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Abstract

Motivated by an intricate mechanism to transport folded proteins across
biological membranes, known as the Twin-arginine translocation (Tat) pathway,
we construct lattice protein models in an attempt to study the aggregation of the
membrane protein TatA, which plays an integral role during active Tat translocation.
We develop force field that characterizes intra- and inter-residue interactions, as well
as how each residue interacts with its environment.

Although written with the Tat process in mind, this thesis is mainly devoted
to developing efficient Monte Carlo schemes for biomolecular simulations, which are
often challenged and impeded by complex energy landscapes. To tackle the local
trap problem that is typical in Metropolis sampling, the idea of dynamic weighting
is incorporated into the parallel tempering (PT) algorithm. Our results show that,
when applied to the lattice-protein model, the modified PT algorithm is capable
of locating the low energy state much more quickly, but does not produce reliable
estimates for equilibrium expectations.

A modern method for free energy calculation, called the multistate Bennett
acceptance ratio (MBAR) estimator, is reviewed from a statistical perspective, remi-
niscent of the underlying statistical theory which the method is based upon. Instead
of adopting the common practice of using MBAR as a post-simulation analysis tool,
we propose a new approach that integrates MBAR into simulation, allowing the
simulation to benefit from the statistical optimality of the MBAR estimator. We
show that the MBAR-enhanced Monte Carlo improves simulation efficiency of the
lattice-protein aggregation model and, since it can also be applied to continuous
models, provides a promising alternative to the study of more realistic systems.

The new method is then applied to our model of TatA, where the protein
features both a transmembrane and an amphipathic helix. The effect of individual
helices on dimerization was studied and problem with the move set was identified.
In this thesis, we used pull move and translation move as our Monte Carlo trial
moves. Implementation details of pull moves, which are often omitted by many
researchers who use them for sampling configuration space, are given in Chapter 1.
We show that, for our double-helix TatA model, pull moves are no longer efficient
moves and therefore, for future study of more realistic systems, we point to several
methods which all attempt to design efficient trial moves. Aggregation of more than
two polymer chains was also considered in this thesis.

xiii



Chapter 1

Introduction

A journey of a thousand miles

begins with a single step.

Laozi, Tao Te Ching

The work in this thesis was initially motivated by a biochemical process

known as the Twin-arginine translocation (Tat) pathway, which is utilized by bac-

teria and plant chloroplasts for translocating folded proteins across membrane. It is

an intriguing process in that the protein does not have to unfold to move through

the permeative lipid bilayer. Of particular interest to us is a key step in Tat involv-

ing aggregation of certain membrane proteins that form the translocation channel.

We shall present an overview of the Tat pathway in Chapter 6.

Although inspired by the Tat mechanism, this thesis focuses primarily on

method development, in particular, on Monte Carlo methods in biomolecular mod-

elling. Thus, our work is not limited to the Tat mechanism that motivates this study,

it also provides a framework to study multi-chain dynamics, a prominent example

of such is protein aggregation, which is an active area of research in biochemistry

and biophysics due to its association with numerous human diseases. In this chap-

ter, we briefly introduce protein aggregation in order to motivate the reader and to

show potential applications of our work in this area. We then describe our lattice

model and the force field that we used to characterize various interactions in the

multi-polymer system. The move set adopted in our Monte Carlo simulations will

also be discussed.

In Chapter 2, we review some commonly used Monte Carlo (MC) techniques

as a preparation for the following chapters. Specifically, the Metropolis algorithm,

parallel tempering (PT) and multicanonical simulation will be examined. A perhaps

unfamiliar paradigm of MC simulation to many researchers in statistical physics and

1



computational chemistry, the dynamic weighting Monte Carlo, will also be discussed.

We will also review some other related methods, such as the Wang-Landau algorithm

and transition matrix Monte Carlo.

Having introduced the dynamic weighting framework, we present in Chap-

ter 3 our study of a new algorithm which incorporates the idea of dynamic weighting

into parallel tempering, and a comparison between this modified PT algorithm and

the bare PT.

Chapter 4 looks at two of the methods used to analyze multiple equilibrium

simulation data, the weighted histogram analysis method and the multistate Bennett

acceptance ratio (MBAR) estimator. Both can be recast as statistical problems, in

particular, the latter method has its root in extended bridge sampling theory [59]

and, as such, will be reviewed from a statistical perspective.

In Chapter 5, we describe a new approach to calculate density of states using

the MBAR estimator. The estimated density of states can then be used to guide

subsequent MC simulations. We use a combination of parallel tempering, MBAR

and multicanonical sampling as a demonstration of the method. This is an exemplar

where simulation techniques are combined with an analysis method that has been

proven to be statistically optimal, thereby providing a synergy between the existing

methods.

Finally, in Chapter 6, we apply the method in Chapter 5 to more complex

models as our first steps towards a better understanding of membrane protein TatA

aggregation in the Tat mechanism. We construct lattice models that capture es-

sential structural features of TatA, namely its double-helix nature. We study how

aggregation might be affected by these secondary structures and, in the meanwhile,

identify problems in simulation with this extra complexity and propose strategies

to alleviate them.

We believe our work contributes to the development of Monte Carlo method-

ology and will provide valuable insights to researchers in the Tat community who

wish to utilize simulation tools, to computational scientists working on applications

in statistical mechanics, and to statisticians developing new Monte Carlo algorithms.

1.1 Protein Aggregation

Proteins are macromolecules that are essential to the functioning of living organisms.

The primary structure of protein consists of a chain of amino acids that are coded

by genes. To be fully functional, protein must fold into a specific three-dimensional

structure called the native structure. The native structure corresponds to the global

2



minimum of the free energy landscape [11]. Because of the presence of an enormous

amount of possible conformations, how proteins find their native structure in a

very short timescale has long been a mystery. It is now clear that rather than

a systematic search, a protein only sample a small number of conformations to

reach its native structure [15]. The correct folding to the native state depends

both on interactions among different residual pairs of the molecule and on multiple

contributing factors from the crowded cell [14]. Since many proteins do not fold in

isolation and additional proteins in the environment may affect the kinetics of the

folding process of a synthesized protein, misfolding can occur and aggregates can be

formed. These misfolded proteins give rise to the loss of biological functions if not

degraded properly by the cell.

A recent review revealed that one type of aggregate, amyloid fibrils, was

linked with approximately 50 disorders including such neurodegenerative diseases

as Alzheimers disease, Spongiform encephalopathies and Parkinsons disease [32].

Due to its medical significance, increasingly more research, experimental as well as

computational approaches, have been focusing on the study of amyloid structures.

The commonly used computational approaches for such study have been molecular

dynamics (MD) [64], although Monte Carlo approaches are also used in lattice-

protein models [10, 27]. While high-resolution MD simulations provide a more

detailed description about the structural stability of the aggregate, the timescales

used are still too short to study the assembly process, thus low-resolution models

can be a promising approach for the study of aggregate assembly [67].

Whereas avoidance of aggregation is central to living systems in the case of

amyloids, there are also functional aggregates that are not always pathogenic. For in-

stance, the application part of this thesis concerns the oligomerization of membrane

protein TatA that assists the translocation of folded proteins across membrane.

1.2 Lattice model and force field

1.2.1 A lattice model with implicit membrane

The two-letter H-P model [35] was used as a starting point to construct our lattice

model. It is perhaps the simplest model to represent a protein. We consider a

three-dimensional H-P model where a protein is represented as a sequence of non-

overlapping beads on a cubic lattice with periodic boundary, and the type of each

bead can be either hydrophobic (H) or hydrophilic (P). 1 We say two beads contact

1A third type of bead, H2, will be added later to model components of the amphipathic helix in
our TatA model in Chapter 6.
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Figure 1.1: Side view of the simulation environment for the basic model. The
boundaries of membrane define a hydrophobic region inside. The H-P beads of the
two polymers are colored—hydrophobic beads in red and hydrophilic beads in blue.

if they are adjacent on lattice but are not bonded in the chain. H-H contacts are

favoured over P-P or H-P contacts so the chain tends to expose hydrophilic beads

at the surface and pack hydrophobic ones in the interior. The H-P model thus

simulates the effect of protein folding in water, where water is modeled implicitly.

To simulate the membrane environment, we define a hydrophobic region in-

side the simulation box, as illustrated in Figure 1.1. The membrane is implicit

in that phospholipids are not used to model a real membrane, instead, the en-

vironment is represented by a one-particle lattice site energy term that is either

hydrophobic (membrane) or hydrophilic (water). This is the basic model and will

be used in Chapter 3 and Chapter 5.

The real TatA protein has both a transmembrane helix (TMH) and an am-

phipathic helix (APH). This double-helix feature was encoded in our force field

(Section 1.2.2) and can be turned on and off. While the TMH spans the membrane

normal, the APH lies in parallel with the membrane surface, so we further define

a membrane-water interface on both sides of the membrane, with the bottom in-

terface serving as a compartment of APH (Figure 1.2). This model will be used

in Chapter 6 and, except for Section 6.3, all of our models consist of two polymers.

1.2.2 Characterizing the force field

We consider three types of interactions: intra-polymer, inter-polymer and the im-

plicit interactions associated with membrane, water and interface. The total poten-

tial energy is the sum of the energies defined by these three types of interactions, i.e.

E = Eintra +Einter +Eim. Both intra-polymer and implicit interactions are defined

as the sum of terms corresponding to each individual polymer, the inter-polymer
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Figure 1.2: Side view of the simulation environment for the TatA model to be used
in Chapter 6. The boundaries of different regions are indicated. The beads that
form helix are packed in a spiral pattern in a 3D cubic lattice. The transmembrane
helix is colored in red and the amphipathic helix is colored in gray in the bottom
interface.

interaction is the sum of interactions between all polymer pairs. In other words,

Eintra =
∑
k

Ekintra, Eim =
∑
k

Ekim,

and

Einter =
∑
s<t

Es,tinter,

where k, s, t indexes polymers.

For intra-polymer interaction, we consider interactions of beads that not only

in contact but also some distance apart. Of course, there is a cut-off distance beyond

which there will be no interactions. When helices are not modeled and interface is

absent, i.e. the basic model, the strength of interaction between a pair of beads is

determined by both the type (H or P) and the environment (membrane or water).

In water, an H-H contact is more favourable than an H-P or P-P contact; and in

membrane, a P-P contact is more favourable than a P-H or H-H contact. When

interface is present, i.e. models in Chapter 6, and one or both helices are modeled,

we make two additions. We add a hydrogen bond (H-bond) term which will favour

specifically numbered beads in the chain to attract each other and form a helix-like

arrangement. Second, based on the H-bond condition, we construct a hydrophobic

transmembrane helix and an H2-amphipathic helix where H2 is a new type of bead

that tends to stay in the interface region and has the same properties as an H bead
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has in water. The APH lies horizontal with membrane surface.

The implicit interaction of a polymer with its environment is defined such

that H beads are favoured in membrane, P beads are favoured in water and H2

beads are favoured in interface.

Finally, the inter-polymer interaction between polymers m and n is defined

such that P beads from polymerm attract P beads from polymer n if they are both in

membrane, and the same cut-off distance as specified in intra-polymer interaction

applies; similarly, H beads from both polymers attract each other in water. The

precise definitions of various terms in the force field are listed in Appendix A.

1.3 Move set

The move set consists of pull moves [37] and translation moves. A translation move

just shift the entire chain with some random lattice sites, and is needed to study

aggregation in our multi-polymer system. Specifically, one of the four directions

corresponding to±x,±y is chosen, and the chain is shifted with an amount uniformly

chosen between 1 and 10 lattice sites. Pull moves are advanced moves, and they will

be discussed in detail in this section.

1.3.1 Pull moves

For the purpose of Monte Carlo simulations, it is desirable that the move set has

some nice properties. We say that a move set is reversible if for any configuration

A and any configuration B obtained from applying a move in the set to A, there is

a reverse move to get back to A from B. And, a move set is complete if any two

configurations can be reached through a sequence of moves in the move set, this

guarantees that all configurations have a non-zero probability to be visited. The

word ergodic may also be used to describe this property. As we will see in Section 2.1,

these are essential properties that a move set must possess in order to preserve the

detailed balance condition. Note that reversibility and ergodicity are also used to

describe Markov chains, to avoid confusion, in this section these are used in the

context of a move set.

Pull moves have been widely used as trial moves in lattice polymer Monte

Carlo simulations. The move set was shown to be reversible and complete[37],

although a later paper pointed out that in general reversibility is violated [26].

We describe pull moves in a two-dimensional grid, realize that a three-dimensional

generalization is straightforward.
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Figure 1.3: Pull move terminates after displacement of one bead. Bead 2 is selected,
an empty lattice site adjacent to bead 3 and diagonally adjacent to bead 2 is chosen
(pointed by the dashed arrow) to be the new location of bead 2. Since the resulting
configuration is valid, pull move stops.

Generally speaking, a pull move starts by creating a square in the chain and

successively pull the beads along until an existing square is undone or until the

terminal bead is reached when there is no such square along the path. The chain

can be pulled in either directions. If there are N beads in the chain and we have

numbered them from 1 to N , then pulling upwards means that bead N is the last

bead to move if needed to; and pulling downwards means that bead 1 is the last bead

to move if needed to. We consider pull moves in the downward direction, pull moves

in the upward direction can be implemented analogously. A lattice site is empty if

there is no bead occupying it. Overlaps are not acceptable, that is, a lattice site can

be occupied by one and only one bead. We next define a valid configuration to be

a non-overlapped configuration such that beads that are adjacent in the chain are

adjacent in the grid.

Having introduced these terms, we now describe details of pull move. Sup-

pose some non-terminal bead i has been selected from a valid configuration in a

two-dimensional grid, an empty lattice site diagonally adjacent to bead i and adja-

cent to bead i+ 1 is chosen to place bead i. If after this move the chain is already

in a valid configuration, then the pull move terminates (Figure 1.3); otherwise the

lattice site corresponding to the forth corner of the square defined by old position

of bead i, bead i + 1 and new position of bead i must be empty for a pull move

to continue, in which case we place bead i − 1 in this empty site and successively

pull the beads with lower indices two lattice positions ahead, that is, bead i − 2 is

moved to the previous position of bead i and so on, until a valid configuration is

reached (Figure 1.4). If terminal bead N has been chosen, then beads N and N − 1

are placed at any two free locations connecting bead N , the rest of the beads are

then moved two positions ahead until a valid configuration is reached (Figure 1.5).

Because pull move stops early whenever possible, we see that it is local in

that the number of beads to be moved is minimal, this typically results in higher
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Figure 1.4: Pull move terminates after displacement of more than one bead. Bead
6 is selected, an empty lattice site adjacent to bead 7 and diagonally adjacent to
bead 6 is chosen (pointed by the dashed arrow) to be the new location of bead 6.
Since the forth corner of the square is empty (indicated by the empty circle in the
figure), bead 5 is moved to this location, and then the rest of the beads upstream of
the chain are successively moved two positions ahead, until a valid configuration is
reached. In this case, bead 2 does not move because a valid configuration is formed
after movement of bead 3.

1

2 3 4 1 2

3 4

Figure 1.5: An example of pull move for terminal bead. Two free locations (pointed
by the dashed arrows) are chosen to place beads 4 and 3. Beads with lower indices
are pulled along the chain two lattice positions ahead.
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1
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34 1

2 3

4

A B C

Figure 1.6: An example of irreversible pull move for terminal bead. Three con-
figurations are labelled as A, B and C from left to right. For A, a particular end
move results in B. To reverse this move, we must pull in the other direction, but the
reverse move (shown by the dashed arrows in B) would stop early because bead 4
does not need to move.

Monte Carlo acceptance probability compared to moves which displace many beads

in a configuration.

It has been shown, however, that a subset of pull moves are in fact not

reversible, and those irreversible moves are precisely the end moves that result in

a hook at the end of the chain [26]. An example is shown in Figure 1.6, here, the

initial configuration is the same as in Figure 1.5 but a different location is chosen

to place the terminal bead, this move is irreversible due to the local nature of pull

moves. To fix this issue, we can simply exclude those irreversible moves from the

move set without breaking ergodicity [26].

In the following we discuss the implementation details of pull moves for

lattice Monte Carlo simulations. We notice that these details are often ignored or

omitted in many literatures concerning MC studies of lattice polymers. However, an

improper implementation can lead to simulation bias and inaccurate predictions of

the system. This is particularly relevant when the goal is to obtain a full equilibrium

sampling of the system rather than finding the ground state configuration.

1.3.2 Implementation details

In most Monte Carlo simulations in statistical physics, we often require that detailed

balance be satisfied. Many people in the field [44, 58, 66] assume this is the case by

adopting the simplified Metropolis acceptance criterion. However, in doing so, we

need to ensure that the forward move and reverse move are equally likely. As we

shall see, this can easily be violated in the case of pull moves, and so we need to be

careful about their implementation.

Notice first that the only source of uncertainty in pull moves comes from the

9



start of the move. For pull move in the downward direction, if a non-terminal bead

i is selected as “pull bead”, we must choose a lattice site that is diagonally adjacent

to i and adjacent to i+1; and if a terminal bead N is selected, then we must choose

two lattice sites to place beads N and N − 1. By definition, configurations with

overlapped beads are not acceptable, so they tend to be excluded in the implemen-

tation of pull moves, that is, only valid configurations are proposed. We show how

this easily leads to violation of equal probability assumption on trial moves.

Consider again the two configurations in Figure 1.4, and denote the left

and right configurations by L and R, respectively. If only valid configurations are

proposed, then there is only one choice to go for, as indicated in the figure, since

the other choice would cause an overlap with bead 4. Hence, assuming that the

pull bead is selected with equal probability, the chance of getting from L to R is

1/8 (1/8 × 1). On the other hand, to get from R to L, we need to choose a site

diagonally adjacent to bead 3 and adjacent to bead 2. Since there are two empty

sites that we can choose, the chance of getting from R to L is 1/16 (1/8× 1/2).

