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Abstract

This thesis consists of three chapters. In the first two chapters I study the

optimal design of communication hierarchies between an uninformed decision maker

and privately informed experts who have different preferences over decision maker’s

action.

The motivation for the model described in the first two chapters comes from

the fact that in organizations, a central problem is that much of the information

relevant for decision making is dispersed among employees who are biased and may

lack the incentives to communicate their information to the management. This paper

studies how a manager can elicit employees’ information by designing a hierarchical

communication network. The manager decides who communicates with whom, and

in which order, where communication takes the form of cheap talk (Crawford and

Sobel, 1982). I show that the optimal network is shaped by two competing forces: an

intermediation force that calls for grouping employees together and an uncertainty

force that favours separating them. The manager optimally divides employees into

groups of similar bias. Under simple conditions, the optimal network features a

single intermediary who communicates directly to the manager.

Third chapter is work in progress. Here, I study a situation in which a DM

can commit to both communication networks and to the delegation of decision rights

but not to transfers or arbitrary decision rules based on received information. I show

a novel trade-off between centralization and decentralization with two experts and a

decision maker, when experts receive noisy and complementary evidence. There is a

single decision to be made, the decision maker can allocate the decision right to any

vii



of the experts, and can commit to communication channels betwent the players.

I study conditions under which delegation combined with decentralized commu-

nication outperforms centralization. This happens because delegation encourages

information sharing between the experts. Two conditions have to be satisfied in

order for a decision maker to benefit from decentralization. First, the expert who

decides over policy has to be not too biased towards the decision maker. Second,

he should have a smaller distance to the bias of the other expert compared to the

DM. In this case, the other expert is willing to reveal more information to the first

expert compared to the centralized case.
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Chapter 1

Optimal Communication

Networks: Basic Results

1.1 Introduction

“Information in an organization,

particularly decision-related

information, is rarely innocent, thus

rarely as reliable as an innocent

person would expect. Most

information is subject to strategic

misrepresentation...” James G.

March, 1981.

Much of the information relevant for decision making in organizations is

typically dispersed among employees. Due to time, location, and qualification con-

straints, management is unable to observe this information directly. Managers aim

to collect decision-relevant information from their subordinates, but employees often

have their own interests and hence communicate strategically to influence decision

making in their favour. In this paper, I study how a manager optimally elicits in-

formation by designing a communication structure within the organization. The

manager commits to a hierarchical network that specifies who communicates with

whom, and in which order. Her objective is to maximize information transmission.1

My analysis shows that the optimal communication network is shaped by two

1Evidence suggests that the communication structure within an organization indeed affects em-
ployees’ incentives to reveal their private information. See discussions in Schilling and Fang (2014)
and Glaser et al. (2015).
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competing forces: an intermediation force that calls for grouping employees together

and an uncertainty force that favours separating them. The manager optimally di-

vides employees into groups of similar bias. Each group has a group leader who

collects information directly from the group members and communicates this infor-

mation in a coarse way to either another group leader or the manager. If employees’

biases are sufficiently close to one another and far away from the manager’s, the op-

timal network consists of a single group. My results resonate with the classic studies

of Dalton (1959), Crozier (1963), and Cyert and March (1963), who observe that

groups — or “cliques” — collect decision-relevant information in organizations and

distort this information before communicating it to organization members outside

the group.

The model I present considers a decision maker (DM) and a set of employees

whom I call experts. Each expert observes a noisy signal of a parameter that is

relevant for a decision to be made by the DM. The DM and the experts have different

preferences over this decision; specifically, the experts have biases of arbitrary sign

and magnitude over the DM’s choice. The DM does not observe any signal of the

relevant parameter and relies on communication with the experts. As committing

to transfers or to decisions as a function of the information transmitted is often

difficult in an organizational context, I rule these out.2 The DM instead commits

to a communication network, which specifies who communicates with whom, and in

which order.3 Communication is direct and costless, i.e. it takes the form of “cheap-

talk” as in Crawford and Sobel (1982). I focus on the best equilibrium payoffs for

the DM in any given communication network and characterize the optimal network

for the DM.

My model builds upon Galeotti et al. (2013) who study simultaneous com-

munication in a similar setting. The crucial difference is that my model studies the

optimal sequential structure from decision maker’s perspective, where they focus

on the properties of simultaneous communication in different network structures.

In particular, I restrict attention to tree communication networks, or “hierarchies.”

This type of network is a natural starting point in the study of communication in

organizations. In the theoretical literature, hierarchies are regarded as the opti-

mal formal organization for reducing the costs of information processing (Sah and

2A manager cannot contract upon transfers or any information received in Dessein (2002), Alonso
et al. (2008), Alonso et al. (2015), and Grenadier (2015). See also the literature discussion in
Gibbons et al. (2013).

3The design of communication structures appears as a more natural form of commitment. For
example, if a party commits not to communicate with an agent, she will ignore any reports from the
agent so long as they are not informative, and the agent in turn will not send informative reports
as he expects them to be dismissed.
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Stiglitz, 1987; Radner, 1993; and Garicano, 2000) and for preventing conflicts be-

tween subordinates and their superiors (Friebel and Raith, 2004). In practice, hierar-

chies have been identified as a prominent communication structure in organizations,

even in those that aim to have non-hierarchical communication and decision rights

allocation (see Ahuja, 2000 and Oberg and Walgenbach, 2008).

I begin my analysis of optimal communication networks by identifying a

trade-off between two competing forces. On the one hand, the intermediation force

pushes in favour of grouping experts together, in order to enable them to pool

privately held information and have more flexibility in communicating to the DM.

On the other hand, the uncertainty force pushes in favour of separating the experts,

in order to increase their uncertainty about the information held by other experts

and relax their incentive constraints. As in other contexts, uncertainty allows to pool

incentive constraints, so a less informed expert can be better incentivized because

fewer constraints have to be satisfied compared to the case of a more informed

expert.

Building upon the interaction between the intermediation force and the un-

certainty force, I derive three main results. My first main result concerns star

networks — those in which each expert communicates directly to the DM. Star net-

works are a simple and a prominent benchmark in the social network literature (see

Jackson, 2008). My analysis shows, however, that a star communication network

is always dominated by an optimally-designed sequential communication network.

Sequential communication between the experts can generate as much information

transmission to the DM as a star network, and sometimes strictly more. The im-

provement arises because coordination in reports gives experts the possibility to

report pooled information in a coarse way. This is strictly beneficial for the DM

whenever the experts would send a less informative report were they unable to

coarsen information.

My second main result shows that an optimal communication network con-

sists of “groups” of experts. In a group, a single expert — the group leader —

receives direct reports from all other members of the group and then communicates

the aggregated information in a coarse way either to another group leader or directly

to the DM. The coarsening of information by a group leader is key to incentivize

the experts to reveal their signals truthfully. As for the optimal composition of a

group, I show that group members who only observe their own private signals have

identical ranges of biases which support their equilibrium strategies; the reason is

that they have the same expected uncertainty about the signals of other experts

and their reports are treated symmetrically by their group leader. Consequently,
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the DM benefits from grouping similarly biased experts together.

Finally, my third main result shows that if the experts’ biases are sufficiently

close to one another while large enough (relative to the DM’s preferences), then

the optimal network consists of a single group. The group leader acts as a single

intermediary who aggregates all the information from the other experts and sends a

coarse report to the DM. Aggregation of the entire information allows this interme-

diary to send a report with minimal information content. As a consequence, from

the perspective of each expert, any deviation from truth-telling results in the largest

possible shift in the DM’s policy from the expected value of the state. This allows

to incentivize highly-biased experts to reveal their private information truthfully.

As noted, my findings are in line with work on the modern theory of the

firm, which emphasizes the importance of coordination between employees for intra-

firm information transmission. Cyert and March (1963) observe that managerial

decisions are lobbied by groups of employees which provide distorted information to

the authority. Similarly, Dalton (1959) and Crozier (1963) view an organization as a

collection of cliques that aim to conceal or distort information in order to reach their

goals. Dalton claims that having cliques as producers and regulators of information

is essential for the firm, and provides examples of how central management influences

the composition of such groups through promotions and replacements.4 Group

leaders in my model also resemble the internal communication stars identified in the

sociology and management literature. Allen (1977), Tuchman and Scanlan (1981),

and Ahuja (2000) describe these stars as individuals who are highly connected and

responsible for a large part of information transmission within an organization, often

acting as informational bridges between different groups.

The next section discusses the related literature. Section 1.2 describes the

model. Section 1.3 illustrates the main ideas with a simple example, provides a

characterization of the intermediation and uncertainty forces, and derives the main

results. Additional results of this model are provided in Chapter 2 where I study

the optimal ordering of biases, the case of experts with opposing biases, the value

of commitment, and the benefits and limitations of using non-hierarchical networks.

Section 2.2 in Chapter 2 concludes.

4See p.65-67. Dalton describes a case in which the new members of a clique were instructed
about the “distinction between their practices and official misleading instructions” (italics are from
the original text).
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1.1.1 Literature review

This paper relates to several literatures.

Communication Within Organizations: The importance of communication in

organizations has been long recognized in economics (Gibbons et al. 2013). Early

contributions that view an organization as an optimizer of communication structures

do not model a conflict of interest between the players and focus on the costs of di-

rect communication or information processing. Keren and Levhari (1979) look at the

time required to prepare instructions for productive units. Marschak and Radner

(1962) look at minimization of communication costs from a team-theoretical per-

spective. More recently, Bolton and Dewatripont (1994), and Radner and van Zandt

(1992, 2001), study the processing of information and the costs of communication.

The literature on knowledge-based hierarchies models organizational structures as a

solution to the trade-off between the costly acquisition and the costly communica-

tion of knowledge (see Garicano, 2000, Garicano and Wu, 2012, and the literature

review in Garicano and Rossi-Hansberg, 2014). Calvó-Armengol and di Marti (2007)

analyse communication using a team-theoretic framework in the tradition of Radner

(1962) and Marschak and Radner (1972). All those papers do not model strategic

communication, which is different from my approach. Strategic communication is

important, as shown in the motivating examples in the introduction. In the theoret-

ical literature, Milgrom and Roberts (1988) emphasize that those who are endowed

with knowledge but are excluded from the final decisions might have incentives to

distort the information they forward to the management. Thus, the question of op-

timal communication design should account for the possibility that an expert might

lie while reporting to the decision maker(s).

More recent contributions model strategic communication coupled with the

possibility of delegating decision rights. Dessein (2002) shows conditions under

which delegation is preferred to communication because the costs of strategic com-

munication due to coarse reports are higher than the costs of a biased decision by a

privately informed agent. Dessein and Santos (2006) use a team-theoretic approach

to study how a task specialization is affected by the need for coordination while

adapting decisions to local conditions. Alonso, Dessein and Matouschek (2008) and

Rantakari (2008) introduce incentive conflicts combined with strategic communica-

tion. They model a central manager and two peripheral divisions and show when it

is optimal to delegate authority to the divisions. Alonso, Dessein and Matouschek

(2015) extend this framework to study the effect of complementarity of production

decisions on the delegation of authority. These papers focus on the optimal alloca-
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tion of authority; by contrast, I examine the optimal design of communication when

the decision rights are exogenously assigned to a principal.

My focus on tree communication networks is motivated by a large litera-

ture showing the importance of hierarchies in organizations. For example, Bolton

and Dewatripont (1994), van Zandt (1999a and 1999b) and Garicano (2000) show

that communication hierarchies decrease the costs related to information processing.

Friebel and Raith (2004) study hiring decisions and find that hierarchical commu-

nication prevents conflicts between supervisors and subordinates in organizations.

Moreover, an empirical literature recognizes trees and hierarchies as the prevalent

communication form in organizations. Ahuja and Carley (1998) show that virtual

organizations adopt a hierarchical communication structure — contrary to a view

that the use of information technology might result in non-hierarchical structures.

Oberg and Walgenbach (2008) show that a firm with a goal of adopting a non-

hierarchical communication, ended up having a communication hierarchy similar to

a bureaucratic organization.

Sociological and managerial literature on communication in organizations is

large.5 Early studies of Cyert and March (1963), Dalton (1959) and Crozier (1963)

identified intra-organizational groups that were lobbying decisions while distorting

the information they provided to the management. Recent managerial literature

emphasizes the effect of the topology of communication structures on information

transfer in organizations.6 Tuchman and Scalan (1981) and Allen (1977) provide

evidence that internal communication stars — individuals who act as informational

bridges between different groups — mediate a large portion of intra-organizational

information. This finding is in line with my results on “group leaders” who collect

information directly from members of their groups and communicate it in a distorted

way either to other group leaders or directly to the management. My results are

also in line with a recent empirical study of Wadell (2012) who found that internal

communication stars control a considerable fraction of information, which they col-

lect from groups and frequently share among other internal communication stars.

Similarly, Dhanaraj and Parke (2006) and Schilling and Fang (2013) show that in-

dividuals who are influential in communication networks within organizations have

incentives to systematically distort information.

Cheap Talk and Experts: Crawford and Sobel (1982) is the seminal frame-

work of non-verifiable costless information transmission (“cheap talk”). They show

5See Argote for a literature review on knowledge transfer in organizations.
6See the literature reviewed in Glaser et al. (2015)

6



that once communication features an uninformed receiver and an informed and bi-

ased sender, credible information transmission involves noise. Using cheap talk as a

communication device, Krishna and Morgan (2001a,b) and Battaglini (2002) study

multiple experts who perfectly observe the state. They show conditions under which

perfect revelation is possible. For example, with simultaneous communication, Kr-

ishna and Morgan (2001b) study a mechanism that achieves perfect revelation.7

With sequential communication and two experts who perfectly observe the state,

Krishna and Morgan (2001a) show that the DM always benefits from consulting

both experts if they have opposing biases, but does not benefit from consulting a

less biased expert if the biases are in the same direction. Battaglini (2002) shows

that perfect revelation with multiple dimensions of the state is possible generically

even when biases are large. All those papers achieve full revelation constructing an

equilibrium in which an expert does not deviate from truth-telling given some ”true”

report of the other expert (For example, in Battaglini (2002) each of the experts

reports to the DM according to a dimension in which their interests coincide. An

expert has no incentives to deviate once the other expert reports truthfully accord-

ing to his dimension). However, in my model it is not possible to play the experts

against each other to always achieve full revelation. If an expert does not have

incentives to report his signal truthfully in a tree, he has no incentives to always

share his information with other experts in a complete network either.

Because the signals are correlated, the DM has no possibility to punish the

experts due to “incompatibility” of their reports as in Ambrus and Lu (2014) or

Mylovanov and Zapechelnyk (2013).

The case of imperfectly informed experts was first studied in Austen-Smith

(1993) who compared simultaneous and sequential reporting with two biased ex-

perts8. Battaglini (2004) extends the analysis to many experts who communicate

simultaneously to the DM. Thus, he does not ask the question of the optimal com-

munication design. Further, for almost perfect revelation of information he puts

restrictions on expert’s preferences which is not the case in this paper.

My work closely relates to a paper by Wolinsky (2002) who studies a situation

in which the DM consults a team of experts and cannot commit to a mechanism. The

DM takes a binary action. The experts send their reports based on the expectations

7Battaglini (2002) defines a refinement where players might make mistakes that rules out the
perfect revelation equilibria of Krishna and Morgan (2001b).

8Glazer and Rubinstein (1998) study a mechanism design approach in which they compare two
different modes of communication with imperfectly informed experts: the one in which the experts’
and social planner’s preferences coincide, and the one in which the experts have private motives.
The important difference to my approach is the lack of commitment to a mechanism conditional
on reports in my model.
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of whether their reports are pivotal for the final decision. Wolinsky compares two

benchmarks: simultaneous communication versus allocation of experts into groups.

He provides examples under which it is better to split experts into multiple groups

rather than consulting each expert separately, and finds conditions on the lower

bound of the group size. Wolinsky’s approach differs from mine in three respects:

1) Wolinsky does not ask the question of an optimal communication design, and,

thus, does not provide a general characterization of communication within groups.2)

Wolinsky assumes the same preferences of the experts, and, therefore, abstracts

from strategic information transmission motives between them. And, finally, 3) he

assumes partial verifiability and non-correlated information.

My result that strategic uncertainty can relax incentive constraints for ex-

perts once they are partitioned into different groups relates to the risk effect studied

in Moreno de Barreda (2013) and the information control effect studied in Ivanov

(2010). In Moreno de Barreda (2013) the DM relies on communication with a pri-

vately informed agent and has access to an additional unbiased information source.

Because the sender is risk-averse, uncertainty about DM’s information is costly, in

particular for less informative messages. Therefore, the risk effect favours commu-

nication. In Ivanov (2010) additional uncertainty of the sender about the state

generates fewer deviation possibilities such that truth-telling constraints become

easier to satisfy. In my model, separation of experts into groups creates uncertainty

of an expert about the exact reports of other experts (as in Moreno de Barreda,

2013). Further, an expert has access to fewer signals, thus making his reporting in-

centives easier to satisfy (as in Ivanov, 2010). Crucially, I model multiple experts —

an approach which introduces novel strategic considerations for information trans-

mission.9

There is an emerging literature on cheap talk in networks. Galeotti et al.

(2013) and Hagenbach and Koessler (2011) study how properties of networks affect

truth-telling strategies of players in a network with multiple decision makers and

a simultaneous one-round communication. I use a theoretical framework similar to

that of Galeotti et al. (2013) which is also used in Morgan and Stocken (2008) and

Argenziano et al. (2015). All these papers assume the communication structures as

given; by contrast, I endogenize communication.

Generally, the question has not yet been studied regarding an optimal net-

work design in the presence of cheap talk for a broad class of networks. However, the

literature does provide valuable insights for complete networks (Galeotti et al., 2013;

9Other papers that introduce additional information sources for the DM include Lai (2010) and
Ishida and Shimizu (2013) but none of them analyzes a setting with multiple senders.
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Hagenbach and Koessler, 2011), sequential communication with a single intermedi-

ary (Li , 2007 and Ivanov 2010) and the case of multiple intermediaries (Ambrus,

Azevedo, Kamado, 2011).

For reasons of tractability, I analyze a single round of communication. Mul-

tiple rounds enrich the equilibrium set in a non-trivial manner (see Aumann and

Hart, 2003, or Morgan and Krishna, 2004).

Dewatripont and Tirole (1999) develop a model in which the players are

partitioned into groups according to the objectives of the group. The agents col-

lect information for the DM, and are only interested in monetary rewards associated

with the direction of the final decision, or for career concerns. In particular, they are

nonpartisan about the decision per se. Further, my framework is not directly com-

parable with theirs because Dewatripoint and Tirole (1999) study verifiable infor-

mation transmission, abstracting from strategic transmission effects within groups.

Nevertheless, both papers offer rationales for partitioning experts according to the

direction in which they want to influence the final decision. Instead, in my model,

all agents care about policy decisions and there are no monetary transfers. Re-

cently, Gentzkow and Kamenica (2015) show conditions under which competition

in persuasion benefits the decision maker. However, their focus is on information

gathering, and thus their insights are complementary to this paper.

Finally, in my model the decision right is exogenously assigned to a single

decision maker who optimizes over sequential communication structures within the

space of communication hierarchies. Dewan et al. (2014) study the optimal assign-

ment of decision rights in a framework with imperfectly informed experts (politi-

cians) and information aggregation via cheap talk. In their model, the messages

can be either private or public and thus they do not optimize over communication

structures. They show that a centralized authority can outperform decentralization

from the perspective of a social planner.

1.2 Model

Players and preferences: There are n experts and a single decision maker whom I

denote by DM , N = {1, .., n,DM}. The payoff function of player i ∈ N is

ui = −(y − θ − bi)2,

where y ∈ R denotes the choice of the DM, bi ∈ R is the bias of player i and θ is

the unknown state of the world with the common prior θ ∼ U [0, 1]. For simplicity,

I normalize bDM = 0.
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Signals: Each expert receives a conditionally independent private signal si ∈ {0, 1}
upon realisation of θ with Prob(si = 1) = θ. Bayesian updating follows the Beta-

binomial model. As I show in the appendix, for n signals and k signals equal to 1,

the expected value of the state is E(θ|k, n) = k+1
n+2 . Further, the number of 1’s is

uniformly distributed over n signals: Prob(k|n) = 1
n+1 .

Communication: A communication network is Q = (N,E): Q is a directed graph

with the set of nodes N and the set of edges E ⊆ N ×N . For every pair of nodes

(i, j), eij ∈ {0, 1}: eij = 1 means that there exists a directed link from i to j and

eij = 0 means that no such link exists. I focus only on directed trees where the

DM is located at the root of the tree. This means that every player has only one

outgoing link but can have multiple incoming links, there are no cycles in the graph,

and the DM has at least one incoming link, but no outgoing links.10 The domain of

all networks satisfying these conditions is denoted by Q.

Each player can send non-verifiable messages only within the specified com-

munication network, where a directed link from i to j means that i can send a

message only to j and j cannot send a message to i. The message space for each

player is an arbitrary large set M , where mi ∈ M denotes a message of expert

i ∈ {1, .., n}. I assume that each player can send a message only once.

A path Hi1ik is a sequence {i1, i2}, {i2, i3}, .., {ik−1, ik} such that the nodes

in every pair {il, il+1} are directly connected, eil,il+1
= 1.

Comparison between networks: Since every network features multiple equilibria, I

focus on the best equilibrium for the DM for any given network. Network Q weakly

dominates network Q′ if for any biases of players the best equilibrium payoff for

the DM in Q is at least as high as in Q′, and for some biases it is strictly higher.

For optimality, I use the criterion of a weak domination. Therefore, a network Q

is optimal for given n and the biases of all players, if any other Q′ ∈ Q is weakly

dominated by Q.

Player types, partitional communication: Consider an equilibrium in which n experts

communicate in some network Q. Since each expert receives a binary signal, the

maximum information that a DM can receive is a sequence of 0’s and 1’s of length

n which reflects how many s = 0 and how many s = 1 are received by all experts.

A player might not know the exact sequence of private signals, but only a subset

10In the appendix, I give a formal definition of the communication network.
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of {0, 1}n that contains the true sequence. Player’s private information constitutes

her type, ti, which is a probability measure on {0, 1}n, ti ∈ ∆({0, 1}n), where ∆(S)

denotes a set of probability measures on a set S. A set of types of player i in a

network Q is denoted by Ti(Q).

A message strategy of expert i in a network Q is a partition on the set {0, 1}n

denoted by Pi(Q). The set of strategies of all experts other than expert i for a given

network Q is denoted by P−i(Q). An element of a partition is called a pool. For

a given ti ∈ Ti(Q), a pool p ∈ Pi(Q) which includes a subset of {0, 1}n to which

ti assigns probability 1 is denoted by p(ti) ∈ Pi(Q). For tractability, I sometimes

suppress the notation Q when referring to partitions.

Equilibrium: The solution concept is a pure strategy Perfect Bayesian Equilibrium.

The following tuple is a strategy profile and a belief system for all players:

(
Q, {Ti(Q)}i=0,..,n′ , {Pi(Q)}i=0,..,n′,DM , y(PDM (Q))

)
,

where Q is a communication network chosen by the DM, n′ ∈ {0, .., n} is the

equilibrium number of experts participating in communication inQ, {Ti(Q)}i=0,..,n′,DM

is the set of experts’ types which determines their beliefs, {Pi(Q)}i=0,..,n′,DM is the

set of experts’ message strategies and the partition of the DM according to which

she receives information, and y(PDM (Q)) is the DM’s action profile dependent on

information received. The following conditions should be satisfied in equilibrium:

1. y(PDM (Q)) is sequentially rational. For k ∈ {0, .., n′} it means that if p′ ∈
PDM (Q) is reported to the DM, she chooses y as follows:

y ∈ argmin
y∈R

−
∫ 1

0
(y − θ)2f(θ|k ∈ p′, n′)dθ.

