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Brauer relations in finite groups II:
Quasi-elementary groups of order paq

Alex Bartel and Tim Dokchitser

Communicated by Robert M. Guralnick

Abstract. This is the second in a series of papers investigating the space of Brauer rela-
tions of a finite group, the kernel of the natural map from its Burnside ring to the rational
representation ring. The first paper classified all primitive Brauer relations, that is those
that do not come from proper subquotients. In the case of quasi-elementary groups the de-
scription is intricate, and it does not specify groups that have primitive relations in terms
of generators and relations. In this paper we provide such a classification in terms of gen-
erators and relations for quasi-elementary groups of order paq.

1 Introduction

Let G be a finite group. Recall that there is a natural map from the Burnside
ring B.G/ of G to the rational representation ring RQ.G/, which sends a G-set to
the corresponding permutation representation. In [1], we have described the ker-
nelK.G/ of this map by giving a set of generators, following the work of Bouc [2]
who had described this kernel for p-groups. The purpose of this paper is to make
our description more explicit in the most difficult case, that of quasi-elementary
groups.

We will write elements of B.G/ as Z-linear combinations
P
H�G aHH , using

the identification between transitive G-sets and conjugacy classes of subgroups
of G that maps a G-set to a point stabiliser. We call an element of K.G/ a Brauer
relation.

If H � G, then there is an induction map B.H/! B.G/, which yields an
induction map K.H/! K.G/. We say that a Brauer relation of G is induced
from H if it is in the image of this map. Also, if N C G, then there is an inflation
map B.G=N/! B.G/, which induces a map K.G=N/! K.G/. We say that

The first author was partially supported by the EPSRC and is partially supported by a from the Royal
Commission for the Exhibition of 1851, and the second author is supported by a Royal Society
University Research Fellowship. Parts of this research were done at St Johns College, Robinson
College and DPMMS in Cambridge, CRM in Barcelona, and Postech University in Pohang. We
would like to thank these institutions for their hospitality and financial support.

Unauthenticated
Download Date | 7/5/16 11:13 AM



382 A. Bartel and T. Dokchitser

a Brauer relation of G is lifted from G=N if it is in the image of this inflation
map. We call a relation imprimitive if it is a linear combination of relations that
are induced and/or lifted from proper subquotients of G and primitive otherwise.
The quotient of K.G/ by the subgroup consisting of imprimitive relations will be
denoted by Prim.G/.

The main result of [1] is a group theoretic criterion for Prim.G/ to be non-trivial
and a determination of the group structure of Prim.G/ and of a set of generators.
This criterion is most complicated when G is quasi-elementary, i.e. when it is
of the form G D C Ì P , where C is cyclic and P is a p-group. Write K for
the kernel of the conjugation action of P on C . It is shown in [1] that for such
a group to have primitive relations, C must be of square-free order, and K must
be either trivial, or isomorphic toD8, or have normal p-rank one. WhenK is triv-
ial, a complete description of Prim.G/ is provided by [1, Proposition 6.5]. Here,
we explicitly describe the structure of those quasi-elementary groups for which
Prim.G/ is non-trivial in the case that the order of C is prime andK is non-trivial.
We determine the general shape of a presentation for such groups in terms of gen-
erators and relations, thereby explicating the criterion of [1, Theorem 7.30] in this
special case.

Theorem 1.1. Let G D C Ì P be quasi-elementary, where C is cyclic of prime
order q and P is a p-group with p ¤ q. Suppose that K D ker.P ! AutC/ is
either isomorphic toD8 or has normal p-rank one. A necessary condition forG to
have primitive relations is that P must be of the form P D K Ì A, where A acts
faithfully on C , and in particular is cyclic of order pm, say, A D hhi. Assume that
this condition is satisfied. Let K be generated by c of order pn and possibly x of
order 2 or 4 as in Proposition 2.2, and define j; k by hch�1 D cj , hxh�1 D ckx.
The following are all the cases in which Prim.G/ is non-trivial, together with the
group structure of Prim.G/:

(1) K is cyclic, p ¤ 2, n � m; Prim.G/ Š C up , where u D p � 2 if n D 1 and
u D p � 1 otherwise.

(2) K is cyclic, p D 2, j ¤ �1; moreover, either 1 < n � m, or j � 3 .mod 4/
and the order of j in .Z=2nZ/� divides 2m�1; in either case, Prim.G/ Š C2.

