydroxy-steroid dehydrogenase 1(HSD1) regenerates cortisol from 

cortisone and is largely present in the adipose tissue, liver, muscle and bone. 

Figure 1: Feedback control of cotisol secretion. The 

Hypothalamic-pituitary-adrenal axis. HPA. (Adapted 

from Baron and Boulpaep, Medical physiology, 1st Edition 

Saunders, 2003) 

 
CRH from hypothalamus stimulates the anterior pituitary to 

release ACTH from the anterior pituitary which in-turn 

stimulates the Zona-Fasciculata of the adrenal cortex to 

produce cortisol. Cortisol exerts negative feedback on both the 

pituitary and hypothalamus to inhibit both CRH and ACTH. 
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7.2.3 Functions of cortisol 

Circulating cortisol exerts its actions by binding to cytosolic corticoid receptors, 

which are a part of the nuclear steroid-thyroid-retinoid receptor superfamily [213] 

and influence transcription of target genes. Cortisol is an important hormone for 

cellular energy metabolism, and plays an important role in adaptive mechanisms 

during periods of stress. The acute metabolic effects of cortisol are largely adaptive 

in nature i.e increasing mobilization of glucose [214], free fatty acids [215] and 

amino acids [216] from endogenous stores for mitochondrial oxidation and energy 

production. In addition to its role in cellular growth and energy metabolism it also 

regulates blood pressure, immune function and fluid balance [215].  

7.2.4 Cortisol and metabolic risk 

As opposed to acute adaptive responses of cortisol, chronic increased cortisol 

exposure on the other hand is maladaptive, as seen in the typical example of 

Cushing’s syndrome, which is associated with a number of morbidities such as 

central obesity, insulin resistance and dysglycaemia, osteoporosis, hypertension, and 

immune suppression [217]. Here, cortisol is largely catabolic leading to decreased 

lean body and muscle mass associated with increased central obesity and increased 

fat mass.  

Subclinical hypercortisolism with raised plasma cortisol levels have been seen in 

insulin resistance states, obesity and metabolic syndrome [218] [219, 220]. 

Figure 2: Cortisol metabolism in 

the kidneys. (Adapted from Van 

Uum Et al) [1]  

11βHSD2 metabolises cortisol to inactive 

cortisone. Cortisol is also metabolised to 

tetra-hydro cortisol (THF) and αTHF by 5β 

and 5α reductase respectively. Cortisone is 

further metabolised by 5β reductase to tetra-

hydro cortisone (THE). 
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Individuals with diabetes have been shown to have higher 24-hour urine free cortisol 

and basal plasma cortisol compared to controls [221]. A picture of hypercortisolism 

along with increased urinary clearance suggests a hyperactive hypothalamic 

pituitary adrenal axis (HPA). Adults with glucose intolerance have increased 

activation of the HPA with higher fasting cortisol and exaggerated responses to the 

repeated stress of venepuncture [222, 223]. The causal relationship between HPA 

regulation and metabolic risk is still unclear [224]. While the peripheral hypothesis 

states that adiposity in obesity states cause altered cortisol metabolism, the central 

hypotheses believes that HPA dysregulation is the cause of adverse metabolic states 

such as obesity[224].  

In addition to hypercortisolism, changes in the diurnal patterns of cortisol have been 

observed in conditions of adverse metabolic risk. In healthy adults, cortisol rises 

steeply from awakening up to 30 min (cortisol awakening response-CAR), a 

measure of HPA reactivity followed by a decline throughout the day [225, 226]. The 

decline is characterised by an initial steep phase (early decline) followed by a more 

gradual decline (late decline). The Multiethnic study of Atherosclerosis (MeSA) 

showed that individuals with diabetes had a trend towards a lower awakening 

cortisol and a significantly lower CAR than individuals without diabetes [57].
 
In 

another study, BMI negatively correlated with awakening salivary cortisol and a 

showed a greater decline of cortisol following the initial peak [227]. In contrast to 

what was seen in diabetes states, metabolic syndrome in women was associated with 

a higher CAR but lower awakening cortisol than those women without metabolic 

syndrome (figure 3)[228].  

Whether HPA dysregulation is associated with hyperglycaemia of pregnancy or 

GDM, which predates diabetes is not known. One study of 23 women reported 
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higher 9am cortisol in GDM but no studies have looked at diurnal cortisol patterns 

[229]. 

Figure 3: Higher CAR in metabolic syndrome 

  

7.2.5 Cortisol patterns in normal pregnancy 

 

Both total and free cortisol and cortisone increase about 2-3 fold in later pregnancy 

compared to the post-partum state [230]. Although there is a surge of both cortisol 

and CBG levels simultaneously [231, 232] the normal diurnal rhythm of cortisol is 

preserved in pregnancy [230]. The placental HSD2 inactivates cortisol to cortisone 

to prevent fetal exposure to excess cortisol. 

7.2.6 Ethnic differences in cortisol patterns 

Ethnic differences in diurnal cortisol in non-pregnant adults have been reported in 

studies between Blacks, Hispanics and WC [59]. Blacks were shown to have flatter 

diurnal cortisol patterns compared to WC [233]. It has been demonstrated previously 

that although morning cortisol concentrations were lower there was a stronger 

positive correlation of cortisol with components of metabolic syndrome (including 

glucose intolerance) in SA compared to WC [60]. There are no studies 

systematically studying the differences in diurnal or cortisol clearance patterns 

Women with 

metabolic syndrome 

have greater CAR and 

lower awakening 

cortisol compared to 

those without This 

difference was not 

seen in men. Adapted 

from Bengtsson [228]  
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between SA and WC. Studies examining ethnic differences in HPA activity are 

described below in table 1. 

Table 1: Summary of literature examining cortisol patterns between ethnic 

groups 

 
Studies Ethnic groups Sample analyzed Result 

DeSantis [234] Blacks, Hispanic, 
WC 

Diurnal Salivary 
Cortisol 

Flatter curves in Hispanics and Blacks compared to 
WC 

Hajat [59] 
(MeSA study) 

Blacks, Hispanic, 
WC 

Diurnal Salivary 
Cortisol 

Lower Waking Cortisol and less steep decline in 
Blacks and Hispanics compared to WC 

Reynolds [60] SA and WC Single Plasma 

Cortisol  

SA had lower morning Cortisol than WC 

Karlamangla 
[233] 

WC and Blacks Diurnal Salivary 
Cortisol 

Blacks had lower waking and peak Cortisol 
but higher nadirs (i.e., flatter cortisol rhythms) 
compared to WC  

Cohen [235] WC and Blacks Diurnal Salivary 
Cortisol 

Blacks had a flatter evening declines compared to WC 

Suglia [236] Blacks and 
Hispanics 

Diurnal Salivary 
Cortisol 

In Black but not Hispanic women, 
cumulative stress was associated with lower morning 

cortisol levels. 

Martin [237] WC, Blacks and 
Latinos 

Diurnal Salivary 
Cortisol 

Blacks have flatter morning-to evening 
cortisol slopes and Latinos have lower evening 
cortisol levels than WC 

7.2.7 Salivary cortisol  

Measuring total serum cortisol, as a measure of bioavailable cortisol is fraught with 

problems especially in conditions associated with alterations in CBG (eg pregnancy 

and contraceptive use) where there is a rise in both total cortisol and CBG. Free 

serum cortisol assays are rarely used in practice because of cost and complexity 

involved. Saliva provides a filtrate, free of CBG and salivary cortisol has been found 

to have a good correlation with free serum cortisol, irrespective of CBG variability 

(17). Hence salivary cortisol has been used recently as a surrogate for free serum 

cortisol [238]. In addition salivary cortisol is a non-invasive test, can be performed 

at home and does not include the stress of venae puncture. In pregnancy and 

oestrogen excess states salivary cortisone is thought be a better predictor of free 

circulating cortisol than salivary cortisol and is unaffected by changes in CBG [230, 

239]. 
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7.3 Hypothesis and research question 

 SA women have a higher cortisol exposure compared to WC in pregnancy  

 Higher cortisol exposure contributes to higher risk of GDM.  

7.4 Aims 

The main aim is to study the differences in cortisol exposure between SA and WC  

Secondary aims are to study the relationship between cortisol exposure and 

glycaemia of pregnancy 

7.5 Outcomes 

Primary outcome: 

Difference in waking and peak cortisol between SA and WC in early pregnancy. 

Secondary outcomes: 

1. Ethnic differences in AUC (Area under the Curve), CAR, decline, bedtime 

and 24-hour urinary cortisol and metabolites. 

