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Abstract

In the thesis, we study properties of large combinatorial objects. We

analyze these objects from two different points of view.

The first aspect is analytic—we study properties of limit objects of com-

binatorial structures. We investigate when graphons (limits of graphs) and per-

mutons (limits of permutations) are finitely forcible, i.e., when they are uniquely

determined by finitely many densities of their substructures. We give examples

of families of permutons that are finitely forcible but the associated graphons

are not and we disprove a conjecture of Lovász and Szegedy on the dimension

of the space of typical vertices of a finitely forcible graphon. In particular, we

show that there exists a finitely forcible graphon W such that the topological

spaces T (W ) and T (W ) have infinite Lebesgue covering dimension.

We also study the dependence between densities of substructures. We

prove a permutation analogue of the classical theorem of Erdős, Lovász and

Spencer on the densities of connected subgraphs in large graphs.

The second aspect of large combinatorial objects we concentrate on

is algorithmic—we study property testing and parameter testing. We show

that there exists a bounded testable permutation parameter that is not finitely

forcible and that every hereditary permutation property is testable (in con-

stant time) with respect to the Kendall’s tau distance, resolving a conjecture

of Kohayakawa.
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Notation and Preliminaries

In this section we survey basic notation and terminology for graphs and per-

mutations that is used throughout the thesis.

We use N∗ for N ∪ {∞} and [n] for {1, . . . , n}. We also set [∞] = N. If

a and b are integers, then a mod b is equal to the integer x ∈ [b] with the same

remainder as a after division by b. An interval I in [n] is a set of integers of the

form {k | a ≤ k ≤ b} for some a, b ∈ [n]. If a < b and I 6= [n] we say that I is

proper.

A collection of sets S = {S1, . . . , S`} is a partition of a set S of order `

if S = ∪i∈[`]Si and Si ∩ Sj = ∅ for every i 6= j, i, j ∈ [`]. We denote the order

of a partition S by |S|.
We use λk for the k-dimensional Lebesgue measure and υk for its restric-

tion to the σ-algebra of Borel sets. (In different parts of the thesis, we need to

specifically consider either one or the other.) In other words, υk is a uniform

measure on the σ-algebra of Borel sets. We omit the subscript if the dimension

is clear from the context.

For a non-trivial convex polygon A ⊆ [0, 1]2, i.e., a convex polygon

different from a point (but it can be a segment), we define ΥA to be the unique

probability measure on the σ-algebra of Borel sets of [0, 1]2 with support A and

mass uniformly distributed inside A. That is, for every Borel set S ⊆ [0, 1]2,

ΥA(S) = υ2(A∩S)/υ2(A) for A with υ2(A) > 0, and ΥA(S) = υ1(A∩S)/υ1(A)

if υ2(A) = 0, in which case A must be a segment and υ1 is the uniform measure

on the line containing the segment A. In particular, Υ[0,1]2 coincides with υ2

on [0, 1]2. We set Υ = Υ[0,1]2 to simplify the notation.

A graph is a pair (V,E) where E ⊆
(
V
2

)
. The elements of V are called

vertices and the elements of E are called edges. The order of a graph G is the

number of its vertices and it is denoted by |G|.
If G and G′ are graphs, then G ∪ G′ is the disjoint union of G and G′

and G + G′ is the graph obtained from G ∪G′ by adding all edges between G

and G′. If G is a graph and U is a subset of its vertices, then G\U is the graph

obtained from G by removing the vertices of U and all edges containing at least

one vertex from U .
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The density t(H,G) of a graph H in a graph G is the probability that |H|
distinct vertices of G chosen uniformly at random induce a subgraph isomorphic

to H. If |H| > |G|, we set t(H,G) = 0.

A permutation of order n is a bijective mapping from [n] to [n]. The

order of a permutation π is also denoted by |π|. We will call a permutation

non-trivial if it has order greater than 1. The set of all permutations is denoted

by S and the set all permutations of order n by Sn. In what follows, we identify

a sequence of n distinct integers a1 . . . an between 1 and n with a permutation π

by setting π(i) = ai. For example, the identity permutation of order 4 is denoted

by 1234. An inversion in a permutation σ is a pair (i, j), i, j ∈ [|σ|], such that

i < j and σ(i) > σ(j).

Let σ be a permutation of order n and X = {x1, . . . , xk} ⊆ [n] such that

x1 < · · · < xk. A subpermutation induced by X in σ denoted by π = σ � X is a

permutation of order k such that π(j) < π(j′) if and only if σ(xj) < σ(xj′). For

example, the subpermutation of 7126354 induced by 3, 4, 6 is 132. We say that

σ contains π as a subpermutation if there exists X ⊆ [n] such that π = σ � X.

In some literature, subpermutations are referred to as patterns. However, we

follow the terminology from previous papers related to testing permutation

properties and to permutation limits, which also makes the terminology closer

to the case of graphs.

The density t(π, σ) of a permutation π of order k in a permutation σ

of order n is the probability that a (uniform) random subset of [n] of size k

induces a subpermutation π in σ. We set t(π, σ) = 0 if k > n.

2



Chapter 1

Introduction

In the thesis, we study properties of large combinatorial objects. We analyze

these objects from two different points of view.

The first aspect is analytic—we study properties of limit objects of com-

binatorial structures. We investigate when graphons (limits of graphs) and per-

mutons (limits of permutations) are finitely forcible, i.e., when they are uniquely

determined by finitely many densities of their substructures. In Chapter 2, we

give examples of families of permutons that are finitely forcible but the associ-

ated graphons are not.

Our efforts in studying finite forcibility culminate in Chapter 3, where

we disprove a conjecture of Lovász and Szegedy on the dimension of the space of

typical vertices of a finitely forcible graphon. In particular, we show that there

exists a finitely forcible graphon W such that the topological spaces T (W ) and

T (W ) have infinite Lebesgue covering dimension.

In Chapter 4, we study the dependence between densities of substruc-

tures. We prove a permutation analogue of the classical theorem of Erdős,

Lovász and Spencer on the densities of connected subgraphs in large graphs.

The second aspect of large combinatorial objects we concentrate on is

algorithmic—we study property testing and parameter testing algorithms, i.e.,

probabilistic algorithms for determining properties and parameters of large in-

put in sublinear time. In fact, this topic is related to combinatorial limits in

a closer way than it might seem at the first sight. Several results on property

testing have been proved or reproved using limit structures (see, e.g., [54, 69]).

In Chapter 5, we use limits of permutations to obtain a result on testing per-

mutation parameters. In particular, we give a positive answer to a question of

Hoppen, Kohayakawa, Moreira, and Sampaio [54, Question 5.5] whether there

exists a bounded testable permutation parameter that is not finitely forcible.

3



In Chapter 6, we show that every hereditary permutation property is

testable (in constant time) with respect to the Kendall’s tau distance, resolving

a conjecture of Kohayakawa [58].

In the remainder of this chapter, we survey definitions and put the results

contained in the thesis into the context of previous work.

1.1 Limit objects and finite forcibility

Research on analytic objects associated with convergent series of combinatorial

objects was initiated by the theory of limits of dense graphs [20–22,66], followed

by limits of sparse graphs [18,34], permutations [52,53], partial orders [56] and

others. This theory provides an analytic view of many standard concepts, e.g.,

the regularity method [68], and led to results in many areas of mathematics

and computer science, in particular in extremal combinatorics [9–12,49–51,59,

60,71,72,74–76] and property testing [54,69].

In the thesis, we focus on limits of dense graphs, which are called

graphons and limits of permutations, which are called permutons. We start

our exposition with the slightly simpler notion of permutation limits.

1.1.1 Limits of permutations

The theory of permutation limits was initiated by Hoppen, Kohayakawa, Mor-

eira, Ráth and Sampaio in [52, 53]. Here, we follow the analytic view on the

limit as used in [61], which also appeared in an earlier work of Presutti and

Stromquist [73].

An infinite sequence (πi)i∈N of permutations with |πi| → ∞ is convergent

if the sequence (t(σ, πi))i∈N converges for every permutation σ. With every

convergent sequence of permutations, one can associate the following analytic

object: a permuton is a probability measure Φ on the σ-algebraA of Borel sets of

the unit square [0, 1]2 such that Φ has uniform marginals, i.e., Φ([α, β]×[0, 1]) =

Φ([0, 1] × [α, β]) = β − α for every 0 ≤ α ≤ β ≤ 1. We denote the set of all

permutons by P.

We now describe the relation between convergent sequences of permuta-

tions and permutons. Let Φ be a permuton. For an integer n, let (x1, y1), . . . ,

(xn, yn) be points in [0, 1]2 sampled independently according to the distri-

bution Φ. Because Φ has uniform marginals, the x-coordinates of all these

points are mutually different with probability one. The same holds for the

y-coordinates. Assume that this is indeed the case. One can then define a

permutation π of order n based on the n points (x1, y1), . . . , (xn, yn) as follows:

let i1, . . . , in ∈ [n] be such that xi1 < xi2 < · · · < xin and define π to be the

4



Figure 1.1: The limits of sequences
(
π1
i

)
i∈N,

(
π2
i

)
i∈N,

(
π3
i

)
i∈N and

(
π4
i

)
i∈N.

unique bijective mapping from [n] to [n] satisfying π(j) < π(j′) if and only if

yij < yij′ . We say that a permutation π of order n obtained in the just described

way is a Φ-random permutation of order n. A uniformly random permutation

is a Υ-random permutation (note that Υ = Υ[0,1]2 is a permuton), i.e., each

permutation of order n is chosen with probability (n!)−1.

If Φ is a permuton and σ is a permutation of order n, then t(σ,Φ) is the

probability that a Φ-random permutation of order n is σ. We now recall the core

results from [52, 53]. For every convergent sequence (πi)i∈N of permutations,

there exists a unique permuton Φ such that t(σ,Φ) = limi→∞ t(σ, πi) for every

permutation σ. This permuton is the limit of the sequence (πi)i∈N. On the other

hand, let Φ be a permuton and (πi)i∈N a sequence such that πi is a Φ-random

permutation of order i. With probability one, this sequence is convergent and

its limit is Φ.

We now give four examples of the notions we have just defined (the

corresponding permutons are depicted in Figure 1.1). Let us consider a sequence(
π1
i

)
i∈N such that π1

i is the identity permutation of order i, i.e., π1
i (k) = k for

k ∈ [i]. This sequence is convergent and its limit is the the permuton I = ΥA

where A = {(x, x), x ∈ [0, 1]}. Similarly, the limit of a sequence
(
π2
i

)
i∈N, where

π2
i is the permutation of order i defined as π2

i (k) = i + 1 − k for k ∈ [i], is

the permuton Ω = ΥB where B = {(x, 1− x), x ∈ [0, 1]}. A little bit more

complicated example is the following: the sequence
(
π3
i

)
i∈N, where π3

i is the

permutation of order 2i defined as

π3
i (k) =





2k − 1 if k ∈ [i],

2(k − i) otherwise

is convergent and the limit of the sequence is the measure 1
2ΥC + 1

2ΥD, where

C = {(x/2, x), x ∈ [0, 1]} and D = {((x+ 1)/2, x), x ∈ [0, 1]}. Next, consider a

sequence (π4
i )i∈N such that π4

i is a uniformly random permutation of order i.

This sequence is convergent with probability one and its limit is the measure Υ

with probability one.

5



1.1.2 Limits of dense graphs

The other limit structures we consider are limits of dense graphs. We now

survey basic results related to the theory of dense graph limits as developed

in [20–22,66]. A sequence of graphs (Gi)i∈N with |G| → ∞ is convergent if the

sequence (t(H,Gi))i∈N converges for every H. The associated limit object is

called a graphon: it is a symmetric λ-measurable function from [0, 1]2 to [0, 1].

Here, symmetric stands for the property that W (x, y) = W (y, x) for every

x, y ∈ [0, 1]. If W is a graphon, then a W -random graph of order k is obtained

by sampling k random points x1, . . . , xk ∈ [0, 1] uniformly and independently

and joining the i-th and the j-th vertex by an edge with probability W (xi, xj).

As in the case of permutations, we write t(H,W ) for the probability that a

W -random graph of order |H| is isomorphic to H.

The densities of graphs in a graphon W can be expressed as integrals.

If W is a graphon and H is a graph of order k with vertices v1, . . . , vk and edge

set E, then

t(H,W ) =
k!

|Aut(H)|

∫

[0,1]k

∏

vivj∈E
W (xi, xj)

∏

vivj 6∈E
(1−W (xi, xj))dx1 . . . dxk

where Aut(H) is the automorphism group of H.

For every convergent sequence (Gi)i∈N of graphs, there exists a graphon

W such that t(H,W ) = limi→∞ t(H,Gi) for every graph H [66]. We call such

a graphon W a limit of (Gi)i∈N. On the other hand, for a graphon W , the

sequence (Gi)i∈N where Gi is a W -random graph of order i is convergent with

probability one and its limit is W with probability one.

Unlike in the case of permutations, the limit of a convergent sequence of

graphs is not unique. For a graphonW and a measure preserving transformation

ϕ : [0, 1]→ [0, 1], let Wϕ = W (ϕ(x), ϕ(y)). Then, if W is a limit of (Gi)i∈N, Wϕ

is also a limit of (Gi)i∈N. Let us introduce the following definition of equivalence

of graphons: two graphons W and W ′ are weakly isomorphic if t(H,W ) =

t(H,W ′) for every graph H. The following equivalent characterization of weak

isomorphism was given in [19].

Theorem 1. Two graphons U and W are weakly isomorphic if and only if there

exist measure preserving maps ϕ,ψ : [0, 1] → [0, 1] such that Uϕ = Wψ almost

everywhere.

1.1.3 Finite forcibility

In this section we introduce a notion of finite forcibility for graphons and per-

mutons. A graphon W is finitely forcible if there exists a finite set of graphs H

6



such that every graphon W ′ satisfying t(H,W ) = t(H,W ′) for every H ∈ H
is weakly isomorphic to W . Similarly, a permuton Φ is finitely forcible if there

exists a finite set S of permutations such that every permuton Φ′ satisfying

t(σ,Φ) = t(σ,Φ′) for every σ ∈ S is equal to Φ. In other words, a graphon or a

permuton is finitely forcible, if it can be uniquely determined (up to weak iso-

morphism in the case of graphons) by finitely many densities of substructures.

The question whether a graphon or a permuton is finitely forcible is

particularly interesting from the point of view of extremal combinatorics, since

every finitely forcible object corresponds to the unique solution of some ex-

tremal problem. Problems of this kind are also related to quasirandomness

and they were studied well before the theory of limits of combinatorial objects

emerged. For example, the results on quasirandom graphs from the work of

Chung, Graham and Wilson [24], Rödl [78] and Thomason [84,85] imply that the

homomorphic densities of K2 and C4 guarantee that densities of all subgraphs

behave as in the random graph Gn,1/2. In the language of graphons, this result

asserts that the graphon identically equal to 1/2 is finitely forcible by densities

of 4-vertex subgraphs. A similar result for permutations, which was originally

raised as a question by Graham, was proven by Král’ and Pikhurko [61] who

exploited the analytic view on permutation limits to show that the random

permuton is finitely forced by densities of permutations of order 4.

The results on graphs were generalized for stepwise graphons in [64].

Another example of a finitely forcible graphon is due to Diaconis, Homes, and

Janson [32]. Their result is equivalent to the statement that the half-graphon

W4(x, y) defined asW4(x, y) = 1 if x+y ≥ 1, andW4 = 0, otherwise, is finitely

forcible. These results were further extended by Lovász and Szegedy [65] who

also gave several conditions when a graphon is not finitely forcible. In Chapter 2,

we provide a generalization of these results in the realm of permutons.

1.1.4 Statements of our results

In Chapter 2, we focus on the interplay between finite forcibility of permutons

and graphons. In [64], Lovász and Sós proved a result for more complex

quasirandom graphs, which can be restated in the language of graphons as a

statement that any stepwise graphon1 is finitely forcible. We prove the following

analogue of this result for permutons.

1A graphon W is stepwise if there exists a partition of [0, 1] into finitely many measurable
sets S1, . . . , Sk, such that W is constant on Si × Sj for every i, j ∈ [k].
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Figure 1.2: The graphons associated with the first three permutons depicted in
Figure 1.1, where the point (0,0) is in the bottom left corner.

Theorem 2. If Φ is a permuton satisfying Φ =
∑

i∈[k] αiΥAi for some non-

negative reals α1, . . . , αk and some non-trivial polygons A1, . . . , Ak ⊆ [0, 1]2,

then Φ is finitely forcible.

A permutation π of order k can be associated with a graph Gπ of order

k as follows. The vertices of Gπ are the integers between 1 and k and ij is an

edge of G if and only if either i < j and π(i) > π(j), or i > j and π(i) < π(j),

i.e., i and j form an inversion. If (πi)i∈N is a convergent sequence of permuta-

tions, then the sequence of graphs (Gπi)i∈N is also convergent. Moreover, if two

convergent sequences of permutations have the same limit, then the graphons

associated with the two corresponding (convergent) sequences of graphs are

weakly isomorphic. In this way, we may associate each permuton Φ with a

graphon WΦ, which is unique up to a weak isomorphism (see Figure 1.2 for

examples). We will provide examples of classes of permutons that are finitely

forcible, while the associated graphons are not.

For k ∈ N∗, let (W )i∈[k] be a sequence of graphons and (pi)i∈[k] ∈ Rk+
be a sequence of reals such that

∑
i∈[k] pi = 1. We define a direct sum of

graphons Wi with weights pi denoted by W =
⊕

i∈[k] piWi as follows.

W (x, y) =





Wi(ϕi(x), ϕi(y)) if x, y ∈ Ji for some i ∈ [k], and

0 otherwise,

where

Ji =



i−1∑

j=1

pj ,

i∑

j=1

pj


 and

ϕi(x) =
x−∑i−1

j=1 pj

pi

for every i ∈ [k].

We now define the direct sum of permutons with weights in an analogous

way. For k ∈ N∗, a sequence of permutons (Φi)i∈[k] and (pi)i∈[k] ∈ Rk+ such that∑
i∈[k] pi = 1, the direct sum of permutons Φi with weights pi is denoted by

Φ =
⊕

i∈[k] piΦi and is defined as follows;

8



Φ1

Φ2

Φ3

Figure 1.3: The permuton 1
3Φ1 ⊕ 1

6Φ2 ⊕ 1
2Φ3.

Figure 1.4: The permutons Υ→1/2, Υ→2/3, Ω→1/2, and Ω→2/3.

Φ(S) =
∑

i∈[k]

piΦi(θi(S ∩ Ci))

for every Borel set S, where Ci = Ji × Ji and θi is a map from Ci to [0, 1]2

defined as θi((x, y)) = (ϕi(x), ϕi(y)) for every i ∈ [k]. See Figure 1.3 for an

example.

For a graphon W and α ∈ (0, 1), we define a graphon

W→α =
∞⊕

i=1

(1− α)αi−1W.

Similarly, for a permuton Φ and α ∈ (0, 1), we define

Φ→α =
∞⊕

i=1

(1− α)αi−1Φ.

Later, we prove finite forcibility of permutons Ω→α and Υ→α. (Recall

that Ω denotes the unique permuton with support consisting of the segment

between (0, 1) and (1, 0).) Examples of these permutons can be found in Fig-

ure 1.4.

Theorem 3. For every α ∈ (0, 1), the permutons Ω→α and Υ→α are finitely

forcible.
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Next, we turn our attention to graphons with similar recursive structure.

We show that graphons of this kind are not finitely forcible unless they are equal

to zero almost everywhere.

Theorem 4. For every α ∈ (0, 1) and every graphon W , if the graphon W→α

is finitely forcible, then W is equal to zero almost everywhere.

Consequently, W→α is finitely forcible only if W zero almost everywhere.

Observe that WΦ→α and (WΦ)→α are weakly isomorphic. It follows that the

graphons WΩ→α and WΥ→α associated with the permutons Ω→α and Υ→α are

weakly isomorphic to (WΩ)→α and (WΥ)→α, respectively and therefore not

finitely forcible.

In Chapter 3, we study a relation between finite forcibility and properties

of typical vertices of a graphon. Every graphon can be assigned a topological

space associated with its typical vertices as follows [67]. For a graphon W and

x ∈ [0, 1], we define a function

fWx (y) = W (x, y).

Since almost every function fWx belongs to L1([0, 1]), the graphon W naturally

defines a probability measure µ on L1([0, 1]). Let T (W ) be the set formed by

the functions f ∈ L1([0, 1]) such that every neighborhood of f in L1([0, 1]) has

positive measure with respect to µ. The set T (W ) with the topology inherited

from L1([0, 1]) is called the space of typical vertices of W . The vertices x

of W with fWx ∈ T (W ) are called typical vertices of a graphon W . A coarser

topology on T (W ) can be defined using the similarity distance dW between

f, g ∈ L1([0, 1]) defined as

dW (f, g) =

∫

[0,1]

∣∣∣∣∣∣∣

∫

[0,1]

W (x, y)(f(y)− g(y))dy

∣∣∣∣∣∣∣
dx.

The space with this topology is denoted by T (W ). The topological space T (W )

is always compact [63, Chapter 13] and its structure is related to weak regular

partitions of W [68].

Unlike T (W ), T (W ) does not need to be compact even if W is finitely

forcible [42]. Lovász and Szegedy [65, Conjecture 10] led by examples of known

finitely forcible graphons proposed the following:

Conjecture 1. If W is a finitely forcible graphon, then T (W ) is finite dimen-

sional.

10



They said that they intentionally do not specify which notion of dimen-

sion is meant here—a result concerning any variant would be interesting. The

Rademacher graphon WR constructed in [42] is finitely forcible and the space

T (WR) has infinite Minkowski dimension but its Lebesgue dimension is one and

T (WR) has both Minkowski and Lebesgue dimension one.

We construct a graphon W�, which we call a hypercubical graphon, such

that W� is finitely forcible and both T (W�) and T (W�) contain subspaces

homeomorphic to [0, 1]N.

Theorem 5. The hypercubical graphon W� is finitely forcible and the topolog-

ical spaces T (W�) and T (W�) contain subspaces homeomorphic to [0, 1]N.

The proof of Theorem 5 extends the methods from [42] and [70]. In

particular, Norine [70] constructed finitely forcible graphons with the space

of typical vertices of arbitrarily large (but finite) Lebesgue dimension. In his

construction, both T (W ) and T (W ) contain a subspace homeomorphic to [0, 1]d.

We show how the techniques from [42] and [70] can be refined to force a subspace

homeomorphic to [0, 1]N, which turned out to be quite technically challenging.

