
 

warwick.ac.uk/lib-publications  
 

 

 

 

 

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

Permanent WRAP URL: 

http://wrap.warwick.ac.uk/80148 

 

Copyright and reuse:                     

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to cite it. 

Our policy information is available from the repository home page.  

 

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/
mailto:wrap@warwick.ac.uk


Simulating Collective Motion from

Particles to Birds

by

Adam Morrison Miller

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

Physics and Complexity Science

August 2015



Contents

Acknowledgments iv

Declarations v

Abstract vi

Chapter 1 Introduction 1

1.1 Modelling in Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Collective Behaviour in Nature . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Starlings and STARFLAG . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Empirical Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 Animal Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.4 Flocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.5 Models and Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Bird Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Vertebrate Vision and the Brain . . . . . . . . . . . . . . . . . . . 13

1.3.2 Visual Field Size and Acuity . . . . . . . . . . . . . . . . . . . . . 16

1.3.3 Vision and Movement . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.4 Optical Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.5 Specification for Visual Models of Bird Flocking . . . . . . . . . . 18

1.3.6 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 2 A 3D Visual Model of Flocking 20

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Making Neighbour-based Measurements in 3D . . . . . . . . . . . . . . . 24

2.3.1 The problem of Borders . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Methods to Remove Boundary Bias in Statistics over Neighbours . 28

i



2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.1 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.2 Autocorrelation Times . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.3 Parameter Space Diagrams . . . . . . . . . . . . . . . . . . . . . . 36

2.4.4 Model Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.5 Long Time Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Scaling of Simulation Flock Size and Marginal Opacity . . . . . . . . . . . 42

2.6 Comparison with Empirical Data . . . . . . . . . . . . . . . . . . . . . . 48

2.6.1 Predicted Scaling of the Linear Flock Size rmax . . . . . . . . . . 49

2.6.2 Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.6.3 Morphology: Anisotropy in Flock Dimensions . . . . . . . . . . . . 58

2.6.4 Anisotropy in Nearest Neighbours . . . . . . . . . . . . . . . . . . 62

2.7 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.7.1 Spherical Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.7.2 Projection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.7.3 Calculating Opacity: Spherical Surface Integration . . . . . . . . . 72

2.8 n-Nearest vs Delaunay Neighbours: A 2D Case Study . . . . . . . . . . . 75

2.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.10 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Chapter 3 2D 2-Step Models Inspired by Optical Flow 82

3.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.1.1 The 2 Member ‘Flock’ . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.1.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.1.3 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.2.1 Parameter Space Diagrams . . . . . . . . . . . . . . . . . . . . . . 89

3.2.2 Model Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Chapter 4 A 2D Simulation Model of Thermophoresis 106

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2 Summary of the Mean Field Continuum Theory . . . . . . . . . . . . . . . 109

4.2.1 The Continuum Model . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2.2 The 2D Continuum Model . . . . . . . . . . . . . . . . . . . . . . . 115

ii



4.3 Direct Particle Simulation Model Description . . . . . . . . . . . . . . . . 120

4.3.1 Inter-particle Repulsion . . . . . . . . . . . . . . . . . . . . . . . . 121

4.4 Heating of 2D Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.5 Evolution of the Temperature Distribution . . . . . . . . . . . . . . . . . . 124

4.6 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.6.1 Comparison with the Mean Field Model . . . . . . . . . . . . . . 126

4.6.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.6.3 Timesteps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.8 Setting the Repulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.8.1 Setting the Lengthscale of Repulsion . . . . . . . . . . . . . . . . 130

4.8.2 Illumination Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 133

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.10 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Chapter 5 Conclusions 137

Appendix A 3D Flock Order Parameter Traces 140

iii



Acknowledgments

My heartfelt thanks go to the friends I’ve made over my time at Warwick. In particular

Mike Irvine (for making me laugh so hard I cried), Jamie Harris (for sharing my love

of golf and pub quizzes), Peter Dawson (ditto), Ben Collyer, Dan Sprague and Mike

Maitland plus the wider Compexity community. More thanks go to all those I have

shared an office with, for brightening up my days:

Year 1 Mike Irvine, Dan Peavoy and Martine

Year 2 Mike Irvine, Mike Maitland, and occasionally Marcus Ong

Year 3 Mike Irvine, Mike Maitland, Liz Buckingham Jeffrey and Diana Khoromskaia

Year 4 Mike Irvine, Ben Collyer, Dan Sprague and Alistair Tucker

You all made my time here very special, if not exactly enjoyable. Of course, a consider-

able amount of thanks go to my partner Katie, without whom I would never have come

even this far (by refusing to let me quit without handing something in). This thesis was

typeset with LATEX 2ε
1 by the author.

1LATEX 2ε is an extension of LATEX. LATEX is collection of macros for TEX. TEX is a trademark of the
American Mathematical Society. The style package warwickthesis was used.

iv



Declarations

The computer models this work is based on were entirely coded by me. The 3D flocking

simulation is based on a 2D model of Pearce et al. [2014], which was developed for 3D

by me (i.e. all geometric and integration algorithms, either designed or selected by me

and what was meant by the 3D analogue). Some of the 3D flocking results appear in

that paper. The analysis of the 3D work was done in collaboration with Matthew Turner

(my PhD supervisor). The 2D 2-step flocking models were entirely devised, implemented

and analyzed by me. The photothermothoresis simulation code of a model developed

in collaboration with Matthew Turner, was written by me with guidance from Arran

Tamsett based on his continuum model.

v



Abstract

The main work of this thesis is the construction of a 3D computer model of animal

flocking based on vision. The model took an additional input, to those usually considered

in tradition models: the projection of all other flock members on to an individual’s field

of view. Making 2D models is easy (in fact 4 new ones are included in this thesis),

but we should be drawing parallels with experimental data for behaviour in animal

systems and we should be cautious indeed when drawing conclusions, based on those

models. It is common in the literature not to compare model behaviours with measurable

quantities of natural flocks. However this work makes a concerted effort to do so in

the case of the 3D model. A direct comparison was made in this work between the

simulations and an empirical study of starling flocks, of the scaling behaviour of the

maximum distance through the flock and the number of flock members, for which the

agreement was very good. Other flock properties were compared with the natural flocks,

but with less satisfactory results. A careful literature survey was made to investigate and

ultimately support the biological plausibility of the 3D projection model. Biological and

physiological plausibility is a factor not often considered by computational modellers. A

series of novel and related 2D computer flocking models were investigated with hopes to

find a single flocking rule that could manifest the most important features of collective

motion and thereby be highly parsimonious. The final part of this thesis concerns a 2D

computer model of photothermophoresis based on langevin dynamics, which it may be

possible to use to find evidence of a density transition found in the continuum model.

There was some evidence that a transition from a transparent diffuse state to an opaque

compact one may exist for the discrete particle simulation.
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Chapter 1

Introduction

“In my beginning is my end.”

TS Eliot – East Coker, 1

1.1 Modelling in Biology

To paraphrase Sumpter, there are two approaches to modelling biological phenomena,

functional and mechanistic [Sumpter, 2010]. To take a mechanistic approach is to ask

how do these organisms do something. To take a functional approach is to ask why.

In the case of flocking behaviours there are many theories as to the why and also as

to the how. In this work the focus is mainly on the how, but it is important to think

about the why, as understanding the function of a behaviour can be informative as to

how the behaviour is produced. What we are looking for when constructing models

are the behavioural rules that result in an organizational effect (characteristic of the

swarm) [Parrish et al., 2002]. Hence most models of swarming avoid the details of the

biomechanics of the individual’s movements and the effects of the surrounding medium

and instead deals with a series of movement decisions made at discrete points in time.

These decisions are made based on behavioural rules and it is these behavioural rules

that we would like to determine, by inference from observed behaviour.

1.2 Collective Behaviour in Nature

The natural world is teeming with examples of collective behaviour and in particular

collective motion. The flocking of birds, swarming of fish, the marching of locusts and

1



Figure 1.1: The natural world is teeming with examples of collective motion. a) marching
wingless locusts, b) rotating army ants, c) a 3D array of golden rays, d) a fish vortex,
e) starlings avoiding a predatory bird, f) a zebra herd, g) self-organized human ‘traffic
lanes’, h) stationary sheep with alignment interactions. Taken from Vicsek and Zafeiris
[2012].

the dynamics of crowds have all attracted the attention of investigators [Ballerini et al.,

2008a; Faria et al., 2010; Buhl et al., 2006; Helbing and Molnár, 1995]. A recent review

of investigations into natural collective motion, covering experiments, methods, models

and simulations has been given by Vicsek and Zafeiris [2012].

Animal swarms fall into a category of physical systems called ‘Active Matter’.

They are active in the sense that they are driven by an internal store of energy that

they convert into locomotion, i.e. they are self-propelled particles. Agent-based models

from Reynolds boids model and, in the physics literature, starting with Vicsek’s self-

propelled particle model onwards, have proven popular methods of investigating the rules

governing collective motion [Reynolds, 1987; Vicsek et al., 1995]. These models focus

on the rules governing the motions of individuals acting autonomously, but responding

in such a way as to exhibit collective motion (which is an emergent property). When

designing such models, rules are formulated to reproduce observed properties of flocks.

There are many aspects of the observed collective behaviours that could be used to form

models, including positional preferences for neighbours and behavioural matching (aka

allelomimesis), most noticeable in highly aligned orientations of neighbouring individuals

in translating flocks.

2



There are at least two possible levels of behaviour that give rise to movement

rules:

1. Behaviours with an immediate benefit to the individual that modify position with

regards to neighbours, such as collision avoidance, or reduced exposure to preda-

tors.

2. Behaviours that benefit the group as a whole but do not necessarily improve the

individual’s position.

These individual level behaviours are encoded into models typically by using three types

of rules:

• Alignment: individuals align with their neighbours.

• Cohesion (or attraction): individuals are attracted to nearby flock-mates.

• Separation (or repulsion): individuals avoid collision with nearby flock-mates.

These rules are often included together in models and may have different domains

of effect, such as in Reynold’s or Couzin’s models [Reynolds, 1987; Couzin et al., 2002],

or they may have a functional dependence on distance, i.e. fij(r) [Grégoire et al., 2003;

Mogilner et al., 2003].

The idea of ‘neighbours’ is very important, particularly for the alignment in-

teraction. It is considered that individuals respond only to nearby or ‘neighbouring’

flock-mates to determine their headings at the next moment. Neighbours can be defined

as those flock members within a certain distance of a focal individual. It may not be

obvious, but we actually need to define what we mean by distance.

A brief note on terminology is that it has become common to refer to ‘metric’

and ‘topological’ distances in the literature. This can be confusing as both of these

are metrics in a mathematical sense. A ‘metric’ interaction here, is purely a function of

distance, e.g. two particles interact if they are within a fixed radius. In contradistinction,

a ‘topological’ interaction does not depend exclusively on the distances involved, but

on some geometrical criterion, e.g. one particle interacts with another if the other

is less than the fourth nearest neighbour (not necessarily a symmetric relationship).

This topological definition says nothing about the absolute distances between the two

particles, but only how the particles are located in space relative to other particles.

Following Vicsek and Reynolds, alignment has typically been introduced via the

velocity update rule for an individual, by taking an average over their neighbours’ ve-

locities. The neighbourhood has usually been through a metric distance, which is an

3



additional model parameter and without biological foundation. Ballerini et al. [2008a]

found that a topological as opposed to a metric distance, provides a more appropriate

definition of neighbour for their empirical data and therefore the Voronoi diagram (a

topological construction) was used to determine neighbour relationships in this study.

Cohesion has generally been approached differently in the physics literature, al-

though it can be implemented as ‘move towards your neighbours if you are within a given

radius’ in the Reynolds style. In many cases cohesion has been induced by introducing

an attractive potential between particles, which is a physicist’s approach, but does not

reflect a likely biological mechanism and assumes an interaction that varies with dis-

tance. Without a cohesive term, model flocks tend to disperse over time unless they are

confined by boundary conditions which fixes the average density.

Separation can be enforced by a repulsive zone generated by repulsive short-range

potentials. This is again an ad hoc approach which produces a desired biological effect,

but with an implausible mechanism. Separation is important as it prevents overcrowding

and collisions. If models have both an attractive and repulsive force, this leads to a

potential well which fixes the flock density for all flock sizes as distances are then around

the potential minimum. It is known however that density decreases with flock size for

starlings as shown in Ballerini et al. [2008a].

Models can have different zones of interaction for alignment, cohesion and sepa-

ration such as Reynold’s original model and others e.g. Couzin et al. [2002]. Typically

zones of repulsion are close to the focal individual, followed by the zone of alignment and

then at the furthest distance a zone of attraction – to prevent flock dissipation. These

models are simulated in discrete time and a mathematical description for the velocity

update rule for individual i of n flock members, in these ‘physicists’ models’ is:

~vi = φa 〈~v(t)〉na
+

1

n

nin∑
j=1

fij
~rij(t)

|~rij(t)|
+ φe~ηi(t) (1.1)

where 〈~v(t)〉na
is the average velocity over the na neighbours in the alignment effect’s

range (to be defined later) and fij are repulsive or attractive dependent on which zone

individual j is located in relation to individual i. ~ηi(t) is a noise vector, which ap-

proximates imperfect perception and decisions in biological agents. φa, φe are control

parameters for the relative proportions of the alignment and noise terms. nin the number

of particles within the maximum interaction zone radius. The strengths of the interac-

tion forces fij can vary depending on not just the distance, but also the angle, as there

is a blind angle at the rear for fish and birds.

4



Figure 1.2: Interaction zones in typical flocking models [Giardina, 2008]. Force based
models of flocking often have different sized zones of repulsion, alignment and attraction
(a). It is thought that repulsion reflects collision avoidance and this is only necessary
at close range and that attraction occurs between flock members at larger distances (to
prevent the flock breaking up) and alignment to occur at intermediate distances. Of
course these ranges can be adjusted depending on what biological system is being mod-
elled. b) An example force profile and the effect it has on the distance to neighbouring
individuals.
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Agent-based models do not yield analytical solutions, however theoretical work

has been done on continuum models. A continuum approximation approximating a flock

as a fluid could be considered drastic as most biological flocks are on the macroscale or

the mesoscale and individuals are not point particles (thereby excluding volume) this

was the approach of Toner and Tu [1998]. Another theoretical approach has been to

use statistical mechanics to investigate properties such as the flock order (the physics

of spin systems has considerable analogies with this problem) [Tanner et al., 2003b,a].

An interesting theoretical model due to Tanner, represents flocks as networks (using

a Delaunay triangulation) and information diffuses through the network described by

the graph Laplacian (the network analogue of the diffusion operator). Tanner uses this

model to prove that a Delaunay connected flock can remain connected in time with a

very simple rule for maintaining distance. Ginelli and Chate [2010] found essentially the

same result through simulation of a flock using a Delaunay triangulation neighbourhood

for the alignment interaction. The flock size grew with time, due to the lack of a

cohesion term in the model, but unlike with a metric interaction, the flock never became

disconnected.

1.2.1 Starlings and STARFLAG

This work focuses on the common European starling (sturnus vulgaris) as an archetypal

flocking animal. Starlings are famous for their ‘murmurations’. These are aerial displays

that can contain tens of thousands of birds and are visually very impressive, forming

complex and ever changing shapes. Particularly large murmurations happen outside of

the breeding season. They form just before dusk and last about half an hour. During

which the thousands of starlings fly around the breeding site in huge flocks that change

shape and density, with intermittent splitting and recombining of the flock. The display

ends with the starlings roosting in trees for the night.

One reason for this focus is the STARFLAG project - a European Union funded

project to record the positions of individuals in large starling flocks. From this recorded

data, various measures were extracted, such as density and nearest neighbour distribu-

tion and anisotropy which are useful for comparisons with agent-based models [Cavagna

et al., 2008b,a]. They used a trifocal stereography technique, i.e. a 3-camera setup

to obtain the position data. The technique itself was not novel, but the algorithms to

solve the correspondence problem between images of each bird (often obscured behind

other birds) were [Cavagna et al., 2008b]. The two stereocameras were set 25 m apart

on the base line, as illustrated in fig. 1.4. The set-up could achieve, with two targets at

6



Figure 1.3: The European starling sternus vulgaris, whose murmurations were the fo-
cus of the EU STARFLAG project. By Dick Daniels (http://carolinabirds.org/) (Own work) [CC BY-SA 3.0

(http://creativecommons.org/licenses/by-sa/3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons

a distance of 100 m from the baseline (a typical measurement distance) and a relative

distance of 1 m, an accuracy of ±0.04 m on the relative distance, which is below 5%

[Ballerini et al., 2008b].

1.2.2 Empirical Studies

A question that is of central importance in the study of flocking behaviours is “Is the

nature of the interaction short or long ranged”. The focus up until recently was on

short range interactions Sumpter [2010]. However Pearce et al. [2014] studied the role of

projection in control of bird flocks, there we suggested a long distance interaction to be

responsible for flock cohesion (see chapter 2). In the case of starlings, members of the

STARFLAG group have tried to address this question from their experimental positional

data for starling flocks. They reported in Ballerini et al. [2008a] that the anisotropy in the

angular distribution of nearest neighbours decays over a short range and the distribution

is essentially uniform after approximately the 7th nearest neighbour The interaction

cutoff, nc, is the nth nearest neighbour whose angular position is found to be isotropically

distributed in the individual’s view. For the observed starling flock nc = 8.0 ± 0.5 (std

error). Cavagna et al. [2014] pointed out that the use ‘structural proxies’ (such as in

Ballerini et al. [2008a]) does not directly access the interaction. They instead used a

maximum entropy method to fit experimental velocity correlation functions, which are

inherently long-ranged and were able to infer short-range interactions. The velocity

7



Figure 1.4: The 3-camera set up used by Cavagna et al. [2008b] to capture 3D position
(and hence velocity) data for starling murmurations in Rome, Italy.The stereocameras
Cameras A and C, are very precisely spaced along a supporting aluminium bar. A thin
line was then attached to these cameras under high tension to fix the convergence angle.
To solve the problem of matching images of individuals on A with those on C, a third
camera B is used, which need not be aligned with A (or B, for that matter).

correlation function was defined as follows, where ~si is the unit direction vector for

individual i and kij is the topological distance order (of j from i).

Ĉ(n; {~si}) =
1

N

N∑
i,j=1

~si · ~sjδ(kij − n) (1.2)

Ĉ(n) does not decay to zero at large distances due to the directional order inherent in

flocking. Hence to investigate the decay of velocity correlation information a connected

correlation function is introduced, which essentially removes the order parameter squared

and does decay to zero at large distances.

Ĉ(n; {~si}) =
1

N

N∑
i,j=1

δ~si · δ~sjδ(kij − n) (1.3)

where δ~si = ~si − (1/N)
∑

k δ~sk. It is important to note that this method makes no

explicit assumption about the nature of the alignment interaction. Modelling the velocity

analogously to spins in an Ising-type model, they found that a coupling strength J(n)

8



Figure 1.5: Left The connected correlation function C(n) compared to the interaction
J(n). Right Close up of the interaction J(n), the full line is an exponential fit to the
data (see the inset). Top N = 2126, J0 = 5.63 amd nc = 6.11. Bottom N = 717,
J0 = 25.63 and nc = 7.41. From Cavagna et al. [2014].

for the alignment decays exponentially with topological distance order n between birds.

J(n) = J0 exp (−n/nc) (1.4)

Where nc is the topological (n-th) neighbour cut-off for the velocity interaction. Us-

ing this model for the velocity interaction between flock neighbours a linear fit to the

decaying velocity correlation function for 2 empirical flocking events was found. This

produced an estimate that nc = 6.5± 0.9 (standard error), with the maximum entropy

(ME) method being used to discard more distant neighbours in the fit (see Fig. 1.5). Es-

sentially the entropy is not decreasing with the addition of more distant neighbours and

they contain no information even for noise fitting. From this they deduced the effective

alignment interaction in starling flocks is short-ranged. When the analysis was repeated

using the metric distance r they found the metric range rc scales with the density and

hence further justification of the argument in Ballerini et al. [2008a] that the interactions

are topological and not metric to achieve this scale-free behaviour. Cavagna et al. [2014]

extended their ME analysis to the question of whether the interaction is isotropic. They

did this by defining θij as the angle between ~rij and the flock’s direction of motion ~V . θij

was considered to be in the longitudinal sector (L) if cos θij > 1/2 and in the transverse

9



sector (T ) otherwise (a symmetrical relationship). Hence the longitudinal and transverse

correlation functions could be defined:

ĈL,T =

∑
i,j ~si · ~sjδ(kij − n)Θ(±| cos θij | ∓ 1/2)∑

i,j δ(kij − n)Θ(±| cos θij | ∓ 1/2)
(1.5)

where Θ(x) is the Heaviside step function. Using the observed L and T correlation

functions, they found that the interaction between first nearest neighbours in the trans-

verse direction is slightly greater than that in the longitudinal direction. However this

anisotropy already disappears at n = 2. This suggests they align more with neighbours

at their sides, than in front or behind. This can be rationalized on the basis that collision

avoidance is easier through alignment than speed changes for those neighbours at the

sides. In Ballerini et al. [2008a] nearest neighbours were found to be more often at the

sides of an individual and it would seem that alignment is the mechanism for this.

Note this does not invalidate our model in Pearce et al. [2014] as the STARFLAG

work is concerned with alignment interactions and doesn’t take into account cohesive

interactions (such as the projection term described later), but it does give useful insights

into how to model the alignment interaction. It is clear from a phenomonological point

of view that the alignment interaction should be short range and topological in nature,

such as one based on the Delaunay triangulation when in a large dense flock. From a

mechanistic point of view one expects the interaction to be based on vision in birds,

but the mechanism is not explicitly modelled in this work (other than excluding visually

occluded neighbours).

1.2.3 Animal Groups

Many animal species live at least part of their time in communities; pelagic fish and

ungulates for example. The groupings tend to undergo fission-fusion dynamics and have

varying dynamical timescales [Couzin and Laidre, 2009]. Some species fission in daylight

to forage and fuse at night for protection, whereas bird flocks often fission and fuse during

the space of a minute. The underlying aggregation laws result in familiar distributions:

when fusion is relatively high the distributions are often heavy-tailed; and when fission

is relatively high the probability of finding a group of that size decays exponentially with

the size [Gueron and Levin, 1995]. For fusion dominated heavy-tailed (power law-like

distributions) there is no characteristic size of group, which implies that scalings of group

properties are more important than properties at a fixed group size.

It has been suggested that groups form due to individuals seeking a target density
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(STD) for neighbours in their immediate vicinity. That is to say they attempt to position

themselves within the flock so that they obtain as closely as possible a target local

density. This target density is assumed to be dependent on the environment and can be

used to derive an integro-differential equation for swarming [Grünbaum, 1994]. As these

equations only seek to reproduce the observed phenomena and not explain why there is

a local target density, this is a mechanistic description of flocking phenomena.

1.2.4 Flocking

A problem with the flocking literature is that ‘flocking’ means different things to different

authors. Heppner [1974b] introduced a taxonomy of airborne bird flocks, which primarily

divides flocks into ‘flight aggregations’ and ‘flight flocks’. With the distinction being

that aggregations are for a common purpose, such as circling overhead a fish school,

whereas flight flocks are groups of flying birds that undertake coordinated aspects of

flight (e.g. take off, turning and landing). A higher order division of flight flocks is into

‘line formations’ such as geese and ducks and ‘cluster formations’ that have more three

dimensional structure, such as starling flocks [Heppner, 1974a]. The sort of flocks or

swarms that this work is concerned with are flight flock cluster formations according to

this taxonomy and are often described in the literature as ‘aggregations’ and lead to how

(mechanistic) questions, i.e. what are the rules that underly the behaviour [Bajec and

Heppner, 2009]?

Perhaps we should ask why animals flock at all? The majority opinion is that

flocking is an evolved behaviour that provides protection against predatory animals.

This is known as the ‘many eyes theory’ and rests on the assumption that larger and

more cohesive groups are more able to spot and respond to predators.

An alternative hypothesis is the ‘selfish-herd theory’ of Hamilton [1971], whereby

the probability of being predated is reduced by the abundance of other targets in the

group. This hypothesis naturally extends to spatial aspects. The ability to put another

individual in between the predator and themselves, making the other a more vulnera-

ble target can be advantageous. Although the other might have a better view of the

approaching predator and be better able to respond! If we posit that a predator will

tend to attack the nearest individual, then one that has a large empty space around

themselves has a large domain of danger (DOD). Inside this zone the predator will be

closest to that individual. Hence to reduce this DOD, flocks should compact towards

the centre of mass. It has been found that sheep have a strong attraction to the centre

of the flock when they are under predation (by a sheepdog...) [King et al., 2012]. Thus
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the sheep aggregated into a single tight cluster with the sheep packed ‘side-by-side’. In

contrast the densest part of starling flocks tend to be at the edges. Consideration of

selfish herd theory has lead to the observation that any ‘good’ flocking rule should result

in statistically beneficial positions for the individuals that follow it [Viscido et al., 2002].