2. For every ti ∈ Ti(Q), the partition Pi(Q) is incentive compatible. It means

that for k ∈ {0, .., n′} and p′ ∈ PDM (Q) with k ∈ p′, and given the strategies

of all other experts P−i(Q):

−
∑

k∈{0,..,n′}

Pr(k|ti)
∫ 1

0
(y(p′|P−i(Q), p(ti))− θ − bi)2f(θ|k, n′)dθ ≥

−
∑

k∈{0,..,n′}

Pr(k|ti)
∫ 1

0
(y(p′′|P−i(Q), p̃)− θ − bi)2f(θ|k, n′)dθ,

for p′′ ∈ PDM (Q), p′′ 6= p′ and p(ti), p̃ ∈ Pi(Q), p(ti) 6= p̃.
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3. Finally, Q minimizes the expected losses of the DM:

Q ∈ argmin
Q∈Q
−

∑
p′∈PDM (Q)

Pr(p′ ∈ PDM (Q))
∑
k∈p′

Pr(k)

∫ 1

0
(y(p′)−θ)2f(θ|k ∈ p′, n′)dθ.

In the analysis, I focus on the most informative pure strategy PBE. The

reason is that as in Crawford and Sobel (1982) all equilibria can be Pareto-ranked11

and more informative equilibria yield higher expected payoffs for every player.

Given the equilibrium conditions, notice that by backward induction the DM

chooses y(·) = EDM (θ|m̂), where m̂ denotes the message profile of all experts which

report directly to the DM.

1.3 Characterization of an optimal network

1.3.1 The main idea

In the following I focus on a simple case with three experts. I explain the main

results and show how they are driven by the interplay of two competing forces: the

intermediation force and the uncertainty force. To show the main results, it is not

necessary to cover all tree networks that feature three experts. Therefore, I provide

the complete characterization of the case with three experts in the later section 3.4.

Consider three positively biased experts, labelled 1, 2 and 3. I, first, show

that the star network (Figure 1.1a) is dominated by the line (Figure 1.1b). This is

due to the intermediation force that favours grouping the experts together. Second,

I show that for some parameter range the line is dominated by the network in Figure

1.1c which separates one of the experts from the remaining two. This is due to the

uncertainty force which incentivizes experts to reveal their signals if they do not

observe the messages of other experts.

Outcomes in the star network: Depending on the experts’ biases, the star can

generate one of four equilibrium outcomes. In the first case, all experts babble (send

uninformative messages). The DM ignores their reports and chooses y = 1
2 which

is her optimal choice given the prior. This strategy profile is an equilibrium for any

biases of the experts, and the resulting payoff for the DM is EUDM = − 1
12 . In the

11The difference to Crawford and Sobel (1982) is that their signal space is copntinuous and
perfectly observed by the sender, wherear in my model the signals are discrete and the state is not
perfectly observed by a sender.
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second case, an expert i ∈ {1, 2, 3} reveals his signal truthfully to the DM and the

other two experts babble. The DM chooses y based on the report of expert i, mi, as

follows: y(mi = 0) = 1
3 and y(mi = 1) = 2

3 . This strategy profile is an equilibrium

for bi ≤ 1
6 with the resulting EUDM = − 1

18 . In the third case, any two of the three

experts reveal their signals truthfully, and the other expert babbles. The DM makes

her choice dependent on the sum of the signals as follows: y(0) = 1
4 , y(1) = 1

2 and

y(2) = 3
4 . This strategy profile is an equilibrium if the biases of the two truthful

experts are b ≤ 1
8 and it yields EUDM = − 1

24 . In the fourth case, all three experts

reveal their signals truthfully. The DM chooses y depending on the sum of the sig-

nals as follows: y(0) = 1
5 , y(1) = 2

5 , y(2) = 3
5 and y(3) = 4

5 . This strategy profile is

an equilibrium for bi ≤ 1
10 , i ∈ {1, 2, 3}, and it yields EUDM = − 1

30 .

Figure 1.1: Illustration of the main idea

Outcomes in the line network: First, as shown in the appendix, the line can

generate all the equilibrium outcomes of the star. In particular, consider an equi-

librium in which the DM receives information about all signals. In this case, expert

3 reveals his signal truthfully to expert 2, and expert 2 reveals his signal and the

message of expert 3 to expert 1. Expert 1 reveals all information communicated to

him by expert 2, and his own private signal to the DM.

Why is it the case that the expert 1’s and 2’s incentive constraints in the line

are the same as in the star, although in the line they are more informed than in the

star? To see this, consider, for example, the incentives of expert 1. If the sum of

the signals is k ∈ {0, 1, 2}, then his smallest (and binding) upward deviation is to

communicate the sum of the signals k + 1 to the DM. The true sum of the signals

is uniformly distributed. Therefore, if expert 1 deviates from telling the true k to
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communicating k + 1 to the DM, the shift of the DM’s policy from the expert 1’s

expected value of the state is the same for each k ∈ {0, 1, 2}. It follows that if expert

1 receives signal 0 in the star, the constraint which prevents him from reporting 1

is the same as the constraint which prevents him from deviating from k to k + 1

in the line. By the same argument, it can be shown that the line can generate the

equilibrium payoffs of a star network in which one or two of the three experts reveal

their signals truthfully.

Second, there are additional equilibria in the line which cannot be replicated

by the star. These equilibria feature one of the experts collecting information about

the signal of the other experts, and transmitting the aggregated information to the

DM in a coarse way. Consider the following strategy profile in the line in which

expert 3 reveals his signal to expert 2. Expert 2 reveals his signal and the message

of expert 3 to expert 1. Therefore, expert 1 observes both his private signal and

the message of expert 2. Expert 1 reports to the DM as follows: if the sum of the

signals which he observes is 0, he sends m1. Otherwise he sends m′1. This means

that m′1 includes the sums of signals 1, 2 and 3. The DM’s choices are: y(m1) = 1
5

and y(m′1) = 3
5 . As shown in the appendix, this strategy profile is an equilibrium

for bi ≤ 1
5 , i ∈ {1, 2, 3}. It results in EUDM = − 4

75 . The DM’s payoff is strictly

higher compared to the equilibrium in the star in which either all experts babble or

a single expert reports his signal truthfully. Therefore, for bi ∈ (18 ,
1
5 ], i ∈ {1, 2, 3},

then the line performs strictly better than the star. Otherwise the line yields the

same expected utility to the DM as the star. Therefore we have:

Result 1 : The line network weakly dominates the star network.

Line can be dominated: Next, consider the network depicted in Figure 1.1c,

denoted by Q′. It is crucial that experts 1 and 2 do not observe each other’s

messages. I focus on the following strategy profile: expert 1 reveals his signal to the

DM — he sends m1 if his signal is 0, and m′1 if his signal is 1. Expert 3 truthfully

reveals his signal to expert 2. Expert 2 sends one of the two messages to the DM.

If the sum of the signals which expert 2 observes is 0, then he sends m2. If the sum

of the signals is either 1 or 2, he sends m′2. The DM’s choices are:

y(m1,m2) =
1

5
, y(m′1,m2) =

2

5
, y(m1,m

′
2) =

7

15
, y(m′1,m

′
2) =

18

25
.

I show in the appendix that this strategy profile is an equilibrium for b2, b3 ≤
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74
525 and b1 ≤ 293

2550 . It yields EUDM = − 89
2250 and therefore strictly outperforms the

line for b2, b3 ∈ (18 ,
74
525 ] and b1 ∈ (18 ,

293
2550 ].

Why is it important to separate the experts from one another? To answer

this, I show that while the line can transmit the same amount of information as

the above strategy profile in Q′, but only for a strictly smaller range of experts’

biases. Consider the following strategy profile: expert 3 reveals his signal truthfully

to expert 2, and expert 2 sends one of the two messages to expert 1. If the sum

of the signals which expert 2 observes is 0, he sends m2. If the sum of the signals

is 1 or 2, he sends m′2. Expert 1 reveals to the DM his private signal s1 and the

message of expert 2. Clearly, the DM’s choices are the same as in Q′ yielding the

same expected utility. The incentives of experts 2 and 3 are the same as in Q′.

However, as shown in the appendix, expert 1 communicates according to the above

strategy profile only for b1 ≤ 1
30 . The reason is that in the line expert 1 observes the

message of expert 2. He, thus, has to satisfy more incentive constraints compared

to Q′ where he only observes his private signal. We have:

Result 2 : There is a bias range for 3 experts in which the network Q′ strictly

dominates the line. In particular, the equilibrium in Q′ is implementable in the line

for a strictly smaller range of expert 1’s bias, compared to Q′. This is because in

the line expert 1 observes the message of expert 2.

The following sections 3.2 and 3.3 provide general analysis, whereas 3.4 fully

characterizes the case with three positively biased experts.

1.3.2 Simultaneous versus sequential communication

I start with the characterization of equilibria in a star network with the DM located

at the center of the star as in Figure 1.2. This characterization is similar to Morgan

and Stocken (2008), and Galeotti et al. (2013):

Proposition 1: Take any number of experts, n, with arbitrary biases. An equilib-

rium in a star network in which n′ ≤ n experts communicate their signals truthfully

to the DM exists if for every expert i ∈ {1, .., n′} the condition |bi| ≤ 1
2(n′+2) is

satisfied.

Proposition 1 shows that a smaller conflict of interest between the experts and

the DM results in more experts revealing their signals. The equilibrium message

strategy of an expert depends both on the distance between the biases of the expert
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Figure 1.2: A star with n experts

and the DM, as well as on the message strategy of the other experts. In particular,

a smaller number of equilibrium truthful messages increases the influence of each of

these messages on the final decision. As a result, a deviation of an expert from his

truthful message brings him further away from his expected ideal point. Therefore,

an expert has fewer incentives to deviate. Conversely, if the number of equilibrium

truthful messages increases, the influence of any given expert on the final decision

of the DM decreases making a deviation more profitable. Therefore the range for

experts’ biases which supports equilibrium truth-telling decreases.

By definition, equilibria induced by simultaneous communication do not fea-

ture strategic intermediation because no expert observes the messages of other ex-

perts. In sequential communication intermediation is possible and is manifested in

strategic coarsening of information.

The example in section 3.1 illustrated strategic coarsening of information by

expert 1 in a line network. He either sent a message containing the sum of the

signals 0, or a message containing the sums of signals 1, 2 and 3.

Proposition 2 considerably generalizes the example in section 3.1 and pro-

vides an important insight into the characterization of optimal information trans-

mission hierarchies. It shows that an optimally designed sequential communication

does weakly better than simultaneous communication. In particular, the former

generates the same outcomes as the latter and sometimes generates additional out-

comes which strictly dominate all equilibria of the simultaneous communication.

Proposition 2: Take any number n of experts with arbitrary biases. Take any tree

network Q that is not a star, such that if expert i communicates to expert j, eij = 1,

then |bj | ≤ |bi|. Then:
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1. Any equilibrium outcome in a star network is also implementable as an equi-

librium outcome in network Q.

2. There is a range of biases for which the best equilibrium in Q strictly dominates

the best equilibrium in a star. Further, this equilibrium in Q involves strategic

coarsening of information.

The intuition for the first part of Proposition 2 is that the deviation incentives

of an expert in a separating equilibrium are independent of the expert’s beliefs about

the signals of other experts. Since the sum of the signals is uniformly distributed,

the smallest upward (downward) deviation of any expert’s type which determines

his binding constraints always leads to the same upward (downward) shift in DM’s

policy. Therefore, the truth-telling incentives in a separating equilibrium depend

only on the overall number of equilibrium truthful messages.

The second part of Proposition 2 states that there always exists a range of

biases for which an optimally designed intermediation strictly dominates the star

network. The intuition is that an expert with at least one predecessor can optimally

coarsen pooled information. A deviation from the message containing the true sum

of the signals brings him further away from his ideal point compared to a deviation in

the star network. Thus, an optimal sequential communication supports information

transmission for larger values of experts’ biases compared to the star.

Figure 1.3: An example of an optimal network in Proposition 3

The next Proposition shows that if the biases of all experts are large enough,

but do not exceed 1
4 , then the optimal network features a single expert directly con-

nected to the DM. Further, each of the other experts should be able to communicate

to some other expert. An example of such network is depicted in Figure 1.3.
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Proposition 3: Suppose that n experts are such that the biases of all experts are

either within the interval ( n
4(1+n) ,

n+1
4(n+2) ] or within the interval [− n+1

4(n+2) ,−
n

4(n+1)).

Then:

1. In the optimal network the DM is connected to a single expert i ∈ {1, .., n},
eiDM = 1, and each expert apart from i is connected to some expert j ∈
{1, .., n}.

2. Any other network does not transmit any information from the experts to the

DM.

Moreover, If the biases of all experts are above n+1
4(n+2) or below − n+1

4(n+2) , then no

information is transmitted in equilibrium.

The explanation for Proposition 3 is that a network which features a single

expert communicating directly to the DM provides the maximum flexibility for

this expert to send messages according to the coarsest possible profile. Consider

the case in which all biases are positive. An expert connected to the DM sends

either a message containing the sum of the signals 0, or a second message which

pools together all other signals. In this case the incentive constraints of all experts

participating in communication are identical. Moreover, an expert’s deviation from

communicating the sum of the signals 0 results in the largest possible shift from an

expert’s ideal point among all incentive compatible partitions of signals. It means

that the described partition incentivizes information transmission by the experts

with the largest possible biases who would not be reveal their information otherwise.

If the biases of all experts are negative, the argument is similar: the equilibrium

partition informs the DM that the sum of the signals is either n, or everything else.

As n approaches infinity, the upper bound for the positive and the lower

bound for the negative biases above (below) which no information transmission

is possible converges to 1
4 (−1

4). These are the bounds for the sender’s bias in

Crawford and Sobel (1982) where above 1
4 or below -14 , no information can be

credibly transmitted in equilibrium.

1.3.3 Uncertainty and incentives

Consider an expert who receives his private signal si. Before the communication

within a chosen network takes place, an expert is uncertain about the signals of

other experts. After the communication in a network takes place, those experts

who receive messages from other experts have a more precise information about
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the overall signals. In the previous section I showed that a network which enables

aggregation of signals by some experts does better than the star because the experts

can optimally coarsen pooled information. However, from the DM’s perspective

there is a downside of experts being informed about overall signals. The more

information about other experts’ signals that expert receives, the more incentive

constraints have to be satisfied to incentivize the expert to send a message containing

the true sum of the signals. Conversely, experts who have less information about the

signals of other experts have to satisfy fewer incentive constraints for an informative

communication.

With other words, from the perspective of a less informed expert, the incen-

tive constraints are pooled together since they are formulated in expectation. Each

of these constraints results generically in a different range of biases supporting the

expert’s equilibrium strategy. Since the constraints are pooled together, the result-

ing range of biases lies in-between the tightest and the weakest constraints. However,

once an expert observes more information, the tightest incentive constraint becomes

binding.

A similar idea arises in mechanism design when comparing the interim with

the ex-post truth-telling constraints. In the interim stage when an agent only ob-

serves his type, but not the types of other players, the incentive constraints are

formulated in expectation with respect to the types of the other players. How-

ever, once the types of the other players are known, it becomes harder to sustain

truth-telling since more constraints have to be satisfied.

The next Lemma shows that in equilibrium which features strategic coars-

ening of information, if some expert j truthfully communicates all his signals, and

some other expert i receives the entire information on j’s signals, then in an optimal

network a strategy profile of i is supported for a weakly smaller range of biases, com-

pared to j. Define a set of experts who have directed links to an expert i ∈ N in a

network Q by Ni(Q) := {j ∈ N : eji = 1}. Define a partition according to which an

expert i ∈ N receives his signals in a network Q by P b
i (Q) :=

∏
i′∈Ni

Pi′(Q)×{0, 1}.
Thus, P b

i (Q) includes the messages of all the experts directly connected to i together

with the i’s private signal.

Definition: Expert i receives full information from some other expert j if the par-

tition P b
i can be written as P b

i = Pj × {P b
i \ Pj}. It means that the partition P b

i is

finer12 than the partition Pj .

12A partition P is finer than a partition P ′ if every element in P ′ is a union of the elements of P .
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Lemma 1: Take any equilibrium in an optimal sequential communication tree that

involves strategic coarsening of information. If some expert j truthfully communi-

cates all his signals, Pj(Q) = P b
j (Q), and some other expert i receives full infor-

mation from j, then the range of biases supporting the equilibrium strategy of i is

weakly included in the range of biases supporting the equilibrium strategy of j.

Intuitively, since expert i observes more signals compared to expert j, there

are more incentive constraints to be satisfied for i compared to j. The incentive

constraints for j are pooled together since they are formulated in expectations.

Therefore, the binding constraint for j concerning the range of biases supporting

his equilibrium strategy is in-between the tightest and the weakest constraints. For

expert i, each of those constraints has to be satisfied individually, and therefore the

tightest constraint becomes the binding one.

To understand the implication of Lemma 1 for optimal networks, consider

again the strategy profiles of all players discussed in 1.3.1. I showed that both the

line (Figure 1.1b) and the network Q′ (Figure 1.1c) can implement the same payoff

allocation in which the DM knows the signal of expert 1, and knows that experts 2

and 3 either have the sum of the signals 0, or 1 and 2. The difference between both

networks is that in a line expert 1 observes the message of expert 2. As I showed in

3.1, this decreases expert 1’s range of biases which supports his equilibrium strategy,

compared to Q′.

Therefore, in an optimal network, if a player i receives full information from

some other player j, then j has to be directly connected to i. Otherwise, if there are

some experts between j and i, then those experts face tighter constraints compared

to the case in which j is directly connected to i, without changing the expected

payoffs allocation. This finding is generalized in Lemma 2.

Lemma 2: Take any number of experts with arbitrary biases. In the corresponding

optimal network Q, if there is a player i ∈ N who receives full information from

some other expert j, then j has to be connected to i, eji = 1.

Thus, if some expert receives full information from some other experts and

coarsens the aggregated information, then he receives this information unmediated,

it means from each of those experts directly. Figure 1.4 illustrates the argument.

Suppose that expert 1 receives the entire information about the signals of experts 2,

3 and 4. Then, it is weakly optimal for the DM to arrange the experts as in Figure

1.4b instead of an alternative arrangement as in Figure 1.4a. This is because in
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the network in Figure 1.4a the incentive constraints for experts 2 and 3 are weakly

tighter, compared to the network in Figure 1.4b, without changing the expected

utility of the DM.

Figure 1.4: Illustration of Lemma 2

Therefore, the optimal network consists of information coordination units in

which some experts communicate their information directly to another expert, who

in turn coarsens the aggregated information in his message. I call such an informa-

tion coordination unit, a group, and an expert who collects information from other

experts in order to strategically coarsen it, a group leader.

Definition: A group G is a non-empty subset of a communication network consist-

ing of some expert i ∈ N and a non-empty subset of experts Ñ ⊂ N \ {i,DM} such

that each j ∈ Ñ is directly connected to i. Expert i is a group leader and I denote

him by iG.

Notice that I am not excluding the possibility that a group leader in one

group can be directly connected to a leader of a different group. Thus, an optimal

network can include multiple layers of groups.

Next, consider an optimal network which features a group G in which some

of the experts who communicate to a group leader have no incoming links. The only

information which these experts receive are their private signals. Lemma 3 shows

that the equilibrium message strategy of each of those experts is supported for the

same range of biases. This happens both because they face the same expected

uncertainty about the overall signals and because their signals are treated in the

same way by their group leader.
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In equilibrium, a group leader has a better knowledge about the overall sig-

nals compared to those experts in his group who only observe their own signals.

Therefore, according to the next Lemma, in an optimal network the range of biases

supporting the equilibrium strategy of a group leader is weakly included into the

range of biases supporting the equilibrium strategy of those experts.

Lemma 3: Take any number n of experts with arbitrary biases. In the optimal

network Q:

1. If two distinct experts j′ and j belong to the same group G, none of them is

a group leader of G and both j and j′ have no incoming links,
∑

k∈N ekj =∑
k∈N ekj′ = 0, then they have identical ranges of biases which support their

equilibrium strategies in which they reveal their signals truthfully, and

2. The equilibrium strategy of iG is supported by a weakly smaller range of biases,

compared to j and j′.

Summing up, the Lemmas 1-3 showed the implication of the uncertainty force

for the optimal networks. An optimal network consists of groups of experts with

similar biases. A group leader collects information from the other group members

and communicates it in a coarse way either to another group leader or to the DM.

1.3.4 Optimal network

This section builds upon the results of the previous sections and fully characterizes

the optimal networks and corresponding equilibria for three positively biased ex-

perts, labelled 1, 2, 3. All calculations are in the appendix. From Propositions 1

and 2 we know that for bi ≤ 0.1, i = 1, 2, 3, a star or any network which features an

optimally designed intermediation implements the full separation of experts’ signals.

This results in EDM ' −0.033. In the following, I assume bi > 0.1 for at least one

of the experts, i ∈ {1, 2, 3}. Since in this case the optimal network is not the star, it

should be at least one of the three networks depicted in Figure 1.5. I denote these

networks correspondingly by Qa, Qb and Qc. Which network is the optimal one

depends on the experts’ biases.

1. The optimal network is Qa if the average bias is low. In this case expert 1 is a

single intermediary who directly receives messages from experts 2 and 3. The

biases b1 ≤ 0.1 and b2, b3 ≤ 0.125 support the following equilibrium strategy:

Experts 2 and 3 communicate their signals truthfully to expert 1. Expert 1

sends one of the three messages: if the sum of the signals is 0, he sends m1, if
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Figure 1.5: Networks for 3 experts

the sum of the signals is 1, he sends m′1. Otherwise, if the sum of the signals

is either 2 or 3, he sends m′′1. DM’s choices are y(m1) = 1
5 , y(m′1) = 2

5 and

y(m′′1) = 7
10 . This strategy profile yields EUDM ' −0.038. As shown in the

appendix, the same outcome can be implemented by the line (network Qc) for

a strictly smaller range of experts’ biases.

2. The optimal network is Qa if the average bias is high. This is the consequence

of Proposition 3. If the biases are sufficiently high, the DM requires a single

expert to collect all information. This expert has the maximum flexibility to

send messages with minimal information content such that a deviation from

truth-telling brings all experts to a maximum distance from their ideal points.

The biases 0.115 ≤ b1 ≤ 0.2 and 0.141 ≤ b2, b2 ≤ 0.2 support the following

equilibrium strategy: experts 2 and 3 communicate their signals truthfully to

expert 1. Expert 1 communicates to the DM as follows: if the sum of the

signals is 0, he sends m1, otherwise he sends m′1. DM chooses y(m1) = 1
5 and

y(m′1) = 3
5 with the resulting EUDM ' −0.05.
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I show in the appendix, the same outcome can be implemented by Qc for the

same restrictions on the biases. This follows from Proposition 3.

3. Finally, the optimal network is Qb if the biases are in the intermediate range.

The biases 0.1 ≤ b1 ≤ 0.115 and 0.1 ≤ b2, b3 ≤ 0.14 support the following

equilibrium strategy: expert 3 communicates his signal truthfully to expert 2.

Expert 2 communicates as follows: if both the private signal of expert 2 and the

message of expert 3 are 0, expert 2 sendsm2 to the DM. Otherwise he sendsm′2.

Further, expert 1 sends m1 if his signal is 0, and m′1 otherwise. DM’s choices

are y(m1,m2) = 1
5 , y(m′1,m2) = 2

5 , y(m1,m
′
2) = 7

15 and y(m′1,m
′
2) = 18

25

resulting in EUDM ' 0.04. We know from the section 3.1 that the same

outcome can be implemented in a line, but only for a strictly smaller range of

expert 1’s bias.

As shown in the appendix, it is possible to implement this equilibrium outcome

in Qc but only for a strictly smaller range of experts’ biases.

To sum up the examples, the intermediation force dominates the uncertainty

force if all biases are relatively small or relatively large. The uncertainty force

dominates the intermediation force for the intermediate range of the biases. Further,

it turns out that for 3 experts, the optimal line is never a strictly better network.
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Chapter 2

Further Results on Optimal

Communication Networks

2.0.5 Ordering of the biases

The next example shows that if the tree network in Figure 2.1 is optimal, it is feasi-

ble for a larger range of expert 2’s biases compared to the range of expert 1’s biases.

Therefore, a smaller bias does not necessitate being closer to the DM.

Example 1: Consider the network with six positively biased experts depicted in

Figure 2.1 and the following strategy profile: expert 4 (expert 6) reveals his signal

truthfully to expert 3 (expert 5). The message strategies of experts 3 and 5 are

identical: they either send a message informing expert 2 that the sum of the signals

is 0, or a message that the sum of the signals is either 1 or 2. Expert 2 sends

one of the two messages to expert 1: he sends m2 if either both experts 3 and 5

communicated the sum of the signals 0, or expert 2’s private signal is 0 and either

expert 3 or expert 5 communicated the sum of the signals 0. Otherwise he sends

m′2. Expert 1 sends one of the two messages to the DM: he sends m1 if his own

private signal is 0 and expert 2 sent m2 from expert 2. Otherwise he sends m′1. The

DM’s choices are y(m1) = 0.195 and y(m′1) = 0.62.