In Chapter 4, we use limit objects of permutations to prove a permuta-

tion analogue of a classical result of Erdős, Lovász and Spencer about subgraph

densities in a graph. In the case of graphs, Erdős, Lovász and Spencer [35]

considered three notions of substructure densities: the subgraph density, the

induced subgraph density and the homomorphism density. They showed that

these types of densities are strongly related and that the densities of connected

graphs are independent. The result has a natural formulation in the language of

graphons: the body of possible densities of any k connected graphs in graphons,

which is a subset of [0, 1]k, has a non-empty interior (in particular, it is full di-

mensional).

Our result asserts that the analogous statement is also true for permu-

tations. As in the case of graphs, it is natural to cast the result in terms of

limit objects—permutons. In particular, results of Chapter 4 (Theorem 32 and

Lemma 31) say that the body of possible densities of any k indecomposable

permutations in permutons has a non-empty interior and is full dimensional.

We use the notion of an indecomposable permutation, which is an analogue of

graph connectivity in the sense that an indecomposable permutation cannot

be split into independent parts. Specifically, a permutation σ of order n is

indecomposable if there is no m < n such that σ([m]) = [m].

11



1.2 Property and parameter testing

In Chapters 5 and 6 we focus on algorithmic aspects of large combinatorial

structures, in particular on property and parameter testing.

A property tester is an algorithm that decides whether a large input has

the considered property by querying only a small sample of it. Since the tester

is presented only with a part of the input, it is necessary to allow an error based

on the robustness of the tested property. Following [43, 45, 48, 79–81], we say

that a property P of a class of structures (e.g., functions, graphs) is testable

if for every ε > 0, there exists a randomized algorithm (a tester) A such that

the number of queries made by A is bounded by a function of ε independent of

the input and such that if the input has the property P, then A accepts with

probability at least 1− ε, and if the input is ε-far from P, then A rejects with

probability at least 1 − ε. The exact notion depends on the studied class C
of combinatorial structures, the considered property P and the chosen metric

on C. There are also some variants of this notion. For example, one can allow

only a one-sided error, i.e., A is required to accept whenever the input has the

property P, or the size of the sample may also depend (in a sublinear way) on

the input size (for example as in testing monotonicity of functions [1,33,38,44]).

A well-investigated area of property testing is testing properties of dense

graphs, i.e., graphs with quadratically many edges. One of the most significant

results in this area is that of Alon and Shapira [6] asserting that every heredi-

tary graph property, that is, a property preserved by taking induced subgraphs,

is testable with respect to the edit distance2. This extends several earlier re-

sults [7, 45, 77]. A characterization of testable graph properties can be found

in [3]. A logic perspective of graph property testing was addressed in [2,37] and

the connection to graph limits was explored in [69].

Besides the dense case, a property testing in sparse graphs has also

attracted substantial attention. The bounded degree graph case was introduced

in [47]. Unlike in the dense case, not all hereditary properties are testable [17]

though many properties can be tested [14,27,28,30,46], also see surveys [29,43].

Testing properties of other objects have also been intensively studied. For

example, results on testing properties of strings can be found in [4, 62], results

related to constraint satisfaction problems in [5], and to more algebraically

oriented properties in [13,15,16,81–83].

2The edit distance of a graph G from a graph property P is the minimum number of edges
that need to be modified (added or removed) in G to obtain a graph with property P, divided
by |G|2.
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In the thesis, we focus on testing of permutation properties. A permuta-

tion property P is a set of permutations. If π ∈ P, we say that a permutation π

has the property P. We often refer to permutation properties just as proper-

ties. We focus on properties which are hereditary, that is, closed under taking

subpermutations. In other words, if π has a hereditary property P, then any

subpermutation of π has the property P. An example of a hereditary property

is the set of all permutations not containing a fixed permutation as a subper-

mutation.

In Chapter 6, we study testing properties of permutations in a property

testing model analogous to the dense graph setting and we fill a gap related

to testing hereditary properties with respect to the counterpart of the edit

distance.

We consider testing permutation properties through subpermutations,

where the tester is presented with a random subpermutation of the input per-

mutation (the size of the subpermutation depends on the tested property and

the required error). In particular, if an input permutation π has order n, then

a random subset X ⊆ [n] is chosen and the tester is presented with π � X.

For a distance d between permutations of the same order, we define

distance of a permutation π from a property P as follows;

d(π,P) = min
σ∈P∩S|π|

d(π, σ).

In particular, d(π,P) =∞ if P does not contain any permutation of order |π|.
We say that a property P is testable with respect to a distance d if for every

ε > 0, there exist Mε and a tester Aε which, based on a random subpermutation

of size Mε, accepts an input permutation π ∈ P with probability at least 1− ε
and rejects an input permutation π such that d(π,P) > ε with probability at

least 1− ε.
There are several notions of distance between permutations, see [31].

The rectangular distance and the Kendall’s tau distance will be of most interest

to us. Let π and σ be two permutations of the same order n. The rectangular

distance of π and σ, which is denoted by dist�(π, σ), is defined as

max
S,T

| |π(S) ∩ T | − |σ(S) ∩ T | |
n

where the maximum is taken over all subintervals S and T of [n].

The Kendall’s tau distance distK(π, σ) is defined as

|{(i, j) | π(i) < π(j), σ(i) > σ(j), i, j ∈ [n]}|(
n
2

) .
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Alternatively, the Kendall’s tau distance of two permutations is the minimum

number of swaps of pairs of the elements with values differing by one needed

for transforming π to σ, normalized by
(
n
2

)
.

It can be shown that if two permutations are close in the Kendall’s

tau distance, then they are close in the rectangular distance. The converse is

not true: the rectangular distance of two random permutations is concentrated

around zero but their Kendall’s tau distance is concentrated around 1/2.

Hence, testing permutation properties with respect to the Kendall’s tau

distance is more difficult than with respect to the rectangular distance (at least

in the sense that every tester designed for testing with respect to the Kendall’s

tau distance also works for testing with respect to the rectangular distance

but not vice versa in general). The Kendall’s tau distance is considered to

correspond to the edit distance of graphs which appears in the hereditary graph

property testing, while the rectangular distance is considered to correspond to

the cut norm appearing in the theory of graphs limits, see [66]. The latter

is demonstrated in the notion of regularity decompositions of permutations

developed by Cooper [25, 26] and permutation limits introduced by Hoppen et

al. [52, 53] (also see [25,61] for relation to quasirandom permutations).

Another notion of distance between permutations, the minimum number

of insertions and deletions to transform one permutation to another normalized

by the size of permutations, was considered [36]. This distance is ”finer” than

the Kendall’s tau distance, that is, if two permutation are close in it, they are

close in the Kendall’s tau distance too but not vice versa. One of the results

in [36] implies that the hereditary properties of permutations are not testable

with constant sample size with respect to this distance. In particular, it was

shown that monotonicity of a permutation is testable with O(log n/ε) queries

and a logarithmic number of queries is needed.

Testing hereditary permutation properties with respect to the rectangu-

lar distance was addressed by Hoppen, Kohayakawa, Moreira and Sampaio [54,

55]. The main result of [54] is the following.

Theorem 6. Let P be a hereditary property. For every positive real ε, there

exists M such that if π is a permutation of order at least M with dist�(π,P) ≥
ε, then a random subpermutation of π of order M has the property P with

probability at most ε.

Theorem 6 implies that hereditary properties are testable through sub-

permutations with respect to the rectangular distance with one-sided error: the

tester accepts if and only if the random subpermutation has the property P
and thus the tester always accepts permutations having the property P.
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Kohayakawa [58] asked whether hereditary properties of permutations

are also testable through subpermutations with respect to the Kendall’s tau

distance, which he refers to as strong testability. We resolve this question in the

positive way. In particular, we prove the following analogue of Theorem 6.

Theorem 7. Let P be a hereditary property. For every positive real ε0, there

exists M0 such that if π is a permutation of order at least M0 with distK(π,P) ≥
ε0, then a random subpermutation of π of order M0 has the property P with

probability at most ε0.

Hence, we establish that hereditary properties are testable through sub-

permutations with respect to the Kendall’s tau distance with one-sided error.

Since the Kendall’s tau distance is the counterpart of the edit distance for

graphs, our result was proposed in [54] as a possible permutation analogue of

the result of Alon and Shapira [6]. It is also worth noting that our arguments

are purely combinatorial and are not based on regularity decompositions or on

the analysis of limit structures.

Parameter testing is a notion related to property testing which was in-

troduced by Borgs et al. [20, 21]. Here, the goal is to estimate some numerical

parameter of the input structure with high probability by querying only a small

sample of the input structure. For instance, Fisher and Newman [39] proved,

that the edit distance from a property P is a testable graph parameter for every

testable graph property P. That is, there is an algorithm which with high prob-

ability estimates the edit distance of an input graph from a testable property

up to an additive constant, using only constant number of queries.

In Chapter 5, we are concerned with testing permutation parameters. A

permutation parameter f is a function from S to R. We say that f is bounded

if for some constant K, |f(π)| ≤ K for every permutation π. A permutation

parameter f is testable if for every ε > 0 there exist an integer n0 and f̃ : Sn0 →
R such that for every permutation σ of order at least n0, a randomly chosen

subpermutation π of σ of size n0 satisfies |f(σ)− f̃(π)| < ε with probability at

least 1− ε.
Parameter testing for permutations was considered in [54]. The authors

introduced the related notions of finite approximability and finite forcibility of

permutation parameters.

A parameter f is finitely forcible if there exists a finite family of per-

mutations A such that for every ε > 0 there exist an integer n0 and a real

δ > 0 such that if σ and π are permutations of order at least n0 satisfying

|t(τ, σ) − t(τ, π)| < δ for every τ ∈ A, then |f(σ) − f(π)| < ε. The set A is

referred to as a forcing family for f .
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A permutation parameter f is finitely approximable if for every ε > 0

there exist δ > 0, an integer n0 and a finite family of permutations Aε such that,

if σ and π are permutations of order at least n0 satisfying |t(τ, σ)− t(τ, π)| < δ

for every τ ∈ Aε, then |f(σ)− f(π)| < ε.

In [54], it was proved that a bounded permutation parameter is testable

if and only if it is finitely approximable and the authors asked, whether such a

parameter is also finitely forcible. In Chapter 5, we show that this is not the

case.

Theorem 8. There exists a bounded permutation parameter f that is finitely

approximable but not finitely forcible.

Informally speaking, we utilize the proof methods used in Chapter 4 and

we construct a permutation parameter that oscillates but the level of oscillation

is bounded and the parameter is still testable (though it fails to be finitely

forcible).
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Chapter 2

Finitely forcible graphons and

permutons

In this chapter, we discuss finite forcibility of graphons and permutons. We

start with proving Theorem 2, which is an analogue of the result of Lovász

and Sós [64] for permutons. We then focus on finite forcibility of graphons and

permutons with infinite recursive structure. We show that there exist finitely

forcible permutons such that the associated graphons are not finitely forcible. In

Section 2.3, we prove finite forcibility of permutons Ω→α and Υ→α for α ∈ (0, 1).

In Section 2.4, we show that all graphons with analogous recursive structure,

including the graphons associated with Ω→α and Υ→α, are not finitely forcible.

2.1 Cumulative distribution function

For a permuton Φ, let FΦ be the function from [0, 1]2 to [0, 1] defined as

FΦ(x, y) = Φ ([0, x]× [0, y]). In other words, if we view Φ as a probability mea-

sure, FΦ is its joint cumulative distribution function. For example, for Φ = Υ,

we have FΦ(x, y) = xy. Observe that FΦ is always a continuous function sat-

isfying FΦ(x, 1) = FΦ(1, x) = x for every x ∈ [0, 1]. Furthermore, notice that

Φ 6= Φ′ implies FΦ 6= FΦ′ , that is, the function FΦ determines the permuton Φ.

The next theorem was implicitly proven in [61]. We include its proof for

completeness.

Theorem 9. Let p(x, y) be a polynomial and k a non-negative integer. There

exist a finite set S of permutations and coefficients γσ, σ ∈ S, such that

∫

[0,1]2

p(x, y)F kΦ(x, y)dλ =
∑

σ∈S
γσt(σ,Φ) (2.1)

for every permuton Φ.
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Proof. By additivity, it is sufficient to consider the case p(x, y) = xαyβ for non-

negative integers α and β. Fix a permuton Φ. Since Φ has uniform marginals,

the product xαyβF kΦ(x, y) for (x, y) ∈ [0, 1]2 is equal to the probability that out

of α + β + k points are chosen randomly independently based on Φ, the first

α points belong to [0, x]× [0, 1], the next β points belong to [0, 1]× [0, y], and

the last k points belong to [0, x]× [0, y]. So, the integral in (2.1) is equal to the

probability that the above holds for a uniform choice of a point (x, y) in [0, 1]2.

Since Φ is a measure with uniform marginals, a point (x, y) uniformly

distributed in [0, 1]2 can be obtained by sampling two points randomly inde-

pendently based on Φ and setting x to be the first coordinate of the first of

these two points and y to be the second coordinate of the second point. Thus,

we can consider the following random event. Let us choose α+β+k+ 2 points

independently at random based on Φ and denote by x the first coordinate of the

last but one point, and by y is the second coordinate of the last point. Then the

integral on the left hand side of (2.1) is equal to the probability that the first α

points belong to [0, x]× [0, 1], the next β points belong to [0, 1]× [0, y], and the

following k points belong to [0, x]× [0, y]. We conclude that the equation (2.1)

holds with S = Sα+β+k+2 and γσ equal to the probability that the following

holds for a random permutation π of order α+β+k+2: π(i) ≤ π(α+β+k+1)

for i ≤ α and for α+ β + 1 ≤ i ≤ α+ β + k, and σ(π(i)) ≤ σ(π(α+ β + k+ 2))

for α+ 1 ≤ i ≤ α+ β + k.

Instead of sampling two additional points to get a random point with

respect to the uniform measure on [0, 1]2, we can also sample just a single point,

which is a random point with respect to Φ. This gives the following.

Theorem 10. Let p(x, y) be a polynomial and k a non-negative integer. There

exist a finite set S of permutations and coefficients γσ, σ ∈ S, such that

∫

[0,1]2

p(x, y)F kΦ(x, y)dΦ =
∑

σ∈S
γσt(σ,Φ) (2.2)

for every permuton Φ.

Let now Sk be the set of permutations of order k with one distinguished

element; we call such permutations rooted . To denote rooted permutations,

we add a bar above the distinguished element: e.g., if the second element of

the permutation 2341 is distinguished, we write 2341. Note that
∣∣Sk
∣∣ = k! · k.

For σ ∈ Sk, let F σΦ(x, y) be the probability that the point (x, y) and k − 1

points randomly independently chosen based on Φ induce the permutation σ

with the distinguished element corresponding to the point (x, y). Observe that

FΦ(x, y) = F 12
Φ (x, y), F 12

Φ (x, y) + F 21
Φ (x, y) = x and F 12

Φ (x, y) + F 21
Φ (x, y) = y.
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A reader familiar with the concept of flag algebras developed by Razborov [74]

might recognize the notion of 1-labelled flags in the just introduced notation.

Similarly to Theorem 10, the following is true. Since the proof is com-

pletely analogous to that of Theorem 9, we decided to state the theorem without

giving its proof.

Theorem 11. Let Σ be a multiset of rooted permutations. There exist a finite

set S of permutations and coefficients γσ, σ ∈ S, such that

∫

[0,1]2

∏

σ∈Σ

F σΦ(x, y)dΦ =
∑

σ∈S
γσt(σ,Φ) (2.3)

for every permuton Φ.

2.2 Permutons with finite structure

In this section, we give a sufficient condition on a permuton to be finitely

forcible. A function f : [0, 1]2 → R is called piecewise polynomial if there exist

finitely many polynomials p1, . . . , pk such that f(x, y) ∈ {p1(x, y), . . . , pk(x, y)}
for every (x, y) ∈ [0, 1]2.

Theorem 12. Every permuton Φ such that FΦ is piecewise polynomial is

finitely forcible.

Proof. Let Φ be a permuton such that FΦ is piecewise polynomial, that is,

there exist polynomials p1, . . . , pk such that FΦ(x, y) ∈ {p1(x, y), . . . , pk(x, y)}
for every (x, y) ∈ [0, 1]2. Let F be the set of all continuous functions f on [0, 1]2

such that f(x, y) ∈ {p1(x, y), . . . , pk(x, y)} for every (x, y) ∈ [0, 1]2. The set F
is finite. Indeed, let

q(x, y) =
∏

1≤i<j≤k
(pj(x, y)− pi(x, y))

and let Q be the set of all points (x, y) ∈ R2 such that q(x, y) = 0. By

Harnack’s curve theorem, the set Q has finitely many connected components.

Bézout’s theorem implies that the number of branching points in each of these

components is finite and these points have finite degrees. Consequently, R2 \Q
has finitely many components. If A1, . . . , A` are all the connected components

of [0, 1]2 \Q, then each function f ∈ F coincides with one of the k polynomials

p1, . . . , pk on every Ai. So, |F| ≤ k`.
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Observe that the function FΦ(x, y) is continuous since the measure Φ has

uniform marginals. By the Stone-Weierstrass theorem, there exist a polynomial

p(x, y) and ε > 0 such that

∫

[0,1]2

(FΦ(x, y)− p(x, y))2 dλ < ε , and (2.4)

∫

[0,1]2

(f(x, y)− p(x, y))2 dλ > ε for every f ∈ F , f 6= FΦ. (2.5)

Let ε0 be the value of the left hand side of (2.4). We claim that the unique

permuton Φ′ satisfying

∫

[0,1]2

k∏

i=1

(FΦ′(x, y)− pi(x, y))2 dλ = 0 , and (2.6)

∫

[0,1]2

(FΦ′(x, y)− p(x, y))2 dλ = ε0 (2.7)

is Φ. Assume that Φ′ is a permuton satisfying both (2.6) and (2.7). The

equation (2.6) implies that FΦ′ ∈ F . Next, (2.5), (2.7), and (2.4) yield that

FΦ′ 6= f for every f ∈ F , f 6= FΦ. We conclude that FΦ′ = FΦ and thus Φ′ = Φ.

By Theorem 9, the left hand sides of (2.6) and (2.7) can be expressed as

finite linear combinations of densities t(σ,Φ). Let S be the set of all per-

mutations appearing in these linear combinations. Any permuton Φ′ with

t(σ,Φ′) = t(σ,Φ) for every σ ∈ S satisfies both (2.6) and (2.7) and thus it

must be equal to Φ. This shows that Φ is finitely forcible.

We immediately obtain the following Theorem 2, which we restate below.

Theorem 2. If Φ is a permuton satisfying Φ =
∑

i∈[k] αiΥAi for some non-

negative reals α1, . . . , αk and some non-trivial polygons A1, . . . , Ak ⊆ [0, 1]2,

then Φ is finitely forcible.

Proof. Let Fi, i ∈ [k], be the function from [0, 1]2 to [0, 1] defined as Fi(x, y) =

ΥAi ([0, x]× [0, y]). Clearly, each function Fi is piecewise polynomial. Since

FΦ =
∑k

i αiFi, the finite forcibility of Φ follows from Theorem 12.

A particular case of permutons that are finitely forcible by Theorem 2 is

the following. If k is an integer, z1, . . . , zk ∈ [0, 1] are reals summing to one and

M is a square matrix of order k with entries being non-negative reals summing
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Figure 2.1: The permuton ΦM constructed as an example at the end of Sec-
tion 2.2. The gray area in the picture is the support of the measure and different
shades correspond to the density of the measure.

to zi in the i-th row and in the i-th column, we can define a permuton ΦM as

ΦM =
k∑

i,j=1

MijΥAij ,

where Aij = [si−1, si]× [sj−1, sj ], i, j ∈ [k] and si = z1 + · · ·+ zi (in particular,

s0 = 0 and sk = 1). For instance, if z1 = z2 = z3 = 1/3 and

M =




0 0 1/3

2/9 1/9 0

1/9 2/9 0




,

we get the permuton depicted in Figure 2.1.

2.3 Permutons with infinite structure

In this section, we prove Theorem 3 which asserts that permutons with infinite

structure Ω→α and Υ→α are finitely forcible for every α ∈ (0, 1). We start with

proving finite forcibility of Ω→α. We prove finite forcibility of Υ→α later in this

section as Theorem 16.

Theorem 13. For every α ∈ (0, 1), the permuton Ω→α is finitely forcible.

Proof. We claim that any permuton Φ satisfying

t(231,Φ) + t(312,Φ) = 0 , (2.8)

t(21,Φ) = (1− α)2
∞∑
i=0

α2i , and (2.9)

∫
[0,1]2

(
1− x− y + FΦ(x, y)− α

1−α (x+ y − 2FΦ(x, y))
)2

dΦ = 0 (2.10)

is equal to Ω→α. This would prove the finite forcibility of Ω→α by Theorem 10.

Note that the permuton Ω→α satisfies (2.8), (2.9), and (2.10).
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Assume that a permuton Φ satisfies (2.8), (2.9), and (2.10). Let X be

the support of Φ and consider the binary relation R defined on the support of

Φ such that (x, y)R(x′, y′) if

• x = x′ and y = y′, or

• x < x′ and y > y′, or

• x > x′ and y < y′.

The relation R is an equivalence relation. Indeed, the reflexivity and sym-

metry is clear. To prove transitivity, consider three points (x, y), (x′, y′) and

(x′′, y′′) such that (x, y)R(x′, y′) and (x′, y′)R(x′′, y′′) but it does not hold that

(x, y)R(x′′, y′′). By the definition of R, either x < x′ and x′′ < x′, or x > x′ and

x′′ > x′. If x < x′ and x′′ < x′, then we obtain that t(231,Φ) > 0 unless x = x′′

(recall that R is defined on the support of Φ). We can now assume that x = x′′

and y < y′′. Since Φ has uniform marginals, the support of Φ intersects at least

one of the open rectangles (0, x)× (y, y′′), (x, x′)× (y, y′′) and (x′, 1)× (y, y′′).

However, this yields that t(231,Φ) > 0 in the first two cases and t(312,Φ) > 0

in the last case. The case x > x′ and x′′ > x′ is handled in an analogous way.

Let R be the set of equivalence classes of R. If A ∈ R, let Ax and Ay

be the projections of A on the x and y axes. It is not hard to show that Ax

is a closed interval for each A ∈ R and these intervals are internally disjoint

for different choices of A ∈ R. The same holds for the projections on the y

axis. Since Φ has uniform marginals, the intervals Ax and Ay must have the

same length for every A ∈ R. Moreover, the definition of R implies that if Ax

precedes A′x, then Ay also precedes A′y for any A,A′ ∈ R. We conclude that

there exists a set I of internally disjoint closed intervals such that

⋃

[z,z′]∈I

[
z, z′

]
= [0, 1] and

the support of Φ is equal to (because the density of subpermutations 231 and

312 is zero and the measure Φ has uniform marginals)

⋃

[z,z′]∈I

{
(x, z′ − x+ z), x ∈

[
z, z′

]}
.