(3) K is generalised quaternion, k is odd, and n < m; Prim.G/ Š C2.

(4) K is dihedral, k is even, j ¤ ˙1, and

2n j j 2
m�1

� 1; 2n j k.j 2
m�1

� 1/=.j � 1/I

Prim.G/ Š C2.
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Brauer relations in finite groups II 383

(5) K is dihedral, k is odd, and either m > n or

j ¤ ˙1; 2n j .j 2
m�1

� 1/=.j � 1/I

Prim.G/ Š C2 � C2 if m > n and j ¤ ˙1, and Prim.G/ Š C2 otherwise.

Our strategy is equally suited to obtaining a concrete result of the same nature
when jC j has any other fixed number of prime divisors, although in the case under
consideration some substantial simplifications occur, most notably Proposition 2.5.

2 Some general results on the structure of P

We recall the relevant results from [1]. Throughout, we assume that G D C Ì P ,
where C is cyclic of prime order q and P is a p-group with p ¤ q. The kernel of
the conjugation action of P on C is denoted by K.

Proposition 2.1 ([1, Proposition 7.6]). If G has a primitive relation, then K is
either trivial or isomorphic to D8 or has normal p-rank one.

Recall that the normal p-rank of a group is defined as the maximal rank of
a normal elementary abelian p-subgroup.

Proposition 2.2 ([3, Theorem 5.4.10]). Let X be a p-group with normal p-rank
one. Then X is one of the following:

� the cyclic group Cpn D hc j cp
n

D 1i,

� the dihedral group D2nC1 D hc; x j c2
n

D x2 D 1; xcx D c�1i with n � 3,

� the generalised quaternion group,Q2nC1 D hc; x j c2
n�1

D x2; x�1cx D c�1i

with n � 2,

� the semi-dihedral group SD2nC1 D hc; x j c2
n

D x2 D 1; xcx D c2
n�1�1i with

n � 3.

Notation 2.3. If K is trivial, then Prim.G/ is described explicitly by [1, Proposi-
tion 6.5]. From now on, assume that K is either isomorphic to D8 or has normal
p-rank one. In particular, K contains a unique subgroup of order p that is normal
in G, which we will denote by C zp . Let H denote the set of those subgroups1 of P
that do not contain C zp , and let Hm be the set of elements of H of maximal size.
Let CK be either K if K is cyclic, or a cyclic index two subgroup of K that is

1 This definition slightly differs from the one in [1], where H was defined as a set of representa-
tives of conjugacy classes of subgroups.
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384 A. Bartel and T. Dokchitser

normal in G otherwise (such an index two subgroup is unique unless K D Q8,
in which case there may be three such groups, see [1, Notation 7.9] for details).
Set NCK D CCK .

Lemma 2.4 ([1, Lemma 7.27]). The group Prim.G/ is generated by relations of
the form

‚ D
X
QC� NCK

�.j QC j/. QCH � QCH 0/;

for H;H 0 2 Hm, where � denotes the Möbius function.

Proposition 2.5. If G has a primitive relation, then P is a semi-direct product
by K, P D K Ì A, where A acts faithfully on C .

Proof. Since jC j is prime, AutC is cyclic. So for a subgroup H of P , either the
image of H under P ! AutC is equal to that of P , or H is contained in the pre-
image under P ! AutC of the unique index p subgroup of AutC . Thus, either
Hm contains a subgroup whose image under P ! AutC is equal to that of P , or
the relations of Lemma 2.4 are all imprimitive by [1, Proposition 3.7].

Suppose for the rest of the proof that H contains a subgroup A of P whose
image in AutC is equal to that of P . If A intersects K trivially, then P must be
a semi-direct product K Ì A. In particular, this proves the claim in the cases that
K is cyclic or generalised quaternion, since in those cases intersecting K trivially
is equivalent to not containing C zp .

Suppose that K is dihedral or semi-dihedral (in particular, P is a 2-group).
Then P is a semi-direct product by CK . But since the automorphism of CK given
by conjugation by a non-central involution of K is not divisible by 2 in AutCK ,
this implies that P is a semi-direct product by K and the proof of the proposition
is complete.

Lemma 2.6 ([1, Corollary 7.4]). If K is non-trivial and P has cyclic centre, then
G has no primitive relations.