2. Relationship of maternal cortisol indices with GDM risk 
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7.6 Methods: The PRiDE-HPA Clinical study 

7.6.1 Subjects 

This was a prospective cohort study of 100 pregnant women (50 SA and 50 WC), 

who were recruited from the ongoing, PRiDE (micronutrients in Pregnancy as a 

Risk factor for Diabetes and Effects on mother and baby) study.  SA include women 

of Indian, Sri-Lankan, Nepalese, Pakistani and Bangladeshi origin. The two ethnic 

groups were matched for age, smoking status and BMI. Women were recruited in 

early pregnancy (<12 weeks) and followed up until OGTT at 24-28 weeks. Data and 

samples were collected at each visit along with additional data available from the 

parent PRiDE study as outlined in the table 2 below. 

Table 2: Summary of clinical and biochemical data collected for the PRiDE-

HPA study 

 
 Data and samples collected  

Visit PRiDE study (available) PRiDE-HPA study  Analytes 

Recruitment 

(<12 weeks) 

Visit - 1 

History 

Questionnaires (quality of life, socio-economic, 
well-being, anxiety, depression, physical activity) 
Anthropometry Waist circumference, height, 
weight, skin fold thickness. 

24-hour urine 

Saliva (waking, 

30min, 16:00 and 

bedtime)  
 

 

Urine – 24-hour Cortisol 

excretion 
Saliva- Cortisol 
 

 OGTT (24-28 

weeks) 

Visit - 2 

Anthropometry  
Questionnaires  

Blood samples at 

30, 60, 90 min 

during OGTT 

Saliva as above 

Fasting and 120 min 
blood samples 
Saliva- Cortisol 
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7.6.2 Laboratory Analysis 

Salivary cortisol (SalF) and cortisone were estimated form the saliva samples by 

Mass Spectrometry at the University of Manchester. Techniques used were as 

described previously [240]. 

Urine glucocorticoid (GC) analysis was performed at the university of Edinburgh: 

Urine GC metabolites were quantified in 24-hour urine collections by gas 

chromatography electron impact tandem mass spectrometry following solid phase 

extraction hydrolysis of conjugates and formation of their methoxime-trimethylsilyl 

derivatives, as previously described previously [241].  

The list of metabolites include 

1. Urinary Free cortisol (F) 

2. Cortisol metabolites: 5β-tetrahydrocortisol (THF), 5α-tetrahydrocortisol (α-

THF), α-cortol, and β-cortol 

3. Free urinary Cortisone (E) 

4. Cortisone metabolites: tetrahydrocortisone (THE), α-cortolone, β-cortolone 

5. Total GC excretion: sum of all above  

Enzyme activity was measured as previously described [242]: 

1. F/E ratio:  11beta-hydroxysteroid-dehydrogenase-type 2 (HSD2) enzyme 

activity, which converts active cortisol into inactive cortisone 

2. α-THF / cortisol ratio: a measure of 5α-reductase activity, which converts 

cortisol to α-THF 

3. (THF+α-THF) / THE ratio: Whole body 11β-HSD1 and 11β-HSD2 activity 

7.6.3 Sample size calculations  

With no literature on salivary cortisol in SA in pregnancy, we used the accepted 

Cohen’s estimate of d>0.5SD as a clinically meaningful difference. A sample size of 
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100 (50 SA and 50 WC) would detect a difference of 0.6SD in both waking and 

peak cortisol between SA and WC with 80% power and 5% significance, allowing 

for 10% incomplete data. We however expect the difference to be much higher 

based on studies which showed the difference in waking SC between Hispanics and 

WC to be at least twice SD[59]. Another study measuring a difference in awakening 

and peak salivary cortisol between WC and non-WC also showed a difference of 

>2SD[233]. Our sample size would therefore have even greater power (>95 %) to 

detect a larger difference as seen in the above studies. 

7.6.4 Calculations and Statistical analysis 

Cortisol indices such as AUC, awakening, peak, CAR, early, late decline and bed 

time cortisol were calculated from SC. CAR is defined as the cortisol increase form 

awakening to 30 min, early decline as the decrease from 30 min to 16.00, late 

decline as the decrease from 16.00 to bed time. AUC was calculated using the linear 

trapezoid method using the formula AUC = Σ (½*(Ct1+Ct2)/(t1-t2)), where t1 and t2 

represent the two consecutive time points and C represents the concentration of 

cortisol or cortisone at the specific time point.  All indices were log transformed for 

all analysis. 

7.6.5 Minimizing Bias 

Age, BMI, waking time, and smoking status have been shown to affect cortisol 

levels. Therefore, adjustments were made for these covariates in all models.  

Student t test was performed to study differences in cortisol and cortisone at 

different time points and the differences in CAR, early decline and late decline.  

Linear multivariable regression was performed for all outcome measures after 

adjustment for aforementioned confounders. 
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 Primary outcome (differences in peak and waking cortisol between SA and 

WC): simple parametric student t-test and linear multivariate regression of 

peak and waking cortisol will be performed. 

 Secondary outcomes: 

1. AUC, CAR, early, late decline and bed time cortisol will be used as 

dependent variables with ethnicity as the independent variable after 

appropriate adjustment. 

2. Ethnic differences in Urinary GC metabolites 

3. Relationship between maternal glucose at OGTT and early pregnancy 

cortisol indicators 

Repeated measures ANOVA was performed to examine the differences in trend of 

diurnal salivary cortisol between the two groups 

7.6.6 Plan of investigation  

Participants for the current PRiDE-HPA study were recruited from the ongoing 

PRiDE study cohort. 

PRiDE Study  

Is a large, multicentre, MRC-funded prospective pregnancy cohort designed to 

recruit 4500 mothers in early pregnancy who have been identified to have a high risk 

of developing GDM according to the selective screening criteria. (Women must 

satisfy at least one of the following criteria: Obesity, previous history of GDM or 

unexplained still birth, 1
st
 degree relative with T2D, previous history of 

macrocosmic babies or ethnic minority origin i.e South-Asian, Middle –Eastern or 

Afro-Caribbean). The study is funded to test the hypothesis that early pregnancy 

vitamin B12, folate and homocysteine levels independently predict the risk of GDM 

in WC and SA. 



 

 

 

140 

 

PRiDE HPA study 

Inclusion: Pregnant women aged 18-45 years from the PRiDE cohort 

   Duration of pregnancy <16 weeks  

Exclusion: Pre-existing diabetes 

                 Ethnic groups other than SA or WC 

          Oral, inhaled or topical steroid use within last 3 months 

                 Multiple pregnancy 

Recruitment and study visits: 

Participant Identification 

 Eligible participants were identified in early pregnancy (<12 weeks) from 

dating scan clinics 

 Study explained and consent obtained 

Recruitment - Visit 1 

 History, anthropometry details obtained 

 Participants given salivettes for timed salivary collection and 24-hour urine 

collection bottles to return before 16 weeks 

 Further salivettes given for saliva collection between 24-28 weeks.  

 A mobile-phone text reminder system was used to alert women for saliva 

collection one day prior to sample collection date. Women were asked to 

record the exact time of waking and saliva collection. 

OGTT - Visit 2 (24-28 weeks) 

 Anthropometry, history, saliva and blood samples are obtained 
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7.7 Results 

7.7.1 Differences in Salivary cortisol and metabolites – Unadjusted analysis 

Table 3 shows the baseline characteristics of the women in SA and WC groups. 

Apart from differences in anthropometry, both groups were similar with respect to 

age, glycaemia and gestational age at recruitment. Despite significant differences in 

BMI, and abdominal circumference, SA had similar measures of subcutaneous 

adiposity at both triceps and subscapular skin folds. 

Table 3: Baseline characteristics of women in PRiDE-HPA study in SA and 

WC 

 
 WC: Mean (SD) SA: Mean (SD) P  

Age in years 29.52 (5.19) 30.58 (5.49) 0.332 

Gestational age at recruitment  13.08 (2.32) 13.69 (1.56) 0.128 

Height cm 164. (7.41) 158.98 (5.65) <0.0001 

Waist circumference cm 101.20 (15.97) 86.29 (10.35) <0.0001 

Skin fold thickness (triceps) mm 25.23 (7.41) 23.35 (7.01) 0.201 

Skin fold thickness (subscapular)mm 28.07 (9.45) 25.17 (9.03) 0.127 

BMI kg/cm2 29.89 (6.95) 24.56 (3.97) <0.0001 

FPG mmol/l 4.36 (0.34) 4.40 (0.51) 0.786 

2hPG mmol/l 5.72 (1.02) 6.09 (1.18) 0.238 

Smokers n (%) 3 (6.4%) 0  0.055 

Table 3 depicts the differences in baseline characteristics between SA and WC. 