Note that some intervals contained in I may be formed by single points. Let

I0 be the subset of I containing the intervals of positive length.

Let [z, z′] ∈ I0 and let I = {(x, z′ − x+ z), x ∈ [z, z′]}. Since Φ([0, x]×
[0, y]) = Φ([0, z] × [0, z]) and the measure Φ has uniform marginals, it follows

that FΦ(x, y) = z. The equality (2.10) implies that the (continuous) function
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integrated in (2.10) is zero for every (x, y) ∈ I. Substituting x+ y = z+ z′ and

FΦ(x, y) = z into this function implies

z′ = z + (1− α)(1− z) . (2.11)

Let Z be the set formed by the left end points of intervals in I0. Define

z1 to be the minimum element of Z, and in general zi to be the minimum

element of Z \ ⋃
j<i
{zj}. The existence of these elements follows from (2.11) and

the fact that the intervals in I0 are internally disjoint. If Z is finite, we set

zk = 1 for k > |Z|. We derive from the definition of Z and from (2.11) that

I0 =
{

[zi, zi + (1− α)(1− zi)], i ∈ N+
}
\ {[1, 1]} .

Consequently, we obtain

t(21,Φ) =
∞∑

i=1

(1− α)2(1− zi)2 = (1− α)2
∞∑

i=1

(1− zi)2 . (2.12)

For j ∈ N, we define βj ∈ [0, 1] as follows:

βj =





1− z1 for j = 1,

1−zj
α(1−zj−1) if zj 6= 1 and j > 1, and

0 otherwise.

The equation (2.12) can now be rewritten as

t(21,Φ) = (1− α)2
∞∑

i=1

α2(i−1)
i∏

j=1

β2
j . (2.13)

Hence, the equality (2.9) can hold only if βj = 1 for every j which implies that

zi = 1− αi−1. Consequently, the permutons Φ and Ω→α are identical.

We remark that any permuton Φ obeying the constraints (2.8) and (2.10)

must also be equal to Ω→α. However, we decided to include the additional

constraint (2.9) to make the presented arguments more straightforward.

Next, we show finite forcibility of the permuton Υ→α for every α ∈ (0, 1).

Its structure is similar to that of Ω→α. The proof proceeds along similar lines

as the proof of Theorem 13 but we have to overcome several new technical

difficulties.

We start by proving an auxiliary lemma.
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Lemma 14. There exist a finite set S of permutations and reals γσ, σ ∈ S,

such that the following is equivalent for every permuton Φ:

• ∑
σ∈S

γσt(σ,Φ) = 0,

• Φ restricted to [x1, x2]×[y2, y1] is a (possibly zero) multiple of Υ[x1,x2]×[y2,y1]

for any two points (x1, y1) and (x2, y2) of the support of Φ with x1 < x2

and y1 > y2.

Proof. The proof technique is similar to that used in [61]. For intervals I, J ⊆
[0, 1] and A = I × J , let υA(X) = υ(X ∩ A) for every Borel set X ⊆ [0, 1]2.

Equivalently, υA(X) = υ(A) ·ΥA(X). Let (x1, y1) and (x2, y2) be two points of

the support of Φ with x1 < x2 and y1 > y2. By Cauchy-Schwarz inequality, the

measure Φ restricted [x1, x2]× [y2, y1] is a multiple of υ[x1,x2]×[y2,y1] if and only

if it holds that



∫

(x,y)

Φ([x1, x]× [y2, y])2 dυ[x1,x2]×[y2,y1]


×



∫

(x,y)

(x− x1)2(y − y2)2 dυ[x1,x2]×[y2,y1]


−



∫

(x,y)

(x− x1)(y − y2)Φ([x1, x]× [y2, y]) dυ[x1,x2]×[y2,y1]




2

= 0 (2.14)

Since the left hand side of (2.14) cannot be negative, we obtain that the second

statement in the lemma is equivalent to

∫

(x1,y1)

∫

(x2,y2)

∫

(x,y)

∫

(x′,y′)

(x′ − x1)2(y′ − y2)2 · Φ ([x1, x]× [y2, y])2−

(x− x1)(y − y2) · Φ ([x1, x]× [y2, y]) · (x′ − x1)(y′ − y2) · Φ([x1, y2]× [x′, y′])

dυ[x1,x2]×[y2,y1] dυ[x1,x2]×[y2,y1] dΦ dΦ = 0 (2.15)

In the rest of the proof, we show that the left hand side of (2.15) can be

expressed as a linear combination of finitely many subpermutation densities.

Since this argument follows the lines of the proofs of Theorems 9–11, we only

briefly explain the main steps.

The left hand side of (2.15) is equal to the expected value of the inte-

grated function in (2.15) for two points (x1, y1) and (x2, y2) randomly chosen in

[0, 1]2 based on Φ and two points (x, y) and (x′, y′) randomly chosen in [0, 1]2

based on Υ when treating the value of the integrated function to be zero if
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x1 ≥ x2, y1 ≥ y2, x 6∈ [x1, x2], x′ 6∈ [x1, x2], y 6∈ [y1, y2], or y′ 6∈ [y1, y2].

Such points (x1, y1), (x2, y2), (x, y), and (x′, y′) can be obtained by sampling

six random points from [0, 1]2 based on Φ since Φ has uniform marginals (see

the proof of Theorem 9 for more details). When the four points (x1, y1),

(x2, y2), (x, y), and (x′, y′) are sampled, any of the quantities x1, y2, x, y, x′, y′,

Φ ([x1, y2]× [x, y]), and Φ([x1, y2]× [x′, y′]) appearing in the product is equal to

the probability that a point randomly chosen in [0, 1]2 based on Φ has a certain

property in a permutation determined by the sampled points. Since we need

to sample six additional points to be able to determine each of the products

appearing in (2.15),the left hand side of (2.15) is equal to a linear combina-

tion of densities of 12-element permutations with appropriate coefficients. We

conclude that the lemma holds with S = S12.

Analogously, one can prove the following lemma. Since the proof follows

the lines of the proof of Lemma 14, we omit further details.

Lemma 15. There exist a finite set S of permutations and reals γσ, σ ∈ S

such that the following is equivalent for every permuton Φ:

• ∑σ∈S γσt(σ,Φ) = 0,

• if (x1, y1), (x2, y2), and (x3, y3) are three points of the support of Φ with

x1 < x2 < x3 and y2 < y3 < y1, then Φ restricted to [x2, x3]× [y2, y3] is a

(possibly zero) multiple of Υ[x2,x3]×[y2,y3].

We are now ready to show that each permuton Υ→α, α ∈ (0, 1), is finitely

forcible.

Theorem 16. For every α ∈ (0, 1), the permuton Υ→α is finitely forcible.

Proof. Let S be the union of the two sets of permutations from Lemma 14 and

Lemma 15. Next, consider the following eight functions:

F↖Φ (x, y) = F 21
Φ (x, y) , f↖Φ (x, y) = F 231

Φ (x, y) + F 321
Φ (x, y) ,

F↗Φ (x, y) = F 12
Φ (x, y) , f↗Φ (x, y) = F 231

Φ (x, y) ,

F↙Φ (x, y) = F 12
Φ (x, y) , f↙Φ (x, y) = F 312

Φ (x, y) ,

F↘Φ (x, y) = F 21
Φ (x, y) , f↘Φ (x, y) = F 312

Φ (x, y) + F 321
Φ (x, y) .

To save space in what follows, we often omit parameters when no confusion can

arise, e.g., we write F↘Φ for the value F↘Φ (x, y) if x and y are clear from the

context.
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We claim that any permuton satisfying the following three conditions is

equal to Υ→α:

t(σ,Φ) = t(σ,Υ→α) for every σ ∈ S, (2.16)

∫

[0,1]2

(
(1− α)

(
F↗Φ f↘Φ − F

↘
Φ f↗Φ

)
f↖Φ

− α
(
F↖Φ f↖Φ f↘Φ + F↘Φ f↖Φ f↘Φ + F↖Φ f↙Φ f↘Φ + F↘Φ f↖Φ f↗Φ

))2
dΦ = 0 ,

(2.17)

and

t(21,Φ) =
(1− α)2

2

∞∑

i=0

α2i . (2.18)

This would prove the finite forcibility of Υ→α by Theorem 11.

Suppose that a permuton Φ satisfies (2.16), (2.17), and (2.18). Let X

be the support of Φ and consider the binary relation R defined on the support

of Φ such that (x, y)R(x′, y′) if

• x = x′ and y = y′,

• x < x′ and y > y′, or

• x > x′ and y < y′.

Unlike in the proof of Theorem 13, the relation R need not be an equivalence

relation. Instead, we consider the transitive closure R0 of R and let R be the

set of the equivalence classes of R0.

We define ρ((x, y), (x′, y′)), where (x, y) and (x′, y′) are two points of the

support of Φ such that (x, y)R(x′, y′), as follows

ρ
(
(x, y), (x′, y′)

)
=





Φ([x,x′]×[y′,y])
(x′−x)(y−y′) if x < x′ and y > y′,

Φ([x′,x]×[y,y′])
(x−x′)(y′−y) if x > x′ and y < y′, and

0 otherwise.

Since Φ satisfies (2.16), Lemma 14 implies that any three points (x, y), (x′, y′)

and (x′′, y′′) of the support of Φ such that (x, y)R(x′, y′) and (x′, y′)R(x′′, y′′)

satisfy ρ((x, y), (x′, y′)) = ρ((x′, y′), (x′′, y′′)). In particular, ρ((x, y), (x′, y′)) has

the same value for all pairs of points (x, y) and (x′, y′) with (x, y)R(x′, y′) lying

in the same equivalence class of R0. So, we may define ρ(A) to be this common

value for each equivalence class A ∈ R or for a closure of such class.
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As in the proof of Theorem 13, we define Ax and Ay to be the projections

of an equivalence class A ∈ R on the x and y axes. The definition of R yields

that Ax and Ay are closed intervals for all A ∈ R and these intervals are

internally disjoint for different choices of A ∈ R. Since Φ has uniform marginals,

the intervals Ax and Ay must have the same length for every A ∈ R. As in the

proof of Theorem 13, we conclude that there exists a set I of internally disjoint

closed intervals such that

⋃

[z,z′]∈I

[z, z′] = [0, 1] ,

the support of Φ is a subset of

⋃

[z,z′]∈I

[z, z′]× [z, z′] ,

and the interior of each of these squares intersects at most one class A ∈ R.

Since some intervals contained in I may be formed by single points, we define

I0 to be the subset of I containing the intervals of positive length.

Let [z, z′] ∈ I0 and let A be the closure of the corresponding equivalence

class from R. Let f(x), x ∈ [z, z′], be the minimum y such that (x, y) belongs

to A; similarly, g(x) denotes the maximum such y.

Assume first that ρ(A) > 0. Since Φ has uniform marginals, it holds

that g(x) − f(x) = ρ(A)−1 for every x ∈ (z, z′). From (2.16) and Lemma 14

we see that the functions f and g are non-decreasing, and similarly (2.16) and

Lemma 15 imply that f and g are non-increasing. We conclude that A =

([z, z′]× [z, z′]) and ρ(A) = (z′ − z)−1.

Assume now that ρ(A) = 0. Lemma 15 and (2.16) imply that if (x, y) ∈
(z, z′)×(z, z′) belongs to the support of Φ, then Φ([x, z′]×[z, y]) = 0 (otherwise,

ρ(A) > 0). But then (x, y) cannot be in relation R with another point of the

support of Φ. So, we conclude that the case ρ(A) = 0 cannot appear.

The just presented arguments show the support of the measure Φ is

equal to ⋃

[z,z′]∈I

[z, z′]× [z, z′]

and the measure is uniformly distributed inside each square [z, z′] × [z, z′],

[z, z′] ∈ I0.

Let [z, z′] be one of the intervals from I0. Recall that we have argued

that

Φ
(
[0, z]× [0, z] ∪ [z, z′]× [z, z′] ∪ [z′, 1]× [z′, 1]

)
= 1
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(0, 0) z x z′

z

y
z′

x1 x2

y1

y2

(0, 0) x

y

F↖
µ (x, y)

F↙
µ (x, y)

F↗
µ (x, y)

F↘
µ (x, y)

Figure 2.2: Notation used in equalities (2.20) and (2.21). Areas that can contain
the support of Φ are drawn in grey.

and the measure Φ is uniform inside the square [z, z′]× [z, z′] (see Figure 2.2).

By (2.17), the following holds for almost every point of the support of Φ:

(1− α)
(
F↗Φ f↘Φ − F

↘
Φ f↗Φ

)
f↖Φ = α

(
F↖Φ f↖Φ f↘Φ + F↘Φ f↖Φ f↘Φ +

F↖Φ f↙Φ f↘Φ + F↘Φ f↖Φ f↗Φ
)

. (2.19)

In particular, this holds for all points in [z, z′] × [z, z′] since the functions ap-

pearing in (2.19) are continuous.

Let (x, y) be a point from (z, z′) × (z, z′). Let x1 = x − z, x2 = z′ − x,

y1 = y − z, and y2 = z′ − y (see Figure 2.2). Since all the quantities appearing

in (2.19) are positive, we may rewrite (2.19) as

(1− α)

(
F↗Φ − F

↘
Φ

f↗Φ

f↘Φ

)
= α

(
F↖Φ + F↘Φ + F↖Φ

f↙Φ

f↖Φ
+ F↘Φ

f↗Φ

f↘Φ

)
. (2.20)

Observe that F↗Φ (x, y) = Φ([x, 1]× [y, 1]), F↖Φ (x, y) = Φ([z, x]× [y, z′]) = x1y2
z′−z ,

and F↘Φ (x, y) = Φ([x, z′]× [z, y]) = x2y1
z′−z . Further observe that

f↗Φ (x, y)

f↘Φ (x, y)
=

2x22y1y2
2(z′−z)2

x22y
2
1

(z′−z)2
=
y2

y1
and

f↙Φ (x, y)

f↖Φ (x, y)
=

2x21y1y2
2(z′−z)2

x21y
2
2

(z′−z)2
=
y1

y2
.

Plugging these observations in (2.20), we obtain that

(1− α)

(
Φ([x, 1]× [y, 1])− x2y2

z′ − z

)
= α

x1y2 + x2y1 + x1y1 + x2y2

z′ − z . (2.21)
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Since x1 + x2 = y1 + y2 = z′ − z and x2y2
z′−z = Φ([x, z′]× [y, z′]), we obtain from

(2.21) that

(1− α)Φ([z′, 1]× [z′, 1]) = α
(z′ − z)2

z′ − z = α(z′ − z) . (2.22)

Finally, we substitute 1−z′ for Φ([z′, 1]× [z′, 1]) in (2.22) and get the following:

z′ = z + (1− α)(1− z) . (2.23)

So, we conclude that the right end point of every interval in I0 is uniquely

determined by its left end point.

Let Z be the set formed by the left end points of intervals in I0. As

in the proof of Theorem 13, for a positive integer i, let zi be the i-th smallest

element of Z. Notice that the existence of minimum elements follows from

(2.23). If Z is finite, we set zk = 1 for k > |Z|.
We derive from the definition of Z and from (2.23) that

I0 =
{

[zi, zi + (1− α)(1− zi)], i ∈ N+
}
\ {[1, 1]} .

Consequently, we obtain

t(21,Φ) =

∞∑

i=1

(1− α)2(1− zi)2

2
=

(1− α)2

2

∞∑

i=1

(1− zi)2 . (2.24)

Analogously to the proof of Theorem 13, for j ∈ N, we define βj ∈ [0, 1] as

follows:

βj =





1− z1 for j = 1,

1−zj
α(1−zj−1) if zj 6= 1 and j > 1, and

0 otherwise.

The equation (2.24) can be rewritten as

t(21,Φ) =
(1− α)2

2

∞∑

i=1

α2(i−1)
i∏

j=1

β2
j . (2.25)

Hence, the equality (2.18) can hold only if βj = 1 for every j, i.e., zi = 1−αi−1.

This implies that the permutons Φ and Υ→α are identical.
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2.4 Graphons with infinite structure

In this section, we show that graphons associated with the finitely forcible

permutons from Section 2.3 are not finitely forcible. We start with graphons

WΩ→α associated with permutons Ω→α, α ∈ (0, 1).

2.4.1 Union of complete graphs

We now focus on graphons with t(P3,W ) = 0 where P3 is the path on three

vertices. We start with the following lemma, which seems to be of independent

interest. Informally, the lemma asserts that any finitely forcible graphon with

zero density of P3 can be forced by finitely many densities of complete graphs.

Lemma 17. If W0 is a finitely forcible graphon and t(P3,W0) = 0, then there

exists an integer `0 such that any graphon W with t(P3,W ) = 0 and t(K`,W ) =

t(K`,W0) for ` ≤ `0 is weakly isomorphic to W0.

Proof. To prove the statement of the lemma, it is enough to show the following

claim: the density of any n-vertex graph G in a graphon W with t(P3,W ) = 0

can be expressed as a combination of densities of K1, . . ., Kn in W . We proceed

by induction on n+k where n and k are the numbers of vertices and components

of G respectively. If n = k = 1, there exists only a single one-vertex graph K1

and the claim holds.

Assume now that n + k > 2. If G is not a union of complete graphs,

then t(G,W ) = 0 since t(P3,W ) = 0. So, we assume that G is a union of k

complete graphs G1, . . . , Gk, i.e., G = G1 ∪ · · · ∪ Gk. If k = 1, then G = Kn

and the claim clearly holds. So, we assume k > 1.

For 2 ≤ i ≤ k, we denote

Hi = (G1 +Gi) ∪
⋃

j∈[k]\{1,i}

Gj .

Observe that the following holds:

t(G1,W ) · t(G2 ∪ · · · ∪Gk,W ) =

p1 · t (G,W ) +
k∑

i=2

pi · t (Hi,W ) (2.26)

where p1 is the probability that a set V of randomly chosen |G1| vertices of

the graph G induces a complete graph and the graph G \ V is isomorphic to

G2 ∪ · · · ∪Gk, and pi, i > 1, is the probability that a set V of randomly chosen

|G1| vertices of Hi induces a complete graph and the graph Hi \V is isomorphic

to G2 ∪ · · · ∪ Gk. To see (2.26), observe that t(G1,W ) · t(G2 ∪ · · · ∪ Gk,W )
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is equal to the product of the probability that a W -random graph of order

|G1| is isomorphic to G1 and the probability that a W -random graph of order

|G2|+ · · ·+ |Gk| is isomorphic to G2 ∪ · · · ∪Gk. This is equal to the probability

that randomly chosen |G1| vertices of a W -random graph of order n induce

a subgraph isomorphic to G1 and the remaining vertices induce a subgraph

isomorphic to G2 ∪ · · · ∪Gk. This probability is equal to the right hand side of

(2.26).

By induction, t(G2 ∪ · · · ∪ Gk,W ) and t (Hi,W ), 2 ≤ i ≤ k, can be

expressed as combinations of densities of complete graphs of order at most n

in W . Rearranging the terms of (2.26), we obtain that t(G,W ) is equal to a

combination of densities of complete graphs of order at most n in W .

Let Uρ be a graphon identically equal to ρ ∈ [0, 1]. The main result of

this subsection asserts that unlike the permuton Ω→α, the associated graphon

WΩ→α = U1
→α is not finitely forcible. Although it immediately follows as a

corollary of the more general Theorem 4, we give its proof here to increase the

readability.

Theorem 18. For every α ∈ (0, 1), the graphon U1
→α is not finitely forcible.

Proof. Observe that d
(
P3, U

1
→α
)

= 0. By Lemma 17, it is enough to show that

U1
→α is not finitely forcible with S = {P3,K1, . . . ,Kn} for any n ∈ N, i.e., by

setting the densities of P3 and the complete graphs of orders 1, . . . , n. Suppose

for the sake of contradiction that for some n ∈ N the graphon U1
→α is uniquely

determined by the densities of P3 and K1, . . . ,Kn. Let ai = (1−α)αi−1. Then,

U1
→α =

⊕
i∈N aiU

1. We define functions Fi(x1, . . . , xn+1) : Rn+1 → R for i ∈ [n]

as follows:

Fi(x1, . . . , xn+1) =
n+1∑

j=1

(
xij − aij

)
. (2.27)

Observe that if it holds that x1+· · ·+xn+1 = a1+· · ·+an+1, which is equivalent

to F1(x1, . . . , xn+1) = 0, then it also holds that

t(Ki,
⊕

i∈N
biU

1) = t(Ki, U
1
→α) + Fi(x1, . . . , xn+1) for i ∈ [n], (2.28)

where bi = xi for i ≤ n + 1 and bi = ai for i > n + 1. Hence, to obtain the

desired contradiction, it suffices to prove that there exist functions gj(xn+1),

j ∈ [n], on some open neighborhood of an+1 such that

Fi(g1(xn+1), . . . , gn(xn+1), xn+1) = 0 for every i ∈ [n]. (2.29)
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Indeed, if such functions gj(xn+1), j ∈ [n], exist, then (2.28) yields that the

densities of K1, . . . ,Kn in the graphon
⊕

i∈N biU
1 with bi = gi(xn+1) for i ≤ n,

bn+1 = xn+1 and bi = ai for i > n+ 1 equal their densities in the graphon U1
→α.

This implies that U1
→α is not forced by the densities of P3 and K1, . . . ,Kn.

We now establish the existence of functions g1, . . . , gn satisfying (2.29)

on some open neighborhood of an+1. Observe that

∂Fi
∂xj

(x1, . . . , xn+1) = i · xi−1
j .

We consider the Jacobian matrix of the functions F1, . . . , Fn with respect to

x1, . . . , xn. The determinant of the Jacobian matrix is equal to

n!
∏

1≤j<j′≤n

(
xj′ − xj

)
. (2.30)

Substituting xj = aj for j ∈ [n], we obtain that the Jacobian matrix has non-

zero determinant. In particular, the Jacobian is non-zero. The Implicit Func-

tion Theorem now implies the existence of the functions g1, . . . , gn satisfying

(2.29). This concludes the proof.

2.4.2 Union of random graphs

The graphons considered in the previous subsection were associated with the

permutons Ω→α. We now focus on finite forcibility of graphons related to the

permutons Υ→α.