That is to say, the rules do not necessarily always improve the survivability in a given

encounter with a predator, but on average, the domain of danger should be reduced.

The ‘confusion effect’ is a further potential driver towards the evolution of flocking

behaviour. A large number of fast moving prey could potentially overwhelm the sensory

apparatus of the predator. This confusion could prevent the predator intercepting the

prey, particularly if the agents are birds in flight, where movement is in 3 dimensions.

1.2.5 Models and Simulation

Hildenbrand et al. [2010] created a highly detailed flocking model to deal specifically

with starling flocks. It incorporated some additional physical constraints on the parti-

cles movements, such as simply-modelled fixed wing flight and ‘banking’ into turns (no

instantaneous changes of direction). The model is a social force model and incorporates

attraction to a roosting site (as large murmurations occur shortly before roosting at

night), which is particular to starlings. The inter-bird separation, number of interacting

neighbours and the thickness of the flock are all tuned to reproduce observed features,

whereas most of the aerodynamic parameters are inferred from theory and experiment.

This is clearly a heavily parametrized model, but most of the parameters are determined

in a principled way. Hildebrandt et al explicitly increase the cohesion force when at the

edge of the flock by multiplying a centrality measure by fixed magnitude. The centrality

measure used is the length of the average vector of the direction to a bird’s neighbours.1

The model reproduces qualitative empirical features, such as flat flocks that tilt sideways

while turning and also quantitative features such as the independence of density with

flock size [Ballerini et al., 2008a,b].

1.3 Bird Vision

The visual system in the brain evolved to process the projection of visual data. It did

not evolve to give an accurate description of the external world, it evolved to give a

functional one and inconsistencies could be permitted and that representation is far

1This can be viewed as a similar behaviour to the projection term defined later. When a bird has an
isotropic neighbour distribution, there will be no movement. However at the edge of the flock there is a
strong impetus to move inwards.
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Figure 1.6: The avian eye has a unique structure, the pecten oculi. It is believed to
nourish the retina. It is also pigmented and may protect the retina from UV light.
The rest of the eye is similar to other vertebrates. Light enters the eye through the
pupil, is refracted by the cornea, focused by the lens and then illuminates the retina.
The retina is covered in rod and cone cells that detect the light and this information is
carried by the optic nerve to the rest of the brain, after some basic processing involving
compression.”Birdeye” by Original uploader was Jimfbleak at en.wikipedia - Transferred from en.wikipedia; transfer was

stated to be made by User:jimfbleak.. Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons -

http://commons.wikimedia.org/wiki/File:Birdeye.jpg#mediaviewer/File:Birdeye.jpg

from perfect. This also partly due to the physiological limits of the sensing apparatus

and both effects should be considered.

1.3.1 Vertebrate Vision and the Brain

In birds the most parsimonious mechanism for decision making during collective flight

is vision and models that wish to be biologically plausible should be vision-based [Bajec

and Heppner, 2009]. A basic understanding of the structure of the visual systems in

birds will enhance our ability to make judgements about the plausibility of vision-based

flocking models. Most of the comments made are true for all vertebrates and when they

only apply to birds this will be clarified. It is important to understand that the eyes are a

part of the brain, they contain neurons, both to transmit stimulus to the brain and to do

some low-level processing. In fact, the retina and optic nerve begin developmentally as

outgrowths of the brain. Light falls on the eye and is mostly diffracted by the cornea, the

fine focusing is done by the lens. This focused light then falls on the retina, where it is

detected by the receptor cells. These cells are called rods and cones. Rods and cones are

active in different regions of luminosity; rods being active at low luminosity (i.e. dark)

and cones at high luminosity (i.e. light). The cone cells quickly relax and are therefore

more responsive to changes in stimuli than rod cells. Humans have 3 types of cone cell,

with 3 different pigments that respond to different parts of the visible spectrum, allowing
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for colour vision. However, nearly all birds are tetrachromatic – they have four cone cells

and some birds are even UV sensitive, because of it.2 Between the rod and cone cells

and the optic nerve are several types of neurone that integrate over and compress the

signal from the individual neurons to the capacity of the optic nerve. These are the

bipolar cells which pass signals to the retinal ganglion cells, mediated by horizontal cells

and amacrine cells that integrate across layers, helping to regulate output. More rod

cells are integrated over than cone cells, to give a coarser resolution, but with greater

photon sensitivity. Rod and cone cells are not evenly distributed over the retina, the

density of cones is smaller at the periphery and there is an area of high density called

the fovea. The fovea is typically aligned with the object of current attention to provide

the highest resolution image. This region of high resolution is only a few degrees of the

visual field, as can be easily demonstrated in humans by keeping your eyes fixed on a

word and seeing how many words away from it you can read. The region of foveal vision

is roughly the size of your thumb when held at arm’s length. Not all bird species have

foveas, some have areas of retinal specialisation. These are similar to the fovea in that

they contain concentrically increasing densities of cone cells, but without the reduction

in surrounding blood vessels and invagination of the fovea. Other birds, have a visual

streak, a band-like area stretching across the retina [Fern’andez-Juricic, 2012].

A particular piece of the vertebrate anatomy that is of interest, is the super

colliculus or tectum. It is a layered structure located in the midbrain and contains

topographic maps of the world in egocentric and retinotopic coordinates in each layer

(i.e. a representation of the projection on the retina, is stored in each layer). The super

colliculus uses input from the map to direct responses of the body toward the stimulus in

real space. For a long time, research concentrated on the role the super colliculus has in

directing fast eye movements below perception, known as saccades. But it is also known

to direct head-turns and arm movements in primates and most importantly, whole body

turns in rats, fish and birds. In birds and fish this is one of the largest regions of the

brain suggesting an important role. The large size of the midbrain in birds is usually

accounted for by the need to control wing movement during flight (although, why then

in fish?). That this region of the avian brain is concerned with visual processing and

body turns is suggestive that it could be where flocking rules are enacted in the avian

brain.

2Pigeons are perhaps pentachromatic, as they have 5 distinctly pigmented cone cells.
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Figure 1.7: The vertebrate retina is made up of several layers of neurones with the
rod and cone cells on the side nearest the body, such that the light must travel
through the neurones to reach them. This is because they need to be adjacent to
the pigment epithelium which supplies them with nutrients to allow them to con-
tinue reacting to light. 1414 Rods and Cones” by OpenStax College - Anatomy & Physiology, Connexions Web

site. http://cnx.org/content/col11496/1.6/, Jun 19, 2013.. Licensed under Creative Commons Attribution 3.0 via Wikimedia

Commons - http://commons.wikimedia.org/wiki/File:1414 Rods and Cones.jpg#mediaviewer/File:1414 Rods and Cones.jpg

15



Figure 1.8: Apart from the narrow area around the fovea, the visual field is sampled
at a comparatively low resolution. This can be seen through the relative low density of
the retinal ganglion cells, outside the region of retinal specialisation [Fern’andez-Juricic,
2012].

1.3.2 Visual Field Size and Acuity

Birds, particularly predatory birds such as hawks and eagles, have proverbially high vi-

sual acuity – the ability to resolve (visually) small objects at high contrast. As mentioned

previously, the density of cone cells decreases away from the fovea and the resolution

of the visual stimulus decreases (see Fig. 1.8). This leads to a very narrow region of

high visual acuity – only a few degrees. In addition to a central fovea, about half of

bird species have a second fovea, the temporal fovea, and are termed ‘bifoveal’. Swifts,

terns and hummingbirds are bifoveal and this is believed to help with judging speed

and distance (particularly depth perception). Starlings however are monofoveal. This is

because the temporal fovea is further forward and provides binocular vision. Starlings

however use their lateral visual field to avoid predators. Birds with laterally placed eyes

have a very wide visual field, as the head does not occlude much of their rear vision

[Fern’andez-Juricic, 2012] (see Fig. 1.9). This contrasts with predatory birds, with front

facing eyes who need their better depth perception (from stereopsis) to dive accurately

on their prey and don’t themselves need to worry about searching the sky for predators.
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a b

Figure 1.9: Visual field of European starlings in a horizontal plane. Light grey is region
of binocular vision and dark grey is the blind region. a is the maximum amount of
binocular vision whereas b is the minimum. Note the wide lateral visual field [Martin,
1986].

Contrast Sensitivity Contrast Sensitivity (CS) is the ability to discriminate between

adjacent patches of visual stimuli, based on their relative, as opposed to absolute, lu-

minances. Considering the impressive visual acuity of birds it is surprising that they

have poor spatial contrast sensitivity relative to humans and other mammals [Ghim and

Hodos, 2006]. It is unknown why this is the case. The study of Ghim and Hodos [2006]

explicitly looks at starlings among other bird species. This suggests that birds at near

positions in an individual’s view, whom are likely to have similar luminances, if they

overlap would appear as one object. Although, of course, shape recognition may allow

them to be recognised as two birds. As more overlaps occur, however, the shape clues

will be reduced and distinguishing individual birds becomes less likely.

1.3.3 Vision and Movement

It may come as a surprise, but visual movements in nearly all animals are not smooth,

but are characterized by sudden motion followed by periods of visual stability. These

sudden movements are called saccades and the reason that vision works like this is,

that if motion is too fast it causes visual blur (due to the long response time of the

photoreceptor cells - like a long exposure time on a camera). Hence the direction of

gaze moves quickly, then stays steady to acquire an image, rather like the frames of an

old-fashioned movie reel. In humans these saccades occur at a rate of 3 per second, but

the experience of them is suppressed by the brain and it is estimated humans are blind

for 10% of the time due either to blur or ‘saccadic supression’ without even knowing it.

Birds do not have the same range of eye movements as humans and most need to move

their whole heads to perform saccadic movements and stabilisation [Land, 1999]. An

interesting thing to note is that if an image stays perfectly still in the human retina, it
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gradually fades from perception (this does not occur naturally and requires an apparatus

that can keep an image stationary with respect to the retina) [Riggs et al., 1953].

1.3.4 Optical Flow

In ‘The Ecological Approach to Visual Perception’ Gibson suggested that the motion of

light from objects across the retina contains information about its motion and distance

[Gibson, 1986]. For example, an approaching object will expand in the visual field, pro-

viding information on speed (assuming the size of the object is known). Also movement

across the field of view, i.e. a translation, specifies the direction of movement of an

object. Hence time differences in the visual field are the basis of the theory and this is

described as ‘optical flow’. Optical flow has been taken outside of its original psychologi-

cal context to describe methods of computer vision, including collision avoidance, object

motion detection and time-to-collision calculations. There are now many algorithms for

image processing based on optical flow, the basis of most is some method to compute a

numerical image gradient that is an approximation to the flow field.

1.3.5 Specification for Visual Models of Bird Flocking

The saccadic nature of visual movement suggests that models should focus on image

frames, either singly or in groups, as during the periods of fixation or ‘frames’, is when

image capture occurs. The theory of optical flow introduced by Gibson leads us to

consider that the flow field may be an important quantity for determining relative mo-

tion. Evidence of low contrast sensitivity and the possibility that some bird species

don’t object complete, i.e. they find it difficult to distinguish nearby objects of similar

luminance and may have conceptual difficulties distinguishing objects partly obscured

by other objects in front or behind. This implies that many starlings in the flock may

appear to be simply parts of large patches of indeterminate size and distance. Due to

the high visual acuity and the visual system’s ability attuned to distinguish edges, it is

likely these patches would have well defined edges in the visual field.

1.3.6 Comments

A neighbour distance ranking or ‘n-th nearest neighbours’ are often used to characterise

topological range. It is not clear to the author that starlings use such a rule, as opposed

to another topological distance metric. Even if they do so, the rule is most probably

visual and only through ‘accident’ appears to be a topological rule. Unless of course

they have some perception of where their n-th nearest neighbours are located, stored
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and updated regularly in their brains, which seems unlikely but not impossible. A

physicist might argue that if the effect is the same then it doesn’t matter, what the

underlying evolutionary motivation for the rule is. The question here is whether different

mechanisms of achieving this topological range are distinguishable. Even if they are,

there remains an interesting question for the neuroscientist about how and where this

processing occurs in the brain, i.e. where in the avian brain is this representation of near

neighbourhood stored, if indeed it is? There is strong evidence that the human brain

stores its current position on a kind of lattice of cells in the hippocampus. These are

known as grid cells and have been found to exist in rats [Doeller et al., 2010].3 There

could potentially be a similar piece of neural architecture in starlings that represents the

topological positions of their neighbours.

A difficult question to approach is how aware the bird is of the stimuli producing

flocking behaviour. Is it essentially an autopilot mechanism? Whereby the visual system

of the bird controls the flight. Or to what degree is the behaviour instinctive or learned?

For instance, baby birds may flap their wings as they fall from the nest, in an instictive

manner, but they need practice to be able to fly. Would a flock of starlings raised in

captivity flock differently to wild starlings? Unfortunately these questions will not be

(and cannot be) answered in this work.

3The 2014 Nobel Prize for Physiology was given for the discovery of grid cells.
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Chapter 2

A 3D Visual Model of Flocking

A variation on an old joke goes as

follows:

Engineers study interesting real world

problems but fudge their results.

Mathematicians get exact results but

only study toy problems.

But computer scientists, being neither

engineers nor mathematicians, study

toy problems and fudge their results.

Gary William Flake – The

Computational Beauty of Nature

(1998)

2.1 Introduction

Until recently the difficulty in obtaining 3D data for the positions of flocking animals

has resulted in scarce data for direct comparison between theory and experiment. Hence

comparisons have usually been made between models [Cavagna et al., 2008b]. However

the EU STARFLAG project was able to develop a new technique and algorithms for

finding the positions of birds in flocks of up to several hundred, by using a 3 camera

set up [Cavagna et al., 2008a] (see §1.2.2). While the observed data is useful, there are

limits to the capabilities of the set up and individuals in the interior of very dense flocks

cannot be distinguished. This limits the flocks which can be observed to those that

are sufficiently diffuse (hence flocks are frequently rejected, introducing a possible bias).
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The birds they chose to investigate were common European starlings, sturnus vulgaris –

a bird well known for it’s ‘murmurations’, or flocking behaviour, shortly before roosting

for the night. Starlings are known to flock in groups of up to tens of thousands, but

these flock sizes are too large for the STARFLAG techniques to be applied. Work has

also been done on the analysis of photographs of starling flocks in this group, which is

of course an instantaneous 2D projection of a flock containing information about the

flock density, but does not have the stereoscopic information required to reconstruct the

shape of the flock (and hence the inhomogeneities in flock density along different axes

of the flock).

The model described in the following section is a 3D model and can be directly

compared with the measurements of flock properties taken by the STARFLAG project,

which, as stated in the introductory chapter, has not been the general practice when

making computational models of natural flocks. The main thrust of this chapter is

these direct comparisons and a description of the methods to account for biases in

measurements of geometrical properties of flocks due to the ratio of flock surface to

interior (particularly a problem in 3D) is given in §2.3.

It is found that there are parameter sets for the 3D model that reproduce the

observed anisotropy in flock dimensions §2.6.3, the anisotropy of the nearest neighbour

angular distribution (i.e. relative position) §2.6.4 and the scaling of the flock size with

the number of individuals N §2.6.1, of natural starling flocks. These features of the

model are due to the novel visually inspired ‘projection’ term described in the following

section.

In addition to these empirically verifiable properties of flocks, convincing models

should have parameter regimes where the flock is highly aligned and not overly disperse,

which are investigated through a parameter study in §2.4.3.

2.2 Model Description

A 3D particle based computer model of animal flocking was constructed. It is an agent

based model with N identical agents each with identical equations of motion. The

equations of motion contain standard contributions for alignment and noise (reflecting

the imprecise biological nature of the agents), together with an additional contribution

from the edges of occluded regions in each individual’s field of view. This additional

contribution controls the flock density and is rooted in consideration of the response of

visual system of birds to visual stimuli.

The 3D simulations were realised using an algorithm written in C++. The model
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is a discrete time model with a fixed individual velocity v0 and position update rule

similar to the Vicsek model [Vicsek et al., 1995]. It is important to wait a sufficiently

long time before measurement so that any transient behaviour, before a steady state is

reached, has passed. This is discussed in §2.4.1.

The N individuals were initially placed randomly in a cube with a number density

of 0.01 individuals per unit cube (dimensionless) and were assigned random directions.

A velocity update rule was then applied to obtain subsequent positions. Individuals, can

pass through each other, which are referred to as ‘phantoms’. The velocity of individual

i at the t+ 1 timestep is defined to be:

~vi,t+1 = φa
〈~vt〉ni

‖〈~vt〉ni‖
+ φp~δp,i + φe~ηi (2.1)

It is useful to define a parameter vector ~φ = (φa, φp, φe), where 0 ≤ φa,p,e ≤ 1 are

control coefficients. It is assumed that it is the relative proportion of these terms that

is important not their absolute values, hence scaling the parameters by a constant does

not change the results of the model e.g. ~φ = (0.8, 0.1, 0.1) is equivalent to (1.6, 0.2, 0.2).

The three terms appearing on the RHS of Eq. 2.1 are, respectively:

a) The alignment term,
〈~vt〉ni
‖〈~vt〉ni‖

. This is the average direction over the ni indi-

viduals indexed by j that are neighbours of i at the previous timestep, i.e.:

〈~vt〉ni

‖〈~vt〉ni‖
=

∑ni
j=1 ~vj,t

‖
∑ni

j=1 ~vj,t‖
(2.2)

Neighbours need to be defined to implement the alignment term and the Delaunay

triangulation leads to a natural conception of ‘neighbour’ due to it being the dual graph

to the Voronoi construction, in which all points nearer to a focal individual than any

other belong to that individual’s Voronoi cell, hence neighbours defined through the

Voronoi construction are those that share edges between their Voronoi cells [Pion and

Teillaud, 2014]. This neighbour assignment is the first ‘Voronoi shell’ of individuals and

provides a simple criterion distinguishing near and far flock members, with the nearest

(shell) flock members assumed to be most relevant perceptually. This Voronoi method

of assigning neighbours is used in Ginelli and Chate [2010]. The CGAL library was used

to provide the triangulation [Pion and Teillaud, 2014]. As this model aims to be based

on visual perception, the Delaunay triangulation was considered to be more appropriate

than simply choosing n nearest neighbours. Cavagna and Giardina [2008] gathered

evidence from the literature that birds may have a cognitive limit on the number of
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neighbours of whose positions they can keep track of at any one time to be approximately

7 individuals. This accorded well with their findings of non random neighbour positions

up to approximately the seventh nearest neighbour in starling flocks. Hence by following

the STARFLAG argument an alternative approach would be to use an average velocity

taken over the 7 nearest neighbours. See §2.8 for a comparison of models employing

neighbour identification algorithms based on Delaunay and nearest neighbour flocks in

2D.

b) a term based on the visual projection of the entire flock onto the view of flock

member i, ~δp,i. An illustration of the projection term is shown in Fig. 2.1 – note, that

an individual’s view sphere is larger than its projection. The model is vision based and

the view of an individual is assumed to be the surface of the unit sphere surrounding

the particle centre. The spherical cap1 projected by an individual j onto i’s view is

defined by a solid angle given by Γ = 2π
(

1− R√
1+R2

)
, where R = |rij | is the distance

between the individuals. Hence Γ defines the angular size of the projection in 3D. This is

equivalent to an individual j being viewed as a disk of unit radius with its normal vector

always pointing towards the focal individual i. Individuals were treated as isotropic

bodies that obscure a line of sight from any other individual that passes through it (this

is not the same projection that a sphere would give). This results in the projection of

(dark) circular caps onto the unit spherical view of other individuals. The interior of

any of these caps represent directions where an individual is unable to trace a line of

sight to infinity (the light sky). These caps can overlap, leading to a patterning of the

surface of each spherical view into ‘dark’ and ‘light’ regions [Pearce et al., 2014]. The

boundaries of the occluded regions on the surface of the ith individual are then unions of

arcs of circles in 3D, collectively the set of contours Ci. The projection term appearing

in the equation of motion is

δp,i =

∫
{Ci} ~̂rdl∫
{Ci} dl

(2.3)

where each integral is over infinitesimal line elements dl that trace along the curve(s) Ci

separating the ‘dark’ and ‘light’ regions on the surface of the unit sphere and ~̂r is the

outward pointing unit vector at each point along those curves. This integral is equivalent

to taking the centre of mass (c.o.m.) of the circular arcs that make up these boundaries.

The projection term will always have magnitude less than 1. The effect of this projection

term in the equation of motion is:

1. Individuals at the edge of the flock will move inwards, due to the projection of

1The region of a sphere lying above or below a given plane.
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the flock onto their view having an average direction (i.e. their view won’t be

isotropic). This prevents the flock from dissipating.

2. Individuals attempt to achieve a homogeneous view. This leads to an average

steady state density for the flock, with a characteristic scaling behaviour.

To get a feel for the projection term, imagine yourself flying in a flock of starlings

surrounded by clear blue sky. Your view is spherical and we will imagine there is no

Earth beneath you, only more sky. What do you see? In all cases you see a 2D projection

of your surroundings, like a ‘fish eye’ lens photograph. If you are outside the flock, you

see a dark region containing birds, probably with many gaps and the rest is just clear

blue sky. To stay with your fellows, you must fly towards that dark region. Now, you

are inside the flock, at the very centre, what do you see? This time your view looks the

same in all directions and it is not clear where you should fly to stay in the centre of the

flock. If you are inside the flock and your view has more boundary in one region it is

likely that the flock is denser there and you should wish to move towards it. In this way

the flock cohesion and density is controlled. A strength of the model is that, as this is

a visual model, only other individuals that can be seen generate any response.

c) a random unit vector ~η, with elements ηx ∼ unif(−1, 1) s.t. ‖~η‖ = 1.

The position update was therefore

~xt+1 = ~xt + v0∆t
~vt+1

|~vt+1|
(2.4)

The only effect of the timestep is to rescale the flock sizes, due to larger or smaller

distances travelled, but this is not relevant to the behaviour as all the interaction terms

scale in the linearly with the timestep. Hence ∆t the length of the discrete time step, is

taken to be 1 for simplicity.

2.3 Making Neighbour-based Measurements in 3D

It is desired to measure the instantaneous volumes and density of the flock. Therefore

a bounding surface often called the flock edge or border must be established. The

proportion of flock members on the edge of the flock also strongly influences neighbour

based statistics, e.g. nearest neighbour distances. These effects are less strong in 2D

than they are in 3D due to the increased proportion of edges to bulk in 3D, which means

edge effects can usually be ignored in 2D with moderate numbers of individuals.
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Figure 2.1: An example of the algorithm in the center of mass coordinate frame. Spheres
represent an individual’s view; red arrows are ~vi,t+1; blue arrows are ~δp,i. The parameters

are ~φ = (0.3, 0.1, 0.6), N = 30.
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Figure 2.2: Border Bias in a Milling Fish Configuration: The yellow area represents a
school of fish in a milling, or toroidal, configuration: all animals rotate clockwise around
an empty core. Animals on the external border lack neighbours on their left, whereas
animals on the internal border lack neighbours on their right. However, animals on
the external border are much more numerous than animals on the internal border. As a
consequence, if we include all animals in the statistics of nearest neighbours, we find that
on average animals have a lower probability to have their nearest neighbour to their left.
This result would be the opposite for a school rotating counter-clockwise, showing that
it is not a fundamental feature of the inter-individual interaction, but rather an artefact
due to the undue mixture of structural (nearest neighbour location) and morphological
(toroidal shape) results [Cavagna et al., 2008a]

2.3.1 The problem of Borders

Flocks are 3D objects and defining the edge of the flock is not as simple a problem as it

may appear at first glance. It is in fact a problem similar to measuring the coastline of

the UK, the smaller your ruler is, the smaller the concavities you can measure and the

longer the coastline. There will be a considerable difference in the edges of the UK if one

uses a 1000 mile ruler to a 1 mm ruler. Some measurements are affected by the border of

the flock. For instance, it is very obvious that volume and density measurements depend

crucially on the location of the border as this specifies the volume. Taking the convex

hull of a point cloud containing large concavities will result in large regions devoid of

particles, which is clearly not what is wanted when measuring these properties.