Table 4 and 5 show differences in diurnal cortisol and cortisone patterns in the 

saliva. In the unadjusted analysis, SA had similar salivary cortisol and cortisone 

levels despite having significantly lower BMI than WC. CAR of cortisone tended to 

be higher in SA compared to WC with p=0.059.  
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Table 4: Ethnic differences in salivary cortisol  
 WC: Mean (SD) SA: Mean (SD) p 

Cortisol Waking (nmol/l) 8.43 (4.95)  7.68 (4.12) 0.342 

Cortisol @30min (nmol/l) 9.19 (5.4) 8.90 (4.97) 0.946 

Cortisol@4pm (nmol/l) 3.53 (6.53) 2.53 (1.32) 0.983 

Cortisol@Bed (nmol/l) 2.77 (5.18) 2.21 (4.66) 0.651 

CAR Cortisol (nmol/l) 1.51 (4.11) 1.17 (4.29) 0.932 

Early decline Cortisol (nmol/l) 6.45 (4.63) 6.47 (4.21) 0575 

Late-decline Cortisol (nmol/l) 0.56 (3.2) 0.39 (3.09) 0.751 

AUC Cortisol (nmol/l) 249478.84 (203474.01) 229951.48 (126043.62) 0.91 

Table 4 shows the salivary cortisol at different time points along with CAR, decline and AUC. p 

values indicates difference in log10(cortisol) using the student t test. 

 

Table 5: Ethnic differences in salivary cortisone  
Cortisol metabolites (nmol/l) WC: Mean (SD) SA: Mean (SD) p 

Cortisone Waking  29.42 (10.77) 28.35 (8.65) 0.658 

Cortisone (30min) 32.91 (12.19) 35.62 (12.99) 0.254 

Cortisone (4pm) 14.84 (7.84) 14.97 (5.48) 0.743 

Cortisone (Bed) 10.68 (9.82) 9.04 (4.43) 0.838 

CAR Cortisone  3.49 (12.39) 7.29 (12.03) 0.059 

Early decline Cortisone  17.51 (11.63) 20.73 (14.07) 0.582 

Late decline Cortisone  4.67 (8.30) 5.73 (8.17) 0.959 

AUC Cortisone  1,023,217.21 (492669.7) 1,028,613.5 (294076.2) 0.514 

salE/salF waking 3.98 (1.21) 4.27 (1.51) 0.316 

salE/salF @30 min 4.16 (1.27) 4.54 (1.37 0.176 

salE/salF @ 4pm 6.60 (1.97) 6.58 (2.06) 0.962 

salE/salF @ bedtime 5.79 (1.83) 6.33 (2.21) 0.207 

Table shows the salivary cortisone at different time points along with CAR, decline and AUC. p 

values indicates difference in log10(cortisone) using the student t test. SalE = salivary cortisone, SalF 

= salivary cortisol 

 

Analysis of the diurnal trends of Cortisol and Cortisone between the 2 ethnic groups 

is shown in Fig 4 & 5. A repeated measures or Mixed between subjects ANOVA 

was conducted for both cortisone and cortisol between SA and WC ethnicities. In 

line with previous results there was no significant interaction between ethnicity and 

time or independent effect of ethnicity on either of the two analytes. 
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Figure 4: Diurnal trends of cortisone in SA and WC 

 

 

 

 

Figure 5: Diurnal trends of cortisol in SA and WC 

 

 

7.7.2 Adjusted analysis 

To account for the significant differences in maternal characteristics between the 

two ethnic groups, linear regression was conducted after adjustment for covariates 

such as gestational age, maternal age, maternal age, smoking, waking time and BMI 

(Table 6). SA had significantly higher CAR of cortisone compared to WC after 

adjustment for the above characteristics. Similar analysis of salivary cortisone: 

cortisol ratio (which could be regarded as a surrogate of HSD2 activity in the saliva) 

 A mixed between subjects ANOVA (repeated 

measures) was performed for log cortisone at 4 time 

points for SA and WC 

 There was no significant interaction between ethnicity 

and time: Wilks’ Lambda = 0.965, F (3, 81) = 0.967, 

p=0.413.  

 There was a significant main effect for time: Wilks’ 
Lambda = 0.108, F (3, 81) = 223.43, p < 0.0001, 

partial eta squared = 0.892 (large effect size), with 

both ethnic groups showing a significant change in 

cortisone across all 4 time points.  

 The main effect comparing the two ethnic groups was 

not significant, F (1, 83) = 2.710, p = 0.103, partial eta 

squared =0 .032, suggesting no difference in cortisone 

between SA and WC. 

 

 A mixed between subjects ANOVA (repeated measures) 

was performed for log cortisol at 4 time points for SA 

and WC 

 There was no significant interaction between ethnicity 

and time, Wilks’ Lambda = 0.964, F (3, 81) = 1.007, 

p=0.394.  

 There was a significant main effect for time, Wilks’ 

Lambda = .116, F (3, 81) = 205.652, p < 0.0001, partial 
eta squared = 0.884, with both ethnic groups showing a 

significant change in cortisone across all 4 time points.  

 The main effect comparing the two ethnic groups was 

not significant, F (1, 83) = 0.079, p = 0.779, partial eta 

squared =0 .001, suggesting no difference in cortisone 

between SA and WC. 
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showed significantly higher ratio at 30 min in SA compared to WC after adjustment 

for BMI. (table 7) 

Linear regression analysis of other cortisol and cortisone variables did not yield 

significant ethnic differences. 

Table 6: Relationship between Ethnicity and CAR (Cortisone) 
 Log CAR (Cortisone) 

 (β coefficient (95% CI)) 

Model 1 0.272(-0.11, 0.55), p=0.059  

Model 2 0.27 (-0.39, 0.58), p=0.086 

Model 3 0.401 (0.031, 0.771), p=0.034 

Multivariable linear regression analysis using CAR (Cortisone) as dependent variable and ethnicity as 

a independent variable and addition of covariates as below. 

Model 1: Ethnicity only (0 = WC, 1 = Asian) 
Model 2: Ethnicity + gestational age + waking time + smoking 

Model 3: Model 2 + BMI 

 

Table 7: Association between peak cortisone: cortisol ratio and ethnicity 
 Log (cortisone: cortisol  @30 min) 

 (β coefficient (95% CI)) 

Model 1 β = 0.037, p=0.169 

Model 2 β =0.058, p=0.051 

Model 3 β =0.067, p=0.039 

Multivariable linear regression analysis using Cortisone : Cortisol ratio as dependent variable and 

ethnicity as a independent variable and addition of covariates as below. 

Model 1: Ethnicity only (0 = WC, 1 = Asian), Model 2: Ethnicity + gestational age + waking time 
Model 3: Model 2 + BMI 

 

Further analysis to study the relationship between glycaemia and cortisol 

metabolites showed that both waking and peak cortisone in early pregnancy were 

independent predictors of fasting plasma glucose at OGTT even after adjustment for 

all covariates as shown in table 8. No other cortisol indices were associated with 

glycaemia. 
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Table 8:  Associations of cortisone with fasting plasma glucose at OGTT 
 Cortisone at waking 

 (log cortisone waking)  
Cortisone peak 

(log cortisone @30min) 

 (β coefficient (95% CI)) 

Model 1 0.718 (-0.3, 1.7), p= 0.162 0.389 (-0.119, 0.898), p=0.13 

Model 2 1.459 (0.431, 2.487), p=0.006 0.468 (-0.35, 0.970), p=0.067 

Model 3 1.469 (0.256, 2.681), p=0.019 0.591 (0.04, 1.13), p=0.035 

Multivariable linear regression analysis using waking and peak cortisone as dependent variables and 

fasting plasma glucose as independent variable and adjustment for covariates as below.  

Model 1: Waking time and gestational age only 

Model 2: Waking time + gestational age + ethnicity + age 

Model 3: Model 2 + BMI 

7.7.3 Differences in Urinary cortisol and its metabolites 

Table 9 shows differences in urinary cortisol metabolites between SA and WC. 

Total urinary cortisol, cortisone, total GC metabolites were not different between SA 

and WC. Multivariable linear regression was performed for using cortisol 

metabolites as dependent variables and ethnicity as an independent variable and 

adjusting for covariates such as gestational age at sample collection, maternal age, 

BMI and smoking (table 10). SA had significantly higher HSD2, lower 5α-reductase 

activity, and lower total HSD activity compared to WC. The differences in urinary 

cortisone and 5α-reductase activity were not significant on adjustment for maternal 

age, and BMI respectively. There were no significant differences in any of the other 

cortisol metabolites between the ethnic groups.  

BMI appeared to be a significant predictor of total GC excretion (table 11) but no 

significant relation was seen between BMI and other cortisol metabolites like F, E, 

F:E ratio or 5α-reductase activity either in unadjusted or adjusted models. On 

repeating the analysis in the two ethnic groups separately, BMI did not predict total 

GC excretion in SA. (p=0.196) after adjustment for maternal age and gestational 

age. In WC this relationship remained significant (p=0.02) after adjustment. Other 
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measures of adiposity, especially abdominal circumferences and skin fold thickness 

were stronger predictors of urinary GC excretion (table 12) in SA compared to WC. 
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Table 9: Ethnic differences in urinary cortisol metabolites and enzyme activity 

Student t test performed for log-transformed variables.  
p indicates difference in log transformed variables 

 

Table 10: Relationship between Ethnicity and urinary cortisol metabolites 

Multivariable linear regression using cortisol metabolites or enzyme activity as dependent variable 

and ethnicity as an independent variable after adjustment for below mentioned variables. 