In fact, we prove a more general result. Theorem 4, which we restate

below, asserts that a graphon W→α is not finitely forcible unless W is weakly

isomorphic to U0.

Theorem 4. For every α ∈ (0, 1) and every graphon W , if the graphon W→α

is finitely forcible, then W is equal to zero almost everywhere.

Proof. It is enough to show that for every n, there exists a sequence (bi)i∈N

different from (ai)i∈N, ai = (1− α)αi−1, such that

t

(
G,
⊕

i∈N
biW

)
= t (G,W→α) for every graph G with |G| ≤ n. (2.31)

The proof of Theorem 18 yields that for every n, there exists such (bi)i∈N

different from (ai)i∈N, satisfying

t

(
G,
⊕

i∈N
biU

1

)
= t
(
G,U1

α

)
for every graph G with |G| ≤ n. (2.32)
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We claim that this (bi)i∈N also satisfies (2.31). Also note that (2.32) is non-zero

only for graphs G that are disjoint union of cliques.

Let G be a graph with n vertices and let G1, . . . , Gk be the connected

components of G. Furthermore, let F = {I1, . . . , I`} be the partition of [k]

according to the isomorphism classes of the graphs G1, . . . , Gk, i.e., for every

i, j ∈ [`] with i 6= j and every a1, a2 ∈ Ii and a3 ∈ Ij , the graphs Ga1 and Ga2

are isomorphic, and the graphs Ga1 and Ga3 are not isomorphic.

Observe that

t

(
G,
⊕

i∈N
biW

)
=

∑

f :[k]→N

c(f)




∞∏

i=1

t


 ⋃

j∈f−1(i)

Gj ,W


 b

∣∣∣∣∣∣ ⋃
j∈f−1(i)

Gj

∣∣∣∣∣∣
i


 (2.33)

with the normalizing factor

c(f) =
∏

m∈[`]

∞∏
i=1

∣∣f−1(i) ∩ Im
∣∣!

|Im|!
,

where we set 0! = 1 and the density t(∅,W ) of the empty graph in the graphon

W to 1.

We consider partitions of the set of connected components of G. If

Q = {Q1, . . . , Qk} is such a partition, we slightly abuse the notation and identify

Qi with the subgraph of G induced by the components of Qi. In particular, |Qi|
denotes the number of vertices in this subgraph.. Furthermore, we always view

a partition Q as a multiset, and also allow some of the Qi’s to be empty. Let

Q be the set of all such partitions. The identity (2.33) can now be rewritten as

follows:

t

(
G,
⊕

i∈N
biW

)
=
∑

Q∈Q

∏

i∈[k]

t(Qi,W )t


⋃

i∈[k]

K|Qi|,
⊕

i∈N
biU

1


 , (2.34)

where K0 is the empty graph. Since (bi)i∈N satisfies (2.32), we obtain that it

satisfies (2.34), and therefore also (2.31).

We immediately obtain the following two corollaries.

Corollary 19. For every α ∈ (0, 1) and every ρ ∈ (0, 1], the graphon Uρ→α is

not finitely forcible.

Corollary 20. For every α ∈ (0, 1), the graphon WΥ→α = (WΥ)→α, which is

associated with the permuton Υ→α, is not finitely forcible.
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Chapter 3

Infinitely dimensional finitely

forcible graphon

In this chapter we are concerned with the relation between finite forcibility and

dimension of a space of typical vertices of a graphon. We prove Theorem 5

by constructing a graphon W�, which we call a hypercubical graphon, such

that W� is finitely forcible and both T (W�) and T (W�) contain subspaces

homeomorphic to [0, 1]N.

Informally speaking, our approach is the following. The constructed

hypercubical graphon W� has several parts (see Figure 3.1), which are deter-

mined by degrees of the vertices they contain. The parts Ai serve to further

partition the parts Bi into infinitely many smaller parts and the part C serves

to introduce coordinate systems on the parts Bi and D. Having this structure

on the parts Bi in place, we can force subspaces homeomorphic [0, 1]d for every

d ∈ N (corresponding to the parts B1,d). Their structure is forced in an iterative

(induction like) way, increasing dimension by one at each step. The proof is

concluded by forcing the parts B1,d to be “projections” of another part of the

graphon, the part D. The subspace homeomorphic to the part D must then be

homeomorphic to [0, 1]N.

3.1 Finite forcibility

Following the framework from [42], when proving finite forcibility of a graphon,

we give a set of constraints that uniquely determines W instead of specifying

the finitely many subgraphs and their densities that uniquely determine W .

A constraint is an equality between two density expressions where a density

expression is recursively defined as follows: a real number or a graph H are

density expressions, and if D1 and D2 are two density expression, then the sum
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D1 + D2 and the product D1 · D2 are also density expressions. The value of

the density expression is the value obtained by substituting for every subgraph

H its density in the graphon. As observed in [42], if W is a unique (up to

weak isomorphism) graphon that satisfies a finite set C of constraints, then it

is finitely forcible. In particular, W is the unique (up to weak isomorphism)

graphon with densities of graphs appearing in C equal to their densities in W .

In [42], it was also observed that a more general form of constraints,

called rooted constraints, can be used in finite forcibility. A subgraph is rooted

if it has m distinguished vertices labeled with numbers 1, . . . ,m. These ver-

tices are referred to as roots while the other vertices are non-roots. Two rooted

graphs are compatible if the subgraphs induced by their roots are isomorphic

through an isomorphism mapping the roots with the same label to each other.

Similarly, two rooted graphs are isomorphic if there exists an isomorphism map-

ping the i-th root of one of them to the i-th root of the other.

A rooted density expression is a density expression such that all graphs

that appear in it are mutually compatible rooted graphs. The meaning of a

rooted density expression is defined in the next paragraphs.

Fix a rooted graph H. Let H0 be the graph induced by the roots of

H, and let m = |H0|. For a graphon W with t(H0,W ) > 0, we let the

auxiliary function c : [0, 1]m → [0, 1] denote the probability that an m-tuple

(x1, . . . , xm) ∈ [0, 1] induces a copy of H0 in W respecting the labeling of ver-

tices of H0:

c(x1, . . . , xm) =


 ∏

(i,j)∈E(H0)

W (xi, xj)


 ·


 ∏

(i,j)6∈E(H0)

(1−W (xi, xj))


 .

We next define a probability measure µ on [0, 1]. If A ⊆ [0, 1]m is a

Borel set, then:

µ(A) =

∫
A c(x1, . . . , xm)dλm∫

[0,1]m c(x1, . . . , xm)dλm
.

When x1, . . . , xm ∈ [0, 1] are fixed, then the density of a graph H with

root vertices x1, . . . , xm is the probability that a random sample of non-roots

yields a copy of H conditioned on the roots inducing H0. Noticing that an

automorphism of a rooted graph has all roots as fixed vertices, we obtain that

this is equal to

(|H| −m)!

|Aut(H)|

∫

[0,1]|H−m|

∏

(i,j)∈E(H)\E(H0)

W (xi, xj)
∏

(i,j)6∈E(H)∪(H0
2 )

(1−W (xi, xj)) dλ|H|−m.
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We now consider a constraint such that both left and right hand sides D

and D′ are compatible rooted density expressions. Such a constraint represents

that D − D′ = 0 holds with probability one with respect to the choice of

roots. At several occasions, we write a fraction of two rooted density expressions

D/D′. A constraint containing such a fraction, say D1/D
′
1 = D2/D

′
2 should

be interpreted as D1 · D′2 = D2 · D′1. It can be shown that for every rooted

constraint D = D′, there exists a non-rooted constraint C = C ′ such that

D = D′ with probability one if and only if C = C ′ holds [42].

A degree degW x of a vertex x ∈ [0, 1] in a graphon W is equal to

∫

[0,1]

W (x, y)dy .

Note that the degree is well-defined for almost every vertex of W . We

omit the superscript W whenever the graphon is clear from the context.

Let A be a measurable non-null subset of [0, 1]. A relative degree degWA x

of a vertex x ∈ [0, 1] of a graphon W in A is equal to

∫
AW (x, y)dy

λ(A)
.

Fix a graphon W and let x, x′ ∈ [0, 1] and Y ⊆ [0, 1]. Then NY (x)

denotes the set of y ∈ Y such that W (x, y) > 0 and

NY (x \ x′) = {y ∈ Y |W (x, y) > 0 and W (x′, y) < 1}.

If Y is measurable, then NY (x) is measurable for almost every x.

A graphon W is partitioned if there exist k ∈ N, positive reals a1, . . . , ak

summing to one and distinct reals d1, . . . , dk between zero and one such that

the set of vertices of W with degree di has measure ai. If W is a partitioned

graphon, we write Ai for the set of vertices of degree di for i ∈ [k].

A graph H is decorated if its vertices are labeled with parts A1, . . . , Ak.

The density of a decorated graph H is the probability that randomly chosen |H|
vertices induce a subgraph isomorphic to H with its vertices contained in the

parts corresponding to the labels, conditioned by the event that the sampled

vertices are in the parts corresponding to the labels. For example, if H is an

edge with vertices labeled with parts A1 and A2, then the density of H is the

density of edges between A1 and A2, i.e.,

t(H,W ) =
1

a1a2

∫

A1

∫

A2

W (x, y) dx dy .
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Similarly as in the case of non-decorated graphs, we can define rooted decorated

subgraphs and use them in constraints. A constraint that uses (rooted or non-

rooted) decorated subgraphs is referred to as decorated. In [42], it is shown

that decorated constraints can be used in forcing (also see Lemma 22 below).

We depict roots of decorated graphs by squares, and non-root vertices by

circles, labeled by the name of the respective part of a graphon. The full lines

connecting vertices correspond edges, dashed lines to non-edges. No connection

between two vertices means that both edge or non-edge are allowed between

the vertices, i.e., the corresponding density is the sum of the densities of the

graphs with and without such edge(s).

We omit the distinguishing labels of the roots. To avoid possible ambi-

guity, a drawing of the graph on the roots is identical for all occurrences of the

graph in a constraint to make clear which roots correspond to each other.

We conclude this section by lemmas from [42], used in our proof and by

introducing additional terminology for graphons. The first lemma guarantees

the existence of a set of constraints that force a graphon satisfying these con-

straints to be a partitioned graphon with a given partition and given degrees

between the parts.

Lemma 21. Let k ∈ N, let a1, . . . , ak be positive reals summing to one and let

d1, . . ., dk be distinct reals between zero and one. There exists a finite set of

constraints C such that a graphon W satisfies C if and only if it is a partitioned

graphon with parts of sizes a1, . . . , ak and degrees d1, . . . , dk.

The following lemma allows us to use decorated constraints by stating

that they are equivalent to some non-decorated constraints.

Lemma 22. Let k ∈ N, let a1, . . . , ak be positive reals summing to one and let

d1, . . . , dk be distinct reals between zero and one. If W is a partitioned graphon

with k parts formed by vertices of degree di and measure ai each, then any

decorated (rooted or non-rooted) constraint can be expressed as a non-decorated

non-rooted constraint, i.e., W satisfies the decorated constraint if and only if it

satisfies the non-decorated non-rooted constraint.

Note that our definition of density of a decorated graph H differs from

the definition in [42]. However, density of a decorated graph H in our sense

is density of a decorated graph H in the sense of [42] multiplied by the appro-

priate constant depending on measures of the parts of the graphon. Therefore,

decorated constraints in our sense and in the sense of [42] are in one-to-one

correspondence. Thus, Lemma 22 holds with our definition of decorated con-

straints, too.
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Mimicking the terminology for graphs, we call a graphon W restricted

to S×T for S, T ∈ [0, 1], a subgraphon on S×T and we denote it by W [S×T ].

The density between S and T (or on S × T ) of a graphon W , is

∫
S

∫
T W (x, y)dxdy

λ(S)λ(T )
.

We say that W [S × S] for S ⊆ [0, 1] is a clique in a graphon W , if W equals

one almost everywhere on S × S. A subgraphon W [S × T ] of W is a complete

bipartite subgraphon with sides S and T for some S, T ⊆ [0, 1], S ∩ T = ∅ if W

equals one almost everywhere on S×T . Similarly W [S×T ] is a pseudorandom

bipartite subgraphon of density p for p ∈ [0, 1] if W equals p almost everywhere

on S × T .

The following lemma from [42] states that we can force a pseudorandom

bipartite subgraphon between any two parts of a partitioned graphon.

Lemma 23. For every choice of k ∈ N, positive reals a1, . . . , ak summing to

one, distinct reals d1, . . . , dk between zero and one, l, l′ ≤ k, l 6= l′, and p ∈ [0, 1],

there exists a finite set of constraints C such that every graphon W that is a

partitioned graphon with k parts A1, . . . , Ak of measures a1, . . . , ak and degrees

d1, . . . , dk, respectively satisfies C if and only if it satisfies that W (x, y) = p for

almost every x ∈ Al and y ∈ Al′.

3.2 The hypercubical graphon

In this section, we describe a graphon W� which we call the hypercubical

graphon. For readability, we include a sketch of the structure of W� in Fig-

ure 3.1.

The hypercubical graphon W� is a partitioned graphon with 14 parts, de-

noted by A�
0 , . . . , A

�
3 , B

�
1 , . . . , B

�
5 , C

�, D�, E�
1 , E

�
2 , F

�. Each part has measure

1/27 except for E�
1 and E�

2 that have measure 11/27 and 4/27, respectively.

Degrees of the vertices in different parts are listed in Table 3.1. We do not pro-

vide the exact values e1 and e2 of degrees of vertices in E�
1 and E�

2 , respectively.

Instead, we observe that e1 ≤ 10/27 and e2 ≤ 1/27 (since the neighborhood

of every vertex of E�
1 or E�

2 has neighborhood of measure at most 10/27 or

1/27, respectively), therefore, e1, e2 are different from degrees of vertices in

parts A�
0 , . . . , A

�
3 , B

�
1 , . . . , B

�
5 , C

� and e2 is also different from D� and F�.

Moreover, from the construction of W�, it follows that e1 > 5/27 and therefore

it is different from e2 and from degrees of vertices in D� and F�.

We describe the graphon W� as a collection of functions WX×Y
� on

products of its parts X,Y ∈ {A�
0 , . . . A

�
3 , B

�
1 , . . . B

�
5 , C

�, D�, E�
1 , E

�
2 , F

�}. For
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Figure 3.1: The hypercubical graphon.

better readability, we define these as functions from [0, 1]2 to [0, 1], assuming

that we have a fixed bijective (scaling) map ηX from each part X to [0, 1]

such that λ(η−1
X (S)) = λ(S)λ(X) for every measurable set S ⊆ [0, 1]. So,

W�(x, y) = WX×Y
� (ηX(x), ηY (y)) for x ∈ X and y ∈ Y . Note that, unlike

graphons, the functions WX×Y
� need not be symmetric, instead they satisfy

WX×Y
� (x, y) = W Y×X

� (y, x).

For x ∈ [1 − 2−k, 1 − 2−(k+1)), let x̂ = (x − (1 − 2−k)) · 2k+1 (the

relative position of x within the interval) and 〈x〉 = k+ 1. Informally speaking,

if we imagine [0, 1] as partitioned into consecutive intervals of measures 1/2,

1/4, etc., 〈x〉 indicates to which of the intervals x belongs. Observe that x =

1− 21−〈x〉 + x̂/2〈x〉 for every x ∈ [0, 1).
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part A�
0 A�

1 A�
2 A�

3 B�
1 B�

2 B�
3 B�

4 B�
5

degree 110
270

111
270

112
270

113
270

114
270

115
270

116
270

117
270

118
270

part C� D� E�
1 E�

2 F�

degree 119
270

40
270 e1 e2

45
270

Table 3.1: Degrees of the parts of W�.

The diagonal checker function κ : [0, 1]2 → [0, 1] is defined as follows

(see Figure 3.2):

κ(x, y) =





1 if 〈x〉 = 〈y〉

0 otherwise.

For x ∈ [0, 1]n, n ∈ N∗, we denote its i-th coordinate of x by (x)i. A

recipe R is a set of measure preserving maps rn : [0, 1] → [0, 1]n for n ∈ N∗.
Observe that R = {rn|n ∈ N∗} is a recipe if and only if

λ({x|∀ i ∈ [k] (rn(x))i ≤ ai}) =

k∏

i=1

ai for every (a1, . . . ak) ∈ [0, 1]k (3.1)

for every k ∈ [n] (recall that we define [∞] := N). A recipe is bijective if all the

functions are bijective.

For a fixed bijective recipe R, the graphon W� is defined as follows:

W
A�

0 ×A�
1

� (x, y) =





1 for (x, y) ∈ [0, 1]× [0, 1/2], and

0 otherwise.

(0, 1) (1, 1)

(0, 0) (1, 0)

Figure 3.2: The diagonal checker function κ.
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W
A�

1 ×A�
1

� = W
A�

1 ×A�
2

� = W
A�

1 ×B�
1

� = W
A�

1 ×B�
2

� = W
A�

1 ×B�
3

� = W
A�

1 ×B�
4

� =

W
A�

1 ×B�
5

� = W
A�

2 ×A�
3

� = W
A�

2 ×B�
2

� = κ.

For X ∈ {A�
0 , . . . , A

�
3 , B

�
2 , . . . , B

�
5 , C

�}, let:

WC�×X
� (x, y) =





1 for x+ y ≥ 1, and

0 otherwise.

Recall that for x ∈ [1−2−k, 1−2−(k+1)), x̂ = (x−(1−2−k))·2k+1 and 〈x〉 = k+1.

W
A�

1 ×A�
3

� (x, y) =





1 if 〈x〉 = 〈y〉+ 1, and

0 otherwise.

W
C�×B�

1
� (x, y) =





1 for (1− 21−〈y〉) + (r〈y〉(ŷ))1 · 2−〈y〉 + x ≥ 1, and

0 otherwise.

W
B�

1 ×B�
1

� (x, y) =





1 if 〈x〉 ≤ 〈y〉 and (r〈x〉(x̂))i ≤ (r〈y〉(ŷ))i for every i ≤ 〈x〉,

1 if 〈x〉 > 〈y〉 and (r〈x〉(x̂))i ≥ (r〈y〉(ŷ))i for every i ≤ 〈y〉,

0 otherwise.

W
B�

1 ×B�
2

� (x, y) =





1 if 〈x〉 ≥ 〈y〉 and ŷ ≤ (r〈x〉(x̂))〈y〉, and

0 otherwise.

W
B�

1 ×B�
3

� (x, y) =





1 if 〈x〉 ≥ 〈y〉, and

0 otherwise.

W
B�

1 ×B�
4

� (x, y) =





1 if 〈x〉 ≥ 〈y〉 and ŷ ≤
〈y〉∏
i=1

(r〈x〉(x̂))i, and

0 otherwise.

W
B�

1 ×B�
5

� (x, y) =





1 if 〈x〉 ≥ 〈y〉 and ŷ ≤
〈y〉∏
i=1

(1− (r〈x〉(x̂))i), and

0 otherwise.

W
D�×B�

1
� (x, y) =





1 if ŷ ≤ (r∞(x))i for every i ≤ 〈y〉, and

0 otherwise.
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W
D�×B�

2
� (x, y) =





1 if ŷ ≤ (r∞(x))〈y〉, and

0 otherwise.

W
D�×B�

4
� (x, y) =





1 if ŷ ≤
〈y〉∏
i=1

(r∞(x))i, and

0 otherwise.

W
D�×B�

5
� (x, y) =





1 if ŷ ≤
〈y〉∏
i=1

(1− (r∞(x))i), and

0 otherwise.

For every X ∈ {A�
0 , . . . , A

�
3 , B

�
1 , . . . , B

�
5 , C

�}:

W
E�

1 ×X
� (x, y) = 1− 1/11

∑
Y ∈{A�

0 ,...,A
�
3 ,B

�
1 ,...,B

�
5 ,C

�,D�}
degY y.

W
E�

2 ×D�

� (x, y) = 1− 1/4
∑

Y ∈{B�
1 ,B

�
2 ,B

�
4 ,B

�
5 }

degY y.

W
F�×A�

1
� (x, y) = 1/10 for all (x, y) ∈ [0, 1]2,

W
F�×A�

2
� (x, y) = 2/10 for all (x, y) ∈ [0, 1]2,

W
F�×A�

3
� (x, y) = 3/10 for all (x, y) ∈ [0, 1]2,

W
F�×B�

1
� (x, y) = 4/10 for all (x, y) ∈ [0, 1]2,

W
F�×B�

2
� (x, y) = 5/10 for all (x, y) ∈ [0, 1]2,

W
F�×B�

3
� (x, y) = 6/10 for all (x, y) ∈ [0, 1]2,

W
F�×B�

4
� (x, y) = 7/10 for all (x, y) ∈ [0, 1]2,

W
F�×B�

5
� (x, y) = 8/10 for all (x, y) ∈ [0, 1]2, and

WF�×C�

� (x, y) = 9/10 for all (x, y) ∈ [0, 1]2.

W� is identically equal to 0 on all the pairs of parts that are not listed

above and that are not symmetric to the pairs listed.

Note that the definition of W� is dependent on the choice of a bijective

recipe R. However, it can be shown that the graphons obtained for different

bijective recipes are weakly isomorphic. (In fact, the statement stays true even if

R is a recipe that is not bijective.) Therefore we do not include the dependence

on the recipe in the notation for the hypercubical graphon.
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Before proceeding further, let us introduce additional notation that

makes use of the structure of the diagonal checker subgraphons. We denote

the set of vertices x of A�
i , i ∈ {1, 2}, with degA�

1
x = 2−k in A�

1 by A�
i,k and

we call A�
i,k the k-th level of A�

i . We define levels B�
j,k of B�

j for j ∈ {1, . . . , 5}
in the same way.

Similarly, we denote A�
3,k the set of vertices of A�

3 of relative degree 2−k

in A�
2 and we call the set of these vertices the k-th level of A�

3 . Note that

measure of the k-th level is 2−k/27 for every k and every A�
i , i ∈ {1, 2, 3} and

B�
j , j ∈ {1, . . . , 5}.

The following proposition and Theorem 25 imply Theorem 5.

Proposition 24. Both T (W�) and T (W�) contain a subspace homeomorphic

to [0, 1]N.