Individuals on the edge of a flock are in a special position and their relative

proportions influence neighbour related statistics. Cavagna et al. [2008a] ask us to

consider fish milling in 2D, i.e. moving circularly, with an empty core at the centre (see
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Fig. 2.2). If one were then to measure the average angle to the nearest neighbour, one

would find that there are more neighbours to the right if the fish are moving clockwise

or to the left if they are moving anticlockwise. The point to grasp, is that this a bias due

to geometry not biology. Clearly the larger the fish swarm, the smaller the discrepancy

would be, as more fish would be in the bulk and not at the borders, where conditions

are special. To make clear statements about the biology or the model, we must first

eliminate geometrical bias. This bias originating from the edge of the flock, becomes

a bigger problem in 3D, due to dimensionality, as the ratio of the border to the bulk

becomes larger. Consider an approximately spherical random distribution, centred about

the origin with a fixed density ρ. To maintain such a fixed density, r must scale with N ,

the number of random points, as follows:

A = 4πr2 (2.5)

V =
4

3
πr3 (2.6)

ρ =
N

V
=

3N

4πr3
(2.7)

=⇒ r =

(
3N

4πρ

)1/3

(2.8)

Hence the surface area, A, to volume, V , ratio scales as

A

V
= (36πρ)

1
3N−

1
3 (2.9)

∝ N−
1
3 (2.10)

This demonstrates that the individuals near the boundary surface make up a non-

negligible fraction of the total points that is slowly decreasing with N , relative to the 2D

case where the equivalent ratio scales as N−
1
2 . This scaling means that simulations at

larger N are necessary in 3D to obtain good statistics on neighbour relationships, such

as nearest neighbour distances and averages of properties over nearest neighbours.

That statistics calculated over neighbours are affected by the boundary is also

obvious if you consider nearest neighbour distances. If the nearest neighbour is 2 m

from an individual, but the individual is 1 m from the boundary, then it is possible that

the individual could have had a nearer neighbour at, say, 1.5 m on the far side of the

boundary if the individual had instead been in the bulk. Being near the border biases

against distances longer than the distance to the border. Three further examples are

given by Cavagna et al. [2008a] of flock properties that are affected by border bias:
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that nearest neighbour distances increase with the total number of individuals as N ;2

the cumulative distribution of the neighbour distance is biased; and the orientation of

velocities created by randomly pairing random points within a domain with the same

aspect ratio of a starling flock show anisotropy.

Once again, assuming the distribution of individuals is approximately spherical

(a best case scenario with minimal surface area to volume ratio), a density of 1 per unit3

requires N ∼ 104 before the volume surface area to volume ratio becomes less than a

half:

ρ = 1,
A

V
= 1/2 =⇒ (36π)1/3N−1/3 = 1/2 (2.11)

=⇒ N ∼ 104 (2.12)

and N ∼ 108 for less than 0.01 (or 1%):

ρ = 1,
A

V
= 0.01, =⇒ (36π)1/3N−1/3 = 0.01 (2.13)

=⇒ N ∼ 108 (2.14)

Clearly higher N is required to reach the same ratios at lower densities. Here the simu-

lations only use at most N = 103, due to computational constraints. We therefore need

to remove the border bias to get reliable measurements of nearest neighbour properties.

2.3.2 Methods to Remove Boundary Bias in Statistics over Neighbours

Alpha Shapes

The problem of edge effects when averaging over neighbouring points is well known in

spatial statistics and there are methods to reduce this bias. The first step to the solution

is to identify the boundary. As animal flocks are not necessarily convex, using a convex

hull may not be an appropriate determination of the flock boundary. Instead Cavagna

et al. [2008a] suggest using alpha shapes. A 3D alpha shape is a polyhedron formed from

a point cloud (i.e. collection of points in 3D space). It is not necessarily convex – in

fact that is the point. The alpha shape is an alternative to using a convex hull to define

a point cloud’s bounding polyhedron, which is preferable when the point cloud is not

necessarily convex. Alpha shapes have a parameter α that in 3D is the squared-radius

of a sphere and constrains the minimum size of concavity in the alpha shape. This is a

2Although separate analysis of their own data (after they have adjusted for the border bias), reveals
the opposite trend.
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Figure 2.3: In 2D the α parameter which is the squared radius R2 of the smallest disc
that is allowed to touch 2 points in the aggregation (which are then boundary points).
In this way concavities at roughly the scale of R are recovered. If R is much larger
than the scale of the largest concavities, then the convex hull is recovered, which clearly
contains large empty regions [Cavagna et al., 2008a].

‘nibbling’ parameter and controls how close to the points in the point cloud the alpha

shape can be (see Fig 2.3 for a 2D explanation of the parameter). The collection of

all possible spheres such that they do not contain any of the point set (except on their

edges), leads to the alpha shape for the set. This can involve carving out points inside

the set if there are holes smaller than the scale of 2
√
α and allows for concavity in the

exterior boundary also. As α→ 0 the alpha shape tends to the point set (and hence will

be disconnected). Alternatively as α→∞ the alpha shape tends to the convex hull, as

the spheres have infinite radius and cannot penetrate the interior of the point set.

The collection of spheres that results, is replaced by faces defined by the points

intersecting the edges of the spheres and this is usually referred to as the alpha shape.3

There is only one convex hull, but there are many possible alpha shapes. To construct an

alpha shape the value of α must be fixed. Here, each simulated flock is considered to be

a single flock, even if there are two or more sub-groupings separated by large distances

relative to the inter-group distance. Then it is required that the optimal alpha value

results in one connected alpha shape, encompassing all sub-groupings.

The alpha shape implementation used in this study is from the CGAL C++

library and is based on a Delaunay triangulation [Da and Yvinec, 2014]. For each

value of α the alpha shape contains all the simplices of the triangulation such that the

circumscribing sphere is empty and has a squared radius less than α.

See Fig. 2.4 for an illustration of the alpha shape algorithm applied to a cube

3Properly speaking, this is the alpha complex. The alpha shape has the curved surface defined by
the spheres, but the usage here is common - cf. Edelsbrunner and Mücke [1994].
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Figure 2.4: A 3D alpha-shape for a cube with two cuboid paths through it. The cube
contains 5640 points that have been disturbed from their positions on a lattice a small
amount of noise, ∆x ∼ unif(−1/7h, 1/7h), where h is the lattice spacing (there are
some computational artifacts on a precise lattice). As can be seen using the optimally
computed α-value results in a boundary that clearly distinguishes the inner concavities.
Cf. the convex hull, which would be simply the cube.

with two cuboid paths hewn through it to introduce concavities. At the scale of the

concavities, the volume of the alpha shape increases sharply, as those concavities become

filled in. Concurrently, the number of points interior to the alpha shape (NI) increases

less sharply, as most of the volume added to the alpha shape is devoid of points when

a genuine concavity is filled. This leads to a sharp drop for NI/V at the width of the

concavities, as can be seen in Fig. 2.5. As also can be seen in Fig. 2.5, the optimal α-value

from the algorithm selects an α below the scale of the concavities as previously required

and is the smallest α such that the alpha shape is fully-connected. The STARFLAG

method would fix α just below the size of the smallest concavity, but as can be seen

from the figure this makes very little difference to the α-value compared with the choice

used here.

Once the boundary has been determined, a simple method to reduce the boundary

bias is to determine the distance from each particle to the boundary and in any neighbour

calculations, if a neighbour is further from the focal individual than the boundary, then

it is discounted from the statistic (there are other methods where the individual would

be down-weighted based on distance). This method is called the Hanisch method and

is known to give similarly very good results for test problems (but slightly overweights

near-neighbours) and has the virtue of simplicity over other methods [Cavagna et al.,

2008a].
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Figure 2.5: The blue lines indicate the α value corresponding to the widths of the
introduced concavities and the red line is at the selected ‘optimal’ alpha value. Initially
the number of edge points, NE , rises as small alpha complexes are formed. Eventually
these get large enough to connect together and the number of edge points decreases as
they become interior to larger alpha complexes, until there is only one alpha complex,
connected by the minimally sized facets at the optimum α-value. At this point the
volume increases more slowly as the edge of the shape is adjusted less rapidly with
increasing α until the large concavities are filled in, when V increases rapidly and NI

more slowly, resulting in the large drops in NI/V , which had remained relatively constant
after the optimal α-value.
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2.4 Results

We analyze the flock opacity Ω, this is the average fraction of an individual’s view filled

by other flock members, over the N flock members.

Ω =

〈
As

4πr2

〉
N

(2.15)

where As is the spherical surface area occulted by the flock. For a flock to be transparent

Ω� 1 and opaque 1− Ω� 1.

A standard order parameter for collective motion is the average normalized ve-

locity, Ψ [Vicsek et al., 1995].

Ψ =
1

Nv0

∣∣∣∣∣
N∑
i=1

~vi

∣∣∣∣∣ (2.16)

Where v0 is the average absolute velocity of individuals in the system (in this model

a constant, v0 = 1.0). This order parameter is close to 1 when members of the flock

are aligned in approximately the same direction and close to 0 when orientations are

uniformly random.

A simple measure of the flock size is the maximum linear distance through the

flock rmax, i.e. the maximum separation between any 2 individuals in the flock.

2.4.1 Convergence

Before time series reach stationary states they often display transient behaviour that is

not reflective of the stationary state. The flocks are not initialised with a density that is

the steady state density for the model and hence the measured quantities will initially

change quickly as this relaxation occurs. A common method of deciding if a measured

quantity has reached convergence is to look at the running mean and variance of the

quantity. If these become approximately constant and remain so, then heuristically, the

quantity has reached an at least weakly time stationary state4. Once this state has been

reached and any transient behaviour has finished measurement of of flock properties can

begin.

For the N = 200 flocks, with the exception of rmax for ~φ = (0.495, 0.495, 0.01),

all the observed running mean traces (see Fig. A.1–A.5in A) converged within ∼ 10, 000

timesteps. The running variances have also peaked (at least for the first time) for the

observed measured properties by 10,000 timesteps and appear close to equilibrated by

4A term from signals processing referring to a signal that has a stationary first and second moment,
but is not necessarily stationary for all moments.
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50,000 timesteps. Hence an equilibration period of 50,000 timesteps will be used for the

measurement of these quantities. rmax for ~φ = (0.495, 0.495, 0.01) takes a very long time

to equilibrate due to the very small amount of noise in the simulation. Likewise, for other

points on the parameter plane with very small amounts of noise the equilibration time

for some quantities is expected to be longer than computationally accessible simulation

times permit.

2.4.2 Autocorrelation Times

Time autocorrelation is defined as a property of a statistically time stationary process.

This is because the correlations are in fluctuations relative to the time average of the

stationary distribution (and this does not change). It is assumed here that the measured

variables are stationary after a suitable ‘equilibration’ time. This seems reasonable, in at

least the weak sense, i.e. the first two moments of the distributions are time stationary.

The time autocovariance function is defined as

χ(t) = E[(Xt′ − µ)(Xt′+t − µ)] (2.17)

where µ is the time average of the random variable Xt. The above formula is correct

but the preferred formula for the empirical time autocovariance function of a variable

x(t) used here is:

χ(t) =
1

tmax − t

tmax−t∑
t′=0

x(t′)x(t′+t)− 1

tmax − t

tmax−t∑
t′=0

x(t′)× 1

tmax − t

tmax−t∑
t′=0

x(t′+t) (2.18)

The mean in the second term uses the same subset of data as in the first term. As

Newman points out, this results in χ(t) being slightly better behaved than otherwise

[Newman and Barkema, 2010]. Eqn 2.18 is divided by χ(0) to give the true autocor-

relation, which is normalized to 1 at t = 0. It is usual for the long-time tail of the

autocorrelation function to be exponential:

χ(t) ∼ e−t/τx (2.19)

where τx is the characteristic time of the decay or autocorrelation time for quantity x.

A simple method to estimate the autocorrelation time is to approximate short

time behaviour by the long time behaviour and then to fit, by least squares, the gradient

on a log-log plot. This method is sensitive to where the cut-off for the fit is made, as

noise dominates at long time differences and the plot becomes non-linear. It is also not
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Table 2.1: Measured correlation times for the opacity Ω in N = 200 flocks, using time
to 1/e of initial value and integrated correlation time as measures. Measurements are
averages over 5 repeats ± the standard error. (The standard error used is the standard
deviation divided by the square root of the number of samples.)

N φa φp φe τh τint

200 0.0 0.1 0.9 233.4± 7.5 252± 58
200 0.0 0.9 0.1 3.00± 0.00 7.55± 0.60
200 0.333 0.333 0.333 24.2± 0.3 19.7± 2.2
200 0.495 0.495 0.01 4361± 1468 3443± 1047
200 0.8 0.03 0.17 118.8± 15.6 268.0± 47.8

easily automated, due to the subjectivity in the cut-off. Instead, two simple estimates

of the autocorrelation time were used here, which again approximate the short time

behaviour by the long time behaviour. The integrated autocorrelation time is the sum

of the autocorrelation function over the time series:∫ ∞
0

χ(t)

χ0
dt =

∫ ∞
0

e−t/τdt = τint (2.20)

which has been estimated from the discrete time sum. The other measure used is simply

the first time, τh, such that the autocorrelation drops below e−1 .

τh = min(t) s.t.
χ(t)

χ(0)
< e−1 (2.21)

The autocorrelation time is important, as 2τ is a reasonable criterion for the time be-

tween independent samples of a measured quantity x. It is usual to sample the time

series with timesteps smaller than the correlation time of the variables that we wish to

measure. Otherwise we cannot make good estimates of the correlation times for these

variables. There are therefore fewer statistically independent samples than the number

of timesteps in the simulations would suggest. It is important that the simulations have

been run for long enough after the equilibration time for measurements to be taken and

ideally would be run for many times longer than the longest correlation time in the

system to get good quality moment statistics for the measured properties.

The autocorrelation times for the measured quantities using both approximations

of τ seem to be less than a few hundred time steps, except for ~φ = (0.495, 0.495, 0.01)

which has very little noise in the velocity updates (see tables 2.1, 2.2 and 2.3). With

the very small amount of noise (1%) the correlation times are estimated to be less than

5000 timesteps. Hence measurements over 100, 000 time steps will contain at least 10
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Table 2.2: Measured correlation times for the velocity order parameter Ψ in N = 200
flocks, using time to 1/e of initial value and integrated correlation time as measures.
Measurements are averages over 5 repeats ± the standard error. (The standard error
used is the standard deviation divided by the square root of the number of samples.)

N φa φp φe τh τint

200 0.0 0.1 0.9 1.0± 0.0 1.01± 0.05
200 0.0 0.9 0.1 1.0± 0.0 1.05± 0.07
200 0.333 0.333 0.3333 2.0± 0.0 3.08± 0.43
200 0.495 0.495 0.01 399.0± 98.3 673.5± 73.2
200 0.8 0.03 0.17 2.0± 0.0 6.02± 0.57

Table 2.3: Measured correlation times for the measure of flock size rmax in N = 200
flocks, using time to 1/e of initial value and integrated correlation time as measures.
Measurements are averages over 5 repeats ± the standard error. (The standard error
used is the standard deviation divided by the square root of the number of samples.)

N φa φp φe τh τint

200 0.0 0.1 0.9 185.0± 5.8 199.6± 23.2
200 0.0 0.9 0.1 163.4± 5.6 173.1± 12.0
200 0.333 0.333 0.333 45.8± 0.8 37.1± 7.7
200 0.495 0.495 0.01 3739± 955 2831± 628
200 0.8 0.03 0.17 461.4± 57.8 458.2± 81
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independent measurements of these quantities and typically orders of magnitude more.

2.4.3 Parameter Space Diagrams

Diagrams were constructed, showing the order parameter (Ω, Ψ) and rmax vary with

the control parameters in the velocity update equation, Eqn 2.1. These are analogous

to phase planes in equilibrium statistical physics, where order parameters are controlled

through canonical variables of the system, such as entropy (which is related to the noise

control parameter φe here). These diagrams show relationships between the values of the

control parameters and the measured variables and help give an overview of the types

of behaviour the model outputs can display. There are 3 control parameters, but only

2 degrees of freedom as it is the relative proportions of these terms that determines the

model output, rather than their absolute values (as the velocity is normalized). Hence

the parameter values for φa, φp, φe could be constrained such that:

φa + φp + φe = 1 (2.22)

allowing our results to be displayed in the φa, φp parameter space with φe following by

construction. Parameter planes were calculated for a flock of N = 200 members, with a

50, 000 timestep burn-in, followed by 100, 000 timesteps of data gathering.

These parameter space diagrams are given in Fig. 2.6.
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As Fig. 2.6 a) shows, the opacity, Ω, is controlled by the projection term across

a wide range of parameter values and does not go to zero. When there is a contribution

from φp to the individual velocities the flock is neither opaque, nor very transparent

(as it is when φp = 0). Natural starling flocks observed through simple photographic

analysis are found to be in this ‘marginally opaque’ state [Pearce et al., 2014]. It has

been conjectured that this state has the advantage of allowing members to see out of the

flock approximately half the time (as Ω ∼ 0.5), allowing flock members in the interior,

which is the safest position according to selfish herd theory, to spot predators, feeding

opportunities, etc.

As in the 2D model [Pearce et al., 2014] the maintenance of the marginal opacity

prevents flock dissipation, as can be seen from Fig. 2.6 c), with dissipation being obvious

only when no projection term is present. This is without introducing forces of attraction

and instead, being vision-based, is more directly biologically-inspired.

If the equations of motion did not promote a marginal (or full) opacity the density

of the flock could reduce, leading to flock dissipation. Fig. 2.6 b) demonstrates that the

model still allows for highly aligned flocks and that the region of high flock cohesion

overlaps with that of marginal opacity. It is therefore possible to have highly aligned

flocks with a density controlled by the projection term.

2.4.4 Model Outputs

Observed Behaviour

Trajectories

What has captivated most researchers in this area is the visualization of the flocks and the

observed behaviour as each individual follows its internal equation of motion. The control

parameters can be varied continuously, hence there is an infinite set of model parameter

combinations. However, certain areas of the parameter space are of especial interest,

because the observed trajectories have the appearance of collective animal motions we

are familiar with, such as bird flocks, fish schools or insect swarms. In particular, those

areas where there are both high order and cohesive flocks (see Fig. 2.11), which are

properties of starling flocks and also parameter regimes that give rise to low alignment

but are still cohesive, somewhat reminiscent of a swarm of midges (see Fig. 2.7).

In Figs. 2.7–2.11 snapshots of the individual positions are taken at 10 timestep

intervals from t = 50, 000 to 50, 050. When there is very little noise in the system

this leads to long-lived formations as can be seen in Fig. 2.8. Interestingly the flock

is thin with dense edges, which are observed traits of real flocks. When the projection
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Figure 2.7: Snapshots with the number of timesteps between them τ = 10, for ~Φ =
(0.0, 0.1, 0.9) and N = 200, starting at t = 50000 and hence the range represents 50
timesteps. The dotted lines are trajectories for 10% of the flock.

term is present, with only 1 % noise (φa = 0.01), the flock exhibits no coherent motion

(see Fig. 2.9). With equal proportions of the control parameters (φa, φp, φe), there is

a clear direction of motion and cohesion, but ~Φ = (0.333, 0.333, 0.333) Fig. 2.10 has

considerably more directional noise in the trajectories than ~Φ = (0.495, 0.495, 0.01) Fig.

2.8. In Fig. 2.11 the parameters ~Φ = (0.8, 0.03, 0.17) give a diffuse but aligned flock in

2D and they also produce a flock with similar characteristics in 3D.

2.4.5 Long Time Behaviour

Centre of Mass Trajectories, Order Parameter and Measured Variable Traces

The centre of mass (c.o.m.) trajectories together with the opacity Ω, velocity order pa-

rameter Ψ, and maximum distance through the flock rmax, have been plotted for the pa-

rameter values used previously in the trajectories section (again with N = 200), because

they demonstrate the variety of animal-like flocking behaviours the model can generate.

See Figs. 2.12–2.16. It is clear from the c.o.m. plots that each flock goes through mul-

tiple noise-induced changes of direction, with the trajectory for ~φ = (0.495, 0.495, 0.01)

changing more slowly due to the very small quantity of noise (1%) (See Fig. 2.13).

Hence increasing φp leads to more changes in direction for the whole flock. Clearly

the directional correlation time for the flock is long with small amounts of noise and
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Figure 2.8: Snapshots with the number of timesteps between them τ = 10, for ~Φ =
(0.495, 0.495, 0.01) and N = 200, starting at t = 50000 and hence the range represents
50 timesteps. The dotted lines are trajectories for 10% of the flock.

Figure 2.9: Snapshots with the number of timesteps between them τ = 10, for ~Φ =
(0.0, 0.9, 0.1) and N = 200, starting at t = 50000 and hence the range represents 50
timesteps. The dotted lines are trajectories for 10% of the flock.
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Figure 2.10: Snapshots with the number of timesteps between them τ = 10, for ~Φ =
(0.333, 0.333, 0.333) and N = 200, starting at t = 50000 and hence the range represents
50 timesteps. The dotted lines are trajectories for 10% of the flock.

Figure 2.11: Snapshots with the number of timesteps between them τ = 10, for ~Φ =
(0.8, 0.03, 0.17) and N = 200, starting at t = 50000 and hence the range represents 50
timesteps. The dotted lines are trajectories for 10% of the flock.
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less statistically independent measurements are made in an equal number of time steps.

For very small quantities of noise the behaviour is pathological as the system does not

equilibrate due to these very long correlation times.

2.5 Scaling of Simulation Flock Size and Marginal Opacity

For most of the opacity parameter space diagram the value of the opacity is less than

1 but not close to 0 (i.e ‘marginally opaque’). As N is increased the opacity Ω also

increases. For intermediate values of N , Ω varies linearly with 1/N (N > 500 is used for

the linear fit). This scaling predicts that Ω will reach a limiting value with increasing N ,

which is still marginally opaque (see Fig. 2.17). Whereas rmax increases more quickly

and does not appear to approach a limiting value.
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Figure 2.12: Trajectory of the centre of mass of the flock for ~Φ = (0.0, 0.1, 0.9) and
N = 200 for 150,000 timesteps. In the traces below, rmax is the maximum distance
through the flock, Φ is the order parameter and Ω is the opacity.
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Figure 2.13: Trajectory of the centre of mass of the flock for ~Φ = (0.495, 0.495, 0.01)
and N = 200 for 150,000 timesteps. In the traces below, rmax is the maximum distance
through the flock, Φ is the order parameter and Ω is the opacity.
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Figure 2.14: Trajectory of the centre of mass of the flock for ~Φ = (0.0, 0.9, 0.1) and
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through the flock, Φ is the order parameter and Ω is the opacity.
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Figure 2.16: Trajectory of the centre of mass of the flock for ~Φ = (0.8, 0.03, 0.17) and
N = 200 for 150,000 timesteps. In the traces below, rmax is the maximum distance
through the flock, Φ is the order parameter and Ω is the opacity.
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2.6 Comparison with Empirical Data

There are two 3D flock property data sets from the STARFLAG group. One from each

of the Ballerini papers. The control of the flock size by the ~δp,i is a key feature of the

model and a good comparison between simulated and natural flocks for the scaling of

rmax with number of flock members N is suggestive that the model is capturing the

nature of the cohesion interaction in natural flocks.

1. Ballerini et al. [2008a] The first data set is for rmax or the maximum linear distance

between two individuals in the flock and was measured during the simulations.

This is a global property of the flock and is the most directly comparable between
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empirical and simulated measurements. There are also more empirical data points

available.

2. Ballerini et al. [2008b] The second data set is for r1 the (average) nearest neighbour

distance. This data was calculated after adjusting for edge effects, using an im-

proved Hanisch method (weights based on the distance to the border of the flock).

This requires calculation of the alpha-shape for the flock.

The following analyses use linear least square fits to the data and logs of the data. The

errors on the inferred parameters are the standard errors.

2.6.1 Predicted Scaling of the Linear Flock Size rmax

A linear flock size R for a spherical flock is a 1D measure of flock size and would be

simply the radius. For the case of a non-spherical flock a linear flock size is defined here

as rmax, i.e. the maximum distance between any 2 individuals in the flock maxij(rij).

It is predicted from a simple mean field argument that R the linear flock size should

increase as a power of N , from the assumption of maintaining marginal opacity.

rmax ∝ Nx (2.23)

The mean field argument goes as follows. Consider a line of sight out from near the

centre of a homogeneous, isotropic flock. The probability that the chosen line of sight

contains only sky and no individuals is Poisson distributed

Psky = e−ρb
d−1R (2.24)

b is the radius of an individual (or other linear measure of cross-sectional area) and

ρ = N/Rd for a d-dimensional density and linear flock size R.

The hypothesis of marginal opacity is that Psky is not 1 (i.e. the flock is fully

transparent) or 0 (fully opaque), but by definition is still O(1), a half say. The assumption

of marginal opacity leads to

ρ ∼ N−1/(d−1) (2.25)

or ρ ∼ N−1/2 in 3D. Assuming the linear flock size R ∼ rmax then in 3D

ρ =
N

R3
∼ N−1/3 (2.26)

⇒ N1/2 ∼ R (2.27)
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fixed density transitions from a highly opaque state to a highly transparent state (as
measured by the probability of seeing sky from the centre of the aggregation).

