
This is a repository copy of Two-step calibration methods for miniature inertial and 
magnetic sensor units.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/98818/

Version: Accepted Version

Article:

Zhang, ZQ (2015) Two-step calibration methods for miniature inertial and magnetic sensor 
units. IEEE Transactions on Industrial Electronics, 62 (6). pp. 3714-3723. ISSN 0278-0046

https://doi.org/10.1109/TIE.2014.2375258

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


1

Two-Step Calibration Methods for Miniature Inertial

and Magnetic Sensor Units
Zhi-Qiang Zhang

Abstract—Low-cost inertial/magnetic sensor units have been
extensively used to determine sensor attitude information for
a wide variety of applications, ranging from virtual reality,
underwater vehicles, handheld navigation systems, to bio-motion
analysis and biomedical applications. In order to achieve precise
attitude reconstruction, appropriate sensor calibration proce-
dures must be performed in advance to process sensor readings
properly. In this paper, we are aiming to calibrate different
error parameters, such as sensor sensitivity/scale factor error,
offset/bias error, non-orthogonality error, mounting error, and
also the soft iron and hard iron errors for magnetometer. Instead
of estimating all these parameters individually, these errors are
combined together as the combined bias and transformation
matrix. Two-step approaches are proposed to determine the
combined bias and transformation matrix separately. For the
accelerometer and magnetometer, the combined bias is deter-
mined by finding an optimal ellipsoid that can best fit the
sensor readings, and the transformation matrix is then derived
through a two-step iterative algorithm by exploring the intrinsic
relationship among sensor readings. For the gyroscope, the
combined bias can be easily determined by placing the sensor
node stationary. For the transformation matrix estimation, the
intrinsic relationship among gyroscope readings is also again,
and an unscented Kalman filter is employed to determine such
matrix. The calibration methods are then applied to our sensor
nodes, and the good performance of the orientation estimation
has illustrated the effectiveness of the proposed sensor calibration
methods.

Keywords-Miniature Sensors, Calibration, Orienta-
tion/Attitude, Kalman Filter, Optimization

I. INTRODUCTION

In the past decade, low-cost inertial/magnetic sensor units

have been extensively used to determine sensor attitude in-

formation for a wide variety of applications, ranging from

virtual reality, underwater vehicles, handheld navigation sys-

tems, to bio-motion analysis and biomedical applications [1]

[2] [3] [4]. A typical inertial/magnetic sensor unit contains

a triaxial accelerometer, a triaxial gyroscope, and a triaxial

magnetometer, and these sensors are usually assembled to-

gether on a printed circuit board to form an inertial/magnetic

measurement node. Thus far, extensive research has been

performed on how to accurately determine attitude information

from micro inertial/magnetic sensor measurements [5] [6].

Some researchers even moved beyond this and proposed to
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estimate the sensor displacement as well [7] [8] [9]. However,

the achievable accuracy is highly dependent on the quality

of the inertial/magnetic sensor unit measurements; therefore,

appropriate sensor calibration procedures must be performed

in advance to process sensor readings properly.

In general, the inaccurate sensor measurements are mainly

caused by sensor sensitivity/scale factor error, offset/bias error,

non-orthogonality error and mounting error. In addition, soft

iron error and hard iron error may also contribute to the inac-

curacy of the magnetometer measurements. Thus far, a large

number of calibration methods, ranging from very simple pro-

cedures to very sophisticated ones using expensive equipment

such as optical systems or robotic systems [10] [11] [12], have

been proposed to determine some of these error parameters

for the inertial/magnetic sensor unit. The basic idea of these

methods is to construct a cost function and then to minimize

it with respect to the unknown sensor error parameters using

specific optimization methods. For example, Skog et al. [13]

considered the scale factor error, offset/bias error and non-

orthogonality error for inertial sensor calibration. A nonlinear

cost function was constructed to describe the relationship

between the squared magnitude of the input and the squared

magnitude of the output, and the Newton-Raphson method

was then applied to minimize the cost function. Based on the

similar cost function, Li et al. [14] and Skaloud et al. [15]

also presented their solutions for the optimization problem,

and we also had the similar work presented in [16]. The

underlying assumption for these methods is that the physical

quantities and the corresponding raw sensor readings can be

acquired simultaneously; however, such assumption may not

be easy to satisfy in practice. Furthermore, all these methods

only considered the inertial sensor calibration in the sensor

frame, and the mounting misalignment error was ignored in

their methods. Due to the difficulties of acquiring the magnetic

field information and the existence of the magnetic soft iron

error and hard iron error, the aforementioned inertial sensor

calibration methods are not applicable to the magnetometer

calibration. For this reason, a number of magnetometer cali-

bration methods have been proposed to determine some of the

error parameters. For instance, Renaudin et al. [17] elaborated

a complete sensor error model, and then derived an adaptive

least squares estimator which provided a consistent solution to

the ellipsoid fitting problem. Based on the similar sensor error

model, Vasconcelos et al. [18] formulated the calibration prob-

lem as the optimization of the sensor readings’ likelihood, and

proposed an iterative maximum likelihood estimator (MLE)

for it. Wu et al. [19] further extended Vasconcelos’s work and

proposed to use particle swarm optimization (PSO) strategy
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and stretching technique together, which could help to prevent