The above discussion suggests that in order to preserve detailed balance (Sec-

tion 2.1), we must count overlapped configurations as trial moves, even though they

are destined to rejection. With this observation in mind, we propose the following

strategy for implementation of pull moves in lattice Monte Carlo simulations. Let

C and C ′ denote respectively the configurations before and after pull move, and

consider pulling downwards and bead i has been selected as pull bead.

1: function pullmove(C)

2: if i == 1 then pullmove(C)

3: else if i == N then

4: do terminal move and get C ′

5: if C ′ is overlapped then

6: return C

7: end if

8: if beads N and N − 3 are adjacent in C ′ then pullmove(C)

9: end if

10: else

11: select a neighbour j of i+ 1

12: if j is empty and diagonally adjacent to i then

13: do pull move and get C ′

14: else

15: return C

16: end if
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17: end if

18: if C ′ is overlapped then

19: return C

20: else

21: return C ′

22: end if

23: end function

In the above procedure, line 8 specifies the condition for a hook that needs to

be checked in order to exclude irreversible pull moves. Note also that before return-

ing the new configuration C ′, we check if it is overlapped, and the old configuration

is returned if that is the case. After calling pullmove, we can then check if C has

been modified. If yes we proceed to calculate the Metropolis acceptance probability,

otherwise we reject the move. Instead of returning C, we could return any reference

configuration whose potential energy is infinity, and we chose the old configuration

just for simplicity.
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Chapter 2

Simulation methods—A review

In this chapter, we review some Monte Carlo methods commonly used in molecular

modeling, and that are closely related to our study. In molecular simulation, Monte

Carlo methods will almost always be Markov Chain Monte Carlo (MCMC) as draw-

ing samples directly from the underlying distribution is close to impossible. The

basic idea of MCMC is to simulate a Markov chain whose stationary distribution

is the target distribution. Thus, if we run the simulation long enough, the samples

generated can be regarded as from the target distribution and statistical inferences

can then be drawn. Of course, the samples are correlated and cannot beat inde-

pendent samples in terms of statistical efficiency. This implies that one often has

to collect many more samples than one would for independent sampling in order

to achieve similar statistical error. Under mild regularity conditions, the ergodic

theorem guarantees that the sample average still converges to its expected value as

sample size tends to infinity. The theorem plays the same role as the law of large

numbers does for independent and identically distributed samples.

As it is well known by many researchers that simple Metropolis Monte Carlo

can get trapped indefinitely in a local energy basin, we will also introduce the concept

of weighted MCMC which attempts to tackle the local trap problem, but which also

involves more sophisticated transitions rules.

2.1 The Metropolis Algorithm

Throughout, we let π(x) denote the target distribution, where x contains the Carte-

sian coordinates of the system which is 3N dimensional for a total of N atoms, al-

though internal coordinates can also be used, such as bond lengths, bond angles,

dihedral angles and so on. In the canonical ensemble, the distribution that we want
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to sample from is proportional to the Boltzmann factor, that is

π(x) ∝ exp(−U(x)/kBT ) , (2.1)

where U(x) is the potential energy function, T is the temperature and kB is the

Boltzmann constant. For the ease of numerical modeling, we assume that we are

working under a unit system such that kB = 1.

Constructing a Markov chain such that it has an invariant distribution π

is actually not as complicated as one might think. Metropolis et al. [48] proposed

a simple yet powerful construction that has been cornerstone of almost all MCMC

methods since developed. The Metropolis algorithm iterates the following two steps:

• If the current configuration is x, propose a new configuration x′ according to

some unbiased trial move.

• Accept x′ with probability min{1, π(x′)
π(x) }.

Later, Hastings [28] generalized the algorithm to asymmetric proposal func-

tions. That is, if the trial move is biased, one has to correct for it by accepting the

new configuration with probability

α(x,x′) = min{1, π(x′)T (x′,x)

π(x)T (x,x′)
}

Here, T (x,x′) is the proposal function. In the Metropolis algorithm, we

simply have T (x,x′) = T (x′,x). Note that the unknown normalizing constant of π

cancels out in the acceptance probability. To verify that π is indeed the invariant

distribution, we are required to show that∫
π(x)A(x,y)dx = π(y), (2.2)

where A(x,y) is the actual transition probability and is equal to the product of the

proposal and the acceptance probability; that is

A(x,y) = T (x,y)α(x,y) .

Equation (2.2) is sometimes referred to as general balance. A sufficient con-

dition for it is the so called detailed balance:

π(x)A(x,y) = π(y)A(y,x). (2.3)
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The detailed balance equation (2.3) simply states that at equilibrium, the

probability of observing transition x → y is the same as observing them in reverse

order. Some authors also refer to this condition as microscopic reversibility. It

is straightforward to verify that (2.3) holds for the Metropolis algorithm, which

implies that (2.2) holds. Hence, the Metropolis algorithm preserves π as an invariant

distribution. Once the chain has reached the equilibrium regime, the dependent

samples generated can be treated as draws from the canonical distribution π.

For the multi-polymer system we are interested in (see Section 1.2), the

Metropolis algorithm may be implemented as Algorithm 1 below.

Algorithm 1 The Metropolis algorithm for the multi-polymer system

Let the current state be x(t) = (x
(t)
1 , . . . , x

(t)
n ), at step t+ 1:

• Randomly select a polymer i from {1, . . . , n} and conduct a pull move or
translation move to xi while keeping other polymers the same as previous step

to obtain a new configuration x′ = (x′i, x
(t)
−i).

• Accept x′, that is, set x(t+1) = x′, with probability min{1, exp(−∆U/kBT )},
where ∆U = U(x′)− U(x). Otherwise set x(t+1) = x(t).

Recall that in a standard Gibbs sampler, one achieves the task of drawing

samples from a multivariate distribution by iteratively sampling from its conditional

distributions. To make the Gibbs sampler reversible, a component of x is picked

randomly and an update is drawn from its distribution conditional upon all remain-

ing components. This is referred to as the random scan Gibbs sampler [42]. Even

though its origin is quite different from the Metropolis algorithm, the Gibbs sam-

pler can be viewed as a special MCMC algorithm in that the proposal functions are

just the conditional densities π(xi|x−i). One could imagine that with this choice

it would be much less noisy than using some arbitrary proposal function T (x,y).

Note that there is no accept/reject step in a Gibbs sampler. In fact it can be easily

shown that the acceptance probability is always one. In practice, if sampling from

the conditional distribution of some components is impossible or difficult to realize,

one could always replace it by a Metropolis step.

In this respect, the algorithm for the study of the multi-polymer system

presented above may be viewed as a random scan Metropolized Gibbs sampler.

The name is deceptive though since no Gibbs updates are applied here, as the

conditionals are simply not available.
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2.2 Parallel Tempering

The problem with Metropolis sampling is that it can easily get trapped in local

energy minima, because of the presence of many energy barriers in the free energy

landscape. Many methods have been proposed to cope with this difficulty. In this

section we shall review a method of great importance to our study—the parallel

tempering (PT) method, but first the simulated tempering (ST) method will be

reviewed as it is closely related to PT.

To enhance sampling, Marinari and Parisi [45] proposed the simulated tem-

pering algorithm, in which a temperature index k is augmented to the state space

X so that the distribution is defined on X ×I, where I = {1, . . . ,K} for a total of K

temperatures T1 < . . . < TK . One then samples from a mixed canonical ensemble

π(x, k) ∝ exp(−U(x)/Tk). (2.4)

The idea is that by heating up the distribution, the sampler is able to ex-

plore much wider configuration space and escape from local energy basin. Sampling

of (2.4) can be implemented by first fixing k and perform a Metropolis update on

x, and then fixing x and perform an update on k, which could be a random walk

on all temperature levels. When making a temperature transition, the acceptance

probability has to be governed by the Metropolis acceptance criterion:

P (k → k′) = min{1, π(x, k′)

π(x, k)
} = min{1, Zk

Zk′
exp(−U(x)(

1

Tk′
− 1

Tk
))},

where Zk =
∫

exp(−U(x)/Tk)dx, the partition function at temperature Tk. The

important thing to note here is that because Zk/Zk′ are unknown, one needs to

estimate these constants beforehand, often through some pilot studies, in order to

actually implement ST.

The need to specify these constants can be very inconvenient in many ap-

plications, and one advantage of PT is that this step is completely omitted. While

many researchers attribute the method to Hukushima and Nemoto [30] and refer to

it also as the exchange Monte Carlo method, the idea was actually proposed earlier

by Geyer [22] in the context of statistical inference. Briefly, PT works by running

several Markov chains in parallel, and allowing swaps, either at each iteration or at

random, between states of neighbouring temperatures to speed up mixing of chains.

Formally, the state space for PT now becomes the joint product space
∏K
k=1Xk,

which contains K configurations as replicas with K being the number of tempera-
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tures used in the simulation. One then samples from a joint distribution that is the

product of each marginal distribution:

π(x1, . . . ,xK) =
K∏
k=1

πk(xk),

where each πk has Boltzmann weight at temperature Tk.

Now, suppose the current state is X = (x1, . . . ,xK), and an attempt to swap

some neighbouring states xk ,xk−1 is proposed so that X′ = (x1:k−2, xk, xk−1, xk+1:K),

then the acceptance probability becomes:

P (X→ X′) = min{1, πk−1(xk)πk(xk−1)

πk−1(xk−1)πk(xk)
}. (2.5)

Note that the normalizing constants cancel out since they both equal
∏K
k=1 Zk.

It is then easy to write down the PT algorithm for our multi-polymer system

(Algorithm 2, page 15). The initial state (x
(0)
1 , . . . ,x

(0)
K ) can be simply a set of

identical replicas of a single configuration.

Algorithm 2 Parallel tempering algorithm for the multi-polymer system

Let the current state be (x
(t)
1 , . . . ,x

(t)
K ), at step t+ 1,

• With probability α0, do a parallel step. Update each x
(t)
k , k = 1, . . . ,K accord-

ing to its Metropolis step, that is, obtain (x
(t+1)
1 , . . . ,x

(t+1)
K ) from Algorithm 1

on page 13.

• Otherwise, attempt a swap. Randomly choose a neighbouring pair k, k −
1 from {1, . . . ,K} and set (x

(t+1)
1 , . . . ,x

(t+1)
K ) = (x

(t)
1:k−2, x

(t)
k , x

(t)
k−1, x

(t)
k+1:K)

with probability min{1, exp
[
(U(xk)− U(xk−1))( 1

Tk
− 1

Tk−1
)
]
}.

Even though PT is a powerful algorithm to simulate bead-polymer systems,

in practical use one still needs to be concerned with the spacing between temper-

atures, because an improper choice can greatly affect the performance of the algo-

rithm. Clearly, as can be seen from Algorithm 2, the probability of making a swap

depends on both temperature and energy difference. On one hand, the difference

between adjacent temperatures should not be too large, otherwise the sampler will

suffer from low exchange probabilities due to high free energy barriers; on the other

hand, even if the temperature difference is small, the exchange probability could still

be low if there is a possible phase transition that results in a large energy difference.

We may try inserting more temperature levels, but we often do not know at what
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temperature the underlying phase change occurs in the first place! Furthermore,

using many temperatures will decrease computational efficiency as the time needed

to traverse through all temperatures increases. In fact, the expected waiting time

of a round trip increases roughly as the order of K2 for a temperature ladder of

size K [39].

2.3 Dynamic weighting Monte Carlo

We know from the end of Section 2.2 that the traversal time increases with the num-

ber of temperature levels, hence few temperature levels should be used to reduce the

computational cost. However, the waiting time for a swap increases exponentially

with temperature difference, suggesting the use of many temperatures to ensure fre-

quent swaps. This “waiting time dilemma” motivated us to consider a new type of

MC algorithm—the dynamic weighting Monte Carlo (DWMC), that is fundamental

different from regular MCMC algorithms. It was first introduced in [65], with a

theoretical study of its properties in [41].

Here we review the basic idea of DWMC. To tackle the local trap problem

commonly observed in Metropolis algorithm, Wong and Liang [65] proposed to run

a “weighted Markov chain” by augmenting the state space with a weight variable w

and allow large transitions that are usually rejected in Metropolis-like algorithms.

Here w can be viewed as an importance weight used to correct for the bias introduced

by such transitions. They designed a new type of transition rule and proposed some

special moves that preserve this new rule in order to justify the use of the weighted

average
∑N

i=1w
(i)A(x(i))/

∑N
i=1w

(i) to estimate the equilibrium expectation of some

observable A(x). By applying this new Monte Carlo method to some optimization

problems such as the traveling salesman problem and neural network training, they

were able to obtain better results compared to other methods.

Let us take a closer look at the logic behind DWMC. First, the concept of

correctly weighted samples is defined as:

Correctly weighted samples A set of weighted samples {x(i), w(i)}Ni=1 is called

correctly weighted with respect to π if the joint probability density f(x, w)

satisfies ∫ +∞

0
w f(x, w) dw ∝ π(x).

Now, suppose we have independent and identically distributed (iid) samples

{x(i), w(i)}Ni=1 that are correctly weighted with respect to π, then it is easily seen
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that
∑N

i=1w
(i)A(x(i))/

∑N
i=1w

(i) is a consistent estimator for EπA(x). In fact, by

the strong law of large numbers,

1

N

N∑
i=1

w(i)A(x(i))→ Ef [wA(x)] a.s. as N →∞.

Let Γ denote the configuration space, we have

Ef [wA(x)] =

∫ +∞

0

∫
Γ
f(x, w)wA(x) dxdw =

∫
Γ
A(x)

∫ +∞

0
w f(x, w)dwdx

= c

∫
π(x)A(x) dx,

where c is some proportionality constant and the last equality holds because the

samples are correctly weighted. Similarly,

1

N

N∑
i=1

w(i) → Ef [w] =

∫
Γ

∫ +∞

0
w f(x, w)dwdx = c

∫
Γ
π(x)dx

Combining these equations we obtain∑N
i=1w

(i)A(x(i))∑N
i=1w

(i)
→ EπA(x) as N →∞. (2.6)

Of course, in many cases it is unrealistic to generate iid samples, and we are

already familiar with MCMC techniques which achieve the task of generating (cor-

related) samples by evolving a Markov chain. In that spirit, in DWMC a weighted

Markov chain is simulated and one hopes that, after some equilibration period, the

samples generated are correctly weighted with respect to the target distribution π.

So, just like in standard MCMC where the invariant distribution is preserved in each

iteration, in DWMC one seeks to maintain the correct weightedness of the sample in

each iteration. This new invariance principle is referred to as invariance with respect

to importance weighting (IWIW) in the literature. Some special moves that satisfy

IWIW either exactly or approximately were proposed [65]. For example, the Q-type

move operates as in Algorithm 3, where a is some constant greater than one.

From the Q-type move, we can see that when rejection occurs, the associate

weight increases, enabling the chain to escape from the local mode.

Although this framework of DWMC seems appealing, there are two impor-

tant factors we are yet to address. First, we want to make sure that the weight
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Algorithm 3 Q-type Move

Let the current state be (X(t), W (t)) = (x, w).

• Propose y according to the proposal T (x, y) and compute the Metropolis ratio

r(x, y) =
π(y)T (y, x)

π(x)T (x, y)

• Draw U ∼ Unif(0, 1) and set

(X(t+1), W (t+1)) =

{
(y,max{1, wr(x, y)}) if U ≤ min{1, wr(x, y)}
(x, aw) otherwise

(2.7)

process so defined is stable; and second, that (2.6) holds in some sense—if this is

the case, then we would have theoretical support for the convergence of DWMC,

as we already have in standard MCMC through the ergodic theorem. It turns out

that these two aspects of DWMC become the main issue of the method and cause

difficulties not only in theoretical investigation, but also in practical use, as we shall

demonstrate in Chapter 3. To handle the first issue, it was shown in [41] that,

by a suitable modification of the weight process, {(X(t), logW (t))}t induced by the

Q-type move has a unique equilibrium distribution. However, the weight process

{W (t)}t was shown to have infinite mean. Because of this, it is not at all trivial

to establish the (weak) convergence of (2.6). To deal with this second issue, Liu,

Liang, and Wong then proposed the stratified truncation procedure to process the

raw weights generated from DWMC, and provided a theoretical justification for this

procedure. As the name suggests, first the samples are stratified, then the weights

within each stratum are truncated. More precisely, suppose we wish to estimate the

equilibrium expectation of some observable A(x) and have collected the weighted

samples {A(x(i)), w(i)}Ni=1, then,

• the samples are stratified according to A(x) such that within each stratum the

range of A(x) is not too large and the sizes of strata are comparable;

• the weights within each stratum are trimmed down to the (100−k)th percentile

(k = 1 or 2), that is, let

w
(i)
tm = min{w(i), w∗}, for each w(i) ∈ S,

where w∗ is the (100−k)th percentile of the weights in stratum S; and finally,
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• the estimate for EπA(x) is obtained by computing
∑N

i=1w
(i)
tmA(x(i))/

∑N
i=1w

(i)
tm.

Essentially, weights that belong to the largest magnitude portion (say, 2%)

in each stratum are replaced by the 98th percentile of the weights in the respective

stratum. There are several implementation details to consider given the procedure

outlined above, such as the number of strata to use and how to choose a suitable

size of each stratum. We will explore how this procedure can influence the result of

estimation in Chapter 3.

Further developments [38] within the DWMC framework include a scheme

which augments the state space of Algorithm 3 to a population of the weighted pair

(x, w), and in each iteration, after the dynamic weighting moves have been applied

to each individual pair, (x, w), in the population, it uses a population control pro-

cedure that essentially replicates those individuals with large weights and discards

those with small weights, and the individuals are then properly reweighted to avoid

introducing bias. Incorporation of the population control step ensures finite mean

of the weights and is thus crucial to this scheme. However, we note that although

convergence of this scheme has been justified in [38], the theorem proved therein

requires the population size at each iteration to tend to infinity, so in practice this

population dynamic weighting scheme needs to maintain a large population for it

to be accurate. This can be infeasible for our multi-polymer system because each

individual in the population would be a joint configuration of all of the polymers in

the system.