That bird flocks are not fully transparent (Ω << 1) or opaque (Ω ∼ 1) is surpris-

ing. Firstly, because in an effectively infinite space, there is plenty of room to create an

almost transparent flock and secondly if a ‘metric’ type interaction was used for flock

cohesion, N would not need to be very large before the flock is almost fully opaque. For

b = 1, comparable to the flock simulations, Psky is plotted in Fig. 2.18. Increasing R at

fixed density directly increases N . The figure shows that as the linear size R increases at

a fixed density, a random arrangement of particles will transition from a highly opaque

(small Psky) to a highly transparent (large Psky) state with a relatively small increase in

R.

We will next test the predicted scaling ofrmax for simulated and empirical data.

A direct measurement of the scaling exponent x can be obtained from the gradient of

a linear least square fit to the simulated and empirical data on a log-log plot. For the

simulated rmax in Fig. 2.19a the exponent is found to be close to 1/2, but just outside

the 1σ error bounds, x = 0.516± 0.007. The R2 = 0.999 which is almost 1, resulting in

this small error. The log-log estimate of the empirical x is x = 0.61 ± 0.072 (see Fig.

2.19a). The error is ∼ 10× larger than for the simulated x, due to the intrinsic noisiness

of the data. The lower of the error bounds is 0.54. Once again, a scaling of a little

over a half is plausible. We wouldn’t expect to find the exact predicted scaling in either

case, due to the model being mean field and the simulations are finite-sized. Also both
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Figure 2.19: Calculating the rmax scaling with N from flocks simulated using the model
described (~φ = (0.8, 0.03, 0.17)) a) and empirical data from Ballerini et al. [2008a] b).
The scaling of rmax with N can be inferred from the gradient of the plots. Hence
rmax ∝ Nx where in a) x = 0.516 ± 0.007 and b) x = 0.61 ± 0.072. Fitted values are
µ± 1σ.

the simulated and empirical flocks will be influenced by finite size effects and non-linear

contributions from the interactions between individuals.

From Fig. 2.20a, the empirical rmax data appears to be linear in
√
N as predicted

for the maintenance of ‘marginal opacity’ (R2 = 0.78). This also appears to be true for

the simulated data (R2 = 0.998). There is considerably more variance in the empirical

data, which cannot be ascribed to the measurement accuracy, but is probably from

the more complex flocking behaviours exhibited by birds in the natural environment as

opposed to the simulated one. For birds at a distance of 100 m, the average distance of

flocks from the cameras in the study, the error in absolute distance is 0.14 m, hence the

maximum error in the empirical rmax is ∼ 0.28 m under average conditions.

The empirical rmax has dimensions in metres, whereas the simulation results are

necessarily non-dimensional. Both appear to scale linearly with
√
N as predicted. How-

ever 1 m is not necessarily the characteristic length scale for the non-dimensionalisation

of the empirical data. To compare the simulated data and the empirical data it is rea-

sonable to treat the characteristic length scale as a fittable parameter and to use a least

squares minimization to find the best fit with the simulated data.

From the mean field argument and simulation, rmax in model flock densities scales
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Figure 2.20: Testing rmax ∼ N1/2 for the empirical data of Ballerini et al. [2008a] a) 78%
of the variation of rmax with

√
N can be explained by a linear model. Only one point

lies outside the 95% confidence interval which is as expected for 24 data points. b) The
residual plot appears random, which implies a good fit for the linear model.

linearly with
√
N . Hence we can carry out a least squares fit to the simulated data. As

stated above the empirical flock rmax also scales linearly with
√
N . Hence our linear

models for the simulated r̄max and empirical rmax are

r̄max = ms

√
N + bs + εs (2.28)

rmax

[m]
= me

√
N + be + εe (2.29)

where the εs are noise terms (assumed to be Gaussian). The simulated r̄max is non-

dimensionalised and this is represented by the over bar. Hence for direct comparison the

empirical rmax must also be non-dimensionalised by dividing through by the unit (m).

Estimates for the gradient coefficients m̂s, m̂e and intercepts b̂s, b̂e can be ob-

tained by simple linear regression, resulting in our best estimates for the fits, where the

over hat denotes an estimated quantity.

r̄max = m̂s

√
N + b̂s (2.30)

rmax

m
= m̂e

√
N + b̂e (2.31)

To place the linear fits directly on top of each other for comparison and to estimate the
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scaling parameter, we subtract these two equations and rearrange

r̄max =
rmax

[ m]
+ m̂e

(
m̂s

m̂e
− 1

)√
N + b̂s − b̂e (2.32)

we will set cshift = b̂s− b̂e and the scaling factor between the simulation and experiment

is given by the ratio of the gradients me/ms = L. This is the characteristic length scale

of the empirical flock, which is not present in the simulated flock due to the ‘phantom’

nature of the individuals, i.e. there are no contact / space exclusion effects in the

model (other than those that enter indirectly though the projection term). Hence the

transformation is

r̄max =
rmax

[ m]
+
√
N

1− L
L

+ cshift (2.33)

where r̄max is the non-dimensionalised quantity, L the characteristic length scale and

cshift the change in the r̄max intercept. Note that cshift is also a fitted parameter.

The scaling hypothesis for simulation and experiment was tested in Fig. 2.17,

where rmax is plotted against
√
N . The linear fit for the simulated flock rmax has an

R2 = 0.998 and essentially all the variance in rmax is described by the predicted scaling

with
√
N . In the same figure, linearly rescaled empirical rmax data is also plotted, which

also scales linearly with
√
N and has an R2 = 0.763, which is a very good fit considering

all the confounding factors in real flocks (such as the anisotropy of directions, such as

up and down, lighting, etc).

Using a standard method of error calculation for a function f with two variables,

a, b:

σ2
f =

(
∂f

∂a

)2

σ2
a +

(
∂f

∂b

)2

σ2
b (2.34)

an error estimate for L can be made from the standard errors on the regression coeffi-

cients.

σ2
L =

1

m̂2
s

σ2
m̂e

+
m̂2

e

m̂4
e

σ2
m̂s

(2.35)

The least square fit estimate is L = 1.015± 0.115 m. Thus 0.90 m ≤ L ≤ 1.13 m.

The average body length of a starling is 0.2 m and the wingspan 0.4 m. So a characteristic

length scale of the order of 1 m is not unreasonable. The characteristic length scale could

reasonably be expected to be related either to the distance travelled in a timestep, i.e.

∝ 1/〈v〉, where 〈v〉 is the average velocity in the natural flock, or related to the average

size of a starling. As these factors control the relative size of the natural flock to the

simulated flock. The simulated flock members travel their radius in a timestep and the
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Figure 2.21: rmax from simulation and from the empirical study of Cavagna et al scales
linearly with

√
N , as predicted to obtain marginal opacity in 3D [Cavagna et al., 2010].

The empirical rmax has been non-dimensionalised using a characteristic length scale fitted
to the simulated rmax of 1.015± 0.115 m (plus a y-axis shift to align the linear fits). The
simulations are consistent and provide a very good linear fit (R2 = 0.998).
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Eqn. 2.30 appear random, implying a good linear fit to the simulated r̄max values.

natural flock members exclude their own volume (plus, in practice, a safety margin).

Hence finding a characteristic scaling of the same order as a starling’s dimensions is

unsurprising.

For all the linear fits the residuals are found to be from the normal distribution

using the Anderson-Darling test at the 5% significance level, with a null hypothesis H0

that the underlying distributionof the residuals is normal (see Table 2.4). Hence the

assumption of normally distributed errors for linear regression holds for the fits made

here. It was previously verified that the opacity of both simulated and natural starling

flocks scale as predicted by the model. It has been verified here that r̄max also scales as

predicted by the model in both simulated and natural flocks. This was not obviously

the case, as we will see later in §2.6.3 that natural flocks are very flat (hence r̄max is

along an extended direction) and that certain parameter regions of the simulations are

similarly anisotropic.

2.6.2 Density

Ballerini et al. [2008b] estimated natural flock densities from the α-shape by dividing

the volume by the number of internal points, varied widely across the flock but was

uncorrelated with the number of birds. However they did find that the density was

related to the nearest neighbour distance, or ‘sparseness’ as ρ = r−3
1 .
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Table 2.4: p-values for the Anderson-Darling test on the distribution of the residuals
from the linear fits. H0 is that the underlying distribution is normally distributed. The
p-value is the probability of the data given the hypothesis H0, hence rejection at the
5% significance level would occur if p ≤ 0.05. Therefore the null hypothesis that the
distributions of the residuals are normally distributed is accepted in all cases (this is an
assumption of linear regression which is satisfied here).

Variables
Type Independent Dependent p-value

Simulated
√
N rmax 0.987

Empirical
√
N rmax/m 0.599

Simulated logN log(rmax) 0.694
Empirical logN log(rmax/m) 0.954

The empirically observed flocks had convexities defined as Vα/VH that were

greater than 0.63 with mean 0.82±0.04 [Ballerini et al., 2008b]. The observed values for
~φ = (0.8, 0.03, 0.17) which is considered to be a bird-like flock phenotype and the closely

valued ~φ = (0.9, 0.0, 0.1) are just outside the empirical range. Only ~φ = (0.0, 0.1, 0.9) is

within the empirical range and this is a phenotype that appears more midge-like than

starling-like. The other 2 parameter regimes, which have greater φp, have a convexity

that is somewhat smaller than the observed flocks. It is of course unknown how much

of an effect external stimuli has on the convexity of the flock, but observations of flocks

responding to predation demonstrate this can be considerable.

The flock density ρ is defined as NI/Vα, where NI is the number of interior points

and Vα the volume of the α-complex. Empirically 0.04 < ρ < 0.80 with mean 0.27±0.08.

The simulated densities fell within this range, except for ~φ = (0.9, 0.0, 0.1) which with

φp = 0 was able to dissipate (i.e. there is no flock cohesion and the flock breaks apart)

and hence obtain a very small density. ~φ = (0.495, 0.495, 0.01) has the closest density to

the mean, but these flocks are very thin and flat and come from a pathological region

of the parameter space with very low noise and are interesting from the point of view of

model behaviour, but do not correspond to natural starling flocks.
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2.6.3 Morphology: Anisotropy in Flock Dimensions

Studies of birds and fish show them to have flocks and schools that are not generally

spherical (the bait ball formed by mackerel species being an obvious exception). Hence

the flocks have different extensions in different directions. There are two obvious possi-

bilities for the cause of this anisotropy in birds: gravity and the prevailing average flock

direction. Gravity defines a direction in a 3D basis that is different to the other two

perpendicular directions for natural bird flocks. The effect of gravity is neglected in the

model used here. However the effect of the prevailing flock direction (or average velocity)

can be investigated and the anisotropy is quantified by analysing the magnitude of the

dot product with the flock’s principal directions.

Ballerini et al. [2008b] define the principal dimensions I1, I2 and I3 as follows. I1

is the diameter of the largest sphere contained within the flock boundary. The principal

direction associated with this, ~I1, was defined as perpendicular to a plane least-squares

fitted through the flock. They then defined I2 as the largest circle inside a projection of

the flock onto the previously defined plane. The projection of the flock onto the plane

was then least-square fitted to a line on that plane to define ~I3. ~I2 is perpendicular

to ~I1 and ~I3 and is in the fitted-plane. I3 gives the greatest extension of the flock and

I1 ≤ I2 ≤ I3. Note these directions define an orthonormal basis.

This definition of the principal directions of the flock doesn’t relate simply to the

principal dimensions and a different definition is used here. That is the principal direc-

tions are defined as the principal components (eigenvectors) . The principal components

are defined as the normalized eigenvectors of the covariance matrix, Σ, and hence also

define an orthonormal basis for the flock positions. For the 3D point cloud from the

instantaneous flock member positions

Σ =

cov(rx, rx) cov(rx, ry) cov(rx, rz)

cov(ry, rx) cov(ry, ry) cov(ry, rz)

cov(rz, rx) cov(rz, ry) cov(rz, rz)

 (2.36)

for the random variables formed from the components of the position vectors ~ri. The

eigenvalues are the variance along these principal components and their square roots are

defined as the associated dimensions.

Σ~Ik = I2
k
~Ik (2.37)

where ~Ik are the principal directions and Ik the associated dimensions. The first principal
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Figure 2.23: A ‘typical’ flock as determined by Ballerini et al. [2008a]. a, b are the
stereo pair photographs and c–e views of the 3D reconstruction. Note how flat the flock
appears in the reconstruction.
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component points along the direction that minimizes the distance from its axis to all

points in the point cloud and is analogous to ~I3. The second principal component is

analogous to ~I2 and the third to ~I1. By defining the dimensions as the square root of the

associated eigenvalues, these are measures of mean deviation as opposed to maximal in

these directions and are decidedly different to the previous measurements. For instance

if there is a very large flat flock with a round bulge, I2 as previously defined could

be very large (depending on the size of the bulge), whereas I2 as defined here would

be close to the mean deviation. It is perhaps not obvious what the correct measure

should be, but this method is very fast (as it is an eigenvalue problem and can be solved

efficiently). Also what we are looking for is the qualitative behaviour, i.e. that flocks

tend to be slightly flat and thin (at least according to Ballerini et al. [2008b]), with the

plane parallel to the ground. It is contrary to observed experience, but it is probable

that this is a perceptive trick caused by observing flocks from a tilted visual projection.

The inability to distinguish near and far birds easily means like in the model we are

seeing a projection onto our view and lose information about the aspect ratio of the

flock (the brain then reconstructs a ‘plausible’ flock shape). Thus the thin aspect of the

flock is lost. Flying parallel to the ground on average makes sense, as every time a bird

dips they lose gravitational potential energy and hence must expend energy to reach

their previous height [Ballerini et al., 2008b].

60



T
ab

le
2.

6:
M

ea
n
±

st
an

d
ar

d
er

ro
r

fo
r

p
ri

n
ci

p
al

d
im

en
si

on
s

of
N

=
20

0
fl

o
ck

,
ca

lc
u

la
te

d
fr

om
an

ei
ge

n
va

lu
e

a
n

a
ly

si
s

o
f

th
e

co
va

ri
an

ce
m

at
ri

x
Σ

fo
r

th
e

p
os

it
io

n
ve

ct
or

co
m

p
on

en
ts

.
5

re
p

ea
ts

w
it

h
a

20
,0

00
ti

m
es

te
p

eq
u

il
ib

ra
ti

on
p

er
io

d
a
n

d
1
2
0
,0

0
0

st
ep

m
ea

su
ri

n
g

p
er

io
d

w
er

e
u

se
d

.

φ
a

φ
p

φ
e

I 3
I 2

I 1
L

3
/L

1
L

2
/L

1
|~e

1
·~v

a
v
|
|~e

2
·~v

a
v
|
|~e

3
·~v

a
v
|

0
0.

1
0.

9
8
.7

29
6
±

0
.0

12
1

7.
90

14
±

0
.0

07
9

7.
13

90
±

0.
00

28
1.

22
56
±

0.
00

15
1.

10
87
±

0.
00

08
0
.5

00
4
±

0
.0

00
3

0
.4

99
7
±

0
.0

00
3

0
.5

0
0
0
±

0
.0

0
0
4

0
0.

9
0.

1
4.

65
98
±

0
.0

02
9

3
.8

05
2
±

0
.0

02
6

1.
07

27
±

0
.0

00
9

4.
40

10
±

0.
00

44
3.

59
53
±

0.
00

37
0.

44
21
±

0.
00

05
0
.4

52
5
±

0
.0

00
2

0
.5

9
5
5
±

0
.0

0
0
4

0.
33

33
0.

33
33

0.
33

33
7.

74
33
±

0
.0

23
8

4
.3

72
3
±

0
.0

07
2

1
.4

73
5
±

0
.0

02
4

5.
77

34
±

0.
01

59
3.

29
57
±

0.
00

96
0.

30
52
±

0.
00

22
0
.2

69
3
±

0
.0

00
6

0
.8

5
0
2
±

0
.0

0
0
9

0.
49

5
0.

49
5

0.
01

6.
11

66
±

0
.1

12
1

3
.0

40
7
±

0
.0

44
3

1
.0

62
9
±

0
.0

68
4

7
.9

06
7
±

0
.5

29
1

3.
74

18
±

0.
21

08
0.

65
43
±

0.
01

45
0.

30
85
±

0.
02

78
0
.5

2
0
5
±

0
.0

3
2
5

0.
8

0.
03

0.
17

6.
04

19
±

0.
08

12
3
.7

12
7
±

0
.0

09
7

2
.6

08
1
±

0
.0

16
0

2
.3

81
2
±

0
.0

50
3

1.
44

78
±

0
.0

08
2

0.
39

12
±

0.
02

31
0.

49
68
±

0.
01

27
0.

5
9
2
2
±

0.
0
1
8
4

T
ab

le
2.

7:
M

ea
n

s
±

st
an

d
ar

d
er

ro
r

fo
r

d
im

en
si

on
s

of
N

=
10

00
fl

o
ck

,
ca

lc
u

la
te

d
fr

om
a

p
ri

n
ci

p
al

co
m

p
on

en
t

a
n

a
ly

si
s.

5
re

p
ea

ts
w

it
h

a
20

,0
00

ti
m

es
te

p
eq

u
il

ib
ra

ti
on

p
er

io
d

an
d

80
,0

00
st

ep
m

ea
su

ri
n

g
p

er
io

d
w

er
e

u
se

d
.

φ
a

φ
p

φ
e

I 3
I 2

I 1
L

3
/L

1
L

2
/L

1
|~e

1
·~v

a
v
|
|~e

2
·~v

a
v
|
|~e

3
·~v

a
v
|

0.
0

0.
1

0.
9

11
.9

63
8±

0
.0

10
3

11
.3

18
9
±

0
.0

07
5

10
.7

20
9
±

0.
00

96
1.

11
66
±

0.
00

18
1.

05
63
±

0.
00

07
0
.5

00
0
±

0
.0

00
3

0
.5

00
5
±

0
.0

00
5

0
.4

9
9
3
±

0
.0

0
0
6

0.
33

3
0.

33
3

0.
33

3
18

3.
66

44
±

4
.4

07
3

12
4
.1

66
2±

4
.7

01
9

49
.7

79
3
±

4.
47

46
3.

90
27
±

0.
43

84
2.

61
49
±

0.
26

10
0
.4

94
1
±

0
.1

13
0

0
.4

91
0
±

0
.0

87
1

0
.5

4
6
3
±

0
.0

9
5
5

0.
49

5
0.

49
5

0.
01

36
.8

01
8±

1
.1

94
0

5
.0

75
5
±

0
.3

39
0

3
.4

45
4
±

0
.1

34
8

10
.8

98
7±

0.
39

17
1.

48
88
±

0.
04

40
0.

99
11
±

0.
00

11
0
.0

93
8
±

0
.0

07
1

0
.0

4
3
6
±

0
.0

0
2
8

0.
8

0.
03

0.
01

7
14
.3

24
7±

0
.4

23
9

7
.5

69
1
±

0
.1

87
4

4
.7

10
4
±

0
.0

93
4

3.
16

47
±

0
.1

27
8

1.
65

24
±

0.
05

85
0.

40
36
±

0.
03

69
0.

62
46
±

0.
03

38
0
.4

4
5
5
±

0
.0

3
0
9

6

0.
9

0.
0

0.
1

17
.7

14
8±

0.
08

87
11
.2

15
3±

0
.0

25
5

1
.9

00
8
±

0
.0

21
0

10
.0

73
0
±

0
.1

30
8

6.
48

75
±

0.
05

38
0.

20
33
±

0.
00

36
0.

18
32
±

0.
00

29
0
.9

3
6
5
±

0
.0

0
2
5

61



The empirical measurements of Ballerini et al. [2008b] for the mean of the di-

mensional ratios over all observed events are L2/L1 = 2.8 ± 0.4 and L3/L1 = 5.6 ± 1.0

(95% CIs) with overall aspect ratio of approximately 1:3:6. The simulated flocks con-

taining substantial amounts of both the projection and alignment terms are also highly

anisotropic in the 3 flock dimensions. The ~φ = (0.495, 0.495, 0.01) flocks are very flat

and for N = 1000 has an aspect ratio of approx. 1:1.5:11. This directional symmetry

breaking in the flock dimensions is an interesting feature of the model that mirrors the

empirical observations.

Due to the absence of gravity in the model, we cannot examine |~G · ~ex| for the

3 principal component axes, where ~G is the gravitational direction. It is only possible

to look at the projections onto the average velocity |~vav · ~ex|. For the measured starling

flocks the projection of ~e1, i.e. the flock thickness, was found to be 0.06–0.41 with a

mean value of 0.19 ± 0.08 indicating that it does not generally point in the direction

of average flock motion, but is in the range π/2 and π/3, i.e. an oblique angle to the

velocity [Ballerini et al., 2008b]. The simulated values lie within this range except for
~φ = (0.495, 0.495, 0.01) where the smallest dimension is closer to parallel with the flock

velocity, as can be seen in Fig. 2.8 for N = 200 (as noted before this is in a pathological

region of the parameter space). This axis is in good alignment with the average velocity

for N = 1000 simulations at the same coefficient values, which results in the flat sheet

of the flock moving perpendicularly to natural flocks.

2.6.4 Anisotropy in Nearest Neighbours

The following analyses are of the nearest neighbour angular distributions, i.e. where the

nearest neighbours are found relative to the individual’s velocity. The analyses use the

Hanisch method to remove border bias in the nearest neighbour statistics as detailed

in §2.3.2. A common measure of the relative position of nearest neighbours in a focal

individual’s view is the so-called bearing angle θ. This is the angle between the focal

individual’s velocity and the position of the nearest neighbour. If the directions to

the nearest neighbour are randomly distributed in 3D around the focal individual, the

distribution of θ is not uniform (see 2.24). This is because for each bearing angle θ, the

possible directions at which a neighbour may be located are on a circle with radius sin(θ)

on the unit sphere. There are maximal possible directions at θ = π/2 (a great circle)

and minimal at 0, π where there is only one point. Hence there is a jacobian factor of

sin(θ) that needs to be accounted for. For determining if the distribution of θ differs from

uniformly random, it is easier to work with the PDF of cos(θ), f(cos(θ)), which is uniform
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θ v

Figure 2.24: The circle defined by a given bearing angle has a greater circumference the
closer θ is to ±π/2, hence there are more positions a potential can be – a geometrical
effect. This Jacobian factor must be taken into account when constructing the PDF,
in this case it is simpler to use the PDF of cos θ as it is a uniform distribution, for an
isotropic neighbour distribution.

for randomly positioned nearest neighbours with f(cos(θ)) = 0.5 [Ballerini et al., 2008b].
~di = ~vi/‖~vi‖ is the normalized velocity (i.e. direction) of the focal individual i and ~uj is

a unit vector in the direction of the nearest neighbour j, i.e. ~uj = ~rj − ~ri/|~rj − ~ri|.

cos(θ) = ~di · ~uj (2.38)

The observed cos θ distributions from Ballerini et al. [2008a] show fewer nearest

neighbours in front and to the rear than would be expected by chance alone, with a

concomitant increase in neighbours at the side of an individual (see Fig. 2.26). One

possible explanation is that collisions are best avoided by having neighbours that are

not directly in front or behind, as in aligned flocks the directions of motion are likely to be

very similar. However, if it is assumed that vision informs the movement rules of birds,

then the anisotropic nature of the visual apparatus, such as the foveal specialisation

and the blind angle behind the head, could be the cause of the anisotropy. For instance

it could be argued that keeping your nearest neighbours centred in your view on the

region of your visual field with greatest resolution, will allow you to best assess their

position and heading to prevent collision. In laterally located eyes, the regions directly

in front and behind of the head are typically at the periphery of the visual field or

include blind areas and this is a dangerous place to have your nearest neighbours when

avoiding collisions. It has also been suggested (although disputed) that there is an

energy benefit to some anisotropic structures in animal aggregations. Famously (and

particularly disputed) is the case of geese, which fly in a characteristic V-formation

that may confer an aerodynamic benefit as flock members ‘break the air’ by creating
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Figure 2.25: The empirical nearest-neighbour angular distribution. The plots show the
density of unit vectors to the first nearest neighbour a), and tenth nearest neighbours
b), for a flock of 1168 starlings [Ballerini et al., 2008a]. The angles are relative to the
average flock velocity. Note the lack of neighbours in front and behind, in contrast to
the early work of Major and Dill [1978] who found the nearest neighbours to be behind
and below a reference bird. The discrepancy is likely to be due to the limitations of
the techniques available to Major and Dill [1978]. They could only examine small flocks
with a two camera set up and matching individuals between the stereo photographs
was done manually. Although the discrepancy may be a real difference between small
and intermediately sized natural flocks (small O(10), intermediate O(100)). There are
less opportunities for collision in smaller flocks, where remaining aligned may be more
important for flock cohesion. Hence it could possibly be more advantageous to follow
other flock members in small flocks.
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Figure 2.26: The empirical nearest neighbour cos θ distribution for four flocking events
32-06 N = 781, 17-06 N = 534, 25-10 N = 834 and 25-11 N = 1168 [Ballerini et al.,
2008b]. θ is the bearing angle, measured relative to an individual’s direction of motion.
Note that the distributions peak at cos θ = 0, i.e. θ = ±π/2 and that neighbours tend
to be found at the sides, not in front or behind.

turbulence for the individuals behind them [Badgerow and Hainsworth, 1981]. More

directly applicable is [Higdon and Corrsin, 1978]’s investigation of the aerodynamic effect

in aggregations such as starlings. They found it to be disadvantageous for one bird to fly

directly behind another, which is another possible reason for the empirical anisotropy.7

It is still very much an open question as to whether the geometric relationship of birds

is primarily determined by visual or aerodynamical considerations, but the anisotropy

is clearly established.