Vasconcelos’s method from converging to a local maxima

and preserve the global ones. Springmann et al. [20] and

Pang et al. [21] also presented similar work for magnetometer

calibration. Unfortunately, all these magnetometer calibration

methods implicitly assumed that some magnetic field informa-

tion could be acquired in advance, which might not be possible

in practice. Moreover, similar to the inertial sensor calibration,

they also ignored the potential mounting misalignment error,

which is critical to integrate the magnetometer together with

the inertial sensors.

The motivation of the paper is to tackle all the error param-

eters, including sensor sensitivity/scale factor error, offset/bias

error, non-orthogonality error, mounting error, and also the

soft iron and hard iron errors for magnetometer, and provide

a unified framework for the micro inertial/magnetic sensor

unit calibration without using any extra instrument to measure

the magnetic field. Since the main purpose of the sensor

calibration is to convert the raw sensor readings to sensor mea-

surements in metric unit, there is no need to estimate all these

parameters individually; therefore, we combine these errors

together as the combined bias and transformation matrix. Two-

step approaches are proposed to determine the combined bias

and transformation matrix separately. For the accelerometer

and magnetometer, the combined bias is determined by finding

an optimal ellipsoid that can best fit the sensor readings, and

the transformation matrix is derived through a two-step iter-

ative algorithm by exploring the intrinsic relationship among

sensor readings. For the gyroscope, the combined bias can be

easily determined by placing the sensor node stationary. For

the transformation matrix estimation, the intrinsic relationship

among sensor readings is explored again, and an unscented

Kalman filter is employed to determine such matrix. The

calibration methods are then applied to our sensor nodes,

and the good performance of the orientation estimation has

illustrated the effectiveness of the proposed sensor calibration

methods.

The rest of the paper is organized as follows. The proposed

sensor calibration procedures, including the unified sensor

model, the accelerometer and magnetometer calibration, and

the gyroscope calibration are given in section II. Experimental

results and conclusions are provided in sections III and IV,

respectively.

II. OUR METHOD

A. Unified sensor model

For the inertial sensors, the main sources of the sensor error

include bias, scale factor, non-orthogonality and mounting

misalignment, thus we can have the following model to

compensate for such errors:

uk = RkTkSk(yk − bk) (1)

where index k represents the sensor type (i.e., a, g for

accelerometer or gyroscope respectively), uk is the measured

physical quantities in metric unit, and the yk is raw sensor

readings. bk is the bias vector, Sk is the scale factor matrix, Tk

is the Gram-Schmidt orthogonalization matrix, and Rk is the

rotation matrix to correct the mounting error. Here, uk, yk and

bk are 3× 1 vectors, while Rk, Tk and Sk are 3× 3 matrices.

Since the main purpose is to find an accurate uk for any sensor

reading yk, there is no need to estimate the Rk, Tk, Sk and

bk separately. Therefore, we can define the combined bias

Bk = bk and transformation matrix Hk = RkTkSk, and then

estimate Bk and Hk instead to ease the calibration process.

Similarly, for the magnetometers, in addition to these sensor

errors, there are also soft iron error and hard iron error, so we

can have the following model considering all the errors [22]:

um =RmTmSm(Asiym − bhi − bm)

=RmTmSmAsi

(

ym −A−1

si (bhi + bm)
)

.
(2)

where Rm, Tm, Sm and bm correspond to the four different

sensor errors, while Asi and bhi are associated with soft iron

error and hard iron error, respectively. Similarly, um, ym, bhi
and bm are 3 × 1 vectors, while Rm, Tm, Sm and Asi are

3× 3 matrices. We can then also define

Bm = A−1

si (bhi + bm) (3)

and

Hm = RmTmSmAsi (4)

thus a unified sensor model for inertial sensor and magnetome-

ter can be written as:

uk = Hk(yk −Bk). (5)

For simplicity, we used index k again to represent the sensor

type (a, g, m for accelerometer, gyroscope or magnetometer

respectively). In the above equation, Bk, a 3 × 1 vector, is

regarded the combined bias, while Hk, a 3 × 3 matrix, is

taken as the transformation matrix. The other advantage of

amalgamating these error parameters together as the combined

bias and transformation matrix is that they can also take the

other unmodeled linear time invariant errors and distortions

into consideration. Thus, the purpose of the sensor calibration

is to estimate the value:

ζ = {Hk, Bk}T (6)

given J sensor raw readings yjk, where j = 1, 2, · · · , J , and

the magnitude of the earth magnetic field M and gravity G.