This strategy profile is an equilibrium if the biases of experts 1 and 2 satisfy

b2 ≤ 0.14 and b1 ≤ 0.21. Therefore, expert 1, who is closer to the DM than expert

2, can have a larger bias compared to expert 2. The reason is that expert 2 is more

informed about the overall signals compared to expert 1. This is because expert 1

receives only coarse information from expert 2.

To get a better intuition, think about y(m1) represented by the sum of the

signals as in Table 2.1: y(m1) includes the sums of the signals 0, 1 and 2. The table
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Table 2.1: Posteriors of experts over elements of y(m1) in Example 1

y(m1) 0 1 2

Belief of expert 1 30
59

25
59

4
59

Belief of expert 2 0 5
6

1
6

Figure 2.1: Example with six experts

shows the beliefs of the most informed types of both experts. In particular, there

is a type of expert 2 which attaches higher beliefs to higher integers, compared to

the most informed type of expert 1. Thus, expert 2 communicates according to the

specified strategy only for a strictly smaller bias range, compared to expert 1.

2.0.6 Different directions of biases

Suppose that the DM is designing communication between the experts with differ-

ent directions of biases. This setting captures many real-life scenarios: In hospitals,

the medical staff and the hospital administration might have a conflict of interest

over the expenditure policy and in oil corporations, there might be a tension be-

tween a short-term oriented management and groups advocating sustainability and

environmental concerns. How should a manager design communication between the

experts with opposing interests? I show that if we restrict attention to networks

with two groups, where each group leader communicates directly to the DM, it is

beneficial for the DM to separate the experts according to the direction of their

biases. Moreover, DM’s expected utility is maximized in equilibrium in which the

groups distort their messages in opposite directions.
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Example 2: two teams with opposing preferences

Analytically I start with the simple case of four experts where two of the four

experts have the same positive, and the remaining two the same negative bias. For

tractability, suppose that the DM can only choose among networks which feature

two equally sized groups. Thus, the DM is choosing one of the networks depicted

in Figure 2.2. I show that the DM maximizes her expected utility by splitting the

experts according to the direction of their biases because in this case she receives

two messages that are biased in different directions.

Label the four experts with 1, 2, 3 and 4. Assume that b1 = b2 = b+ > 0

and b3 = b4 = b− < 0. Assume max{|b−|, |b+|} > 1
12 as otherwise all experts

communicate their signals truthfully as shown in Proposition 1.

Figure 2.2: Possible group arrangements

In case A the experts are partitioned according to the sign of their biases.

In cases B, C and D the experts have mixed signs within the groups and differ by

the signs of the communicating experts.
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Think of the following message strategies in case A: experts 2 and 4 commu-

nicate their signals truthfully to experts 1 and 3. If the sum of the signals observed

by expert 1 is 0, he sends m1. Otherwise, if the sum of the signals which he observes

is either 1 or 2, he sends m′1. If the sum of the signals which expert 3 observes is

either 0 or 1, he sends m3, and if the sum of the signals which he observes is 2, he

sends m′3. Therefore, expert 1’s communication strategy pools together the two of

the largest sums of signals whereas expert 3’s message strategy pools together the

two of the lowest sums of signals. I refer to it as a communication biased in different

directions. The DM’s choices are:

y(m1,m3) =
2

9
, y(m1,m

′
3) = y(m′1,m3) =

1

2
, y(m′1,m

′
3) =

7

9
.

The expected utility of the DM is EUDM ' −0.037. This strategy profile

is an equilibrium for b+ ≤ 0.13 and b− ≥ −0.13. As I show in the appendix, for

b+ ∈ (0.1, 0.13] and b− ∈ [−0.13,−0.1) network A strictly dominates networks B,

C and D. For these biases, the last three networks generate the same equilibrium

outcome.

Does the DM specifically benefit from having communication biased in dif-

ferent directions? The answer is yes. Consider a strategy profile in which commu-

nication is biased in the same direction. In this case, expert 2 (expert 4) reveals his

signals truthfully to expert 1 (expert 3). Both experts 1 and 3 either inform the

DM that the sum of their signals is 0, or that the sum of their signals is either 1

or 2. This strategy profile is an equilibrium either in case of 0.1 < b+ ≤ 0.13, and

b− ≥ −0.045 or in case of −0.13 ≤ b− < −0.1 and b+ ≤ 0.045. Network A is still an

optimal network but it only yields EUDM ' −0.038 which is strictly smaller than

the equilibrium in which communication is biased in different directions.

Two bias case for a larger number of experts

In this section I extend the previous example to a larger number of players. I restrict

attention to networks which feature two equally sized groups. The two respective

group leaders communicate directly to the DM. I optimize over the partition ac-

cording to which the DM receives her information. The optimization reveals that if

the biases of experts are not too far away from the bias of the DM, it is beneficial

for the DM to split the experts according to the direction of their biases.

Consider the network as in Figure 2.3, and denote it by Q′. I refer to the

group on the left hand side of Q′ as group A, and the group on the right hand side
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as group B. Think about the strategy profile in which each expert in a group who

is not a group leader, reveals his signal truthfully to a group leader. Each group

leader communicates to the DM according to the partition which consists of two

pools. The DM combines the messages of the two group leaders as follows:

PDM (Q′) = {{0, .., n−t}, {n−t+1, .., 2n}} ∪ {{0, .., n−z}, {n−z+1, .., 2n}}, (2.1)

where 2n denotes the size of each group. Previous example showed the

optimality of partitioning the experts into groups according to the direction of their

biases for n = 1. Here I show that for n = 2, 3, 4, 5 there are ranges of biases for

which optimizing the partition PDM (Q′) over t and z results in partitioning the

experts into groups according to the direction of their biases. Denote the upper and

lower bounds for the biases in groups A and B which implement the strategy profile

specified above as a function of (t, z) by b−A(t, z), b+A(t, z), b−B(t, z), b+B(t, z).

Figure 2.3: Network implementing PDM (Q′)

Table 2.2 shows the ranges of biases for different values of n and m if the

expected utility of the DM is maximized jointly over t and z. In each group, all

experts face the same constraint with respect to the range of biases which supports

their equilibrium strategy captured by (1). Observe that for all n in Table 2.2,

there is always a bias region for each group which is outside the intersection of bias

regions of the both groups. If experts’ biases in each group are within such a region,

it is optimal for the DM to partition the experts according to the direction of their

biases.

Next, I provide an example with unequal number of positively and negatively

biased experts, and look at the situation in which it is optimal to allocate them ac-
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Table 2.2: Different group sizes

n Max EUDM b−A(t, z) b+A(t, z) b−B(t, z) b+B(t, z)

2 t = 0, z = 1 -0.073 0.04 -0.04 0.073

3 t = 0, z = 1 -0.043 0.033 -0.033 0.043

4 t = 0, z = 1 -0.027 0.028 -0.028 0.027

5 t = −1, z = 2 -0.036 0.026 -0.026 0.036

cording to the direction of their biases. I show that this is the case once the biases

are sufficiently far apart from each other.

Example 3: Consider 8 experts: 2 are equally positively and 6 are equally nega-

tively biased, with a positive bias denoted by b+ and a negative bias denoted by b−.

Suppose that the DM has to design an optimal network consisting of 2 groups, but

the groups can be unequal in size. I ask the question: For which biases is it optimal

to divide the experts according to the direction of their biases?

Suppose, first, that the difference between experts’ biases b+ and b− is rela-

tively large: b+ ∈ (0.07, 0.18] and b− ≥ −0.07. In this case, the optimal network is

shown in Figure 2.4a with positively biased experts labelled by 1 and 2 being sep-

arated from the negatively biased experts. The equilibrium partitions of the group

leaders in a smaller and larger group are {{0}, {1, 2}} and {{0, 1, 2, 3}, {4, 5, 6}}
resulting in EUDM = −0.0283.

Next, suppose that the difference between experts’ biases is not too large:

b+ ≤ 0.07 and b− ≥ −0.07. In this case, the optimal network features two equally

sized groups as in Figure 2.4b with an arbitrary assignment of experts into one of

the two groups.

To summarize, it is optimal to divide the experts into groups according to

their biases if the difference between b+ and b− is relatively large. Otherwise, it is

optimal to have two equally sized groups of experts.

2.1 Benefits of an additional group leader

Consider two groups of experts with the group leaders reporting directly to the DM

as in Figure 2.5. I show conditions under which this network is strictly dominated
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Figure 2.4: Illustration of networks in example 5

by another network in Figure 2.6. The latter network differs from the former one

twofold. First, I decentralize information aggregation in one of the groups (with

2t+ 1 experts) as I am splitting this group into two almost equal subgroups. Thus,

I create uncertainty among members of each of the subgroups about the reports

in the other subgroup. Second, I introduce stronger coordination on upper levels:

group leaders of both subgroups report to another expert, who optimally coarsens

information from both groups. Further, I introduce a single expert who is the only

expert reporting directly to the DM. Thus, all information available to the DM is

coordinated by a single expert which is not the case in Figure 2.5. Therefore, once

decreasing coordination on lower levels, and increasing coordination on upper levels,

the new network generates better outcomes for the DM.

In both networks, for each group I use a partition which consists of two pools

and maximizes the distance between them in order to accommodate largest possible

biases.

Case 1: Assume that the DM receives reports from 2 groups of experts: there are

2k experts in the first group, and 2t + 1 experts in the second group. Within each

group, there is a group leader who receives direct reports from each group member

before reporting the aggregate information in a coarse way to the DM. This is

the consequence of Proposition 3 and Lemma 2 since such group communication

structure maximizes uncertainty within a group. I assume that each group reports

according to a partition which maximizes the positive distance between the pools,

where the first pool includes the minimal amount of information. This implies that

I look at cases of largest possible biases which a network can accommodate. The

partitions for expert 1, 2 are as follows:
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Figure 2.5: 2 groups

P1 = {{0}, {1, .., 2k}}, P2 = {{0}, {1, .., 2t+ 1}},

such that the DM receives information according to a combined partition:

PDM = {{0}, {1, .., 2k}} × {{0}, {1, .., 2t+ 1}}.

The DM chooses her policies assuming sequential rationality.

Case 2: For the same number of experts, assume that the DM organizes them into a

network depicted in Figure 2.6. There is a single expert 1 which collects information

from two sources: first, he gets a report from an expert 2 who is a group leader and

receives direct reports from 2k − 1 other experts, and second he gets a report from

expert 3 who, in turn, is connected to two group leaders - expert 4 receives reports

from t− 1 experts and expert 5 receives reports from t− 2 experts.

Experts 2, 4 and 5 report according to the following partitions:

P1 = {{0}, {1, .., 2k}}, P4 = {{0}, {1, .., t}}, P5 = {{0}, {1, .., t− 1}}.

For a partition Pi := {p1i , p2i }, i = 2, 4, 5, denote the message the correspond-

ing group leader send when reporting p1i by mi and when reporting p2i by m′i.

Expert 3 reports to expert 1 as follows:

• He reports m3 if his private signal is 0 and he receives either (m4,m5), or

(m′4,m5), or (m4,m
′
5), or his private signal is 1 and he receives (m4,m5).

• Otherwise he reports m′3.
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Figure 2.6: 2 groups

Expert 1 reports to the DM as follows:

• If his private signal is 0 and he receives (m2,m3), or (m′2,m3), or when his

private signal is 1 and he receives (m2,m3).

The DM chooses her policies assuming sequential rationality.

In the Figure 2.7 I plot the differences in welfare between two network and

equilibrium configurations. Figure below shows the difference between the DM’s

expected utility in the second to the DM’s expected utility in the first. The differ-

ence remain positive for high values of k and t, suggesting that DM benefits from

partitioning 2t experts into two groups.

Figure 2.7: DM’s expected utility is Case 2 is higher than in Case 1

Next, consider the ICs of any expert in group with 2k experts. Denote the

upper bound for the bias in the first case, b+k and the second case, b′+k . In Figure

2.8 I am plotting b′+k − b
+
k :
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Figure 2.8: First group of k experts

Next, consider the group of 2t experts and define the upper bound for the

bias in the first case, b+t and the second case, b′+t for the group with t experts and

b′′+t for the group of t− 1 experts. In the Figure below I am plotting b′+t − b
+
t , and

in Figure I am plotting b′′+t − b
+
t .

Figure 2.9: Group of t experts

We see that a new network is implementable if k
t is relatively small. We see

that if k gets larger, there is a larger pressure on the ICs of the experts in both

groups t and t− 1.

In sum, we see that there exist multiple ranges of parameters for which

splitting one of the groups into two (almost equal) groups benefits the DM and

relaxes the reporting constraints of the experts in the smaller groups due to the

introduced uncertainty.

2.1.1 Commitment

Suppose that the DM can commit to a mechanism that implements an allocation

conditional on the information received from the experts. The revelation principle

tells us that without loss of generality we can restrict attention to a direct mechanism
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Figure 2.10: Group of t− 1 experts

in which experts communicate their types. Formally, a mechanism is a rule q that

maps experts’ types to the final decision y ∈ [0, 1]:

q : T → [0, 1].

I focus on incentive-compatible mechanisms: if expert i is of type ti ∈ {0, 1} and all

other experts communicate truthfully their types, then expert i has no incentive to

communicate 1− ti, which formally means:

EUi(mi = ti,m−i|ti) ≥ EUi(mi = 1− ti,m−i|ti).

Proposition 4: Every equilibrium outcome generated by any tree communication

network is also an equilibrium outcome of some direct mechanism q. The converse

is false.

The intuition for Proposition 4 is as follows. First, an equilibrium outcome

of any communication network can be implemented by a direct mechanism. Each

equilibrium outcome in a communication network can be summarized by a partition

of experts’ signals, which — given the standard definition of a type — is the same

as a partition of experts’ types. This partition defines the information sets of the

DM who chooses the final policy in a sequentially rational way. Such a partition

is incentive-compatible, and thus can be implemented by an incentive-compatible

direct mechanism q.

Second, the converse is not true. The reason is that in a communication

network an expert can observe the messages of some other experts. In a direct

mechanism, no expert observes the messages of other experts. As Lemma 1 shows, if
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an equilibrium involves strategic coarsening of information, then greater knowledge

about other experts’ messages leads to tighter incentives of an expert to stick to

his equilibrium strategy. Thus, an equilibrium that involves strategic coarsening of

information can be implemented in a direct mechanism for a weakly larger range of

experts’ biases than in an optimal communication network.

In equilibria that do not involve strategic coarsening of information, the

incentives to communicate information are the same both in a direct mechanism and

in a corresponding communication network. As Proposition 2 shows, this is because

for a fixed number of equilibrium truthful messages, the deviation incentives of an

expert do not depend on his beliefs over the types of other experts.

2.1.2 Beyond Tree Networks

First, I look at a network with two experts and a DM which features the experts

communicating with each other before talking to the DM. I show that this network

does not necessarily induce the experts to reveal all of their private information.

The reason is that if the experts do not have incentives to reveal their information

in a tree network, they do not reveal it in any other network either, since the incen-

tives in case of perfect revelation are the same in any network. Second, I look at a

network which features multiple outgoing links for one of the experts. I show how

this network generates a better outcome for the DM compared to the optimal tree.

Experts talk to each other before informing the DM: Consider a network in

Figure 2.11 in which both experts exchange messages before communicating to the

DM. Consider b1 ≤ 1
8 and 1

8 < b2 ≤ 1
6 . As I show in the appendix, the optimal tree

is a line. The line features expert 2 revealing his signal to expert 1, and expert 1

informing the DM that the sum of the signals is either 0, or 1 and 2. The payoff

of the DM is strictly below the payoff in case of perfect revelation of signals. Can

the network in Figure 2.11 generate a more informative equilibrium for the DM

compared to the line? The answer is no for the following reason.

Consider the strategy profile in which expert 2 reveals his signal truthfully

to expert 1 and expert 1 reveals both signals truthfully to the DM. In this case,

the DM receives the most informative message from expert 1 independent of the

message of expert 1 to expert 2, and of the message of expert 2 to the DM. How-

ever, this strategy profile cannot be an equilibrium since expert 2 has an incentive

to deviate from communicating the true signal to expert 1 since b2 >
1
8 . The DM

cannot credibly commit to a punishment in case she receives non-matching messages

from both experts, because her best strategy is to choose a policy based on those
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messages which she regards as truthful. If expert 2 does not truthfully reveal his

signal to expert 1, and expert 1 informs the DM about his own private signal s1,

the DM chooses her policy based on expert 1’s message about s1.

Figure 2.11: Both experts exchange messages before communicating to the DM

Example 4: Consider three positively biased experts organized in a network de-

picted in Figure 2.12 and the following strategy profile: expert 3 communicates his

signal truthfully to expert 2, and expert 2 sends the same message to the DM and

to expert 1: if both expert 3’s message and his private signal are 0 he sends m2;

otherwise he sends m′2. Expert 1 communicates as follows: if he receives m2, he

sends m1 irrespective of his private signal. If he receives m′2, then he sends m′1 if

his private signal is 0; finally, if he receives m′2 then he sends m′′1 if his private signal

is 1. Thus, if the DM receives m2 from expert 2, she disregards expert 1’s message.

Otherwise she can distinguish between different types of expert 1. Thus, in 1
3 of

cases (which is the case if m2 is sent) the DM receives coarse information only from

experts 2 and 3, and in 2
3 of cases (which is the case if m′2 is sent) expert 1 truthfully

communicates his signal to the DM. The expected utility of the DM is -0.044. It

turns out that for b2, b3 ≤ 0.14 and 0.115 < b1 ≤ 0.13, the network depicted in

Figure 2.12 dominates any tree network.

2.2 Conclusions

This paper has studied the optimal design of communication networks featuring

multiple biased and imperfectly informed experts, and an uninformed DM. The DM

adapts a tree communication network which specifies which of the players commu-
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Figure 2.12: Expert 2 has two outgoing links

nicates with whom, and in which order. The DM’s objective is to elicit maximum

possible information from the experts.

I showed that the design of an optimal network is shaped by two compet-

ing forces. On the one hand, an intermediation force brings experts together and

enables an optimal coarsening of pooled information. On the other hand, an uncer-

tainty force separates them and relaxes their incentives to reveal their privately held

information. I showed that simultaneous communication is dominated by optimally

designed sequential communication. Optimal sequential communication, in general,

separates the experts into groups of mostly similar bias. If the biases of experts are

sufficiently close to one another, and sufficiently different to the bias of the DM, the

optimal network features a single intermediary.

The model is easily computable. This makes it easier to bring the model to

the data. To my knowledge, there is still no systematic empirical study looking at

different organizational communication networks from the perspective of strategic

communication.

The main motivation for this project came from the organizational economics

literature. Communication within organizations takes a complex form. I argued in

this paper that a tree network is a natural starting point when thinking about

optimal hierarchies in organizations. It would be an important step to study other

forms of networks. A richer set of communication networks can include experts

talking to multiple audiences, cycles and a variation of noise in communication

channels.

Finally, communication is a dynamic process which can feature multiple

rounds of informational exchange. Literature on strategic communication shows
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that two rounds of communication between an informed sender and an uninformed

receiver can enlarge the set of equilibrium outcomes (Krishna and Morgan, 2004).

It is interesting to see, how the equilibrium set changes once multiple rounds of

communication are introduced into this model, and what is their implication for the

optimal networks.
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Chapter 3

Communication And Delegation

In A Game With Evidence.

3.1 Introduction

The peculiar character of the problem of a rational economic order is

determined precisely by the fact that the knowledge (...) never exists

in concentrated or integrated form but solely as the dispersed bits of in-

complete and frequently contradictory knowledge which all the separate

individuals possess. The economic problem of society (...) is a problem

of the utilization of knowledge which is not given to anyone in its total-

ity.

Hayek (1945)

In organizations decision-relevant information is often dispersed among em-

ployees. This information can have two features. First, it is noisy in the sense

that an employee receives only an imprecise signal about a decision-relevant param-

eter, and this signal depends on employee’s personal characteristics such as formal

qualification, experience or assigned task. Think, for example, of different market

researchers who obtain information dependent on methods they use, or experience

they bring in. Second, the information is verifiable. Think of the results of medical

trials in pharmaceutical companies, evaluation tests for new technologies in industry

or data on online surveys or field trials in market research.

A manager would like to make the best informed policy decision. Thus, she

would like to know all information available to her employees. Suppose that the em-

ployees can conceal their information: Think of the possibility not to reveal part of

test results on a new product. Suppose that the manager can design communication
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channels and delegate the decision rights. Is it better for the manager to receive

direct reports from both employees and keep the decision right to herself? Or is it

better to let employees share decision-relevant information among themselves and

let one of the employees choose the policy? Furthermore, if the manager decides

to delegate authority and knows which of the employees is likely to generate which

evidence, whom should she delegate the decision right to? This paper attempts to

answer these questions.

Consider an uninformed decision maker (DM) and two experts. Each expert

can be either uninformed or imperfectly informed about the state. Expert’s types

are private information. If imperfectly informed, the experts obtain different, and

complementary, evidence about the state. The precision of the evidence depends on

the state and differs between the experts. Each expert has an option to report to

other players that he is uninformed. Thus, communication is strategic. The DM

can choose between centralization and decentralization. Under centralization, both

experts send direct reports to the DM who chooses a policy. Under decentralization,

one of the experts communicates to another expert, and the latter expert chooses

the policy.

I assume that the DM cannot commit to transfers or choice functions de-

pendent on received information. She can only commit to the allocation of decision

rights and to a communication mode. Thus, this paper follows the incomplete

contracts approach forcefully argued by Grossman and Hart (1986) where the DM

cannot specify all possible states of nature in advance and contract upon them.

Therefore, once a state of nature is realized and communicated, the DM is not

restricted in her decision by any contractual arrangement.

When is it optimal for the DM to decentralize? In general, two conditions

have to be satisfied. First, the bias of an expert who decides over the policy should

not be too large compared to the bias of the DM. Otherwise the costs of delegation

are larger than the costs due to losses of information if an expert communicates di-

rectly to the DM. However, when making a decision over delegation the DM has also

to consider the bias of the second expert who provides decision-relevant information

to the first expert whom the decision is delegated to. Perhaps surprisingly, I show

that the bias of the second expert does not have to be small compared to the bias

of the DM or of the first expert. The range of biases for which the second expert

reveals his evidence to the first expert depends on his signal structure. Suppose that

under centralization one of the informed types of the second expert does not reveal

his signal to the DM. If under decentralization the bias of the first expert is nearer

to the bias of the second expert, compared to the bias of the DM, then the second
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expert is more willing to reveal his signal to the first expert than to the DM.

In the next section I provide the literature review. Section 2 defines the

model and section 3 provides the leading example. Section 4 characterizes equilibria

under centralization, decentralization, and compares them. Section 5 concludes. All

proofs are in the appendix.

3.1.1 Literature Review

Efficient aggregation of information, which is dispersed among multiple agents, goes

back to the team theory proposed by Marschak and Rander (1972). They study

optimal communication structures among the agents who face costs of communi-

cation and information processing. More recent contributions include Geanakoplos

and Milgrom (1991), Radner (1993), Bolton and Dewatripont (1994), Van Zandt

(1999b), and Garicano (2000). This literature assumes no conflict of interest be-

tween the agents. Thus it does not model strategic communication which is differ-

ent to my model. Similar to my model, Marschak and Radner allow for different

distributions of signals among the agents.

There is a rich literature on delegation. Much of it assumes that the DM is

not able to commit to a decision both before and after receiving information from

the agents. However, she can contract upon delegation of the decision right. It

is assumed that this contract, if accepted by the agent, cannot be renegotiated.