Fig. 2.27 shows the cos θ distributions for the first nearest neighbours for certain
~φ parameter values. For each point there are tens of thousands of measurements and all

the distributions differ significantly from the uniform random distribution, using a chi-

squared goodness-of-fit test at the 1% level. Interestingly, for the parameters considered

to appear bird-like, ~φ = (0.8, 0.03, 0.17), the distribution is close to uniformly random.

Less surprisingly, this is also true for high alignment and low noise, ~φ = (0.9, 0.0, 0.1), as

neither of the contributions should result in a preferred nearest neighbour direction. For

the midge-like parameter values ~φ = (0.0, 0.1, 0.9) the distribution is also close to uni-

7Interestingly, the most efficient structure was found to be tall and narrow, such as those found in
mixed icterid flocks, not the flat structures parallel to the ground found for starlings.
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Figure 2.27: The empirical pdfs for cos(θ) for 5 different sets of parameters ~φ as shown
on the inset for N = 1000. The nearest neighbour bearing measurements were made over
80, 000 timesteps with 20, 000 timestep equilibration. Error bars are for the standard
errors. For ~φ = (0.495, 0.495, 0.01), a uniformly random displacement was added to the
positions due to the tendency to produce flat flocks, which breaks the 3D alpha shape
algorithm. The displacement was x, y, z ∼ Uniform(−5e−6, 5e−6), which are orders of
magnitude smaller than the nearest neighbour distances, which are of order unity.
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formly random and this is also unsurprising, as this behaviour type is noise dominated.

See Fig. 2.27.

The nearest-neighbour distribution for the low noise, ~φ = (0.495, 0.495, 0.01),

which falls on the diagonal of the parameter space diagrams, is highly anisotropic, with

a large peak at cos(θ) = 0.0 or θ = π/2. This means it is very likely to find the nearest

neighbour at the sides of a focal individual. Looking at the flocks formed, these tend

to be very flat with the motion perpendicular to the plane containing the flock. Hence

nearest neighbours are found at π/2 relative to the direction of motion of the individuals.

It is surprising how consistently flat the flocks are for these parameters.

For ~φ = (0.333, 0.333, 0.333), the nearest neighbours tend to be behind the in-

dividuals with the probability decreasing towards the front. This distribution differs

to those previously described and demonstrates the richness of behaviours across the

parameter space. It has been found that the empirical nearest neighbour angular distri-

bution varies within ± ∼ 20% of uniform, with increased density at the sides (see Fig.

2.26).

It is interesting that differing structures arise in the angular distributions as this

is not explicitly built into the model. The symmetry of the flock is broken in highly

aligned flocks, such as ~φ = (0.9, 0.0, 0.1) but this is not enough to produce the large de-

viations from randomness seen for ~φ = (0.495, 0.495, 0.01) and ~φ = (0.333, 0.333, 0.333).

The projection term is clearly driving this anisotropy without any anisotropy in the

individual viewing angles. The anisotropic nature of the natural visual apparatus has

been suggested as the cause in natural flocks, but is clearly not a necessary condition

for anisotropy.

2.7 Algorithms

2.7.1 Spherical Geometry

~δp,i is calculated as the centre of mass of the boundaries of the projection through

the flock onto an individuals view. This boundary is composed of circular arcs from

the projection of the other spherical individuals. The projection of a sphere onto the

surface of another sphere is not generally a hemisphere with a great circle boundary,

but a spherical cap with a shorter circular boundary. This boundary of the union of the

projection of multiple spheres will be composed of arcs of these circles. These circles on

a sphere define a spherical cap (the region of smallest volume bounded by the circle) for

which it is the base. Hence a representation of a (general) circle in 3D is required, the
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Figure 2.28: The circular bases of the spherical arcs are 3D circles with a point on that
circle defined by the equation ~x(t) = ~c+ rp{cos(t)~u+ rp sin(t)~v}, where ~c is the circle’s
centre, rp its radius; ~u and ~v are perpendicular basis vectors for the circle and 0 ≤ t ≤ 2π
the angle parameter that defines a position on that circle.

representation used in this study is:

~x(t) = ~c+ rp{cos(t)~u+ rp sin(t)~v} (2.39)

where ~x is a point is on the circle, ~c is the circle centre, ~u and ~v are unit vectors in

the plane of the circle, rp is the radius of the circle and t is the parameter 0 ≤ t ≤ 2π.

See Fig. 2.28. Intersections between circles are found using this representation by the

formula in Szalay et al. [2005]. Each circle is supported on a plane with the following

equations

~n1 · ~x = c1 (2.40)

~n2 · ~x = c2 (2.41)

where ~n are unit vectors perpendicular to the supporting plane and ~x are points on those

planes. For the 2 circles to intersect their supporting planes must intersect along a line

(or a point). We will define this line in terms of the axes composed from these normal

vectors:

~x = u~n1 + v~n2 + w(~n1 × ~n2) (2.42)

(~n1 × ~n2 is a vector parallel to the line of intersection of the supporting planes (see

Fig. 2.29). Multiplying Eqn 2.42 separately by ~n1 and ~n2 leads to 2 scalar equations.

Using the fact that ~n1 and ~n2 are normal vectors and orthogonal, then defining ~n1 ·~n2 =
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Figure 2.29: Finding the line of intersection for 2 circles in 3D space. For the 2 circles
to intersect the planes (defined by normal vectors ~n1, ~n1) containing them must also
intersect. They do so along a line which is in the direction of the cross product vector
of the 2 normal vectors defining the supporting planes [Szalay et al., 2005].

cos(θ) = γ gives us

u+ vγ = c1 (2.43)

uγ + v = c2 (2.44)

The 2 planes cannot be parallel if there is to be an intersection hence γ 6= ±1 (which

must be explicitly tested for). Solving for u and v we get

u =
c1 − c2γ

1− γ2
(2.45)

v =
c2 − c1γ

1− γ2
(2.46)

As out intersections also occur on the unit sphere, we have ~x · ~x = 1. Using this; that

~n1 and ~n2 are unit vectors and that |~n1 × ~n2| = 1− cos2(θ) = 1− γ2 we get an equation

for the squared position

~x · ~x = u2 + v2 + 2uvγ + w2(1− γ2) = 1 (2.47)

which we solve for w

w2 =
1− (u2 + v2 + 2uvγ)

1− γ2
=

(
1− c2

1 + c2
2 − 2c1c2γ

1− γ2

)
1

1− γ2
(2.48)
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For the equation to have valid roots the following 2 conditions must be met

1− γ2 > 0 (2.49)

1− γ2 ≥ c2
1 + c2

2 − 2c1c2γ (2.50)

Arcs are defined on such a circle, called the supporting circle, by the parameter t, s.t.

tstart ≤ t ≤ tend and tend ≥ tstart, with the exception of arcs that cross the 0, 2π boundary.

With the exception of arcs that cross the 0, 2π ends follow starts around the circle with

increasing t. The centre of mass of an arc is calculated in the ~u~v-frame, as this is the

centre of mass of a circle arc in 2D. The equation of the circle is then u(t) = rp cos(t)

and v(t) = rp sin(t) and the differential arc length is
√
u′(t)2 + v′(t)2 = rp

ūL =

∫ tend

tstart

rp
2 cos(t).dt = rp

2[sin(t)]tend
tstart

(2.51)

v̄L =

∫ tend

tstart

rp
2 sin(t).dt = rp

2[− cos(t)]tend
tstart

(2.52)

where L is the arc length rp(ttarget − tsource). Hence the contribution to the centre of

mass in the model frame of a single arc is:

L

[
~c+

ū~u+ v̄~v

L

]
(2.53)

The overall centre of mass position for all the arcs on a sphere is the sum over the

individual arcs divided by the sum of the arc lengths L. This will necessarily be inside

the sphere and for a unit sphere will therefore be a vector having magnitude less than 1.

2.7.2 Projection Algorithm

The computational problem is to find the boundaries of arrangements of circles on the

surface of a sphere. It has been said that when solving a computational problem that

you can either use better algorithms or better numbers (e.g. exact or high precision

arithmetic implementations). A Bentley-Ottman algorithm for high precision arithmetic

that is of O(N logN) complexity to find the arrangement of circles on the surface of a

sphere exists, but an implementation is not publicly available. When double precision

arithmetic was used (to increase speed) in an implementation of this algorithm by the

author, the algorithm seemed to be unstable to missed intersections. So, a more robust,

but less efficient double precision algorithm was developed for this work.
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Figure 2.30: A McBryde-Thomas Flat-Polar Parabolic projection of the edge finding
projection algorithm’s output for 100 randomly placed circles. The maximum surface
coverage is 1/2 the surface area, with 10 circle sizes that have uniformly distributed
radii. All the intersections have been identified correctly. The actual surface coverage is
1/4.

The designed algorithm took the circles denoting the base of the spherical caps of

the projection of the individual particles and then found the intersection of these circles.

First, each pair of projected circles was checked to see if they were close enough to

overlap and then their intersections were found. The spherical distance from the centre

of a projected spherical cap to its circumference is

d = |arccos ‖~c‖| (2.54)

Hence two caps may overlap if the distance to their radii is less than there circumference,

i.e. d1 + d2 ≤ d12.

d12 =

∣∣∣∣arccos
~c1 · ~c2

‖~c1‖‖~c2‖

∣∣∣∣ (2.55)

From those intersection points the connecting arcs were defined according to Eqn. 2.39

and then each arc was checked to see if it was contained in any supporting circle suffi-

ciently close to the supporting circle of the arc to overlap with it (again from d12). Any

arc found to be contained within another supporting circle was then eliminated from the

arc list. To test for the possibility of an arc being contained within cap i the midpoint

on the arc under test was projected onto the ~ui~vi basis of supporting circle i. If in this

coordinate system the point was less than ri from the centre of the supporting circle

then the arc must be contained in that cap. The projections of a point ~p onto ~ui and ~vi
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are

proj(~p, ~ui) = (~p− ~ci) · ~ui (2.56)

proj(~p,~vi) = (~p− ~ci) · ~vi (2.57)

The conditions for the inclusion of the arc in the spherical cap are

proj(~p, ~ui)
2 + proj(~p, ~ui) < r2

i (2.58)

and

(~p− ~ci) · ~ci > 0 (2.59)

ensures that the arc is on a hemisphere shared with the spherical cap.

Visual inspections of the output of the algorithm indicate that it is working

correctly and is more stable to missed intersections than the previously implemented

method. Although inaccuracies could be tolerated for the intersection of small circles

on the grounds that the visual system itself will have a cut-off below which it fails to

function (i.e. resolution) and that as the input of the projection term to the model is an

integral over arc length, the smaller arcs will influence the model output the least.

2.7.3 Calculating Opacity: Spherical Surface Integration

The projection algorithm is concerned with finding the boundaries of overlapping spher-

ical caps which are spherical arcs. To avoid an expensive area-discretised calculation

of the occluded surface area, an approximate green’s theorem method was used to find

the area from the already obtained boundary arcs. The accuracy of this estimate of

the occluded surface area is clearly limited by the accuracy of the representation of the

boundary and on how the discretisation over the boundary is performed.

For spherical caps not overlapping any others the surface area is easily found as

2πrh where r = 1 is the radius of the view sphere and h is the radius minus the distance

to the centre of the cap’s bounding circle, i.e. the cap height. Areas of overlapping

regions are calculated by integrating over z-monotone arcs that the region’s boundary

has been divided into.

If necessary, arcs are split so that they are z-monotone. This results in a definition

of ‘left’ and ‘right’ arcs. Drawing a meridian through each circle centre (and the view

sphere’s poles) results in two halves. The half with smaller φ is the left half. The area
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integration is carried out by integrating the function

f(z) =

{
−φ(z) if arc is left

φ(z) if arc is right

}
(2.60)

for each arc numerically. On each arc the numerical integration used is an adaptive 15-

point Gauss-Konrod rule scheme [Galassi et al., 2009]. Thus the total area is calculated

by subtracting the enclosed area for left arcs and adding the area to the total area sum

for right arcs, with respect to a prime meridian at φ = 0. This is explained visually in

Fig. 2.31.

Care needs to be taken when the boundaries include the poles, as the φ integration

will miss the spherical cap with z-values higher (lower) than the highest (lowest) value

on the boundary when enclosing the North (South) pole. An ordered list of the intervals

of overlap with the prime meridian are recorded as pairs of z-coordinates (upper and

lower bounds). Hence if the South pole is included in a region the lowest lower bound

is −1 and if the North pole is included the highest upper bound is +1. This list is also

necessary as 2π(zu − zl) needs to be subtracted for each crossing of the prime meridian.

This is due to the ‘right ’part of the boundary being at smaller φ than the ‘left’ part.

Hence the requirement of maintaining an interval list data structure implemented using

the interval set class of the boost::icl interval arithmetic library [Dawes, 2003].

A similar method was implemented in a technical report by NASA [Chamber-

lain and Duquette, 2007]. Their method is for spherical polygons (composed of great

circle segments) and integrates with respect to the South Pole, rather than a meridian.

However the algorithm does not work if either pole is contained inside the polygon and

therefore it is necessary to test for that eventuality and rotate the coordinate system

appropriately (assuming such a rotation is possible). When working with a spherical

approximation of the Earth for strategic simulations (the NASA case), this is not oner-

ous as the poles are not usually in regions of interest. Their method could be adapted

for general spherical arcs by using a numerical integration scheme for the area between

the arc and the South Pole and has the advantage that it is unnecessary to maintain

a z-interval data structure, but it is not as general, as it can’t deal with regions that

cannot be rotated to avoid covering both poles. Unless this eventuality is tested for and

the region divided into two such that no piece contains both poles.

To evaluate the quality of the numerical spherical integration scheme imple-

mented, a comparison with a simple pointwise integration scheme is made. Spherical

caps were placed with minimum distances to their bases r ≤ 1 and φ ∼ unif(0, 2π) and
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a b

c d

Figure 2.31: Finding the area of a shape a constructed of left and right arcs of general
circles on the sphere. The area between the left arcs and the meridian, b, are subtracted;
whereas the area between the meridian and the right arcs, c, are added to the overall
area sum. This gives the total area of the shape, i.e. the wavy portion in d.

θ ∼ unif(0, π). This results in more spherical caps at the poles. Two situations were

tested: the first where the caps are of uniform size and a second where the caps are

uniformly distributed up to a maximum size n, where the expected area of the caps

(if they did not overlap) is Ωmax a control parameter which sets the number of caps,

N . The total area of the regions occluded by the randomly placed spherical caps was

then evaluated using the pointwise integration method and the 3D approximate greens

theorem approach outlined previously.

The first test involved the random placement of uniform spherical caps and the

comparison with the point-wise scheme was made over a range of cap numbers N . A

short cut in the opacity calculation used in the flock simulations is that non-overlapping

caps are calculated using the simple formula for their area (S = 2πh), thus removing

the numerical integration of isolated circles and improving the overall accuracy of the

opacity calculation. However for the following tests, isolated circles were also integrated

numerically, because this is a test of the accuracy of the Green’s theorem based approach.

The difference between the integrations is less than 1% over all numbers of caps N . This

is a good performance over a large range of surface coverages, as shown in Fig. 2.32.

indirectly, this is also a measure of the quality of the projection algorithm used, as errors

in the arcs will translate into errors in the surface integration.

However using uniform caps means the arcs integrated over have uniform curva-

ture and a more realistic test uses caps that have a distribution of radii. The second

test used a uniformly distributed set of radii for the spherical caps and the algorithm

also shows a higher level of accuracy (see Fig. 2.33).
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Figure 2.32: As the number of uniform caps N increases, the percentage difference
between the approximate green’s theorem and the point-wise integration scheme falls.
The variance reduces due to the increased number of caps sampling surface positions
more effectively.

2.8 n-Nearest vs Delaunay Neighbours: A 2D Case Study

In Fig. 2.34 a) the advantages of the Delaunay neighbour construction in a 2D flock can

be seen. It is that connectivity in alignment information is maintained even with some

members significantly outside the main body of the flock. In Fig. 2.34 b) the Delau-

nay neighbours are illustrated for a flock using a nearest neighbour rule for alignment.

The various sub-flocks would be connected in the passing of alignment information, if

neighbours were defined by the Delaunay triangulation used instead of being less than

the 7-th nearest neighbour as in b).

The choice of neighbour definition, does make a difference to the amount of

alignment generated. The higher n in an n-nearest neighbours model, the more con-

nected the flock will be in terms of alignment, i.e. the less likely it is that there will

be groups moving away from the main flock that will eventually become too distant

to share any neighbours with the main flock, hence becoming separate flocks. This is

because the alignment interaction is an average over neighbours with proportion in the

velocity update controlled by φa. It was previously shown that only small amounts of the
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Figure 2.33: For the tested numbers of cap sizes, n, the difference in the numerical
schemes decreases as the view coverage represented by Ω the opacity as a function of the
total area of the caps assuming they did not overlap (Ωmax) increases and tends towards
a value less than 0.01%.
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Figure 2.34: The Delaunay triangulation is shown in red and the Voronoi construction
in blue for 2D N = 200 flocks with ~φ = (0.8, 0.03, 0.17) with alignment from an average
over a) Delaunay triangulation neighbours and b) the 7 nearest neghibours.
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projection term ~δp,i were required to prevent flock dissipation for the case of Delaunay

neighbours. Even though this remains true, no matter what the neighbour definition

is for the alignment term, the alignment order parameter Ψ depends strongly on the

transfer of alignment information in the flock.

Ψ =
1

Nv0

∣∣∣∣∣
N∑
i=1

~vi

∣∣∣∣∣ (2.61)

Where v0 is the average absolute velocity of individuals in the system (in this model a

constant, v0 = 1.0). This is not really surprising, as for n-nearest neighbour models, it is

possible to have locally aligned regions that communicate weakly with other neighbouring

regions in the flock, based on the density of internal connections. Hence increasing the

number of members in the flock for an n-nearest neighbour model, where n ≤ N results

in a lower order parameter as the growth in the size of the flock outstrips that of the

order parameter correlation length (see fig. 2.35).

2.9 Discussion

The projection rule described here is similar to a rule inspired by the selfish herd theory

and has been simulated in 1D and 2D [Viscido et al., 2002]. This rule is the ‘Local

Crowded Horizon’ (LCH) and it also uses the density of the whole flock to determine

movement. At each timestep the focal individual, i, moves towards the part of the

horizon that is most densely populated, after adjusting for perceptive ability. The in-

fluence of j on i was considered to be proportional to the size of j’s projection on the

horizon and therefore decays with distance. The functional form of this perception was

f(rij) = 1
1+kxij

, where rij is the distance between i and j. This form produced the

desired compact flocks while reducing the average size of the domain of danger. Using

a different perception function they were also able to prevent flock dispersion without

having a higher central density (another aim of the model), similar to the results here.

Herds of non-flying animals often display a high central density as they can get very

close together without the inherent danger for flying animals (that they may collide and

cease to be able to fly). The LCH simulations also contained no alignment or random

noise terms, hence the reasonable comparison is with the ~φ = (0.0, 1.0, 0.0) behaviour of

the model here.

The parameter value planes investigated in §2.4.3 show regions of high alignment

and opacity controlled by the projection term, it was later shown in §2.6 that for a set
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Figure 2.35: The variation of Ω and Ψ with control parameter values for an N = 200
flock using Delaunay neighbours a) and b). The variation with control parameters for
N = 100 c) and d) and N = 200 flocks e) and f) with 7 nearest neighbours used for
alignment (n = 7) . Ω is similar for the 3 flock types but Ψ is less for N = 200 than
N = 100, for the nearest neighbour alignment due to the lower transfer of alignment
information across the flock. Both nearest neighbour flock types achieve less alignment
than the Delaunay neighbours due to the increased connectivity in Delaunay flocks.
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of chosen values in this region ~φ = (0.8, 0.03, 0.17) that rmax scales with flock size in

a way consistent with the empirically observed rmax. The simulated rmax also scales

as predicted by the simple mean field argument advanced in Pearce et al. [2014]. It is

suggestive that the simple projection rule can reproduce the observed scaling behaviour

in rmax and a plausible scaling in the opacity, Ω, that tends to a value that is less than

1 and hence is ‘marginally opaque’.

An emergent anisotropy in the flock dimensions and nearest neighbour angular

distributions, reflective of the empirical studies were investigated in §2.6.3 and §2.6.4.

The anisotropy in the flock dimensions could only be examined in the 3D model and is

a feature of the 3D model that is unexpected as there are no preferred directions for ~δp

a priori.

2.10 Future Work

• Perhaps the most obvious extension is to create a computationally less demanding

model, perhaps by discretising the view rather than the arcs of the projections

onto the view (the current method was chosen to keep the simulation as true to

the theoretical model as possible). This would allow for much larger flocks and

for calculating properties for more parameter values, in addition to investigating

non-spherical particles and inertia.

• A rear blind angle caused by the location of the eyes in the skull has been found

to affect the properties of some models, but in the 2D version of this model it was

not found to lead to qualitative differences. It is still to be verified that a blind

angle has little effect in 3D.

• As mentioned in §2.6.3 a possible, and indeed likely, driver of the anisotropy in

flock dimensions is gravity and it has been empirically observed that flocks are thin

and move parallel to the ground. A version of the model that modelled gravity,

perhaps implemented as a contribution to the velocity φg~vg that pushes individuals

back to a preferred plane may produce the observed flock morphologies. This is of

course an empirical rather than a priori addition to the model and perhaps may

not differ much from the 2D model previously implemented in Pearce et al. [2014].

• A more detailed model involving basic flight characteristics, such as minimum

turning angles and inertia would allow for further direct comparisons with the

STARFLAG data and investigation of the turning characteristics of the flock. For
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example, rock doves are believed to turn in equal radius paths and this has been

shown to be true for starlings [Ballerini et al., 2008b].

• It has been shown that having individuals not obeying the same rules within a

flock can control the flock behaviour, e.g. turning the flock. This could be tested

by adding agents with different movement rules, e.g. a directional bias. Another

question is the stability of the density scaling to differences in the individual rules,

e.g. if the coefficients are drawn from a normal distribution around particular

values. This is a different way of introducing error to that used in the model here.

• It would be interesting to look at the local density across the flock, as natural

flocks have greater density at the edges than in the centre (which runs contrary

to what is expected from selfish herd theory). This could be done by sequentially

adding flock members from the centroid of the flock outwards and at each step

calculating the volume of the associated α-shape. If the volume increases then the

edges have greater density than the interior.

• Density measurements of starling flocks were made previously in this group from

2D photographs. These represent a external measurements of the opacity from a

projection of the flock taken by an observer usually at many flock lengths from the

flock. A code was developed to make a similar measurement, using an external

observer (again with a spherical view), where the convex hull of the flock was

projected onto the observers view.
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Chapter 3

2D 2-Step Models Inspired by

Optical Flow

On a paper submitted by a physicist

colleague:

“This isn’t right. This isn’t even

wrong’.’

Wolfgang Pauli

It has been suggested by Gibson that visual perception should not be considered

to be a series of still photographs to be processed by the brain before moving on to the

next one, but instead it is the movement between frames (or flow) that is important

[Gibson, 1986]. This idea is based on how considerably more information can be ex-

tracted from the visual field by considering the time evolution of the retinal response –

such as whether an object is approaching/receding relative to the observer, by enlarge-

ment/reduction in their view. Further discussion of these ideas is given in section 1.3.4.

This chapter investigates possibilities for a novel cohesion term, using the difference in

views at two time steps.

3.1 Model Description

This model replaces the projection term of the model given in chapter 2, with a new

term, designed to approximate optical flow ~vflow. This term, like the former projection

term, is very simple and aims to be a minimal ‘difference between two frames model’

that has cohesion. The view of an individual is taken to be a unit circle, onto which are
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projected the other flock members as dark regions as before. Four different models can

be conceived along the lines of the projection model, but using the differences between

two frames.

• Model D: Only regions that have become dark in the latest frame contribute. Take

vectors to the edges of these regions from the individual and average them to give

the new input.

• Model L: Only regions that have become light in the latest frame contribute. Take

vectors to the edges of these regions from the individual and average to give the

new input.

• Model DL: If a region was dark and has become light, take vectors from the edges

of these regions to the individual and vice versa for light regions that have become

dark. Hence move away from dark and towards light regions.