The estimation of ζ can be written as:

ζ̂ = argmin
ζ

{L(ζ)} (7)

where

L(ζ) =

J
∑

j=1

∥

∥

∥
uj
k −Hk(y

j
k −Bk)

∥

∥

∥

2

(8)

subject to

|uj
a| = G (9)

and

|uj
m| = M. (10)

Here, | · | and ‖·‖ are the magnitude and Frobenius norm oper-

ators, respectively, and j is the index of different orientation or

rotation that the sensor node is set to. Due to the nonlinearity

of (8), it is difficult to find a globally optimized solution for
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ζ in practice. In this paper, we propose two-step parameter

estimation schemes to simplify the optimization process, 1)

estimate the combined bias Bk; 2) estimate the transformation

matrix Hk.

B. Accelerometer/Magnetometer Calibration

For accelerometer and magnetometer, the magnitude of

the measured physical quantity uj
a or uj

m are constant and

independent of the sensor node orientation; therefore, the

calibration methods for the accelerometer and magnetometer

are the same. In this section, we take the accelerometer as

the example to introduce the two step calibration method. The

same method can also be applied for magnetometer calibration.

1) Combined Bias Ba Estimation: For the accelerometer,

the sensor model can be rewritten as:

uj
a = Ha(y

j
a −Ba). (11)

For any accelerometer reading yja, the magnitude of uj
a is equal

to the magnitude of gravity, so we can have:

|Ha(y
j
a −Ba)| = |uj

a| = G. (12)

By expanding the above equation, we can get:

(

yja −Ba

)T · (Ha)
T ·Ha ·

(

yja −Ba

)

= G2. (13)

Thus we can normalize the above equation as:

(

yja −Ba

)T ·
(

Ha

G

)T

· Ha

G
·
(

yja −Ba

)

= 1. (14)

Expanding this equation we obtain

(

yja
)T · Σ · yja −

(

yja
)T · Γ + Υ = 0 (15)

where

Σ =

(

Ha

G

)T
Ha

G

Γ = 2Σ ·Ba

Υ = (Ba)
T · Σ ·Ba − 1.

(16)

This equation is the algebraic equation of an ellipsoid, and

the calibration problem now becomes finding an arbitrarily

oriented ellipsoid which fits the J sensor readings y1a, y
2
a · · · yJa

best. There is abundant literature addressing this problem [23]

[24] [25]. For this study, the least squares ellipsoid fitting

method proposed in [26] is used, and the values of Σ, Γ and

Υ can be then obtained. Denote the estimates for Σ and Γ as

Σ̂, Γ̂, we can have estimate for Ba as:

B̂a =
1

2

(

Σ̂
)−1

Γ̂ (17)

and Ha has the following property:

(Ha)
T ·Ha = G2Σ̂. (18)

Since Σ̂ is a positive definite matrix, an eigen-decomposition

can be applied:

Σ̂ = ΛDΛT (19)

where Λ corresponds to the eigenvectors of Σ̂, and D is

the diagonal matrix containing the eigenvalues. Thus we can

define another matrix K as

K = GΛ
√
DΛT (20)

satisfying

KTK =GΛ
√
DΛTGS

√
DΛT

=G2ΛDΛT

=G2Σ̂.

(21)

However, given any rotational matrix Ω, we can also have

(ΩK)
T
ΩK =GS

√
DΛTΩTΩGΛ

√
DΛT

=G2ΛDΛT

=G2Σ̂.

(22)

Therefore, the factorization (Ha)
T
Ha = G2Σ̂ is not unique,

and Ha can be any matrix in the form of ΩK, so it is

impossible to acquire the exact transformation matrix Ha

through the ellipsoid fitting, while the combined bias Ba can

be estimated as B̂a . In the next section, we will discuss how to

determine the transformation matrix by exploring the intrinsic

relationships among the sensor readings.

2) Transformation Matrix Ha Estimation: In the pre-

vious section, any two sensor readings yia and yja(i =
1, 2 · · · J and i 6= j) are used independently. However, both

indexes i and j indicate the orientations or rotations that the

sensor calibration unit is set to; therefore, we can also get the

orientation difference Ri
j between the ith orientation and jth

orientation during the calibration process. Thus we can have:

ui
a = Ha ·

(

yia −Ba

)

(23)

and

uj
a = Ri

ju
i
a = Ha ·

(

yja −Ba

)

. (24)

Denote Ri
i = I3 as the identity matrix of order 3, the estimate

of Ha can be written as:

{Ĥa, ûi
a}=argmin

Ha,ui
a







J
∑

j=1

∥

∥

∥
Ri

ju
i
a −Ha

(

yja −Ba

)

∥

∥

∥

2







(25)

subject to

|ui
a| = G (26)

given sensor readings y1a, y
2
a · · · yJa and orientation differences

Ri
1, R

i
2 · · ·Ri

J . There are a number of algorithms, such as inte-

rior point algorithm [27], active set algorithm [28], sequential

quadratic programming (SQP) algorithm [29], have been pro-

posed to solve the above constrained minimization problem,

but these methods tend to calculate the Jacobian matrix and

Hessian matrix, which are computationally expensive. In this

paper, we propose a simple two step iteration method to solve

the above constrained optimization problem.