Delegation is considered to be useful in saving costs of information processing start-

ing with Geanokoplos and Milgrom (1991) or Mount and Reiter (1990). However,

this literature abstracts from incentive problems since the preferences of players are

aligned. Incentive problems in delegation are studied in Holmström (1977, 1984)

who shows the basic trade-off between eliciting information from an agent who

might not have incentives to reveal everything he knows, and delegating him the

decision right which results in a biased decision. More recently Dessein (2002) stud-

ies the choice between centralization and delegation where different to Holmström

he assumes that the DM cannot limit agent’s choices or write contracts to align the

objectives between the DM and the agent. Dessein shows that delegation is optimal

if the divergence in preferences between the agent and an uninformed decision maker

is not too large relative to the agent’s informativeness. Different to those papers I

assume two agents who are imperfectly informed. This allows to study delegation

as an instrument for information sharing between the agents which is not possible

in the above literature.

Alonso et al. (2008) and Rantakari (2008) compare delegation with central-

ization when coordination between different tasks is important and when players
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communicate in a costless and nonverifiable way as in cheap talk (Crawford and

Sobel (1982)). In Alonso et al. (2008) there are two states which are perfectly

observed by one of the division managers but not by the central manager. There

are two decisions, and the central manager faces a trade-off between adaptation of

a decision to one of the states, and coordination between two decisions. They show

when coordination is important, centralization dominates decentralization. Differ-

ent to their model, I do not model coordination of decisions since there is a single

decision to be made. In my model the experts (similar to division managers in their

model) are imperfectly informed and have different signal structures. Thus, different

to those papers, I am able to link information structures of the agents to the decision

over centralization versus delegation. Finally, I model communication with verifiable

information such that equilibria of both models are not directly comparable.

3.2 Model

There is a decision maker, DM, and two experts, labelled 1 and 2. The payoff

function of player i ∈ {1, 2, DM} is:

ui = −(y − θ − bi)2,

where y ∈ R denotes the policy decision, θ ∈ R is the unobserved state of the world

with the uniform common prior distribution over [0, 1] and bi is a bias of player i. I

normalize bDM = 0.

Signals: The DM does not receive any signal about the state. Each expert is either

informed or uninformed, which is not observed by other players and happens with

probability 1
2 which is independent across experts. If being informed, each expert

receives a signal in form of a strict subinterval of [0, 1] where the probability of re-

ceiving a subinterval conditional on being informed coincides with the length (norm)

of the subinterval due to the uniform distribution of the state. The subinterval con-

stitutes the expert’s verifiable evidence (which is equivalent to a standard notion of

player’s type). Verifiable evidence means that an expert can either show the piece

of evidence which he got, or conceal it, claiming that he has not observed anything.

Thus, an expert cannot show false evidence.

Denote by Ti the set of possible types of expert i:

T1 =
{

[0, 1], [0,
1

2
− v], [

1

2
− v, 1]

}
, v ∈ [0,

1

2
)
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T2 =
{

[0, 1], [0,
1

2
+ d], [

1

2
+ d, 1]

}
, d ∈ [0,

1

2
)

This means, for example, that expert 1 can either know nothing beyond the

common prior (he receives an uninformative signal [0, 1]), or he believes that the

state is uniformly distributed either in [0, 12 − v] or in [12 − v, 1].

For convenience I use the notations t1 = [0, 12−v], t′1 = [12−v, 1], t2 = [0, 12+d]

and t′2 = [12 + d, 1]. Notice that, dependent on the state and on being informed, ex-

pert 1 is has a more precise knowledge about lower range of states, and expert 2 has

a more precise knowledge about the upper range of states, compared to the other

expert.

Communication and contracts: Following the incomplete contracts approach I as-

sume that the DM cannot write a contract over decisions or over information re-

ceived. However, she can commit to a tree communication network and ex ante

allocation of a decision rights. A tree communication network Q = (N,E) is a di-

rected graph with a set of nodes N and the set of edges E ⊆ N ×N . For every pair

of nodes (i, j), eij ∈ {0, 1}: eij = 1 means that there exists a directed link from i to

j and eij = 0 means that no such link exists.

I focus on two communication and decision right architectures: Centraliza-

tion and Decentralization. Under Centralization, each expert reports directly to

the DM, which implies eiDM = 1 for both i = 1, 2. Otherwise, there is no further

information exchange between the players. After receiving expert’s reports, the DM

decides over y. Under Decentralization, expert i decides over y, and the other expert

j reports to i, eji = 1. Otherwise, there is no further communication between the

players. I denote the choice of the organizational architecture by s ∈ {C,D} where

C denotes Centralization and D denotes Decentralization.

The Game, Equilibrium: First, each type is drawn from a distribution pi ∈ ∆(Ti),

i = 1, 2, and each expert is privately informed about his type. The DM chooses

either a decentralized or a centralized structure. Then, dependent on DM’s choice,

the messages are sent according to the specified communication. Thereafter, the

player who has the decision right chooses y.

The solutions concept is a pure strategy Perfect Bayesian Equilibrium, where

the DM chooses s such that Maxs EUDM given the prior ∆(T1) and ∆(T2).

Thereafter, if C is chosen, each expert i = 1, 2 sends mi ∈ Mi to the DM

which solves Maxmi EUi given ti and the posterior over Tj conditional on ti, j 6= i.

Then, the DM chooses y which solves Maxy EUDM given (m1,m2).

44



Alternatively, if D is chosen with expert i deciding over y, expert j 6= i sends

mj ∈ Mj to expert i which solves Maxmj EUj given tj and the posterior over Ti

conditional on tj . Thereafter, i chooses y which solves Maxy EUi given ti and the

posterior over Tj conditional on ti and mj .

3.3 Leading Example

Consider v = d = 1
4 such that the sets of possible evidences are:

T1 = {[0, 1], [0,
1

4
], [

1

4
, 1]}, T2 = {[0, 1], [0,

3

4
], [

3

4
, 1]}.

Both sets of evidence are depicted in Figure 3.1. First, think about a strategy

profile in which the DM chooses centralization and all informed types of both experts

report their types truthfully. Then, the expected utility of the DM is −0.042 and

the strategy profile is supported for −0.0625 ≤ b1 ≤ 0.1625, −0.1625 ≤ b2 ≤ 0.0625.

Notice that the upper bound for incentive compatible biases of expert 1 is bigger

than of expert 2 for the following reason. The upper bound for expert 1 is defined

by deviation incentives of t1 = [0, 14 ] to the report [0, 1]. The corresponding upper

bound for expert 2 is defined by deviation incentives from t2 = [0, 34 ] to [0, 1]. The

deviation of t1 to [0, 1] results in a larger expected shift of DM’s policy compared

to the deviation of t2 to the report [0, 1], and thus brings expert 1 further away

from his ideal point compared to a deviation of expert 2. Therefore, the truthtelling

strategy of expert 1 can be supported by higher values of biases, compared to expert

2.

Same argument applies for expert 2 having a smaller lower range of biases

supporting truthtelling, compared to expert 1.

Figure 3.1: Information sets for 2 experts

Now, suppose that the bias of second expert is higher compared to the per-
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fect revelation range: b2 > 0.0625. If b1 is in the range defined above, the best

equilibrium under centralization features t1, t
′
1 and t′2 reporting truthfully to the

DM, and t2 reporting [0, 1]. This equilibrium yields the expected utility of the DM

−0.045. Can the DM do better if the bias of expert 1 is not too large?

The answer is positive. Think about a strategy profile in which the DM

chooses decentralization, assigns the decision right to expert 1, and expert 2 reports

all his types to expert 1. This equilibrium requires b2 ≤ 0.0625 + b1. What is the

range of biases for which this equilibrium under decentralization dominates the best

equilibrium under centralization defined above?

DM’s expected utility under decentralization is −0.042 − b21. Since the best

centralized mechanism implements −0.045, the DM would benefit from decentral-

ization if

−0.042− b21 > −0.045, → b1 . 0.055

Combining the constraints b2 ≤ 0.0625 + b1 and b1 . 0.055, we have:

D �DM C if |b1| ≤ 0.055, b2 ≤ 0.1.

Therefore, we see that for the range of expert’s biases outside the perfect

revelation range in a centralized architecture, if the bias of expert 1 is not too high

compared to the bias of the DM and if the difference between expert’s biases is not

too large, then the DM benefits from the decentralized architecture.

3.4 Analysis

Player i who is assigned the decision right chooses:

y = EUi(θ|Ii) + bi,

where Ii denotes the information set of player i once communication took place.

In the following I, first, calculate the equilibrium conditions for the first best

outcome in a centralized mechanism. I, then, characterize equilibria in which 3 out

of 4 informed types of experts reveal their signals truthfully under centralization

and show conditions on the set of evidences under which these equilibria dominate

all other equilibria under centralization. Given those conditions I show that there

are equilibria under decentralization which strictly outperform best equilibria under

centralization.
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3.4.1 Centralization: first best

In a centralized mechanism both experts communicate directly to the DM without

any prior informational exchange between each other. The DM decides over y based

on experts’ reports. I study the conditions on expert’s biases for in which each

type of each expert is incentivized to reveal his type in equilibrium. Obviously, in

this case the DM has no interest to implement decentralization since it only adds

on costs connected to biased policy decision of an expert responsible for a policy

choice.

Using backward induction, the choices of the DM are:

y([0, 1]) =
1

2
, y([0,

1

2
− v]) =

1− 2v

4
, y([

1

2
− v, 1]) =

3− 2v

4
,

y([0,
1

2
+ d] =

1 + 2d

4
, y([

1

2
− v, 1

2
+ d]) =

1− v + d

2
, y([

1

2
+ d, 1]) =

3 + 2d

4
.

The corresponding expected utility of the DM is:

EUC
DM = −1

4

∫ 1

0

(1

2
− θ
)2
dθ − 1

4

(∫ 1
2
−v

0

(1

4
(1− 2v)− θ

)2
dθ+

∫ 1

1
2
−v

(1

4
(3− 2v)− θ

)2
dθ
)
− 1

4

(∫ 1
2
+d

0

(1

4
(1 + 2d)− θ

)2
dθ+

∫ 1

1
2
+d

(1

4
(3 + 2d)− θ

)2
dθ
)
− 1

4

(∫ 1
2
−v

0

(1

4
(1− 2v)− θ

)2
dθ+

∫ 1
2
+d

1
2
−v

(1

2
(1− v + d)− θ

)2
dθ +

∫ 1

1
2
+d

(1

4
(3 + 2d)− θ

)2
dθ
)

In Figure 3.2 I show the variation of DM’s expected utility as a function of v

for some fixed values of d. Notice that the larger is d, the smaller is the optimal v.

This is because the DM expects a very uninformative report from expert 2 as in case

of d = 0.45, and would like to counterbalance it with a balanced report of expert 1

with v almost equal to 0. However, if the report of expert 2 is more informative - it

means if d is relatively low - the DM benefits from a less balanced report of expert

1 with v between 0.1 and 0.2, since in this case combining such reports minimizes

the expected residual variance.

Now, let us turn to the incentives of the experts. The derivation is relegated

to the appendix and results in:
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Figure 3.2: Variation of v for given values of d

2v − 1

8
≤ b1 ≤

1 + 4d2 + 4v + 8dv + 8v2

8(1 + 2d+ 4v)

−d(4 + 8v)− 1− 8d2 − 4v2

8(1 + 4d+ 2v)
≤ b2 ≤

1− 2d

8

Notice that 1+4d2+4v+8dv+8v2

8(1+2d+4v) > 1−2d
8 since 8(1 + 4d2 + 4v + 8dv + 8v2) −

8(1 + 2d+ 4v)(1− 2d) = 64(d2 + 2dv + v2) > 0. This implies that the upper bound

for the range of biases supporting truthtelling in centralization is larger for expert

1 than for expert 2. The reason is that the deviation of expert 1 from t1 = [0, 12 − v]

to [0, 1] results in a larger expected shift of DM’s policy compared to the deviation

of expert 2 from t2 = [0, 12 + d] to [0, 1]. Therefore, the deviation brings expert 1

further away from his ideal point, compared to expert 2, and thus his strategy is

incentive compatible for larger biases compared to expert 2.

3.4.2 Centralization: one expert’s type deviates

Suppose that one type of one of the experts deviates whilst all other types fully

report their information. Thus, there are four possible cases. Here, I cover the first

case in which t1, t2 and t′2 report truthfully to the DM whilst t′1 always reports [0, 1].

All other cases are derived in a similar way and are relegated to the appendix.

If only t′1 deviates, and the DM observes the reports [0, 1] from both experts,

she chooses:

y′ =
1(

1 + 1
2 + v

)
2

+
1

4

(
1− 1

1 + 1
2 + v

)
(3− 2v).

To derive y′, notice, that it is sufficient for the DM to form posteriors, and

apply them to corresponding expected values of the state, of the following two events:

in the first one expert 1 is uninformed which happens with probability 1
2 , and in the
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second one expert 1 is of type [12 − v, 1] which happens with probability 1
2(12 + v).

By a similar argument, if the DM receives report [0, 1] from the first expert

and m2 = t2 from the second expert, Bayesian updating leads her to choose y as

follows:

y′′ =
1 + 2d(

1 + 2d+2v
1+2d

)
4

+
1

2

(
1− 1

1 + 2d+2v
1+2d

)
(1− v + d).

The expected utility of the DM is:

−1

4

∫ 1

0
(y′ − θ)2 dθ − 1

4

(∫ 1
2
+d

0
(y′′ − θ)2 dθ +

∫ 1

1
2
+d

(
1

4
(3 + 2d)− θ

)2

dθ

)
−

1

4

(∫ 1
2
−v

0

(
1

4
(1− 2v)− θ

)2

dθ +

∫ 1

1
2
−v

(y′ − θ)2 dθ

)
−

1

4

(∫ 1
2
−v

0

(
1

4
(1− 2v)− θ

)2

dθ +

∫ 1
2
+d

1
2
−v

(y′′ − θ)2 dθ +

∫ 1

1
2
+d

(
1

4
(3 + 2d)− θ

)2

dθ

)
.

The range of biases which supports the above strategy profile is derived in

the appendix. Denote the upper bias supporting truthtelling for t1 by b′+1 . It can

be shown that b′+1 > b+1 where b+1 is the upper bound of the t1 in the first best sce-

nario of perfect information revelation under centralization. The reason is that in

case of t1’s deviation to the report [0, 1], the expected shift in DM’s policy is higher

compared to the first best. This happens because once the DM observes reports

[0, 1] from each expert, she attaches some beliefs to type t′1 and therefore puts larger

weight to higher states compared to the report [0, 1] in the first best. This result in

generalized in Lemma 1.

Lemma 1: In centralization, the strategy profile of experts in which both informed

types of expert i and only one type of expert j report truthfully to the DM, results

in a higher upper bound for the biases of expert j compared to the strategy profile in

which all types of experts report truthfully to the DM.

Proof : Notice that the upper bound is relevant only for the case in which the only

type which deviates is either t′1 or t′2, since if only either t1 or t2 deviate, this defines

a lower bound for the respective expert.

Think of a strategy profile in which the only informed type which deviates is
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t′1: the argument for t′2 is similar. Once the DM observes [0, 1] from both experts,

she chooses y([0, 1]) = EDM (θ|[0, 1]) which is larger than y([0, 1]) in case of perfect

revelation in a centralized mechanism since uninformed types are pooled with t′1
which has higher expectation of the state than 1

2 : this is shown in the appendix.

This implies that for every type realization of expert 2, the deviation of t1

leads to a higher shift in DM’s choice. Therefore, the expected deviation leads to

a higher expected shift of DM’s policy resulting in a larger range of biases for t1

supporting the specified strategy profile. Q.E.D.

3.4.3 When do such equilibria constitute the second best outcome?

Here I show conditions on v and d under which, given that the first-best under

centralization is not implementable, equilibria in which 3 out of 4 informed types of

experts send truthful reports dominate other equilibria which arise under central-

ization.

Which other equilibria can there exist in a centralized architecture? The

next lemma shows that for any biases, there is always an equilibrium in which at

least one informed type of each expert reports truthfully. Furthermore, there is no

equilibrium in which all types of any expert send the uninformative report [0, 1]

because there is a profitable deviation for at least one informed type of that expert

to report his piece of evidence. This happens because all players prefer more infor-

mative to less informative equilibria.

Lemma 2: For any biases of experts 1 and 2, any equilibrium under centralization

features at least one informed type of each expert who reports his signal truthfully.

Therefore, under centralization, there is no equilibrium in which all informed

types of an expert send an uninformative report [0, 1]. As I show in the appendix,

there are 8 conditions on v and d under which an equilibrium in which 3 out of 4

informed types of both experts report their signals truthfully, always dominates any

other equilibrium in which only one type of each expert reports his type truthfully.

The graphical intersection of these conditions is shown in Figure 3.3: equilibria in

which 3 out of 4 informed types reveal their signals truthfully dominates the other

equilibrium in a non-grey area for any values of v and d. In a non-grey region, if v

is relatively high, then d is relatively low, and vice versa. This results in a larger

amount of information transferred in expectation once 3 out of 4 types reveal their

signals to the DM, compared to an equilibrium in which any 2 of the 4 types reveal

their signals.
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Figure 3.3: Truthtelling of 3 types dominates truthtelling of any 2 types in the
non-grey region.

3.4.4 Decentralized mechanism with perfect information sharing

Suppose that the DM delegates authority to expert i and creates a directed commu-

nication link from j to i. Here I study conditions for equilibrium in which j reveals

all his types to i.

The expected utility of the DM is:

EUD
DM = −1

4

∫ 1

0

(1

2
− θ − bi

)2
dθ − 1

4

(∫ 1
2
−v

0

(1

4
(1− 2v)− θ − bi

)2
dθ+

∫ 1

1
2
−v

(1

4
(3− 2v)− θ − bi

)2
dθ
)
− 1

4

(∫ 1
2
+d

0

(1

4
(1 + 2d)− θ − bi

)2
dθ+

∫ 1

1
2
+d

(1

4
(3 + 2d)− θ − bi

)2
dθ
)
− 1

4

(∫ 1
2
−v

0

(1

4
(1− 2v)− θ − bi

)2
dθ+

∫ 1
2
+d

1
2
−v

(1

2
(1− v + d)− θ − bi

)2
dθ +

∫ 1

1
2
+d

(1

4
(3 + 2d)− θ − bi

)2
dθ
)

= EUC
DM − b2i .

Therefore, the losses of the DM compared to the best equilibrium in the

centralized case are increasing quadratically in the bias difference between the DM

and expert i. The incentives for expert j are derived in the appendix. If the DM
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delegates authority to 1 then the incentives of expert 2 to report all his types to

expert 1 are satisfied if:

−d(4 + 8v)− 1− 8d2 − 4v2

1 + 4d+ 2v
+ b1 ≤ b2 ≤

1− 2d

8
+ b1

If the DM delegates authority to expert 2, then the corresponding constraints

for expert 1 are:

2v − 1

8
+ b2 ≤ b1 ≤

1 + 4d2 + 4v + 8dv + 8v2

8(1 + 2d+ 4v)
+ b2

3.5 Comparison between centralization and decentral-

ization

Here I show that, for any value of v and d, there exists a range for the biases of both

players such that decentralization dominates centralization. Denote the range of

biases which support the first best in case of centralization by BF = BF
1 ×BF

2 ∈ R2.

Proposition 1: For given v and d assume that the range of biases for experts 1

and 2, B1, B2, is outside the range where both perfectly reveal information in the

centralized case, (B1 × B2) ∩ BF = ∅. If in the second best equilibrium only one

informed type of expert j reveals his information, and both unformed types of i re-

veal their information, then there exists (b1, b2) ∈ B1 × B2 where the DM delegates

authority to i and creates a directed communication link from j to i such that the

new equilibrium payoff dominates centralization.

Proof : Denote the best equilibrium payoff for the DM for (b1, b2) ∈ B1×B2, if the

decision and communication structure is centralized, by WS . Denote by WC the

equilibrium payoff for the DM in a centralized communication if all types of both

agents report their signal truthfully. Since in this equilibrium at least one informed

type of one of the experts deviates in [0, 1] in his report, WS < WC .

Suppose that the DM decided to delegate authority to expert 1 and creates a

directed communication link from 2 to 1. The proof for delegation the authority to

2, and creating a directed communication link from 1 to 2 is proven analogously. If 2

always reveals his type to i, the DM benefits from decentralization if WC−b21 > WS

or b1 <
√
WC −WS .

The condition on the biases of expert 2 to report truthfully to 1 is: b+ b1 ≤
b2 ≤ b+ b1 where [b, b] = BF

2 .
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1. Suppose that in the second best equilibrium under centralization, both types

of expert 1 report truthfully to the DM but only t2 of expert 2 reports truth-

fully. For the DM to benefit from decentralization it should be true that

b1 <
√
WC −WS = s1 In this case, this equilibrium is supported for b2 ≤ k1

with k1 > b. The reason for k1 > b is that if t2 deviates in equilibrium in

which t′2 pools with the type of 2 who reports [0, 1], he expects a bigger shift

in DM’s choice compared to equilibrium in which t′2 reports truthfully, since

the DM expects higher state upon observing [0, 1] (I show it in the appendix

for the derivation of the incentive constraints for this equilibrium). But then

there exists a value for b1 small enough such that two conditions are jointly

satisfied: b2 ≤ b1 + b ≤ k1 and b1 ≤ s1.

2. Suppose that in the second best equilibrium under centralization, both types

of expert 1 report truthfully to the DM but only t′2 of expert 2 reports truth-

fully. For the DM to benefit from decentralization it should be true that

b1 <
√
WC −WS = s2 In this case, this equilibrium is supported for b2 ≥ k′′,

with k′′ < 0. But then the only 2 conditions which have to be satisfied for

decentralization to yield a strictly better result is b2 ≤ b1 + b and b1 < s2,

which is true for values of b1 within the constraints. Q.E.D.

3.6 Conclusions

This project studies the choice between centralization and decentralization with two

experts who can be partially informed about the state, and an uninformed DM. The

DM is able to commit to the allocation of decision rights and communication chan-

nels. I contrast two simple benchmarks: under centralization, the DM receives direct

reports from both experts and decides over a single task; under decentralization, the

DM delegates the decision right to one of the experts and creates a communication

channel from the other expert to the first one. I show that decentralization can

dominate centralization if the bias of an expert who decides over the task is not too

large compared to the bias of the DM, and the bias of another expert is nearer to

the bias of the first expert, compared to the bias of the DM.

Since this project is work in progress there are multiple steps I aim to do

next. First, currently I study cases in which equilibria, which feature a pooling of

an informed type of one of the experts with an uninformed type, dominate all other

equilibria under centralization for given information structures and all possible bi-

ases. However, for different information structures, there might be some ranges of

biases for which such equilibria still dominate all other equilibria under centraliza-
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tion. Therefore, it can be that the range of parameters for which my findings apply

is larger than the one stated in the paper.

Further, I would like to characterize cases in which equilibria featuring only

a single type of each expert reporting truthfully to the DM are the best equilibria

under centralization and compare them to the best equilibria under decentralization.

Second, I aim to look at a richer set of communication structures. For ex-

ample, a centralized case can feature an expert reporting his signal to a different

expert, who then reports his information to the DM, and the DM decides over the

policy. This richer space of communication networks can be interesting combined

with a richer set of signal structures, if, for example, each expert can receive signals

according to more than two partitions of the state space.

Finally, I want to contrast the best outcome under decentralization with

the best outcome in case the DM can commit to a mechanism which implements

allocations conditional on reports from both experts. According to the revelation

principle, it is sufficient to focus on direct mechanisms. I conjecture that the mech-

anism can implement any allocation of the game, but the reverse is not necessarily

true. Therefore, it is interesting to study systematically the loss in welfare once

moving from the environment with commitment to the non-commitment case.

54



Appendix A

Definitions and Proofs for

Chapter 1

Remaining definitions from the model section:

A path Hi1ik is a sequence of edges {i1, i2}, {i2, i3}, .., {ik−1, ik} such that the

nodes in every pair {il, il+1} are directly connected, eil,il+1
= 1.

In this paper I study directed graphs with the following properties:

(1) ∀i ∈ N \ DM , there is j ∈ N , j 6= i, such that eij = 1 and there is no other

j′ 6= j, j′ ∈ N connected to i, eij′ = 1, which means that every expert has one

outgoing link,

(2) ∀i ∈ N there is no path Hij with j 6= i and eji = 1, which means that there are

no cycles, and

(3)
∑

j∈Ne ejDM ≥ 1 and
∑

j∈Ne eDMj = 0 which means that the DM has at least

one incoming but no outgoing links.