• Model LD: If a region was light and has become dark, take vectors from the edges

of these regions to the individual and vice versa for dark regions that have become

light. Hence move away from light and towards dark regions.

Model D encourages individuals to fly towards regions that have become dark, whereas

model L says to fly towards regions that have become light. Model DL says to move

away from newly dark regions towards newly light regions, whereas model LD says the

opposite. These models clearly have a dependence on the individual velocities v, as

these control the rate at which the views change. Models D and L were expected to

act as cohesive terms as those outside the flock will only see changes to their view in

the direction of the flock, whereas those inside the flock who are moving in roughly the

same direction as the flock will have an approximately isotropically changing view and

the contribution of ~vflow to the overall velocity will be small.

3.1.1 The 2 Member ‘Flock’

It is interesting to consider some particular movement cases for a pair of individu-

als. What do the model ~vflow rules above say to do when the other individual ap-

proaches/recedes or goes past? These archetypal situations considered are illustrated in

Fig. 3.1.

If the individuals move along the line joining them, model L says to go towards

receding individuals, but not to avoid incoming ones. Model D says to go towards

approaching individuals but not to follow receding individuals. Model L tries to avoid
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(a) (b) (c)

Figure 3.1: The three archetypal movements considered here are a) individuals moving
towards each other, b) individuals moving away from each other and c) a particle moving
past another.

separation, whereas model D encourages collisions! Neither is a satisfactory single rule

in the 2 individual case when they are approaching or receding. Model LD is worse

than either L or D as it says to move towards approaching individuals and away from

receding ones. The only rule which might not result in collapse or dissipation in this

setting is DL, as it encourages movement away from an approaching, but towards a

receding, individual and will hence have the effect of maintaining the starting distance

(see Fig. 3.2). That flock members would be approaching or receding from each other

along a connecting line is unlikely. It is more likely that movement will be at an oblique

angle with a similar result.

Another simple situation to consider, is when the two individuals move past each

other, without change in the angular size of their respective images, i.e if we are in the

reference frame of one individual, then the other follows a circular path of fixed radius as

it passes the first. This means that the start and end-points (and every other point on the

path) are equidistant from the focal individual (the one currently under consideration).

For a rule designed to enhance cohesion, this is a not a relevant situation (as the distance

between individuals never changes), but for an alignment contribution the direction

indicated should be near that of the other individual’s direction of travel. Rule L says to

head in an oblique direction away from the trajectory of the other individual, whereas
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(a) (b)

(c) (d)

Figure 3.2: The inner circles represent an individual’s view at the previous timestep
and the outer circles the view at the current timestep. The red arrow gives an indication
of the direction specified by the optical flow term, but not the magnitude. Model LD
has exactly the opposite behaviour to what would be desired for a cohesive contribution
to the velocity update equation when a single individual approaches a), or recedes b).
Model DL on the other hand has the expected behaviour for a cohesive contribution, c)
and d).
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(a) (b)

Figure 3.3: The inner circles represent an individual’s view at the previous timestep
and the outer circles the view at the current timestep. The red arrow gives an indication
of the direction specified by the optical flow term, but not the magnitude. a) Model LD
results in motion in the approximate direction that the projected individual is moving.
b) Model DL results in motion in the opposite direction.

rule D says to move in the opposite direction to rule L (i.e. in an oblique direction towards

the other trajectory). Rule DL results in movement in the opposite direction to the

trajectory, whereas rule LD results in movement in the same direction. However outside

of the equidistant path constraint, the interactions will clearly be more complicated.

Rules L and D cannot function as both alignment and cohesion contributions in

both the approaching and receding cases, but rule D introduces approximate alignment,

with a passing individual (whereas rule L will not). Rule DL is an acceptable cohesion

rule, but not alignment rule and vice versa for rule LD. It does not appear that a single

rule is sufficient to provide both alignment and distance controls in the N = 2 setting.

However, few would consider two birds to be a flock, so that success or failure of a rule

in these cases does not mean that we can immediately make assertions about its use as

a cohesive rule in large flocks.

When a bird is outside a flock, rule D, rather intuitively, tells the bird to fly

towards the flock as did the projection term from chapter 2 and this should be largely

independent of the speed of the flock relative to the bird. Rule L will behave similarly if

the movement of the flock is small relative to the focal individual, such that the newly

light regions of view are still inside the new position of the flock. If the flock velocity is

very high, the flock could move more than a flock length in a timestep and the newly

light regions would be behind the flock (relative to the c.o.m. trajectory). This is not a

distance that can be reasonably travelled that quickly in a natural flock, when compared

to the cognitive update rates (assumed to be those of the visual system, which are in the
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microsecond range). For rules LD and DL the size of the changing light and dark regions

and the number of them should determine whether there is a net movement towards the

flock or not. The easiest way to determine whether these mixed rules (DL and LD) will

produce alignment and or cohesion (without collapse to unrealistic densities) is through

simulation.

3.1.2 Model

As stated previously, the model is a Vicsek-like model similar to that in chapter 2. The

new velocity update equation for individual i at time t+ 1 is

~vi,t+1 = φa
〈~vt〉ni

‖〈~vt〉ni‖
+ φflow

~vflow

‖~vflow‖
+ φe~ηi (3.1)

Where the new term ~vflow is the input from one of the new rules. The position update

is therefore

~xt+1 = ~xt + v0∆t
~vt+1

|~vt+1|
(3.2)

with ∆t the length of the discrete time step, taken to be 1.

The 2D models were implemented in C++ using the Boost Interval Arithmetic

Library to calculate the flow terms [Dawes, 2003]. The views at the current and previous

timestep are represented as the interval sets of the filled portions of view in the range

[0, 2π) denoted Sc and Sp. From this, the unfilled portion of the views can be found

from the absolute complements to these sets U \ Sc or U \ Sp, where U = [0, 2π) is the

universe.1

The interval set that has become light in the current view and was dark in the

previous view is

SDL = Sp \ Sc (3.3)

and the interval set that has become dark in the current view that was light in the

previous view

SLD = Sc \ Sp (3.4)

Care needs to be taken at the boundaries, as the Boost Interval Arithmetic Library

does not natively support periodic boundary conditions. If a region of light or dark

overlapped the angle 0 an additional two boundaries, representing the boundaries of the

internal linear interval representation, have been added to the sum). These boundaries

were located at 0 and 2π These need to be accounted for, by subtracting the vector to

1The complement, A \B = x ∈ A|x /∈ B
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Figure 3.4: a) The projections of flock members onto an individual’s circular view is
recorded as the boundary angles of the projections. b) The representation used in the
Boost interval arithmetic library is a linear interval. This introduces 2 false boundaries
at the bounds of the interval which must be subtratcted from the ~vflow calculations.

(1, 0) twice from the calculated direction (see Fig. 3.4).

Let {θS,j} be the set of nS end points of the intervals in set S. Then the flow

terms are calculated as in table 3.1.

3.1.3 Initial Conditions

Unless otherwise specified, the individuals were initialised on a circular disc with ra-

dius R = 80 (dimensionless) units, uniformly distributed angular position and a radial

probability distribution weighted to produce an approximately constant radial density.

rdrdθ =
1

2
d(r2)dθ (3.5)

=⇒ r2 ∼ unif[0, R] (3.6)

=⇒ r =
√
u (3.7)

u ∼ unif[0, R] and the angular distribution θ ∼ unif[0, 2π]

3.2 Results

Again we are interested in the effect of changing the ratios of φa:φflow:φe. Because of

the normalization of the velocity term their absolute values are not important. Hence

we can constrain the φs such that φa + φflow + φe = 1 To identify the individual models

the parameter φflow is replaced with one of φD, φL, φDL or φLD to indicate which model
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Table 3.1: Construction of the different 2-step velocity ~vflow contributions. The con-
tributions to ~flow for the different models. For model D the vectors to the boundaries
of regions that have become dark in the current view are summed to produce an input
direction, similarly for light region boundaries in model L. Models DL and LD involving
adding (vectorially) directions to one type of new boundary (L/D) and subtracting the
other type (D/L). Hence movement is towards one type of boundary and away from the
others. ~vflow is then normalized ~vflow = ~vflow/‖~vflow‖

Model ~vflow

D
∑

j

(
cos(θSLD,j)
sin(θSLD,j)

)
L

∑
j

(
cos(θSDL,j)
sin(θSDL,j)

)
DL

∑
j

(
cos(θSDL,j)
sin(θSDL,j)

)
−
(

cos(θSLD,j)
sin(θSLD,j)

)
LD

∑
j

(
cos(θSLD,j)
sin(θSLD,j)

)
−
(

cos(θSDL,j)
sin(θSDL,j)

)

for the flow term was used.

3.2.1 Parameter Space Diagrams

The parameter space diagrams for models D and L are both very similar to those for the

projection model and the opacity of the flock is relatively constant across the parameter

plane with values of 0.6–0.7, i.e. the marginally opaque regime, with rmax also controlled.

There is still a region of highly aligned and compact marginally opaque flocks as can be

seen in fig. 3.5.

Disappointingly, models DL and LD do not have marginal opacity across most

of the parameter plane. Model DL only has it when there is 99% alignment and 1%

noise, this simply being a translating flock of density which is very slowly increasing.

In addition to marginal opacity for 99% alignment and 1% noise model LD also has

alignment for (0.0, 0.99, 0.01), which is more interesting. The structure of the alignment

parameter planes are very similar to those of the other 2 models, due to the identical

implementation of the alignment rule.
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3.2.2 Model Outputs

We will again define a model parameter vector φ = (φa, φflow, φe).

Trajectories

Models D and L display similar behaviour for the examined trajectories. For ~φ =

(0.0, 0.99, 0.01) with no alignment contribution from φa, both models seem to favour a

3-armed flock shape that does not translate far from the initial centre of mass. This

3-armed stable configuration seems to be interrupted by increasing the proportion of

alignment, resulting in increasingly more flock translation.

The models DL and LD form more convex non-translating aggregations, with

model LD forming small clusters within the wider flock. Both models change quickly

with increasing alignment term to wider and more linear flocks.

Models D and L only show significant translation of the centre of mass for high

proportions of the alignment term as can be seen in Fig. 3.9. The displacement of

the centre of mass is smaller for models DL and LD than for models D and L when
~φ = (0.0, 0.99, 0.01). For ~φ = (0.4, 0.4, 0.2) and (0.8, 0.1, 0.1) models DL and LD have

much more linear centre of mass trajectories than the other two models. Reinforcing

that these rules encourage alignment and might make a suitable visual alignment rule,

although they fail as cohesion rules.
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~φ = (0.0, 0.99, 0.01) ~φ = (0.4, 0.4, 0.2) ~φ = (0.8, 0.1, 0.1)
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Figure 3.9: Trajectories of the centre of mass of the flocks for N = 200 over 100,000 timesteps (including equilibration time).
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Observed Behaviour

Lobes A visually striking feature of these algorithms is the propensity of the flocks to

form lobes when the φflow is close to 1. Lobes are very obvious in natural starling flocks

and to obtain a qualitatively similar behaviour from these models was not expected.

This is in clear contradistinction to the previously described projection model in 2D

that when a large proportion of φp (and no alignment term φa) is used, produces only

convex balls of individuals. Snapshots of the process of lobe formation from the initial

circular flock are shown in fig. 3.10.

Inducing Alignment One of the aims of these models was to identify a single rule

that would produce both cohesion and alignment. It was hypothesised that models

DL and LD, particularly LD, were most likely to produce this behaviour. To this end,

simulations were run without any contribution from the alignment term, i.e. (0, φflow, φe)

for the various models. As is clear from the alignment parameter planes, significant

alignment does not occur without the alignment term in the basic models (see fig. 3.5

and 3.6).

There are some ways that we can adjust the basic models that might produce

high alignment (Ψ). High and low velocities (10x and 0.1x the size of the individual) in

addition to the introduction of inertia. The speed, v, of the individuals can be adjusted in

the model as the initial length and time scales are ad hoc and a smaller velocity means

more flight control decisions within the same distance travelled, due to the constant

velocities being an effective (spatial) step size. An effective inertia was introduced by a

modification to the velocity rule:

vt+1 = φi~vt + φflow~vflow + ~ve (3.8)

Where φi is a control parameter that introduces an effective inertia. φi could be con-

sidered to arise from physical considerations (birds cannot turn as rapidly as the model

animats2) or from memory of flight direction in the animat or a preference to continue

flying in the same direction.

As can be seen from fig. 3.11a most of the tested models had a very small

mean normalised flock velocity Ψ. At low proportions of the flow term φx (x = D, L,

DL, LD) increasing φx has little effect, but once the flow term reaches between 0.4-0.5

there is more noticeable variation between the models (on the scale shown). Model DL

with φi = 10.0 is an outlier with more rapidly decreasing Ψ with φx for small values.

2a simulated animal
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Figure 3.10: Model L Φ = (0.0, 0.99, 0.01). The flock members are intially distributed
randomly inside a circle. As the simulation proceeds, lobes form in contradistinction
to the projection model, which rapidly converges to a convex ‘ball’ of individuals. The
number of lobes gradually reduce until there are three lobes, this seems to be a stable
arrangement and persists until the end of the simulation.
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Figure 3.11: Ψ for simulated N = 200 flocks over 5 repeats with different speeds v and
inertias φi (see Eqn. 3.8). The individual velocities were initialised with [−π/4, π/4] of
the x-axis to encourage linear motion. a) Most of the models tried produced had a very
low mean normalised flock velocity Ψ. b) Model LD with φi = 10 produced flocks with
considerably more alignment than the others. However this is only at very low densities.
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Figure 3.12: Trajectories for N = 200 particles demonstrating the range of behaviours
found for model LD without noise. The behaviours are highly variable between runs and
aligned flocks or expanding flocks are both found at the same parameter values.

Model LD with φi = 10.0 is also an outlier as can be seen from fig. 3.11b. There

is a considerable amount of alignment, but also much higher variability between the

trial runs than for the other models. Further investigation found that the alignment

occurs once a very low density has been reached. It was initially thought that model

LD might enhance alignment interactions in the flock and this appears to be the case.

Unfortunately any density control or cohesion, if it does occur, occurs at a density that

is orders of magnitudes lower than for natural flocks.

Rotational Motion and Milling Approximately 50% of fish species school at some

point in their life-cycle and small pelagic fish, such as mackerel, are well known for

‘milling’ and forming a ‘bait ball’ when under pressure from predators [Parrish et al.,

2002]. These are rotational motions of the school, characterised by high alignment among
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neighbours and high density. The reason for milling in fish is unknown, but it results

in highly aligned local velocities, without translation of the entire school. This may be

useful as a state of readiness to respond to predation. The shapes formed by the milling

fish in 3D can be cylindrical or toroidal. The bait ball, on the other hand, is though to

be a panic response to the presence of nearby predators, with each fish attempting to

move in to the centre of the ball.

To quantify the rotational motion in a school a further order parameter, vorticity,

is useful, which will be denoted as Orot [Couzin et al., 2002].

Orot =
1

N

∣∣∣∣∣
N∑
i

~ui × ~ri

∣∣∣∣∣ (3.9)

where ~ui is an individual i’s direction and ~ri their position relative to the centre of

mass of the flock. Orot is the mean normalised angular momentum and ranges from 0,

no rotation, to 1, where all individuals are moving with velocity perpendicular to the

vector from them to the centre of mass of the flock and in the same clockwise or counter-

clockwise direction. The modulus ensures that the direction of rotation is not taken into

account, as it is assumed that this is a symmetry breaking and it is the magnitude rather

than direction that is important.

When initializing the flock randomly within a circular domain, with random ini-

tial directions, unusually low alignment was observed for some simulations of model DL

containing high values of the alignment term φa. Visual inspection showed rotational

motion during at least part of the simulation run, probably caused by local alignments

conducive to rotational motion in the initial conditions. To find the region of the pa-

rameter space for which milling is stable, the initial condition was changed, such that

the maximum angular momentum was attained at initialisation. The resulting phase

plane (fig. 3.13 a) ) shows that rotational motion is stable, for a small region where

0.1 ≤ φDL ≤ 0.4 and 0.5 ≤ φa ≤ 0.9. As implemented, alignment alone is not sufficient

to produce rotational motion as can be seen from the φa = 0 line in fig. 3.13 a), which

has almost zero rotational order. As does φDL = 0 and again the model term is insuf-

ficient to produce milling, even when the flock was prepared in a favourable state with

maximal angular momentum. Perhaps surprisingly model LD does not tend to display

stable rotational motion (see fig 3.13 c) ).

Model DL shows the greatest propensity to milling but the flocks tend to disperse,

with rmax appearing to grow without bound (see figs. 3.14 and 3.15 ). This region also

appears to disperse faster than the majority of the phase plane. The induced rotational
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Figure 3.13: Variation of the vorticity order parameter Orot with the control parameters
~φ: φflow = φDL for model DL, etc. a) and c) phase planes for the mean rotational order
parameter; b) and d) the standard error in the rotational order parameter. See §3.2.2
for discussion.
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Figure 3.14: Snapshots of model DL with the number of timesteps between them τ = 100,
for ~Φ = (0.6, 0.2, 0.2) and N = 200, starting at t = 50000 and hence the range represents
500 timesteps. The dotted lines are the individual trajectories. In the traces below, rmax

is the maximum distance through the flock, Φ is the linear velocity order parameter, Orot

and Ω is the opacity. The blue lines are at the time points visualised in the upper plot.
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Figure 3.15: The time evolution of the center of mass of the flock a), and the values of the
measured order parameters and rmax b) for (0.6, 0.2, 0.2) and N = 200. The rotational
order parameter Orot remains high for the entire simulation run and represents persistent
rotational motion. However rmax also continues to increase throughout the simulation,
so a steady state density has not been obtained, even after a 100,000 timesteps.
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Figure 3.16: The set of arcs constructed by the algorithm for an N = 20 flock, initialised
with random positions within a circular domain and with maximized Orot in the initial
state a) and the first timestep b). ~φ = (0.0, 1.0, 0.0) and the blue arrows are the individ-
ual velocities. The black arcs represent the filled portions of the individual views and
the green (resp. red) arcs, the intervals that have become empty (resp. filled).
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motion is seen to continue, before eventually breaking down for many of the trajectories

in and around the area of high rotational motion in the Orot parameter plane. Linear

motion changing to rotational motion was not observed in the simulations, contrary to

experimental observations [Tunstrøm et al., 2013].

3.3 Discussion

The 4 models inspired by optical flow, investigated in this chapter did not produce both

alignment and cohesion in the model flocks.

Further testing of models DL and LD with φa = 0 attempted to use inertia

(through Eqn. 3.8) and magnitudes for the individual velocities vi an order of magnitude

smaller and larger than the individual projections to try to find a parameter regime where

the models acted as an alignment term.

Using the alignment term controlled through φa models D and L both show

behaviour similar to the 3D model in chapter 2, i.e. a marginal opacity with control of

the flock density, when ~vflow > 0 and parameter regimes with both high alignment and

marginal opacity (see Figs. 3.5 and 3.5).

It was found that there is a region of parameter space for model DL that supports

sustained rotation. It is a region with moderate to high alignment and low to moderate

(but non-zero) φDL. Due to the symmetry of the models it is surprising that model LD

does not also support these long-lived rotational states.

3.4 Future Work

It has become clear that it is difficult to invent a single simple rule that produces align-

ment and cohesion. Another approach would be to use a genetic algorithm to evolve a

neural network controller where the inputs could be a discretised view.
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Chapter 4

A 2D Simulation Model of

Thermophoresis

For those who want some proof that

physicists are human, the proof is in

the idiocy of all the different units

which they use for measuring energy.

Richard P. Feynman –

The Character of Physical Law

This chapter focuses on a computer simulation model of the collective motion of

photo-thermophoretic particles. The particles absorb light, convert the absorbed light

into heat and then move in response to the induced temperature gradients. The incoming

light field is circularly focused at the origin of a bounded region containing the photo-

thermophoretic particles. The geometrical problem of finding regions of this focus or

origin that are illuminated by an exterior light source is the complementary problem

to finding the projections of other individuals on to a flock member’s view in the case

of birds in chapter 2. This allows for a lighting model which is can be calculated in a

similar manner to the projected view used in the bird flocking simulations in chapter 2.

Effectively, particles shade the optical focus, in a similar way to the birds project onto

each others views.

In a first attempt, a 3D model was developed to look for a transition between

a compact and diffuse particle state. Finding the transition with the 3D model proved

difficult and so instead a 2D model was developed. The initial 3D model was unbounded

and used the Non Uniform Fast Fourier Transform (NUFFT) centred at the optical focus.
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Unfortunately the FORTRAN code for the NUFFT is not mature and this proved to be

a computationally costly method to compute the temperature field. Informed by theory

developed by Tamsett et al. [2016], an attempt was made to find the transition in 2D.

The continuum system was bounded, so this was introduced into the simulation model

also, thus obviating the need for the NUFFT. The development of the 2D simulation

model is outlined in this chapter. The development of the 3D model is very similar.

4.1 Introduction

Thermophoresis, the tendency of larger particles in a liquid of smaller solvent particles

to move up or down temperature gradients is well known and this response to a tem-

perature gradient is characterised by the Soret coefficient. The case of particles moving

away from heated regions is the more commonly observed case. However the mechanism

for thermophoresis is still under debate. For both DNA and polystyrene beads, the sign

of the thermophoretic motion (Soret coefficient) reverses at low temperature. Hence the

same particles can move up or down temperature gradients depending on the bulk tem-

perature and Duhr and Braun [2006] related this to the increasingly positive entropy of

hydration at low temperatures. This response to temperature gradients can be exploited

to increase local density of the larger particles, such as with DNA in Fig. 4.1.

Thermophoretic particles move in response to temperature gradients in the medium.

The thermophoretic velocity is given by:

vT = −DT∇T (4.1)

where DT is called, confusingly, the ‘thermal diffusion coefficient’. This is defined in

contradistinction to the usual Brownian diffusion coefficient, which also depends on

temperature, but scales a number density gradient. Hence in a bulk system the flux

J and diffusion equation for a thermophoretic system with colloid concentration u are

given by:

J = −D∇u− uDT∇T (4.2)

∂u

∂t
= −D∇2u−DTu(1− u)∇2T (4.3)

Where D is the usual Brownian diffusion coefficient and the Soret coefficient for the

system is defined as DT
D . Although in the work of Tamsett et al. [2016] omit the nonlinear

term u(1 − u) to allow tractable analytical solutions to the PDE, this is the standard
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Figure 4.1: At low bulk temperature DNA particles move to the regions heated by an
infrared laser. However at room temperature the reverse is true [Duhr and Braun, 2006].

(a) (b)

Figure 4.2: The particles exist within a circular boundary with isotropic illumination
directed at a central focus. Particles absorb radiation that falls on their surface, i.e.
only light rays that have not been screened (shaded) out by a particle further from
the focal point. Arrows represent incoming light focused at the centre of the domain,
colour indicates heating. a) Initial conditions with high particle density at the optical
focus may cause sufficient heating to produce a compact state. b) diffuse states cannot
produce sufficient heating to form a compact state.
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representation of the bulk problem. The steady state concentration is characterised by:

∇u = −uST∇T (4.4)

Hence, for a thermophoresing particle, the Soret coefficient indicates the relative strength

of the thermophoretic drift to translational diffusion and is an important descriptor of

the system [Piazza and Parola, 2008].

The Reynolds number is a dimensionless quantity representing the relative strength

of inertial and viscous forces

Re =
ρvL

µ
(4.5)

where ρ is fluid density, v is the mean velocity of the particle and L is a characteristic

length scale. Low Reynolds number is a regime where viscous forces dominate and iner-

tial forces are not important. Due to the size of the thermophoretic particles considered

here (500 nm) the system is in this low Reynolds number regime.

A mean field (density) model has been developed by Tamsett et al. [2016] for

an isotropically illuminated system (circularly symmetric) in 2D with isotropic density

ρ(r, θ) = ρ(θ). Steady state solutions were found for the 1D and 2D model, as a first

step towards a continuum model of the collective behaviour of thermophoretic particles.

This analysis posited that there would be stable compact states of the system, where

the particles absorb enough light to maintain a temperature gradient large enough to

keep the particles from escaping the aggregation bound together by the thermophoretic

effect. The mean field model did indeed display a bifurcation, between compact and

diffuse states (see Fig. 4.4). The diffuse states cannot absorb enough light to maintain

the necessary temperature gradient to achieve compactness.

The model in this chapter attempts to identify the same behaviour with discrete

particles and a shadowing-based model of lighting, which is not limited to steady state

mean field or rotational symmetry. This simulation model can then be used to verify

the mean field results and investigate dynamic properties such as stability/instability

of clusters and transient behaviour. The non-dimensionalised variables γ̄, ψ̄ and R̄ are

described in §4.6.2. R̄ is a dimensionless system size ψ̄ corresponds to the integrated

density (i.e. number) of particles along and γ̄, their thermophoretic responsiveness

(proportional to the irradiance and their thermophoretic movement propensity DT ).