Lemma 1: Denote a 3× J matrix Ya as:

Ya =
[

y1a − B̂a, y
2
a − B̂a, · · · , yJa − B̂a

]

(27)
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and a 3J × 3 matrix R as

R =













Ri
1

Ri
2

...

Ri
J













(28)

Ha and ui
a thus satisfy:

C2M
(

Rui
a

)

= HaYa

Rui
a = M2C (HaYa)

(29)

where C2M(·) is to convert a 3J×1 vector to a 3×J matrix

while M2C(·) is the inverse operation of C2M(·) , converting

a 3× J matrix to a 3J × 1 vector (refer to the Appendix for

detailed definition).

Given an initial vector ui
a,0, the Ha and ui

a can be estimated

as:

1. set index k = 1;

2. calculate Ha,k as:

Ha,k = C2M
(

Rui
a,k−1

)

· Y +
a (30)

where (·)+ is the pseudo-inverse operator.

3. calculate ui
a,k as

ui
a,k = R+ ·M2C(Ha,kYa). (31)

4. set k = k + 1 and repeat steps 2 − 4 until Ha and ui
a

converge.

5. re-scale the magnitudes and set the Ha and ui
a estimates

as

ûi
a =

G

|ui
a,k|

ui
a,k

Ĥa =
G

|ui
a,k|

Ha,k.

(32)

The purpose of the equation (25) is to minimize
∥

∥

∥
C2M(Rui

a)−HaYa

∥

∥

∥
(33)

or
∥

∥

∥
Rui

a −M2C(HaYa)
∥

∥

∥
. (34)

To make sure Ha and ui
a converge, we need to prove in each

iteration that:
∥

∥

∥
C2M(Rui

a,k)−Ha,k+1Ya

∥

∥

∥
6

∥

∥

∥
C2M(Rui

a,k)−Ha,kYa

∥

∥

∥
(35)

and
∥

∥

∥
Rui

a,k−M2C(Ha,kYa)
∥

∥

∥
6

∥

∥

∥
Rui

a,k−1−M2C(Ha,kYa)
∥

∥

∥
. (36)

The proofs for equation (35) and (36) are given in the

Appendix at the end of this paper.

C. Gyroscope Calibration

Similar to accelerometer/magnetometer calibration, we also

estimate the gyroscope combined bias Bg and transformation

matrix Hg separately.

1) Combined Bias Bg Estimation: Similar the accelerom-

eter/magnetometer calibration, there is also some constant

magnitude information which can be used for gyroscope

combined bias estimation. When the gyroscope is stationary,

the gyroscope measurements should be 0. Therefore, we can

place the sensor node at J different orientations and remain

stationary, which means that uj
g = 0, j = 1, 2 · · · , J . Denote

the corresponding gyroscope reading as yjg , we can then have:

Hg ·
(

yjg −Bg

)

= 0, j = 1 · · · , J. (37)

The above equation can be written in the matrix format as:

Hg · (Yg − Bg) = 0 (38)

where

Yg =
[

y1g , y
2
g · · · , yJg

]

(39)

and Bg is a 3×J matrix, and every column is set to Bg . Since

Hg is a full rank matrix, we can then have

Yg − Bg = 0. (40)

By taking sensor noise into account, we set bias Bg estimate

as the mean value:

B̂g =

∑J1

j=1
yjg

J
. (41)

2) Transformation Matrix Hg Estimation: During our cali-

bration process, the time is usually less than 2s when we rotate

the sensor node from orientation j to j + 1. In such a short

time period, the gyroscope measurements can be integrated

to produce accurate orientation estimation. Since we already

know the orientation difference Rj+1

j between them, we can

have:

Q(Rj+1

j ) = Int(yj,1:Nj
g , Hg) (42)

where Q(Rj+1

j ) is the corresponding quaternion repre-

sentation of the rotation matrix Rj+1

j [3], y
j,1:Nj
g =

{yj,1g , yj,2g , · · · , yj,Nj
g } are the gyroscope readings during the

period rotating the sensor from the orientation j to j+1, Nj is

the number of the sensor readings during this period, and Int
is the gyroscope integration operator (refer to the Appendix for

detailed definition). Thus, the estimation of Hg can be written

as:

Ĥg =argmin
Hg







J−1
∑

j=1

∥

∥

∥
Q(Rj+1

j )− Int(yj,1:Nj
g , Hg)

∥

∥

∥

2







.