Bayesian updating follows the Beta-binomial model: given k observations

and k 1’s the conditional pdf is:

f(k|θ, n) =
n!

k!(n− k)!
θk(1− θ)n−k.

Thus, when n observations are conducted, the distribution of “successes” is

uniform as well:

Prob(k|n) =

∫ 1

0
Prob(k|θ, n)dθ =

∫ 1

0

n!

k!(n− k)!
θk(1− θ)n−kdθ =

1

n+ 1
.
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The posterior is

f(θ|k, n) =
(n+ 1)!

k!(n− k)!
θk(1− θ)n−k,

Thus, E(θ|k, n) = k+1
n+2 .

Finally, suppose we have n trials with k 1’s. What is the probability of

having j 1’s given additional m trials?

P (j|m,n, k) =

∫ 1

0
P (j|m, θ)P (θ|k, n)dθ =

∫ 1

0

m!

j!(m− j)!
θj(1− θ)m−j (n+ 1)!

k!(n− k)!
θk(1− θ)n−kdθ =

∫ 1

0

m!

j!(m− j)!
(n+ 1)!

k!(n− k)!
θk+j(1− θ)m−j+n−kdθ =

m!

j!(m− j)!
(n+ 1)!

k!(n− k)!

(k + j)!(m− j + n− k)!

(n+m+ 1)!
.

Calculations for 1.3.1:

First I analyze equilibria in a star network.

Consider a single expert i who reveals his signals truthfully in a star. DM’s

choices are

y(0) = EDM (θ|0, 1) =
1

3
, y(1) = EDM (θ|1, 1) =

2

3
,

where EDM (θ|k, n) denotes the expected value of the state by the DM given

n equilibrium messages and k number of 1’s. Therefore, the expert is incentivized

to communicate truthfully if:

−
∫ 1

0
(
1

3
− θ − bi)2f(θ|0, 1)dθ ≥ −

∫ 1

0
(
2

3
− θ − bi)2f(θ|0, 1)dθ,

and
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−
∫ 1

0
(
2

3
− θ − bi)2f(θ|1, 1)dθ ≥ −

∫ 1

0
(
1

3
− θ − bi)2f(θ|1, 1)dθ,

where f(θ|k, n) is a posterior with n experts and the sum of the signals k.

The above inequalities imply bi ≤ 1
6 .

Consider two experts revealing their signals truthfully. Then, DM receives

messages according to the partition {{0}, {1}, {2}} of the sum of the signals. Her

choices are

y(0) =
1

4
, y(1) =

1

2
, y(2) =

3

4
.

If expert i receives si = 0 = k, he expects that the other expert j who sends

truthful message to the DM has sj = k with prob 2
3 and sj = 1− k with prob 1

3 .

Therefore, the incentive constraint preventing the upward deviation of i is:

−2

3

∫ 1

0
(
1

4
− θ − bi)2f(θ|0, 2)dθ − 1

3

∫ 1

0
(
1

2
− θ − bi)2f(θ|1, 2)dθ ≥

−2

3

∫ 1

0
(
1

2
− θ − bi)2f(θ|0, 2)dθ − 1

3

∫ 1

0
(
3

4
− θ − bi)2f(θ|1, 2)dθ.

The incentive constraint preventing the downward deviation for i is:

−2

3

∫ 1

0
(
3

4
− θ − bi)2f(θ|2, 2)dθ − 1

3

∫ 1

0
(
1

2
− θ − bi)2f(θ|1, 2)dθ ≥

−2

3

∫ 1

0
(
1

2
− θ − bi)2f(θ|2, 2)dθ − 1

3

∫ 1

0
(
1

4
− θ − bi)2f(θ|1, 2)dθ.

Both constraints result in |bi| ≤ 1
8 . Due to symmetry in strategies and pay-

offs between both experts which communicate truthfully in equilibrium, expert j’s

constraint is the same: bi ≤ 1
8 .

Finally, consider the strategy profile in which all three experts communicate

truthfully to the DM. DM’s choices dependent on the sum of the signals are:

y(0) =
1

5
, y(1) =

2

5
, y(2) =

3

5
, y(3) =

4

5
.
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Take any expert i = 1, 2, 3 who receives si = 0. He expects that the sum of

the signals of the other two experts is 0 with prob 1
2 , is 1 with prob 1

3 and is 2 with

prob 1
6 . If i receives si = 1, he expects the sum of the other experts’ signals to be 3

with prob 1
2 , 2 with prob 1

3 and 1 with prob 1
6 .

Therefore, the incentive constraint of i which prevents his upward deviation

is:

−1

2

∫ 1

0
(
1

5
− θ − bi)2f(θ|0, 3)dθ − 1

3

∫ 1

0
(
2

5
− θ − bi)2f(θ|1, 3)dθ−

1

6

∫ 1

0
(
3

5
− θ − bi)2f(θ|2, 3)dθ ≥

−1

2

∫ 1

0
(
2

5
− θ − bi)2f(θ|0, 3)dθ − 1

3

∫ 1

0
(
3

5
− θ − bi)2f(θ|1, 3)dθ−

1

6

∫ 1

0
(
4

5
− θ − bi)2f(θ|2, 3)dθ.

The incentive constraint for the downward deviation of i is:

−1

2

∫ 1

0
(
4

5
− θ − bi)2f(θ|3, 3)dθ − 1

3

∫ 1

0
(
3

5
− θ − bi)2f(θ|2, 3)dθ−

1

6

∫ 1

0
(
2

5
− θ − bi)2f(θ|1, 3)dθ ≥

−1

2

∫ 1

0
(
3

5
− θ − bi)2f(θ|3, 3)dθ − 1

3

∫ 1

0
(
2

5
− θ − bi)2f(θ|2, 3)dθ−

1

6

∫ 1

0
(
1

5
− θ − bi)2f(θ|1, 3)dθ.

Notice that the constraints for each expert are symmetric. Therefore, the

incentives for truth-telling for each i = 1, 2, 3 are satisfied for bi ≤ 1
10 .

Second, I show that, for the same biases, the line is able to induce same payoff allocations

as the star.

It is straightforward to show that it is true if only a single expert reveals his

signal truthfully. Fix the expert who reveals his signal truthfully in a star and place

him on the top of the line. The bias of this expert satisfies |bi| ≤ 1
6 . Then, there is
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an equilibrium in which a single expert reveals his signal truthfully to the DM.

Consider, next, the equilibrium in a star in which only two experts reveal

their signal truthfully to the DM. Label those experts by 1 and 2. Design a line

network such that 1 and 2 are the experts closest to the DM (the third expert

is at the bottom of the line). The order of 1 and 2 does not matter. Assume, for

example, that expert 1 is connected to the DM and expert 2 communicates to expert

1. Consider the strategy profile in which expert 3 babbles (sends an uninformative

message to expert 2), expert 2 reveals his private signal to expert 1, and expert 1

reveals if the sum of the signals is either 0, 1 or 2 to the DM. Incentives of expert 2

are the same as in the star. The choices of the DM are the same as in equilibrium

in the star, in which two experts communicate truthfully. Now I show that the

incentives of expert 1 remain the same.

Expert 1 observes the sum of the signals 0, 1 or 2. Suppose that after he

receives his signal and the message of expert 2, his type is t1 = 0. If he deviates to

message 1, his deviation implies:

−
∫ 1

0
(
1

4
− θ − bi)2f(θ|0, 2)dθ ≥ −

∫ 1

0
(
1

2
− θ − bi)2f(θ|0, 2)dθ,

resulting in b1 ≤ 1
8 .

If he deviates to message 2, then his constraint is:

−
∫ 1

0
(
1

4
− θ − bi)2f(θ|0, 2)dθ ≥ −

∫ 1

0
(
3

4
− θ − bi)2f(θ|0, 2)dθ,

resulting in b1 ≤ 1
4 .

If t1 = 1 then his upward deviation to message 2 is

−
∫ 1

0
(
1

2
− θ − bi)2f(θ|1, 2)dθ ≥ −

∫ 1

0
(
3

4
− θ − bi)2f(θ|1, 2)dθ,

resulting in bi ≤ 1
8 .

Therefore, bi ≤ 1
8 is the binding constraint preventing upward deviation.

If expert 1 is t1 = 2, then his downward deviation to message 1 is:
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−
∫ 1

0
(
3

4
− θ − bi)2f(θ|2, 2)dθ ≥ −

∫ 1

0
(
1

2
− θ − bi)2f(θ|2, 2)dθ,

resulting in bi ≥ −1
8 .

If t1 = 2, his downward deviation to message 0 implies:

−
∫ 1

0
(
3

4
− θ − bi)2f(θ|2, 2)dθ ≥ −

∫ 1

0
(
1

4
− θ − bi)2f(θ|2, 2)dθ,

resulting in bi ≥ −1
4 .

Finally, if t1 = 1, then his downward deviation to message 0 implies:

−
∫ 1

0
(
1

2
− θ − bi)2f(θ|1, 2)dθ ≥ −

∫ 1

0
(
1

4
− θ − bi)2f(θ|1, 2)dθ,

resulting in bi ≥ −1
4 .

Therefore, the binding constraint in case of the downward deviation is bi ≥
−1

8 , which is satisfied since we assumed that each expert has a positive bias.

In a similar way, it can be shown that is all three experts in a line reveal

all their information to the player next in the line, the binding constraints result in

bi ≤ 1
10 for i = 1, 2, 3.

Third, I show that the line generates an additional equilibrium which is strictly better for the DM.

Think about a strategy profile in which experts 2 and 3 forward all available

information to the expert next in the line. Therefore, expert 1 receives information

about the sum of all signals available to three experts. Consider the strategy profile

in which expert 1 sends m1 is the sum of the signals is 0, and m′1 otherwise. DM’s

choices are: y(m1) = 1
5 and y(m′1) = 3

5 . This strategy profile results in EUDM =

− 4
75 .

To calculate the constraint preventing the upward deviation of an expert,

notice, that all three incentive constraints are the same because each of the experts

conditions the deviation on the sum of the signals 0.

Therefore, for any i = 1, 2, 3, the upward deviation results in:

−
∫ 1

0
(
1

5
− θ − bi)2f(θ|0, 3)dθ ≥ −

∫ 1

0
(
3

5
− θ − bi)2f(θ|0, 3)dθ,
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resulting in bi ≤ 1
5 .

The smallest downward deviation occurs if either expert 1 observes the sum

of the signals 1, or any of the remaining experts expects expert 1 to observe the sum

of the signals 1:

−
∫ 1

0
(
3

5
− θ − bi)2f(θ|1, 3)dθ ≥ −

∫ 1

0
(
1

5
− θ − bi)2f(θ|1, 3)dθ,

resulting in bi ≥ 0, i = 1, 2, 3, which is satisfied since we assumed that all

experts are positively biased.

Equilibrium in network Q′:

The strategy profile specified in 3.1 implies that the message strategies of

experts can be represented by the following partitions: P2 = {{0}, {1, 2}}, P1 =

{{0}, {1}} and P3 = {{0}, {1}}. The corresponding decisions of the DM are

y(m1,m2) =
1

5
, y(m′1,m2) =

2

5
, y(m1,m

′
2) =

7

15
, y(m′1,m

′
2) =

18

25
.

We start with the ICs for both types of expert 2 assuming that all other

players choose their strategies according to the fixed profile. t2 = 0 assigns the

posteriors 3
4 to t1 = 0 and 1

4 to t1 = 1. Thus, the IC for t2 = 0 is:

−3

4

∫ 1

0
(
1

5
− θ − b2)2f(θ|0, 3)dθ − 1

4

∫ 1

0
(
2

5
− θ − b2)2f(θ|1, 3)dθ ≥

−3

4

∫ 1

0
(

7

15
− θ − b2)2f(θ|0, 3)dθ − 1

4

∫ 1

0
(
18

25
− θ − b2)2f(θ|1, 3)dθ,

so that b2 ≤ 74
525 ' 0.140952.

t2 = 1 assigns the posteriors 1
2 to t1 = 0 and 1

2 to t1 = 1. The ICs of t2 = 1

is:

−1

2

∫ 1

0
(

7

15
− θ − b2)2f(θ|1, 3)dθ − 1

2

∫ 1

0
(
18

25
− θ − b2)2f(θ|2, 3)dθ ≥

−1

2

∫ 1

0
(
1

5
− θ − b2)2f(θ|1, 3)dθ − 1

2

∫ 1

0
(
2

5
− θ − b2)2f(θ|2, 3)dθ,
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so that b2 ≥ −0.00521 which is satisfied since we assumed that all experts

are poisitively biased.

In a similar way it is easy to show that the ICs for expert 3 are the same:

b3 ≤ 74
525 .

Next, t1 = 0 assigns the posteriors 1
2 to t2 = 0, 1

3 to t2 = 1 and 1
6 to t2 = 2.

The corresponding IC for t1 = 0, assuming that other players play according to

specified strategy profile, is:

−1

2

∫ 1

0
(
1

5
− θ − b1)2f(θ|0, 3)dθ − 1

3

∫ 1

0
(

7

15
− θ − b1)2f(θ|1, 3)dθ−

1

6

∫ 1

0
(

7

15
− θ − b1)2f(θ|2, 3)dθ ≥

−1

2

∫ 1

0
(
2

5
− θ − b1)2f(θ|0, 3)dθ − 1

3

∫ 1

0
(
18

25
− θ − b1)2f(θ|1, 3)dθ−

1

6

∫ 1

0
(
18

25
− θ − b1)2f(θ|2, 3)dθ,

so that b1 ≤ 293
2550 .

Finally, t1 = 1 assigns the posteriors 1
6 to t2 = 0, 1

3 to t2 = 1 and 1
2 to t2 = 2.

The corresponding IC for t1, assuming that other players play according to specified

strategy profile, is:

−1

6

∫ 1

0
(
2

5
− θ − b1)2f(θ|1, 3)dθ − 1

3

∫ 1

0
(
18

25
− θ − b1)2f(θ|2, 3)dθ−

1

2

∫ 1

0
(
18

25
− θ − b1)2f(θ|3, 3)dθ ≥

−1

6

∫ 1

0
(
1

5
− θ − b1)2f(θ|1, 3)dθ − 1

3

∫ 1

0
(

7

15
− θ − b1)2f(θ|2, 3)dθ−

1

2

∫ 1

0
(

7

15
− θ − b1)2f(θ|3, 3)dθ,

resulting in b1 ≥ −0.12303 which is satisfied per assumption.

To summarize, the above strategy profile constitutes an equilibrium for b2, b3 ≤
0.14095, and for b1 ≤ 0.1149. The expected utility of the DM is = −0.039556.

Implementation of the equilibrium outcome of Q′ in the line:
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Consider the following strategy profile. Expert 3 communicates his signals

to expert 2, and expert sends either m2 to expert 1 if his private information is sum-

marized by the sufficient statistic 0, and m′2 otherwise. Expert 1 sends 4 messages

to the DM: m1 if (s1 = 0,m2), m
′
1 if (s1 = 0,m′2), m

′′
1 if (s1 = 1,m2) and m′′′1 if

(s1 = 1,m′2). DM chooses:

y(m1) =
1

5
, y(m′1) =

7

15
, y(m′′1) =

2

5
and y(m′′′1 ) =

18

25
.

The incentive constraints for experts 3 and 2 are the same as in the equilib-

rium in network B above, since nothing changes for them in terms of their informa-

tion, the expected information sets of the DM and how their signals enter the infor-

mation sets of the DM. However, the constraints for expert 1 get tighter. In particu-

lar, his tightest constraint for the upward deviation is defined for t1 = (s1 = 1,m2),

when he deviates to the message (s1 = 0,m′2):

−
∫ 1

0
(
2

5
− θ − b1)2f(θ|1, 3)dθ ≥ −

∫ 1

0
(

7

15
− θ − b1)2f(θ|1, 3)dθ,

or:

2

5
+

7

15
− 2

2

5
− 2b1 ≥ 0,

such that b1 ≤ 0.033.

The tightest constraint for the downward deviation of expert 1 is defined for

t1 = (s1 = 0,m′2), when he deviates to (s1 = 1,m2):

−2

3

∫ 1

0
(

7

15
− θ − b1)2f(θ|1, 3)dθ − 1

3

∫ 1

0
(

7

15
− θ − b1)2f(θ|2, 3)dθ ≥

−2

3

∫ 1

0
(
2

5
− θ − b1)2f(θ|1, 3)dθ − 1

3

∫ 1

0
(
2

5
− θ − b1)2f(θ|2, 3)dθ,

which can be written as:

2

3

( 7

15
+

2

5
− 2

2

5
− 2b1

)
+

1

3

( 7

15
+

2

5
− 2

2

5
− 2b1

)
≥ 0,

or:

b1 ≥ −0.033, which is satisfied per assumption. Therefore, the binding con-

straint for expert 1 shows that he is incentivized to communicate according to the
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specified strategy profile in a line for a strictly smaller range of biases, compared to

communication in network Q′.

Proof of Proposition 1:

The construction is the following: I fix a separating equilibrium in a star

network Q in which n experts communicate truthfully. First, I show the optimal

decision of the DM. Second, I show that if |bi| ≤ 1
2(n+2) then none of n experts has

an incentive to deviate from his equilibrium strategy given that all other experts

adhere to their equilibrium strategies.

Fix a separating equilibrium in which n experts report truthfully. The cor-

responding equilibrium partition of {0, 1}n according to which the DM receives her

information is PDM = {{0}, ..., {n}}. The prior of the DM on k which is the sum of

the signals is

Pr(k) =

∫ 1

0
Pr(k|θ)dθ =

∫ 1

0

n!

l!(n− k)!
θk(1− θ)n−kdθ =

n!

l!(n− k)!

l!(n− k)!

(n+ 1)!
=

1

n+ 1
.

Thus, after the DM receives p ∈ PDM , where the pool p simply stands for

the sum of the signals (so I use them interchangeably here), and she believes that

all experts adhere to their strategy profiles, she chooses:

y(k) = EDM (θ|k, n) =
k + 1

n+ 2
.

Denote by t−i the vector of types of all n experts rather than expert i. If

ti = 0, then expert i’s incentive constraints to report his signal truthfully imply:

−
(

Pr(t−i = 0|ti)
∫ 1

0
(

1

n+ 2
− θ − bi)2f(θ|k = 0, n)dθ + ...

+Pr(t−i = n− 1|ti)
∫ 1

0
(

n

n+ 2
− θ − bi)2f(θ|k = n− 1, n)dθ

)
≥

−
(

Pr(t−i = 0|ti)
∫ 1

0
(

2

n+ 2
− θ − bi)2f(θ|k = 0, n)dθ + ...

+Pr(t−i = n− 1|ti)
∫ 1

0
(
n+ 1

n+ 2
− θ − bi)2f(θ|k = n− 1, n)dθ

)
.
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This can be reformulated as:

n−1∑
k=0

Pr(t−i = k|ti)
1

n+ 2
(
k + 1

n+ 2
+
k + 2

n+ 2
− 2

k + 1

n+ 2
− 2bi) ≥ 0

or:

bi ≤
1

2(n+ 2)
.

Similar, if ti = 1 then the incentive constraints for expert i to report his

signal truthfully imply:

−
(

Pr(t−i = 0|ti)
∫ 1

0
(

2

n+ 2
− θ − bi)2f(θ|l = 1, n)dθ + ...

+Pr(t−i = n− 1|ti)
∫ 1

0
(
n+ 1

n+ 2
− θ − bi)2f(θ|l = n, n)dθ

)
≥

−
(

Pr(t−i = 0|ti)
∫ 1

0
(

1

n+ 1
− θ − bi)2f(θ|l = 1, n)dθ + ...

+Pr(t−i = n− 1|ti)
∫ 1

0
(

n

n+ 2
− θ − bi)2f(θ|l = n, n)dθ

)
.

This can be reformulated as:

n−1∑
k=0

Pr(t−i = (k, n)|ti)
1

n+ 2
(
k + 1

n+ 2
+
k + 2

n+ 2
− 2

k + 2

n+ 2
− 2bi) ≥ 0

or:

bi ≥ −
1

2(n+ 2)
.

Summing up, the separating equilibrium with n experts exists if

|bi| ≤
1

2(n+ 2)
.

Finally, notice that the condition for the case where n′ ≤ n experts report

truthfully is |bi| ≤ 1
2(n′+2) . Q.E.D.

Proof of Proposition 2:
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Here is the proof of the first part.

Take any tuple (n, b(n)), where b(n) is the bias profile of n experts, b(n) =

(b1, .., bn), and fix any equilibrium outcome in a star network in which there is a

perfect separation involving n′ experts with n′ ∈ {1, .., n}. According to Proposition

1 the incentive constraints for the truth-telling experts result in: |bi| ≤ 1
2(n′+2) for

all i ∈ {1, .., n′}. By backward induction, the DM chooses y(k) = k+1
n′+2 where k is

the reported summary statistic.

Fix any tree network Q in which experts are ordered monotonically according

to the absolute value of their biases such that if expert j reports to expert i, then

|bj | ≥ |bi|. In the following I show that for a given b(n), Q has the same equilibrium

outcome as the star.

Take any expert i in Q. If his private information is summarized by ti = 0,

then his incentive constraints for the upward deviation is:

n′∑
j=0

Pr(k = j|ti)
(
y(k = j+1)−y(k = j)

)(
y(k = j+1)+y(k = j)−2Ei(θ|j, n′)−2bi)

)
≥ 0

Notice that

y(k = j + 1)− y(k = j) =
j + 2

n′ + 2
− j + 1

n′ + 2
=

1

n′ + 2

and

y(k = j + 1) + y(k = j)− 2Ei(θ|j, n′) =
j + 2

n′ + 2
+

j + 1

n′ + 2
− 2

j + 1

n′ + 2
=

1

n′ + 1
.

Given that
∑n′

j=0 Pr(k = j|ti) = 1, the incentive constraint can written as

bi <
1

2(n′ + 2)

Similarly, the incentive constraint for the downward deviation of ti = 1 is:

n′∑
j=0

Pr(k = j|ti)
(
y(k = j−1)−y(k = j)

)(
y(k = j−1)+y(k = j)−2Ei(θ|j, n′)−2bi)

)
≥ 0
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Since

y(k = j − 1)− y(k = j) =
j

n′ + 2
− j + 1

n′ + 2
= − 1

n′ + 2

and

y(k = j + 1) + y(k = j)− 2Ei(θ|j, n′) =
j

n′ + 2
+

j + 1

n′ + 2
− 2

j + 1

n′ + 2
= − 1

n′ + 1
.

Given that
∑n′

j=0 Pr(k = j|ti) = 1, the incentive constraint can written as

bi >
1

2(n′ + 2)
,

which proves the first part of the proposition.

Here is the proof of the second part.

Example 1 already provided an example in which, for some range of biases,

sequential communication dominated simultaneous communication. For (n, b(n)),

where b(n) denotes the vector of biases of all n experts, it is possible to construct

many equilibria which dominate the corresponding equilibria in a star. Here I pro-

vide one of such constructions (related to the Example 1)

Take any network Q which satisfies the conditions in Proposition 2 and is not

a star, and assume that all biases of the experts are strictly bigger than 1
6 . Then,

Proposition 1 tells us that the only equilibrium in a star is a babbling equilibrium

which results in EUDM = −
∫ 1
0 (12 − θ)

2dθ = − 1
12 .

Denote the number of experts which belong to the longest path in Q, which

starts with from some expert j ∈ N and ends by the DM, HjDM , by r. Since I

assumed that Q is not a star, it follows that r ≥ 2. Then, if in equilibrium expert

i′ ∈ HjDM who is directly connected to the DM receives full information about

the signals of r − 1 experts, he can report his signals according to the partition

Pi′(Q) = {{0}, {1, .., r}}. In the following, I show that Pi′(Q) is implementable as

an equilibrium partition for biases strictly higher than 1
6 , where the exact range of

biases depends on r, and the DM’s expected utility resulting from Pi′(Q) is higher

than the expected utility in the case of no information transmission, − 1
12 .

First, notice that once the DM receives reports according to Pi′(Q), she

chooses her policies as follows:
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y(0) =
1

r + 2
, y(1, .., r) =

( 2

r + 2
+ ..+

r + 1

r + 2

)1

r
=

r + 3

2(r + 2)
.