Hypothesis 2.7. From now on, assume that P is a semi-direct product by K and
that the conjugation action of the quotient on K has a non-trivial kernel.

Note that if jKj D p, and in particular P is a direct product, then [1, Proposi-
tion 7.29] implies that Prim.G/ Š Fp�2p . In the case that jKj ¤ p, we recall the
description of Prim.G/ in the special case under consideration that we want to
make explicit.
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Theorem 2.8 ([1, Theorem 7.30]). Assume that jKj > p. Define a graph � whose
vertices are the elements of Hm and with an edge between H;H 0 2 Hm if one of
the following applies:

(1) the subgroup generated by H and H 0 is a proper subgroup of P ,

(2) the intersection H \H 0 is of index p in H and in H 0, and HH 0=H \H 0 is
either dihedral, or the Heisenberg group of order p3.

Let d be the number of connected components of � . Then Prim.G/ Š .Cp/d�1,
generated by relations ‚ D

P
QC� NCK

�.j QC j/. QCH � QCH 0/ for H;H 0 2 Hm cor-
responding to distinct connected components of the graph.

Remark 2.9. If H is a proper subgroup of P , then its image in the Frattini quo-
tient of P is also a proper subgroup. Since the Frattini quotient is abelian, P acts
trivially on it by conjugation, so ifH 0 is any conjugate ofH ,H andH 0 never gen-
erate the whole of P . Thus, conjugate subgroups always lie in the same connected
component of � .

Notation 2.10. We will retain the notation � for the graph described in Theo-
rem 2.8 for the rest of the paper.

3 K is cyclic

Let
K D hc j cp

n

D 1i; n � 2:

The only subgroup ofK that does not containC zp is the trivial group, so H consists
of subgroups of P that intersect K trivially. We have P D K Ì A where A D hhi
is cyclic of order pm, acts faithfully on C and acts as hch�1 D cj onK with j of
order dividing pm�1 in .Z=pnZ/� and in particular j � 1 .mod p/.

All elements of Hm are of the form H˛ D hc
˛hi for 0 � ˛ � pn � 1. Con-

versely, such an H˛ is a complement of C �K in G if and only ifH˛ \K D ¹1º
if and only if c˛h has order pm.

Lemma 3.1. Let l be a prime and let n � 1 .mod l/ if l is odd and n � 1 .mod 4/
if l D 2. Then

vl.n
s
� 1/ D vl.n � 1/C vl.s/

for any positive integer s, where vl is the normalised l-adic valuation.

Proof. Set r D l if l is odd and r D 4 if l D 2. The isomorphism

exp W .rZl ;C/! .1C rZl ;�/
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386 A. Bartel and T. Dokchitser

preserves the standard filtrations on both hand sides, i.e. it satisfies

vl.t/ D vl.exp.t/ � 1/:

Raising to the s-th power on the right hand side corresponds to multiplying by s
on the left hand side and the result follows.

Now,

.c˛h/p
m

D c˛.j
pm�1Cjpm�2C���CjC1/ hp

m

D

8<:c˛
j pm

�1
j�1 ; j ¤ 1;

c˛p
m

; j D 1:

It follows that if ˛ � ˇ .mod p/, then H˛ 2 Hm if and only if Hˇ 2 Hm. More-
over, two such groups generate a proper subgroup of P , so the corresponding ver-
tices of � lie in one connected component of the graph. Thus, each connected
component is represented by some H˛ with 0 � ˛ � p � 1. If p is odd, then
Lemma 3.1 implies that for any ˛ 2 ¹1; : : : ; p � 1º, H˛ is a complement if and
only if m � n. If on the other hand p D 2, then H1 is a complement if and
only if either j � 3 .mod 4/ (since the order of j 2 .Z=2nZ/� divides 2m�1) or
j � 1 .mod 4/ and m � n (by Lemma 3.1). In particular, if p is odd and n > m
or if p D 2, j � 1 .mod 4/ and n > m, then the graph � has only one connected
component, so G has no primitive relations.

From now on assume that either n � m or p D 2, j � 3 .mod 4/, and the order
of j in .Z=2nZ/� divides 2m�1.