(43)

Similar to the optimization problem in equation (25), several

algorithms, such as Quasi-Newton method [30] and Nelder-

Mead method [31], have been proposed to solve such uncon-

strained minimization problem, but these methods also have to

calculate the Jacobian matrix and Hessian matrix, which are

computationally expensive. In this paper, we propose a simple

Kalman filter based method to solve the above unconstrained

optimization problem. Thus, the process model for the Kalman

filter can be written as:

Xk = Xk−1 + v (44)
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(a) (b)

Figure 1. The BSN hardware platform used for this study. (a) BSN Sensor
Node and its stackable sensor daughter boards. (b) The bespoke housing for
the BSN Sensor Node.

Figure 2. The BTS SMART-D system used for this study and the BSN node
mounted with reflective markers for orientation accuracy evaluation.

Xk is the unfolded 9× 1 state vector from Hg , v is the zero

mean process noise with covariance Rv . In our implementa-

tion, we set Rv to a diagonal matrix with all its main diagonal

entries as 10−1 empirically. The measurement model can then

be written as:












Q(R2
1)

Q(R3
2)

...

Q(RJ
J−1)













=













Int(y1,1:N1

g , Hg)

Int(y2,1:N2

g , Hg)
...

Int(y
J−1,1:NJ−1

g , Hg)













+ w (45)

where w is the zero mean measurement noise with covariance

Rw. As given in the equation (42), the left-hand side of the

above equation should be equal to the first item of the right-

hand side of the equation in theory, which means that the

measurement noise w is 0. In our implementation, we set

Rw to a diagonal matrix with all its main diagonal entries as

10−7 empirically. Because of the nonlinearity of measurement

model, the Unscented Kalman Filter (UKF) is employed in this

paper. The detailed UKF equations can be found in [1] [32].

III. EXPERIMENTAL AND SIMULATION RESULTS

It is quite challenging to acquire the true-values of error

parameters for an inertial/magnetic sensor unit; therefore,

detailed simulation studies were carried out to evaluate the

performance of the proposed two step sensor calibration

methods. The simulation study was based on the Monte Carlo

simulation, which was carried out in a workstation with 3.40

GHz Intel Core i7 processor and 16G RAM. Laboratory

experiments were also conducted in this paper, and we used

the Body Sensor Network (BSN) platform [33] developed by

our lab, which consists of three stackable daughter boards: the

sensor board, the main processor board, and the battery board.

They are connected via a stackable connector design as shown

in Fig. 1(a). Each BSN node used is equipped with an Analog

Devices ADXL330 [34] for 3D acceleration measurement, an

InvenSense ITG-3200 digital gyroscope [35] for 3D angular

velocity measurement, and a Honeywell HMC5843 [36] for

3D magnetic field measurement. In order to calibrate the BSN

node, a bespoke housing for the BSN node is designed as

shown in Fig. 1(b). Since it is quite challenging to acquire the

ground-truth of the calibration parameters, we thus used the

BSN node for attitude estimation after applying the proposed

calibration methods to our sensor node, and compared the

estimated attitude to reference measurements provided by an

optical motion tracking system BTS SMART-D [37]. The BTS

system used in our experiment consisted of 9 cameras installed

on the ceiling as shown in Fig. 2. By capturing the positions

of the 3 reflective markers on the rigid body that the BSN

housing is attached to, an error less than 0.267mm on a volume

of 2.95× 1.65× 3.08m was achieved by the BTS system.

A. Accelerometer/Magnetometer Calibration Performance

Evaluation

In this step of the evaluation process, as the calibration pro-

cedures of the accelerometer and magnetometer are the same,

we only present the simulation results for the accelerometer

here. In the simulation, the estimation of the accelerometer

combined bias Ba, transformation matrix Ha and reference

acceleration vector ui
a were studied when the sensor node

was rotated into randomly selected 20 different orientations.

However, a zero mean Gaussian distributed error with variance

0.1m2/s was added to the sensor raw reading ya to reflect

sensor noise. In our simulation, the values of Ba, ui
a and Ha

are randomly set to:

Ba = [2429, 2318, 2368]
T

ui
a = [2.6191601, 5.2383203, 7.8574805]

T

and

Ha =







0.0209850 −0.0023786 0.0033562

0 0.0237864 0.0022374

0.0020985 0.0023786 −0.0223744






.