Take any expert i ∈ HjDM . The upward deviation incentives which depend

on i’s private information and his beliefs over the signal distribution, given the

strategy profile of other experts and the optimal response of the DM, are:

−Pr(k = 0|ti)
∫ 1

0
(y(0)− θ − bi)2f(θ|k, r)dθ−

r∑
j=1

Pr(k = j|ti)
∫ 1

0
(y(1, .., r)− θ − bi)2f(θ|j, r)dθ ≥

−Pr(k = 0|ti)
∫ 1

0
(y(1, .., r)− θ − bi)2f(θ|k, r)dθ−

r∑
j=1

Pr(k = j|ti)
∫ 1

0
(y(1, .., r)− θ − bi)2f(θ|j, r)dθ,

which imply bi ≤ r+1
4(r+2) , i = 0, .., r. Notice that:

r + 1

4(r + 2)
>

1

6
if r > 1,

Therefore, Pi′(Q) can be supported for biases strictly larger than 1
6 .

In a similar way it can be calculated that the downward deviation for every

expert i ∈ HjDM implies bi ≥ r−3
4(r+2) which is strictly smaller than r+1

4(r+2) .

It remains to show that this partition results in a higher expected utility for

the DM compared to the case in which every expert babbles. The expected utility

of the DM is:

EUDM (Pi′(Q)) = −1

3
+

1

(r + 1)(n+ 2)2

(
1 +

(2 + ..+ (r + 1))2

r

)
= −4 + r + r2

12(2 + r)2
.

Therefore, − 4+r+r2

12(2+r)2
> − 1

12 is true for r > 0.

Thus, two conditions r > 1 and r > 0 imply that for r > 1, if all experts’

biases are within [ r−3
4(r+2) ,

r+1
4(r+2) ]∩ (16 ,∞], then Q has at least one equilibrium which

strictly dominates the (uninformative) equilibrium in a corresponding star network.

Q.E.D.
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Proof of Proposition 3:

Proof strategy: I start with the partition which features the largest possible shift

from experts’ expected values of the state if one of the experts deviates from truth-

telling. I obtain the range of biases which support this partition as an equilibrium.

Thus, I find for an upper bound for biases which can be accommodated by any

possible network. I then describe a network which implements such partition: such

network features a single intermediary communicating to the DM. I show that a

network which features at least two experts communicating to the DM cannot im-

plement this partition. Next, I characterize the partition which features the second

largest shift from experts’ expected values of the state if one of the experts deviates

from truth-telling. I find the upper bound on the biases which make this partition

implementable in some network. If all biases are in between the two bounds, then

only the network which implements the partition with the largest possible shift can

induce some information revelation. Otherwise, babbling is the only equilibrium.

Finally, I show that any other partition which features n′ < n experts is supported

by the biases which are weakly smaller than the interval between the two bounds de-

rived earlier. Therefore, I exclude the lower bound from this interval. The resulting

interval specifies the biases which support the coarsest possible information trans-

mission in a network which features a single intermediary. Therefore, if the biases are

above the upper bound, no information transmission is possible in any tree network.

Consider a partition of the entire signals according to which the DM receives

her information and which consists of two pools, P ′DM = {{p1}, {p2}}. Notice that

a partition with 3 or more pools cannot implement a larger shift from the expert’s

ideal point compared to the largest possible shift in a partition with 2 pools. This

is because for a partition with 3 or more pools it is always possible to merge all but

the first pool and therefore implement a larger shift from the expert’s ideal point

compared to the original partition.

Denote DM’s choices as a function of a reported pool of P ′DM by y(p1) and

y(p2). If there exists a tree network which implements P ′DM , then the incentive

constraints of a type ti communicating in such network can be formulated as:

−Pr(k ∈ p1|ti)
∫ 1

0
(y(p1)− θ − bi)2f(θ|k, n)dθ ≥

−Pr(k ∈ p1|ti)
∫ 1

0
(y(p2)− θ − bi)2f(θ|k, n)dθ.
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This can be rewritten as:

y(p1) + y(p2)− 2
∑
k∈p1

Pr(k|ti)E(θ|k, n) ≤ 2bi.

Therefore, maximizing y(p1) + y(p2) − 2
∑

k∈p1 Pr(k)E(θ|k, n) supports the

largest possible bias preventing a deviation of ti. I show that this is the case for

p1 = {0} and p2 = {1, .., n}.
Take any p1 = {0, .., k} and p2 = {k + 1 − z, .., n} with k < n and z ≤ k

implementable in some network Q and fix any ti of an expert i who is communicating

in Q. Notice that in general the same sum of the signals, apart from 0 and n, can

appear in both pools. Consider p′1 = {0, .., k− z} and p′2 = {k− z+ 1, .., n}. Denote

the belief of an expert i over an element k ∈ p′1 by Pr′(k). My objective is to show

that:

y(p′1)+y(p′2)−2
∑
k∈p′1

Pr′(k)E(θ|k, n) ≥ y(p1)+y(p2)−2
∑
k∈p1

Pr(k|ti)E(θ|k, n). (A.1)

Assume that for each k ∈ p′1, Pr
′(k) is such that Ei(k|p′1) = EDM (k|p′1).

Therefore,
∑

k∈p′1
Pr′(k)E(θ|k, n) = y(p′1). This assumption implies a lower bound

on
∑

k∈p′1
Pr′(k)E(θ|k, n) for the following reason. Since an expert has a better

observation of the state compared to the DM, there exists a type of an expert

i, ti, who’s beliefs over the elements of p′1 assign weakly higher values to higher

sums of signals compared to DM’s belief once she receives a report p′1. It means,∑
k∈p′1

Pr(k|ti)E(θ|k, n) ≥
∑

k∈p′1
Pr(k)E(θ|k, n). Thus, if:

y(p′1) + y(p′2)− 2y(p′1) ≥ y(p1) + y(p2)− 2
∑
k∈p1

Pr(k|ti)E(θ|k, n) (A.2)

is satisfied, then (2) is also satisfied. First, notice that:

y(p′1)− y(p′1) ≥ y(p1)−
∑
k∈p1

Pr(k|ti)E(θ|k, n),

because
∑

k∈p1 Pr(k|ti)E(θ|k, n) ≥ y(p1), because there is a type ti who

assigns weakly higher beliefs to higher sums of signals, compared to the DM upon

receiving the report p1. This is because the expert has a more precise information

about signal realizations conditional on p1.

It remains to show that
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∑
k∈p1

Pr(k|ti)E(θ|k, n)− y(p2) ≥ y(p′1)− y(p′2).

By the same logic as before, the above inequality is satisfied if:

y(p1)− y(p2) ≥ y(p′1)− y(p′2). (A.3)

is satisfied.

Consider, first, the case of z = 0. In this case, p1 = {0, .., k} and p2 =

{k + 1, .., n}. Then,

y(0, .., k) =

∑k+1
i=1 i

(n+ 2)(k + 1)
=

k + 2

2(n+ 2)
,

y(k + 1, .., n) =

∑n+1
i=k+2 i

(n+ 2)(n− k)
=
n+ k + 3

2(n+ 2)
.

Then, y(p′1)− y(p′2) = y(p1)− y(p2) = n+1
2(n+2) which satisfies (2).

Consider, next, that z = 1 such that there is an overlap of a single sum of

the signals. Therefore, p1 = {0, .., k} and p2 = {k, .., n}. Notice that the sum of

the signals k can be formed in
(
n
k

)
different ways (with other words, there are

(
n
k

)
different members of {0, 1}n which generate the sum of the signals k). Suppose

that k appears in the first pool a times, and in the second pool
(
n
k

)
− a times, with

a ∈ {1, ..,
(
n
k

)
− 1} (since a = 0 or a =

(
n
k

)
are covered by the previous case).

Since each sum of the signals has equal probability:

Pr(k) =

∫ 1

0
Pr(k|θ)dθ =

∫ 1

0

n!

k!(n− k)!
θk(1− θ)n−kdθ =

n!

k!(n− k)!

k!(n− k)!

(n+ 1)!
=

1

n+ 1
,

If the DM receives the report p1, she assigns posterior 1
k+ a

(nk)
to each of the

elements 0, .., k−1, and the posterior

a

(nk)
k+ a

(nk)
to the element k. Therefore, her choice

is:

y(p1) =
1

(n+ 2)(k + a

(nk)
)
(1 + ..+ k) +

a

(nk)

(n+ 2)(k + a

(nk)
)
(k + 1) =
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1

(2(n+ 2))(k + a

(nk)
)
k(k + 1) +

a

(nk)

(n+ 2)(k + a

(nk)
)
(k + 1) =

(k + 1)(k + 2 a

(nk)
)

(2(n+ 2))(k + a

(nk)
)
.

Similarly, her choice upon receiving p2 is:

y(p2) =

(nk)−a
(nk)

(n+ 2)(n− k +
(nk)−a
(nk)

)
(k+1)+

1

(n+ 2)(n− k +
(nk)−a
(nk)

)
((k+2)+..+(n+1)) =

(nk)−a
(nk)

(n+ 2)(n− k +
(nk)−a
(nk)

)
(k + 1) +

1

(2(n+ 2))(n− k +
(nk)−a
(nk)

)
(k − n)(k + n+ 3) =

2
(nk)−a
(nk)

(k + 1) + (k − n)(k + n+ 3)

(2(n+ 2))(n− k +
(nk)−a
(nk)

)
.

Then, given that y(p′1) = k+1
2(n+2) and y(p′2) = k+n+2

2(n+2) , the expression (4) can

be rewritten as:

2
(nk)−a
(nk)

(k + 1) + (k − n)(k + n+ 3)

(2(n+ 2))(n− k +
(nk)−a
(nk)

)
−

(k + 1)(k + 2 a

(nk)
)

(2(n+ 2))(k + a

(nk)
)
− −n− 1

2(n+ 2)
≥ 0,

or

−a2(n+ 1) + a(1− 6k − 2k2 + 7n+ 2n2)

(
n

k

)
− 2k(3k + k2 − 3n− n2)

(
n

k

)2

≥ 0,

which is true for k < n. Therefore, (2) is satisfied.

Finally, consider z = 2 . Thus, p1 = {0, .., k} and p2 = {k − 1, .., n}, and

p′1 = {0, .., k−2} and p′2 = {k−1, .., n}. To prove that (4) is true for z = 2 I proceed

in two steps. First, I define the following partitions:

• Define a partition P ′′ = {p′′1, p′′2} which differs to {p1, p2} only in that the sum
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of the signals k is located entirely in p′′2,

• define a partition P̂ = {p̂1, p̂2} which differs to {p1, p2} only in that the sum

of the signals k − 1 is located entirely in p̂1, and finally

• define a partition P̂ ′ = {p̂′1, p̂′2} which differs to P̂ ′ only in that the sum of the

signals k is located entirely in p̂′2.

From the previous step which covered the case z = 1 we know that:

y(p̂1)− y(p̂′1) ≥ y(p̂2)− y(p̂′2). (A.4)

Notice that because in y(p1) the sum of the signals k has a larger posterior

compared to y(p̂1), the downward shift from y(p1) to y(p′′1) is larger compared to

the downward shift from y(p̂1) to y(p̂′1). Therefore

y(p1)− y(p′′1) ≥ y(p̂1)− y(p̂′1).

Similarly, it is true that

y(p2)− y(p′′2) ≤ y(p̂2)− y(p̂′2),

such that y(p1) − y(p′′1) ≥ y(p2) − y(p′′2) is satisfied. But then, given the

results on z = 1 it is also true that

y(p′′1)− y(p′1) ≥ y(p′′2)− y(p′2).

Summing up the last two inequalities we obtain:

y(p1)− y(p′1) ≥ y(p2)− y(p′2).

The case z > 2 can be solved in a similar way.

Next, I characterize the equilibrium strategies and the corresponding biases

which support PDM = {{0}, {1, .., n}} as an equilibrium. By backward induction, I

start with the decisions of the DM conditional on messages m1 = 0 or m2 = (1, .., n).

y(0) =
1

n+ 2

For y(1, .., n) notice that each sufficient statistic has equal probability because

the probability of having k 1’s in n experiments is:
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Pr(k) =

∫ 1

0
Pr(k|θ)dθ =

∫ 1

0

n!

k!(n− k)!
θk(1− θ)n−kdθ =

n!

k!(n− k)!

k!(n− k)!

(n+ 1)!
=

1

n+ 1
.

Thus, the decision of the DM is:

y(1, .., n) =

∑n
i=1(i+ 1)

(n+ 2)

1

n
=

n+ 3

2(n+ 2)
.

The upward deviation incentive of any expert i ∈ N is determined by:

−
∫ 1

0
(

1

n+ 2
− θ − bi)2f(θ|0, n)dθ ≥ −

∫ 1

0
(
n+ 3

2(n+ 2)
− θ − bi)2f(θ|0, n)dθ,

or

1

n+ 2
+

n+ 3

2(n+ 2
− 2

2

2(n+ 2)
− 2bi ≥ 0,

which results in:

bi ≤
n+ 1

4(n+ 2)
.

Similarly, the downward deviation of any expert i ∈ N is determined by:

1

n+ 2
+

n+ 3

2(n+ 2
− 2

4

2(n+ 2)
− 2bi ≥ 0,

which results in:

bi ≥
n− 3

4(n+ 2)
.

Next I show that the partition {0}, {1, .., n} cannot be implemented in a net-

work which features at least two intermediaries communicating directly to the DM.

Notice that informative communication requires an intermediary to send at least

two messages in equilibrium. Otherwise his message is ignored by the DM. In this

case, r > 1 intermediaries feature at least 2r pools according to which the DM re-

ceives her information. But I showed that this cannot be the case which features the

largest possible deviation from experts’ expected values of the states by deviation.

If all but the first pools are merged together, then the deviation from the first pool

results in a larger shift from experts’ expected values of the state, compared to the
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case of multiple experts communicating to the DM.

Next, I characterize the partition which implements the second largest shift

from experts’ ideal points if one of the experts deviates from truth-telling. Given the

considerations above, such partition should have the form {{0, 1}, {1, .., n}}, where

the sum of the signals 1 featured in the first pool has the lowest possible posterior.

Notice that there are
(
n
1

)
ways for the elements of {0, 1}n to result in sum of the

signals 1. Therefore, the case of the lowest possible posterior of the sum of the

signals 1 in the first pool features a single element of {0, 1}n with the sum of the

signals 1 being part of the first pool. Therefore, the second pool includes
(
n
1

)
− 1

sequences which have the sum of the signals 1.

In this case, if the DM receives the message m1 = (0, 1), she attaches poste-

rior n
n+1 to signal 0 and the posterior to 1

n+1 to signal 1. Notice that the posterior or

1 is much smaller because I assumed that the first pool includes only one sequence

with the summary statistic 1. Thus,

y(0, 1) =
n

n+ 1

1

n+ 2
+

1

n+ 1

2

n+ 2
=

1

1 + n
.

Upon receiving m2 = (1, .., n) the DM assigns the posterior
n−1
n

n−1
n

+(n−1) = 1
n+1

to 1 and an equal posterior of 1
n−1
n

+(n−1) = n
(n−1)(n+1) to sufficient statistic 2,3,..,n.

Thus, the DM chooses:

y(1, .., n) =
1

n+ 1

2

n+ 2
+

n

(n− 1)(n+ 1)(n+ 2)
(3 + ..+ (n+ 1)) =

2 + n

2 + 2n
.

To check the deviation incentives of an expert, notice, that depending on

network and information received he can assign different beliefs to the sum of the

signals 0 or 1. The larger the posterior attached to 0, the larger the upper bound

for biases supporting the equilibrium strategy specified above. I focus on the largest

possible upper bound for the biases, and therefore assign the lowest possible posterior

to sum of the signals 1. This happens if - in the case the expert reporting to the

DM observes the pool {0, 1} - he assigns probability 1
n+1

1
n to the sum of the signals

1, which is the lowest possible posterior, and the probability 1
n+1 to the sum of

the signals 0, which is the largest possible posterior given the observation {0, 1}.
Therefore, the posterior assigned to 1 is 1

n+1 and the posterior assigned to 0 is n
n+1 .

The following incentive constraint has to hold:
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− n

n+ 1

∫ 1

0
(

1

1 + n
− θ − bi)2f(θ|0, n)dθ − 1

n+ 1

∫ 1

0
(

1

1 + n
− θ − bi)2f(θ|1, n)dθ ≥

− n

n+ 1

∫ 1

0
(

2 + n

2(1 + n)
−θ−bi)2f(θ|0, n)dθ− 1

n+ 1

∫ 1

0
(

2 + n

2(1 + n)
−θ−bi)2f(θ|1, n)dθ.

This results in bi ≤ n
4(1+n) .

Notice that n−3
4(n+2) <

n
4(1+n) <

n+1
4(n+2) for n ≥ 2 which implies that there is a

range for biases [ n
4(1+n) ,

n+1
4(n+2) ] for which PDM is the only implementable partition

for given n.

Now, suppose that only n′ < n experts report truthfully, and n − n′ ex-

perts babble. Partition which accommodates largest possible biases is P ′′DM =

{{0}, {1, .., n′}} because this partition has the maximum heterogeneity between any

two pools. The range of biases which support P ′′DM as an equilibrium partition is

[ n′−3
4(n′+2) ,

n′+1
4(n′+2) ]

Is and yef yes, when, is n′+1
4(n′+2) smaller than n

4(1+n)?

n′ + 1

4(n′ + 2)
<

n

4(1 + n)
, if n > n′ + 1.

However, the biggest possible n′ = n− 1, such that in this case both bounds

coincide. Therefore, only if the biases of all experts is in the interval ( n
4(1+n) ,

n+1
4(n+2) ],

then the optimal network is the one which features a single group and a single expert

reporting directly to the DM.

To prove the statement regarding the range (− n+1
4(n+2) ,−

n
4(n+1) ], notice that

for n experts and for the partition PDM = {{0, .., n − 1}, {n}}, the deviation of

an expert from reporting n to the DM maximizes the distance between the DM’s

policy and the expected value of the expert, leading to the largest possible upper

bound for biases. The way to prove it is similar to the mirror case of the partition

{{0}, {1, .., n}} which was proven in the first part of the Lemma.

To derive the lower bound by deviation of type n for PDM = {{0, .., n −
1}, {n}}, I, first, calculate the corresponding choices of the DM:

y(0, .., n− 1) =
1

n

n−1∑
i=0

i+ 1

n+ 2
=

n+ 1

2(n+ 2)
, y(n) =

n+ 1

n+ 2
.

Therefore, the downward deviation of type n of any expert i ∈ N implies:
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n+ 1

2(n+ 2)
+
n+ 1

n+ 2
− 2

n+ 1

n+ 2
− 2bi ≤ 0,

which results in bi ≥ − n+1
4(n+2) .

To calculate the binding upward deviation, notice, that for a given change

in DM’s policy, the range of expert’s biases decreases with higher expectation over

the state. Therefore, the binding deviation from the first pool occurs when the type

of an expert i is n− 1. In this case, the following incentive constraint has to hold:

n+ 1

2(n+ 2)
+
n+ 1

n+ 2
− 2

n

n+ 2
− 2bi ≥ 0,

which results in bi ≤ − n−3
4(n+2) .

The second largest downward deviation assumes PDM = {{0, .., n− 1}, {n−
1, n}} with only a single sequence having the sum of the signals n − 1 included

in the second pool, and the posterior belief of an expert which assigns maximum

probability to n if the expert beliefs that the state is within the second pool.

If the DM receives the report {0, .., n−1}, she assigns the posterior n
(n−1)(n+1)

to each element 0, .., n− 2, and the posterior n−1
(n−1)(n+1) to n− 1. If the DM receives

the report {n − 1, n}, she assigns the posterior 1
n+1 to the element n − 1 and the

posterior n
n+1 to the element n.

The corresponding choices of the DM are:

y(0, .., n− 1) =
n

(n− 1)(n+ 1)

(1 + ..+ n− 1)

n+ 2
+

n− 1

(n− 1)(n+ 1)

n

n+ 2
=

n

2(n+ 1)
,

y(n− 1, n) =
1

n+ 1

n

n+ 2
+

n

n+ 1

n+ 1

n+ 2
=

n

n+ 1
.

An expert i, when being informed that the true state is in {n− 1, n}, can at

most assign posterior belief 1
n+1 to the element n− 1, and the posterior belief n

n+1

to the element n. The following incentive constraint has to hold for a downward

deviation:

− n

n+ 1

∫ 1

0
(

n

n+ 1
−θ−bi)2f(θ|n−1, n)dθ− n

n+ 1

∫ 1

0
(

1

n+ 1
−θ−bi)2f(θ|n, n)dθ ≥

− n

n+ 1

∫ 1

0
(

n

2(n+ 1)
−θ−bi)2f(θ|n−1, n)dθ− 1

n+ 1

∫ 1

0
(

n

2(n+ 1)
−θ−bi)2f(θ|n, n)dθ.

This results in: bi ≤ − n
4(n+1) .
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Finally, suppose that there are n′ < n reporting in equilibrium. The parti-

tion which implements the largest possible downward shift of DM’s policy from the

expected value of the state by an expert is P ′DM = {{0, .., n − 2}, {n − 1}}. The

corresponding choices of the DM are:

y(0, .., n− 2) =
n

2(n+ 1)
, y(n− 1) =

n

n+ 1
.

The incentive constraint preventing the downward deviation of any expert

from the second pool implies:

n

2(n+ 1)
+

n

n+ 1
− 2

n

n+ 1
− 2b ≤ 0.

This implies bi ≥ − n
4(n+1) .

Therefore, the range of biases which supports communication to the DM in

a single group is [− n+1
4(n+2) ,−

n
4(n+1)).

Finally, since I have shown that for positive biases the partition {{0}, {1, .., n}}
implements the largest possible upward shift from the experts’ expected values of the

state due to the coarsest possible communication to the DM. Therefore, any biases

beyond n+1
4(n+2) cannot lead to any information transmission. Similarly, for negative

biases, the partition {{0, .., n− 1}, {n}} implements the largest possible downward

shift from the experts’ expected values of the state. Therefore, any biases below

− n+1
4(n+2) cannot lead to any information transmission. Q.E.D.

Proof of Lemma 1:

The idea of the proof goes as follows. The beliefs of expert j about overall

signals can be written as the sum of beliefs conditional on the realizations of i’s

types. Since expert i is informed about all signals available to expert j, there is

a type of expert i which results in a weakly smaller range of biases supporting his

equilibrium strategy compared to expert j.

1. Suppose that an equilibrium features n′ ≥ 2 non-babbling experts. A type

of j is a probability distribution over the set of all possible signals {0, 1}n′ ,
conditional on an element of a partition P b

j (Q) according to which j receives

his signals.
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Suppose that j receives p̃ ∈ P b
j . Given his type, j forms beliefs over different

sums of signals, k ∈ {0, .., n} conditional on his expectations of the elements

of DM’s partition, p ∈ PDM (Q) with k ∈ p given the strategy profile of all

other experts denoted by P−j(Q). The following incentive constraints give a

condition on the bias of j to prevent a deviation from truthful reporting p̃ to

some other report p̃′ ∈ P b
j (Q). For notational convenience, in the following I

supress Q:

−
∑
ti|tj

∑
k∈{0,..,n′}

Pr(ti|tj)× Pr(k|ti)
∫ 1

0
(y(p|P−j , p̃))− θ − bj)2f(θ|k, n)dθ ≥

−
∑
ti|tj

∑
k∈{0,..,n′}

Pr(ti|tj)× Pr(k|ti)
∫ 1

0
(y(p|P−j , p̃′)− θ − bj)2f(θ|k, n)dθ.

The above system of inequalities can be rewritten as:

∑
ti|tj

∑
k∈{0,..,n′}

Pr(ti|tj)× Pr(k|ti)×
(
y(p|P−j , p̃′)− y(p|P−i, p̃)

)
×

(
y(p|P−j , p̃′) + y(p|P−i, p̃)− 2E(θ|k)− 2bj

)
≥ 0.

2. First, let us look at the upward deviation of tj . Since it is the smallest upward

deviation of tj which is binding for the reporting incentives, we look at the

deviation resulting in y(p|P−j , p̃′) > y(p|P−i, p̃) such that there is no p̃′′ ∈ Pj

such that y(p|P−j , p̃′) > y(p|P−j , p̃′′) > y(p|P−i, p̃).