Model 1: Ethnicity + gestational age (WC = reference category), Model 2: Model 1 + age + smoking 

Model 3: Model 2 + BMI 

 

Table 11: Relationship between BMI and cortisol metabolites in the whole 

group: 

Multivariable linear regression, using total GC excretion as dependent variable and BMI as 

independent variable after adjustment for other variables as shown below. Model 1: BMI only  

Model 2: BMI + age+ ethnicity + gestational age at urine test (WC reference category) 

 

Table 12: Relationship between urinary GC excretion and measures of 

adiposity in the two ethnic groups 

Multivariable linear regression, using total GC excretion as dependent variable and measures of 

adiposity as independent variables after adjustment for gestational age and maternal age and 

smoking. Table shows that measures of adiposity such as skin fold thickness and abdominal 

circumference were better predictors of urinary GC excretion than BMI in SA.  

Cortisol metabolites in ug/day WC: Mean (SD) SA: Mean (SD) p  

Cortisol (F) 197.35 (114.09) 194.84 (102.89) 0.889 

Cortisone (E) 135.70 (83.78) 160.58 (81.05) 0.074 

Total GC metabolites  6778.01(4742.71) 6369.62 (4149.74) 0.794 

F: E (HSD2) 1.54 (0.59) 1.29 (0.51) 0.016 

αTHF: F (5α-reductase) 1.69 (0.93) 1.24 (0.62) 0.019 

(THF+ αTHF): THE (whole body HSD1+HSD2) 0.73 (0.31) 0.59 (0.49) <0.002 

 24 hour Cortisone F: E  Ratio  5α-reductase 

activity 

Total body HSD  

 (β coefficient (95% CI)) 

Model 1 0.093 (0.002, 0.184), 
p=0.045 

-0.089 (-0.151, -
0.027), p=0.005 

-0.157 (-0.295, -
0.018), p=0.027 

-0.112 (-0.183, -
0.041), p=0.002 

Model 2 0.081 (-0.009, 0.170), 
p=0.078 

-0.079 (-0.139, -
0.019) 
p=0.010 

-0.177 (-0.317, -
0.038), p=0.013 

-0.112 (-0.185, -
0.039), p=0.003 

Model 3 0.092 (-0.10, 0.193), 
p=0.076 

-0.069 (-0.137, -
0.002), p=0.045 

-0.154 (-
0.321,0.014), 
p=0.071 

-0.162 (-0.230, -
0.094), p<0.0001 

 Total GC excretion (log)  (β coefficient (CI)) 

Model 1  0.012 (0.003, 0.021), p=0.009 

Model 2  0.014 (0.004, 0.024), p=0.005 

 SA (β coefficient (95% CI)) WC  (β coefficient (95% CI)) 

BMI 0.011(-0.006, 0.027), p=0.196 0.016 (0.003, 0.029), p=0.020 

Triceps skin fold thickness 0.012 (0.000, 0.023), p=0.044 0.011 (0.000, 0.022), p=0.047 

Subscapular thickness 0.009 (0.001, 0.018), p=0.038 0.004 (-0.005, 0.013), p=0.329 

Abdominal circumference 0.010 (0.003, 0.017), p=0.005 0.005 (0.000, 0.010), p=0.063 
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7.8 Discussion 

This study was the first to examine differences in cortisol secretion patterns (with 

diurnal salivary cortisol) and cortisol clearance (urinary cortisol) between SA and 

WC women. Our study examined these differences in a high-risk population in early 

pregnancy. 

7.8.1 Diurnal Salivary cortisol patterns 

In the initial unadjusted analysis, we found that despite having significantly lower 

BMI, SA did not differ with respect to cortisol levels either at awakening, peak, 4 

pm or bed-time from WC indicating that leaner SA had similar HPA activity to 

more overweight WC. Studies in WC have indicated that BMI is inversely related 

with awakening cortisol and AUC of cortisol [227, 243]. Studies in pregnant WC 

showed that obese women had significantly lower salivary cortisol at all time points 

compared to lean controls. Despite having significantly lower BMI it was intriguing 

that SA had similar cortisol secretion and diurnal pattern as WC. However, it was 

seen in our study that despite BMI differences, SA had similar measures of adiposity 

to WC as measured by skin fold thickness. It is also well known that SA have 

greater degrees of adiposity at similar BMI when compared to WC [244]. Therefore 

is likely that this relationship between cortisol and obesity are mediated by adiposity 

rather than BMI in SA.  

After adjustment for BMI differences SA were shown to have a significantly greater 

CAR than WC. A higher CAR in SA could be regarded as a clinical predictor of 

adverse metabolic risk in line with previous observation that has shown an increased 

CAR in women with metabolic syndrome. However, the significance of CAR in 

relation to metabolic risk in pre-diabetes states such as metabolic syndrome, insulin 

resistance and obesity is still unclear. While some studies show a an increased CAR 



 

 

 

149 

 

in women with metabolic syndrome, others have shown a blunting of CAR in 

insulin resistant adolescents [245], and still others have found no association 

between CAR and metabolic syndrome or BMI [56] [227]. Bengtsson [228] also 

showed that the increase in CAR with metabolic syndrome was only seen in women 

but not in men. This lack of association between CAR and metabolic syndrome in 

the latter studies could hence be a result of a significant proportion of men in both 

studies.  

Secondly, it was also seen that both waking cortisone and peak cortisone in early 

pregnancy was closely associated with fasting plasma glucose in later pregnancy and 

hence could be used as an early first trimester predictor of GDM. Only one other 

study examined the association between cortisol and hyper glycaemia in pregnancy 

[229] and showed higher am cortisol in women with GDM. Our results confirm this 

previous finding using salivary cortisone results and extend this relationship to 

women without GDM. 

It is important to note that all our above results were seen only with respect to 

salivary cortisone but not with cortisol. As previously explained it has been shown 

that salivary cortisone but not cortisol was a better marker of free serum cortisol in 

pregnancy [230] and other states associated with high CBG levels [239]. Therefore, 

our results with respect to salivary cortisone could be extrapolated to free serum 

cortisol, and indicate that the HPA activity, i.e hypercortisolemia is closely related 

to glycaemia in pregnancy.  

7.8.2 Urinary clearance of cortisol and its metabolites 

We did not observe any significant differences in urinary excretion of cortisol or its 

metabolites between SA and WC, despite significant BMI differences. It is well 

known that urinary GC excretion increases with obesity [219, 246, 247] and in those 
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with metabolic syndrome [248], however again contrary to this observation, leaner 

SA exhibited similar urinary GC excretion as overweight WC.  

However, when this relationship was assessed separately in the two ethnic groups, 

BMI did not predict urinary GC excretion in SA. Other measures of adiposity, 

particularly the subscapular skin-fold thickness, which can be regarded, as a marker 

of central adiposity, was a significant predictor of urinary GC excretion in SA but 

not WC (table 10). Our results are supported by other observations that showed that 

central fat distribution was more closely linked to cortisol excretion rates than those 

with peripheral adiposity [219, 249, 250].  

SA appear to have increased urinary clearance of Cortisone and increased HSD2 

activity as indicated by reduced urinary F:E ratio compared to WC. The significance 

of this is unclear. It has been shown that both the expression and activity of renal 

HSD2 were increased in rodent models of obesity [251]. This was also observed in 

humans with extreme obesity who had marked elevated renal HSD2 activity 

compared to lean controls [252]. It appears that SA despite their lower BMIs have 

similar metabolic clearance of cortisol to more overweight WC women, again 

reemphasising the possible overriding role of adiposity despite lower BMI in SA. 

It must be remembered that the estimated HSD2 activity from the urinary cortisol 

metabolites represents not only renal HSD2 activity but also placental HSD2 

activity. There is evidence to show that placental HSD2 is up regulated and HSD1 is 

down regulated in the placenta of women with GDM compared to controls [229]. It 

is possible that a similar picture was seen in SA in early pregnancy given their 

higher degrees of glucose intolerance. 

The significance of reduced 5α-Reductase activity in SA is unclear. 5α-Reductase 

has an important role in the clearance of cortisol and 5α-Reduced steroids 
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compromise about a third to a half of all urinary cortisol metabolites [242]. Two 

isoforms of this enzyme have been detected i.e 5α-Reductase type 1 (5αR1) - mainly 

present in the liver, adipose tissue and skeletal muscle and type 2(5αR2) - mainly 

present in the male reproductive tract and to a small extent in the liver [253-256]. 

Recent evidence in rodents show that reduced 5αR1 activity was associated with 

hepatic steatosis, weight gain and hyperinsulinemia[257]. This finding was further 

confirmed in humans where 5αR blockade with duasteride for 3 months was 

associated with reduced insulin sensitivity and increased body fat by 1.6%[258]. It is 

possible that reduced 5α-Reductase Type 1 activity could potentially be one of the 

mechanisms for increased adiposity and higher insulin resistance seen in SA. 