If ˛ 6� ˇ .mod p/, then H˛ and Hˇ together generate P . Since n > 1, the
group P=H˛ \Hˇ cannot be isomorphic to the Heisenberg group of order p3,
having exponent strictly bigger than p. Finally, P=H˛ \Hˇ can only be isomor-
phic to a dihedral group if p D 2 and j D �1, in which case any such quotient is
dihedral. This completes the proof of cases (1) and (2) of Theorem 1.1.

In all the remaining cases, we have p D 2.

4 K is semi-dihedral

A presentation of P by generators and relations is given by

K Ì A D hx; c; h j x2 D c2
n

D h2
m

D 1; xcx D c2
n�1�1;

hxh�1 D ckx; hch�1 D cj ;

n � 3; j 2 .Z=2nZ/�; k 2 Z=2nZi:

Here, k must be even, since if z is the central involution of K, then

h D x.xhx/x D xzkc�khx D zkxc�kckxh D zkh:
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Brauer relations in finite groups II 387

The only conjugacy class of non-trivial subgroups of K that do not contain the
subgroup C zp D hzi is that of non-central involutions, represented by hxi, so the
elements of H are subgroups of P that either intersect K trivially or those that
intersect it in hcrxi for some r 2 Z=2nZ.

Since k is even, h fixes a non-central involution, hcixh�1 D ckiCkx, and i can
be chosen such that ckiCk D 1. So without loss of generality, replacing x by cix
for such an i , assume that k D 0. In particular, elements of Hm have size 2mC1

and are isomorphic to C2 � C2m .
We claim that all elements of Hm are contained in hc2; h; xi, so that any two of

them generate a proper subgroup of P , which will show that G has no primitive
relations when K is semi-dihedral. Indeed, any element of Hm is of the form
hcrh; csxi, with the two generators commuting, and it suffices to show that both
r and s must be even. Since 1 D .csx/2 D zs , s must be even. Moreover, the
condition that the two generators commute implies that

crhcsx.crh/�1.csx/�1 D z�rc2rC.j�1/s D 1

H) 2r C .j � 1/s � 0 .mod 4/

H) r is even;

as required.

5 K is generalised quaternion

A presentation for P by generators and relations is

P D hx; c; h j c2
n

D h2
m

D 1; x2 D c2
n�1

; xcx�1 D c�1;

hxh�1 D ckx; hch�1 D cj ;

n � 2; j 2 .Z=2nZ/�; k 2 Z=2nZi:

Since every non-trivial subgroup ofK contains C z2 , H consists of subgroups of
P that intersect K trivially. Note that it follows from the fact that j is odd that the
parity of k is independent of the choice of x.

Case 1: k even. Then h, x, and c are independent in the Frattini quotient of P ,
which is therefore three-dimensional. Since elements of H are cyclic, no two of
them can generate P , so the graph � has only one connected component and G
has no primitive relations.

Case 2: k odd. The Frattini quotient of P is then two-dimensional and has
exactly three lines, generated by the images of x, h, and xh, respectively. Only
two of these can be images of elements of Hm, the lines generated by the images
of h and xh. The structure of K implies that two elements of Hm never satisfy
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388 A. Bartel and T. Dokchitser

condition (2) of Theorem 2.8, so we deduce that there is no edge between the
vertices of � corresponding to H;H 0 2 Hm if and only if their images in the
Frattini quotient of P are the lines generated by h and xh, respectively, and that
Prim.G/ Š C2 if and only if there exists an H 2 Hm with image hxhi in the
Frattini quotient, and is trivial otherwise.

An arbitrary element of Hm is of the form hhxıcri for ı 2 ¹0; 1º and 0 � r �
2m � 1, and a group of this form is in H if and only if hxıcr has order 2m (in
general, the order is greater than or equal to 2m). Such a group has image equal to
that of hxhi in the Frattini quotient if and only if ı D 1. We have

.hxcr/2
m

D c.j
2m�1Cj 2m�3C���Cj /.i�rCjr/

D

´
codd�2m�1

; j 2 D 1;

codd�.j 2m
�1/=.j 2�1/; j 2 ¤ 1:

By Lemma 3.1, the 2-adic valuation of the exponent is m � 1 in both cases, so the
right hand side is 1 if and only if m � 1 � n. That condition also insures that A
acts non-faithfully on K. This completes the proof of case (3) of Theorem 1.1.