As another note, since IWIW is trivially satisfied in Metropolis-type moves,

we see that standard MCMC can be viewed as a special case of DWMC with the

(irrelevant) weight variable unchanged at each iteration. This observation leads to a

generalization of DWMC that allows us to mix the usual Metropolis moves with DW

moves. An application of such is presented in the next chapter where we incorporate

the dynamic weighting idea into parallel tempering simulations.

2.4 Multicanonical simulation

By running multiple Markov chains in parallel with tempered distributions, a paral-

lel tempering simulation is able to move across free energy barriers and an enhanced

sampling can often be achieved at the lowest temperature. Until now we have been

focusing on the temperature spacing problem, which is related to the actual imple-

mentation of the algorithm; another problem intrinsic to the method is the sampling

of rare configurations, such as configurations that define the transition states in a

potential energy surface. For example, problems can arise in systems involving phase
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transitions, where we typically observe a low exchange probability between low and

high energy states, even with small temperature spacing. Ultimately, this is due to

the Boltzmann weight in the canonical ensemble, which is the ensemble we have been

using. The multicanonical simulation (MUCA) [6] takes a different perspective by

sampling from a modified ensemble in which the energy is approximately uniformly

distributed; that is, the multicanonical density is proportional to the inverse of the

density of states:

πmu(x) ∝ 1

Ω(U(x))
. (2.8)

Because Ω(U) is not known a priori, the actual simulation only samples from

an approximation π̂mu of (2.8). Had it been known there would be no need to do

simulations because we can compute all thermodynamics from the density of states.

Thus, the idea of MUCA is to iteratively construct a sequence of approximations

π̂nmu (n = 1, 2, . . .):

π̂nmu ∝ (Ω̂n(U(x)))−1, n = 1, 2, . . .

such that π̂nmu ≈ πmu when n is large.

In practice, this is usually done by running many small-scale simulations

where each simulation yields an approximation π̂nmu, until one is satisfied with some

Nth simulation which produces an approximately flat energy histogram. By ap-

proximately flat we mean the sampler is able to visit all energy regions relatively

frequently, and a difference of up to a factor of ten is often deemed to be accept-

able [5]. One can then run a longer simulation with the weights π̂Nmu and obtain

estimates with respect to the canonical ensemble through importance reweighting.

The key to successful implementation of MUCA therefore depends on the

recursion rule used to update π̂mu. Initially, π̂1
mu is set to 1, indicating there is

no prior information about the system and the sampling of every configuration is

equally likely. A simple update rule proceeds by giving to each Ω̂n(Um), where

{Um}Mm=1 is a discretization of energy U , a weight proportional to the observed

energy histogram in bin m:

Ω̂n+1(Um) ∝ Ω̂n(Um)Hn
m, (2.9)

where Hn
m is the observed count in bin m from the nth simulation and the propor-
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tionality constant is irrelevant. We may write

Ω̂n+1(Um) = Ω̂n(Um)
Hn
m

Hexp
, (2.10)

where Hexp is the expected count per bin and is equal to the total number of samples

divided by the number of bins. The logic behind (2.10) is clear: if Hn
m

Hexp
> 1 then

bin m is oversampled, so in order to drive the sampler towards constant behaviour

we increase Ω̂n(Um), so that bin m is likely to be sampled less in the next round,

and vice versa if Hn
m

Hexp
< 1.

There are several problems with this simple recursion. First, there is always

statistical noise associated with Hn
m, and this noise is erroneously treated as a cor-

rection factor for the density of states. An extreme situation is when we feed into

our simulation the exact density of states: in this case the new update is doomed

to be worse because all that we added is statistical noise. Another drawback is that

each update is based only on the most recent Hn
m and historical data from previ-

ous simulations are ignored. Also, if Hn
m is zero then the multicanonical density is

undefined.

A modified recursion which takes into account these problems was proposed

by Berg [4]. In its original formulation, the approximation to the target density πmu

was written under a new parameterization:

π̂mu ∝ e−S(U) = e−b(U)U+a(U), (2.11)

where S(U) is the microcanonical entropy, b(U) is the microcanonical temperature,

given by the derivative of S with respect to U , and a(U) is the fugacity. The weight

to be used at the (n+ 1)th simulation follows once bn+1(U) and an+1(U) have been

determined from the nth simulation:

π̂n+1
mu ∝ e−b

n+1(U)U+an+1(U). (2.12)

Although this may seem complicated by introducing additional parameters,

note that only one of them, say b(U), is a “real” parameter because a(U) follows

from (2.11) and the fact that b = ∂S
∂U .

Therefore, the modified recursion only involves the determination of bn+1(U),

and this is done in a way that historical knowledge about the parameter is properly

incorporated. Essentially, the update bn+1 not only uses data from the nth simu-

lation, but also combines bn which encapsulates the history of the previous n − 1

simulations. A weight proportional to the inverse of the variance of bn is used as a
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guide to combine the most recent and historical simulations.

This recursion scheme addresses most problems typical of the simple recur-

sion (2.9), but does not eliminate them. For example, statistical noise is still present

since the estimate of the variance is based on finite and often very short simulations.

In his paper, Berg used around 9000 simulations with 1000 MC steps each to study

a 10-state Potts model and claimed that using frequent iterations1 was capable of

increasing the stability of the result. However, because short simulations generally

yield larger statistical uncertainties than longer simulations, it is unclear whether

we should use more iterations with fewer steps per simulation or fewer iterations

with more steps per simulation, given the same amount of CPU time. Fortunately,

with the estimates of the density of states derived from our new method, this mul-

ticanonical recursion is often not necessary.

Apart from the actual recursion step, another notable problem with MUCA

is that it often requires human input to guide the simulation. This is related to

the fact that the weights stay put during an iteration. It is only after one iteration

finishes that the weights get updated. Since a MUCA simulation starts by assigning

to each configuration an equal weight, it may not be able to visit low energy region

of the system under an affordable time, and hence proper guesses of Ω̂n(U) near the

ground state are often needed in the course of the simulation.

As mentioned in the beginning of this section, the method of tempered dis-

tributions such as ST and PT are often effective in moving across energy barriers

and thus exploring configuration space more rapidly. This is one of the motivations

for combining the strength of PT and MUCA, and how this can be done efficiently

will be discussed in Chapter 5.

2.5 Other related methods

2.5.1 The Wang-Landau algorithm

Clearly, many other Monte Carlo methods exists in addition to those mentioned

above. One method, closely related to the multicanonical approach, is the Wang-

Landau algorithm [62]. It can be viewed as an adaptive MCMC algorithm. Con-

figurations are still sampled with weights proportional to the inverse of the density

of states; however the density of states is updated on the fly according to some

modification factor f > 1, whose purpose is to help produce a flat energy histogram

in a relatively short time. The update has the form Ω(U)← f Ω(U) once an energy

level has been visited, implying that energies that have been seen will be less likely

1Here, and only in this section, an iteration refers to one of such many simulations.

23



to be seen again, thus enabling a quick exploration of all energy levels. One then

iterates the process by systematically decreasing f (e.g. f ←
√
f) until it is essen-

tially identical to one, at which point the Wang-Landau sampler effectively reduces

to a MUCA simulation without recursion step. In general, in order to generate a

flat histogram, more MC steps are needed as the modification factor becomes close

to one. The resulting density of states will be a good approximation to the true

value, and can thus be used to calculate thermodynamic quantities. An important

distinction from the multicanonical approach is that in the Wang-Landau algorithm,

the density of states is refined to a much higher accuracy, so that it can be used to

estimate quantities such as free energy and entropy which are not directly accessible

from conventional Monte Carlo simulations. This implies that the condition to stop

the simulation is more stringent than that in MUCA, as the price for obtaining an

accurate estimate of the density of states. Since the Wang-Landau sampler again

starts with the initial weights being equal to one, as is the case in MUCA simula-

tion, it is possible to adopt our method in Chapter 5 to reduce the number of Monte

Carlo steps needed to generate flat histograms.

2.5.2 Transition Matrix Monte Carlo

Apart from the need to specify a criterion for the “flatness” of the histogram and

to choose a suitable schedule for decreasing the modification factor, the Wang-

Landau algorithm has the deficiency that it eventually saturates, meaning that

further iterations do not improve the results once a limiting accuracy has been

reached [69]. Due to this limitation, attempts have been made to incorporate ideas

from transition matrix Monte Carlo, see for example [55] and [43].

In transition matrix Monte Carlo [19, 20, 63], one updates instead of the

density of states the transition probabilities between macrostates. Here energy is

our macrostate but it can also be other thermodynamic variables depending on the

ensemble. Starting from the detailed balance equation (2.3), we define the transition

probability to energy U ′, given that the current energy is U :

A(U,U ′) =
1

Ω(U)

∑
U(x)=U

∑
U(x′)=U ′

A(x,x′),

i.e. A(U,U ′) is the microcanonical average of
∑

U(x′)=U ′ A(x,x′) over configuration

x with energy U , where the sum is taken over all configurations, or microstates,

with energy U ′. With this definition and the familiar detailed balance equation

with respect to microstate, we recover the detail balance equation with respect to

the macrostate energy:
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p(U)A(U,U ′) = p(U ′)A(U ′, U). (2.13)

In the infinite-temperature case and with p(U) given by the Boltzmann

weight times the density of states, we get,

Ω(U)A∞(U,U ′) = Ω(U ′)A∞(U ′, U), (2.14)

where A∞(U,U ′) denotes the infinite-temperature transition from U to U ′ and is in-

dependent of the acceptance probability α(x,x′). The fact that A∞(U,U ′) depends

only on T (x,x′), the proposal move probability, allows us to estimate it during a

Monte Carlo run by recording move statistics.

In multicanonical and Wang-Landau simulation, the acceptance probability

α(x,x′) = min{1, Ω(U)

Ω(U ′)
}

is used to generate a flat histogram. In view of (2.14), however, the transition matrix

Monte Carlo uses

α(x,x′) = min{1, A∞(U ′, U)

A∞(U,U ′)
}

with A∞(U,U ′) estimated periodically through the move statistics collected so far.

As the energy histogram becomes more flat, the estimate for A∞(U,U ′) becomes

more accurate, and hence the estimate for density of states can be extracted by

solving equation (2.14).

Even though TMMC does not directly reference the density of states and

is only concerned with infinite-temperature transition probabilities, problems can

arise in the early stage of the simulation when many energy values have not been

visited, and thus making an estimate for A∞(U,U ′) undefined [55]. To combine

the best of both methods, namely the quick exploration of macrostates in Wang-

Landau and the continuous improvement in the estimation of density of states in

TMMC, Shell, Debenedetti, and Panagiotopoulos proposed a hybrid scheme in which

move statistics are recorded in a Wang-Landau run and, periodically, the transition

probabilities based on the current move statistics are used to obtain a refreshed

estimate of density of states—a process they refer to as “refreshing”.
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2.5.3 Remarks

For these density-of-states-based (DoS-based) methods, simulations are generally

started with the “disordered” state of the system where proposal moves leading to

unvisited states are definitely accepted to enable exploration of the whole energy

spectrum. In some cases, there could be physical and geometric constraints on the

systems of interest and it may be more convenient to just focus on a subset of the

energy spectrum. One reason that we use parallel tempering as the first stage of our

simulation instead of directly applying those DoS-based methods is because we wish

to preserve certain features of the molecule of interest, and of the medium in which

it resides. For instance, to investigate the effect secondary structure has on the

aggregation of TatA molecule, we need both to maintain a proper shape of the helix

and to make sure that that part of the molecule stays within the membrane during

the course of the simulation. Since both the medium and structure of the molecule

are encoded in our force field, an infinite-temperature simulation would inevitably

sample the entire energy spectrum and explore part of phase space which may not

be interesting to us. On the other hand, we can control and monitor the structural

integrity of the molecule in a PT simulation by choosing a suitable temperature

ladder.
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Chapter 3

An exploration of parallel

tempering with dynamic

weighting

The infinite! No other question has

ever moved so profoundly the spirit

of man.

David Hilbert

In this chapter we develop a modified version of PT by incorporating the

idea of dynamic weighting, we call it parallel tempering with dynamic weighting

(PTDW). The main difference from standard PT is that the probability of making

an exchange is no longer governed by the Metropolis rule as prescribed in (2.5), and

it is allowable to make exchanges which would otherwise be rejected. An additional

weight variable must be included to properly account for the bias incurred by this

non-Metropolis move. We first present the modified PT algorithm, followed by a

numerical study that compares PTDW with bare PT, and a test of the efficacy of

the methods.

3.1 The PTDW algorithm

Motivated by [39], where the author introduced a simulated tempering with dynamic

weighting (STDW) algorithm, we present a PT version with the “swap step” guided

by the Q-type move (see Algorithm 3 on page 18). Note that here in Algorithm 4

the weight stays unchanged in the parallel step, and is updated according to the
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Q-type move in the swap step.

Algorithm 4 PTDW algorithm(Q-type) for the multi-polymer system

Let the current state be (x
(t)
1 . . .x

(t)
K , w

(t)), at step t+ 1,

• With probability α0, do a parallel step. Update each x
(t)
k , k = 1, . . . ,K accord-

ing to its Metropolis step, that is, obtain (x
(t+1)
1 , . . . ,x

(t+1)
K ) from Algorithm 1

on page 13. Let w(t+1) ← w(t).

• Otherwise, randomly choose a neighboring pair k − 1 and k from {1, . . . ,K}
and draw u ∼ Uniform(0, 1), update

(x
(t+1)
1:K , w(t+1)) =

{
(y, max{1, w(t)r(t)}) if u ≤ min{1, w(t)r(t)}
(x

(t)
1:K , aw

(t)) otherwise

where y is the state with x
(t)
k−1 and x

(t)
k swapped in x

(t)
1:K , a > 1 and r(t) =

exp
[
(U(x

(t)
k−1)− U(x

(t)
k ))( 1

Tk−1
− 1

Tk
)
]

is the Metropolis acceptance ratio.

Another dynamic weighting move, the R-type move, was also proposed and

shown to satisfy IWIW exactly [41]. 1 It is listed in Algorithm 5, from which we

can see that rejections increase the chance of escaping from the current state, as

is the case in Q-type move. Algorithm 4 can then be adapted to implement an R-

type instead of Q-type move. However, as alluded in [41] and also verified by our

simulation, variation of the resulting weights from an R-type move can be much

larger than that of an Q-type move, thus exacerbating the quality of estimates

constructed from those weights. 2 Henceforth, Q-type move is used as our dynamic

weighting move.

3.2 Numerical study

The goal in this section is to numerically test if the new DWMC framework, in

particular, the PTDW algorithm introduced above, does produce consistent results

with that of a bare PT approach. If it does, then this new Monte Carlo scheme

may be a competitive alternative to the study of systems having complex energy

landscapes, such as the TatA protein aggregation model that we are interested in.

1The Q-type move only approximately satisfies IWIW.
2In fact, in our numerical study where Q-type move was used, the weights range from 10−2 to

1014 and already has sample variance of order 1024. This observation confirms numerically the
infinite-mean nature of the weights in dynamic weighting Monte Carlo.
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Algorithm 5 R-type move

Let the current state be (X(t), W (t)) = (x, w).

• Propose y according to the proposal T (x, y) and compute the Metropolis ratio

r(x, y) =
π(y)T (y, x)

π(x)T (x, y)

• Draw u ∼ Unif(0, 1) and set

(X(t+1), W (t+1)) =

{
(y, wr(x, y) + 1) if U ≤ wr(x, y)/(wr(x, y) + 1)

(x,w(wr(x, y) + 1)) otherwise

It is observed, in our example study, that the new PTDW scheme found the low

energy state much faster than the (bare) PT method. However, we also show that

although weight distribution is stable in PTDW, property estimates are unstable;

and while stratified truncation (ST) stabilizes these estimates, they disagree with the

corresponding PT estimates, and a further study provides evidence that is against

the PTDW estimates.

3.2.1 Unstable property estimates from PTDW

We know from Section 2.3 that the infinite-mean nature of the weight variable is

certainly not a desirable property. To find out in a real example whether this has a

severe impact on the estimation results, we study the basic model described in Sec-

tion 1.2. To be consistent, the same set of temperatures was used in both PTDW

and PT simulations, this along with observed swap rates of the PT simulation are

listed in Table 3.1. While it is entropically favourable for the polymers to move inde-

pendently, there is an energetic tendency for the hydrophilic tails of both polymers

to interact with each other within the membrane and form a dimer. The equilibrium

of the system is a balance between these two driving forces. At high temperatures,

the entropy dominates and monomer state is predominant, and at low temperatures,

the energy dominates and dimer state is predominant. There is an energy barrier

between these two states and this is reflected by the low swap rate between T2 and

T3 in Table 3.1.

We first examine the distribution of the (log) weights of PTDW to check

that it is indeed a stable distribution, as mentioned in Section 2.3. One way to

do this is to partition the log weights into contiguous blocks and compare their

distribution functions. In Figure 3.1, we show the histogram of log weight and a
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Temperature T1 T2 T3 T4 T5

0.3 0.48 0.85 1.3 2.0

Swap rates 0.38 0.05 0.56 0.52

Table 3.1: Temperatures and observed swap rates for the PT simulation. The
PTDW simulation used the same set of temperatures.
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Figure 3.1: Histogram of logw from the PTDW simulation (Figure 3.1a) and q-q
plot of log weights corresponding to MC steps 10001—15000 (horizontal axis) and
to steps 15001—20001 (vertical axis) (Figure 3.1b). The line y = x is plotted in red
in the q-q plot.