In conclusion our study is the first to examine and report novel differences in HPA 

activity and GC excretion between SA and WC, and the relationship between early 

pregnancy HPA activity and glycaemia in later pregnancy. SA had a significantly 

greater awakening response than WC and a more enhanced conversion of cortisol to 

cortisone because of increased renal HSD2 activity and reduced conversion to 5α-

Reduced steroids due to reduced 5α-Reductase activity. Importantly our study also 

re-emphasises the close relationship between adiposity and the GC excretion in SA, 

reiterating the poor applicability of BMI in studying metabolic risk in SA. Early 

pregnancy cortisone independently predicted glycaemia in later pregnancy. 

Since these observations were in early pregnancy it can be postulated that similar 

patterns could be seen in the pre-pregnant state as well. However larger prospective 

studies are needed in both the pregnant and non-pregnant population to examine the 

differences in diurnal cortisol pattern in relation to higher metabolic risk in SA. 
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7.9 Future Directions 

 Study the relationship between salivary cortisol metabolites and insulin 

sensitivity and HOMA-IR at GTT  

 Further follow up studies to examine the relationship between cortisol and 

offspring outcome i.e. adiposity and BW 

 Estimation of placental HSD2 activity in SA and WC to measure placental 

clearance of maternal cortisol and fetal exposure to cortisol 

 Larger prospective randomised trials to study the utility of using waking 

salivary cortisone as a diagnostic tool for GDM 
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8 Conclusion and summary 

In summary, this research addresses important gaps in the diagnosis and follows up 

of GDM, effect of GDM on fetal growth and birth weight and explores a potential 

mechanism for the increased risk of GDM in SA and WC. The following are the key 

findings of our research. 

 The new IADPSG criterion for GDM is equally applicable in both SA and 

WC and is more likely to detect obese women with mild fasting 

abnormalities. The real benefit of treating mild GDM in these women is not 

well established. After accounting for BMI differences between SA and WC, 

it is likely that the IADPSG criteria will identify more SA than the previous 

mWHO-1999 criteria.  

 The uptake of post-natal screening by OGTT is poor overall with no 

significant ethnic differences. Post-natal screening rates increase 

significantly with using postnatal HbA1c. SA are more likely to attend 

postnatal screening by HbA1c than WC. Using FPG during the postnatal 

period to detect persisting abnormalities fails to detect IGT and diabetes in 

both SA and WC, however non-WC ethnic minority groups are more likely 

to be missed out by using FPG.  

 Maternal diabetes increases offspring BW in both SA and WC. However it 

appears that the magnitude of this increase in BW with maternal diabetes is 

not uniform across ethnic groups with SA having a significantly smaller 

increase in offspring BW compared to WC. This calls for the consideration 

of ethnicity specific glycaemic targets in pregnancy, and more studies on 

adverse fetal outcome in SA. 



 

 

 

154 

 

 SA and WC have different fetal growth patterns in GDM. Despite having 

higher levels of glycaemia at diagnosis of GDM, SA offspring display 

patterns of disproportionate fetal growth with patterns of fetal growth 

restriction, i.e. having smaller abdominal circumference but similar skeletal 

growth parameters such as Head Circumference and Femur Length. Standard 

intensive insulin regimens may need to be revisited and ethnic tailored 

glycaemic targets may need to be considered. 

 GDM is associated with disproportionate fetal growth. Fetuses of SA 

mothers with GDM display increased abdominal adiposity as early as 20 

weeks gestation, along with evidence of smaller overall size with reduced 

AC, HC and FL. Anterior abdominal wall thickness could be used as an early 

marker of GDM even prior to biochemical diagnosis of GDM. Larger studies 

are needed in other ethnic groups, to study the effects of treatment, i.e insulin 

and metformin on fetal growth and the long-term metabolic risk of these 

offspring. 

 There are distinct differences in HPA activity and cortisol clearance between 

SA and WC in early pregnancy. SA have a significantly greater awakening 

response than WC, a more enhanced conversion of cortisol to cortisone 

because of increased renal HSD2 activity and reduced conversion to 5α-

Reduced steroids due to reduced 5α-Reductase activity. Early pregnancy 

waking salivary cortisone was an independent predictor of glycaemia in later 

pregnancy and could be used as an early predictor of GDM. It is possible that 

differences in the HPA activity and cortisol clearance could in part explain 

the higher risk of GDM and overall metabolic risk in SA. 
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 Postnatal testing following gestational diabetes: time to 
replace the oral glucose tolerance test?

Gestational diabetes is associated with up to an 
eight times increase in risk of future type 2 diabetes: 
the incidence of type 2 diabetes is 3–24% in the fi rst 
year postpartum and up to 50% in the fi rst 5 years.1 
Therefore, postnatal testing for these women provides 
a crucial opportunity for the early detection of diabetes, 
intervention, and preconceptional care in subsequent 
pregnancies. Despite this evidence, uptake of postnatal 
testing for diabetes is poor, with only 23–58% of women 
with gestational diabetes attending the oral glucose 
tolerance test (OGTT)2—a sharp contrast with the uptake 
of postnatal cervical screening (94%) and antenatal 
gestational diabetes screening (98%).3

Despite this, most international guidelines,4 including 
those of the Fifth International Workshop Conference on 
Gestational Diabetes, the American Diabetes Association 
(ADA), the Canadian Diabetes Association, and the 
Australasian Diabetes in Pregnancy Society continue 
to recommend postnatal OGTT. However, in 2015, the 
National Institute of Health and Care Excellence (NICE) 
recommended either a fasting plasma glucose (FPG) or 
HbA1c test rather than OGTT for postpartum screening.5 

We collected contemporary data from 14 477 women 
who attended antenatal OGTT during 2009–12 across 
three UK centres. The appendix contains a summary 
of our methods. Our results further support the need 
to investigate alternatives to OGTT. Of 1289 (9%) 
women diagnosed with gestational diabetes, only 
630 (49%) attended a postnatal OGTT. Furthermore, 
non-attenders were more likely to have increased 
metabolic risk (table), because multiparity (odds ratio 
1·80, 95% CI 1·24–2·58), smoking (2·80, 1·58–4·97), 
and macrosomia (2·52, 1·46–4·34) were independent 
predictors of non-attendance at postnatal OGTT 
after adjustment for maternal BMI, age, glucose 
concentrations at antenatal OGTT, gestational age, and 
off spring sex. Other studies6 have reported that women 
who did not attend postnatal OGTT were more likely to 
have had worse glycaemic control and needed insulin 
during pregnancy than were those who attended. Our 
fi ndings, combined with previous evidence, suggest 
that women who do not attend a postnatal OGTT 
are at increased risk for subsequent type 2 diabetes. 

We also analysed preliminary data from one of our 
centres that subsequently adopted HbA1c for postnatal 
testing in gestational diabetes from December 2013 to 
assess HbA1c uptake. Of 348 women with gestational 
diabetes, 217 (62·4%) women attended HbA1c 
testing, representing an increase of 28% (p<0·0001) 
compared with OGTT at that centre. Reassuringly, 
risk characteristics did not diff er between those who 
attended and failed to attend HbA1c tests (unlike OGTT), 
suggesting increased uptake of HbA1c by women at high 
risk of type 2 diabetes postpartum. 

Barriers to postnatal screening for persisting glucose 
abnormalities after gestational diabetes mellitus have 
not been studied extensively. The inconvenience of 
OGTT and time pressures were the most commonly 
cited reasons for non-attendance in patient surveys.7 
FPG tests have been recommended as a simpler and 
cheaper alternative to OGTT. However, FPG requires 
fasting, is restricted to mornings, and might especially 
inconvenience mothers with young children. The 
alternative is a non-fasting HbA1c test. 

Both ADA and NICE recommend HbA1c for the 
diagnosis of diabetes in high-risk non-pregnant 
adults without symptoms8 and for preconception risk 
stratifi cation of women with pre-existing diabetes.9 
Studies10 to assess the role of HbA1c in the postpartum 

Did attend 
(n=630)

Did not attend 
(n=659)

p value

Age (years) 32·3 (5·2) 31·6 (5·7) 0·016

BMI (at booking) 29·6 (6·6) 29·6 (7·2) 0·974

Antenatal FPG (mmol/L) 5·0 (1·0) 5·1 (1·1) 0·106

Antenatal 2 h PG (mmol/L) 9·0 (1·6) 8·8 (1·9) 0·032

Smokers 19/390 (5%) 51/369 (14%) <0·0001

Ethnic origin ·· ·· 0·705

South Asian 174/627 
(28%)

175/654 (27%) ··

White British 404/627 
(64%)

435/654 (66%) ··

Other 49/627 (8%) 44/654 (7%) ··

Multiparity (≥2) 82/391(21%) 118/370 (32%) 0·001

Macrosomia (>4 kg) 23/391 (6%) 47/366 (13%) 0·001

Data are mean (SD) or n/N (%). FPG=fasting plasma glucose. PG=plasma glucose.