The simulation results for ui
a and Ha are given in Fig. 3

and Fig. 4 respectively. We also applied the Matlab build-

in SQP algorithm to optimize the constrained problem in

equation (25) for comparison purpose, and the results derived

from the SQP algorithm are also shown in the Fig. 3 and

Fig. 4. As we can see from the figures, it is very clear that our

proposed iterative method is relatively faster to converge. After

about 8 iterations, the estimations for ui
a and Ha are already

very close to their respective ground-truth values, and the

estimation errors are less than 1%. Although the optimization

method can also converge to the ground-truth of ui
a and Ha,

convergence speed is much slower and it needs more than 15

iterations to achieve less than 1% error. We also noticed that

the optimization method took about 1.5 seconds to complete

all the iterations, while our method only took less than 0.05

second in our simulation. In fact, the SQP algorithm involves
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Table I
ITERATIVE RESULTS OVER 1000 SIMULATIONS (SHOWN AS MEAN±STD)

∥

∥Ha−Ĥa

∥

∥

∥

∥u
i
a−û

i
a

∥

∥

Optimization Our Optimization Our

Iteration 2 2.5249±0.2518 0.1701±0.0965 11.8281±0.0256 1.3178±0.7496

Iteration 5 6.8363±2.4015 0.0586±0.0338 36.5101±14.1615 0.4349±0.2572

Iteration 10 6.2825±2.3289 0.0212±0.0066 36.1387±13.0760 0.0502±0.0203

Iteration 15 1.7143±1.8538 0.0149±0.0022 9.0593±11.0958 0.0118±0.0087

Iteration 20 0.0678±0.0847 0.0149±0.0022 0.3664±0.4672 0.0118±0.0087

Iteration 30 0.0147±0.0023 0.0149±0.0022 0.0161±0.0085 0.0118±0.0087

Iteration 50 0.0147±0.0023 0.0149±0.0022 0.0161±0.0085 0.0118±0.0087

sophisticated Hessian and Jacobian matrix operations, which

are very computationally expensive. However, our proposed

method only requires some basic matrix operations, such as

multiplication and inverse, which therefore make our method

much more efficient than the traditional optimization method.

The simulation was repeated for another 1000 times, and

statistical results for ui
a and Ha are given in Table I. It can

be seen that the proposed iterative method converges after

15 iterations with negligible errors (< 0.1%). Meanwhile,

the error histogram of the combined bias Ba over the 1000

simulations is shown in the Fig 5. In the figure, over 93%
of the estimated combined bias has smaller error than 0.1%.

We also noticed that the maximum estimation error for the

combined bias is 0.25%, which is small and imperceptible. In

conclusion, the above analysis has shown that the proposed ac-

celerometer calibration method can estimate the accelerometer

sensor model parameters accurately.

B. Gyroscope Calibration Performance Evaluation

For the second simulation, we evaluated the gyroscope

sensor model parameters estimation when we randomly rotate

the the sensor to 10 predefined orientations. A zero mean

Figure 3. Estimation results for u
i
a, showing that the estimation value

converges after 10 iterations using the proposed method while the optimization
method needs 16 iterations.

Figure 4. Estimation results for matrix Ha, showing that after 10 iterations,

the Frobenius norm
∥

∥Ha − Ĥa

∥

∥ converges to 0, i.e., Ha = Ĥa.

Figure 5. Statistic results for combined bias Ba, showing that the estimation
errors for all of simulation are very small.

Gaussian distributed error with variance 0.05rad/s was added

to the sensor readings yg to simulate sensor noise. In this

simulation, we only considered the transformation matrix Hg ,

and its estimation result is given in the Fig. 6. Similar to
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Figure 6. Estimation results for matrix Hg , showing that after 6 iterations,

the Frobenius norm
∥

∥Hg − Ĥg

∥

∥ converges to 0, i.e., Ha = Ĥg .

Table II
ITERATIVE RESULTS OVER 1000 SIMULATIONS (SHOWN AS MEAN±STD)

∥

∥Hg−Ĥg

∥

∥

Optimization Our

Iteration 2 3.9872±0.4096 1.1261±0.6539

Iteration 5 1.8707±0.9048 0.0058±0.0043

Iteration 10 0.4532±0.6153 0.0045±0.0022

Iteration 20 0.0068±0.0121 0.0045±0.0022

Iteration 40 0.0045±0.0022 0.0045±0.0022

Iteration 50 0.0045±0.0022 0.0045±0.0022

the first simulation, we also implemented the trust region

algorithm to optimize the unconstrained problem in equation

(43), and the results for the trust region method are also shown

in the Fig. 6. The second simulation was repeated for 1000

times, and statistical results for Hg is given in Table II. As

we can see from the figure and table, both our method and

the trust region can converge to the ground-truth of Hg , but

the converge speed of our method is much faster than that of

the trust region method. In general, our method only requires

10 iterations to get accurate estimation of Hg , while the

trust region method needs about 40 iterations. Therefore, we

can conclude that the proposed gyroscope calibration method

can estimate the transformation matrix Hg accurately and

efficiently.