4.2 Summary of the Mean Field Continuum Theory

Tamsett et al. [2016] developed a mean field continuum model of a collection of ther-
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mophoretic particles in which hydrodynamic effects are neglected. In the model colloidal

particles undergo Brownian motion with an additional drift along their orientation. This

additional drift is the self-thermophoretic component and models the interaction of a

thermophoretic particle with a well-defined orientation, such as a half coated polystyrene

bead (i.e. a Janus particle). Janus particles are impelled along their axis of rotational

symmetry by the thermophoretic effect. However in any reasonably small volume there

will be a distribution of orientations and the self thermophoretic component averages

to zero locally, resulting in isotropic heating of the surrounding fluid. The tempera-

ture imhomogeneities and hence the gradients that the colloidal particles respond to

are caused by non-uniform particle distributions (i.e. the particle density) and shading

of particles which prevents local heating. Hence the self-thermophoretic effect, which

averages out to zero is not important and can be safely neglected from the model.

The mean field continuum model predicts the formation of compact states, which

are heated on the boundary by absorption of incident light. The compact states are

predicted to be hotter in the interior, which is simply a consequence of the geometry of

the heat sources. An extreme case is to consider a 2D (x, y) slice through a cylindrical

heat bath, the walls of which are kept at a constant temperature and with no heat or

particle conduction in the z-direction. Even in an extreme case where the particles in

the heat bath were to be arranged in a ring around the bath’s centre, with no additional

heat sources inside the ring, then the centre must be the hottest part of the bath, as heat

is conducted outwards and inwards radially through the fluid until the centre is as hot

as the ring of sources and then heat flows out of the bath at steady state. However in

the compact state there will also be some interior heat sources, unless the state were to

be fully opaque (which it is not predicted to be). It follows that in any stationary state

that is predicted by the mean field model, the interior of the compact state must have

a uniform temperature profile, or there will be a change in the density profile through

the thermophoretic response.

4.2.1 The Continuum Model

The equations of motions for the model are now described.

The colloid number conservation:

∂ρ

∂t
= −∇ ·~j (4.6)
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where ρ is the density of colloids and ~j is the colloid current.

~j = −D∇ρ−DTρ∇T (4.7)

the first term of which is the usual Brownian diffusion and the second term the ther-

mophoretic response of the colloids to the local temperature gradient. The Soret coeffi-

cient D
DT

can be temperature dependent, but this was not considered.

The heat equation defines the temperature field:

∂T

∂T
= κ∇2T + Γ[ρ(x)] (4.8)

κ∇2T describes heat conduction through the fluid medium and Γ[ρ(x)] the heating due

to heat sources. In this model the heat sources are the thermophoretic colloidal particles

themselves. In 1D the heat equation with sources does not have a steady state solution

on an infinite domain, as the temperature becomes infinite everywhere. If however,

the problem is considered on a finite domain x ∈ [−x̄, x̄] with boundary conditions

T (±x̄) = 0 a solution may be found and then by taking x̄→∞. That despite having an

infinite temperature the solution converges to have a finite temperature gradient. The

finite temperature gradient is the important part as the thermophoretic particles respond

to the temperature gradient not the temperature itself. Hence steady state solutions can

be found for the 1D particle distribution, by requiring zero current everywhere.

The 1D Heat Source Term

The heat sources are the colloidal particles, which convert intercepted light into heat.

Over a small interval x ∈ [x,∆x] for which the density of particles ρ is approximately uni-

form, the light absorbed and hence the heating is proportional to ρ, i.e. the relationship

between illuminance I and ρ is:

I(x+ ∆x)− I(x)

I(x+ ∆x)
= αρ(x+ ∆x)∆x (4.9)

or as we take ∆x→ 0
dI

dx
= αρ(x)I(x) (4.10)

This is a first order differential equation with solution:

I(x) = I∞e
−α

∫∞
x ρdx′ (4.11)
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where α is the absorbance of a particle, the fraction of incident light on a particle

absorbed by it.

If light is incident from both the left (+) and right (−), the heating term is

Γ(x) =
1

cρf

(
dI+

dx
− dI−

dx

)
(4.12)

where cρf is the specific heat capacity of the surrounding fluid × its density. this factor

accounts for the heating of the medium per Joule of energy put into the system by

absorbed light. Omitting some trigonometric substitutions and algebra

Γ(x) =
2α

cρf

√
I∞I−∞e

−αN/2ρ(x) cosh

[
α

∫ ∞
x

ρdx′ − αN

2
− 1

2
ln

(
I∞
I−∞

)]
(4.13)

1D Equations of Motion

Substituting for the source term in the heat equation, results in the following 1D equa-

tions of motion for the system:

∂

∂t
T = κ

∂2

∂x2
T

+
2α

cρf

√
I∞I−∞e

−αN/2ρ(x) cosh

[
α

∫ ∞
x

ρdx′ − αN

2
− 1

2
ln

(
I∞
I−∞

)]
(4.14)

∂

∂t
ρ = D

∂2

∂x2
ρ+DT

∂

∂x

(
ρ
∂

∂x
T

)
(4.15)

with boundary conditions on the temperature T (±x̄) = 0 and a condition on the conser-

vation of particles N =
∫ x̄
−x̄ ρ(x, t)dx′. As the equations only contain derivatives of T ,

T (±x̄) is an arbitrary constant and can be fixed to 0 for convenience. Comparisons with

an actual heat bath would require shifting the temperature of the system by a constant

T0.

To enable solving these equations of motion were de-dimensionalised and a new

variable ψ introduced to incorporate the integral on the RHS of Eqn 4.14.

ρ(x, t) = λρ̃(ξ, t) (4.16)

x =
ξ

λ
(4.17)

T = − D

DT
T̄ (4.18)

t =
τ

κλ2
(4.19)
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Normalising the density ρ̃ = Nρ̄ =⇒
∫ ξ̂
−ξ̂ ρ̂dξ, choosing λ = −2DT

√
I−∞I∞

cρfκD
and defining

a = αN leads to the de-dimensionalised equations of motion. The new variable ψ =

−a
(∫ ξ̂

ξ̂
ρ̄dξ − 1

2

)
can be introduced at this point. ψ is 0 at the centre of the particle

distribution with symmetric boundary conditions. This is the case when the particle

advection velocity is 0, which gives some insight into the physical meaning of ψ. There

is the possibility of travelling solutions for the particle density, which would be caused

by anisotropic illumination on the sides of the distribution, i.e. if I∞ 6= I−∞. Note that

this possibility will not be expanded on as we are interested in stable compact and static

states. A further substitution for convenience is φ(ξ, τ) = ∂T̄
∂ξ . This is useful as static

solutions exist for the temperature gradient, but not the temperature in1D on an infinite

domain. The new equations of motion are

∂φ

∂τ
=

∂2φ

∂ξ2
+ e−a/2

∂2φ

∂ξ2
sinh

(
ψ +

1

2
ln

[
I∞
I−∞

])
(4.20)

κ

D

∂ψ

∂τ
=

∂2ψ

∂ξ2
− φ∂ψ

∂ξ
(4.21)

The thermal conductivity of the fluid is considerably faster than the particle diffusion,

which allows for a quasi-static approximation. Due to the heating through the light

absorbed by the particles, the temperature gradient field in the quasi-static case is a

function of the density field or equivalently ψ, i.e. φ(ξ, τ) = U [ψ(ξ, τ)]. On an infinite

domain,

φ(ξ, τ) = φ̄− e−a/2 sinh

[
ψ(ξ, τ) +

1

2
ln

[
I∞
I−∞

]]
(4.22)

and where φ̄ = 1+e−a

4
I∞−I−∞√
I∞I−∞

This leads to a generalized Burger’s equation

κ

D

∂ψ

∂τ
+ U [ψ]

∂ψ

∂ξ
=
∂2ψ

∂ξ2
(4.23)

As might be expected for a Burger’s-type equation there may be the afore-mentioned

travelling solutions in addition to the static solutions that we are interested in.

In the simplest case of symmetric illumination I−∞ = I∞ the static case is defined

by ∂φ
∂τ = ∂ψ

∂τ = 0. From Eqn 4.22

φ(ξ) = −e−a/2 sinh [ψ(ξ)] (4.24)

This can be substituted into the equation for ψ and the resulting integral equation solved
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for ξ.

ξ =
2√

c2 − e−1
arctanh

√c+ e−a/2

c− e−a/2
tanh

[
ψ

2

] (4.25)

This can be inverted to solve for ψ and invoking the boundary condition ψ(±∞) = a/2

ψξ = 2arctanh

[
tanh

[a
4

]
tanh

[
1− e−a

4
ξ

]]
(4.26)

From the equation for the density ρ̄ = 1
a
dψ
dξ

ρ̄(ξ) =
1
2a(1− e−a/2)2

1 +
sinh2

[
1−e−a

4
ξ
]

cosh2[a4 ]

(4.27)

Asymptotic analysis discriminates 2 phases for a� 1 a non-shading limit

ρ̄ ∼ a

8
sech2

[a
4
ξ
]

(4.28)

and for a� 1 an opaque limit

ρ̄ ∼ 1/2a

1 + exp
[
−1

2(a− |ξ|)
] (4.29)

In the diffuse, non-shading limit almost none of the incident light is absorbed by particles

Figure 4.3: Exact solutions for a� 1 the non-shading limit (left) and a� 1 the opaque
limit (right). (Courtesy of Arran Tamsett)

and the heating of the fluid is proportional to local particle density. In the opaque limit

all the heating occurs at the edge, where density goes to zero exponentially. Hence in

the opaque state particles can fuse diffuse freely in the centre, but are constrained by

high temperature gradients at the edges.
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4.2.2 The 2D Continuum Model

In 2D the incoming light is focused at the centre of a circular domain. Consider an

annulus r′ ∈ [r, r + ∆r]. Energy enters at the far edge of the annulus at the rate

Ėin = I(r+ ∆r)2π(r+ ∆r)and the energy leaving the annulus at the edge nearest to the

central focus is Ėout = I(r)2πr, where I(r′), the irradiance is a function of the radius.

Therefore the energy absorption rate is

Ėabs = 2π(I(r + ∆r)(r + ∆r)− I(r)r) (4.30)

The light absorbed is again an integral over regions of infinitesimal thickness (∆r) and

proportional to the proportion of the annulus screened by particles in the annulus. Hence

the proportion of energy absorbed is

2π(I(r + ∆r)(r + ∆r)− I(r)r)

2πI(r + ∆r)(r + ∆r)
= ρ2πr∆r

2r0

2πr
(4.31)

where r0 is the particle radius. Taking ∆r → 0 gives

d

dr
[rI] = 2r0ρrI (4.32)

=⇒ rI(r) = RI(R) exp

[
−2r0

∫ R

r
ρdr′

]
(4.33)

where R is the radius of the system. Let Q = 2πRI(R) be the rate of injection of energy

into the system then

rIin(r) =
Q

2π
e−2r0

∫R
r ρdr′ (4.34)

Not all the incoming radiation will be absorbed and some will pass through the focus

and become outgoing radiation, this provides a second opportunity for that light to be

absorbed. Following similar reasoning as for incoming light

rIout(r) =
Q

2π
e−2r0

∫R
0 ρdr′ (4.35)

The rate of energy absorption into the shell r′ ∈ [r, r + ∆r] is

Ė = 2π (Iin(r + ∆r)(r + ∆r)− Iin(r)r) + 2π (Iout(r + ∆r)(r + ∆r)) (4.36)

If the energy ∆E is absorbed into the shell, then the temperature increase ∆T = ∆E
cρf2πr∆r

and the rate of temperature change ∆Ṫ = ∆Ė
cρf2πr∆r . Thus the heat source term for the
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2D heat equation is

Γ(r) =
1

cρfr

(
d

dr
(rIin)− d

dr
(rIout)

)
(4.37)

=
1

cρfr
(2r0ρrIin + 2r0ρrIout) (4.38)

=
2r0Q

πcρf
e−2r0

∫R
0 ρdr ρ

r
cosh

[
2r0

∫ r

0
ρdr′

]
(4.39)

2D Equations of Motion

For the 2D case of symmetric particle distribution and illumination

∂T

∂t
=

κ

r

∂

∂r

(
r
∂T

∂r

)
+

2r0Q

πcρf
e−2r0

∫R
0 ρdr′ ρ

r
cosh

[
2r0

∫ r

0
ρdr′

]
(4.40)

∂ρ

∂t
=

D

r

∂

∂r

(
r
∂ρ

∂r

)
+
DT

r

∂

∂r

(
rρ
∂T

∂r

)
(4.41)

To simplify matters de-dimensionalisation can be used as before

r =
r̄

λ
(4.42)

t =
τ

κλ2
(4.43)

T =
−D
DT

T̄ (4.44)

ρ(r, t) = Nλ2ρ̄(r̄, τ) (4.45)

N = 2π
∫ R

0 ρrdr is the total of number of particles and ρ̄ is the normalised density.

Defining

γ = − DTQ

πcρfκD
(4.46)

a = 2r0N (4.47)

R̄ = λR (4.48)

γ represents the amount of work done on the system through heating controlled by Q.

These substitutions result in a set of equations with 3 parameters, but λ is left to be

fixed. Fixing λ the inverse length-scale will result in 2 parameters. One way to fix λ is

to let a = 1 to remove a from the exponent. Thus the length-scale

λ−1 = 2r0N (4.49)
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Hence the length-scale of the system is the length of all the particles in the system

arranged in a line. From this definition of λ

R̄ =
R

2r0N
(4.50)

is the dimensionless system size. If R̄ = 1 then all the particles may be arranged in a

line from the centre to the edge. Hence if the particles are arranged isotropically, along

any line of sight the expected number of particles is 1, i.e. the system is marginally

opaque. Therefore R� 1 results in a highly diffuse and transparent system and R� 1

is completely opaque. Applying this scaling results in the following de-dimensionalised

equations

∂T̄

∂τ
=

1

r

∂

∂r̄

(
r̄
∂T̄

∂R̄

)
+ γe−

∫ R̄
0 ρ̄dρ̄ ρ̄

r̄
cosh

[∫ r̄

0
ρ̄dr̄′

]
(4.51)

κ

D

∂ρ̄

∂τ
=

1

r̄

∂

∂r̄

(
r̄
∂ρ̄

∂r̄

)
− 1

r̄

∂

∂r̄

(
r̄
∂T̄

∂r̄

)
(4.52)

Henceforth in this section we are dealing with dimensionless variables and the overbars

indicating them will be omitted. Once again we are interested in static solutions and

we continue to require radial symmetry. The static case ∂T
τ = 0, reduces the radially

symmetric 2D heat equation with sources to the 2D Poisson equation, ∇2T = −Γ(r).

Setting the temperature at the boundary to 0, i.e. T (R) = 0, the Poisson equation has

general solution

T (r) = lnR

∫ R

0
Γ(r′)dr′ − lnR

∫ r

0
Γ(r′)dr′ − lnR

∫ R

r
ln r′Γ(r′)dr′ (4.53)

Integrating once we find

r
dT

dr
= −γe−

∫R
0 ρdr sinh

[∫ r

0
ρdr′

]
(4.54)

The zero current condition gives dρ
dr = ρdTdr and thus

dρ

dr
= −γe−

∫R
0 ρdr ρ

r
sinh

[∫ r

0
ρdr′

]
(4.55)

As in the 1D case it is useful to define ψ(r) =
∫ r

0 ρdr
′. This transforms the equation to

r
d2ψ

dr2
+ γe−ψ̄

dψ

dr
sinh [ψ] = 0 (4.56)
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where ψ̄ = ψ(R̄). Using r d
2ψ
dr2 = d

dr

(
r dψdr

)
− dψ

dr this can be integrated once to give

r
dψ

dr
− ψ + γe−ψ̄ cosh[ψ] = c (4.57)

From asymptotics at low density and ignoring the constraint on maximum density, the

density at the origin may be finite in which case r dψdr |r=0 =⇒ c = γe−ψ̄, or infinite

in which case the total number of particles is finite
∫ ε

0 ρrdr < ∞∀ε. If for small r,

ρ ∼ r−α, from
∫ ε

0 ρdr < ∞, then α < 1 and again r dψdr |r=0 =⇒ c = γe−ψ̄. Also, from

the nomalisation condition 1 = 2π
∫ R

0
dψ
dr rdr, integration by parts gives 1 = 2πRψ̄ −

2π
∫ R

0 ψdr. This leads to a pair of equations for ψ, which defines a kind of nonlinear

eigenvalue problem for ψ̄, which can be solved numerically.

0 = r
dψ

dr
− ψ + 2γe−ψ̄ sinh2

[
ψ

2

]
(4.58)

ψ̄ =
1

2πR
+

1

R

∫ R

0
ψdr (4.59)

where ψ̄ = ψ(R) as before.

The Continuum Bifurcation

In the mean field continuum model, there is a bifurcation between compact and diffuse

states (see Fig. 4.4). This can be obtained by numerically solving Eqns 4.58 and 4.59

self-consistently for ψ̄. There are constraints on ψ originating from its relationship to

density. ψ̄ cannot have a negative gradient (ψ is a monotonically increasing function of

r). Therefore

R
dψ

dr
|R ≥ 0 =⇒ −ψ̄ + 2γe−ψ̄ sinh2

[
ψ̄

2

]
≥ 0 (4.60)

=⇒ γ ≤ 2ψ̄(
1− e−ψ̄

)2 (4.61)
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Also ψ̄ is limited by the maximum density attainable (where the particles are as closely

packed as possible)

ρ(r) =

{
4N, r ≤ 1√

π4N

0, r ≥ 1√
π4N

(4.62)

=⇒ ψ(r) =

 4Nr, r ≤ 1√
π4N√

4N
π , r ≥ 1√

π4N

=⇒ ψ̄ ≤
√

4N

π
(4.63)

The bifurcation diagram can be obtained either numerically or from an approximate

solution to the mean field equations. Depending on the value of the dimensionless

system size ψ̄, there can be a cusp bifurcation from the high density state in the upper

branch (high ψ̄ and γ) and a lower density state (low ψ). These states are those that are

either sufficiently compact for them to absorb sufficient light energy for thermophoresis

to maintain them (the upper branch), or too diffuse to absorb sufficient light energy for

thermophoresis to hold them together (the lower branch).

If the dimensionless system size R̄ is too small then the particles can only be in

the compact state and there is no cusp bifurcation, e.g. R̄ = 0.5 in Fig. 4.4. The main

Figure 4.4: The bifurcation diagram for the continuum model. High ψ̄ corresponds to
a more compact state and γ̄ to an increased importance of thermophoresis. R̄ is the
dimensionless system size. R̄� 1 corresponds to transparent states in the fully disperse
limit (γ̄ → 0). Systems prepared in these states could possibly exhibit a transition to a
compact state. Whereas R̄ ≤ 1 systems cannot as they are already optically compact.
(Courtesy of Arran Tamsett)
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aim of this chapter is to find evidence of the cusp bifurcation through direct particle

simulation and determine whether the compact states are stable states.

Connection to Previous Chapters

It is known that polystyrene beads will move along temperature gradients in liquids and

the particles in this model might therefore be thought of as polystyrene beads [Duhr

and Braun, 2006]. Beads partially coated in metal can absorb laser light and re-emit

the absorbed energy as heat [Golestanian, 2010]. This can result in thermophoresis in

which case they are self-propelled particles somewhat resembling the birds in previous

chapters [Jiang et al., 2010].

4.3 Direct Particle Simulation Model Description

The simulation is based on a hypothetical experimental setup, whereby thermophoretic

particles are confined in a cylindrical domain, which is isotropically illuminated by a

concentric external light source focused on the central axis of the cylindrical domain. If

the density of particles is high enough, they should cause a large enough temperature

gradient to form an aggregation, otherwise they should disperse and fill the (bounded)

domain. The 2D simulation is a 1 particle thick ‘slice’ through this cylinder. See fig.

4.2.

The thermophoretic colloidal particles are assumed to be spherical and undergo

thermophoretic motion, but not self -thermophoretic motion. I.e. they do not respond

to the local temperature distribution caused by differences in heating on the particle’s

surface. Essentially the particle is assumed to instantaneously thermally equilibrate

(internally and with its surrounding) and it has no effect on itself (due to the symmetry

of the particle).

The particles move up temperature gradients to regions of higher temperature

(negative Soret coefficient) and hence may cluster. In addition to thermophoretic motion

there will be thermal noise due to the surrounding medium, leading to diffusive motion

as usual. The particles are assumed to be large compared to the solvent particles of

the medium and hence the noise can be modelled as Brownian motion. The particles

are also large enough to absorb rather than scatter the incoming light, i.e. the particle

radius r0 � λ, where λ is the wavelength of the incident light.

A numerical Langevin equation approach is used for the particle dynamics, inte-

grated using the Euler-Maruyama approximation, which is a generalisation of the Euler
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method to stochastic differential equations. Time t = ∆t × i and xi is the position of

particle i at timestep i.
dxi
dt

= −DT∇T +
√

2Dηi (4.64)

The brownian noise is modelled as

〈ηi(t)ηj(t′)〉 ≥ δijδtt′ (4.65)

〈ηi(t)〉 = 0 (4.66)

Stoke’s law for frictional force gives a value for the thermal diffusion constant of

spheres at low Reynolds numbers

D =
kbTlab

6πηa
(4.67)

η is the dynamic viscosity, Tlab the lab (solvent) temperature and a is the particle radius.

The particles are assumed to merely perturb the lab temperature, which is reasonable, as

the energy input to the system is small relative to the standard laboratory temperature.

Hence the Euler-Maruyama approximation leads to the following numerical update rule.

xi(t+ ∆t) = xi(t)−DT∇T |x=xi(t)∆t+
√

2D∆t ηi (4.68)

This is a case of over-damped dynamics, as empirical studies are at low Reynolds num-

bers.

4.3.1 Inter-particle Repulsion

To prevent problems with a divergent temperature field, caused by the unphysical over-

lap of particles and the resulting high thermophoretic velocities, the particles were also

given a repulsive interaction (implemented as a velocity component), dependent only on

inter-particle separation r and the illumination of the particle. As increasing illumina-

tion results in increasing particle temperature and therefore thermophoretic velocities in

nearby particles.

vrep(r) = Vrepr̂ = A
e−r/σ

r3
r̂ (4.69)

The inclusion of the force leads to our final version of the position update rule

xi(t+ ∆t) = xi(t)−DT∇T |x=xi(t)∆t+
∑
−i

Vrep(r)r̂ij∆t+
√

2D∆tηi (4.70)
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where the sum is over all particles other than i. However due to the computational

expense of evaluating these forces (computational O(N2)) for the results shown this

term was omitted. Although these terms increase the physical realism of the model, by

preventing collapse to an overlapping particle aggregation at the illumination focus. If

a region of the parameter space is found where collapse of the aggregation to the optical

focus occurs for moderate intial densities, then this may happen with the repulsive

potential included as well. If this does not happen without repulsive forces it definitely

won’t when they are included.

4.4 Heating of 2D Particles

The model assumes that the particles are spherical but constrained to move in 2D. The

heat equation describes how the temperature field develops over time. It has the form

∂T

∂t
= −κ∇2T + Q̇ (4.71)

where T = T (x, t) and Q̇ is a heat source term. For the thermophoretic particles we are

considering, the temperature equilibration of the system is fast relative to their speed.

Hence the temperature field at each timestep can be treated as fixed and ∂T
∂t = 0 . The

heat source term for a particle is

Q̇ =
γjP

ρcVj
(4.72)

where γj is the proportion of the light from the source of power P illuminating particle

j at that timestep. Particle j has a material density ρ, heat capacity c and volume

Vj = (4/3)πr3
0. Here we seek solutions of

κ∇2T = −Q̇ (4.73)

Exploiting the spherical symmetry of the particle and assuming the irradiance of the

particle to be conducted uniformly throughout the particle, we can express ∇2T in polar

coordinates as a function of r alone. Here Ti is a temperature interior to the particle.

See table 4.1 for definitions of constants.

κi∇2Ti = κi

[
1

r

∂

∂r

(
r
∂Ti
∂r

)]
(4.74)

=
1

r

∂Ti
∂r

+
∂2Ti
∂r2

(4.75)
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Hence the steady state equation for the temperature inside a particle is given by

κi
r

∂Ti
∂r

+ κ
∂2Ti
∂r2

= −Q̇ (4.76)

This is a first order linear differential equation in ∂Ti
∂r with general solution

Ti = − Q̇

4κi
r2 − Ci ln r +Di (4.77)

Ci = 0, as it is required that the temperature is finite at the centre of the particle and

also due to circular symmetry of the temperature distribution, i.e. ∂T
∂r

∣∣
r=0

= 0. Di can

be fixed by specifying a temperature at some position (although this is not necessary for

the simulation as we only require the gradient of the temperature field). The external

temperature distribution is given by the homogeneous equation

κo
r

∂T

∂r
+ κo

∂2T

∂r2
= 0 (4.78)

which is again a first order linear differential equation in ∂T
∂r , with general solution

To = −Co ln r +Do (4.79)

The thermophoretic velocity is determined by the gradient of T , so it is important to

find Co. This can be done through the flux condition at the surface of the particle, which

is that the rate of heat leaving the particle and entering the environment are balanced.