Proof. Every vertex of the part D� of the graphon W� is typical. In addition,

the restrictions of the spaces T (W�) and T (W�) to {fW�
x (y) := W�(x, y),

x ∈ D�} are the same. Recall that λ(B�
j,i) = 2−i/27 for j ∈ {1, 2, 4, 5},

deg
W�

B�
1,i

x = deg
W�

B�
4,i

x =
∏

k∈[i]

deg
W�

B�
2,i

x and

deg
W�

B�
5,i

x =
∏

k∈[i]

(1− deg
W�

B�
2,i

x)

for every x ∈ D� and i ∈ N. Also note that

λ(E�
2 )
∣∣∣deg

W�

E�
2

x− deg
W�

E�
2

x′
∣∣∣ =

∣∣∣∣∣∣
∑

j∈{1,2,4,5}

∞∑

i=1

λ(B�
j,i) deg

W�

B�
j,i

x− deg
W�

B�
j,i

x′

∣∣∣∣∣∣

≤
∑

j∈{1,2,4,5}

∞∑

i=1

λ(B�
j,i)

∣∣∣∣deg
W�

B�
j,i

x− deg
W�

B�
j,i

x′
∣∣∣∣

for every x, x′ ∈ D�. This leads us to the following estimates for all x, x′ ∈ D�.

||fW�
x − fW�

x′ ||1 ≥
∞∑

i=1

λ(B�
2,i)

∣∣∣∣deg
W�

B�
2,i

x− deg
W�

B�
2,i

x′
∣∣∣∣

=

∞∑

i=1

2

27

∣∣∣∣deg
W�

B�
2,i

x− deg
W�

B�
2,i

x′
∣∣∣∣
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||fW�
x − fW�

x′ ||1 ≤ 2


 ∑

j∈{1,2,4,5}

∞∑

i=1

λ(B�
j,i)

∣∣∣∣deg
W�

B�
j,i

x− deg
W�

B�
j,i

x′
∣∣∣∣




= 2

( ∞∑

i=1

λ(B�
2,i)

∣∣∣∣deg
W�

B�
2,i

x− deg
W�

B�
2,i

x′
∣∣∣∣

+
∞∑

i=1

λ(B�
1,i)

∣∣∣∣∣
i∏

k=1

deg
W�

B�
2,k

x−
i∏

k=1

deg
W�

B�
2,k

x′

∣∣∣∣∣

+
∞∑

i=1

λ(B�
4,i)

∣∣∣∣∣
i∏

k=1

deg
W�

B�
2,k

x−
i∏

k=1

deg
W�

B�
2,k

x′

∣∣∣∣∣

+
∞∑

i=1

λ(B�
5,i)

∣∣∣∣∣
i∏

k=1

(1− deg
W�

B�
2,k

x)−
i∏

k=1

(1− deg
W�

B�
2,k

x′)

∣∣∣∣∣

)

=
2

27

( ∞∑

i=1

2−i
∣∣∣∣deg

W�

B�
2,i

x− deg
W�

B�
2,i

x′
∣∣∣∣

+ 2
∞∑

i=1

2−i

∣∣∣∣∣
i∏

k=1

deg
W�

B�
2,k

x−
i∏

k=1

deg
W�

B�
2,k

x′

∣∣∣∣∣

+
∞∑

i=1

2−i

∣∣∣∣∣
i∏

k=1

(1− deg
W�

B�
2,k

x)−
i∏

k=1

(1− deg
W�

B�
2,k

x′)

∣∣∣∣∣

)

≤ 2

27

( ∞∑

i=1

2−i
∣∣∣∣deg

W�

B�
j,i

x− deg
W�

B�
j,i

x′
∣∣∣∣

+ 2
∞∑

i=1

2−i
i∑

k=1

∣∣∣∣deg
W�

B�
2,k

x− deg
W�

B�
2,k

x′
∣∣∣∣

+
∞∑

i=1

2−i
i∑

k=1

∣∣∣∣(1− deg
W�

B�
2,k

x)− (1− deg
W�

B�
2,k

x′)

∣∣∣∣

)

=
14

27

∞∑

i=1

2−i
∣∣∣∣deg

W�

B�
2,i

x− deg
W�

B�
2,i

x′
∣∣∣∣

dW (fW�
x , f

W�
x′ ) ≤ ||fW�

x − fW�
x′ ||1

=
14

27

∞∑

i=1

2−i
∣∣∣∣deg

W�

B�
2,i

x− deg
W�

B�
2,i

x′
∣∣∣∣
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dW (fW�
x , f

W�
x′ ) ≥

∞∑

i=1

∫

A�
2,i

∣∣∣∣∣∣∣

∫

[0,1]

W�(z, y)
(
fW�
x (y)− fW�

x′ (y)
)

dy

∣∣∣∣∣∣∣
dz

=
∞∑

i=1

∫

A�
2,i

λ(B�
2,i)

∣∣∣∣deg
W�

B�
2,i

x− deg
W�

B�
2,i

x′
∣∣∣∣dz

=
∞∑

i=1

λ(A�
2,i)λ(B�

2,i)

∣∣∣∣deg
W�

B�
2,i

x− deg
W�

B�
2,i

x′
∣∣∣∣

=
1

27

∞∑

i=1

4−i
∣∣∣∣deg

W�

B�
2,i

x− deg
W�

B�
2,i

x′
∣∣∣∣

Since the map H from the restriction of T (W ) to {fW�
x , x ∈ D�} to [0, 1]N

defined as

H(fW�
x ) = (deg

W�

B�
2,i

x)∞i=1

is a homeomorphism by the definition of W� and R, the statement of the

proposition follows.

Theorem 25. The hypercubical graphon W� is finitely forcible.

The rest of the chapter is devoted to the proof of Theorem 25.

3.3 Constraints

In this section, we present the constraints that finitely force the graphon W�,

as we prove in the next section.

The set of the constraints that finitely force the graphon W� is denoted

by C�. The constraints in C� are split into groups according to what features

of a graphon they force:

Partition constraints force that every graphon satisfying C� can be partitioned

into parts of the sizes and degrees of vertices as in W�. The existence of

such constraints follows from Lemma 21.

In the rest of the section, we assume that W is a partitioned graphon and

we will refer to the parts of W as A0, . . . , A3, B1, . . . , B5, C,D,E1, E2, F ,

respectively.
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= 0

X

Y

Figure 3.3: Constraint forcing zero edge density.

Zero constraints force that W equals 0 almost everywhere on

• A0 × (A0 ∪A2 ∪A3 ∪B1 ∪B3 ∪B4 ∪B5 ∪D ∪ E2 ∪ F ),

• A1 × (D ∪ E2),

• A2 × (A2 ∪B1 ∪ · · · ∪B5 ∪D ∪ E2),

• A3 × (A3 ∪B1 ∪ · · · ∪B5 ∪D ∪ E2),

• B2 × (B2 ∪ · · · ∪B5 ∪ E2),

• B3 × (B3 ∪B4 ∪B5 ∪D ∪ E2),

• B4 × (B4 ∪B5 ∪ E2),

• B5 × (B5 ∪ E2),

• C × (D ∪ E2),

• D × (D ∪ E1),

• E1 × (E1 ∪ E2 ∪ F ),

• E2 × (E2 ∪ F ), and

• F × F .

The constraint forcing the zero edge density between parts X and Y is

depicted in Figure 3.3.

Degree unifying constraints force that the relative degree deg[0,1]\(E2∪F ) x of

almost every vertex x ∈ [0, 1] \ (D ∪ E1 ∪ E2 ∪ F ) is 1/2 and that the

degree deg y of almost every vertex y ∈ D is 4/27. These constraints are

depicted in Figures 3.4 and 3.5.

Degree distinguishing constraints force that the structure between F and the

remaining parts of a graphon consists of pseudorandom bipartite sub-

graphons of densities given in Table 3.2.

By Lemma 23, this can be forced by finitely many constraints. An example

of the constraints for F × C is depicted in Figure 3.6.
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X Y

=

X Y

Z

X Y

Z

X

E1

X

Z

E1

= 1− 1
11

∑

Z∈{A0,...,A3,

B1,...,B5,C,D}

1− 1
11

∑

Z∈{A0,...,A3,

B1,...,B5,C,D}

1− 1
11

∑

Z∈{A0,...,A3,

B1,...,B5,C,D}

Figure 3.4: The degree unifying constraints contain the depicted constraints for
all the choices of X and Y in {A0, . . . , A3, B1, . . . , B5, C}.

=

Z Z

1− 1
4

∑
Z∈{B1,B2,B4,B5}

1− 1
4

∑
Z∈{B1,B2,B4,B5}

= 1− 1
4

∑
Z∈{B1,B2,B4,B5}

D

ZE2

E2

D

D D D D D D

Figure 3.5: The degree unifying constraints for D.

part A0 A1 A2 A3 B1 B2 B3 B4 B5 C

density 0 1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
10

Table 3.2: Densities between the part F and the other parts.
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Triangular constraints force the structure on C × X is as in W� for every

X ∈ A0, . . . , A3, B1, . . . , B5, C. From the proof of the Theorem 5.1 in [65]

it follows that there exist finitely many constraints forcing the triangular

structure on C × C. The triangular constraints forcing the structure

elsewhere are depicted in Figure 3.7. They ensure that the triangular

structure of C × C is replicated to other parts of the graphon.

Main diagonal checker constraints force the diagonal checker structure of A1×
A1. They are depicted in Figure 3.8.

Complete bipartition constraints force, in particular, that the subgraphons on

A1×A2, A1×A3, A1×B1, . . . , A1×B5, A2×A3 and A2×B2 are unions of

complete bipartite subgraphons. The constraints are given in Figure 3.9.

Auxiliary diagonal checker constraints determine the sizes of the sides of com-

plete bipartite subgraphons in A1 × A2, A1 × A3, A1 × B1, . . . , A1 × B5,

A2 ×A3 and A2 ×B2. They are depicted in Figure 3.10.

First level constraints force the structure of A0 ×A1 and they are depicted in

Figure 3.11.

Stair constraints force the structure of B1×B3 and B2×B3. They are depicted

in Figure 3.12.

Coordinate constraints force some features of structure of B1× (B2 ∪B4 ∪B5)

and D × (B2 ∪B4 ∪B5). They can be found in Figure 3.13.

Distribution constraints determining the relative degrees of vertices of B2 in

B1 and D are depicted in Figure 3.14.

An initial coordinate constraint determines the relative degrees of vertices of

B1 in a subset of B2. It is depicted in Figure 3.15.

Product constraints force the structure of B1×B4, D×B4, B1×B5 and D×B5.

They are depicted in Figures 3.16, 3.17.

Projection constraints force the structure of B1 × B1. They are depicted in

Figures 3.18 and 3.19.

The infinite constraints force the structure between D and the parts B1 and

B2 of the graphon. They are depicted in Figure 3.20.

This completes the list of the constraints in C�.
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F

C

= 9
10

F

F

C

F

F

C = 81
100

Figure 3.6: The degree distinguishing constraints for F × C.

C

C

X

C

= = 0

C C

X X

Figure 3.7: The triangular constraints include the depicted constraints for all
the choices of X in {A0, . . . , A3, B1, . . . , B5}.

= 0 = 1/3

A1

A1

A1

A1 A1

=

A1

A1 A1

A1 A1 A1

= 0

C C

C C

A1

A1A1

Figure 3.8: The main diagonal checker constraints.

= 0= 0

X X

X

XX

C

C

Y

Y

Y

= 0X
C

C
C = 0

Y

Y

Y

X

X

Y

Y

C

Figure 3.9: The complete bipartition constraints consist of the first two
constraints for (X,Y ) ∈ {(A1, A2), (A1, A3), (A1, B1), . . . , (A1, B5), (A2, A3),
(A2, B2)} and the second two constraints for (X,Y ) ∈ {(A1, A2), (A1, A3),
(A1, B2), . . . , (A1, B5), (A2, A3), (A2, B2)}.
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A1

=

A1 A1

X A1

=

A2 A2

A3 A1

× −2

A1 A1

= 0

A1

−1/2

A1

Z

Figure 3.10: The auxiliary diagonal checker constraints consist of the depicted
constraints, where Y in the first constraint attains all values in {A2, B1, . . . , B5}
and Z in the second constraint attains all values in {A3, B2}.

A0 A1

×

A1 A1

−1/2 = 0 = 1/2

A1

A0

Figure 3.11: The first level constraints.

B3 A1

=

B3

B3

= 0

A2

A3

A1

A1

B1 B1

B1

Figure 3.12: The stair constraints.

A1 B1 = 0

A1

C

= 0

X X

X

Y

B3

Figure 3.13: The coordinate constraints consist of the depicted constraints,
where X and Y attain all values in {B2, B4, B5}, {B1, D} respectively.
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B2

D

− 1− 2×

= 1−

B1

A1

B2

A1

B3

B1

A1

B2

A1

B3

A1

B2

A1

B3

A1

A1

B2

A1

B3

A1

A1

B2

A1

B3

− 1− 2×

= 1−

B2

A1

B2

C

B2

A1

C

Figure 3.14: The distribution constraints.

=
B1 A0

B2 A1

B1 A0

B2 A1

B1

A1

B1

A0

A1

A0

A1

C

− 1− 2×

A1

B1 A0

A1

Figure 3.15: The initial coordinate constraint.
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A1

B1

A0

B2

A1

B1

A0

B4=

A2 A1

= ×

A1A0

B4

A1A0

B2=

B4A3 A1

A2 A1

B4A3 A1

XX

X

X

A2

A3 A1

A2

A3 A1

A1

B4

A1

B4

X

X

A2 A1

B2A3 A1

A2 A1

B2A3 A1

X

X

Figure 3.16: The product constraints forcing B1 × B4 and D × B4 consist of
the depicted constraints, where X ∈ {B1, D}.

A1A0

B5

A1A0

B2=

A2 A1

= ×

A3 A1

A2

A3 A1

A2 A1

B2A3 A1

A2 A1

A3 A1

A2

A3 A1

A2 A1

B2A3 A1

A1

A1

B5

B5

B5

B5

XX

X X X

XXX

Figure 3.17: The product constraints forcing B1 × B5 and D × B5 consist of
the depicted constraints, where X ∈ {B1, D}.
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A3 A1

A1

B3

= 0

B2B1

B1

A3

A2 A1

B2B2

B1

B1

A1

A1 B1

A3

A2 A1

B2B2

B1

B1

A1

A1 B1

A3

A2 A1

B2B2

B1

B1

A1

A1 B1

A3

A2 A1

B2B2

B1

B1

A1

A1 B1

=

A3A2

B1 B3

=

B1A1

B1

A1 A1

A3A2

B1 B3

B1A1

A1

A3A2

B1 B3

A1

A1 A1

A3A2

B1 B3

B1A1

A1

A3A2

B1 B3

B1A1

A1

B4

A1A1

B1

A1

B4

B1

A2

A2 A1A1

=

A3 A1 B1

B1B1

A2 A1A1

A3 A1 B1

B1B1 A2

A2 A1A1

A3 A1 B5

B1B1

A1A1

A3 A1 B5

B1B1

Figure 3.18: The first four projection constraints.
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A1

B1

B1

A1

B4

B1

A1

B5

B1

= +

B1

= 0

B1

A1

B2

B2

Figure 3.19: The last two projection constraints.

D

B2

B1

= 0

A1

B1

A1

B4

D D

=

=

B5

B1

A1

D

B1

A1

B5

B1

A1

Figure 3.20: Infinite constraints.
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3.4 Proof of Theorem 25

Let W be a graphon satisfying all constraints of C�. Since W satisfies the

partition constraints, the interval [0, 1] can be partitioned into parts of the

sizes as in W� such that the degrees of vertices in these parts are as in W�. In

particular, there exists a measure preserving map ϕ : [0, 1] → [0, 1] such that

the subsets of [0, 1] corresponding to the parts of W� map to the corresponding

parts of W . From now on, we denote the parts of Wϕ corresponding to the

respective parts of W� by A0, . . . , A3, B1, . . . , B5, C,D,E1, E2, F . Note that by

the definition of ϕ, the corresponding parts in W� and in Wϕ represent the

same subsets of [0, 1], for instance A0 = A�
0 . We write A0, . . . , F in the context

of the graphon Wϕ and A�
0 , . . . , F

� in the context of the graphon W�.

By Monotone Reordering Theorem (see [63] for more details), there exist

measure preserving maps ψX : X → X� for X = A0, . . . , A3, B2, . . . , B5, C, E1,

E2, F and non-decreasing functions fX : X� → [0, 1], such that fX(ψX(x)) =

degW
ϕ

C x for every x ∈ X.

By analogy to B�
1,n and B�

2,n, we define B1,n and B2,n to be the vertices

of B1 and B2, respectively, that have relative degree 1/2n in A1 in Wϕ. Let

R = {r1, r2, . . .} be the bijective recipe used to define W�.

Let ηB1,n be a bijective maps from B1,n to [0, 1] such that

λ(η−1
B1,n

(S)) = λ(S)λ(B1,n)

for every measurable set S ⊆ [0, 1] for every n ∈ N. Let gn : [0, 1] → [0, 1]n be

a function defined as

gn(x) = (degW
ϕ

B2,i
η−1
B1,n

(x))i∈[n]

for n ∈ N and the function g∞ : [0, 1]→ [0, 1]N defined as

g∞(x) = (degW
ϕ

B2,i
η−1
D (x))i∈N.

Later in this section (in Subsections 3.4.11 and 3.4.12), we show that

these functions form a recipe G, i.e., every gn ∈ G, n ∈ N∗, satisfies (3.1) for

every k ∈ [n]. Note that we will only prove that G is a recipe, not a bijective

recipe. The fact that G is a recipe will imply that ψB1 and ψD defined as follows

are measure preserving maps assuming that λ(ψB1(B1,n)) = λ(B1,n) for every

n ∈ N.
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For every n ∈ N and x ∈ B1,n, we define

ψB1(x) := η−1
B1

(
1− 1

2n−1
+
r−1
n ((degW

ϕ

B2,i
x)i∈[n])

2n

)
.

Observe that ψB1(B1,n) ⊆ B�
1,n for every n. For x ∈ B1 that does not belong

to any B1,n, we define ψB1(x) to be equal to the same arbitrary vertex of

B�
1 . We later prove that the set of such x has measure zero (and therefore

λ(ψ−1
B1

(B�
1,n)) = λ(B1,n) = 2−n/27).

Similarly, for D�, we define

ψD(x) = η−1
D (r−1

∞ ((degW
ϕ

B2,i
x)i∈N)).

Let ψ be a map from [0, 1] to [0, 1] consisting of maps ψX for X ∈
{A0, . . . , A3, B1, . . . , B5, C,D,E1, E2, F}. Note that if ψB1 and ψD are measure

preserving maps, ψ is a measure preserving map, too.

In the rest of the section, we show that C� force the graphon W to

be weakly isomorphic to W�. Clearly, if the constraints C� force that W has

a certain property, Wϕ has the same property. Therefore, we speak directly

about properties Wϕ in our arguments.

We will be proving that Wψ
� and Wϕ are equal almost everywhere for

different subgraphons. To do this, we do not need to assume that G is a recipe.

That is needed for showing that ψ is a measure preserving map, i.e., that

W� = Wϕ almost everywhere implies that W� and Wϕ are weakly isomorphic.

3.4.1 Forcing [0, 1]× C—triangular constraints

The first constraint in Figure 3.7 forces that almost every vertex c ∈ C has the

same relative degree in C and in the parts A0, . . . , A3, B1, . . . , B5 of the graphon.

The second constraint yields that either NC(x\y) or NC(y\x) has measure zero

for almost every pair x, y ∈ X. This implies that the graphon Wϕ has values 0

and 1 almost everywhere on X ×C. The choice of ψ implies that Wϕ and Wψ
�

are equal almost everywhere on X × C for X ∈ {A0, . . . , A3, B2, . . . , B5}.
We show that Wϕ and Wψ

� are equal almost everywhere also on B1×C
later in the proof.

The subgraphon on X × C determines the order on the vertices of X

according to their relative degrees in C. We often use this fact when forcing

other parts of the graphon. In this context, we will write x ≺X y instead of

degC x < degC y for x, y ∈ X. Abusing the notation, we will also write Y ≺X Z

for Y, Z ⊆ X such that y ≺X z for every y ∈ Y and every z ∈ Z.
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3.4.2 Forcing the structure on A1 × A1

We now show that the main diagonal checker constraints, which are depicted

in Figure 3.8 force that Wϕ and Wψ
� agree almost everywhere on A1×A1. Our

line of arguments follows that in [42]. So, we only sketch the arguments.

The first condition in Figure 3.8 implies that Wϕ on A1×A1 is a union

of disjoint cliques (and zero almost everywhere else). In particular, Wϕ is 0 or

1 almost everywhere on A1 × A1. The second constraint determines the edge

density on A1 × A1. The third constraint implies that the cliques are disjoint

intervals with respect to the ordering given by the part C (up to sets of measure

zero).

Let J be the set of nonempty intervals corresponding to the cliques

forming W on A1 × A1. The intervals of J are linearly ordered by ≺A1 . Let

mJ denote the measure of an interval J ∈ J . The fourth constraint forces that

for almost every two vertices a1 ≺A1 a2 in one of the cliques in A1,

λ({a ∈ A1|Wϕ(a, a1) = Wϕ(a, a2) = 1})

= λ({a ∈ A1|Wϕ(a, a1) = 0,Wϕ(a, a2) = 0 and a1 ≺A1 a}).

Therefore, mI =
∑

I≺A1
J

mJ . According to the second constraint,
∑
J∈J

m2
J = 1/3.

Thus, the k-th interval of J has measure 2−k for every k. We conclude that

Wϕ agrees with Wψ
� almost everywhere on A1 ×A1.

3.4.3 Forcing the remaining diagonal checker subgraphons

We now use the bipartition constraints, which are depicted in Figure 3.9 to

force the structure of A1 × A2, A1 × B1, A1 × B2, A1 × B3, A1 × B4, A1 × B5,

A2 ×A3 and A2 ×B2. The constraints are identical for all the pairs except for

A1 ×B1. So we present the argument using X × Y for any of the above listed

pairs except A1 ×B1. The case A1 ×B1 is discussed separately afterwards.

The first constraint in Figure 3.9 forces that Wϕ on X × Y is a union

of disjoint complete bipartite subgraphons (and zero almost everywhere else).

The second and the third constraints imply that the sides of these complete

bipartite subgraphons form intervals in X and Y with respect to the ordering

given by C (up to sets of measure zero). The fourth constraint implies that the

intervals are in the same order (with respect to C) in both X and Y , i.e., if

I1 × J1 and I2 × J2 are complete bipartite subgraphons, I1, I2 ⊆ X, J1, J2 ⊆ Y
and I1 ≺X I2, then J1 ≺Y J2.

It remains to determine the measures of the sides of the complete bipar-

tite subgraphons.
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Recall that we have shown that Wϕ agrees with Wψ
� almost everywhere

on A1 ×A1. We show that the set of constraints depicted in Figure 3.10 forces

thatWϕ andWψ
� agree almost everywhere onA1×A2, A1×A3, A1×B1, . . . , A1×

B5, A2 ×A3 and A2 ×B2.