Quantile-Quantile (q-q) plot for two contiguous sets of log weights. The q-q plot

is an effective graphical technique to inspect if two sets of data share a common

distribution. The axes of a q-q plot are quantiles of the datasets. For continuous

distributions the α-quantile (α ∈ [0, 1]) is simply given by F−1(α), where F is the

distribution function, so, for example, the 0.5-quantile is just the median. As we

can see in Figure 3.1b, the quantile points fall along the line y = x, suggesting that

the two sets of log weights have similar distributions.

The mean potential energy of the system was used as a property for com-

parison, since it can be obtained easily from the simulations without additional

calculations. To monitor convergence, we plot cumulative average of the estimates

at each temperature. The results are shown side-by-side in Figure 3.2. In the case

of PTDW, the cumulative average is defined as the weighted average:
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Figure 3.2: Cumulative average of potential energy computed by the method of
PT (left), PTDW with raw weights (middle), and PTDW with stratified truncation
(right). It is worth noting that because stratified truncation was applied based
on the energy values of each temperature trajectory, the stratified weights became
dependent on temperature; whereas when it is not applied, the same set of weights,
namely the raw weights, are used in property estimates at all temperatures.

Un(x) =

∑n
i=1w

(i) U(x(i))∑n
i=1w

(i)
.

From the PT plot we see a much quicker convergence at higher temperatures

than at lower temperatures; whereas in the case of PTDW (no stratified truncation),

the behaviour is irregular, especially at higher temperatures (T ≥ 0.85). We note

that changes in energy as simulation goes along are negligible compare to changes

in DW weights, which can be as large as 1014, and so these “abrupt jumps” must

be due to the large variability in the weights, where adding one observation with

its associated weight significantly changes the values of Un(x) accumulated from

previous observations. So we see that, for the system we are interested in, raw

weights from PTDW cannot be used to estimate expectations.

Post-processing the raw weights with the stratified truncation procedure,

denoted as PTDW-ST, was conducted and the results are shown in the rightmost

of Figure 3.2. Although one can play with different settings of the strata sizes, here

we used 50 strata with equal number of samples in each stratum. It is observed

that instability of the cumulative average is reduced considerably, however, the

energy estimates do not agree with those from the PT simulation—most notably
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they disagree entirely at T = 0.48, with PT estimate being typical of the dimer

state and PTDW-ST estimate being typical of the monomer state. The fact that

there is a large discrepancy between the PT and the PTDW-ST estimates at this

temperature let us presume that at least one of the two methods is converging to

the wrong value. In the next section, we present evidence against the PTDW-ST

estimate.3

Despite not being able to estimate averages reliably, the PTDW method did

show its capability to quickly locate the low energy state, which can be seen by the

rapid decrease of Un(x) at T = 0.3, irrespective of whether stratified truncation was

applied. In contrast, more than 5 × 106 MC steps were needed for equilibration in

the PT method.

3.2.2 A model-dependent strategy for verification and efficient sam-

pling

This subsection is related to Chapter 5, but rather than being generic, we shall

present a model-dependent strategy to address the issue of inconsistent property

estimates between PT and PTDW. The idea is the same as in multicanonical sam-

pling, except that we now feed into the simulation the weights that are derived from

a PT simulation. Specifically, first the density of states (DoS) is estimated, and

then a biased simulation is run with weights determined by this estimated density

of states. If the biased simulation produces a sufficiently enhanced sampling across

all relevant regions of energy values, then satisfactory results can be obtained by

reweighting to the canonical ensemble; otherwise, one has to either apply the kind

of recursion rules discussed in Section 2.4, or use some advanced algorithms such as

those introduced in Section 2.5, in order to further refine the DoS.

Fortunately, that our model is a two-state system and coexistence between

dimer and monomer states is observed in one of the temperatures means that we

can estimate the DoS separately for each state and then combine them together.

By doing that, we were able to achieve sufficient sampling so that multicanonical

recursions need not be implemented. We can then compare the new results with

those of PT and PTDW all together.

More precisely, let p(U |β) denote the probability density function of energy

U at inverse temperature β, given by

3While working on this, we improved the method used for verification and realized that the new
method not only serves the purpose of verification but can be used also as a generic Monte Carlo
method—this will be the content of Chapter 5.
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p(U |β) = Z(β)−1Ω(U)e−βU , (3.1)

where Z(β) =
∫

Ω(U)e−βUdU is the configurational partition function and Ω(U)

is the density of states. Assume the PT simulation has been run on a total of K

temperatures. We discretize U in the sampled energy range and let {Um}Mm=1 be the

midpoints of energy bins, that is, each bin is of the form [Um−∆U/2, Um + ∆U/2),

where ∆U is the bin width. Here the range [U1, UM ] should cover both dimer and

monomer (dispersed) states of the system: from the PT plot in Figure 3.2, this

means that U1 ≈ −219 and UM ≈ −198.

Replacing p(Um|βk)∆U by the observed frequency of bin m at inverse tem-

perature βk (k = 1, . . . ,K), we get an estimate of Ω(Um) from the PT simulation

at temperature level k,

Ω̂km = Z(βk)e
βkUmHkm/(N∆U), (3.2)

where Hkm is the histogram count of energy bin m at temperature level k and N is

the number of samples at each temperature.

To within a normalization constant, Ω̂km can be determined by

Ω̂◦km =
Hkme

βkUm∑M
m=1HkmeβkUm

. (3.3)

For each k, only a subset of energy pertinent to that temperature is sampled, and

we will get many zeros in Ω̂◦km because no data is observed in the corresponding

bins under a finite simulation. Two non-zero regions can be identified in the matrix

Hm×k: one with low energy, low temperature and corresponds to the dimer state

(upper-left of Hm×k); the other one with high energy, high temperature and cor-

responds to the dispersed state (lower-right of Hm×k). The full Hm×k matrix of a

replicate PT simulation is listed in Table B.1.

To proceed, we restrict (3.3) to ranges of k and m corresponding to the two

states and calculate Ω̂◦km for each state. This puts the two domain DoS’s on a

different scale so we need a scaling factor s to reconstruct the overall DoS:

Ω̂(Um) =

Ω̂1(Um) if Um ∈ U1

s Ω̂2(Um) if Um ∈ U2,
(3.4)

where U1 and U2 are the energy ranges of dimer and dispersed states, respectively, Ω̂1

is calculated via (3.3) but restricted to U1, and similarly for Ω̂2. We can approximate

s if both states are sampled in one of the temperatures. By the equation of relative
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Figure 3.3: Energy histogram of one of the 10 independent biased simulations. The
weights of the biased simulation were determined by the replicate PT simulation.

population of the two states, we have,

p1

p2
=

∫
U1 Ω(U)e−βUdU∫
U2 Ω(U)e−βUdU

≈
∑

m∈M1
Ω̂1(Um)e−βUm

s
∑

m∈M2
Ω̂2(Um)e−βUm

. (3.5)

Since coexistence is observed at T = 0.85 in our PT simulation, the factor s can

be estimated by substituting (0.85)−1 for β into (3.5) and replacing p1/p2 by the

observed relative frequency. The biased simulation can then be run with weights

proportional to 1/Ω̂(Um).

To avoid risk of self-fulfilling, a replicate PT simulation with the same speci-

fications as the one conducted in Section 3.2.1 was run, and the procedure described

above was followed. Specifically, we have run 10 independent biased simulations,

each used 5 × 106 MC steps, in order to get an idea of the statistical errors of

estimation.

Figure 3.3 shows the energy histogram of one such run, from which we can see

that the energy range covers both dimer and dispersed states, and each energy bin

is sampled relatively frequently. Therefore, multicanonical recursions need not to be

implemented, and property estimates can be obtained by importance reweighting.

Figure 3.4 plots the energy estimates and associated statistical errors from
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Figure 3.4: Estimates of the mean potential energy from the biased simulation
(blue), PT (circle) and PTDW-ST (triangle). The half-length of the error bar equals
two times the standard deviation of the estimates obtained from the 10 independent
runs.

the biased simulations, against the estimates from the original PT and PTDW-ST

simulations in Section 3.2.1. We see that at T = 0.48, the PTDW-ST estimate is

a long way from the statistically insignificant region of the biased simulation, thus

giving a high confidence to reject the PTDW-ST estimate.

3.3 Concluding remarks

Our work in this chapter confirms the issues raised in Section 2.3. The dynamic

weighting Monte Carlo framework introduces many theoretical difficulties and it

is hard to establish a similar theorem to the ergodic theorem in standard Markov

Chain Monte Carlo which guarantees the convergence of averages. The fact that the

weighting variable may have infinite mean is a sign of risk when attempting to use

its realizations to estimate equilibrium averages. Even if stratified truncation has

been used to post-processing the weights, our results of a lattice-polymer example

show that property estimates are still unreliable. It should be noted, however, that

the PTDW scheme found the low energy state much faster than the PT method,

suggesting that the scheme may be used as an optimization procedure, such as

searching for the lowest energy configuration. This is also supported by the fact that
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the dynamic weighting method has been successfully applied to certain optimization

problems [41, 65].

We are not aware of any practitioners in the field of computational chemistry

and physics having applied the dynamic weighting Monte Carlo approach to their

own problems. As stated in [41] already,

“The waiting time infinity in the standard Metropolis process now man-

ifests itself as an ‘importance weight infinity’ in the dynamic weighting

process”.
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Chapter 4

Analysing simulation data

Computer simulations have become indispensable in modern scientific research with

more and more enlightening results being published in almost all areas of science.

Nowadays many researchers who use computer simulation as a mean of research

have access to High Performance Computing (HPC). These facilities provide mas-

sive computation power and multiple processors so that the running time is sig-

nificantly reduced for a well-parallelized job. Nevertheless, theoretical advances in

methodology are still very important and valuable; and for some cases it might not

be straightforward to parallelize the code for the specific problem at hand.

From the methodology side, improvement on accuracy of the results can

be obtained either through an improvement of the simulation method, or through

an optimal way of utilizing the amount of information in the output. The former

is done at simulation stage and is the focus of Chapter 2 and Chapter 3, while

the latter is done at estimation stage and is the focus of this chapter. We should

emphasize, however, that the two themes are not completely separate, as we will

be demonstrating that the method developed in analysis can be applied back to

simulation to achieve great efficiency improvement.

The purpose of this chapter is therefore twofold: to provide a foundation

for the next chapter by reviewing some analysis methods aimed at improving the

statistical quality of the data, and to show that advances in statistical methods play

an important role in computational chemistry.

4.1 The Weighted Histogram Analysis Method

The Weighted Histogram Analysis Method (WHAM) is an extension of the multiple

histogram equations of Ferrenberg and Swendsen [18], and was applied for the first
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time to molecular simulation data for free energy and potential of mean force (PMF)

calculations in [34]. It can also be used to calculate thermodynamic averages [12].

Below we review the derivation of WHAM using the conventional approach.

An alternative maximum likelihood approach is described by Bartels [2]. The con-

ventional derivation of WHAM relies on the following simple identity in statistics

which we shall refer to as the optimal rule:

Optimal rule Let X denote the random sample {Xj}Nj=1, and let {Wi(X)}ki=1 be

k independent estimators of some interesting quantity θ, with Var(Wi) = σ2
i ,

then the best estimator of θ, in the sense that it has the lowest variance among

all weighted estimators, is given by

Wopt =

∑k
i=1(σ2

i )
−1Wi∑k

i=1(σ2
i )
−1

, (4.1)

with

Var(Wopt) =
1∑k

i=1(σ2
i )
−1
. (4.2)

We see that the optimal estimator is weighted by the inverse of the variance of

each individual estimator. When the variance of an estimator is small, it contributes

more to the resulting optimal estimator, and vice versa.

Suppose we have carried out K independent simulations at temperatures

T1, . . . , Tk, and we are interested in inference about thermodynamic properties at

some temperature, which may not be one of those temperatures used in simulation,

from all simulation data. The idea is to derive an estimate for the density of states

from each simulation and combine them using the optimal rule (4.1).

In the canonical ensemble at inverse temperature β, we can write down the

probability density function of the potential energy U as

p(U |β) = Z(β)−1Ω(U)e−βU , (4.3)

where

Z(β) =

∫
Ω(U)e−βUdU (4.4)

is configurational partition function, Ω(U) is the density of states.

We consider a discretization of U across the sampled energy range. Let M

be the total number of bins, with {Um}Mm=1 being the midpoints of each bin. Then,

Ω(Um) = p(Um|β)Z(β)eβUm . (4.5)
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For simulation at inverse temperature βk, k = 1, . . . ,K, the value that the

probability density function takes at Um can be approximated by

p(Um|βk) ≈
Hkm

Nk∆U
(4.6)

where Hkm is the histogram count of energies in bin m from simulation k, Nk is

the total number of samples from simulation k and ∆U is the bin width. Substi-

tuting (4.6) into (4.5) we get an estimator for the density of states at Um from

simulation k:

Ω̂km =
Hkm

Nk∆U
Z(βk)e

βkUm

=
Hkm

Nk∆U
eβkUm−fk (4.7)

where fk = − lnZ(βk) is the dimensionless free energy at Tk.

If we can determine the variance of Hkm, then we can apply the optimal

rule to combine the estimators from all temperatures. To that end, we make an

additional assumption that the samples themselves are independent. This simplifies

the derivation of WHAM but is unrealistic as data generated from Monte Carlo or

molecular dynamics simulations are often highly correlated. The correlated nature

of the data can be accounted for by introducing statistical inefficiency terms.

Under independence assumption, Hkm follows a binomial distribution with

parameters Nk and pkm, where pkm is the probability of a sample drawn in bin m

from simulation k. Instead of estimating it directly by the observed frequency, we

express p̂km in terms of the yet to be determined optimal estimator Ω̂m:

p̂km = Ω̂me
fk−βkUm∆U. (4.8)

Note that we have dropped the subscript k in Ω̂km that indexes simulations.

If ∆U is small and the samples are sparsely spread across all the bins, then

a further assumption is that pkm � 1. Then,

Var(Hkm) = Nkpkm(1− pkm)

≈ Nkp̂km

= NkΩ̂me
fk−βkUm∆U (4.9)

and, from (4.7),
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Var(Ω̂km) =

(
eβkUm−fk

Nk∆U

)2

Var(Hkm)

≈ Ω̂me
βkUm−fk

Nk∆U
(4.10)

Now, according to the optimal rule, we obtain the optimal estimator for

Ω(Um), m = 1, . . . ,M ,

Ω̂m =

∑K
k=1Hkm∑K

k=1Nk∆Uefk−βkUm
. (4.11)

If we approximate the integral appearing in the partition function Z(βk) by

a finite sum we can write down fk as

fk = − ln
M∑
m=1

Ω̂me
−βkUm∆U (4.12)

Equation (4.11) and (4.12) together define the WHAM equations and are

the operational form used in [34]. The dimensionless free energy fk can be solved

self-consistently by iterating through the equations with an initial value of fk, say

fk = 0 for all k.

Also, the variance of Ω̂m can be obtained from (4.2):

Var(Ω̂m) =
Ω̂m∑K

k=1Nkefk−βkUm∆U
(4.13)

where the Ω̂m on the right of the equation should be interpreted as the solution of

the WHAM equations (4.11) and (4.12).

To summarize, we state once more the assumptions used to derive WHAM

equations:

1. The simulations are independent.

2. The samples collected from each simulation are independent.

3. For each simulation, samples are sparsely distributed across all bins.

As mentioned before, the second assumption is unrealistic in most molecular

simulations. In order to extend WHAM equations so that they are applicable to

correlated samples, a statistical inefficiency term gkm is needed. In fact, gkm is the

number of correlated samples required to perform an independent sampling with
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respect to bin m in simulation k [12]. In other words, if we associate each bin with

an experiment that counts the number of samples in that bin, then the effective

sample size of the mth experiment is Nk/gkm. By applying this correction, we get

a more general version of WHAM equations:

Ω̂m =

∑K
k=1(gkm)−1Hkm∑K

k=1(gkm)−1Nkefk−βkUm∆U
, (4.14)

with the corresponding variance

Var(Ω̂m) =
Ω̂m∑K

k=1Nk(gkm)−1efk−βkUm∆U
. (4.15)

The statistical inefficiency g was included in the original derivation of Fer-

renberg and Swendsen [18] but omitted in Kumar et al. [34]. They claimed that

for many biomolecular systems with no phase transitions, gkm is independent of k,

and hence, cancel out in (4.14), so the equation reduces to (4.11). The effect of

neglecting gkm was further examined in [12], where the authors found that, when

using their approach to apply WHAM to parallel tempering simulations, for the

same energy bin, gkm could differ by up to two orders of magnitude for different k.

The main purpose of [12], however, is to provide a detailed analysis of the use

of WHAM for simulated and parallel tempering simulations, which are of interest

to our study.

Since one automatically obtains data from all temperatures in a PT simula-

tion, it is tempting to apply WHAM to the analysis of such data. Unfortunately, the

first two assumptions are both violated if one apply directly the WHAM equations

to PT data organized by temperatures. Even if effectively uncorrelated samples are

used for each temperature, the samples between temperatures are not independent

because of the “swap step” in the algorithm, so the first assumption is violated. The

third assumption is also likely to be violated, as each temperature may sample a

different region of the configuration space, resulting in uneven distribution of energy

bins. To rectify these issues, Chodera et al. suggested that the data be organized

not by temperatures, but by “replicas”. Each such replica can be viewed as an in-

dependent simulated tempering simulation from which an estimator for the density

of states as well as its uncertainty can be derived. The optimal rule is then applied

to combine the estimators from all replicas to produce a single best estimator for

the density of states.