6 K is dihedral

In this case P is given by generators and relations as

P D hx; c; h j c2
n

D h2
m

D x2 D 1; xcx D c�1;

hxh�1 D ckx; hch�1 D cj ;

n � 2; j 2 .Z=2nZ/�; k 2 Z=2nZi:

We have the following identities, which we will use repeatedly:

hixh�i D ck.j
i�1Cj i�2C���CjC1/ x D

8<:ck
j i�1
j�1 x; j ¤ 1;

ckix; j D 1;
(6.1)

hich�i D cj
i

: (6.2)

Recall that by Hypothesis 2.7, h2
m�1

acts trivially onK. Equations (6.1) and (6.2)
imply that this condition is equivalent to

2n j j 2
m�1

�1; i.e. 2n j .j 2�1/2m�2; and

´
2n j k2m�1; j D 1;

2nj k.j 2
m�1

� 1/=.j � 1/; j ¤ 1;

which we assume throughout. For any i 2 Z=2nZ, we have

.cih/2
m

D ci.j
2m�1Cj 2m�2C���CjC1/ h2

m

; (6.3)

.xh/2
m

D .c�kh2/2
m�1

D c�k.j
2m�2Cj 2m�4C���Cj 2C1/ h2

m

: (6.4)
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There are two conjugacy classes of non-trivial subgroups of K that do not con-
tain C z2 , represented by any hcevenxi and any hcoddxi, respectively.

Case 1: k even. Then equation (6.3) implies that c�k=2h has order 2m and
so without loss of generality, h may be replaced by c�k=2h, which acts trivially
on x by conjugation. Thus assume without loss of generality that k D 0. Also
equation (6.4) implies that, in this case, xh has order 2m, so h can always be
replaced by xh, which shows that for any j , the choices j and�j yield isomorphic
groups.

The elements of Hm are isomorphic to C2 � C2m . More precisely, a general
element of Hm is of the form hcıx; c
hi with the two generators commuting and
with c
h having order 2m.

We first claim that if j D ˙1, i.e. if P D K � A, then G has no primitive rela-
tions. Indeed, suppose without loss of generality that j D 1. First note that

hcıx; c
hi 2 Hm” .cıx/.c
h/ D .c
h/.cıx/

” cı�
xh D cıC
xh

” 
 2 ¹0; 2n�1º:

Let H1 D hcı1x; c
1hi;H2 D hc
ı2x; c
2hi 2 Hm. If ı1 D ı2 (or indeed if they

have the same parity), then H1 and H2 together generate a proper subgroup of
P and so lie in one connected component of � (see Theorem 2.8, condition (1)).
If ı1 ¤ ı2 but 
1 D 
2, then H1 \H2 has index 2 in each of them and the group
H1H2=H1 \H2 is dihedral, so again they lie in the same connected compo-
nent (Theorem 2.8, condition (2)). Finally, if we have ı1 ¤ ı2 and 
1 ¤ 
2, then
H3 D hc

ı2x; c
1hi 2 Hm also, and the same argument can be applied to the pairs
H1, H3 and H2, H3 to show that H1 and H2 lie in the same component of � .

Now suppose that j ¤ ˙1. We will show that in this case Prim.G/ D C2. Re-
placing h by xh if necessary, we may assume that j � 3 .mod 4/. First, we claim
that if hcıx; c
hi 2 Hm, then ı � 
 .mod 2/. Indeed,

hcıx; c
hi 2 Hm” c
hcıxh�1c�
 D c2
Cıjx D cıx

” 2
 C ı.j � 1/ � 0 .mod 2n/;

which forces 
 and ı to have the same parity, since j � 1 � 2 .mod 4/. Moreover,
for any given 
 , this equation has a solution for ı and vice versa.

IfH1 D hcı1x; c
1hi,H2 D hcı2x; c
2hi 2 Hm satisfy ı1 � ı2 .mod 2/, and
therefore also 
1 � 
2 .mod 2/, then H1 and H2 generate a proper subgroup
of P , so there is an edge between the corresponding vertices of � . It follows that
� has at most two connected components, represented by Hodd with ı1 odd and
Heven with ı2 even. It remains to show that two such groups exist in Hm and that
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390 A. Bartel and T. Dokchitser

they lie in distinct connected components of � . Now, there exists anHodd 2 Hm if
and only if coddh has order 2m, or equivalently (by (6.3)) 2n j .j 2

m

� 1/=.j � 1/,
or again equivalently (since j � 3 .mod 4/) 2nC1 j j 2

m

� 1, or equivalently (by
Lemma 3.1) 2nC1 j .j 2 � 1/2m�1. This holds by assumption.