The first constraint in Figure 3.10 implies that almost all the vertices

of A1 have the same relative degree in A1 and in Y for Y ∈ {A2, B1, . . . , B5}.
This determines the measures of the sides of complete bipartite subgraphons

of A1 × Y , yielding that Wϕ and Wψ
� agree almost everywhere on A1 × Y for

every Y ∈ {A2, B2, . . . , B5}.
The second constraint in Figure 3.10 determines the measures of the

sides of complete bipartite subgraphons in A2 × A3 and A2 × B2 in A3, B2,

respectively, yielding that Wϕ and Wψ
� agree almost everywhere on A2 × A3

and A2 ×B2.

The third constraint forces that almost every vertex of A1 has relative

degree 1/2 in A1 or its relative degree in A3 is twice as large as in A1. Since

the sum of measures of all the sides of bipartite subgraphons in A3 is one, it

follows that vertices of A1 with relative degree 1/2 in A1 have relative degree 0

in A3.

It remains to analyze the graphon on A1 × B1. As before, the first two

constraints in Figure 3.9 for X = A1 and Y = B1 force that Wϕ on A1 × B1

is a union of disjoint complete bipartite subgraphons and that the sides of the

complete bipartite subgraphons in A1 form intervals with respect to the ordering

given by C. The first constraint in Figure 3.10 for Y = B1 implies that almost

all the vertices of A1 have the same relative degree in B1 and in A1. The choice

of ψB1 implies that Wϕ and Wψ
� agree almost everywhere on A1 ×B1.

3.4.4 Forcing the structure of A0 × A1

We next show that the first level constraints, which are depicted in Figure 3.11

force Wϕ to be equal to Wψ
� almost everywhere on A0×A1. The first constraint

implies that degA0
x = 0 or degA1

x = 1/2 for almost every vertex in x ∈ A1.

Since the set of vertices of relative degree 1/2 in A1 has measure 1/2, the edge

density on A0 × A1 forced by the second constraint implies that Wϕ(x, y) = 1

for almost every x ∈ A0 and y ∈ A1 with degA1
y = 1/2. Therefore, Wϕ is

equal to Wψ
� almost everywhere on A0 ×A1.

3.4.5 Partitioning W into levels

The structure of Wϕ established so far allows us to split the parts A1, A2, A3,

B1, . . . , B5 of Wϕ into levels, in the same way as the parts of W� are split.

We denote these levels by Ai,k and Bj,k for the parts Ai and Bj respectively.
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Figure 3.21: Density expressions specifying levels of vertices.

Formally, Ai,k, i ∈ [2], is formed by x ∈ Ai such that degA1
x = 2−k, A3,k is

formed by x ∈ A3 such that degA2
x = 2−k and Bj,k, j ∈ [5], is formed by

x ∈ Bj such that degA1
x = 2−k. Note that this coincides with our previous

definition of B1,k.

Note that the measure of Ai,k and Bj,k is 2−k for every k ∈ N, i ∈ [3] and

j ∈ [5]. Consequently, almost every vertex of the aforementioned parts belongs

to some level. Let us give an example of use of this notation: A1 ×A2 consists

of complete bipartite subgraphons with sides A1,k and A2,k for every k ∈ N and

A1 ×A3 consists of complete bipartite subgraphons with sides A1,k+1 and A3,k

for every k ∈ N.

The structure of the graphon Wϕ established so far allows to express

relations between vertices from different parts of a graphon with respect to their

containment in different levels. Some examples are given in Figure 3.21: the

value of the first expression is equal to the probability that a random vertex of

B1 and a random vertex in B2 belong to the same level. Similarly, the second

expression is equal to the probability that a random vertex of B1 and a random

vertex of B2 belong to the i-th and (i + 1)-th level for some i. The third

expression is equal to the probability that a random vertex of B1 is in the first

level. Finally, the last expression is equal to the probability that two random

vertices of B1 and B2 of the same level are connected by an edge.

3.4.6 Stair constraints

Now, we focus on the stair constraints, which are depicted in Figure 3.12. They

are intended to force the desired structure on B1 × B3. The first constraint in

Figure 3.12 determines the relative degrees of vertices of B1 in B3. The second

constraint forces for almost every vertex x ∈ B1,k0 that if x has nonzero relative

degree in B3,k, it has relative degree 1 in B3,k−1, for every k0 and k ∈ [k0].

Consequently, such x has relative degree 1 in every B3,m, m < k.
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Together, the constraints imply that for almost every x ∈ B1,k0 and

almost every y ∈ B3,k

Wϕ(x, y) =





1 if k ≤ k0, and

0 if k > k0.

It follows that Wϕ agrees with Wψ
� almost everywhere on B1 ×B3.

3.4.7 Coordinate constraints

The coordinate constraints from Figure 3.13 force basic structure between the

parts B1 and D on one side and the parts B2, B4 and B5 on the other side. Here

again, the constraints are identical for several pairs or parts, so we present the

argument for B1 ×X in the case of the first constraint depicted in Figure 3.13

and Y ×X in the case of the second constraint depicted in Figure 3.13, where

X ∈ {B2, B4, B5} and Y ∈ {B1, D}. The first constraint implies that almost

every vertex b of B1 can have nonzero relative degree in Xk only if it has nonzero

relative degree in B3,k, i.e., by 3.4.6, only if b ∈ B1,k0 for k ≤ k0. The second

constraint implies that NY (b′ \b) has measure zero for every k and almost every

two b, b′ ∈ Xk such that b ≺X b′. This implies that Wϕ is equal to 0 or 1 almost

everywhere on Y ×X.

The definition of ψ on B1 and D, and the just shown properties yield

that Wϕ = Wψ
� almost everywhere on B1 ×B2 and D ×B2.

3.4.8 Initial coordinate constraint

The initial coordinate constraint can be found in Figure 3.15. It forces that

degB2,1
b =

degC b− (1− 2 degA1
b)

degA1
b

for almost every b ∈ B1. This implies that Wϕ agrees with Wψ
� almost every-

where on B1 × C. This and the triangular constraints for B1 × C yield that

every gn ∈ G satisfies (3.1) for k = 1.

3.4.9 Distribution constraints

The first constraint in Figure 3.14 implies that the relative degrees of vertices

of B2,k0 in B1,k, k0 ≤ k, are uniformly distributed. In particular, it holds for
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every k ∈ N and every k0 ∈ [k] that

degB1,k
b = 1− degC b− (1− 2 degA1

b)

degA1
b

for almost every b ∈ B2,k0 . The definition of B2,k0 yields that degA1
b = 2−k0

for almost every b ∈ B2,k0 . So, we get that

degB1,k
b = 1− 2k0

(
degC b−

(
1− 2−(k0−1)

))

for every k ∈ N, every k0 ∈ [k] and almost every b ∈ B2,k0 .

This means that relative degree of almost every b ∈ B2,k0 in B1,k de-

creases linearly from 1 to 0 with its position within B2,k0 given by ≺B2 .

The second constraint in Figure 3.14 implies that the same is true for

degrees of vertices of B2,k in D.

3.4.10 Product constraints

The product constraints, which are depicted in Figures 3.16 and 3.17, imply

that Wϕ and Wψ
� are equal almost everywhere on B1 × B4, B1 × B5, D × B4

and D ×B5.

Recall that the structure of the graphon Wϕ established so far implies

that W has only values 0 and 1 almost everywhere on B1×B4, B1×B5, D×B4

and D ×B5 and the neighborhood of almost every vertex of b ∈ B1 and d ∈ D
in B4 and B5 is determined by its relative degree up to a set of measure zero.

Therefore, it is sufficient to show that these relative degrees are determined by

the product constraints. We present the argument for B1, the argument for D

is analogous.

The first constraint in Figure 3.16 implies that degB4,1
b = degB2,1

b for

almost every vertex b ∈ B1. The second constraint forces degB4,i
b = degB2,i

b ·
degB4,i−1

b for almost every b ∈ B1 and i > 1.

Similarly, the constraints depicted in Figure 3.17 imply that

1− degB5,1
b = degB2,1

b

for almost every vertex b ∈ B1, and

degB5,i
b = (1− degB2,i

b) · degB5,i−1
b

for almost every b ∈ B1 and i > 1.

This implies that Wϕ and Wψ
� are equal almost everywhere on B1×B4,

B1 ×B5, D ×B4 and D ×B5.
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3.4.11 Projection constraints

We now establish that the projection constraints, which can be found in Fig-

ure 3.18, force that Wϕ equals to Wψ
� almost everywhere on B1×B1. We define

g̃k(x) to be gk(ηB1,k
(x)) for x ∈ B1,k to simplify our notation throughout the

subsection (recall that gk(ηB1,k
(x)) = (degB2,i

x)i∈[k]). In what follows we write

≤k and ≥k for lexicographic order of the first k elements of sequences. That is,

(ai)i∈[k1] ≤k (bi)i∈[k2], k1, k2 ≥ k if ai ≤ bi for every i ∈ [k]. In particular, we

write g̃k1(x) ≤k g̃k2(y), k1, k2 ≥ k if (g̃k1(x))i ≤ (g̃k2(y))i for every i ∈ [k].

We start by showing that Wϕ equals 0 or 1 almost everywhere on B1,k×
B1,k′ for every k ∈ N and k′ > k and that

λ{b ∈ B1,k| g̃k(b) ≤k (ai)i∈[k]} = λ(B1,k)
∏

i∈[k]

ai for every (ai)i∈[k] ∈ [0, 1]k.

(3.2)

Note that (3.2) implies that

g̃k(B1,k \ Z) is dense in [0, 1]k for every k ∈ N and Z of measure zero. (3.3)

Our argument proceeds by induction on k. Recall that the initial coordinate

constraints guarantee that (3.2) holds for k = 1.

We now focus on the induction step. The first constraint in Figure 3.18

forces that the set NB2(b \ b′) has measure zero for almost every pair of vertices

b ∈ B1,k and b′ ∈ B1,k′ , k < k′, such that Wϕ(b, b′) > 0. This implies for

almost every pair b ∈ B1,k and b′ ∈ B1,k′ , k < k′, with Wϕ(b, b′) > 0, that

degB2,i
b ≤ degB2,i

b′ for every i ∈ [k]. In other words,

NB1,k
(b′) \ {b ∈ B1,k| g̃k(b) ≤k g̃k′(b′)}

has measure zero for almost every b′ ∈ B1,k′ and

NB1,k′ (b) \ {b
′ ∈ B1,k′ | g̃k′(b′) ≥k g̃k(b)}

has measure zero for almost every b ∈ B1,k, k < k′.

The second constraint forces that

degB1,k
b′ = degB4,k

b′

for almost every b′ ∈ B1,k′ , k
′ > k. We have shown in Subsection 3.4.10 that

degB4,k
b′ =

∏

i∈[k]

(g̃k′(b
′))i (3.4)
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for almost every b′ ∈ B1,k′ , k
′ > k. It follows that if (3.2) holds for k, then

the second constraint implies for every k′ > k that Wϕ equals to 0 or 1 almost

everywhere on B1,k ×B1,k′ , and that

NB1,k
(b′)4{b ∈ B1,k| g̃k(b) ≤k g̃k′(b′)}

has measure zero for almost every b′ ∈ B1,k′ , and that

NB1,k′ (b)4{b
′ ∈ B1,k′ | g̃k′(b′) ≥k g̃k(b)} (3.5)

has measure zero for almost every b ∈ B1,k.

To complete the induction step, we should show that (3.2) holds for k+1

assuming it holds for k. The third constraint depicted in Figure 3.18 guarantees

that

degB1,k+1
b = degB5,k

b =
∏

i∈[k]

(1− (g̃k(b))i)

for almost every b ∈ B1,k. This combined with (3.2) yields that

λ({b′ ∈ B1,k′ | g̃k′(b′) ≥k g̃k(b)}) =
∏

i∈[k]

(1− (g̃k(b)i)) (3.6)

for almost every b ∈ B1,k.

The fourth constraint implies that

degB1,k+1
b = degBx1,k+1

b (3.7)

for almost every b ∈ B1,k and x ∈ B2,k+1 where Bx
1,k+1 is the set of vertices y ∈

B1,k+1 with Wϕ(x, y) = 1 (recall that Wϕ is equal to 0 or 1 almost everywhere

on B1 × B2 as shown in Subsection 3.4.7). Note that the structure of the

graphon established in Subsection 3.4.7 yields that Bx
1,k+1 is the set of vertices

y ∈ B1,k+1 of the relative degree at least ax in B2,k+1 for some ax ∈ [0, 1] (up

to a set of measure zero and for almost every x ∈ B2,k+1). Hence, the equality

(3.7) guarantees that

λ({b′ ∈ B1,k+1| g̃k+1(b′) ≥k g̃k(b)})
λ(B1,k+1)

(3.8)

=
λ({b ∈ B1,k+1| g̃k+1(b′) ≥k g̃k(b) and (g̃k+1(b′))k+1 ≥ ak+1})

λ({b′ ∈ B1,k+1|(g̃k+1(b′))k+1 ≥ ak+1})

for almost every b ∈ B1,k and every ak+1 ∈ [0, 1].
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The structure of the graphon established in Subsection 3.4.9 implies that

λ({b′ ∈ B1,k+1|(g̃k+1(b′))k+1 ≥ ak+1}) = (1− ak+1)λ(B1,k+1)

for every ak+1 ∈ [0, 1]. This combined with (3.6) and (3.8) yields that

∏
i∈[k](1− (g̃k(b)i))

λ(B1,k+1)

=
λ({b ∈ B1,k+1| g̃k+1(b′) ≥k g̃k(b) and (g̃k+1(b′))k+1 ≥ ak+1})

(1− ak+1)λ(B1,k+1)

for almost every b ∈ B1,k and every ak+1 ∈ [0, 1]. We conclude using (3.3) that

λ({b′ ∈ B1,k+1| g̃k+1(b′) ≥k+1 (ai)i∈[k+1]}) =
∏

i∈[k+1]

(1− ai)

for every (ai)i∈[k+1] ∈ [0, 1]k+1. By the principle of inclusion and exclusion, the

equality (3.2) holds for k+ 1. The completion of the induction step yields that

gn satisfies (3.1) for all k, n ∈ N, in particular, ψB1 is a measure preserving

map.

We have shown that B1,k×B1,k′ in Wϕ and Wψ
� agree almost everywhere

for k 6= k′. It remains to analyze the structure of the graphon Wϕ on B1,k×B1,k

for k ∈ N. The first constraint in Figure 3.19 forces for every k ∈ N that

NB2(b′ \ b) or NB2(b \ b′) has measure zero for almost all b, b′ ∈ B1,k with

Wϕ(b, b′) > 0. Since ψB1 is a measure preserving map and the graphons Wϕ

and Wψ
� are equal almost everywhere on B1 × B2, B1 × B4 and B1 × B5, it

follows that

λ(NB1,k
(b)) ≤ λ(B1,k)

(
k∏

i=1

degB2,i
b+

k∏

i=1

(1− degB2,i
b)

)

= λ(B1,k)
(

degB4,k
b+ degB5,k

b
)

for almost every b ∈ B1,k.

The second constraint in Figure 3.19 implies that degB1,k
b = degB4,k

b+

degB5,k
b for almost every b ∈ B1,k. Hence, Wϕ has to be equal to 1 almost

everywhere on B1,k × B1,k, where it does not have to be zero by the fourth

constraint. Therefore, the last two projection constraints imply that Wϕ equals

to Wψ
� almost everywhere on B1,k ×B1,k and thus on the whole B1 ×B1.

64



3.4.12 Infinite constraints

In this subsection, we prove that Wϕ equals to Wψ
� almost everywhere on

B1 × D, by proving they are equal almost everywhere on B1,k × D for every

k ∈ N. We also prove that ψD is a measure preserving map by showing that

g∞ satisfies (3.1) for every k. Let k ∈ N be fixed for the rest of the subsection.

Let d ∈ D and b ∈ B1,k. We define

Mk
B1

(d) = {b ∈ B1,k| degB2,i
b ≤ degB2,i

d ∀i ∈ [k]} and

Mk
D(b) = {d ∈ D| degB2,i

d ≥ degB2,i
b ∀i ∈ [k]}.

Note that (3.2) is equivalent to

λ({b ∈ B1,k|degB2,i
b ≤ ai ∀i ∈ [k]} = λ(B1,k) ·

k∏

i=1

ai

for every (ai)i∈[k] ∈ [0, 1]k. Therefore, it holds that

λ(Mk
B1

(d)) = λ(B1,k) ·
k∏

i=1

degB2,i
d

for almost every d ∈ D.

The first constraint in Figure 3.20 forces that NB2(b \ d) has measure

zero for almost every b ∈ B1, d ∈ D with Wϕ(b, d) > 0. It follows that

NB1,k
(d) \Mk

B1
(d) and ND(b) \Mk

D(b) have measure zero for almost every b ∈
B1,k and d ∈ D.

The second constraint in Figure 3.20 implies that degB1,k
d = degB4,k

d

for almost every d ∈ D. We have shown in Subsection 3.4.10 that degB4,k
d =∏k

i=1 degB2,i
d for almost every d ∈ D. Therefore,

λ
(
NB1,k

(d)
)
≥ λ(B1,k) · degB1,k

d = λ(B1,k) · degB4,k
d

= λ(B1,k)
k∏

i=1

degB2,i
d = λ

(
Mk
B1

(d)
)

for almost every d ∈ D. Since the measure of NB1,k
(d) \Mk

B1
(d) is zero for

almost every d ∈ D, it follows that λ(NB1,k
(d)4Mk

B1
(d)) = 0 for almost every

d ∈ D and Wϕ(b, d) = 1 for almost every d ∈ D and b ∈ NB1,k
(d).

We have shown that Wϕ(b, d) = 1 for almost any b ∈ B1,k and d ∈ D
such that degB2,i

b ≤ degB2,i
d for every i ∈ [k], and it is zero almost everywhere

else in B1 × D. This implies that Wϕ equals to Wψ
� almost everywhere on
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B�
1 ×D�. We now show that ψD is a measure preserving map. In particular,

we need to show that g∞ satisfies (3.1) for every k ∈ N.

The third constraint in Figure 3.20 implies that

degD b = degB5,k
b =

k∏

i=1

(1− degB2,i
b)

for almost every b ∈ B1,k. Thus,

λ
(
Mk
D(b)

)
= λ (ND(b)) = λ(D) · degD b = λ(D)

k∏

i=1

(1− degB2,i
b)

for almost every b ∈ B1,k. We deduce by the principle of inclusion and exclusion

that
λ({d ∈ D|degB2,i

d ≤ degB2,i
b ∀i ∈ [k]})

λ(D)
=

k∏

i=1

degB2,i
b (3.9)

for almost every b ∈ B1,k.

Finally, observe that the definition of g∞ yields

g∞(ηD(d)) = (degB2,i
d)i∈N for d ∈ D.

It follows from (3.3) and (3.9) that g∞ is measure preserving.

3.4.13 Structure involving the parts E1, E2 and F

Let I = [0, 1] \ (E1 ∪ E2 ∪ F ). The degree unifying constraints, which are

depicted in Figure 3.4, imply that for every X,Y ∈ {A0, . . . , A3, B1, . . . , B5, C}
and almost every x ∈ X, y ∈ Y :

∫

E1

Wϕ(x, z) dz = (1− degI x) and

∫

E1

Wϕ(x, z)Wϕ(y, z) dz = (1− degI x)(1− degI y).

Following the reasoning given in [65, proof of Lemma 3.3], this implies that

∫

E1

(Wϕ(x, z))2 dz = (1− degI x)2
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for almost every x ∈ X. The Cauchy-Schwarz inequality yields that Wϕ(x, z) =

1− degI x for almost every x ∈ X and z ∈ E1. This implies that

deg[0,1]\(E2∪F ) x = 1/2

for almost every x ∈ I \D. Since Wψ
� = Wϕ almost everywhere on I2, almost

every x ∈ I has the same relative degree on I in both Wψ
� and Wϕ which yields

that Wψ
� = Wϕ almost everywhere on I × E1.

Similarly, the constraints depicted in Figure 3.5 imply that

degB1∪B2∪B4∪B5∪E2
x = 1/2

for almost every x ∈ D and that Wψ
� = Wϕ almost everywhere on D × E2.

Finally, the two degree distinguishing constraints in Figure 3.6 force that

Wϕ on [0, 1]× F is formed by pseudorandom bipartite subgraphons X × F for

X = A1, . . ., A3, B1, . . . , B5, C, with densities given by Table 3.2. Thus, Wϕ is

equal to Wψ
� almost everywhere on [0, 1]× F .
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Chapter 4

Erdős-Lovász-Spencer

theorem for permutations

In this chapter, we give a permutation analogue of the result of Erdős, Lovász

and Spencer about subgraph densities in a graph [35]. In particular, we show

that the body of possible densities of any k indecomposable permutations in

permutons has a non-empty interior and is full dimensional.

We start by introducing notion of densities of subpermutations in a per-

mutation corresponding to the induced subgraph density, the homomorphism

density and the subgraph density for graphs studied in [35].

4.1 Permutation densities

Let π be a permutation of order k and σ be a permutation of order n. We

introduce three ways in which π can appear in σ: as a subpermutation, through

a monomorphism and through a homomorphism. First, note that the notion

of subpermutation an be equivalently defined as follows; a permutation π is a

subpermutation of σ if there exists a strictly increasing function f : [k] → [n],

such that π(i) > π(j) if and only if σ(f(i)) > σ(f(j)) for every i, j ∈ [k]. Let

Occ(π, σ) be the set of all such functions f from [k] into [n] and let Λ(π, σ) =

|Occ(π, σ)|. Then, the density of π in σ can be computed as

t(π, σ) =





Λ(π, σ)
(
n
k

)−1
if k ≤ n and

0 otherwise.

A non-decreasing function f : [k]→ [n] is a homomorphism of π to σ if σ(f(i)) >

σ(f(j)) for every i, j ∈ [k] such that i < j and π(i) > π(j), that is, f preserves

inversions. A monomorphism is a homomorphism that is injective.
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Let Hom(π, σ) and Mon(π, σ) denote the sets of homomorphisms and

monomorphisms of π to σ, respectively, and let Λhom(π, σ) and Λmon(π, σ)

denote the sizes of the respective sets. Note that Occ(π, σ) ⊆ Mon(π, σ) ⊆
Hom(π, σ). The homomorphism density thom and monomorphism density tmon

are defined as follows:

tmon(π, σ) =





Λmon(π, σ)
(
n
k

)−1
if k ≤ n and

0 otherwise,

thom(π, σ) = Λhom(π, σ)

(
n+ k − 1

k

)−1

.