There are limitations of WHAM and also some practical issues when taking

into account correlations in simulation data.
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First, the bin width ∆U needs to be chosen carefully. Clearly, it should not

be too large otherwise many of our approximations will not hold and the estimator

for the density of states, Ω̂m, will be very poor—think of approximating a function

with a few distinct values. On the other hand, a small bin width will cause the

number of independent samples in each bin to decrease. This will increase the

relative uncertainty of the probability of that bin, since, from (4.8) and (4.13), we

have

Var(p̂km)

p̂2
km

=
1

Ω̂m∆U
∑K

k=1Nkefk−βkUm
,

which is large when ∆U is small.

Second, the statistical inefficiency g is not trivial to calculate. By definition,

g = 1 + 2τ , where τ is the integrated auto-correlation time and is effectively a

sum of the lag-t auto-correlation functions Ct, t = 1, . . . , N − 1 with N being the

total sample size. It was shown that the accuracy of Ct deteriorates as the lag

t increases [72], so truncations are often involved in calculating τ . For example,

Chodera et al. [12] truncate the sum when Ct first crosses zero.

In addition, it is difficult to assess the quality of the estimator that was

used to estimate the expectation of an observable of interest. More precisely, let

A(x) be some thermodynamic quantity which is a function of system coordinates x.

The expectation of A(x) with respect to the Boltzmann distribution π, expressed in

terms of integration over energy, is given by,

EπA(x) =

∫
Ω(U)e−βU Ā(U)dU∫

Ω(U)e−βUdU
, (4.16)

where

Ā(U ′) =

∫
δ(U(x) = U ′)A(x)dx

Ω(U ′)

is the average of A(x) over those configuration with U(x) = U ′.

Equation (4.16) was estimated in [12] by discretizing U and replacing both

integrals with finite sums. Although the authors discussed the statistical uncertainty

of the estimator, their approach involves the calculation of several statistical ineffi-

ciency terms which are not trivial to calculate. Furthermore, apart from knowing

the uncertainty, or variance, of an estimator, we also need to know its “biasedness”,

that is, how much does the expectation differ from the true value? An unbiased

estimator is such that the expectation equals the true value for all sample sizes. If,

under infinite sample size, the estimator is still biased, then it probably should not

be used.
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4.2 The Multistate Bennett Acceptance Ratio estima-

tor

One of the most important tasks in computational chemistry and physics is the

calculation of free energy difference. Much effort has been made towards efficient

calculations of free energy. The Weighted Histogram Analysis Method discussed

in Section 4.1 was a relatively recent method. Earlier methods include one-sided

exponential averaging [71], the Bennett acceptance ratio (BAR) method [3] and

umbrella sampling [60], among others. The Multistate Bennett Acceptance Ratio

method (MBAR) [56] is a generalization of BAR to multiple thermodynamic states

and has many advantages over existing methods. In particular, it does not require

discretization of energy and thus removes the bias introduced by binning in WHAM.

It has also been shown that the estimator is asymptotically unbiased and has the

lowest variance among all commonly used reweighting estimators [59].

Actually, the mathematical formulation of the theory of MBAR estimator

was based on the work of statisticians [33, 47, 59]. When Bennett [3] published the

acceptance ratio method for free energy calculation, it was difficult for researchers

outside the field of computational physics to appreciate its generality. It was not

until twenty years later that Meng and Wong [47] independently discovered an im-

portant identity for which the BAR method is a special case. Subsequent research

in the statistics community have established an extension of the identity to multiple

densities and proved the optimality of the resulting estimator [59]. The result was

rediscovered and applied back to free energy calculation in [56], only four years later.

In this section we will take a somewhat different approach and review BAR

and MBAR from a purely statistical perspective, realizing that the task of esti-

mating free energy difference can be formulated as estimating ratios of normalizing

constants. This observation in some sense draws attentions of statisticians because

the task is often encountered in statistical procedures as well, such as computing

likelihood ratios and Bayesian inference [47].

Let us start with two thermodynamic states, 1 and 2, and we are interested

in estimating their free energy difference. An example related to our work would

be a system at two different temperatures in the canonical ensemble. Because the

partition function Z(βi) (i = 1, 2) is just a normalizing constant, we use a simplified

notation ci. The distribution associated with state i is then,

pi(x) =
qi(x)

ci
,
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where qi(x) is known and ci =
∫
qi(x)dx. The reduced free energy difference is the

logarithm of the ratio of normalizing constants:

∆f12 = f2 − f1 = ln
c1

c2
.

The goal is then to estimate the ratio r = c1/c2 efficiently given draws (may be

dependent) from both densities.

Bennett proposed to estimate r as a ratio of canonical averages:

r =
c1

c2
=

E2[q1(x)α(x)]

E1[q2(x)α(x)]
(4.17)

where Ei denotes expectation with respect to pi and α(x) is some arbitrary func-

tion. He then chose α to minimize the variance of the estimator for ln r. Many

previous methods can be regarded as special cases of (4.17). For example, taking

α(x) = q−1
2 (x) gives the importance sampling identity r = E2[q1(x)/q2(x)]. The key

identity (4.17) was independently discovered and extensively studied later by Meng

and Wong [47]. They also considered its generalizations to multiple states.

Now, given draws from both densities, {x1n}N1
n=1 and {x2n}N2

n=1, the Monte

Carlo estimator of (4.17) is given by

r̂α =
N−1

2

∑N2
n=1 q1(x2n)α(x2n)

N−1
1

∑N1
n=1 q2(x1n)α(x1n)

, (4.18)

where we used subscript α to make it explicit that the estimator depends on the

choice of the function α. The next rational step is then to choose such α that mini-

mizes the relative mean squared error (MSE) of the estimator. It was proved in [47]

that, under the assumption that the configurations are statistically independent,

the optimal α that minimizes the asymptotic MSE of ln r̂α is given by

αopt ∝
1

N1p1 +N2p2
=

1

N1q1 +N2q2r
, (4.19)

with the corresponding minimum error[∫
N1N2 p1 p2

N1 p1 +N2 p2
dx

]−1

− 1

N1
− 1

N2
. (4.20)

Note that the optimal α depends on the unknown ratio r, so the optimal

estimator can not be obtained directly. Nevertheless, an iterative scheme can be

applied by plugging αopt into (4.18) and, starting with an initial value of r(0), com-

pute iteratively the next estimate r(t), t = 1, 2 . . .. It was shown that the resulting

sequence is convergent and that the limit, r̂opt, has an asymptotic mean squared
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error given by (4.20) [47]. In other words, the iteration of the form r(t+1) = g(r(t)),

with g defined by equations (4.18) and (4.19), has a unique fixed point whose sta-

tistical error is the same as the minimum error one would get for the optimal but

infeasible αopt. It is also informative to see that if p1 and p2 were identical, then

the minimum error would be 0. In other words, the BAR estimator will be exact if

the two densities completely overlap.

When data from K (K > 2) thermodynamic states are available, one might

be interested in estimating the ratios ri = c1/ci, i = 2, . . . ,K. In fact, this is

precisely what we will be doing for a parallel tempering simulation, and efficient

estimation of these ratios constitutes a key component in the new sampling scheme

to be described later.

For the multistate case, a straightforward solution would be estimating each

ratio ri via the BAR estimator, using samples from p1 and pi. However, one might

ask whether we can do better by using samples from all K densities in estimating

each ri. Meng and Wong introduced the idea of “bridge sampling” in an attempt to

extend the key identity (4.17) to cases where multiple densities are involved. Their

idea was based on the observation that if p1 and p2 do not have sufficient overlap but

p3 overlaps with both p1 and p2, then instead of estimating r2 directly through p1

and p2, one could estimate it indirectly via p3, representing the product estimation

c1/c2 = (c1/c3)(c3/c2). The statistical quality of the indirect estimator should be

much better, because each pair of densities in the product now have significantly

more overlap. Therefore, p3 can be viewed as a “bridge” between p1 and p2. This

approach of extension using estimating equations has been shown by Tan [59] to be

consistent with a maximum likelihood approach [33]. We state the main result of

the extension.

Consider a generalized version of (4.17):

c1

ci
=

Ei[q1(x)αij(x)]

E1[qi(x)αij(x)]
, 2 ≤ i ≤ K, 1 ≤ j ≤ K, j 6= i, (4.21)

with the Monte Carlo estimator:

r̂i =
N−1
i

∑Ni
n=1 q1(xin)αij(xin)

N−1
1

∑N1
n=1 qi(x1n)αij(x1n)

. (4.22)

Then the optimal αij that minimizes the asymptotic variance of r̂i is given by

αij(x) =
Njc

−1
j∑K

k=1Nkc
−1
k qk(x)

, (4.23)

and that the bridging sampling estimator r̂i is consistent and asymptotically normal.
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Replacing ri with c1/ci, equation (4.23) can be rewritten as

αij(x) =
Njrj∑K

k=1Nkrkqk(x)
, (4.24)

where, again, the optimal choice depends on the unknown ratios {ri}Ki=2, since r1 = 1

by definition.

As an extension to (4.18) and (4.19), equations (4.22) and (4.24) define a set

of K− 1 estimating equations which can be solved self-consistently for r̂i. If K = 2,

then there is only one such function α that needs to be determined and (4.24) reduces

to (4.19), so we see that the MBAR estimator is indeed an extension of BAR to

multiple states.

Not only can MBAR be used to estimate free energy differences, it can also be

used to estimate equilibrium expectations at almost any thermodynamic state [56].

The idea is, not surprisingly, to think of the expectation as ratio of normalizing con-

stants of some “fictitious” states. More precisely, the expectation of some observable

A(x) with respect to some state s is

EsA(x) =

∫
qs(x)A(x)dx∫
qs(x)dx

,

where s may not necessarily be one of the K states already sampled, in which case

we treat Ns = 0. Let q̃(x) = qs(x)A(x) and c̃ =
∫
q̃(x)dx, then

EsA(x) =
c̃

cs
.

We then augment the set of estimating equations to include the new “state”

with normalizing constant c̃ and another one with normalizing constant cs, if s is

an unsampled state. The corresponding sample sizes for the new “states” are set to

zero so that no additional iterations are needed and expectations along with their

uncertainties can be computed efficiently.

It is important to keep in mind that, as in the case of WHAM, both BAR and

MBAR have assumed that the samples are uncorrelated both within and between

states. Although one might still apply MBAR to correlated data, any statistical

errors associated with the estimates so derived will be unreliable [56].

An interesting observation of the connection between MBAR and WHAM

can be seen if we notice that the MBAR estimator of the dimensionless free energy

at state i,
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f̂i = − ln

K∑
j=1

Nj∑
n=1

qi(xjn)∑K
k=1Nkqk(xjn) exp(f̂k)

, (4.25)

is precisely the fi of Equation (21) in [34], if we substitute q(x) with the Boltzmann

weight exp(−βU(x)). However, the equation in [34] was not a direct consequence

of WHAM which would otherwise require constructing histograms, but rather, a

convenient formula proposed by the authors for the calculation of fi directly from

the data, by treating each data point as occupying its own “bin” with a bin width

of zero.

Based on this observation, we see that the MBAR estimator for free energies

coincides with the WHAM estimator when the bin width is reduced to zero. How-

ever, a zero bin width cannot be used in the derivation of WHAM, as the density

of states from each simulation cannot be constructed when ∆U = 0. On the other

hand, the derivation of (4.25) was based on extended bridge sampling theory and,

as a consequence, has the desired optimality properties.
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Chapter 5

Efficient calculation of density

of states using MBAR

In this chapter, we present a new method to calculate the density of states using the

MBAR estimator. A combination of PT and MUCA will be used to demonstrate the

efficiency of our method in a statistical model of sampling from a two-dimensional

normal mixture and also in a physical model of aggregation of lattice polymers.

While MBAR has been commonly used for final estimation of thermodynamic prop-

erties, our numerical results show that the efficiency of estimation with our new

approach, which uses MBAR as an intermediate step, often improves upon conven-

tional use of MBAR. We also demonstrate that it can be beneficial in our method to

use full PT samples for MBAR calculations in cases where simulation data exhibit

long correlation.

The work in this chapter has been published under the title “Improved esti-

mation of density of states for Monte Carlo sampling via MBAR” (see [68]).

5.1 Introduction

Generally speaking, the MC methods used to study physical and chemical systems

can be broadly classified into two categories: temperature-based and energy-based.

In temperature-based methods, the system is simulated at one or several predefined

temperatures and the Boltzmann weight is used; examples of such methods include

the classical Metropolis algorithm, simulated tempering and parallel tempering. One

deficiency of these methods, apart from the actual sampling, is that quantities like

the free energy and entropy are not directly accessible. Fortunately, advances in free

energy calculation greatly facilitate analysis of simulation data with much higher
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statistical efficiency than earlier methods. For example, in the Weighted Histogram

Analysis Method (WHAM), the density of states (DoS) are estimated by optimally

combining estmates from each simulation after discretizing energy with a suitable

resolution; and in the Multistate Bennett Acceptance Ratio (MBAR) method, the

problem of calculating free energy differences is treated as a problem in estimating

the ratio of normalizing constants and it uses extended bridge sampling theory

to derive statistical estimators that are proven to be optimal. MBAR removes

discretization of energy, is capable of directly producing estimates of free energy

and equilibrium expectations, and thus obviates the need to calculate the density

of states.

In contrast to temperature-based methods, energy-based methods usually

work in a generalized ensemble which is independent of temperature. We have

come across such methods in Section 2.4 and Section 2.5, and we see that they

all try to achieve an even sampling of energy by iteratively refining the DoS. One

could either reweight these biased samples to obtain properties with respect to the

canonical ensemble or use the DoS produced from the final iteration to calculate

thermodynamic properties, in which case the histogram should be sufficiently flat

to provide acceptable accuracy.

While it is generally considered a merit that methods like the Wang-Landau

algorithm allow for a quick exploration of the whole energy spectrum, there are

situations where this is not always desirable. For example, the range of potential

energy in complex systems could span several orders of magnitude. Two implications

are that computationally, the time needed to traverse all energy levels in a random

walk increases as the square of energy range; and that practically, it might be the

case that only part of the configuration space, hence a subset of all accessible energy

levels, are of interest. This suggests that instead of directly applying energy-based

methods, which assumes no prior knowledge about the system, we may initially

run a temperature-based simulation and then, based on the information we have

collected, apply one of the energy-based methods to a reduced range of energy.

We report an approach to derive estimates of the density of states from

the MBAR estimator. In WHAM, these estimates come out naturally because his-

tograms are used. However, since WHAM solves a self-consistent equation concern-

ing the DoS and free energy, this discretization will introduce error to free energy

estimates which in turn causes DoS estimates to be inaccurate. In contrast, MBAR

does not require discretization of energy so this error in free energy is removed.

To illustrate how this idea can be applied in practice, we use a combination

of PT and MUCA in two examples: a statistical example to demonstrate the cor-
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rectness of the method, and a lattice-polymer example to demonstrate the efficiency

and utility of the method in real physical models.

Use of both PT and MUCA, rather than either method alone, is beneficial

to the kind of model we are interested in. Although parallel tempering is a power-

ful algorithm to simulate bead-polymer systems, which are often characterized by

many local energy minima, it can become inefficient in situations where the system

undergoes a phase change that resembles a first-order phase transition. Because

there is a steep change in energy, the transition rate between low and high energy

states can be low even if the chosen temperature difference is small. In contrast, by

sampling from the multicanonical ensemble, the sampler can move freely in energy

space because a flat energy histogram will be produced with good estimates of the

density of states. As the weights used in multicanonical simulation are a priori

unknown, they are normally set to be equal to one at the start of the simulation, in-

dicating that the system is started from the disordered state with all configurations

equally likely. This means that the sampler may have difficulty sampling low energy

configurations whose phase space volume is proportionally smaller than high energy

configurations, and so it may take some time to produce “working estimates” of the

density of states.

This suggests that there can be merit in using an estimated DoS from PT

as the weights of a MUCA simulation. This idea was used, although in a different

context, in Section 3.2.2 of Chapter 3. In general, without having to partition

the DoS based on system characteristics, one could use the WHAM method by

following the advice of [12]. We show, however, that an efficient alternative is to use

the MBAR estimator instead.

5.2 Estimating density of states using MBAR

Suppose independent canonical simulations have been carried out at K temper-

atures. Consider a discretization of U in the energy range sampled from the K

simulations. Instead of including all energy levels that have been seen, it is possible

to ignore those that are close to the high energy end of the spectrum and so are

rarely sampled. In this way one can reduce the range of the spectrum to include only

interesting system events, e.g. phase transitions, although results associated with

the highest temperature distribution are then likely to be inaccurate. Following the

same notations as Section 3.2.2, but bear in mind that k now indexes simulations

that are not necessarily from PT, we have,
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Ω̂km = Z(βk)e
βkUmHkm/(Nk∆U), (5.1)

where Nk is the number of samples from simulation k and may be different for each

simulation.

We can write down estimates of log Ω(Um) from each temperature simulation

by taking the logarithm of (5.1):

log Ω̂1m = logZ(β1) + β1Um + logH1m − log(N1∆U)

log Ω̂2m = logZ(β1) + log
Z(β2)

Z(β1)
+ β2Um + logH2m − log(N2∆U)

...

log Ω̂Km = logZ(β1) + log
Z(βK)

Z(β1)
+ βKUm + logHKm − log(NK∆U).

(5.2)

Because it is only needed to determine log Ω up to an additive constant, we

see that the first term logZ(β1) can be ignored, and only logZ(βk)/Z(β1), k =

2, . . . ,K need to be estimated; but these are precisely the dimensionless free en-

ergy differences. We can therefore use the MBAR estimator to best estimate these

quantities.

Note that there will be K independent estimates of the density of states

in (5.2). Since MBAR also yields uncertainty estimates of the free energy differences,

it followes naturally that the estimates log Ω̂km should then be weighted inversely

proportional to their variances.