Clearly, Hodd and Heven together generate P , so it is enough to show that
Hodd \Heven is of index greater than 2 in either subgroup. If the intersection was
of index 2, then it would contain an element of order 2m�1. ButHodd has only two
elements of order 2m�1, namely

e1 D .c

1h/2 D c
1.jC1/h2 and e2 D c

ı1x.c
1h/2 D cı1�
1.jC1/xh2;

and similarly for Heven. The former is in Heven if and only if

c
1.jC1/h2 D c
2.jC1/h2” 2n j .
1 � 
2/.j C 1/;

which is impossible since 
1, 
2 have distinct parities and j is assumed to be not
equal to -1 in Z=2nZ. Similarly, e2 is in Heven if and only if

cı1�
1.jC1/xh2 D cı2�
2.jC1/xh2” 2n j ı1 � ı2 C .
2 � 
1/.j C 1/;

which is also impossible since ı1 � ı2 is odd, while .
2 � 
1/.j C 1/ is even. This
finishes the proof of case (4) of Theorem 1.1.

Case 2: k is odd. In this case no complement of C �K in P fixes a non-central
involution of K.

Notation 6.1. Elements of Hm are either isomorphic to C2m and are complements
of C �K in P , or isomorphic to C2 � C2m�1 and generated by the unique index 2
subgroup of a complement of C �K in P and by a non-central involution of K.
We call the two kinds of elements of Hm full image subgroups and half image
subgroups, respectively, according to their image in AutC .

We begin by counting the number of elements of Hm of each of the two kinds.
An arbitrary full image subgroup of P is of the form Hg D hghi for g 2 K, and
conversely, such a group is in H if and only if gh has order 2m. By our assumptions
(cf. (6.3)), this is satisfied for g D ci for any i 2 Z=2nZ. Also, by (6.4), xh has
order 2m if and only if

2n j j 2
m�2
C j 2

m�4
C � � � C j 2 C 1;

which we assume to hold for j D 1, while for j ¤ 1 the condition is equivalent to
m > n by Lemma 3.1. Since replacing h by cih for any i changes neither j nor the
parity of k, the same condition holds for hx0hi 2 H for any non-central involution
x0 ofK. It follows that there are 2n full image subgroups of P ifm � n, and 2nC1

otherwise.
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Next we determine which of these subgroups are conjugate in P . The orbit of
any full image subgroupH underP -conjugation has size jP=NPH j D jP=CPH j.
The last equality follows from the fact that H is a complement in a semi-direct
product. Since H does not commute with any non-central involution of K, we
have

CPH D ¹c
ahb j b 2 Z=2mZ; a 2 Z=2nZ; a.j � 1/ D 0 2 Z=2nZº:

The centraliser has size 2m.j � 1; 2n/, so the orbit has size 2nC1=.j � 1; 2n/.
Note that if m � n, then our assumptions imply that j � 3 .mod 4/. Indeed, oth-
erwise

v2..j
2m�1

� 1/=.j � 1// D m � 1 < n;

contradicting the assumption that 2n j .j 2
m�1

� 1/=.j � 1/. Thus, if m � n, there
is one orbit of full image subgroups of P .

If on the other hand m > n, then Hx is also a full image subgroup with cen-
traliser

CPHx D ¹c
a.xh/b j b 2 Z=2mZ; a 2 Z=2nZ; a.j C 1/ D 0 2 Z=2nZº:

Replacing h by xh if necessary, we may assume that j � 3 .mod 4/. Then the
orbit of H D H1 has size 2n and the other orbits have all size 2nC1=.j C 1; 2n/.
We deduce that the total number of orbits is

1C
2n

2nC1=.j C 1; 2n/
D 1C

.j C 1; 2n/

2
:

From now on, assume without loss of generality that j � 3 .mod 4/. To sum-
marise the computations, we have

Proposition 6.2. If m � n, then H1 represents the unique conjugacy class of full
image subgroups in Hm. Otherwise, the distinct conjugacy classes of full image
elements of Hm are represented by ¹Hgº, g 2 ¹1; x; cx; : : : ; c.jC1;2

n/�1xº.