Fourier’s law of heat conduction leads to

−ki
∂Ti
∂r

∣∣∣∣
r=r0

= −kf
∂To
∂r

∣∣∣∣
r=ro

(4.80)

⇒ kiQ̇r0

2κi
= kf

Co
r0

(4.81)

⇒ Co =
ki
κi

r2
0Q̇

2kf
(4.82)

Note k
κ = ρc. From the expression for the heat source Q̇ we can determine Co in terms of

the elementary system variables, power of the light source and the thermal conductivity
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of the solution.

Q̇ =
γjP

ρcVj
(4.83)

=
3γjP

4ρcπr3
(4.84)

⇒ Co =
3γjP

8πkfr
2
0

(4.85)

where we used Vj = (4/3)πr3
o for spherical particles.

4.5 Evolution of the Temperature Distribution

Next we seek to construct the full temperature field for the system as a superposition

of the temperature fields induced by the individual particles. This is an approach that

exploits Green’s theorem for point particles which heat according to Eqn. 4.72.

The evolution of the temperature field T is given by the heat equation.

∂T (x, t)

∂t
= κ∇2T (x, t) + f(x, t) (4.86)

Where f(x, t) is the function representing the heat sources in the system (the ther-

mophoretic particles). The timescale of heat diffusion is much faster than particle diffu-

sion allowing the temperature field at any given moment to be approximated by a steady

state heat distribution (0.143× 10−6 vs 4.94× 10−13 m2s−1).

∂T (x, t)

∂t
= 0⇒ κ∇2T (x, t) = −f(x, t) (4.87)

Dimensional analysis shows −f(x, t) has units of Ks−1 and must be the instantaneous

change in temperature at (x, t). This is the source term due to light absorption by the

particles.

κ∇2T (x, t) = −f(x, t) (4.88)

Eqn. 4.88 is the Poisson equation and the steady state temperature is analogous to

the electric field of a charge distribution given by −f(x, t). We can treat the particles

as delta sources as, using the heating model for an individual particle in the preceding

section, we have fixed the temperature field to be that of the particle it represents at

that particle’s radius (r0) from the source. In the case of N point sources f(x, t) is a
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weighted sum of delta functions.

f(x, t) =
N∑
i=1

δ(x− xi)q̇i (4.89)

where qi is the source term for the point particle.

The Green’s function for the Poisson equation in 2D is:

G(x,x′) =
−1

2π‖x− x′‖
(4.90)

and the solution of eqn 4.88 is the convolution with the source term.

T (x, t) =

∫
1

2π‖x− x′‖

N∑
i=1

δ(x′ − xi)q̇idx
′ (4.91)

=
1

2π

N∑
i=1

q̇i

∫
δ(x− xi)

‖x− x′‖
dx′ (4.92)

=
1

2π

N∑
i=1

q̇i
1

‖x− xi‖
(4.93)

=
N∑
i=1

Co
‖x− xi‖

(4.94)

Using the fact that the source term must be constant in time and neglecting the constant

of integration (T∞).

We never actually need to calculate T (x, t), only its gradient at the individual

particle positions, for the thermophoretic velocity term in Eqn 4.70.

∇T (xi) = −
N∑

j=1,j 6=i

Co
r2
ij

(4.95)

When calculating the gradient vector at a particle’s location, it’s own contribution is

not included as it is spherically symmetric and hence does not affect the vector (the

contribution is also undefined due to the discontinuity at this point in the temperature

distribution).
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4.6 Simulations

4.6.1 Comparison with the Mean Field Model

The discreteness of the particles in the computer model introduces some differences

to the continuum model. Chief amongst these differences is that the particles have a

transparency of 0.0, i.e. they are fully opaque and do not reflect or scatter incoming light.

This means that it is possible for the interior to be screened from the incoming light by

particles further out. Whereas in the continuum model light can always reach the centre

(it will however, be considerably reduced in magnitude. This may affect the density

profile of the compact state. Also for investigating the compact state, the discreteness

of the particles necessitates the introduction of repulsive potentials. However these

potentials can affect the density of the simulations if they are too strong or far-reaching.

As previously mentioned that because no promising parameter regimes were lo-

cated, the repulsive potentials were not included. This meant that the particles could

overlap. The discontinuity in the temperature gradient was accounted for by switching

off the interaction between 2 particles once they h d overlapped.

4.6.2 Parameters

For explanantions of the dimensional variables in the simulation see table 4.1. The

convenient dimensionless quantities arising from the continuum model are defined as

follows:

R̄ =
R

2r0N
(4.96)

ψ̄ = 2r0

∫ R

0
ρdr (4.97)

γ̄ =
−DTP

πkfD
(4.98)

R̄ is a dimensionless system size. ψ̄ represents the average number of particles between

the focus and the boundary contained within a tube of width 2r0 and hence is a dimen-

sionless measure of the opacity, i.e. the collection of particels is transparent if ψ̄ � 1,

opaque if ψ̄ > 1 and marginally opaque if ψ̄ ' 1. γ̄ is a compound variable representing

the strength of the thermophoretic interaction relative to the thermal diffusion, depen-

dent upon the energy input through P For physical parameters of the particles refer to

values for 500 nm polystyrene beads in Haynes [2014].
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Table 4.1: Parameters used in the 2D simulations.

Parameters Value Units
T 298 K
r0 500 nm
DT 6.0x10−12 m2 s−1 K−1

D 4.94× 10−13 m2 s−1

η 8.9× 10−4 kg m−1s−1

kf 0.609 W m−1 K−1 1

P 0.938 W
A 4.15x10−18 m s−1

σ 3.0 r0

rmax 0.5 r0

4.6.3 Timesteps

The time discretisation of the numerical Langevin equation leads to a sensitivity to

timestep size. If timesteps are too large, then the velocities calculated can be so large as

to cause overlaps or particles ‘leapfrogging’ other particles. If two particles overlap the

forces generated at the next timestep can be large enough to move them unphysically

large distances (and even ejected from the system). It is therefore necessary to have

timesteps small enough that the repulsive and thermophoretic forces between particles

will be felt before overlapping occurs.

However, in a diffuse state the interparticle separations will be larger than the

length scale of the repulsive potential and very small timesteps will prevent efficient sim-

ulation. The obstacle to using standard adaptive time stepping is that the need to avoid

these overlaps and the extreme consequences of the singularities in the temperature gra-

dient field (and therefore the induced thermophoretic velocities) results in the timesteps

becoming infeasibly small (in compact states). So an adaptive timestepping scheme was

implemented that ensured that no particle could move more than a prescribed distance

rmax in any given timestep. The timestep length being recomputed from the velocities

after each step. The constraint on rmax is implemented as follows:

∣∣(vithe + virep)τ + ∆xiD
∣∣ ≤ rmax, ∀ (4.99)

where τ is the length of the timestep and ∆xiD is the thermal noise contribution to the
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particle displacement and is consequently proportional to
√
τ .∣∣∣∣∣

(
V x
L

V y
L

)
τ +

(
ξx

ξy

)
√

2Dτ

∣∣∣∣∣ ≤ rmax (4.100)

⇒ |vL|2τ2 + 2D|ξ|2τ + 2
√

2D(vL · ξ)τ3/2 ≤ r2
max (4.101)

This is a quartic equation in y = τ1/2 and can be solved numerically at equality. The

Jenkin-Traub algorithm is used to solve the equation in this simulation to yield τ imax, the

timestep that allows the particle to move distance rmax. The shortest of these over all

particles is selected to yield τmax, the longest timestep that guarantees all particle moves

are less than rmax and that is the new timestep. rmax has been selected to be r0/2, which

is 1/8th the typical particle surface-surface separation, as calculated from the continuum

model (see §4.8.1). To prevent particles overlapping and the consequential blow-up

in the thermophoretic force between them, due to the singularity in the derivative of

temperature field at the particle origin, it is necessary to introduce a repulsive potential.

Otherwise as 2 particle centres approach the thermophoretic velocity of each particle

increases to infinity.

A soft potential is used as this will not require the very small steps of a hard

potential. The small steps are required as the forces generated can be large if the

particles overlap too much. There is of course the issue of how to set the length scale

and strength of the repulsive potential. This procedure was implemented mostly with

regards to the inclusion of the repulsion term. Despite the repulsions being removed for

the initial investigations this procedure was still followed as step size is still a concern.

4.7 Results

The aim was to find evidence for the proposed transition from a diffuse state to a highly

compact state. The compact state’s existence was predicted to depend on a sufficiently

dense initial conditions and sufficiently high influx of energy into the system.

Initial attempts were made to find the predicted transition using N = 1000

particles and repulsive forces to prevent overlaps. However, the long simulation times

required, made it difficult to find a region of the parameter space containing a transition

from a diffuse to a compact state (as it did not seem to be in the predicted region). To

ease the computational burden, the repulsive forces were discarded and N reduced from

1000 to 500. This allowed the particles to pass through each other in a similar way to

the ‘phantom’ particles in previous chapters.
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Figure 4.5: Simulation evidence for the transition: Using N = 500 particles and R̄ = 3.
r̂ is the mean particle distance from the origin and focus. The particles were prepared in
states with initial ψ̄t=0 given in the figure. The thermophoretic response/energy input
into the system is given by γ̄ in the inset. The simulations were then allowed to reach
a steady state (not a true steady state as particles are lost from the aggregation by
diffusion, but it is long-lived relative to the individual particle diffusion times). There
does appear to be a continuous transition between a diffuse state at low initial density
(proxy is ψ̄) and a compact state at high initial density, with r̄ ≈ 2× 10−4.

Evidence for the transition was found by holding γ̄ constant and using the initial

density as a control parameter and proxy for ψ̄t=0 (see Fig. 4.5). The simulated times

were between 14322 and 50286 s, which represent millions of simulation timesteps (due

to the small ∆x moves). It should be noted that particles are gradually lost from the

compact mass around the focus, by chance fluctuations. This provides evidence for

instability of the compact mass, as the rate of particle loss is greater than that of gain.

Hence the radial mean increases over large timescales and is not stationary and values

will depend on when the measurement occurred.
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4.8 Setting the Repulsion

Note this repulsive potential is to be used in future work and was not used in the results

in the preceding section. The importance of the repulsive potential is that it prevents

unphysically compact particle aggregations from overlapping particles and prevents par-

ticles overlapping and the consequential blow-up in the thermophoretic force between

them, due to the singularity in the temperature field at the particle origin. A soft

potential is used as this will not require the very small steps of a hard potential (com-

putational time for the preceding simulations is already an issue without calculating a

repulsive interaction). The small steps are required as the forces generated can be large if

the particles overlap too much. There is of course the issue of how to set the lengthscale

and strength of the repulsive potential.

4.8.1 Setting the Lengthscale of Repulsion

First we shall determine the mean particle separation in a compact state and ensure

that the length scale for the repulsion σ is small compared to this distance. So that the

repulsion does not affect the steady state density of the system. If we take the central

density of the compact state in the mean field continuum model. A value for the typical

distance between particle centres can be estimated as

λd =
1
√
ρ0

(4.102)

From examination of how the central densities vary with the dimensionless parameters,

it can be seen that λd has a lower bound when γ̄ < 10:

λd ≥ 2r0

√
N

10
(4.103)

There is a square root dependence on N and clearly small values of N will have small

distances and N must be greater than 25 before the typical distance is greater than

1 particle radius and 100 before it is greater than 2 radii. At a 2 radii distance the

particles are all touching and clearly this will be difficult to simulate due to timestepping

demands, whereas below this the particles overlap unphysically (see fig. 4.6). Clearly in

the preceding simulations γ̄ > 10 were used, this was so that the interparticle separations

were larger and hence the average time step in the simulation. N = 1000 gives λd = 6.3r0

and a separation between surfaces of 4.3r0 or approximately 2 particle diameters. This

is an acceptable particle separation for simulation purposes (remember the effect of
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Figure 4.6: The variation in typical particle separation λs with N for γ̄ < 10.

interparticle separation on time step size through Eqn 4.99). Another approach is to

compute the 2D Wigner-Seitz radius, rws. That is the radius of a circle of area equal to

the mean area per particle. This gives an approximate length scale for the interactions

and assumes a uniform density.

πr2
ws =

πR2

N
(4.104)

rws =

√
R2

N
(4.105)

For N = 1000, rws = 6.7r0, leading to an approximate λs of 4.7r0 or, again, just over

2 particle diameters surface to surface. It is clear from these two approaches that the

length scale of the repulsion σ must be smaller than 6r0 (as the repulsion is from the

particle centre), but greater than r0 so that it is outside the particle. A σ of 4.0r0 was

selected for the simulations as the repulsion length scale as it represents an interparticle

surface-surface separation of 2r0 or 1 particle diameter.
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Strength of Repulsion

Now the length scale for the repulsion has been fixed, it is necessary to determine

the required strength of the repulsion. Diffusion makes the largest contribution to the

particles velocities and it therefore seems reasonable to use diffusion as a constraint

on the magnitude of the repulsive force. It is required that the maximum diffusive

displacement is balanced by the repulsive potential at a separation distance of 3r0 from

the centres of the particles. The minimum time it takes a particle to diffuse rmax is

τD,min = r2
max/4D. This is the shortest time it takes for a particle to be displaced

distance rmax by diffusion alone. Hence an expression for the amplitude of the repulsive

potential can be determined.

Vrep(r = 3r0)τD,min = rmax (4.106)

A
e−

3
4

(3r0 − 2r0)3
τ = rmax (4.107)

⇒ A =
4De3/4r2

0

rmax
(4.108)

The Initial ψ̄

The particle positions are initiated in a square grid, such that all particles are within a

given radius. For a given initial ψ̄ an estimate for the required radius, R′ is made based

on the area fraction φ occupied by the particles positioned within that radius. This is

an attempt at a discrete analogue of ψ̄ and assumes a constant area fraction within the

initial particle grouping. The continuum ψ̄ represents the number of particles seen in

a tube of width 2r0 from the radius to the edge of the system (radius of the system in

dimensional units, R′). The occupied volume fraction is φ =
Nr2

0
R′2 . Hence the estimated

number of particles seen in a tube of width 2r0 and length R′ is:

ψ̄est =
2φr0R

′

πr2
0

(4.109)

=
2Nr0

πR′
(4.110)

where we have divided the area containing particles by the particle area.

Simulation Times

It is necessary to simulate a sufficiently long time that the system can reach a steady

state, if it exists. An estimate for this time can be obtained from the assumption that
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diffusion is dominant. A sufficient time to reach steady state is then τeq = rc
D , where rc is

the critical distance. The critical distance should be long enough that any particle in a

compact state should (on average) be able to reach any position in the marginally opaque

state. This allows the particles to relax to steady positions in the marginally opaque state

from the initial compact state. So an estimate of the width of the distribution in that

state is required. For γ̄ = 8, ψ̄ in the compact state is ≈ 2.4 Hence R′ = rc ≈ 0.00013 m

for our system and τeq ≈ 3.5× 104 s.

4.8.2 Illumination Algorithm

The most algorithmically challenging part of the model is calculating the fraction of

total irradiance falling on each particle.

The strategy taken was to place a fictitious particle at the centre of the domain

and then to sequentially add the real particles from the furthest to the nearest. After

each particle addition the irradiance of the fictitious particle was calculated (in the same

way as the projected views were, for flock members in the preceding chapters). The

difference between the previous irradiance for particle i − 1 and the new irradiance is

the light absorbed by the ith particle. This is obvious for the first particle, when the

previous irradiance is the full irradiance. See Fig. 4.7. The angular size (θ) of the

Figure 4.7: The incoming irradiance absorbed by each particle is calculated using the
shadows cast onto a fictious particle at the origin. The particles are added from the
furthest to the focus, to the nearest. Such that the difference in the area shadowed
on the fictious particle after each particle is added, is the proportion of incoming light
absorbed by that particle.

shadow of a particle onto the fictitious particle is 2 arcsin(r0/r), where r is the distance
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(a) (b)

Figure 4.8: Similarly to the case for incoming light, the proportion of outgoing light
absorbed by each particle is calculated sequentially from nearest to the focus outwards.
Light in the orange corridor must pass through to the focus, before it can reach the
underside of a particle. Hence if we continue the shadowing algorithm used for inwards
light (black particles are from previous step), but now adding the inverted positions
(dashed) we calculate the outwards illumination caught by the two blue particles. Note
the light that illuminates their undersides must have missed the black particles.

from the origin to the particle. Illumination is isotropic and directed towards the focus

(optical centre).

A subtlety is that if there is no particle at the focus, then light can pass through

the focus and illuminate the side of the particles nearest to the focus (let’s call this

the underside). Now that all the particles have been added from furthest to nearest,

we repeat the process adding the particles from the nearest to the furthest (keeping

those previously added in the incoming irradiance calculation), but reflecting the par-

ticles through the focus (as an inversion centre). This works because light irradiating

the underside must have passed though the inversion centre (irradiance focus) to reach

the particle’s underside. Following this procedure, we obtain the fraction of the total

irradiance (incoming and outgoing) light absorbed by each particle. See Fig. 4.8.

The only other problem to consider, is what to do if one or more particles overlap

the focus. It was chosen that if one particle overlaps the focus, then it absorbs all the

incident light. In reality there would be reflection and scattering so this could be a drastic

approximation. If more than one particle overlaps the focus, the decision was made to

split the irradiance equally between the overlapping particles, as the projection algorithm

cannot handle overlap of particles and focus. It should be noted that if a particle or

particles are at the focus then there is no outgoing irradiance and the computational
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work is halved for the illumination algorithm.

Algorithm 1 Calculating Particle Irradiance: i labels particles ordered by increasing
distance from optical focus. Ω stores value of shading on the imaginary particle by the
others.

O ← initialise view {Imaginary particle at the centre of mass of particles.}
for i = 0 to N − 1 do

add projection of i to view of O.
Ω[i] ← ω {ω is the area of O shadowed by i.}

end for
for i = N − 1 to 0 do

add projection of i at −xi to O.
Ω[2N − 1 + i] ← ω

end for
I[0] ← ω[0] {I is particle illumnation}
for i = 1 to N − 1 do
I[i] ← ω [i]-ω[i− 1]

end for
for i = N − 1 to 2N − 1 do
I[i] ← I[i] + ω[0] −ω[i− 1] {I is particle illumnation}
I[i] ← I[i]

4πr2 {r is the radius of the imaginary particle.}
end for

4.9 Conclusion

The results displayed in Fig. 4.5 demonstrate a transition in the compactness of the

particles, as measured by r̂ the mean focus-particle distance, as ψ̄t=0 increases. This is

for simulations without an included repulsion term, hence the density of the compact

state will not correspond with experimental values as the particles can pass through each

other. However in the mean field theory the simulation was meant to emulate has no

equivalent constraint. The details of working with simulated particles, rather than the

mean field theory introduces tunable parameters, such as timesteps and particle sizes.

Also the mean field theory has a particle density with a given transparency and the

simulation model has discrete particles with discrete shadowing of each other. These

differences between the models may explain why the transition to a compact state was

only found using much higher values of γ̂ than expected from the mean field theory.
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4.10 Future Work

• The assumption of instantaneous temperature equilibration across the domain of

the simulation could be relaxed, if the domain was discretised and the heat allowed

to flow between the discretised volumes (this can be done very efficiently on a

graphics card). It was not made clear initially that the domain in the analytic

work had a fixed boundary and hence this was not implemented.

• A further refinement would be to include self-thermophoresis, perhaps by discretis-

ing the boundary for each particle and allowing differential heating between the

regions, based on the surface illumination.

• A model of self-thermophoresing particles by Cohen [2013] uses uses a spheri-

cal harmonic expansion of each particle’s anisotropic temperature field caused by

surface-illumination. This method could be generalised from a single source of (lin-

ear) illumination, to include multiple light sources and reflections from the particle

surfaces. A framework exists in the from of spherical harmonic models of lighting

in computer graphics. These calculations can be highly parallelised on a graphics

card and would be considerably faster than current approaches, with the potential

for tens of thousands of particles with a more accurate illumination (and higher

order approximations to the temperature field) using the same spherical harmonic

integration code.

136



Chapter 5

Conclusions

This is the way the world ends

This is the way the world ends

This is the way the world ends

Not with a bang but a whimper.

T. S. Eliot – The Hollow Men

A series of agent-based particle models were created of both animal collective

motion and thermophoretic collective motion in 2D and 3D. These models relied on

projections of shadows onto the surface of the spherical agents. The projections in 2D

were calculated using a very simple algorithm, using interval arithmetic.

The main thread of this thesis that binds it together, is the consideration of light

sources and how they shadow circular or spherical particles that respond in some way

to the results of this shadowing. In the case of the flocking models movement rules are

based directly on the shadowing and illumination of the particles. In the thermophoretic

models the heating of the particles is controlled by their shading of each other relative

to the optical focus of the system and the particles respond to this through the induced

temperature field.

The projections in 3D lead to more difficult computational geometry than the

2D cases, thus requiring more software development time. The resulting algorithm did

not have the best known computational complexity O(N logN), but was instead O(N2).

However the algorithm was considerably more robust and faster, as it could be imple-

mented in double arithmetic as opposed to high-precision or exact1 numerical arithmetic.

For the case of 3D bird flocking, the mean view area occluded or opacity, Ω, was an im-

1This is typically through a restriction to rational coordinates and certain geometrical constructions
that can be represented in these.
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portant measure for comparison with empirical data and hence efficiently calculating the

occluded surface area on a sphere was important. An alternative approach would have

been to measure less often, but that is not possible when trying to work out correlation

times (if you wait too long between samples you may not see a short time correlation

and the precision to which you can estimate correlation times is limited by your sam-

pling rate). The surface area integration was achieved through an approximate Green’s

function approach and it’s robustness relies on the arc-finding projection algorithm. The

two algorithms were tested together and found to give errors of less than 1% in the test

cases compared to the point-wise estimate.

In chapter 2 on 3D animal collective motion (particularly starlings), a simulation

model was developed, based on the previous 2D model that reproduces qualitative fea-

tures of bird flocks such as alignment and cohesion, which is not in itself impressive as

many models do that. However, it was found that the opacity scaled with flock size (as

measured by rmax) in the same way in the model as in the empirically observed starling

flocks. Anisotropy in the nearest neighbour distributions very similar to that of the em-

pirical flocks was observed for a set of model parameters. An unexpected anisotropy in

the model flock dimensions (leading to relatively flat flocks) was another feature of the

model, with similarities to the natural flocks. However in the case of flock dimensions the

extension along the axes is different to natural flocks, which is probably due to natural

flocks having a special direction for alignment other than the average flock velocity, i.e.

the direction defined by gravity. These features are emergent from the visual flocking

rules and are not known from other Vicsek-type flocking models. These particular com-

parisons can only be directly compared with natural flocks in a 3D simulation and hence

justifies the effort in creating one for this model.

Chapter 3 developed 2D models of animal collective motion. A different set of

models based on an alternative visual paradigm, that of optical flow, were developed.

Agent-based simulations derived from the optical flow paradigm are novel models of

flocking interactions. These models were designed to correspond to thinking in biol-

ogy and psychology about how visual perception works, which is in itself an unusual

approach. Some features such as rotational motion arise from the directional memory

inherent in the rules. This is using isotropic agents, whereas for the 2D version of the

model of Pearce et al. [2014] rotational motion was induced with anisotropic agents.

Chapter 4 sought simulation evidence for a predicted transition between a com-

pact state held together by temperature gradients induced by the particles absorbing

laser light. Evidence for this transition was found at higher input light energies than

predicted from the mean field theory, which is likely because of the discrete nature of the

138



particle shading in the model and lack of particle transparency compared to the mean

field density model.2

2So long, and thanks for all the fish.
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Appendix A

3D Flock Order Parameter Traces
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Figure A.1: Opacity Ω, velocity order parameter Ψ and flock size rmaxtime traces with
running means and variance for an N = 200 flock with parameters given in the figure.
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Figure A.2: Opacity Ω, velocity order parameter Ψ and flock size rmaxtime traces with
running means and variance for an N = 200 flock with parameters given in the figure.
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Figure A.3: Opacity Ω, velocity order parameter Ψ and flock size rmaxtime traces with
running means and variance for an N = 200 flock with parameters given in the figure.
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Figure A.4: Opacity Ω, velocity order parameter Ψ and flock size rmaxtime traces with
running means and variance for an N = 200 flock with parameters given in the figure.
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Figure A.5: Opacity Ω, velocity order parameter Ψ and flock size rmaxtime traces with
running means and variance for an N = 200 flock with parameters given in the figure.
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