Since

∑
ti|tj

∑
k∈{0,..,n′}

Pr(ti|tj)× Pr(k|ti)× y(p|P−j , p̃′) >

∑
ti|tj

∑
k∈{0,..,n′}

Pr(ti|tj)× Pr(k|ti)× y(p|P−j , p̃),

there is a value b(tj) ∈ R which solves:

∑
ti|tj

∑
k∈{0,..,n′}

Pr(ti|tj)× Pr(k|ti)×
(
y(p|P−j , p̃′)− y(p|P−i, p̃)

)
×
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(
y(p|P−j , p̃′) + y(p|P−i, p̃)− 2E(θ|k)− 2b(tj)

)
= 0.

The incentive constraints of a type ti can be written as:

−
∑

k∈{0,..,n′}

Pr(k|ti)
∫ 1

0
(y(p|P−i, p̂))− θ − bj)2f(θ|k, n)dθ ≥

−
∑

k∈{0,..,n′}

Pr(k|ti)
∫ 1

0
(y(p|P−i, p̂′)− θ − bj)2f(θ|k, n)dθ,

where p̂ ∈ Pi is a signal which ti receives, and p̂′ ∈ Pi is a different ele-

ment of i’s partition, p̂ 6= p̂′. Since I assumed that tj reports truthfully,

y(p|P−i, p̂)) = y(p|P−i, p̃)|ti. Further, since we are looking at the smallest

upward deviation of tj in terms of DM’s policy, conditional on types of i,

the smallest upward deviation of ti results in the same policy of the DM:

y(p|P−j , p̃′)|ti = y(p|P−i, p̂′). But then the IC for ti can be written as:

∑
k∈{0,..,n′}

Pr(k|ti)×
(
y(p|P−j , p̃′)− y(p|P−i, p̃)

)
×

(
y(p|P−j , p̃′) + y(p|P−i, p̃)− 2E(θ|k)− 2bj

)
≥ 0.

There exists some ti for which Pr(ti|tj) > 0, where b(ti) solves:

∑
k∈{0,..,n′}

Pr(k|ti)×
(
y(p|P−j , p̃′)− y(p|P−i, p̃)

)
×

(
y(p|P−j , p̃′) + y(p|P−i, p̃)− 2E(θ|k)− 2b(ti)

)
= 0.

with b(ti) ≤ b(tj).

3. Next, let us look at the downward deviation of tj . Since the smallest downward

deviation is binding for the reporting incentives, we look at the deviation

resulting in y(p|P−j , p̃′) < y(p|P−i, p̃) such that there is no p̃′′ ∈ Pj such that

y(p|P−j , p̃′) < y(p|P−j , p̃′′) < y(p|P−i, p̃).

Since
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∑
ti|tj

∑
k∈{0,..,n′}

Pr(ti|tj)× Pr(k|ti)× y(p|P−j , p̃′) <

∑
ti|tj

∑
k∈{0,..,n′}

Pr(ti|tj)× Pr(k|ti)× y(p|P−j , p̃),

there is a value b(tj) ∈ R which solves:

∑
ti|tj

∑
k∈{0,..,n′}

Pr(ti|tj)× Pr(k|ti)×
(
y(p|P−j , p̃′)− y(p|P−i, p̃)

)
×

(
y(p|P−j , p̃′) + y(p|P−i, p̃)− 2E(θ|k)− 2b(tj)

)
= 0.

The incentive constraints of a type ti can be written as:

−
∑

k∈{0,..,n′}

Pr(k|ti)
∫ 1

0
(y(p|P−i, p̂))− θ − bj)2f(θ|k, n)dθ ≥

−
∑

k∈{0,..,n′}

Pr(k|ti)
∫ 1

0
(y(p|P−i, p̂′)− θ − bj)2f(θ|k, n)dθ,

where p̂ ∈ Pi is i’s signal and p̂′ ∈ Pi is a different element of i’s partition,

p̂ 6= p̂′. Similar as above, assuming that tj adheres to his strategy Pj , we

have y(p|P−i, p̂)) = y(p|P−i, p̃)|ti. Since we are looking at the smallest upward

deviation of tj in terms of DM’s policy, conditional on types of i, the smallest

upward deviation of ti results in the same policy of the DM: y(p|P−j , p̃′)|ti =

y(p|P−i, p̂′). But then the IC for ti can be written as:

∑
k∈{0,..,n′}

Pr(k|ti)×
(
y(p|P−j , p̃′)− y(p|P−i, p̃)

)
×

(
y(p|P−j , p̃′) + y(p|P−i, p̃)− 2E(θ|k)− 2bj

)
≤ 0.

There exists some ti for which Pr(ti|tj) > 0, where b(ti) solves:

∑
k∈{0,..,n′}

Pr(k|ti)×
(
y(p|P−j , p̃′)− y(p|P−i, p̃)

)
×

(
y(p|P−j , p̃′) + y(p|P−i, p̃)− 2E(θ|k)− 2b(ti)

)
= 0.
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with b(ti) ≥ b(tj). Q.E.D.

Proof of Lemma 2:

Fix an equilibrium strategy profile in Q such that there is an expert i who

receives full statistical information from another expert j, j ∈ Hji. If eji = 1, then

the Lemma is satisfied. Therefore, assume that |Hji| > 2 such that there is at least

one other expert on the path Hji, strictly between j and i. Denote such expert

by j′ and his successor in the network by j′′, ej′j′′ = 1. Notice that the partition

according to which j′′ receives information from j′ can be written as Pj ×{Pj′ \Pj}
because if expert i receives full statistical information from j, then any expert along

the path Hji receives the full statistical information from j.

Next, delete a link from j to another expert to whom he is connected in Q,

and add a link from j to i, such that eji = 1. Denote the new network by Q′.

Assume that every expert j′ on the path Hji other than j and i sends his reports

according to the partition {Pj′ \ Pj}, and any other expert has the same strategy

profile as in above equilibrium in Q.

Notice that the incentive constraints of j do not change since he has the

same beliefs about the set of all signal realizations and his signals are treated in the

same way by expert i. Similarly, the incentive constraints of i do not change since

he receives the same statistical information as before and nothing has changed for

his successors in the new network Q′ compared to Q.

However, the incentive constraints of all experts in Hji which are not i and

j are relaxed due to Lemma 1 since they have strictly more uncertainty compared

to their beliefs in network Q. Therefore, this rearrangement of links from Q to Q′

contributes to a bigger slack in the incentive constraints of experts on the path Hji

other than j and i and possibly contributes to a larger transfer of information to

the DM in the best equilibrium. Q.E.D.

Proof of Lemma 3:

Suppose G = 3 such that there are no other experts apart from j, j′ reporting

to iG in group G. Denote by miG the equilibrium message strategy of iG in an

optimal network Q. Notice that in an optimal network both j and j′ do not babble,

otherwise they would not be part of an optimal network. If sj = k ∈ {0, 1} and
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sj′ = k′ ∈ {0, 1}, then miG(siG ,mj = k,mj′ = k′) = miG(siG ,mj = k′,mj′ =

k). Otherwise the type of iG with private information summarized by (siG ,mj =

k,mj′ = k′) takes a different equilibrium action than type with private information

summarized by (siG ,mj = k′,mj′ = k). But this contradicts equilibrium conditions

since both types have the same beliefs over the signals summarized by the summary

statistic.

Since j and j′ have same ex ante beliefs over the signals of all experts, and

their reports are treated symmetrically by iG, their strategies are symmetric and

supported by the same range of biases.

Suppose |G| > 3, and denote by P ′G the message strategy of group members

other than j, j′ and iG, and by miG the equilibrium message strategy of iG in an

optimal network Q. As above, in an optimal network both j and j′ do not babble,

otherwise they would not be part of an optimal network. Notice that it should be

true that for any report of all group members rather than j, j′ to the DM, p′ ∈ P ′G,

if sj = k ∈ {0, 1} and sj′ = k′ ∈ {0, 1}, then miG(siG , p
′,mj = k,mj′ = k′) =

miG(siG , p
′,mj = k′,mj′ = k). Otherwise the type of iG with private information

summarized by (siG , p
′,mj = k,mj′ = k′) takes a different equilibrium action than

type with private information summarized by (siG , p
′,mj = k′,mj′ = k). But this

contradicts equilibrium conditions since both types have the same beliefs over the

signals summarized by the summary statistic.

Since j and j′ have same ex ante beliefs over the signals of all experts, and

their reports are treated symmetrically by iG, their strategies are symmetric and

supported by the same range of biases.

Further, since iG has strictly more information than j or j′, PiG > Pj = Pj′ ,

and there are two paths HjiG and Hj′iG , conditions of Lemma 1 are satisfied and

expert iG has a weakly lower range of biases which support his equilibrium strategy

in an optimal network Q, compared to the corresponding ranges of biases for j or

j′ (which are the same). Q.E.D.

Example for the section 1.3.4

First equilibrium in network Qa:
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The strategy profile of the experts leads to a partition PDM = {{0}, {1}, {2, 3}}
according to which the DM receives her information.

This is the same equilibrium as in Example 2 analyzed above leading to

bi ≤ 0.125, i = 2, 3, b1 ≤ 0.1.

DM’s expected utility is:

−1

3
+

1

4

[(1

5

)2
+
(2

5

)2
+ 2
( 7

10

)2]
' 0.038

Implementation of the same equilibrium outcome (PDM = {{0}, {1}, {2, 3}})
in an optimal line:

Experts 3 reports his signal truthfully to expert 2, and expert 2 reports

truthfully both the message of expert 3 and his signal to expert 1. Expert 1 parti-

tions the information in the same way as in network Qa: if the sufficient statistic

of all 3 signals is 0, report m1 is sent. If the sufficient statistic of all 3 reports

is 1, m′1 is sent. Otherwise m′′1 is sent. The subsequent choices of the DM are

y(m1) = 1
5 , y(m′1) = 2

5 , y(m′′1) = 7
10 . This strategy profile is an equilibrium for

b1 ≤ 0.1, b2 ≤ 0.117, b3 ≤ 0.125.

Second equilibrium in network Qa: Think about a strategy profile in which

expert 2 and 3 always report their signals truthfully to expert 1, and expert 1

sends either m1 to the DM if the summary statistic of information he receives is

0, or m′1 otherwise. Thus, the DM received information according to the partition

PDM = {{0}, {1, 2, 3}}. The subsequential decisions of the DM are a function of the

reported pool:

y(0) =
1

5
, y(1, 2, 3) =

3

5
.

The upward deviation of any of the experts is determined by:

−
∫ 1

0
(
1

5
− θ − bi)2f(θ|0, 3)dθ ≥ −

∫ 1

0
(
3

5
− θ − bi)2f(θ|0, 3)dθ, i = 1, 2, 3

which implies:

bi ≤ 0.2 for i = 1, 2, 3.

Similarly, the downward deviation of any of the experts is determined by:
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−
∫ 1

0
(
3

5
− θ − bi)2f(θ|1, 3)dθ ≥ −

∫ 1

0
(
1

5
− θ − bi)2f(θ|1, 3)dθ, i = 1, 2, 3,

which implies:

bi ≥ 0.

DM’s expected utility is:

−1

3
+

1

4

[(1

5

)2
+ 3
(3

5

)2]
' −0.053.

Implementation of the same equilibrium outcome in an optimal line:

Notice that experts 3 and 1 has the same amount of uncertainty and are

pivotal for the same signals as in the equilibrium in network A, thus, nothing changes

in terms of ICs for them. Expert 2 observes the signal of expert 3, and is pivotal

only both message of expert 3 and his private signal are 0. His incentive constraints

for the smallest upward and downward deviation are:

−
∫ 1

0
(
1

5
− θ − b2)2f(θ|0, 3)dθ ≥ −

∫ 1

0
(
3

5
− θ − b2)2f(θ|0, 3)dθ,

and

−
∫ 1

0
(
3

5
− θ − b2)2f(θ|1, 3)dθ ≥ −

∫ 1

0
(
1

5
− θ − b2)2f(θ|1, 3)dθ,

implying: 0 ≤ b2 ≤ 0.2, which is the same is above.

Equilibrium in network Qb vs implementation in a line:

These calculation have been covered in part 1.3.1.
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Appendix B

Definitions and Proofs for

Chapter 2

Rest of the equilibria from section 2.0.6, on the case of two bias groups:

Networks B, C and D generate same best equilibrium outcomes for given biases as

follows. If b+ ≤ 0.1 and b− ≥ 0.1 then the best equilibrium involves perfect sepa-

ration of signals of any 3 out of the 4 experts yielding EUDM ' −0.033. If either

(0.1 < b+ ≤ 0.13, b− ≥ −0.045) or (−0.13 ≤ b− < −0.1, b+ ≤ 0.045) then the best

equilibrium involves each group leader reporting sufficient statistic 0 in one message

and all other signals in the other message yielding EUDM ' −0.038. If (0.1 < b+ ≤
0.115, −0.052 ≤ b− < −0.045) or (0.045 < b+ ≤ 0.052, −0.115 ≤ b− < 0.1) then

the best equilibrium involves one of the group leaders reporting either sufficient

statistic 0 from both experts in a group in the first message, or all other signals in

the second message, and the other group leader reporting truthfully only his private

signal assuming that the other expert in a group babbles. This equilibrium yields

EUDM ' −0.04 (see Example 2). Otherwise any of other equilibria is discussed in

the leading example and yields an expected utility for the DM strictly lower than

any other equilibria discussed above.

Calculations for partitions (2.1), p.29

I looks at the partition PDM (Q′).

The DM receives her signals according to:
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PDM (Q′) := {{0, .., n− t}, {n− t+ 1, .., 2n}} × {{0, .., n− z}, {m− z + 1, .., 2n}},

because she combines the report from the 2n group in which the group leader

informs the DM according to the partition {{0, .., n− t}, {n− t+ 1, .., 2n}}, and the

report from the other 2n group in which the group leader informs the DM according

to the partition {{0, .., n− z}, {n− z + 1, .., 2n}}.
The corresponding choices of the DM, conditional on the reported pools are:

y({0, .., n− t}, {0, .., n− z}) =

∑n−t
i=0

∑m−z
j=0

(2ni )(2nj ) i+j+1
4n+2

( 4n
i+j)∑n−t

i=0

∑n−z
j=0

(2ni )(2nj )
( 4n
i+j)

y({0, .., n− t}, {n− z + 1, .., 2n}) =

∑n−t
i=0

∑2m
j=n−z+1

(2ni )(2nj ) i+j+1
4n+2

(2n+2n
i+j )∑n−t

i=0

∑2n
j=n−z+1

(2ni )(2nj )
( 4n
i+j)

y({n− t+ 1, .., 2n}, {0, .., n− z}) =

∑2n
i=n−t+1

∑n−z
j=0

(2ni )(2mj ) i+j+1
4n+2

( 4n
i+j)∑2n

i=n−t+1

∑n−z
j=0

(2ni )(2nj )
( 4n
i+j)

y({n− t+ 1, .., 2n}, {n− z + 1, .., 2n}) =

∑2n
i=n−t+1

∑2n
j=n−z+1

(2ni )(2nj ) i+j+1
4n+2

(2n+2n
i+j )∑2n

i=n−t+1

∑2m
j=n−z+1

(2ni )(2nj )
( 4n
i+j)

DM’s expected utility is:

−1

3
+

1

4n+ 1

∑
y

(Pr(y) · y)) =

−1

3
+

1

4n+ 1

([∑n−t
i=0

∑m−z
j=0

(2ni )(2nj ) i+j+1
4n+2

( 4n
i+j)

]2
∑n−t

i=0

∑m−z
j=0

(2ni )(2nj )
(4n)i+j

+

[∑n−t
i=0

∑2n
j=m−z+1

(2ni )(2nj ) i+j+1
4n+2

( 4n
i+j)

]2
∑n−t

i=0

∑2n
j=m−z+1

(2ni )(2nj )
(4n)i+j

+
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[∑2n
i=n−t+1

∑m−z
j=0

(2ni )(2nj ) i+j+1
4n+2

( 4n
i+j)

]2
∑2n

i=n−t+1

∑m−z
j=0

(2ni )(2nj )
( 4n
i+j)

+

[∑2n
i=n−t+1

∑2n
j=m−z+1

(2ni )(2nj ) i+j+1
4n+2

( 4n
i+j)

]2
∑2n

i=n−t+1

∑2n
j=m−z+1

(2ni )(2nj )( 4n
i+j

) )

Next I write down the incentive constraints for expert 1 in Q′. It can be

shown that all other experts in the group with 2n experts face the same constraints.

The incentive constraints for expert 2n + 1, which are the same as the incentive

constraints for all other experts in group with 2m experts can be calculated similarly.

The incentive constraint for the upward deviation of expert 1 in Q′ are:

m−z∑
i=0

Pr(k′ = i|k = n−t)
(
y({n−t+1, .., 2n}, {0, .., n−z})−y({0, .., n−t}, {0, .., n−z})

)
(
y({n−t+1, .., 2n}, {0, .., n−z})+y({0, .., n−t}, {0, .., n−z})−2

n− t+ i+ 1

4n+ 2
−2b+

)
+

2m∑
i=n−z+1

Pr(k′ = i|k = n−t)
(
y({n−t+1, .., 2n}, {n−z+1, .., 2m})−y({0, .., n−t}, {n−z+1, .., 2n})

)
(
y({n−t+1, 2n}, {n−z+1, .., 2n})+y({0, .., n−t}, {n−z+1, .., 2n})−2

n− t+ i+ 1

4n+ 2
−2b+

)
= 0

The incentive constraints for the downward deviation of expert 1 in Q′ are:

n−z∑
i=0

Pr(k′ = i|k = n−t+1)
(
−y({n−t+1, 2n}, {0, .., n−z})+y({0, .., n−t}, {0, .., n−z})

)
(
y({n−t+1, 2n}, {0, .., n−z})+y({0, .., n−t}, {0, .., n−z})−2

n− t+ i+ 2

4n+ 2
−2b−

)
+

2n∑
i=n−z+1

Pr(k′ = i|k = n−t+1)
(
−y({n−t+1, 2n}, {n−z+1, .., 2n})+y({0, .., n−t}, {n−z+1, .., 2n})

)
(
y({n−t+1, 2n}, {n−z+1, .., 2n})+y({0, .., n−t}, {n−z+1, .., 2n})−2

n− t+ i+ 2

4n+ 2
−2b−

)
= 0

Proof of Proposition 4:
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Fix any network Q ∈ Q. First, I show that if PDM is implementable in Q,

then it is also implementable in a direct mechanism. Notice that per definition the

DM can commit to implement any partition PDM of the space of {0, 1}n, which is

the space of all possible signal realizations. Each pool of the partition consists of

a subset of {0, 1}n, where each digit of the element of {0, 1}n within a pool can be

unambiguously matched to a particular expert. Thus, if every expert sends either

message 0 or 1, then the set of all messages belongs to a unique element in some

pool.

Moreover, in a direct mechanism each expert observes only his own private

signal. In a network Q, however, he observes at least his own private signal. There-

fore, according to Lemma 1, the bias range which supports the equilibrium strategy

of an expert in a direct mechanism is weakly larger compared to the bias range

supporting his equilibrium strategy in a network Q. Therefore, the outcome of a

network Q is implementable in a direct mechanism.

Second, I show that if partition PDM is implementable in a direct mecha-

nism, it is not necessarily implementable in any network Q. The reason is that if

the message profile of experts resulting in PDM involves strategic coarsening of in-

formation, then there is at least one expert in Q who observes the signal of at least

one other expert. This is not the case in a direct mechanism in which each expert

only observes his own private signal. But then, according to Lemma 1, the range of

biases which support the equilibrium strategy of an expert in Q is weakly smaller

compared to the direct mechanism. Therefore, PDM is not necessarily incentive

compatible for at least one of the experts in Q. Q.E.D.

Characterizing equilibria in a tree network with 2 experts: From

Proposition 1 we know the star network generates equilibria in which n′ experts

fully reveal their signals to the DM if bi ≤ 1
2(n′+2) , i ∈ {1, 2}. From Proposition 2 we

know that an optimally designed line can transmit the same amount of information

as the star network.

Line network gives rise to additional equilibria which strictly dominate DM’s

equilibrium payoffs in the star.

One of those equilibria is characterized by the partition PDM = {{0}, {1, 2}}.
The decisions of DM are y(m1) = 1

4 an y(m′1) = 1
2 ×

1
2 + 1

2 ×
3
4 = 5

8 .

Denote the expert who is located at the bottom of the line by 2. Assume that

expert 2 communicates truthfully to expert 1. The incentive constraint of expert 1

if t1 = 0 is:
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−
∫ 1

0
(
1

4
− θ − b1)2f(θ|0, 2)dθ ≥ −

∫ 1

0
(
5

8
− θ − b1)2f(θ|0, 2)dθ.

If t1 = 1, the incentive constraint for expert 1 implies:

−
∫ 1

0
(
5

8
− θ − b1)2f(θ|1, 2)dθ ≥ −

∫ 1

0
(
1

4
− θ − b1)2f(θ|1, 2)dθ,

and if t1 = 2:

−
∫ 1

0
(
5

8
− θ − b1)2f(θ|2, 2)dθ ≥ −

∫ 1

0
(
1

4
− θ − b1)2f(θ|2, 2)dθ.

The above incentive constraints hold for

− 1

16
≤ b1 ≤

3

16
.

Finally, assuming that expert 1 communicates according to the partition

P1 = PDM , the incentive constraints for t2 = 0 is determined by:

−{2

3

∫ 1

0
(
1

4
− θ − b2)2f(θ|0, 2)dθ +

1

3

∫ 1

0
(
5

8
− θ − b2)2f(θ|1, 2)dθ} ≥

−{2

3

∫ 1

0
(
5

8
− θ − b2)2f(θ|0, 2)dθ +

1

3

∫ 1

0
(
5

8
− θ − b2)2f(θ|1, 2)dθ}

and the incentive constraint for t2 = 1 is determined by:

−{2

3

∫ 1

0
(
5

8
− θ − b1)2f(θ|1, 2)dθ +

1

3

∫ 1

0
(
5

8
− θ − b1)2f(θ|2, 2)dθ} ≥

−{2

3

∫ 1

0
(
5

8
− θ − b1)2f(θ|1, 2)dθ +

1

3

∫ 1

0
(
5

8
− θ − b1)2f(θ|2, 2)dθ}.

The above incentive constraints hold for

− 1

16
≤ b1 ≤

3

16
.

The corresponding welfare for the DM is EUDM (PDM ) = −0.052.
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Appendix C

Calculations for Chapter 3

C.0.1 Only one type of an expert reports truthfully

Only t1 reports truthfully

If the DM observes [0, 1] reported from both experts, she assigns some belief

that expert 1 is of t′1. In this case she chooses

y′ =
1(

1 + 1
2 + v

)
2

+
1

4

(
1− 1

1 + 1
2 + v

)
(3− 2v).

If she observes m1 = (0, 1) and m2 = t2 then her policy choice is

y′′ =
1 + 2d(

1 + 2d+2v
1+2d

)
4

+
1

2

(
1− 1

1 + 2d+2v
1+2d

)
(1− v + d).

Thus, the expected utility of the DM is:

EUA
DM = −1

4

∫ 1

0
(y′−θ)2 dθ−1

4

(∫ 1
2
+d

0
(y′′ − θ)2 dθ +

∫ 1

1
2
+d

(
1

4
(3 + 2d)− θ

)2

dθ

)
−

1

4

(∫ 1
2
−v

0

(
1

4
(1− 2v)− θ

)2

dθ +

∫ 1

1
2
−v

(y′ − θ)2 dθ

)
−

1

4

(∫ 1
2
−v

0

(
1

4
(1− 2v)− θ

)2

dθ +

∫ 1
2
+d

1
2
−v

(y′′ − θ)2 dθ +

∫ 1

1
2
+d

(
1

4
(3 + 2d)− x

)2

dθ

)
The incentives for all experts are derived in the appendix.
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Only t′1 reports truthfully

If the DM receives (0,1) from both experts, she chooses:

y′ =
1(

1 + 1
2 − v

)
2

+
1

4

(
1− 1

1 + 1
2 − v

)
(1− 2v),

and if she observes m1 = (0, 1) and m2 = (0, 12 + d, she chooses:

y′ =
1 + 2d(

1 + 1−2v
1+2d

)
4

+
1

4

(
1− 1

1 + 1−2v
1+2d

)
(1− 2v)

The expected utility of the DM is:

EUB
DM =

1

4

(
−
∫ 1

0
(y′ − θ)2 dθ

)
−1

4

(∫ 1
2
+d

0
(y′′ − x)2 dθ +

∫ 1

1
2
+d

(
1

4
(3 + 2d)− θ

)2

dθ

)
−

1

4

(∫ 1
2
−v

0
(y′ − θ)2 dx+

∫ 1

1
2
−v

(
1

4
(3− 2v)− θ

)2

dθ

)
−

1

4

(∫ 1
2
−v

0
(y′′ − θ)2 dθ +

∫ 1
2
+d

1
2
−v

(
1

2
(1 + d− v)− θ

)2

dθ +

∫ 1

1
2
+d

(
1

4
(3 + 2d)− θ

)2

dθ

)
The incentives for the experts which report their signals truthfully are de-

rived in the appendix.