Table: Characteristics of women who attended and did not attend 
postnatal oral glucose tolerance tests 
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period have reported poor sensitivity of an isolated 
HbA1c test.10 However, these studies compared 
the performance of HbA1c against OGTT with the 
assumption that the OGTT is the gold standard. This 
assumption is fl awed, as we have previously described 
for the non-pregnant population.11 Although HbA1c and 
OGTT do not necessarily detect the same individuals, the 
best available data show FPG and HbA1c to be superior 
to OGTT in signalling the onset of microvascular 
risk.12,13 Therefore, it is conceivable that FPG and HbA1c 
are better choices than OGTT for the screening of 
women for undiagnosed diabetes in the postpartum 
period. Although HbA1c and FPG have poor sensitivity 
to detect impaired glucose tolerance, the existing 
recommendations state that all women with gestational 
diabetes, irrespective of postnatal glycaemic status, 
should be off ered the same lifestyle intervention as 
those with impaired glucose tolerance.14 Nevertheless, 
the new NICE guidance5 also recommends a wide 
postnatal (measured after 13 weeks) HbA1c window of 
5·7% to 6·4% (39 to 47 mmol/mol) to defi ne women 
at further increased risk of diabetes, at which more 
intensive interventions should be off ered than that 
off ered to other women with gestational diabetes.5 

Another aim of postnatal testing is to detect 
undiagnosed diabetes before subsequent pregnancies, 
thus enabling provision of the best preconception care 
to reduce risk to off spring. Evidence suggests that a 
log-linear relationship exists between preconception 
HbA1c and fetal risk of congenital anomalies, with the 
highest risk for HbA1c well into the diabetes range.15 
Furthermore, all women with previous gestational 
diabetes are off ered early testing for glucose intolerance 
in subsequent pregnancies worldwide, irrespective of 

their postnatal glycaemic status. Therefore, a postnatal 
HbA1c test also serves as a valuable preconception risk 
stratifi cation tool for subsequent pregnancies.

HbA1c can be done at any time of the day, at the 
patient’s home, in the non-fasting state, has higher pre-
analytical stability and a lower coeffi  cient of variation 
than does OGTT, and is far easier to repeat. The other 
advantages of HbA1c compared with OGTT include its 
established use in diabetes monitoring, and availability 
of point-of-care testing, especially in resource-limited 
settings where remote laboratory facilities increase 
time delays before analysis can be done. Studies10 
to compare the performance of postpartum OGTT 
with HbA1c have used HbA1c at 3 months postpartum; 
however, more research is needed to assess the eff ects 
of volume shifts in pregnancy and postpartum anaemia 
on HbA1c and advise the optimum timing of the test. 
Notably, however, the lowest postnatal HbA1c threshold 
(5·7% [39 mmol/mol]) recommended by NICE to 
detect women at high risk of diabetes is lower than 
that recommended for the general population (6·0% 
[42 mmol/mol]) to potentially account for any issues 
linked to red cell turnover at this stage. 

In summary, the existing reliance on OGTT to screen 
for type 2 diabetes after gestational diabetes needs to 
be reassessed. OGTT has inadequate uptake, especially 
by women at highest risk. More studies are needed to 
assess whether changing to HbA1c will indeed improve 
uptake in such high-risk women and to assess its cost-
eff ectiveness, but preliminary data are encouraging. 
We believe that changing to a non-fasting HbA1c test 
will improve screening for long-term outcomes that 
matter for postpartum women, and that such changes 
are highly unlikely to adversely aff ect subsequent 
pregnancy outcomes. In fact, HbA1c tests might even 
improve prediction of such outcomes. The new NICE 
guidelines that recommend either an FPG or HbA1c test 
in the postpartum period are a step forward in the care 
of women at high risk of type 2 diabetes and should be 
welcomed by physicians and patients alike worldwide. 
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diabetes in the DPP did not have 
isolated impaired glucose tolerance. 
Their mean HbA1c was 5·87% (SD 0·5) 
and 95% had FPG of 4·9–6·9 mmol/L. 
The mean interval from diagnosis of 
gestational diabetes to intervention 
was 12 years. Therefore, in view of the 
substantial overlap between impaired 
glucose tolerance, impaired fasting 
glucose, and prediabetes by HbA1c 
criteria, evidence from the DPP study 
cannot be directly extrapolated as 
evidence for intervention benefi t for 
impaired glucose tolerance alone in 
the immediate postpartum period.

In conclusion, we believe that the 
one-step postnatal HbA1c or FPG tests 
can be used to risk stratify and detect 
women at increased risk postpartum 
who would benefit from intensive 
intervention for type 2 diabetes 
prevention. 
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The authors argue that the main 
reason to do an OGTT is to detect 
patients with impaired glucose 
tolerance—a subgroup with a high 
risk of progression to type 2 diabetes 
that could merit early intervention. 
We wish to reiterate that persevering 
with the more complex and time-
consuming postnatal OGTT has no 
clinical justifi cation for the following 
reasons. 

First, although impaired glucose 
tolerance (defined on the basis of 
an OGTT) is thought to be a better 
predictor of risk of future type 2 
diabetes than fasting plasma glucose 
(FPG) or HbA1c tests, diagnosis of 
diabetes should be based on glycaemic 
thresholds commensurate with 
increased risk of adverse outcomes 
(such as microvascular complications). 
Evidence suggests that HbA1c and 
FPG tests are better than an OGTT at 
signalling the onset of retinopathy.1,2 
Thus the OGTT defi nition of diabetes 
cannot be regarded as the gold 
standard.3

Second, the American Diabetes 
Association (ADA) guidance cited 
by Noctor and Dunne recommends 
lifestyle intervention or metformin 
not only for individuals with impaired 
glucose tolerance, but also for those 
with other glucose abnormalities 
including impaired fasting glucose 
or abnormal HbA1c (5·7–6·4%) after 
gestational diabetes.4 UK National 
Institute for Health and Care (NICE) 
guidance for prevention of type 2 
diabetes recommends only FPG or 
HbA1c tests for risk stratifi cation and 
intervention in individuals at high risk 
(eg, previous gestational diabetes).5 
Thus, postnatal risk stratification 
and intervention to prevent future 
diabetes can be done using HbA1c or 
FPG as well.

Third, the Diabetes Prevention 
Program (DPP)6 is often cited as 
interventional evidence to justify 
the need for detection of impaired 
glucose tolerance after gestational 
diabetes; however, this warrants closer 
inspection. Women with gestational 

recommendations to women with 
previous gestational diabetes and 
normal glucose tolerance, because 
they have been shown to benefi t from 
lifestyle intervention or metformin 
therapy.3

Most international guidelines are 
correct in recommending that women 
undergo a 75 g OGTT in the early 
postpartum period, and we believe 
that this test should not be substituted 
with other tests that have proven to 
be less sensitive. Rather, efforts to 
increase the uptake of postpartum 
testing with OGTT might be more 
suitable. Indeed, implementation 
of such a programme in our group 
resulted in a postpartum testing rate 
of 77% among women diagnosed with 
gestational diabetes.4
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Abstract

Background: Metformin, a standard therapy in type 2 diabetes, reduces vitamin B12 levels. Studies linking low
vitamin B12 levels and cardiovascular disease are equivocal and suggest improving B12 levels may help in primary
prevention. The role of vitamin B12 deficiency on cardiovascular risk factors, especially in type 2 diabetes has not
been explored. The aim of this study is to investigate whether vitamin B12 deficiency in type 2 diabetes patients is
associated with cardiovascular risk factors in two different ethnic groups in UK and India.

Methods: Type 2 diabetes patients from two secondary care diabetic centres (Europeans - UK and Indians - India)
were studied. Serum vitamin B12, folate and biochemical parameters were measured.

Results: The prevalence rates of vitamin B12 deficiency (<191 ng/L) were 27% and 12% in Europeans and Indians,
respectively and higher in metformin treated type 2 diabetes patients. In linear regression analysis, after adjusting
for all likely confounding factors, vitamin B12 independently associated with triglycerides in both the populations
and cholesterol/HDL ratio in Indians. Logistic regression showed type 2 diabetes patients with vitamin B12
deficiency were at significantly higher odds of having coexisting coronary artery disease (CAD) in Europeans with
similar but non-significant trend in Indians, after adjusting for all likely confounding factors.

Conclusions: The prevalence of vitamin B12 deficiency is common in type 2 diabetes patients and is associated
with adverse lipid parameters. Type 2 diabetes management guidelines should include the recommendation for
regular testing for B12 levels, especially for those on metformin.