It should be noted, however, we didn’t evaluate the perfor-

mance of the gyroscope combined bias estimation method yet

since it is too simple to simulate. Therefore, in the next part

of our evaluation, we will evaluate all the calibration methods

together and show how the calibration methods can help to

improve the attitude estimation accuracy significantly.

C. BSN Calibration Results

We then applied the proposed sensor calibration method

to our BSN node. The sensor node was rotated to different

orientations to evaluate the reproducibility of the proposed

method. To make sure the magnetic distortion and local

magnetic field are constant for different orientations, the sensor

node was kept in a small area with ignorable translational

movement when rotating the sensor node. Five data sets

have been acquired, and in each data set, the sensor node

was randomly placed at 10-20 different orientations. At each

orientation, the sensor node was put on the table stationery to

make sure the accelerometer only sense the gravity. At least

5s of data were collected for each orientation. Instead of using

all the raw sensor readings for each orientation, only the mean

value of these readings was used to increase the signal-to-noise

ratio (SNR) for sensor model parameter determination. Fig. 7

takes the accelerometer for example and shows the estimation

results for the combined bias Ba and the transformation matrix

Ha. As we can see from the figures, both the combined bias

and transformation matrix estimation results are similar for all

the trials performed, and the deviations are small compared to

the mean values. The consistency among all the five trials

indicates the good repeatability of the proposed method. It

is also worth mentioning that the estimation results for the

gyroscope and magnetometer are also consistent among the
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Figure 7. The accelerometer calibration results for the BSN sensor node.
During the experiments, the same calibration method was repeated 5 times
on the same sensor node. Although there is no ground-truth for the combined
bias Ba and transformation matrix Ha, the estimation results have shown
good consistency, which illustrates the robustness of our proposed method.
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Table III
THE RMS, MEAN, SD AND CORRELATION COEFFICIENTS OF THE ESTIMATED ATTITUDE COMPARED TO THE BTS OPTICAL SYSTEM.

Optimization Calibration Our Calibration Sensor Frame Calibration Only

RMS Correlation RMS Correlation RMS Correlation

(Mean,SD) Coefficient (Mean,SD) Coefficient (Mean,SD) Coefficient

Roll
0.0041

0.9997
0.0041

0.9997
0.0631

0.9948
(0.0010±0.0040) (0.0010±0.0040) (-0.0157±0.0611)

Pitch
0.0039

0.9998
0.0039

0.9998
0.0411

0.9969
(0.0015±0.0077) (0.0011±0.0076) (-0.0130±0.0381)

Yaw
0.0072

0.9998
0.0073

0.9998
0.0454

0.9953
(0.0003±0.0072) (0.0003±0.0072) (0.0214±0.0398)
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(b) Quaternion differences compared to BTS measurements

Figure 8. The orientation estimation results in quaternion compared to the BTS measurements. (a) the orientation estimation in quaternion, (b) the quaternion
differences compared to BTS measurements.

five trials. Although there is no ground-truth for the combined

bias and transformation matrix for the BSN sensor node,

the consistency of the data illustrates the robustness of our

proposed method.

After applying the calibration method to our BSN sensor

nodes, we then fused the sensor measurements for attitude

estimation using the method presented in [38]. We then

compared the sensor based attitude estimation result with the

reference measurement from the BTS optical motion tracker

quantitatively. In our experiment, the BSN sensor node was

placed on a rigid body affixed and rotated arbitrarily. Fig. 8

shows the orientation estimation results by using our proposed

method compared to the ground-truth measurements from the

optical motion tracking system BTS SMART-D. To better

illustrate the orientation estimation accuracy, the quaternion

differences compared to BTS measurements are also provided

in the figure. It is evident that the proposed sensor calibration

can estimate the BSN sensor model parameters accurately,

and provide accurate sensor orientation estimation. We also

noticed that although the converge speeds of optimization

based methods are slower than our proposed iterative method,

they can also provide accurate sensor orientation estimation.

To further illustrate the strength of the proposed sensor cali-

bration methods, we also implemented the sensor calibration

methods which ignored the mounting error [13] [16], and the

corresponding sensor orientation estimation results are also

shown in the Fig. 8. It is obvious that there are significant

improvements after taking the mounting error calibration into

consideration. This is mainly because there are small errors

among the coordinate systems of accelerometer, gyroscope

and magnetometer, and such errors compromised the final

orientation estimation accuracy. The quantitative comparison

results between the BTS system and BSN sensor platform are

shown in Table III. From the results derived, it is evident

that the proposed method significantly reduces the root mean

square (RMS) errors. There is also an excellent correlation

between the calibrated result with that of the BTS system.