Only t2 reports truthfully

Of the DM receives reports (0, 1) from both experts, she chooses:

y′ =
1(

1 + 1
2 − d

)
2

+
1

4

(
1− 1

1 + 1
2 − d

)
(3 + 2d),

and if she receives m1 = (12 − v, 1) and m2 = (0, 1) then she chooses:

y′′ =
3− 2v(

1 + 1−2d
1+2v

)
4

+
1

4

(
1− 1

1 + 1−2d
1+2v

)
(3 + 2d).

The expected utility of the DM is:
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EUC
DM = −1

4

∫ 1

0
(y′−θ)2 dθ−1

4

(∫ 1
2
+d

0

(
1

4
(1 + 2d)− θ

)2

dθ +

∫ 1

1
2
+d

(y′ − θ)2 dθ

)
−

1

4

(∫ 1
2
−v

0

(
1

4
(1− 2v)− θ

)2

dθ +

∫ 1

1
2
−v

(y′′ − θ)2 dθ

)
−

1

4

(∫ 1
2
−v

0

(
1

4
(1− 2v)− θ

)2

dθ +

∫ 1
2
+d

1
2
−v

(
1

2
(1 + d− v)− θ

)2

dθ +

∫ 1

1
2
+d

(y′′ − θ)2 dθ

)
The incentives for experts are relegated to the appendix.

Only t′2 reports truthfully

If the DM receives (0, 1) from both experts, she chooses

y′ =
3− 2v(

1 + 2d+2v
1+2v

)
4

+
1

2

(
1− 1

1 + 2d+2v
1+2v

)
(1 + d− v),

and if she observes m1 = (12 + v) and m2 = (0, 1) then she chooses:

y′′ =
3− 2v(

1 + 2d+2v
1+2v

)
4

+
1

2

(
1− 1

1 + 2d+2v
1+2v

)
(1 + d− v)

The expected utility of the DM is:

EUD
DM = −1

4

∫ 1

0
(y′−θ)2 dθ−1

4

(∫ 1
2
+d

0
(y′ − θ)2 dθ +

∫ 1

1
2
+d

(
1

4
(3 + 2d)− θ

)2

dθ

)
−

1

4

(∫ 1
2
−v

0

(
1

4
(1− 2v)− θ

)2

dθ +

∫ 1

1
2
−v

(y′′ − θ)2 dθ

)
−

1

4

(∫ 1
2
−v

0

(
1

4
(1− 2v)− θ

)2

dθ +

∫ 1
2
+d

1
2
−v

(y′′ − θ)2 dθ +

∫ 1

1
2
+d

(
1

4
(3 + 2d)− θ

)2

dθ

)

C.0.2 Centralization

Derivation of ICs if both experts report their signals truthfully
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Assume t1 = [0, 12 − v]. This type has the following posterior over the types

of E2: prob 1
2 over t2 = [0, 1] and prob 1

2 over t2 = [0, 12 + d]. IC:

−
∫ 1

2
−v

0
(
1− 2v

4
− θ − b1)2dθ −

∫ 1
2
−v

0
(
1− 2v

4
− θ − b1)2dθ ≥

−
∫ 1

2
−v

0
(
1

2
− θ − b1)2dθ −

∫ 1
2
−v

0
(
1 + 2d

4
− θ − b1)2dθ.

It can be rewritten as:

(
1

2
− 1− 2v

4
)(

1

2
+

1− 2v

4
− 2E1(θ|t1, t2)− 2b1)

+((
1 + 2d

4
− 1− 2v

4
)((

1 + 2d

4
+

1− 2v

4
− 2E1(θ|t1, t2)− 2b1) ≥ 0

(C.1)

Equation (1) can be rewritten as:

1 + 4d2 + 4v + 8dv + 8v2 − 8b1(1 + 2d+ 4v) ≥ 0 (C.2)

or:

b1 ≤
1 + 4d2 + 4v + 8dv + 8v2

8(1 + 2d+ 4v)
(C.3)

Notice that if v = d = 0 then b1 ≤ 1
8 .

Second, we look at ICs of t1 = [12 − v, 1]. The posterior beliefs over the types

of E2 are: prob 1
2 over t2 = [0, 1] and prob 1

2(2d+2v
1+2v ) over t2 = [0, 12 +d], and 1

2(1−2d1+2v )

over t2 = [12 + d, 1]. IC:

−
∫ 1

1
2
−v

(
3− 2v

4
− θ − b1)2dθ − (

2d+ 2v

1 + 2v
)

∫ 1
2
+d

1
2
−v

(
1− v + d

2
− θ − b1)2dθ ≥

−
∫ 1

1
2
−v

(
1

2
− θ − b1)2dθ − (

2d+ 2v

1 + 2v
)

∫ 1
2
+d

1
2
−v

(
1 + 2d

4
− θ − b1)2dθ

The IC constraints can be rewritten as:
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(1

2
− 3− 2v

4

)(1

2
+

3− 2v

4
− 2E1(θ|t1, t2)− 2b1

)
+

1− 2d

1 + 2v

(1 + 2d

4
− 1− v + d

2

)(1 + 2d

4
+

1− v + d

2
− 2E1(θ|t1, t2)− 2b1

)
≥ 0,

(C.4)

which can be rewritten as:

(1 + 8b1 − 2v)(d− v − 1)(2v − 1) ≥ 0. (C.5)

Since 2v− 1 < 0 and d− v− 1 < 0, the above condition can be rewritten as:

b1 ≥
2v − 1

8
.

Now, we are studying the ICs of 2. We, first, look at t2 = [0, 12 + d]. The

posterior beliefs over the types of E1 are: prob 1
2 over t1 = [0, 1] and prob 1

2(1−2v1+2d)

over t1 = [0, 12 − v] and prob 1
2(2d+2v

1+2d ) over t2 = [12 − v, 1]. IC:

−
∫ 1

2
+d

0
(
1 + 2d

4
− θ − b2)2dθ − (

2d+ 2v

1 + 2d
)

∫ 1
2
+d

1
2
−v

(
1− v + d

2
− θ − b2)2dθ ≥

−
∫ 1

2
+d

0
(
1

2
− θ − b2)2dθ − (

2d+ 2v

1 + 2d
)

∫ 1
2
+d

1
2
−v

(
3− 2v

4
− θ − b2)2dθ

The IC can be rewritten as:

(1

2
− 1 + 2d

4

)(1

2
+

1 + 2d

4
− 2E2(θ|t1, t2)− 2b2

)
+

2d+ 2vn

1 + 2d

(3− 2v

4
− 1− v + d

2

)(3− 2v

4
+

1− v + d

2
− 2E2(θ|t1, t2)− 2b2

)
≥ 0,

(C.6)

or

(2d− 1)(8b2 + 2d− 1)(1 + 4d+ 2v) ≥ 0. (C.7)

Since 2d− 1 ≤ 0, the IC can be rewritten as:
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b2 ≤
1− 2d

8
. (C.8)

Finally, we look at t2 = [12 + d, 1]. The posterior beliefs over types of E1 are:

prob 1
2 over t1 = [0, 1] and prob 1

2 over t1 = [12 − v, 1]. IC:

−
∫ 1

1
2
+d

(
3 + 2d

4
− θ − b2)2dθ −

∫ 1

1
2
+d

(
3 + 2d

4
− θ − b2)2dθ ≥

−
∫ 1

1
2
+d

(
1

2
− θ − b2)2dθ −

∫ 1

1
2
+d

(
3− 2v

4
− θ − b2)2dθ

The IC can be rewritten as:

(1

2
− 3 + 2d

4

)(1

2
+

3 + 2d

4
− 2E2(θ|t1, t2)− 2b2

)
+(3− 2v

4
− 3 + 2d

4

)(3− 2v

4
+

3 + 2d

4
− 2E2(θ|t1, t2)− 2b2

)
≥ 0

(C.9)

or:

b2 ≥
−d(4 + 8v)− 1− 8d2 − 4v2

1 + 4d+ 2v
.

One expert reports truthfully, and the other babbles

If only t1 reports truthfully:

The IC for t1 is:(
y11− 1

4
(1− 2v)

)(
y11 +

1

4
(1− 2v)− 2

4
(1− 2v)− 2b

)
+(

y21− 1

4
(1− 2v)

)(
y21 +

1

4
(1− 2v)− 2

4
(1− 2v)− 2b

)
= 0,

for t2 is:

(y11− y21)

(
y11 + y21− 2

4
(1 + 2d)− 2b

)
+

(2d+ 2v)(y11− y21)
(
y11 + y21− 2

2(1− v + d)− 2b
)

1 + 2d
= 0,
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and for t′2 solves:

y1− 1

4
(3 + 2d)− 2b = 0.

If only t′1 reports truthfully:

IC for t′1: (
y11a− 1

4
(3− 2v)

)(
y11a− 1

4
(3− 2v)− 2b

)
+

(2d+ 2v)
(
y21a− 1

2(1 + d− v)
) (

y21a− 1
2(1 + d− v)− 2b

)
1 + 2v

= 0,

for t2:

(
1 +

1− 2v

1 + 2d

)
(y11a− y21a)

(
y11a + y21a− 2

4
(1 + 2d)− 2b

)
+

(2d+ 2v)
(
1
4(3− 2v)− 1

2(1 + d− v)
) (

1
4(3− 2v)− 1

2(1 + d− v)− 2b
)

1 + 2d
= 0,

and for t′2:

1

2

(
y11a− 1

4
(3 + 2d)

)(
y11a− 1

4
(3 + 2d)− 2b

)
+

1

2

(
1

4
(3− 2v)− 1

4
(3 + 2d)

)(
1

4
(3 + 2d) +

1

4
(3− 2v)− 2

4
(3 + 2d)− 2b

)
= 0

If only t2 reports truthfully:

The IC for t1 solves:(
y1b− 1

4
(1− 2v)

)(
y1b− 1

4
(1− 2v)− 2b

)
+(

1

4
(1 + 2d)− 1

4
(1− 2v)

)(
1

4
(1 + 2d)− 1

4
(1− 2v)− 2b

)
= 0,

the IC for t′1 solves:

(
1 +

1− 2d

1 + 2v

)
(y1b− y2b)

(
y1b + y2b− 2

4
(3− 2v)− 2b

)
+

(2d+ 2v)
(
1
4(1 + 2d)− 1

2(1− v + d)
) (

1
4(1 + 2d)− 1

2(1− v + d)− 2b
)

1 + 2v
= 0,

and the IC for t2:
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(
y1b− 1

4
(1 + 2d)

)(
y1b− 1

4
(1 + 2d)− 2b

)
+

(2d+ 2v)
(
y2b− 1

2(1− v + d)
) (

y2b− 1
2(1− v + d)− 2b

)
1 + 2d

= 0

If only t′2 reports truthfully:

The IC for t1 is:

y2a− (1− 2v)/4− 2b = 0,

the IC for ? is:

(y2a− y2ab)

(
y2a + y2ab− 2

4
(3− 2v)− 2b

)
+

(2d+ 2v)(y2a− y2ab)
(
y2a + y2ab− 2

2(1− v + d)− 2b
)

1 + 2v
= 0.

Lemma 1b: For every bias of expert j, there exists an equilibrium in which at least

one informed type of j reports his signal truthfully.

Proof of Lemma 1b: Take an informed type of expert 1, t1. The argument is

similar for t2. I show that for any number of informed types of expert 2, there exists

an equilibrium in which t1 reports truthfully if b1 is below some positive upper

bound, b1 < a, a > 0.

Assume that k ∈ {0, 1, 2} informed types of expert 2 report truthfully. The

incentive constraints of t1 to report his type truthfully to the DM are as follows:

−1

2

(∫ 1

0
(y1−θ−b1)2f(θ|t1, t2 = [0, 1])dθ

)
−1

2

(∫ 1
2
+d

0
(y2−θ−b1)2f(θ|t1, t2 = [0,

1

2
+d])dθ+

∫ 1

1
2
+d

(y3 − θ − b1)2f(θ|t1, t2 = [
1

2
+ d, 1])dθ

)
≥

−1

2

(∫ 1

0
(y′1−θ−b1)2f(θ|t1, t2 = [0, 1])dθ

)
−1

2

(∫ 1
2
+d

0
(y′2−θ−b1)2f(θ|t1, t2 = [0,

1

2
+d])dθ+
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∫ 1

1
2
+d

(y′3 − θ − b1)2f(θ|t1, t2 = [
1

2
+ d, 1])dθ

)
,

where y′ stands for DM’s policy once t1 deviates to [0, 1]. Notice that y1, y2, y3

are not necessarily distinct because in equilibrium there might be a pooling between

the uninformed and an informed type of expert 2.

The above conditions can be rewritten as:

∑
t2∈T2

(y′i − yi)(y′i + yi − 2E1(θ|t1, t2)− b1) ≥ 0, i = 1, 2, 3.

Notice that y′i > yi for any i = 1, 2, 3 because of t1 deviates, then the DM

puts less weight on lower states while forming expectations about θ. Furthermore,

y′i > E1(θ|t1, t2) because by deviation the expectation of θ by the DM assigns more

weight to higher values of θ than by t1 since the DM assigns positive beliefs to types

going outside the range of [0, 12 − v]. Moreover, if t1 reports truthfully, then the

expectation of θ by the DM and t1 coincide. Therefore, there exists b′ > 0 such

that:

∑
t2∈T2

(y′i − yi)(y′i + yi − 2E1(θ|t1, t2)− b′) = 0, i = 1, 2, 3.

This b′ is the upper bound for the range of biases of expert 1 which support

truthtelling of t1 in an equilibrium in which k informed types of expert 2, k ∈
{0, 1, 2}, report their signal truthfully.

Similarly it can be shown that independent of the number of informed types

of player 2, equilibrium in which t′1 reports his signal truthfully is supported for a

range of biases which are larger than some lower bound b′′ < 0, where b′′ depends on

which types of expert 2 report their signals truthfully. The argument is symmetric

for expert 2.

Combining those insights, we see that for any bias there always exists an

equilibrium in which k informed types of expert j and at least one informed type of

expert i reports his signal truthfully.

Proof of Lemma 2: Suppose not. Suppose that there is an equilibrium in which

k ∈ {0, 1, 2} informed types of expert i and no informed types of expert j report

their signals truthfully. I show that at least one type of expert j has a profitable

and incentive-compatible deviation.

First, notice that according to Lemma 1b (see above in the Appendix), for
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any bias of expert j there exists an equilibrium in which at least one informed type

of j reports his signal truthfully. Denote this type by t̂j . If t̂j does not reveal his

signal to the DM in equilibrium, then he expects
∑

ti∈Ti
Ej [(yp − θ − bj)2|P (ti, k)],

where P (ti, k) is the partition of the interval [0, 1] conditional on type ti given that

k informed types of expert i report their signal truthfully, and p is an element of

the partition, p ∈ P (ti, k). If t̂j deviates and reports his type truthfully, then the

DM assigns belief 1 to t̂j once she observes the signal t̂j because information is

verifiable. In this case, the expected utility of t̂j is
∑

ti∈Ti
Ej [(yp′ − θ− bj)2|P ′(tik)],

where P ′(ti, k) is a finer expected partition of [0, 1] compared to P (k) since the DM

receives strictly more information once t̂j reports his signal truthfully.

Since any expected utility for any given partition P can be rewritten as

Ej [(yp − θ − b)2|P ] = Ej [(yp − θ)2|P ]− b2, the comnparison between the two above

expected utilities reveals that t̂j benefits from deviating and reporting his type.

Conditions on v and d under which an equilibrium in which 3 out

of 4 informed types of experts report truthfully dominates any other

equilibrium under centralization:

Fix any equilibrium in which 3 out of 4 informed types of experts report

their signals truthfully. Obviously, if a different equilibrium 2 informed types report

truthfully, and those 2 types are a strict subset of 3 types which reported truthfully in

the equilibrium mentioned above, then the new equilibrium is less informative. Thus,

we have to check conditions under which an equilibrium with 2 truthtelling types

dominates the equilibrium with 3 truthtelling types, where there is one types among

2 truthtelling types in the first equilibrium which is different from 3 truthtelling types

in another equilibrium. The following cases are to consider:

1. Among all informed types, only t1 and t′2 report truthfully. If the DM observes

reports [0, 1] from both experts, she chooses:

1(
1 +

(
1
2 + d

)
+
(
1
2 + v

)
+

( 1
2
+v)(2d+2v)

1+2v

)
2

+

(
1
2 + v

)
(3− 2v)

(
1
2 + d

)
(1 + 2d)(

1 +
(
1
2 + d

)
+
(
1
2 + v

)
+

( 1
2
+v)(2d+2v)

1+2v

)
4

(
1 +

(
1
2 + d

)
+
(
1
2 + v

)
+

( 1
2
+v)(2d+2v)

1+2v

)
4

+

((
1
2 + v

)
(2d+ 2v)

)
(1− v + d)(

(1 + 2v)
(

1 +
(
1
2 + d

)
+ 1 + 2d+2v

1+2v

))
2
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The expected utility is in this case is:

EU I
DM = −1

4

∫ 1

0
(y−x)2 dx−1

4

(∫ 1
2
−v

0

(
1

4
(1− 2v)− x

)2

dx+

∫ 1

1
2
−v

(y − x)2 dx

)
−

1

4

(∫ 1
2
+d

0
(y − x)2 dx+

∫ 1

1
2
+d

(
1

4
(3 + 2d)− x

)2

dx

)
−

1

4

(∫ 1
2
−v

0

(
1

4
(1− 2v)− x

)2

dx+

∫ 1
2
+d

1
2
−v

(y − x)2 dx+

∫ 1

1
2
+d

(
1

4
(3 + 2d)− x

)2

dx

)

Condition 1 : is strictly lower than the expected utility in equilibrium in which

t1, t
′
1 and t′2 report truthfully:

EU I
DM < EUD

DM .

Condition 2 : is strictly lower than the expected utility in equilibrium in which

t′1, t2 and t′2 report truthfully:

EU I
DM < EUB

DM .

2. Among all informed types, only t1 and t2 report truthfully. If the DM observes

reports [0, 1] from both experts, she chooses:

y =
1(

1 +
(
1
2 − d

)
+
(
1
2 + v

)
+
(
1
2 − d

))
2

+

(
1
2 − d

)
(3 + 2d)(

1 +
(
1
2 − d

)
+
(
1
2 + v

)
+
(
1
2 − d

))
4

+

(
1
2 + v

)
(3− 2v)(

1 +
(
1
2 − d

)
+
(
1
2 + v

)
+
(
1
2 − d

))
4

+

(
1
2 − d

)
(3 + 2d)(

1 +
(
1
2 − d

)
+
(
1
2 + v

)
+
(
1
2 − d

))
4

If the DM observes [0, 1] from expert 1 and [0, 12 +d] from expert 2, she chooses:

y′ =
1 + 2d(

1 + 2d+2v
1+2d

)
4

+
(2d+ 2v)(1− v + d)(

(1 + 2d)
(

1 + 2d+2v
1+2d

))
2

The expected utility is in this case is:
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EU II
DM = −1

4

∫ 1

0
(y−x)2 dx−1

4

(∫ 1
2
−v

0

(
1

4
(1− 2v)− x

)2

dx+

∫ 1

1
2
−v

(y − x)2 dx

)
−

1

4

(∫ 1
2
+d

0
(y′ − x)2 dx+

∫ 1

1
2
+d

(y − x)2 dx

)
−

1

4

(∫ 1
2
−v

0

(
1

4
(1− 2v)− x

)2

dx+

∫ 1
2
+d

1
2
−v

(y′ − x)2 dx+

∫ 1

1
2
+d

(y − x)2 dx

)

Condition 3 : is strictly lower than the expected utility in equilibrium in which

t′1, t2 and t′2 report truthfully:

EU II
DM < EUB

DM .

Condition 4 : is strictly lower than the expected utility in equilibrium in which

t1, t
′
1 and t′2 report truthfully:

EU II
DM < EUD

DM .

3. Among all informed types, only t′1 and t′2 report truthfully. If the DM observes

reports [0, 1] from both experts, she chooses:

y =
1(

1 +
(
1
2 + d

)
+
(
1
2 − v

)
+
(
1
2 − v

))
2

+

(
1
2 + d

)
(1 + 2d)(

1 +
(
1
2 + d

)
+
(
1
2 − v

)
+
(
1
2 − v

))
4

+

(
1
2 − v

)
(1− 2v)(

1 +
(
1
2 + d

)
+
(
1
2 − v

)
+
(
1
2 − v

))
4

+

(
1
2 − v

)
(1− 2v)(

1 +
(
1
2 + d

)
+
(
1
2 − v

)
+
(
1
2 − v

))
4

If she observes [12−v, 1] from expert 1 and [0, 1] from expert 2 then she chooses:

y′ =
1(

1 + 2d+2v
1+2v

)
2

+
1

2

(
1− 1

1 + 2d+2v
1+2v

)
(1− v + d)

The expected utility is in this case is:
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EU III
DM = −1

4

∫ 1

0
(y − x)2 dx− 1

4

(∫ 1
2
−v

0
(ya− x)2 dx+

∫ 1

1
2
−v

(y′ − x)2 dx

)
−

1

4

(∫ 1
2
+d

0
(y − x)2 dx+

∫ 1

1
2
+d

(
1

4
(3 + 2d)− x

)2

dx

)
−

1

4

(∫ 1
2
−v

0
(y − x)2 dx+

∫ 1
2
+d

1
2
−v

(y′ − x)2 dx+

∫ 1

1
2
+d

(
1

4
(3 + 2d)− x

)2

dx

)

Condition 5 : is strictly lower than the expected utility in equilibrium in which

t1, t2 and t′2 report truthfully:

EU III
DM < EUA

DM .

Condition 6 : is strictly lower than the expected utility in equilibrium in which

t1, t
′
1 and t′2 report truthfully:

EU III
DM < EUD

DM .

4. Among all informed types, only t′1 and t2 report truthfully. If the DM observes

reports [0, 1] from both experts, she chooses:

y =
1(

1 +
(
1
2 − d

)
+
(
1
2 − v

))
2

+

(
1
2 − d

)
(3 + 2d)(

1 +
(
1
2 − d

)
+
(
1
2 − v

))
4

+

(
1
2 − v

)
(1− 2v)(

1 +
(
1
2 − d

)
+
(
1
2 − v

))
4

If she observes [0, 1] from expert 1 and [0, 12 +d] from expert 2 then she chooses:

y′ =
1 + 2d(

1 + 1−2v
1+2d

)
4

+
(1− 2v)(1− 2v)(

(1 + 2d)
(

1 + 1−2v
1+2d

))
4

The expected utility is in this case is:

EU IV
DM = −1

4

∫ 1

0
(y11−x)2 dx−1

4

(∫ 1
2
−v

0
(y11− x)2 dx+

∫ 1

1
2
−v

(y13− x)2 dx

)
−
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1

4

(∫ 1
2
+d

0
(y12− x)2 dx+

∫ 1

1
2
+d

(y11− x)2 dx

)
−

1

4

(∫ 1
2
−v

0
(y12− x)2 dx+

∫ 1
2
+d

1
2
−v

(
1

2
(1− v + d)− x

)2

dx+

∫ 1

1
2
+d

(y13− x)2 dx

)

Condition 7 : is strictly lower than the expected utility in equilibrium in which

t1, t2 and t′2 report truthfully:

EU IV
DM < EUA

DM .

Condition 8 : is strictly lower than the expected utility in equilibrium in which

t1, t
′
1 and t′2 report truthfully:

EU IV
DM < EUD

DM .
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