The three densities that we have just introduced are analogues of densities for

graphs studied in [35].

Let q be an integer and let {τ1, . . . , τr} be the set of all non-trivial

indecomposable permutations of order at most q. We consider the following

three vectors

tq(σ) = (t(τ1, σ), . . . , t(τr, σ)),

tqmon(σ) = (tmon(τ1, σ), . . . , tmon(τr, σ)), and

tqhom(σ) = (thom(τ1, σ), . . . , thom(τr, σ)).

Our aim is to understand possible densities of subpermutations in large per-

mutations. This leads to the following definitions, which reflect the possible

asymptotic densities of the indecomposable permutations of order at most q in

permutations:

T q = {v ∈ Rr | ∃(σn)n∈N such that tq(σn)→ v and |σn| → ∞},
T qmon = {v ∈ Rr | ∃(σn)n∈N such that tqmon(σn)→ v and |σn| → ∞}, and

T qhom = {v ∈ Rr | ∃(σn)n∈N such that tqhom(σn)→ v and |σn| → ∞}.

The subpermutation density t(τ,Φ) of a permutation τ of order n in a

permuton Φ is the probability that a Φ-random permutation of order n is τ .

Likewise, we can define the monomorphism density of τ as the probability that

the identity mapping to a random Φ-permutation is a monomorphism of τ .

Since we view permutons as representing large permutations, if we define

homomorphism densities in a natural way, they would coincide with monomor-

phism densities. So, we restrict our study to subpermutation densities and

monomorphism densities in permutons. By analogy to the finite case, we define
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the vectors

tq(Φ) = (t(τ1,Φ), . . . , t(τr,Φ)) and

tqmon(Φ) = (tmon(τ1,Φ), . . . , tmon(τr,Φ)),

where q ∈ N and {τ1, . . . , τr} is the set of all non-trivial indecomposable per-

mutations of order at most q.

A sequence of Φ-random permutations of increasing orders converges

with probability one with its limit being Φ with probability one. Therefore, for

every permuton Φ and every finite set of permutations S and every ε > 0, there

exists a permutation ϕ such that |t(π,Φ) − t(π, ϕ)| < ε for every π ∈ S. This

yields an alternative description of T q as the set {tq(Φ) | Φ ∈ P}. Similarly,

T qmon = {tqmon(Φ) | Φ ∈ P}.
Now we give three observations on how the sets T q, T qmon and T qhom relate

to each other.

Observation 26. The sets T qmon and T qhom are equal for every q ∈ N.

Proof. Observe that for every fixed integer k,

Λhom(τ, σ)− Λmon(τ, σ) ≤
(
k

2

)
nk−1 = O(nk−1),

for every σ of order n and τ of order k.

Hence, for every permutation τ and every real ε > 0 there exists n0 such

that |tmon(τ, σ) − thom(τ, σ)| < ε for every permutation σ with |σ| > n0. The

statement now follows.

In view of Observation 26, we will discuss only T qmon in the rest of the

chapter.

Observation 27. For every q ∈ N, the set T qmon is closed.

Proof. Let (wn)n∈N ⊆ T qmon be a convergent sequence and let w = limn→∞wn.

For each n, choose σn such that ‖tqmon(σn) −wn‖ ≤ 1/n. Then, the sequence

(tqmon(σn))n∈N converges to w, i.e., w ∈ T qmon.

Observation 28. The set T q is a non-singular linear transformation of T qmon

for every q ∈ N.

Proof. Note that Λmon(π, σ) =
∑

π′∈S Λ(π′, σ), where S is a set of permutations

π′ of the same order as π such that the identity mapping is a monomorphism

from π to π′. Consequently, tmon(π, σ) =
∑

π′∈S t(π
′, σ). This gives that T qmon

is a linear transformation of T q. Observe that if we order τ1, . . . , τr by the
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Figure 4.1: The permuton Φv
σ for σ = (2, 4, 3, 1) and v = (1/6, 1/4, 1/12, 1/4).

number of inversions, the coefficient matrix of the induced linear mapping is

upper triangular with diagonal entries equal to 1. We conclude that the linear

transformation of T q is non-singular.

We conclude this section by deriving formulas for densities of indecom-

posable permutations in direct products of permutons and in step-up permu-

tons, which are permutons with simple structure corresponding to a weighted

permutation.

Recall that a permutation σ of order n is indecomposable if there is no

m < n such that σ([m]) = [m].

Observation 29. Let τ be a non-trivial indecomposable permutation of or-

der k and let m be a positive integer. Let Φ1, . . . ,Φm be permutons and let

(x1, . . . , xm) ∈ Rm+ be such that
∑

i∈[m] xi = 1. The permuton Φ =
⊕

i∈[m] xiΦi

satisfies

t(τ,Φ) =
m∑

i=1

xki t(τ,Φi).

Observation 29 is based on the fact that if k random points with distri-

bution Φp
σ induce an indecomposable permutation τ , then all the points lie in

the same square corresponding to one of the permutons Φi.

Let σ be a permutation of order n and let v = (v1, . . . , vn) ∈ Rn+ be

such that
∑

i∈[n] vi ≤ 1, where R+ is the set of positive reals. The step-up

permuton of σ and v is the permuton Φv
σ =

∑
i∈[n+1] viΥAi , where Ai is a

segment between the points (
∑

j<i vj ,
∑

σ(j)<σ(i) vj) and (
∑

j≤i vj ,
∑

σ(j)≤σ(i) vj)

for i ∈ [n], vn+1 = 1 −∑j∈[n] vj and An+1 is the segment between the points

(
∑

j∈[n] vj ,
∑

j∈[n] vj) and (1, 1). Note that this is indeed a permuton. See

Figure 4.1 for an example.

For a permutation τ of order k, we call a partition P = {P1, . . . , P`}
of [k] τ -compressive if

• Pi is an interval for every i ∈ [`],
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• a < b for every a ∈ Pi and b ∈ Pj with i < j, and

• for every i ∈ [`], there exists an integer ci, such that τ(a) = a + ci for

every a ∈ Pi. (In particular, τ(Pi) is interval for every i ∈ [`].)

We denote the set of all τ -compressive partitions by R(τ). Note that

for every permutation τ , there exist at least one τ -compressive partition: the

partition into singletons.

For a permutation τ of order k and a τ -compressive partition P =

{P1, . . . , P`}, let τ/P be a subpermutation of τ of order ` induced by {a1, . . . , a`}
where ai ∈ Pi for every i ∈ [`]. Note that τ/P is unique, in particular, it is

independent of the choice of the elements ai.

In other words, the permutation τ/P is a permutation that can be ob-

tained from τ by shrinking each interval Pi and its image into single points,

without changing the relative order of the elements of the permutation.

Observation 30. Let τ be a non-trivial indecomposable permutation of order

k, σ a permutation of order n ≥ k and let p = (p1, . . . , pn) ∈ Rn+ be such that∑
i∈[n] pi ≤ 1. It follows that

t(τ,Φp
σ) = k!

∑

P∈R(τ)

∑

ψ∈Occ(τ/P,σ)

|P|∏

i=1

p
|Pi|
ψ(i) .

Informally speaking, Observation 30 holds because for a fixed indecom-

posable permutation τ of order k, k random points chosen based on the distri-

bution Φp
σ induce τ if and only if none of the k points lies on the last segment of

the support of Φp
σ and there is a τ -compressive partition P such that points cor-

responding to the elements of τ in the same part of P lie on the same segment

of the support of Φp
σ , and the elements of σ corresponding to these segments

induce τ/P in σ.

Analogues of Observations 29 and 30 for densities of monomorphisms

also hold.

4.2 Properties of the sets T q and T q
mon

In this section, we show that densities of non-trivial indecomposable permuta-

tions are mutually independent and, more generally, that T q contains a ball.

We start by considering the linear span of T q.

Lemma 31. For every q ∈ N, span(T q) = Rr, where r is the number of non-

trivial indecomposable permutations of order at most q.
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Proof. Let {τ1, . . . , τr} be the set of all non-trivial indecomposable permutations

of order at most q. For a contradiction, suppose that span(T q) has dimension

less than r, i.e., there exist reals c1, . . . , cr, not all of which are zero, such that

r∑

i=1

civi = 0

for every (v1, . . . , vr) ∈ span(T q). Therefore,

r∑

i=1

cit(τi,Φ) = 0

for every permuton Φ ∈ P.

Consider the permutations τi such that ci 6= 0. Among these pick a τk

of maximum order. Observation 30 yields that the following holds for s = |τk|
and every x = (x1, . . . xs) ∈ Rs+ such that

∑s
i=1 xi ≤ 1:

r∑

i=1

cit(τi,Φ
x
τk

) =
r∑

i=1

ci|τi|!
∑

P∈R(τi)

∑

ψ∈Occ(τi/P,τk)

|P|∏

j=1

xψ(j) = p(x1, . . . , xs),

where p is a polynomial. We now argue that p is a polynomial of degree s (and

therefore it is a non-zero polynomial). Clearly, the polynomial p has degree

at most s. Since Occ(τ ′, τk) = ∅ for every τ ′ of order s such that τ ′ 6= τk,

cks!x1x2 · · ·xs is the only term of p containing the monomial x1x2 · · ·xs with

nonzero coefficient. Therefore, there exists x such that
∑r

i=1 cit(τi,Φ
x
τk

) 6= 0,

which is a contradiction.

The following theorem is the main result of this chapter. It shows that

the interior of T q is non-empty. Observation 28 yields the same conclusion for

T qmon. In the statement of the following theorem and its proof, we write B(w, ε)

for the ball of radius ε around w in Rr.

Theorem 32. For every integer q ≥ 2, there exist a vector w ∈ T q and ε > 0

such that B(w, ε) ⊆ T q.

Proof. Let {τ1, . . . , τr} be the set of all non-trivial indecomposable permutations

of order at most q and let Φ1, . . . ,Φr be permutons such that {tq(Φi) | i ∈ [r]}
spans Rr. (Existence of such permutons follows from Lemma 31.) Consider

the matrix V = (vi,j)
r
i,j=1, where vi,j = t(τj ,Φi). Observe that the matrix V is

non-singular.
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Consider a vector x = (x1, . . . , xr) ∈ (0, r−1)r and let

Φx =


1−

∑

i∈[r]

xi


 I ⊕


⊕

i∈[r]

xiΦi


 .

Recall that I denotes the unique permuton with support consisting of the seg-

ment between (0, 0) and (1, 1) and observe that t(τ, I) = 0 for every non-trivial

indecomposable permutation τ . Thus, Observation 29 yields that

t(τj ,Φ
x) =

r∑

i=1

x
|τj |
i t(τj ,Φi) =

r∑

i=1

x
|τj |
i vi,j .

Let Ψ be a map from Rr to Rr such that

Ψj(x) =

r∑

i=1

x
|τj |
i vi,j for all j ∈ [r].

Since we have Ψ(x) = tq(Φx), we get that

Ψ((0, r−1)r) = {Ψ(x) | x ∈ (0, r−1)r} ⊆ T q.

The Jacobian Jac(Ψ)(x) is a polynomial in x1, . . . , xr. Since for x1 = · · · =

xr = 1 we have

Jac(Ψ) = det(vi,j · |τj |)ri,j=1 =




r∏

j=1

|τj |


 detV 6= 0,

Jac(Ψ) is a non-zero polynomial.

Hence, there exists x ∈ (0, r−1)r for which Jac(Ψ)(x) 6= 0. Consequently,

T q contains a ball around w for w = Ψ(x).

Theorem 32 implies that for every finite family A of indecomposable

permutations, there exist permutons Φ and Φ′ and an indecomposable permu-

tation τ such that t(π,Φ) = t(π,Φ′) for every π ∈ A and t(τ,Φ) 6= t(τ,Φ′). The

following lemma shows that an analogous statement holds for any finite family

of permutations, not only for indecomposable permutations.

Lemma 33. For every finite set of permutations A = {τ1, . . . , τk}, there exists

a permutation τ and permutons Φ and Φ′ such that t(τi,Φ) = t(τi,Φ
′) for every

i ∈ [k] and t(τ,Φ) 6= t(τ,Φ′).

Proof. Let B = {π1, . . . , πk+1} be a family of permutations each of order n with

n > |τi| for every i ∈ [k], such that no π ∈ B maps a proper interval onto an
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interval. Permutations with this property are called simple. By the result of

Albert, Atkinson and Klazar [8, Theorem 5], a random permutation of order

n is simple with probability bounded away from zero as n tends to infinity (in

particular, the probability tends to e−2). Therefore such a family B of simple

permutations exists for n sufficiently large.

Let n = (1/n, . . . , 1/n︸ ︷︷ ︸
n×

) and

Φu =


1−

∑

i∈[k+1]

ui


 I ⊕


 ⊕

i∈[k+1]

uiΦ
n
πi




for u = (u1, . . . , uk+1) ∈ (0, 1
k+1 ]k+1. Observe that if π is a simple permutation,

it is also indecomposable and the only π-compressive partition is the partition

into singletons (specifically, the partition consisting of Pi = {i}, i ∈ [|π|]).
Hence, by Observations 29 and 30, t(πi,Φ

u) = n!(ui/n)n for every i ∈ [k + 1].

The function u 7→ t(τj ,Φ
u) is continuous for every j ∈ [k]. We consider the

continuous map Γ from (0, 1/(k + 1)]k+1 to Rk such that

Γ(u) = (t(τ1,Φ
u), . . . , t(τk,Φ

u)).

Now, consider any k-dimensional sphere in (0, 1/(k+1)]k+1. The Borsuk-

Ulam Theorem [23] yields the existence of two distinct points on its surface

that are mapped by Γ to the same point in [0, 1]k. Hence, there exist distinct

v = (v1, . . . , vk+1) and v′ = (v′1, . . . , v
′
k+1) such that t(τj ,Φ

v) = t(τj ,Φ
v′) for

every j ∈ [k]. However, if, say vi 6= v′i, then t(πi,Φ
v) = n!(vi/n)n 6= n!(v′i/n)n =

t(πi,Φ
v′). Therefore, τ = πi, Φ = Φv, and Φ′ = Φv′ satisfy the assertion of the

theorem.

75



Chapter 5

Non-forcible approximable

parameter

In this chapter, we construct a bounded permutation parameter which is finitely

approximable but not finitely forcible, answering a question of Hoppen et al. [54,

Question 5.5] whether such parameter exists.

For this chapter, we fix a sequence (τk)k∈N of permutations of strictly

increasing orders and sequences of permutons (Φk)k∈N and (Φ′k)k∈N that satisfy

the following: For every k > 1, t(σ,Φk) = t(σ,Φ′k) for every permutation σ

of order at most |τk−1|, and t(τk,Φk) > t(τk,Φ
′
k). Such a sequences (τk)k∈N,

(Φk)k∈N and (Φ′k)k∈N exist by Lemma 33. Let γk = t(τk,Φk) − t(τk,Φ′k) for

every k ∈ N.

Let (αi)i∈N be a sequence of positive reals satisfying
∑

i∈N αi < 1/2 and∑
i>k αi < αkγk/4 for every k. The main result of this section is that the

permutation parameter

f•(σ) =
∑

i∈N
αit(τi, σ)

is finitely approximable but not finitely forcible.

Lemma 34. The permutation parameter f• is finitely approximable.

Proof. Consider fixed ε > 0. Since the sum
∑

i∈N αi converges, there exists

k such that
∑

i>k αi < ε/2. Set A = {τ1, . . . , τk} and δ = ε. Consider two

permutations σ and π that satisfy |t(τ, σ) − t(τ, π)| < δ for every τ ∈ A.
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We obtain that

|f•(σ)− f•(π)| =
∣∣∣∣∣
∑

i∈N
αi(t(τi, σ)− t(τi, π))

∣∣∣∣∣

≤
∑

i∈N
αi |t(τi, σ)− t(τi, π)|

<
∑

i≤k
αiδ +

∑

i>k

αi|t(τi, σ)− t(τi, π)|

< δ/2 +
∑

i>k

αi · 1 < ε.

It follows that the parameter f• is finitely approximable.

In the following lemma, we show that f• is not finitely forcible.

Lemma 35. The permutation parameter f• is not finitely forcible.

Proof. Suppose that f• is finitely forcible and that A is a forcing family for f•.

Let k be such that the maximum order of a permutation in A is at most |τk−1|.
Then we have t(ρ,Φk) = t(ρ,Φ′k) for every ρ ∈ A, t(τi,Φk) = t(τi,Φ

′
k) for every

i < k, and t(τk,Φk)− t(τk,Φ′k) = γk.

Let ε = αkγk/4. Let δ > 0 be as in the definition of finite forcibility of

f•. Without loss of generality we may assume that δ < ε.

There exist a Φk-random permutation σ and a Φ′k-random permutation

σ′ such that |t(ρ, σ) − t(ρ, σ′)| < δ for every ρ ∈ A, |t(τi, σ) − t(τi, σ′)| < δ for

every i < k and t(τk, σ)− t(τk, σ′) > γk − δ > 3γk/4. Let us estimate the sum

in the definition of f• with the k-th term missing.

∣∣∣∣∣∣
∑

i∈N,i 6=k
αi(t(τi, σ)− t(τi, σ′))

∣∣∣∣∣∣

=

∣∣∣∣∣
∑

i<k

αi
(
t(τi, σ)− t(τi, σ′)

)
+
∑

i>k

αi
(
t(τi, σ)− t(τi, σ′)

)
∣∣∣∣∣

<
∑

i<k

αiδ +
∑

i>k

αi <
αkγk

8
+
αkγk

4
<
αkγk

2
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This leads to the following

|f•(σ)− f•(σ′)| =
∣∣∣∣∣
∑

i∈N
αi
(
t(τi, σ)− t(τi, σ′)

)
∣∣∣∣∣

≥ αk
(
t(τk, σ)− t(τk, σ′)

)
−

∣∣∣∣∣∣
∑

i∈N,i 6=k
αi
(
t(τi, σ)− t(τi, σ′)

)
∣∣∣∣∣∣

>
3

4
αkγk −

αkγk
2

=
αkγk

4
= ε.

This contradicts our assumption that f• is finitely forcible.

Lemmas 34 and 35 yield the Theorem 8, stating that there exists a

bounded permutation parameter f that is finitely approximable but not finitely

forcible.

Recall that, by [54, Proposition 5.4] the testable bounded permutation

parameters are precisely the finitely approximable ones. Thus, Theorem 8 im-

plies that a finitely forcible bounded permutation parameter does not have to

be testable.
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Chapter 6

Property testing algorithms

for permutations

In this chapter, we present a proof that all hereditary permutation properties

are strongly testable, i.e., testable with respect to the Kendall’s tau distance

(Theorem 7). Hoppen et al. [54] observed that this result would be implied by

the following statement, asserting that every permutation close to a hereditary

property in the rectangular distance is also close in the Kendall’s tau distance.

Conjecture 2 (Hoppen, Kohayakawa, Moreira and Sampaio [54], Conjecture

5.3). Let P be a hereditary property. For every positive real ε0, there ex-

ists δ0 such that any permutation π satisfying dist�(π,P) < δ0 also satisfies

distK(π,P) < ε0.

The conjecture is an analogue of the known relation between the cut

distance and the edit distance to hereditary graph properties from [69]. Our

method actually gives the proof of this conjecture which we state as Theorem 40.

However, we include the proof of Theorem 7 instead of just stating that it can

be derived from Theorem 40 for completeness.

6.1 Branchings

In this section, we present the notion of branchings which are rooted trees ap-

proximately describing hereditary properties. This notion is key in our analysis

of hereditary properties. Let us start with a formal definition of k-sequences.

For an integer k, a k-sequence A is a sequence A1, . . . , A` of non-empty subsets

of [k]. We refer to ` as the length of A and we write |A| for the length of A.

The basic k-sequence is the k-sequence of length one comprised of the set [k].

A k-sequence A is simple if each Ai has size one. Finally, a k-sequence A is
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monotone if every pair x ∈ Ai and x′ ∈ Ai′ with 1 ≤ i < i′ ≤ |A| satisfies that

x < x′.

Before we proceed further, we have to introduce some auxiliary notation.

If A is a k-sequence, then we write |A|i for the sum |A1| + · · · + |Ai|. For

completeness, we define |A|0 = 0.

Fix a k-sequence A. Let Ai = {xi1, . . . , xi|Ai|} where xi1 < · · · < xi|Ai|.

For an integer m, we define a function gA,m : [m · |A||A|]→ [k] as

gA,m(j) = xi
(j−m·|A|i−1)) mod |Ai|

where i is the largest integer such such that m · |A|i−1 < j. For example, if

A = {1, 2, 3}, {1, 4}, {3}, then

gA,4(1), . . . , gA,4(24) =

1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 4, 1, 4, 1, 4, 1, 4, 3, 3, 3, 3 .

Note that the sequence gA,m(1)gA,m(2) . . . gA,m(m · |A||A|) has |A| blocks such

that the i-th block consists of m parts each containing the elements of Ai in

the increasing order.

A permutation π is an m-expansion of a k-sequence A if the following

holds:

• the order of π is m · |A||A|, and

• if gA,m(j) < gA,m(j′) for j, j′ ∈ {1, . . . ,m|A||A|}, then π(j) < π(j′).

For example, one of the 3-expansions of the 2-sequence {1, 2}, {1} is the permu-

tation 4, 8, 2, 7, 3, 9, 1, 6, 5. In other words, if a permutation π is an m-expansion

of A, then the range of π can be viewed as partitioned into k parts such the

following holds: the permutation π consists of |A| groups (in the example, these

are 4, 8, 2, 7, 3, 9 and 1, 6, 5) where the i-th group has m blocks of length |Ai|
each and the values of π in each block belong to the parts of the range of π

with indices in Ai in the increasing order. The number of m-expansions of a

k-sequence A is equal to

k∏

j=1

(m · |{i such that i ∈ [|A|] and j ∈ Ai}|)! .

Let P be a hereditary property. A k-sequence A is P-good if there exists

an m-expansion of A in P for every integer m. Otherwise, the k-sequence A is

P-bad. So, if A is P-bad, there exists an integer m such that no m-expansion

of A is in P. The smallest such integer m is called the P-order of A and it is
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denoted by 〈A〉P ; if P is clear from the context, we just write 〈A〉. Observe

that if A is P-bad, then no m-expansion of A is in P for every m ≥ 〈A〉 (here,

we use that P is hereditary).