We now turn to the computation of half image elements of Hm. These are of
the form

B D hcbxıh2; caxi:

Multiplying cbxıh2 by cax if necessary we may assume ı D 0, and denote the
resulting group by Ba;b . We have

cbh2 � cax � .cbh2/�1 � .cax/�1 D c2bCk.jC1/Ca.j
2�1/:

The two generators commuting is equivalent to

2b C k.j C 1/C a.j 2 � 1/ � 0 .mod 2n/; (6.5)
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which, given any a 2 Z=2nZ, has two solutions for b. This yields at most 2nC1

half image subgroups. Moreover, since any solution of (6.5) automatically satisfies
v2.2b/ � v2.j C 1/, we claim that cbh2 has order 2m�1 (the minimal possible),
so that any such Ba;b really does represent an element of Hm. Indeed,

.cbh2/2
m�1

D cb.j
2m�2Cj 2m�4C���Cj 2C1/

D

8<:cb
j 2m
�1

j 2�1 ; j 2 ¤ 1;

cb2
m�1

; j 2 D 1:

When j 2 6� 1 .mod 2n/,

b
j 2

m

� 1

j 2 � 1
D
j 2

m�1

� 1

j � 1
�

b

j C 1
� .j 2

m�1

C 1/:

The three terms on the right have 2-adic valuations � v2.2n/, � �1 and � 1 re-
spectively, so the product is a multiple of 2n. When j 2 � 1 .mod 2n/, the same
computation together with Lemma 3.1 proves that b2m�1 is a multiple of 2n, as
required. Thus, the half image subgroups of P are precisely Ba;b for any solution
a; b of (6.5).

Lemma 6.3. There are two conjugacy classes of half image maximal groups in H :
for any a the representatives are Ba;b; Ba;b0 , where b; b0 are the two different
solutions of (6.5).

Proof. Because conjugation by h acts on the non-central involutions of K as
x 7! cix, i odd, and conjugation by c maps x 7! c2x, all non-central involutions
of K are P -conjugate. Because the orbit of cax has length 2n, its centraliser has
size 2mC1, so it must be C z2 � Ba;b . Therefore the normaliser of Ba;b is of the
same size (a normalising element must fix Ba;b \K D ¹1; caxº), so its orbit has
size 2n as well.

Finally, we determine which vertices of � corresponding to the elements of Hm

are connected by an edge, and hence the structure of Prim.G/.

Lemma 6.4. If j D �1, then the unique full image subgroup of P that intersects
a half image subgroup in an index 2 subgroup is H . If j ¤ �1, then there are no
such full image subgroups.

Proof. We always have the full image group H D hhi. The unique index 2 sub-
group of H is a subgroup of a half image group if and only if b D 0 is a solution
of (6.5) (for some a), which it is if and only if j � �1 .mod 2n/.

Other full image groups (in the casem > n) are generated by cdxh for some d .
The square of this element is cd�k�djh2. The exponent b is odd, so it cannot

solve (6.5), since j C 1 � 0 .mod 4/.
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Proposition 6.5. The group Prim.G/ is isomorphic to

� ¹1º if m � n and j D �1,
� C2 if m > n or j ¤ �1 but not both,
� C2 � C2 if m > n and j ¤ �1.

Proof. First, note that two half image groups always generate together at most
the preimage of the unique index 2 subgroup of AutC , so they always lie in the
same connected component of the graph � . A full image group and a half im-
age group together always generate all of P (the group they generate contains a
non-central involution of K and a complement to K in P , hence also c, since
k is odd). If j D �1, then H intersects a half image subgroup in an index 2
subgroup and the quotient of P by that intersection is dihedral, so in this case,
H lies in the same connected component of � as the half image groups. Propo-
sition 6.2 and Lemma 6.4 now imply that if m � n, then Prim.G/ is trivial if
j D �1 and has order 2 otherwise. Suppose thatm > n. Two full image groups of
the form Hcix generate a proper subgroup of P , since the subgroup they generate
contains no non-central involutions of K. On the other hand, H together with any
non-conjugate full image subgroup generates P by the same argument as above,
and the intersection of two such groups has index greater than 2, using the fact that
k is odd. The claim of the proposition follows.

This finishes the proof of case (5) of Theorem 1.1.
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