5.3 Working with parallel tempering simulation

The parallel tempering simulation simultaneously simulates the system at multiple

temperatures that form a temperature ladder. A key step in PT is the exchange

of configurations between neighbouring temperatures to speed up the mixing of

chains simulated at low temperatures, thus enabling the lowest temperature chain

to escape from local energy basins with the help of high temperature chains, whose

distributions are more flat.

Because a PT simulation yields data from all temperatures, it is natural

to think of applying the method in Section 5.2. However, the exchange step that

makes PT effective also introduces correlations between temperature trajectories.

This violates the independence assumption in Section 5.2, so subsampling is needed
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to remove the correlation (Section 5.3.1). In Section 5.3.2, however, we show that

there are situations in which it is justifiable to use this method to estimate the DoS

from the full PT dataset.

5.3.1 Using a subsampled PT trajectory

To deal with the correlation introduced in PT, a reordering of temperature tra-

jectories by so called replicas may be applied if we have recorded the history of

temperature swaps. Here each replica contains blocks of configurations sampled

at different temperatures and are nearly independent [12]. In doing so, the main

contribution to the correlation now comes from within each replica, and this is the

correlation that results from correlated sampling in MCMC simulations. Subsam-

pling with a suitable statistical inefficiency g > 1 can then be applied to each replica

to obtain effectively uncorrelated data. We point out that once g is known, we can

use it to subsample the original temperature trajectory because it is equivalent to

first subsampling the replicas and then permuting the subsampled replica back by

temperature.

Instead of constructing multiple replicas, we use a subsampling strategy sug-

gested by Chodera.1 We construct a new time series defined by ut =
∑K

k=1 βkU(xkt),

from each temperature trajectory in the PT simulation, and then use the statistical

inefficiency of {ut}Nt=1 for subsampling. The rationale is that if the reduced potential

of a single-temperature simulation provides a practical estimate for the relaxation

time of the trajectory, as suggested by Shirts and Chodera [56], then an extension

to the multi-temperature case should be given by the ut defined above, where the

exponential of −ut effectively gives the overall relative probability of observing a

sample in the product state space of the parallel tempering simulation.

5.3.2 Using a full PT trajectory

We note that the estimating equations of MBAR can still be applied to correlated

datasets, but the estimated uncertainties will no longer be valid [56]. Thus if one

wishes to report statistical uncertainties of any MBAR estimator, subsampling is

required whenever simulation data are correlated. However, there are reasons why

using full PT samples may still be an option here. First, our DoS estimates are

not used to produce thermodynamic properties; rather, they are the weights to be

used in the subsequent MUCA simulation. Second, MBAR is not used as a final

step to obtain free energy differences or other thermodynamic quantities; it is only

1Personal communication.
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used as an intermediate step to estimate the log ratio of partition functions in (5.2).

Evidently, the optimal combination of log Ω estimators based on their variances

will no longer apply if full PT samples are used. However, if we had subsampled

data with long correlations, the resulting subsample size would be small and the

uncertainty estimates may still be unreliable. This is because MBAR estimators

are derived under the asymptotic limit, and so the estimated standard deviation

will only reflect its true value when the sample size is large. Furthermore, a result

from statistics [52] states that the variance of the Monte Carlo estimator for the

expectation of some function of state, constructed from a subsampled Markov chain,

is no smaller than the variance of the estimator constructed from the full Markov

chain. An implication of this result is that variance of a full sample MBAR estimator

may be smaller than the variance of a subsample MBAR estimator.

From the above observations, a simple alternative to using a subsampled PT

trajectory, which also avoids complications associated with computing statistical

inefficiency, is to feed into MBAR the full dataset from the PT simulation, ignore

uncertainty estimates of the computed free energy differences, and average over the

resulting estimates in (5.2). In the last step, if bin width ∆U is small, then we may

only average over those log Ω̂km whose corresponding entries in Hkm are greater

than some small integer, say 1 or 2, because the calculation is likely to be unreliable

if there is only one observation in the bin.

5.4 Numerical Study

In this section, we present two examples where PT samples interesting regions of

configuration space but suffers from low swap rate in the vicinity of a transition

temperature. We apply the method in Section 5.2 to accurately estimate the den-

sity of states from the PT simulation and then run MUCA simulations with those

estimated weights. We show that, for these two examples, the additional MUCA

simulation is trivial in the sense that it will produce a more or less flat energy histor-

gram sufficient for analysis, without needing to implement multicanonical recursions

as in [4].

The first example (Section 5.4.1) is designed to mimic a phase transition

by sampling from a mixture of two-dimensional normal distributions with suitably

chosen parameters. The advantage of using a statistical model is that exact re-

sults can be obtained relatively easily through numerical integration, so that we

know whether different simulation methods perform correctly. The second example

(Section 5.4.2), inspired by reality, concerns the simulation of the aggregation of
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Temperature T1 T2 T3 T4

0.4 0.5 2.0 3.0

Swap rates 0.29 0.01 0.28

Table 5.1: Temperatures used and associated PT swap rates observed in the statis-
tical model.

lattice-polymers in an implicit membrane and water environment. Since this model

exhibits a phase transition between aggregated and dispersed states, the statistical

model may be viewed as a simplified, low-dimensional analog of the physical model,

with the benefit of knowing correct solutions.

To facilitate our study, we have used the pymbar module of Shirts and

Chodera [56] for MBAR calculations. The PT and MUCA simulations were run

with our own code.

5.4.1 A statistical example

Consider a mixture of bivariate normal distributions defined by

π ∼ 0.5N(µ1,Σ1) + 0.5N(µ2,Σ2),

where the mean vector and covariance matrix of the two distributions are given by

µ1 = [0, 0]T , Σ1 = diag[0.01, 0.01] and µ2 = [2, 2]T , Σ2 = diag[2, 2]. We define the

energy function to be U(x) = − log π(x) and implement a PT sampler that samples

from πT ∝ exp(−U(x)/T ) with temperatures listed in Table 5.1. We then followed

the procedure described in Sections 5.2–5.3 to estimate the density of states from

the PT simulation. Specifically, we used both subsampled PT (Section 5.3.1) and

full PT (Section 5.3.2) to obtain these estimates. Once this was done, MUCA sim-

ulations were run with weights proportional to the inverse of the estimated density

of states. In this example, 10 independent MUCA simulations with different initial

configurations randomly generated from π were run. We refer the approach that

uses subsampled PT as PTMBARMUCA, and the approach that uses full PT as

FPTMBARMUCA.

The parameters of π were chosen to mimic a broad high energy state and a

narrow low energy state. A plot of the energy surface is shown in Figure 5.1. Because

we are interested in quantities that vary with temperature, our goal is not just to

sample from π, which corresponds to T = 1, but to ensure efficient crossing between

the two states. This is different from common practice in statistics where one would

use a temperature ladder 1 = T1 < . . . < TK and only the lowest temperature
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Figure 5.1: The energy surface in the statistical example: U(x) = − log π(x).

distribution is of interest. Instead, in our setting the temperatures can be chosen

as any positive values, and the relatively large difference between T2 and T3 was

chosen to test if our method can sustain large gaps in the temperature ladder across

a phase transition.

A trace plot of the last 2000 samples generated from all temperatures in the

PT simulation is shown in Figure 5.2. It is clear that πT becomes more localized

as T is close to 0, with almost all probability mass concentrated at the first normal

distribution in π, and it becomes flatter when T is large. The swap rate between

T2 and T3 in the PT simulation was observed to be only 1% (Table 5.1 on page 53).

Because the interval [T2, T3] contains T = 1, which is when πT = π, the observed

frequency implies that transitions between the two modes in π are rare under the

currrent parameter setting.

Two properties were calculated: the mean potential energy 〈U(x)〉 and heat

capacity Cv. For a given inverse temperature β = 1/T ,

〈U(x)〉T =
−
∫
π(x)β log π(x)dx∫

π(x)βdx
,

and
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Figure 5.2: Trace plot of the last 2000 samples of the PT simulation for the statistical
example.

(Cv)T =
〈U2(x)〉T − 〈U(x)〉2T

T 2
.

We note that both 〈U(x)〉T and (Cv)T can be calculated through numerical

integration, and so correct results are known. The R package cubature was used to

perform the integration. For all integration results, the estimated relative errors were

of order 10−5. In Figure 5.3, we show separately the estimated potential energy and

heat capacity across a series of temperatures between T1 = 0.4 and T4 = 3.0 using

both the subsampled and full PT trajectory, along with exact integration results.

Clearly, the estimates show good agreement with the correct values of potential

energy and heat capacity, whether or not subsampling is used.

For comparison, we also used MBAR to obtain directly the estimates as well

as uncertainties of thermodynamic quantities of interest, which was the original

purpose of MBAR when it was introduced in [56]. We note that although its use

for PT simulations was not addressed there, a subsampling strategy as mentioned

in Section 5.3.1 can be applied to obtain effectively uncorrelated data. This approach

will be refered to as PTMBAR.

Since exact numerical integration results are known, a detailed error analysis

can be conducted to investigate the quality of estimation for different methods. We
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Temperature T1 T2 T3 T4 T5

0.3 0.48 0.85 1.3 2.0

Swap rates 0.43 0.02 0.54 0.52

Table 5.2: Temperatures used and associated PT swap rates observed in the lattice-
polymer model.

used the Mean Squared Error (MSE) as a quality measure. The MSE of an estimator

is defined as the average squared deviation between the estimator and its true value,

and so takes into account both the variance and the bias of the estimator. To inspect

the performance of the methods in different temperature ranges, we show pictorially

the MSE of potential energy (Figure 5.4a) and heat capacity (Figure 5.4b) across

all temperatures for all methods.

The MSE plots suggest that both PTMBARMUCA and FPTMBARMUCA

have consistently smaller MSEs than PTMBAR across almost all temperatures, in

particular, the MSEs are significantly smaller when T is around 1. In addition,

larger MSE was observed in both energy and heat capacity estimates of PTMBAR

when T is close to 3; as is also reflected in the PTMBAR plots in Figure 5.3, where

relatively large error bars are observed near T = 3 and, in particular, deviations

from the exact values of heat capacity exceed one standard deviation.

5.4.2 A lattice-polymer study

We now study the lattice-polymer model in Section 1.2. For the current method val-

idation study we restrict our attention to a simpler lattice polymer which exhibits no

secondary structure. A PT simulation was run with a total of 3×107 iterations, the

temperature ladder and associated swap rates for this model are listed in Table 5.2.

In Section 5.4.1 we were mainly concerned with the correctness of the meth-

ods, and hence used a simple model which could be solved exactly. In this section

we turn to the question of efficiency by using a model with more realistic complexity.

As a result, while we continue to compare three approaches (PTMBAR, PTMBAR-

MUCA and FPTMBARMUCA), we proceed as follows: we used all 3×107 iterations

of PT for analysis with PTMBAR, whereas for the latter two approaches only the

first 2×107 iterations were used to estimate the DoS, and this was then followed by

an additional 1×107 iterations of MUCA. Hence the computational effort is roughly

equal for all three methods.

In order to obtain error estimates, we ran 10 independent MUCA simulations

using different initial configurations that belonged to both aggregated and dispersed
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Figure 5.3: Estimated potential energy (Figure 5.3a) and heat capacity (Figure 5.3b)
from three methods. The exact numerical integration results are shown in red
curves. In FPTMBARMUCA, averages of log Ω̂km for each bin m over all temper-
atures k with Hkm > 2 were used. The error bar was calculated as follows: For
PTMBAR, this was the analytical standard deviation of the MBAR estimator; For
PTMBARMUCA and FPTMBARMUCA, this was the sample standard deviation
of the estimates obtained from the 10 independent MUCA runs.
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Figure 5.4: MSE of potential energy (Figure 5.4a) and heat capacity (Figure 5.4b)
calculated from the corresponding plot in Figure 5.3. It can be seen that the MSEs
of potential energy are comparable between both versions of our new method. The
heat capacities show a difference in the peak near T = 0.75, with a smaller MSE for
PTMBARMUCA than for FPTMBARMUCA; this must be due to smaller variance
with PTMBARMUCA since Figure 5.3b shows that the bias is smaller in FPTM-
BARMUCA. Both methods have smaller MSE than PTMBAR.
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Figure 5.5: Estimated mean potential energy (top row) and heat capacity (bottom
row) along with their uncertainties for the lattice polymer aggregation model. Re-
sults are overlayed. The methods with additional MUCA simulations only used half
as many PT samples as the method of PTMBAR. In FPTMBARMUCA, an average
of the equations in (5.2) over non-zero entries of Hkm was used. The plots in the
second column show the uncertainties (one standard deviation) of the corresponding
property estimates on the left. The error bars were computed in exactly the same
way as shown in Figure 5.3, and they are manually shifted left and right (±δ) to
avoid obstruction.

states. The results of potential energy and heat capacity calculated from the three

methods are shown in Figure 5.5. Since exact values are not known a priori in this

case, the results are overlayed to check for self-consistency. Uncertainty estimates

are also compared for four temperature points which cover the peak region of the

heat capacity curve, i.e. the transition between aggregated and dispersed states.

The first point to notice is that energy and heat capacity estimates agree

very well for all three methods; in particular, the peak of the heat capacity oc-

curs around T = 0.66, and differences between the mean values calculated by the

methods are not statistically significant at any of the four temperature points con-

sidered. Note that these temperatures were purposely chosen around the transition
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temperature since property estimates at these temperatures are most likely to suffer

from incomplete sampling of the two states. The uncertainty plots suggest that the

method of PTMBARMUCA has larger statistical errors than PTMBAR; however,

with FPTMBARMUCA, that is, with the DoS estimated using full PT trajectory,

we obtain errors that are no worse, and often smaller, than PTMBAR.

Whether or not subsampling should be performed to derive the DoS appears

to be affected by the strength of correlation in the PT trajectory. The statistical

inefficiency in the lattice polymer model is about 12 times larger than that in the

statistical model of Section 5.4.1. Although more iterations were used, the polymer

model posed a more significant sampling problem because the dimension of the

configuration space got much bigger. Hence, for PTMBARMUCA, the subsample

size may still be inadequate for obtaining reliable estimates of the uncertainties of

the terms in (5.2). On the other hand, taking averages over the estimates would

seem to be a better option here, but would be too arbitrary in the statistical model.

Lastly, we mention that although we used multiple MUCA simulations and

calculated standard deviation of the estimates obtained from each run, a resampling

technique known as bootstrap [17] can be used to obtain error estimates and replace

multiple runs which, however, do serve a useful purpose for convergence check. In

bootstrap methods, one generates by sampling with replacement many sets of boot-

strapped samples called resamples from the original data, and use the distribution of

the resamples to approximate the distribution of the population. When we have de-

pendent data, as is the case for most Monte Carlo simulations, the resamples need

also preserve the dependence structure and the so called block bootstrap meth-

ods [51] can be used. We refer interested readers to [13] for a comprehensive acount

of bootstrap methods.

5.5 Conclusion

The MBAR estimator exhibits superior statistical properties and has been widely

used in free energy calculations invloving multiple equilibrium states. We proposed

an approach that makes use of MBAR to calculate the density of states, and showed

how this could be applied to data from parallel tempering simulations. Subsequent

MUCA simulations which use this estimated density of states were shown to con-

verge rapidly, without the need for multicanonical recursions. In this way, MBAR

“optimally connects” PT and MUCA simulations and constitutes an important and

integrated part of the simulation stage, rather than being confined to its more usual

role as a post-simulation analysis tool. Our numerical study of a statistical model
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showed that the method was formally correct when compared with exact numerical

integration results. We then used the method to study polymer aggregation in a

lattice model and compared it with the traditional method of using MBAR to anal-

yse simulation data. We observed that even when we applied our method to the

first half of generated PT data, we were able to obtain comparable and even bet-

ter results than the traditional method. Our results therefore suggests that it can

be more beneficial and efficient to do analytical calculations, e.g. deriving MUCA

weights through MBAR, than simply running longer Monte Carlo simulations.

When system size is large, it is useful to parallelize the MUCA step by

dividing into overlapping intervals the sampled energy range of the PT simulation,

perform MUCA simulations on each energy interval with weights already determined

by the PT step, and join the resulting histograms on each interval. Adjacent energy

intervals are chosen to overlap to reduce the “boundary effect” [62].

Because in our method MBAR is not used to produce final estimates, nor

the associated uncertainties, of physical properties, there is some leeway in how it

can be applied. In particular, it is possible to use full PT samples for MBAR DoS

calculations, i.e. without first subsampling to remove the intrinsic correlations in

the MC trajectory. This aspect was explored in both of our examples. Clearly, it is

natural to subsample the data because we can then properly combine the estimators

of the log density of states. However, the optimality of such estimators decreases

as subsample size shrinks, and hence if correlation is long, the full sample strategy

of Section 5.3.2 may be preferred. The conventional usage of MBAR to report

statistical uncertainties would preclude such possibility.
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Chapter 6

Application to the

Twin-Arginine Translocation

mechanism

Essentially, all models are wrong,

but some are useful.

George E. P. Box

In this chapter, results of applying our integrated, MBAR-enhanced MC

approach to some more realistic models will be presented. Such models could be

considered as our first steps towards a better understanding of TatA aggregation in

membrane, which is an integral part in the Tat mechanism. In Section 6.1, we give an

overview of the Tat pathway and address the significance of the computer simulation

study reported in this chapter. Specifically, attempts were made to investigate the

role of the helix components in the TatA molecule (Section 6.2), and to study

the case where there are more than two polymers (Section 6.3). Problems with

simulation efficiency when using the current force field and move set are identified,

and strategies that can help alleviate such problems are proposed for further study.

We note that even with these difficulties, we were still able to address polymers with

some elements of secondary structure using the MBAR-enhanced MC approach.