If A is a P-bad k-sequence, then any k-sequence A′ obtained from A

by replacing one element, say Ai, by a sequence of at least one and at most

|Ai|〈A〉 proper subsets of Ai is called a P-reduction of A. For example, if the

3-sequence A = {1}, {2, 3}, {1, 3} is P-bad and its P-order is two, then one of

its P-reductions is {1}, {2}, {2}, {3}, {1, 3}.
The k-branching of a hereditary property P is a rooted tree T such that

• each node u of T is associated with a k-sequence Au,

• the root of T is associated with the basic k-sequence,

• if the k-sequence Au of a node u is P-good or simple, then u is a leaf, and

• if the k-sequence Au of a node u is P-bad and it is not simple, then the

number of children of u is equal to the number of P-reductions of Au and

the children of u are associated with the P-reductions.

Note that the k-branching, i.e., the tree and the association of its nodes with

k-sequences, is uniquely determined by the property P and the integer k.

Let us argue that the k-branching of every hereditary property P is

finite. We define the score of a k-sequence A to be the sequence m1, . . . ,mk

where mj is the number of Ai’s of cardinality k+ 1− j. Observe that the score

of a P-reduction of a P-bad k-sequence A is always lexicographically smaller

than that of A. Since the lexicographic ordering on the scores is a well-ordering,

the k-branching is finite for every hereditary property P.

Let T be the k-branching of a hereditary property P. We now assign

to every node u of the k-branching of P an integer weight wu. The weight of

a leaf node u is one if Au is P-good. Otherwise, the weight of a leaf node u

is k〈Au〉. If u is an internal node, then wu is equal to 〈Au〉km where m is the

maximum weight of a child of u. In particular, the weight of u is at least the

weight of any of its children.

6.2 Decompositions

In this section, we introduce a grid-like way of decomposing permutations which

we use in our proof. The domain of a permutation will be split into K equal

size parts and the range into k such parts with k ≤ K.

We start with some auxiliary notation. Recall that [a] denotes all in-

tegers from 1 to a. We extend this notation by writing [a]i/b for the set of
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all integers k ∈ [a] such that i − 1 < k/ba/bc ≤ i, i.e., [a]i/b is the i-th

part after dividing [a] into b equal-sized parts (with b + 1-st part containing

the remaining elements). For example, [25]2/6 = {5, 6, 7, 8}. Observe that

|[a]1/b| = · · · = |[a]b/b| = ba/bc and |[a]b+1/b| ≤ b− 1.

Fix now a permutation π of order n and integers K ∈ [n], i ∈ [K],

k ∈ [K] and j ∈ [k]. We define Ri,j(π) as

Ri,j(π) = {x ∈ [n]i/K such that π(x) ∈ [n]j/k}

and we set

ρi,j(π) =
|Ri,j(π)|
bn/Kc .

Vaguely speaking, ρi,j(π) ∈ [0, 1] is the density of π in the part of the K × k
grid at the coordinates (i, j). The values of K and k will always be clear from

the context.

To get used to the definition of the sets Ri,j and the quantities ρi,j , we

now prove a simple auxiliary lemma.

Lemma 36. Let k and K be positive integers and let ε′ ≤ 1/(k+1) be a positive

real. For every permutation π of order at least k(k + 1)K and every x ∈ [K],

there exists y ∈ [k] such that ρx,y(π) ≥ ε′.

Proof. Observe that

|Rx,1(π)|+ · · ·+ |Rx,k(π)| ≥ b|π|/Kc − k

≥
(

1− 1

k + 1

)
b|π|/Kc .

Since ε′ ≤ 1/(k+1), there must exist y such that ρx,y(π) ≥ ε′ by the pigeonhole

principle.

Fix a permutation π, integers k, K and M such that 1 ≤ k ≤ K ≤ |π|,
and a real 0 ≤ ε′ < 1. If A is a k-sequence, then we say that a K-sequence B

is (A,M, ε′)-approximate for π if the following holds:

• the length of B is |A|,

• B is monotone,

• |B||B| =
∑|B|

i=1 |Bi| ≥ K −M , and

• for every i ∈ [|A|], if x ∈ Bi and y ∈ [k] \Ai, then ρx,y(π) < ε′.

In other words, an (A,M, ε′)-approximate K-sequence B decomposes the whole

index set [K] except for at most M indices into |A| parts such that the indices
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contained in the parts determined by B are in the increasing order and for

x ∈ Bi, the only dense sets Rx,y(π) are those with y ∈ Ai.
Suppose that a k-sequence A is P-bad for a hereditary property P. We

say that a K-sequence B is (A, ε′)-witnessing for π if the following holds:

• the length of B is |A|,

• there exist integers 1 ≤ x1 < . . . < x|A||A|·〈A〉 ≤ K such that xj ∈ Bi if

|A|i−1〈A〉 < j ≤ |A|i〈A〉, and

• ρxj ,gA,〈A〉(j)(π) ≥ ε′ for every j ∈ [|A||A| ·〈A〉] (the definition of the function

g can be found in Section 6.1).

In other words, a K-sequence B which decomposes the index set [K] is (A, ε′)-

witnessing, if it is possible to find indices such that there are |Ai|〈A〉 indices xj

in each Bi and all the sets Rxj ,gA,〈A〉(j)(π) are dense. The motivation for this def-

inition is the following: if B is (A, ε′)-witnessing, then each set Rxj ,gA,〈A〉(j)(π)

has at least ε′b|π|/Kc elements and consequently at least (ε′b|π|/Kc)|A|〈A〉 sub-

sets of [|π|] induce subpermutations that are 〈A〉-expansions of A. This will

allow us to deduce that a random subpermutation of sufficiently large order

does not have the property P with high probability.

We now state a lemma saying that if a K-sequence B is approximate but

not witnessing with respect to a k-sequence A for a permutation π, then there

exists a reduction A′ of A and a K-sequence B′ such that B′ is approximate

with respect to A′.

Lemma 37. Let P be a hereditary property, let k, K, m and M be positive

integers and let ε′ ≤ 1/(k+1) be a positive real. Let A be a P-bad k-sequence and

B a monotone K-sequence with |A| = |B|. If the K-sequence B is (A,M, ε′)-

approximate for a permutation π, |π| ≥ k(k + 1)K, B is not (A, ε′)-witnessing

for π and |Bi| ≥ mk〈A〉 for every i ∈ [|B|], then there exist a P-reduction A′

of A and a monotone K-sequence B′ such that

• the lengths of A′ and B′ are the same,

• B′ is (A′,M +mk〈A〉, ε′)-approximate for π, and

• |B′i| ≥ m for every i ∈ [|B′|].

Proof. If B is not (A, ε′)-witnessing for π, then there exists an index j ∈
[|B|] such that there is no |Aj |〈A〉-tuple x1 < · · · < x|Aj |〈A〉 in Bj satisfying

ρxi,yi(π) ≥ ε′ where yi = gA,〈A〉(|A|j−1〈A〉+ i). Fix such an index j for the rest

of the proof.
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If |Aj | = 1, then an 〈A〉-tuple with the properties given in the previous

paragraph is formed by any 〈A〉 elements of Bj by Lemma 36. So, we assume

that |Aj | ≥ 2 in the rest of the proof. Define x1 to be the smallest index in Bj

such that ρx1,y1(π) ≥ ε′. Suppose that we have defined the indices x1, . . . , xi

and define xi+1 to be the smallest index in Bj that is larger than xi such that

ρxi+1,yi+1(π) ≥ ε′. If no such index exists, we stop constructing the sequence.

Let ` be the number of the indices defined. By the choice of j, ` < |Aj |〈A〉. For

completeness, set x0 = 0 and x`+1 = K + 1.

Define Ci, i ∈ [`+1], to be the set of the elements of Bj strictly between

xi−1 and xi. If the subset Ci has size less than m, remove it from the sequence

and let C ′1, . . . , C
′
`′ be the resulting sequence. Observe that

|Bj | −
∑`′

i=1 |C ′i| ≤ `+ (`+ 1)(m− 1)

≤ (`+ 1)m− 1

≤ m|Aj |〈A〉 − 1

≤ mk〈A〉 − 1

(6.1)

since the sets C ′1, . . . , C
′
`′ contain all the elements of Bj except for the elements

x1, . . . , x` and the elements contained in the sets C1, . . . , C`+1 with cardinalities

at most m− 1. In particular, we can infer from |Bj | ≥ mk〈A〉 that `′ ≥ 1.

Next, define C ′′i , i ∈ [`′], to be the set of y ∈ [k] such that there exists

x ∈ C ′i with ρx,y(π) ≥ ε′. Lemma 36 implies that the sets C ′′1 . . . , C
′′
`′ are non-

empty. We infer from the way we have chosen the indices x1, . . . , x` that each

set C ′′i is a proper subset of Aj . Finally, define the k-sequence A′ to be the

K-sequence A with Aj replaced with C ′′1 , . . . , C
′′
`′ and the K-sequence B′ to

be the K-sequence B with Bj replaced with C ′1, . . . , C
′
`′ . By the definition of

C ′′1 , . . . , C
′′
`′ and by (6.1), the K-sequence B′ is (A′,M+mk〈A〉, ε′)-approximate

for π. By the choice of C ′1, . . . , C
′
`′ , we have that |B′i| ≥ m for every i ∈ [|B′|].

Finally, since `′ ≤ ` ≤ |Aj |〈A〉 and every C ′′i , i ∈ [`′], is a proper subset of Aj ,

A′ is P-reduction of A.

We finish this section with the following lemma on approximating the

structure of a sufficiently large permutation π with respect to a hereditary

property.

Lemma 38. Suppose P is a hereditary property. For all integers k and reals

ε and ε′ such that 0 < ε ≤ 1 and 0 < ε′ ≤ 1/(k + 1), there exists an integer

K such that for every permutation π of order at least k(k + 1)K, there exist a

k-sequence A and a K-sequence B with the same lengths such that
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• A is P-bad and B is (A, ε′)-witnessing for π, or

• A is P-good and B is (A, bεKc, ε′)-approximate for π.

Proof. Let T be the k-branching with respect to P. Let d be the depth of T ,

i.e., the maximum number of vertices on a path from the root to a leaf, and

let w0 be the weight of the root of T . We show that K := ddw0/εe has the

properties claimed in the statement of the lemma.

Let π be a permutation of order at least k(k + 1)K. Based on π, we

define a path from the root to one of the nodes in T in a recursive way. In

addition to choosing the nodes ui on the path, we also define monotone K-

sequences Bi such that Bi is (Au
i
, i · w0, ε

′)-approximate for π and |Bi
j | ≥ wui

for every j ∈ [|Bi|].
Let u0 be the root of T and set B0 to be the basic K-sequence. Clearly,

B0 is (Au
0
, 0, ε′)-approximate for π. Suppose that the node ui on the path has

already been chosen and we now want to choose the next node. If ui is a leaf

node, we stop. If ui is not a leaf node, then the k-sequence Au
i

must be P-bad.

If Bi is (Au
i
, ε′)-witnessing for π, we also stop. Otherwise, Lemma 37 applied

with m equal to the maximum weight of a child of ui (note that |Bi
j | ≥ mk〈Au

i〉
for every j ∈ [|Bi|]) implies that there exist a P-reduction A′ of Au

i
and a K-

sequence Bi+1 such that Bi+1 is (A′, i ·w0 +mk〈Aui〉, ε′)-approximate for π and

|Bi+1
j | ≥ m for every j ∈ [|Bi+1|]. Choose ui+1 to be the child of ui such that

Au
i+1

= A′. Since mk〈Aui〉 ≤ w0, we obtain that Bi+1 is (Au
i+1
, (i+ 1)w0, ε

′)-

approximate for π.

Let ` be the length of the constructed path. We claim that the k-

sequence Au
`

and the K-sequence B` have the properties described in the

statement of the lemma.

If u` is not a leaf node, then Au
`

is P-bad and B` is (Au
`
, ε′)-witnessing

for π (since we have stopped at u`). If u` is a leaf node and Au
`

is P-bad, then

B` is (Au
`
, ε′)-witnessing for π by Lemma 37 applied for m = 1 (Au

`
cannot

have a P-reduction because it is simple). Finally, if u` is a leaf node and Au
`

is

P-good, B` is (Au
`
, bεKc, ε′)-approximate for π since dw0 ≤ bεKc.

6.3 Testing

In this section, we establish our main result. The next lemma, which says that

every permutation that is far from a hereditary property P in the Kendall’s tau

distance has a witnessing K-sequence for a suitable choice of k and K, is the

core of our proof.
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Lemma 39. Let P be a hereditary property of permutations. For every real

ε0 > 0, there exist integers k, K and M , and a real ε′ > 0 such if π is a

permutation of order at least M with distK(π,P) ≥ ε0, then there exist a P-

bad k-sequence A and a K-sequence B with the same length such that B is

(A, ε′)-witnessing for π.

Proof. Without loss of generality, we can assume that ε0 < 1. Set k = d10/ε0e,
ε = ε0/10 and ε′ = ε0/(10k + 10) ≤ 1/(k + 1). Let K be the integer from the

statement of Lemma 38 applied for P, k, ε and ε′. Using this value, set

M = max

{
k(k + 1)K,

⌈
10k

ε0

⌉
,

⌈
10K

ε0

⌉ }
.

We show that this choice of k, K, M and ε′ satisfies the assertion of the lemma.

Let π be a permutation of order n ≥ M . Apply Lemma 38 to π. Let

A be the k-sequence and B the K-sequence as in the statement of the lemma.

Either A is P-bad and B is (A, ε′)-witnessing for π, which is the conclusion of

the lemma, or A is P-good and B is (A, εK, ε′)-approximate for π. Hence, we

assume the latter and deduce that distK(π,P) < ε0.

To reach our goal, we define two auxiliary functions fB : [n]→ [|B|] and

fA : [n]→ [k]. Informally speaking, when searching for a permutation in P close

to π, we consider an m-expansion of A for a very large integer m and we show

that one of its subpermutations is close to π. As explained after the definition

of an m-expansion, every m-expansion can be viewed as consisting of |A| = |B|
blocks where the i-th block has m · |Ai| elements. In the subpermutation we

construct, we choose the element corresponding to x ∈ [n] in the fB(x)-th

block of an m-expansion of A and the value of gA,m for this element will be the

fA(x)-th smallest element of AfB(x).

Let us now proceed in a formal way. First, we define the function fB.

Let x ∈ [n] and let i be the integer such that x ∈ [n]i/K . Let j be the largest

integer such that i is smaller than all the elements of Bj ; if no such set exists,

let j = |B| + 1. Set fB(x) = max{1, j − 1}. Clearly, fB is non-decreasing and

if i ∈ Bj , then fB(x) = j for every x ∈ [n]i/K . We now proceed with defining

the function fA. If i ∈ BfB(x), π(x) ∈ [n]i′/k such that i′ ∈ [k] and ρi,i′(π) ≥ ε′,
set fA(x) = i′′ where i′′ is the number of elements of AfB(x) smaller or equal to

i′. Otherwise, set fA(x) = 1.

Since A is P-good, there exists an n-expansion σ of A that is in P. Set

zx = |A|fB(x)−1n+ x|AfB(x)|+ fA(x) for x ∈ [n].
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Observe that 1 ≤ z1 < · · · < zn ≤ n·|A||A|. In the rest of the proof, we establish

that the subpermutation π′ of σ induced by {z1, . . . , zn} satisfies distK(π, π′) ≤
ε0. Since P is hereditary and σ ∈ P, this implies distK(π,P) ≤ ε0.

We now define five types of pairs (x, x′), 1 ≤ x < x′ ≤ n. Suppose that

x ∈ [n]i/K , π(x) ∈ [n]j/k, x
′ ∈ [n]i′/K and π(x′) ∈ [n]j′/k.

• The pair (x, x′) is of Type I if i = K + 1 or i′ = K + 1.

• The pair (x, x′) is of Type II if j = k + 1 or j′ = k + 1.

• The pair (x, x′) is of Type III if it is not of Type I and i 6∈ BfB(x) or

i′ 6∈ BfB(x′).

• The pair (x, x′) is of Type IV if it is neither of Type I nor of Type II, and

ρi,j < ε′ or ρi′,j′ < ε′.

• The pair (x, x′) is of Type V if it is not of Type II and j = j′.

We now estimate the number of pairs (x, x′), 1 ≤ x < x′ ≤ n, of each of

the five types. The number of pairs of Type I is at mostK(n−1) ≤ ε0n(n−1)/10

since |[n]K+1/K | ≤ K. Similarly, the number of pairs of Type II is at most

k(n− 1) ≤ ε0n(n− 1)/10 since |[n]k+1/k| ≤ k. The number of pairs of Type III

is at most εn(n− 1) = ε0n(n− 1)/10 since K − (|B1|+ · · ·+ |B|B||) ≤ εK.

For i ∈ [K] and j ∈ [k] with ρi,j(π) < ε′, the number of the choices

of x ∈ [n]i/K with π(x) ∈ [n]j/k is at most ε′n/K. Hence, the number of x

with this property for some i and j is at most ε′kn < ε0n/10. Consequently,

the number of pairs of Type IV is strictly less than ε0n(n− 1)/10. Finally, for

x with π(x) ∈ [n]j/k, the number of choices of x′ 6= x with π(x′) ∈ [n]j/k is

at most n/k − 1. Hence, the number of pairs of Type V is strictly less than

n(n/k − 1) ≤ n(n− 1)/k ≤ ε0n(n− 1)/10.

We conclude that the number of pairs (x, x′), 1 ≤ x < x′ ≤ n, that are

of at least of one of Types I–V is at most ε0n(n− 1)/2.

We claim that if the pair (x, x′), 1 ≤ x < x′ ≤ n, is not of any of the

Types I–V, then π(x) < π(x′) if and only if π′(x) < π′(x′). Let i, i′, j and

j′ be chosen as in the previous paragraph. Suppose π(x) < π(x′). If (x, x′) is

not of any of the Types I–V, then it holds that i ∈ BfB(x), i
′ ∈ BfB(x′), j 6= j′,

ρi,j(π) ≥ ε′ and ρi′,j′(π) ≥ ε′. This implies that the fA(x)-th smallest element of

AfB(x) is smaller than the fA(x′)-th smallest element of AfB(x′). Consequently,

π′(x) < π′(x′) by the choice of zx and zx′ . Analogously, one can show that if

π(x) > π(x′), then π′(x) > π′(x′).

Since the number of pairs (x, x′), 1 ≤ x < x′ ≤ n, of at least one of the

five types is at most ε0n(n− 1)/2, we get that distK(π, π′) < ε0 as desired.
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We are now ready to prove the main result of this chapter, Theorem 7,

which we restate below. Note that the theorem implies that hereditary proper-

ties of permutations are strongly testable through subpermutations: for ε > 0,

the tester takes a random subpermutation of order M0 from the statement of

Theorem 7 and it accepts if the random subpermutation has the tested property

and rejects otherwise.

Theorem 7. Let P be a hereditary property. For every positive real ε0, there

exists M0 such that if π is a permutation of order at least M0 with distK(π,P) ≥
ε0, then a random subpermutation π of order M0 has the property P with prob-

ability at most ε0.

Proof. Without loss of generality, we assume that ε0 < 1. Apply Lemma 39

to P and ε0. Let k, K and M be the integers and let ε′ be the real as in the

statement of the lemma. Note that we can also assume that ε′ < 1. Set M0 as

M0 = max

{
M,K(K + 1),

log kK
ε0

log K+1
K+1−ε′

}
.

Let π be a permutation of order n ≥M0. Note that the probability that

a random M0-element subset X of [n] contains no element of a set Ri,j(π) with

ρi,j(π) ≥ ε′ is at most

(
1− |Ri,j(π)|

n

)M0

=

(
1− ρi,j(π)

⌊ n
K

⌋ 1

n

)M0

≤
(

1− ε′

K + 1

)M0

≤ ε0

kK
.

By the union bound, the probability that there exists i ∈ [K] and j ∈ [k] with

ρi,j(π) ≥ ε′ such that X contains no element from the set Ri,j(π) is at most ε0.

This implies that with probability at least 1− ε0 a random M0-element subset

X of [n] contains at least one element from each set Ri,j(π) with ρi,j(π) ≥ ε′.
By Lemma 39, if distK(π,P) ≥ ε0, there exists a k-sequence A and a

K-sequence B such that A is P-bad and B is (A, ε′)-witnessing for π. Since a

random M0-element subset of [n] contains an element from each Ri,j(π) with

ρi,j(π) ≥ ε′ with probability at least 1− ε0, a random M0-element subpermuta-

tion of π contains an 〈A〉-expansion of A as a subpermutation with probability

at least 1−ε0. Consequently, a random M0-element subpermutation of π is not

in P with probability at least 1− ε0.

We are also in a position to prove that, for hereditary properties P, the

function distK(π,P) is continuous with respect to the metric given by dist� in

the sense considered in [54].
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Theorem 40. Let P be a hereditary property. For every ε0 > 0, there exists

δ0 > 0 such that any permutation π satisfying dist�(π,P) < δ0 also satisfies

distK(π,P) < ε0.

Proof. Apply Lemma 39 to P and ε0. Let k, K and M be the integers and let

ε′ be the real as in the statement of the lemma. Set M0 to be the maximum of

M and K + 1, and set δ0 to be the minimum of 1/M0 and ε′

4K .

Let π be a subpermutation such that dist�(π,P) < δ0, i.e., there exists

a permutation σ ∈ P with |π| = |σ| and dist�(π, σ) < δ0. If the order of π is

smaller than M0, then π and σ must be the same which yields dist�(π,P) =

distK(π,P) = 0. So, we can assume that the order of π is at least M0.

Assume to contrary that distK(π,P) ≥ ε0. By Lemma 39, there exists a

P-bad k-sequence A and a K-sequence B such that B is (A, ε′)-witnessing for

π. By the choice of δ0, B is (A, ε′/2)-witnessing for σ (recall that the order of π

is at least K + 1). This yields that Rxj ,gA,〈A〉(j)(σ) 6= ∅ for every j ∈ [|A|` · 〈A〉]
where xj are chosen as in the definition of (A, ε′/2)-witnessing. In particular, σ

contains a subpermutation not in P (choose one element from each of the sets

Rxj ,gA,〈A〉(j) and consider the subpermutation induced by the chosen elements)

which is impossible since σ ∈ P and P is hereditary.
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graphons and permutons, J. Combin. Theory Ser. B 110 (2015), 112–135.
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[51] H. Hatami, J. Hladký, D. Král’, S. Norine, and A. Razborov: On the

number of pentagons in triangle-free graphs, J. Combin. Theory Ser. A 120

(2013), 722–732.

[52] C. Hoppen, Y. Kohayakawa, C.G. Moreira, B. Ráth, and R.M. Sampaio:
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