Introduction
Vitamin B12 is a key micronutrient responsible for DNA
methylation and has various metabolic roles ranging from
lipid metabolism to endothelial dysfunction [1]. Studies
show association of low vitamin B12 with macro-vascular
diseases such as myocardial infarction [2] and cerebral is-
chemia [3] as well as coronary artery disease (CAD) [4].
However, a systematic review of all published cohort stud-
ies was inconclusive [5]. B12 deficiency causes micro-

vascular complications such as neuropathy [6] and can
worsen the existing neuropathy due to other conditions
such as diabetes [7].
Metformin therapy is now considered a standard first

line therapy for type 2 diabetes (ADA, NICE, EASD
guidelines) [8,9] and is commonly used. Metformin re-
duces the circulating B12 levels by about 25% [10-12].
One cross-sectional study of 203 type 2 diabetes patients
reported the prevalence of B12 deficiency is 22% [13].
However, only 60% of patients with B12 deficiency have
anaemia [14] and at milder forms patients with B12 defi-
ciency are asymptomatic. This highlights the importance
of regular screening but none of the above mentioned
guidelines recommend measuring B12 levels regularly in
type 2 diabetes, even when they are on metformin.
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Indians have higher risk of metabolic disorders includ-
ing type 2 diabetes and cardiovascular diseases (CVD)
compared to Europeans [15,16] and these diseases also
occur at younger age [17]. They also have higher homo-
cysteine levels, which have been mainly attributed to low
B12 levels [18]. Vegetarianism is thought to be cause of
such high prevalence of B12 deficiency in this popula-
tion. Whether high prevalence of B12 deficiency contrib-
utes to higher risk of CVD is not known [19].
The purpose of our study is (1) to assess the preva-

lence of vitamin B12 deficiency in type 2 diabetes pa-
tients and (2) its association with cardiovascular risk
factors and micro- and macro-vascular diseases in two
different ethnic groups in UK and India.

Methods
Study population
Cross-sectional data from two different secondary care
diabetic centres were utilized for this study. (1) UK
participants: 342 consecutive patients of European ori-
gin with type 2 diabetes, who had their vitamin B12
and folate levels checked in the George Eliot Hospital
(GEH), Nuneaton, UK. (2) Indian participants: 321
type 2 diabetes patients of Indian origin had their vita-
min B12 checked at the Dr Mohan’s Diabetes Special-
ties Centre were included for the analysis. Patients who
were taking vitamin supplements and who were preg-
nant were excluded from the study. Detailed history,
anthropometric and biochemical measures such as age,
sex, type of diabetes, duration of diabetes, HbA1C, smok-
ing status, medications, blood pressure, micro- and
macro-vascular complications of diabetes, lipid profile,
vitamin B12 and folate levels were collected from both the
study population. Information on dietary intake (vegetar-
ian/non-vegetarian) was not collected. These were routine
anonymous clinical data extracted from records.

Analytical determinations
Serum glucose, HbA1C, cholesterol, triglycerides, HDL
cholesterol were determined by standard methodologies
followed in the respective labs in both the study popula-
tion. LDL cholesterol was calculated using Friedewald
formula. Serum B12 and folate were determined by elec-
trochemiluminescent immunoassay using a Roche Cobas
immunoassay analyzer (Roche Diagnostics UK, Burgess
Hill, UK). The reference values in both the laboratories
were as follows: 191–663 ng/L for vitamin B12 and 2.5-
18.7 ug/L for folate. Vitamin B12 and folate deficiencies
were defined as levels below 191 ng/L [20] and 2.5 μg/L
[21], respectively.

Definition of comorbidity
The following definitions were used to diagnose the co-
morbidity. Retinopathy: Digital retinal photographs were

graded by trained ophthalmologists (India) or retinal
graders (UK) by the ETDRS grading system. Neuropathy:
Vibratory perception threshold of the great toe > mean +
2SD of healthy non-diabetic study population aged 20–45
years (cut point ≥20 V). Nephropathy: Albumin excre-
tion ≥30 μg/mg of creatinine in urine sample after an
overnight fast (microalbuminuria - 30–299 μg/mg of
creatinine and macroalbuminuria - ≥300 μg/mg of cre-
atinine). Patients with documented retinopathy, periph-
eral and autonomic neuropathy, and nephropathy were
recorded individually and classified to have microvascu-
lar complications. Coronary artery disease (CAD): Past
history of documented myocardial infarction, stable and
unstable angina, coronary artery bypass graft, stent
and/or electrocardiographic changes suggestive of ST
segment depression and/or Q-wave changes using ap-
propriate Minnesota codes. Cerebrovascular accidents
(CVA): Past history of documented stroke (computed
tomography, magnetic resonance imaging, or cerebral
angiography). Peripheral vascular disease (PVD): Lack
of peripheral pulses or Doppler studies with Ankle Bra-
chial Index <0.9. Those with documented CAD, CVA
and PVD were recorded individually and classified to
have macrovascular complications.

Statistical analysis
Continuous variables are reported as mean ± standard
deviation (SD). Categorical variables are reported in per-
centages. The distributions of the parameters such as
cholesterol, triglycerides, HDL, LDL, vitamin B12 concen-
trations were skewed; these data were log-transformed.
Means of continuous variables were compared using inde-
pendent t-tests. Bivariate correlations between different
variables were done using Pearson correlation test. Risk
variables that had significant association were included as
independent variables in multiple linear regression ana-
lysis. Logistic regression analysis was used to examine the
relation between vitamin B12 levels and the risk of micro-
and macro-vascular complications. Associations between
vitamin B12 and cardiovascular outcomes were adjusted
for age, gender, BMI, duration of diabetes, smoking,
HbA1C, cholesterol, HDL, triglycerides, systolic and
diastolic pressure, use of metformin, statin and aspirin.
p values of <0.05 were considered as statistically signifi-
cant. All analyses were performed using IBM SPSS Sta-
tistics version 19 (IBM Corp, NY, USA).

Results
The clinical characteristics of the study population are
shown in Table 1. The use of metformin in Europeans
was 65% and in Indians is 75%. The prevalence rates of
serum vitamin B12 deficiency (<191 ng/L) in Europeans
were 27% and Indians were 12% (Table 1). For those on
metformin, these rates were 32.1 and 12.4%, respectively.
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There were no gender differences in vitamin B12 and
folic acid (Additional file 1: Table S1). The sex specific
values of the other variables are also shown in the
Additional file 1: Table S1. In both the populations, tri-
glycerides and cholesterol/HDL ratio were significantly
and inversely associated with vitamin B12 levels. HDL
was positively associated with vitamin B12 levels in
Europeans but cholesterol was not significantly associated
with vitamin B12 in both the populations (Additional file 1:
Table S2). No associations of vitamin B12 with other estab-
lished cardiovascular risk factors such as BMI, systolic and
diastolic pressure and HbA1C were observed (data not
shown).
Linear regression analysis was carried out to assess

whether vitamin B12 independently associated with

these cardiovascular risk factors in the type 2 diabetes
patients by adjusting for all likely confounders. The
model included age, gender, BMI, duration of diabetes,
smoking, HbA1C, use of metformin, statin and aspirin as
independent variables. After all these adjustments, vita-
min B12 independently associated with triglycerides in
both the populations (Figure 1a,b) but cholesterol/HDL
ratio only in Indians (Figure 1d).
Association of vitamin B12 levels and individual co-

morbidities were assessed by logistic regression analysis
(Table 2). After adjustment for age, gender, BMI, dur-
ation of diabetes, smoking, HbA1C, cholesterol, HDL,
LDL, triglycerides, systolic and diastolic pressure, use of
metformin, statin and aspirin, type 2 diabetes patients
with low vitamin B12 levels were at a significantly higher
odds of having coexisting CAD in Europeans (OR =
3.91; 95% CI: 1.09 - 14.05). A similar but non-significant
trend of higher risk was observed in Indians (OR = 1.77;
95% CI: 0.376 - 8.33). No associations with other micro-
or macro- vascular diseases were observed.