6.1 The Tat pathway

The Twin-arginine translocation (Tat) pathway is one of two major pathways cells

have for transporting proteins across membranes. It is involved in the export of pro-
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teins across bacterial cytoplasmic membranes and across the thylakoid membranes

in plant chloroplasts, and is essential for bacterial pathogenesis and for plant pho-

tosynthesis [36]. The translocated proteins are referred to as substrates; these are

proteins that need to be transported to perform their functions either within the

cell or in extracellular space. One distinctive feature of the Tat mechanism is that

substrate proteins are transported in a folded manner, contrary to the general secre-

tory (Sec) pathway which transports proteins in an unfolded state [36]. The name

Tat is an acronym for “twin-arginine translocation” and comes from the unique,

consensus twin-arginine (RR) motif that is a key feature of the amino acid sequence

of the signal peptide that triggers Tat translocation. Major components of the Tat

translocon are membrane proteins from the TatABC family; these are small integral

membrane proteins that, when forming complexes that have the right structural

organization, allow the folded substrate to be translocated without compromising

the permeability of the lipid bilayer. TatA consists of a single transmembrane helix

(TMH) and an amphipathic helix (APH) that lies along the membrane surface. The

two helices form approximately a right angle and are connected by a small loop. A

schematic representation of the TatA protein is shown in Figure 6.1. TatC consists

of six TMHs and has limited conformational flexibility [7]. TatB has similar struc-

ture to TatA and the two are best discriminated by their biochemical behaviour:

whereas TatA proteins oligomerize to form the translocation channel, TatB proteins

form a 1 : 1 complex with TatC and play a role in substrate recognition prior to the

transient translocation process [7].

Figure 6.1: Ribbon representation of TatA protein, details of the composition of
amino acids are omitted. The TatA molecule consists of a transmembrane helix
(red) near the N-terminal tail, a hinge region, an amphipathic helix (green) at
the membrane-water interface and an unstructured C-terminal tail (dashed line).
The structure has been determined in atomic resolution by NMR spectroscopy [29].
(Reprinted with permission from [29]. Copyright (2010) American Chemical Society)

A diagram illustrating the potential key steps involved in the Tat pathway is

shown in Figure 6.2. It should be noted that although a TatA oligomer is depicted in
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Figure 6.2: Diagram showing Tat targeting and translocation. The order of events
are labelled from (a) to (e). The bottom left corner shows that while the substrate
is being synthesised from the ribosome, the RR signal peptide is inserted. The in-
sertion of signal peptide and/or the binding of additional helper proteins (molecular
chaperones, shown in red circles) prevent the substrate from targeting the Sec path-
way [31] (a). After folding, additional subunits (orange) and cofactor (blue circle)
are added (b) and the substrate is recognized by the TatBC complex through the
signal peptide (c). This then appears to trigger the aggregation of TatA and a
TatABC complex, which serves as the active translocation site, is formed (d). The
substrate protein is then translocated through a pore constituting TatA proteins
(e). Once transport is completed, the signal peptide is removed from the substrate.
(figure courtesy of [36])

the figure, the oligomer dissociates and returns to dispersed state once translocation

is completed, since a persistent oligomer would have undesirable consequences for

the cell, such as ion leakage [1]. Also, experimental results show that the TatA

channel can vary its diameter to accommodate substrates of different sizes [23],

implying that translocation is mediated by oligomerization of variable amounts of

TatA monomer.

The fact that Tat is able to transport folded proteins makes it particularly

challenging compared to Sec pathway, because membrane must maintain a perme-

ability barrier to ions and small molecules during transport. As an example, the

Escherichia. coli Tat pathway is able to transport substrates of up to 70 Å in di-

ameter, whereas an unfolded polypeptide chain is only about 12 Å in diameter [8].

Due to this distinctive feature that the Tat mechanism possesses, models of the

dynamics of the translocation process have been proposed (see [50] for a review),
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TMH APH

case 1 0 0
case 2 1 0
case 3 0 1
case 4 1 1

Table 6.1: There are four possible cases concerning helices within our TatA model,
as listed here, where 1/0 indicates on/off of the helix. Computationally, these can be
achieved by manipulating relevant parameters in the force field (see Appendix A).

including one that predicts a local weakening of the membrane that is sufficient for

the substrate to move through [9].

Clearly, the structure of the TatA oligomer is crucial to understanding the Tat

mechanism. However, due to the transient nature of active translocation complex,

it is difficult to conduct experimental analyses and thereby establish its structural

organization during translocation. Computer simulation can be an indispensable

complementary tool in elucidating the Tat mechanism. Indeed, molecular dynamics

simulations have been applied to investigate the stability of experimentally pro-

posed solubilized TatA oligomer structure in membrane [53]; however it is unclear

whether TatA assembly in the native membrane environment will result in the same

oligomeric structure as determined in a detergent solution.

Our lattice models, on the other hand, allow us to simulate the assembly

process in an (implicit) membrane environment and explore its equilibrium prop-

erties. It is realized that once the equilibrium behaviour of TatA aggregation is

adequately explained by our simulation, we can then model how the TatBC com-

plex and the substrate interact with, and influence, the aggregation of TatA within

the Tat process.

6.2 Helices and TatA aggregation

Among the interesting questions concerning TatA aggregation are whether, and how,

the aggregation is affected by the secondary structure of TatA. Our lattice TatA

model (Figure 6.3) provides us with a way to look at this problem by performing

simulations with different combinations of the TatA secondary structure (Table 6.1).

We shall consider the four cases listed in Table 6.1 separately, and concentrate

on two-chain systems in this section. For each case, the same amino acid sequence

was used. The model and move set described in sections 1.2 and 1.3 were used,

and the force field parameters are listed in Appendix A. For clarity, we reiterate
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Figure 6.3: Lattice model of TatA. Four regions are identified: transmembrane
helix (TMH), loop, amphipathic helix (APH) and the hydrophilic tail. Boundaries
of membrane and interface are also shown.

that we are using an adaptation of the three-dimensional HP model with 1) implicit

membrane and interface, 2) amphipathic bead type (H2) to supplement hydrophobic

(H) and polar (P) beads, and 3) interactions that favour helical contacts where

relevant. Note that even in cases where at least one of the helices is absent, the

membrane-water interfaces were still kept for consistency.

6.2.1 Case 1: both TMH and APH are absent

Here, and in other cases, we monitor six observables of interest: the heat capacity

(Cv), the inter-polymer contribution to total potential energy (Uinter), the number of

inter-polymer tail-tail contacts (Ntt), the number of inter-polymer tail-loop contacts

(Ntl), the number of inter-polymer contacts (Ninter = Ntt +Ntl), and the number of

intra-polymer P-P contacts per chain (Nintra). Because of the way the force field is

defined, the P-P contacts in Nintra must happen within the membrane, so there is a

competition within the membrane between intra- and inter-polymer P-P contacts.

A parallel tempering simulation was carried out first, followed by MBAR

calculations to obtain optimal density of states estimates, which were then fed into

multicanonical simulations. Specifically, we used full PT dataset for MBAR density
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of states calculation, i.e. the FPTMBARMUCA approach in Section 5.3.2 was used.

More simulation details are listed in Appendix C. The results for this case are shown

in Figure 6.4.
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Figure 6.4: Property estimates for case 1 (no helices). The six properties are the heat
capacity (Cv), the inter-polymer contribution to total potential energy (Uinter), the
number of inter-polymer tail-tail contacts (Ntt), the number of inter-polymer tail-
loop contacts (Ntl), the number of inter-polymer contacts (Ninter) and the number
of intra-polymer P-P contacts per chain (Nintra). The error bar was calculated as
one standard deviation of the estimates over 10 independent MUCA runs, each of
which has starting configuration chosen from either aggregated or dispersed state.
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(a) T = 0.8 (b) T = 1

(c) T = 1.05 (d) T = 1.1
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(e) T = 1.15 (f) T = 1.2

Figure 6.5: Case 1 (no helices) level plots (with rectangular tiling) showing the prob-
ability of (Nintra, Ninter) taking different values in a grid, at different temperatures.
The brighter the tile, the higher its probability.

The heat capacity shows two distinct states with a transition temperature

centred at T = 1.2, but spanning 1.0 to 1.4. Also, the inter-polymer energy tends

towards 0 as T increases, with almost no interactions between the two polymers

when T > 1.4. Hence we see that dispersed state dominates high temperatures

(T > 1.2) and the dimer state dominates low temperatures (T < 1.2). All other

quantities, i.e. the various contacts, show the same trend as the temperature varies:

the number of contacts decreases as T increases. Now, if we focus on a particular

temperature in the range T < 1.2, we can see that Ntt and Ntl are negatively

correlated, meaning that if we have a bunch of samples (Ntt, Ntl) at a particular

temperature, it would then be the case that a larger Ntt implies a smaller Ntl, and

vice versa. In a statistical sense, this means that the variance of Ninter, i.e. the sum

of Ntt and Ntl, is smaller than the sum of the variances of Ntt and Ntl. As the error

bars shown in Figure 6.4 are one standard deviation, Ninter should have error bars

that are no smaller than either of Ntt and Ntl if the two were uncorrelated; but

clearly, this is not the case when T is low. For example, at T = 0.8, the error bar

in Ninter is smaller than both of the error bars in Ntt and Ntl. Hence, we see that

the chains “trade” tail-tail contacts for tail-loop contacts when they form a dimer.

In addition, comparing Ninter with Nintra, we see that when T < 1.2, more

inter-polymer contacts were observed on average than the number of intra-polymer

contacts. In particular, at T = 0.8, Ninter is about 5 contacts larger than Nintra.
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To illustrate how the distributions of both Ninter and Nintra change with tem-

perature, we took one of the MUCA simulations and calculated the probability of

the pair (Nintra, Ninter) taking on various values across the range of temperatures.

The results are shown in level plots (Figure 6.5), where the “z-value” is the prob-

ability. We can immediately identify regions of high probability from these plots.

For example, Figure 6.5a shows the distribution of (Nintra, Ninter) at the lowest

temperature T = 0.8, and we find that the three most populated states are centred

on (13, 15), (12, 16) and (11, 17). From Figure 6.5d, we can see a clear presence

of Ninter being both zero and positive, indicating coexistence of both dispersed and

dimer states. And, at T = 1.05 (Figure 6.5c), although we can still discern regions

where Ninter = 0 has positive probability, the dimer state dominates; similarly, the

monomer state dominates at T = 1.2 (Figure 6.5f).

Typical dimer snapshots for this and other three cases are shown in Fig-

ure 6.6. We also observed that for Cases 2 and 4, at least 94.7% of transmembrane

helical contacts were maintained in the simulated temperature range; for Cases 3

and 4, at least 96.3% of amphipathic helical contacts were maintained; for Cases 1

and 3, at least 99.5% of hydrophobic (H) beads were within the membrane region

and for Cases 1 and 2, at least 97.3% of amphipathic (H2) beads were within the

interface region.

6.2.2 Case 2: only TMH is present

Now we switch to Case 2, where the transmembrane helix is present but the am-

phipathic helix is not. The respective plots are shown in Figure 6.7 and Figure 6.8.

From Figure 6.7, we see that observations we made about the various contacts in

Case 1 hold also in Case 2. The transition temperature is around T = 1.15, lower

than that observed in case 1, suggesting that dimerization occurs at a slightly lower

temperature when the transmembrane helix is present. The probability distributions

of (Nintra, Ninter) at different temperatures (Figure 6.8) show that the dimer state

is substantially populated when T < 1.05. The three most frequent combinations of

the pair at T = 0.8 (Figure 6.8a) are (10, 17), (12, 15) and (10, 18).
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(a) Case 1 (b) Case 1

(c) Case 2 (d) Case 2

(e) Case 3 (f) Case 3

(g) Case 4 (h) Case 4

Figure 6.6: Dimer snapshots for all cases. Side views are shown on the left and
top-down views are shown on the right. Membrane and interface are not shown.
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Figure 6.7: Property estimates for case 2 (only TMH).
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(a) T = 0.8 (b) T = 0.9

(c) T = 0.95 (d) T = 1
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(e) T = 1.05 (f) T = 1.1

Figure 6.8: Case 2 (only TMH) level plots, showing the probability of (Nintra, Ninter)
taking different values in a grid, at different temperatures.

6.2.3 Case 3: only APH is present

In this case the results for the estimated properties in the simulated temperature

range are shown in Figure 6.9 and the probability distributions of (Nintra, Ninter)

at various temperatures are shown in Figure 6.10. Since we did not know the

approximate location of the transition temperature beforehand, the PT temperature

ladder was chosen similar to the first two cases. It is notable that the heat capacity

does not reflect the complete transition given the temperature ladder used, as the

transition to the dispersed state is partly missing in the plot. Nevertheless, it

can still be seen that the transition temperature is around T = 1.5, significantly

higher than those observed in Cases 1 and 2. At T = 1.6, while the population is

dominated by the monomer state, the average inter-polymer energy is negative and

the average number of inter-polymer contact is positive, suggesting that dimers are

still present at this temperature. Larger error bars were observed in tail-tail and

tail-loop contacts, Ntt and Ntl, when T < 1.3; in contrast, the corresponding error

bars in the sum Ninter were much smaller, this observation implies a strong negative

correlation between Ntt and Ntl. The probability distributions of (Nintra, Ninter)

show that the dimer state is substantially populated when T < 1.35. The three

most frequent combinations of the pair at T = 0.9 (Figure 6.10a) are (12, 15),

(11, 16) and (11, 17).

76



50

100

1.0 1.2 1.4 1.6

T

C
v

−40

−30

−20

−10

1.0 1.2 1.4 1.6

T

U
in

te
r

2

4

6

1.0 1.2 1.4 1.6

T

N
tt

2.5

5.0

7.5

10.0

1.0 1.2 1.4 1.6

T

N
tl

5

10

15

1.0 1.2 1.4 1.6

T

N
in

te
r

6

8

10

1.0 1.2 1.4 1.6

T

N
in

tr
a

Figure 6.9: Property estimates for case 3 (only APH).
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(a) T = 0.9 (b) T = 1.2

(c) T = 1.25 (d) T = 1.3
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(e) T = 1.35 (f) T = 1.4

Figure 6.10: Case 3 (only APH) level plots, showing the probability of (Nintra, Ninter)
taking different values in a grid, at different temperatures.

6.2.4 Case 4: both TMH and APH are present

Similar to Case 3, the transition to dispersed state is partly missing as shown in the

heat capacity plot in Figure 6.11. However, a lower transition temperature (near

T = 1.35) was observed compared with Case 3. The quantities Ntt and Ntl are

still negatively correlated, although weaker than the negative correlation observed

in Case 3. At T = 1.4, there are about 6 inter-polymer contacts; whereas at the

same temperature in Case 3, there are still more than 10 inter-polymer contacts, and

there is almost no inter-polymer contacts at this temperature in Cases 1 and 2. The

probability distributions of (Nintra, Ninter) (Figure 6.12) show that the dimer state

is substantially populated when T < 1.25. The three most frequent combinations

of the pair at T = 1.1 (Figure 6.12a) are (9, 24), (9, 23) and (10, 21), showing

that more inter-polymer, and less intra-polymer, contacts were observed than the

corresponding contacts in the first three cases.

Recapitulating all four cases, our results suggest that the amphipathic helix

tends to favour dimerization, since a higher temperature is needed to disrupt it;

and while the transmembrane helix hinders dimerization (lower transition tempera-

ture Ttrans), the amphipathic helix appears to be the stronger effect, giving a bigger

shift in Ttrans in Case 3 compared with Case 2, and resulting in an increase in Ttrans

when both helices are present.
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Figure 6.11: Property estimates for case 4 (both TMH and APH).
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(a) T = 1.1 (b) T = 1.15

(c) T = 1.2 (d) T = 1.25

Figure 6.12: Case 4 (both TMH and APH) level plots, showing the probability of
(Nintra, Ninter) taking different values in a grid, at different temperatures.
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6.3 Aggregation of more than two polymers

So far we have been considering only two polymers in our system. Like we men-

tioned before, the TatA transport channel can adopt variable sizes during substrate

translocation, hence it is interesting as well as desirable to study properties of multi-

chain systems. As a straightforward extension to Section 6.2, we double the number

of polymers while keeping the concentration fixed and consider in this section the

aggregation of four identical polymer chains in membrane.

As can be imagined, we now have a system that is more complex than the

two-chain models, because we could have not just fully aggregated (tetramer) and

fully dispersed states, but also partially aggregated states in which only two or three

chains associate, as illustrated in Figure 6.13.

Figure 6.13: A schematic drawing showing possible aggregation states in a four-
chain system—1: tetramer; 2: dispersed; 3-5: partially aggregated. Here each circle
represents a polymer, and two polymers interact if they are connected by an edge.
In our analysis we do not differentiate between states 3–5, and simply refer to them
collectively as the partially aggregated state.

In this section, we again study different combinations of TatA secondary

structure. In particular, Cases 1–3 of Section 6.2 will be considered, while Case

4 is best studied when some more efficient trial move is used in place of, or in

conjunction with, pull moves (see discussion below). The MBAR-enhanced Monte

Carlo was again used and a MUCA simulation which sampled sufficiently frequently

all relevant energy regions was chosen for analysis. In Figure 6.14, we plot for all

three cases the heat capacity and the fraction of each state (tetramer, dispersed or

partially aggregated) across temperatures.

Notice first that a single peak is observed in heat capacity, suggesting that

the system is still a two-state system, even though partially aggregated state can

occur. The transition temperatures for Cases 1–3 are T = 1.355, T = 1.296 and

T = 1.638, respectively; this result is consistent with the conclusions we made on

the two-chain models in Section 6.2, namely, that the amphipathic helix (APH)
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(a) Case 1: no helices
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(b) Case 2: only TMH
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(c) Case 3: only APH

Figure 6.14: Heat capacity and fractions of aggregated (tetramer), dispersed and
partially aggregated states across temperatures. All three cases are shown—(a): no
helices, (b): only transmembrane helix and (c): only amphipathic helix.
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favours aggregation whereas the transmembrane helix (TMH) disfavours it, with

the amphipathic one being the stronger effect.