The above analyses have shown that the proposed inertial

and magnetometer calibration methods can significantly im-

prove the attitude estimation accuracy, which indicates that the

calibration method can estimate the underlying sensor model

parameters accurately. Based on the derived sensor model,

the sensor readings can be converted to physical quantities

in metric units for accurate attitude estimation.

IV. CONCLUSION AND FUTURE WORK

In conclusion, we have presented a unified calibration

framework to determine different error parameters, such as

sensor sensitivity/scale factor error, offset/bias error, non-

orthogonality error, mounting error, and also the soft iron
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error and hard iron error for magnetometer. We combined

these error parameters together as the combined bias and

transformation matrix, and two-step approaches were proposed

to determine the combined bias and transformation matrix

separately. The calibration method was applied to the BSN

sensor node to acquire accurate acceleration, angular rate and

magnetic field measurements, which could be fused by a

quaternion-based linear Kalman filter to accurately derive the

attitude information. The experimental results show that more

accurate orientation information can be derived after effective

sensor calibration. It is expected that the method can be used

for a range of motion estimation applications including robotic

navigation and human biomotion analysis.

In this paper, the temperature related sensor drift has not

been addressed yet. Although this can be addressed by periodic

re-calibration, it may present difficulties for practical applica-

tions. Therefore, further work is required for continuous self-

calibration with consideration of different temporal character-

istics of the sensors combined with the use of temperature

controlled casing designs to minimise these errors. It is also

possible to model and incorporate temperature related drift

characteristics as the prior combined with real-time tempera-

ture monitoring to cater for these changes.

APPENDIX

A. Definition of C2M and M2C

Given any 3× J matrix

M =







m1 m4 · · · m3J−2

m2 m5 · · · m3J−1

m3 m6 · · · m3J






(46)

the M2C operator can be defined as:

M2C(M) = [m1,m2,m3, · · · ,m3J ]
T

(47)

and the C2M is the inverse operator of M2C, which convert

the column vector in equation (47) back to matrix M .

B. Proof of equation (35)

Proof:
∥

∥

∥
C2M(Rui

a,k)−Ha,k+1Ya

∥

∥

∥

=
∥

∥

∥
C2M(Rui

a,k)− C2M(Rui
a,k) · Y +

a Ya

∥

∥

∥

=
∥

∥

∥
C2M(Rui

a,k)(I − Y +
a Ya)

∥

∥

∥

(48)

For any matrices Υ and A, ‖I − Υ+Υ‖ < ‖I − A+Υ‖ is

always satisfied unless Υ = A [39], so
∥

∥

∥
C2M(Rui

a,k)−Ha,k+1Ya

∥

∥

∥

6

∥

∥

∥
C2M(Rui

a,k)
(

I −C2M(Rui
a,k)

+C2M(Rui
a,k−1)Y

+
a Ya

)
∥

∥

∥

=
∥

∥

∥
C2M(Rui

a,k)− C2M(Rui
a,k−1)Y

+
a Ya

∥

∥

∥

=
∥

∥

∥
C2M(Rui

a,k)−Ha,kYa)
∥

∥

∥

(49)

C. Proof of equation (36)

Proof:

∥

∥

∥
Rui

a,k−M2C(Ha,kYa)
∥

∥

∥

=
∥

∥

∥
RR+M2C(Ha,kYa)−M2C(Ha,kYa)

∥

∥

∥

=
∥

∥

∥
(RR+ − I)M2C(Ha,kYa)

∥

∥

∥

(50)

Similar to equation (49), we can have
∥

∥

∥
Rui

a,k−M2C(Ha,kYa)
∥

∥

∥

6

∥

∥

∥

(

RR+M2C(Ha,k−1Ya)M2C(Ha,kYa)
+−I

)

M2C(Ha,kYa)
∥

∥

∥

=
∥

∥

∥
RR+M2C(Ha,k−1Ya)−M2C(Ha,kYa)

∥

∥

∥

=
∥

∥

∥
Rui

a,k−1 −M2C(Ha,kYa)
∥

∥

∥

(51)

D. Definition of Int operator

Given the estimated combined bias B̂g and any Hg , for any

gyroscope reading yj,lg , (l = 1, 2, · · · , Nj), we can have:

uj,l
g = Hg(y

j,l
g − B̂g). (52)

For any uj,l
g , we can have the following ∆ql as

∆ql =





uj,l
g

|uj,l
g |

sin(
|uj,l

g |

2
∆t)

cos(
|uj,l

g |

2
∆t)



 (53)

where ∆t is the sampling interval. The quaternion qlj has the

following property:

qlj = ql−1

j ⊗∆ql (54)

where ⊗ is the quaternion multiplication and q0j =

[0, 0, 0, 1]T . The Int(y
j,1:Nj
g , Hg) can then be defined as:

Int(yj,1:Nj
g , Hg) = q

Nj

j . (55)
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