Discussion
Our study involving two different ethnic groups with
type 2 diabetes patients had three main findings. Firstly,
there was high prevalence of vitamin B12 deficiency in
Europeans but interestingly lower than observed preva-
lence in Indians from South India. Secondly, vitamin
B12 deficiency was associated with adverse lipid profiles.
Thirdly, low vitamin B12 levels in type 2 diabetes pa-
tients were associated with an increased risk of CAD.
Studies in type 2 diabetes patients of European origin

on metformin have reported the prevalence of vitamin
B12 deficiency to range from 5.8% to 33% [10,11,13,22].
Our study confirms this in the British population, with a
prevalence of 27% in all type 2 diabetes and 32.1% in
type 2 diabetes with metformin. Our study is the first
one to report the prevalence of B12 deficiency in the
South Indian population with type 2 diabetes. Previous
studies in north Indian population showed much higher
rates of 67% in middle-aged men [18] and 54% in dia-
betes patients [23]. This is likely due to the differences
in dietary habits between north and south Indians. South
Indians consume higher quantity of fermented foods,
which are rich in vitamin B12 [24,25].
In this study, vitamin B12 deficiency independently as-

sociated with triglycerides and cholesterol/HDL ratio in
type 2 diabetes patients. Our findings were similar to the
study in Indians with history of CAD [4]. Similar corre-
lations were also found between B12 levels and total
cholesterol and triglycerides in a group of Polish patients
with established atherosclerosis, but this relationship
was lost in regression analysis, which may be due to the
smaller sample size in the study [21]. Vitamin B12 func-
tions as a coenzyme in the conversion of methylmalonyl-

Table 1 Basic Characteristics of the study population

Parameters Europeans Indians

total total

n = 342 n = 321

Age (years) 63.0 ± 12.3a 56.8 ± 10.6

BMI (Kg/m2) 32.8 ± 6.1 28.0 ± 5.7

Duration of diabetes (years) 14.1 ± 9.4 8.4 ± 7.6

HbA1C (%) 7.89 ± 1.62 8.30 ± 2.1

Cholesterol (mmol/L) 4.10 ± 1.10 4.0 ± 1.12

Triglycerides (mmol/L) 2.01 ± 1.48 1.77 ± 0.89

HDL (mmol/L) 1.25 ± 0.35 0.98 ± 0.25

LDL (mmol/L) 1.97 ± 0.81 2.20 ± 0.91

Cholesterol/HDL ratio 3.46 ± 1.19 4.18 ± 1.16

SBP (mmHg) 137 ± 20 132 ± 18

DBP (mmHg) 74 ± 11 81 ± 9.3

Vitamin B12 (ng/L) 290 ± 139 464 ± 228

Vitamin B12 deficiency, n (%) 91 (27)b 37 (12)

Folate (ug/L) 7.71 ± 9.77 13.6 ± 5.2

Folate deficiency, n (%) 29 (8.5) 0

Smoking, n (%) 26 (8.5) 75 (24)

Microvascular complications:

Retinopathy, n (%) 124 (36) 132 (45)

Neuropathy, n (%) 53 (16) 99 (33)

Nephropathy, n (%) 41 (12) 83 (29)

Macrovasuclar complications:

Coronary artery disease (CAD), n (%) 62 (18) 27 (9)

Cerebro vascular accidents (CVA), n (%) 19 (5.6) 6 (1.9)

Peripheral vascular disease (PVD), n (%) 23 (6.7) 17 (6)

Insulin use, n (%) 215 (63) 149 (46)

Metformin use, n (%) 221 (65) 242 (75)

Statin use, n (%) 286 (84) 154 (48)

Aspirin use, n (%) 246 (72) 44 (14)
aMean ± SD (all such values); bNumbers (percentages) (all such values).
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CoA (MM-CoA) to succinyl-CoA [26,27]. This reaction is
blocked if there is vitamin B12 deficiency, resulting in ac-
cumulation of MM-CoA which inhibits the rate-limiting
enzyme of fatty acid oxidation (CPT1 – carnitine palmi-
toyl transferase) [28], thus causing lipogenesis. This may

be the likely mechanism for the link between B12 defi-
ciency and adverse lipid parameters.
Our observation of an association of increased risk of

CAD in type 2 diabetes patients with low B12 levels after
controlling for all likely confounding factors is supported

Figure 1 Regression of Vitamin B12 with (a) Triglycerides in Europeans, (b) Triglycerides in Indians, (c) Cholesterol: HDL ratio in
Europeans and (d) Cholesterol: HDL ratio in Indians. *Log-transformed for statistical comparisons. Model included vitamin B12, age, BMI, sex,
duration of diabetes, HbA1C, smoking, use of metformin, statin & aspirin.

Table 2 Logistic regression analysis of vitamin B12 with co-morbidities

Co-morbidities Europeans Indians

B (SE) Odds ratio (95% CI) p-value B (SE) Odds ratio (95% CI) p-value

Microvascular complications:

Retinopathy 0.294 (0.604) 1.342 (0.411, 4.386) 0.626 −0.085 (0.440) 0.919 (0.388, 2.176) 0.848

Neuropathy 0.132 (0.663) 1.141 (0.311, 4.186) 0.842 −0.208 (0.558) 0.812 (0.272, 2.424) 0.709

Nephropathy 0.790 (1.132) 2.203 (0.239, 20.267) 0.485 −0.721 (0.519) 0.487 (0.176, 1.346) 0.165

Macrovascular complications:

Coronary artery disease (CAD) 1.364 (0.653) 3.911 (1.088, 14.054) 0.037 0.571 (0.790) 1.770 (0.376, 8.332) 0.470

Cerebro vascular accidents (CVA) −1.226 (1.508) 0.294 (0.015, 5.644) 0.416 0.775 (1.584) 2.170 (0.097, 48.369) 0.625

Peripheral vascular disease (PVD) 0.552 (0.608) 1.737 (0.527, 5.722) 0.364 - -* -

Model included vitamin B12, age, BMI, sex, duration of diabetes, HbA1C, Cholesterol, HDL, LDL, triglycerides, SBP, DBP, smoking, use of metformin, statin
and aspirin.
*- Odds ratio cannot be computed because in the PVD group, the number of B12 deficient cases were zero.
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by other findings in subjects with type 2 diabetes and
non-type 2 diabetes. A study by Shargorodsky et al.
found that vitamin B12 independently correlated with
pulse wave velocity in type 2 diabetes patients, an ac-
cepted cardiovascular risk factor [29]. Weikert et al. [3]
in a population-based prospective study showed the as-
sociation between low vitamin B12 levels and increased
risk of cerebral ischemia. Similarly, in south Asian
women living in the UK with vitamin B12 deficiency an-
aemia had a higher prevalence of myocardial infarction
and CAD [30]. We did not find any sex specific changes
in our study. Thus our findings in support of the previ-
ous observations extend the knowledge on the role of
vitamin B12 on CAD and its risk factors in type 2 dia-
betes patients. In spite of the fact that B-vitamins could
provide an inexpensive and effective method for the pre-
vention of CVD, their use was rejected, based on the
negative results of randomized controlled clinical trials
[31,32]. But, when examining the design of these trials,
it appeared that concomitant medication such as statin/
aspirin therapy applied along with the vitamin substitu-
tion could have obscured the separate effects of vitamins
in cardiovascular prevention. However, a recent meta-
analysis of these vitamin trials suggest that B vitamins
are effective in primary prevention of cardiovascular dis-
eases [33]. Similarly, a study in type 2 diabetes patients
with another micronutrient supplementation, vitamin D,
showed more significant improvements in the cardio-
metabolic profile [34].
Lipid abnormalities are unique in individuals with T2D

and those are at risk of T2D (obesity, metabolic syn-
drome and pre-diabetes): the total cholesterol and LDL
are lower in those with statins but higher in those with-
out. In addition, in both groups the triglyceride levels
are higher and the HDL levels are lower as statins have
little effect on them [35-37]. In post-menopausal women
with T2D and CAD who were not on lipid lowering
medications, in addition to higher total and LDL choles-
terol and higher triglycerides, homocysteine was also
higher, suggesting a potential link between vitamin B12
and folic acid and abnormal lipid profiles [38-41]. It is
known that increasing triglycerides and reducing HDL
are early features of atherosclerosis, well before increas-
ing LDL [38,42]. Therefore, our findings showing inde-
pendent association of B12 with triglycerides and HDL
in two different ethnic groups provide a possible mech-
anism how vitamin B12 could offer primary prevention
of cardiovascular diseases in type 2 diabetes and may
also be an option in the secondary prevention of disease,
if statin therapy is accompanied by serious adverse
effects.
The strength of this study is the inclusion of two

cross-sectional study populations of type 2 diabetes pa-
tients from UK and India and comprehensive data from

both the groups. However, it also has the following limi-
tations. The study population were based in secondary
care and not a true representative sample of all type 2
diabetes. A true primary care representative sampling of
type 2 diabetes would have strengthened our findings.
However, metformin is routinely prescribed in primary
care. This therefore might have under estimated the
prevalence of B12 deficiency and may have overesti-
mated its association with CAD as the prevalence of
CAD is likely to be higher in secondary care settings. A
group of Indian diaspora living in the UK as well as the
availability of biomarkers of vitamin B12 deficiency such
as MMA and homocysteine would have strengthened
the findings. In addition, being a cross-sectional study, it
does not prove causality.
In summary, our study demonstrates for the first time

that vitamin B12 deficiency in type 2 diabetes patients in
two different ethnic groups is associated with adverse
lipid parameters and higher risk of CAD. Currently,
there are no guidelines advocating for routine screening
for vitamin B12 deficiency among patients with type 2
diabetes. While optimal screening frequency remains to
be determined, baseline tests at initiation of metformin
therapy and subsequent annual testing of B12 levels may
be appropriate. Our study also warrants updating of
international guidelines for the management of type 2
diabetes.
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