Conspicuous from Figure 6.14 is the lack of error bars. While 10 independent

MUCA runs were performed for each of the three cases, we found that for Case 2

(only TMH), not all runs sampled the entire energy space relatively frequently, and

so the statistics collected were insufficient to produce reliable data. The pull move

acceptance rate of the corresponding case of tetramer model shown in Appendix C

is indicative of that of the good runs; in fact, 3 out of the 10 runs have acceptance

rates 0.092, 0.116 and 0.125, while the rest range from 0.16 to 0.19. Excluding the

3 runs with the lowest acceptance rates, we plot the heat capacity of Case 2 with

error bars in Figure 6.15, along with the other two cases, i.e. no helices and only

APH, which used all 10 runs to produce the error bars.

It is also informative to compare energy trace of the run having the lowest

acceptance rate, with that of a good run that samples all energy range relatively

frequently, this is shown in Figure 6.16. We see that Run 1 appears to be trapped

indefinitely in tetramer state beyond n = 4 × 105, suggesting existence of kineti-

cally trapped entanglements. Entanglement of chains has been modelled in semi-

crystalline polyethylene in polymer simulations [21, 49], here our results appear to

indicate that it is less likely to be trapped in entanglements with an “amorphous”

transmembrane helix than with a preformed TMH. The reason for this might be due

to the following observation from the tetramer snapshots shown in Figure 6.17: In

Case 2 (Figure 6.17b), the TMH beads (red) maintain helical shape because of the

strong interaction encoded in the helices, the hydrophilic beads (blue) comprising

the loop and tail regions (Figure 6.3) form a compact configuration surrounded by

TMH, and it is possible that the tetramer be trapped in certain collection of con-

figurations and the only way to get out of it is by deforming one or several helices;

on the other hand, when there is no helical interaction, the TMH beads can move

more freely (Figure 6.17a), and the different arrangements of the TMH beads might

open pathways to escape from entanglements.

To find out quantitatively what contributes to the change in heat capacity,

we examine the fractions of various states as they vary with temperature; these

are shown in the right panels of Figure 6.14. It can be seen that the temperature

where both tetramer (red) and dispersed (green) states are equally populated, i.e.

where their fractions intersect, and the temperature where the fraction of partially

aggregated state is maximum, almost coincide with the transition temperature. The

values of the fractions at the transition temperature (Ttrans) were read-off and shown

in Table 6.2.
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Figure 6.15: Heat capacity for three cases with error bars. In plotting Figure 6.15b,
the three runs with the lowest acceptance rates were excluded. The half length of
the error bar equals one standard deviation.
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Figure 6.16: Energy versus Monte Carlo step for the run with the lowest acceptance
probability (Run 1), and a run with acceptance probability 0.184 (Run 6).

Ttrans fraction

tetramer dispersed par. aggre.

Case 1 1.355 0.375 0.331 0.294
Case 2 1.296 0.358 0.321 0.320
Case 3 1.638 0.298 0.240 0.462

Table 6.2: Fractions of tetramer, dispersed and partially aggregated states at the
transition temperature for the three cases.
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(a) no helices (b) with TMH

Figure 6.17: Tetramer snapshot for Case 1 (a) and Case 2 (b).

An interesting observation is that, when only the APH is present, there

are more partially aggregated population than either of tetramer and dispersed

populations at the transition temperature. On the other hand, when there are no

helices or only the TMH is present, the fraction of partially aggregated state (Fpaggre)

is no more than either the fraction of tetramer state (Faggre), or the fraction of

dispersed state (Fdisp).

Another observation from Table 6.2 is that if we compare across the three

cases, we see both Faggre and Fdisp decrease, and Fpaggre increases, from zero-helix

to TMH and to APH case. This implies that, at the transition temperature, the

population of partial aggregates increases when either helix is present, and that the

APH results in a larger increase. Similarly, both tetramer and dispersed population

decrease when either helix is present, and the APH results in a larger decrease.

Clearly, for each of the three cases, Faggre decreases and Fdisp increases when

T increases. However, Figure 6.14 also shows that the decrease in Faggre is the

sharpest in Case 1 among all three cases, suggesting that either helix tends to slow

down the transition. Furthermore, Fpaggre decreases when T is away from Ttrans,

and this decrease has a slower rate than the decrease of Faggre (Fdisp) as T increases

(decreases) from Ttrans.

Next, we show inter- and intra-polymer contacts as functions of temperature,

as we have done in the analysis of two-chain models. In Section 6.2, we decomposed

inter-polymer contact into tail-tail and tail-loop contributions, here in four-chain

case, we shall consider only the total number of inter-polymer contacts, defined as

the sum of contacts from all pairs of polymers. As shown in Figure 6.18, inter-

polymer contacts (Ninter) clearly dominate intra-polymer contacts (Nintra) for all
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T Ninter Nintra

Case 1 1 58.5 9.3
Case 2 1 55.8 9.5
Case 3 1.15 58.5 8.8

Table 6.3: Average values of inter- and intra-polymer contacts at the lowest tem-
perature in each case.

three cases, in contrast to what we observed in the two-chain models, where Ninter

was only marginally greater than Nintra. Table 6.3 shows estimated average values

of Ninter and Nintra at the lowest temperature in the respective case.

6.4 Discussion and future directions

Compared to the basic, illustrative model in Section 5.4.2, Chapter 5, the TatA

models considered in the chapter requires more Monte Carlo iterations, and hence

are more time-consuming. Also, the rejection rate increases from zero-helix (Case 1)

to one-helix (Cases 2 and 3), and from one-helix to two-helix (Case 4) (see Table C.1,

Appendix C). Given the extra complexity in these models, namely the helical struc-

ture, interface region and additional amphipathic type bead, we identify several

factors that are responsible for efficiency loss and for the added simulation burden.

First, we note that the simulated energy range, defined as the distance be-

tween the first and the last energy bin, was 83 for Case 1 in Section 6.2.1, and was

44 in the basic model in Section 5.4.2; hence, although both models did not consider

helices, the former would require much longer time for the MUCA simulation to con-

verge. The simulated energy ranges for Cases 2–4 were 90, 97 and 99, respectively,

so even longer simulations are needed.

Second, for the TatA models in this chapter, the length of each polymer

increased by 20 beads compared to the basic model, these added beads are mainly

the amphipathic type beads. Because the chains are longer, the number of accessible

configurations increases, and this increase can be substantial especially for the four-

chain models in Section 6.3. Computationally, the energy calculations are more

costly in the four-chain models, because in each iteration we need to compute three

more intra-polymer terms and five more inter-polymer terms, since in the four-chain

case there are six possible pair interactions compared to only one in the two-chain

case.

In addition, an important reason particularly relevant to helical cases is that

pull move is too “arbitrary”—it has no idea where the membrane, interfaces and
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(a) Case 1: no helices
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(b) Case 2: only TMH
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(c) Case 3: only APH

Figure 6.18: Inter-polymer (Ninter) and intra-polymer (Nintra) contacts as functions
of temperature. All three cases are shown—(a): no helices, (b): only transmembrane
helix and (c): only amphipathic helix.
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helical regions are. Because the strength of helical contacts was set to be high in

the force field, reflecting our intention to preserve the helix-like structure given the

simulated temperature range, proposal moves which displace beads comprising the

helix are likely to be rejected. Recall that a pull move starts by randomly choosing

a “pull bead” and pull the chain either upwards or downwards. In one-helix case,

pull move in one of the directions will encounter helix and the move is likely to be

rejected; and, on top of that, more beads are devoted to helix in two-helix case,

rendering a larger probability of the “pull bead” being one that makes up the helix.

Similar argument applies if transmembrane/amphipathic beads are pulled out of the

membrane/interface region, in which case a large energy penalty would be incurred.

Frequent rejections result in long correlation in the trajectory and, hence, large

statistical errors of property estimates.

6.4.1 Designing efficient move set — CBMC, HMC and FRESS

How could we improve upon the current situation? To study more complex and

realistic models, we need an efficient move set. As noted in the previous paragraph,

the problem with pull move is that it does not recognize the structure of the molecule

as well as the membrane/interface environment set by the force field, and leads to

lots of wasted moves. One way to deal with this problem, therefore, is to incorporate

a priori information from the force field into proposal moves, so most of the moves

will be devoted to interesting subset of the configuration space.

One method that comes into our mind is the configuration bias Monte Carlo

(CBMC) [57]. An interesting observation is that the CBMC approach, although de-

veloped in the context of polymer chain simulations, can be viewed as a Metropolized

independence sampler with the proposal generated through sequential importance

sampling (SIS) [39]. Here, the word “independence” does not mean independent

samples but comes from the use of a proposal function which does not depend on

the current state, i.e. T (x,y) = g(y). The generation of y is through a SIS strat-

egy and this step is key to CBMC—essentially, it preferentially reconstructs the

molecule and assigns a proper weight to it.

The Rosenbluth method [54] is a demonstration of SIS in one of the early

problems in polymer simulation: finding the mean squared extension of a polymer

of specified length in a self-avoiding random walk in lattice space. A naive solution

to this problem would be growing the polymer “uniformly”. In other words, if the

current length of the polymer is n beads, the (n+ 1)th bead is chosen uniformly at

one of the neighbors of n. If that position has already been occupied, the growing

process is restarted from the beginning; otherwise we continue until the desired
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length is reached. The procedure is repeated many times to obtain a collection of

samples to be used for averaging. Although correct, this naive approach is extremely

inefficient because even for a modest length polymer, the number of restarts can

be formidably large. One might consider avoiding previously visited positions by

only choosing empty neighbors of n in the above process, in fact, this is precisely

what Rosenbluth and Rosenbluth did, but in doing so, a weight needs to be assigned

to correct for the bias. In the end, one obtains not just a collection of samples but

their associated weights and weighted average should be used instead of the simple

average in the naive method.

Inspired by the Rosenbluth method, we may replace pull move by a SIS-based

move. We note that various adaptations of SIS have been proposed in different

fields [24, 40], in particular, variants of the Rosenbluth method have emerged, such

as the scanning method [46] and the Prune-Enriched Rosenbluth Method [25]. In

light of the current TatA model, we may also treat the helix segment as a block

and regenerate it in one update as opposed to one step at a time. The idea of using

strides of more than one step was suggested by [61].

Our discussion above suggests a way to solve the current problem by including

explicitly the information of the secondary structure of TatA in trial moves. While

this may be efficient for the current model, it cannot be easily generalized. So a

perhaps better option would be designing an adaptive proposal and letting it “learn”

from the underlying potential energy function. The CBMC method can be used in

this context by adding one bead at a time, with the new bead placed favouring

low energy positions. More precisely, suppose the current (partial) configuration

is xt = (x1, . . . , xt) and let its energy be Ut. To place bead t + 1, we look at all

available neighboring sites of xt that are not occupied and let j denote one of such

sites, then xt+1 is placed at j with probability proportional to exp(−(U jt+1−Ut)/T ),

where U jt+1 is the energy of the configuration with xt+1 placed at position j.

Although the CBMC approach can be applied to lattice polymer models,

having to regrow the polymer one residue at a time in each proposal step is still

quite demanding computationally, especially when the length of the polymer is large.

The method of hybrid Monte Carlo (HMC) [16] is similar in spirit to CMBC in that

it utilizes information from the potential energy function in each proposal step. In

HMC, one augments the configuration space with a fictitious momentum variable

p and evolves the current configuration by doing a molecular dynamics (MD) step,

such as the Verlet or the leapfrog algorithm. Under the HMC framework, we can

define Hamiltonians on the phase space:
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H(x,p) = U(x) +K(p)

and

H ′(x,p) = U ′(x) +K(p),

where U(x) is the potential energy of the system and K(p) is the kinetic energy.

The first Hamiltonian is used in the accept/reject step and the second one, in which

U ′(x) may be different from U(x), is used to evolve the current configuration. The

U ′ is often chosen to be similar to but easier to explore than the true potential

U , thereby allowing HMC to follow the dynamics of the potential. Since HMC is

designed for off-lattice models, it is not obvious how the framework may be adapted

to lattice space.

More recently, an appealing Monte Carlo scheme, termed fragment regrowth

via energy-guided sequential sampling (FRESS), was proposed [70]. It is originally

implemented to search for the globally lowest energy conformation in hydrophobic-

polar (HP) protein folding models and is therefore well-suited to lattice MC simu-

lations. FRESS resembles CBMC in that regrowing the chain is also involved, as

the name suggests. However, it differs from CBMC in two respects: 1) more often

an internal segment is regrown, instead of regrowing the chain all the way up to

the terminal residual each time; and 2) the segment to regrow has variable length.

These two features equip FRESS with the capability to both explore configurations

that are local and carry out more global moves, which allows the algorithm to jump

out of local energy basins.

6.4.2 Incorporation of efficient move set in MBAR-enhanced MC

In Section 6.4.1, some strategies are outlined in order to cope with the sampling

inefficiency we are experiencing in more complicated models. All of these strategies

are concerned with designing efficient and clever trial moves. There is no reason

why we cannot incorporate such move set into PT and MUCA trial moves in our

MBAR-enhanced Monte Carlo method shown in Chapter 5. We end our discussion

with a few comments about the generality of the method.

Although lattice models has been used in our work, the method can be used

in off-lattice models as well; in fact, the statistical model of the bivariate normal

mixture considered in Section 5.4.1 is an example. Also, note that in our method

MBAR plays an important role in linking the two-stage Monte Carlo computa-

tions, and while we used parallel tempering and multicanonical sampling methods,

other choices are available. For example, instead of running MUCA simulations
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and reweighting the data to obtain property estimates, we could use methods like

the Wang-Landau algorithm discussed in Section 2.5 to further refine the density of

states, using those estimates derived from MBAR as a guide.

We believe that, together with a suitably chosen move set, the MBAR-

enhanced Monte Carlo is a promising approach for the study of aggregation of

lattice proteins or even for more realistic models.
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Appendix A

Specifications of the force field

As stated in Section 1.2.2, three types of interactions were considered: Eintra, Einter

and Eim. We provide detailed expressions of the various terms.

We first introduce the following list of notations.

1. nk: the number of beads in polymer k.

2. xi: the coordinate of bead i in a polymer. It defines a point in 3-D space.

3. ci: the color of bead i in a polymer. When there is no interface, it is either

hydrophobic (H) or hydrophilic (P); when there is interface, it is one of H, P

or H2.

4. dij : the Euclidean distance between beads i and j.

5. εij : the strength of interaction between beads i and j, as a linear function of

dij ,

εij =


εmax(dij−dcut)

1−dcut , 1 ≤ dij < dcut

0, dij ≥ dcut

where dcut is the cut-off distance and εmax defines the maximum interaction

when dij = 1.

6. M : the membrane region, M = {(x, y, z) ∈ Z3 : 0 < z < hmemb}, where Z3

denotes set of all 3-D integer point and hmemb defines the height of membrane.

7. C: the lower (cytoplasmic) side of the interface.

C = {(x, y, z) ∈ Z3 : −hinter ≤ z ≤ 0}, where hinter is the height of interface.

8. P : the upper (periplasmic) side of the interface.

P = {(x, y, z) ∈ Z3 : hmemb ≤ z ≤ hmemb + hinter}
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9. W : the water region. When there is no interface, it is everywhere else of

M , i.e. W = M c, the complement of set M ; when there is interface, it is

everywhere else of M , C and P , i.e. W = (M ∪ C ∪ P )c.

10. δ: delta function. We define the following for membrane region and hydropho-

bic beads, the sets of notations {δWW, δW, δpp, δp}, {δCC, δPP, δC, δP, δh2-h2, δh2}
are defined similarly for water region and hydrophilic beads, and for interface

region and H2 beads, respectively.

δMM(i, j) =

1, if xi, xj ∈M

0, otherwise
δM(i) =

1, if xi ∈M

0, otherwise

δhh(i, j) =

1, if ci = cj = H

0, otherwise
δh(i) =

1, if ci = H

0, otherwise

It is understood and should be clear in the context that the delta functions

also depends on polymer index k, s, t.

11. Hb: set which defines hydrogen bond condition.

Hb = {(i, j) : j − i = 5, j%4 6= 0 or i%4 = 0, (j + 1)%4 = 0, j − i = 3}

where percent sign is the modulo operator. This requires the starting index

of a sequence of beads comprising helix being a multiple of 4. The associated

delta function for this set is denoted δhbond.

We are now ready to provide details of each individual terms in the potential:

Ekintra = −
∑
j−i≥3

δMM (δhh δhbond (f1 εhbond) + δpp εij) + (δCC + δPP) δh2-h2 δhbond(f0 εhbond)

+ δWW(δhh + δh-h2 + δh2-h2)εij ,

Ekim = −
nk∑
i=1

δM δh εhm + δW δp εpw + (δC + δP)δh2 εh2inf,

and

Es,tinter = −
ns∑
i=1

nt∑
j=1

δMM δpp εij + δWW (δhh + δh-h2 + δh2-h2)εij .

The summation in Ekintra is taken over all pairs of beads in polymer k that are

separated by at least 3 beads apart, which is the smallest number of beads required to
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Parameter Value

Chapter 3 & 5 Chapter 6

case 1 case 2 case 3 case 4
εhbond 0 0 4 4 4
f1 0 0 1 0 1
f0 0 0 0 1 1
εhm 4 4 4 4 4
εh2inf - 4 4 4 4
εpw 1.2 1.2 1.2 1.2 1.2
εmax 1 1 1 1 1
dcut 1.7 1.7 1.7 1.7 1.7
hmemb 6 5 5 5 5
hinter - 1 1 1 1

Table A.1: Parameters used in the lattice polymer model.

form a contact in a rectangular lattice. In Ekintra, εhbond sets the strength of helical

contact and f1, f0 are factors that control the strength of the transmembrane-

and the amphipathic-helix, respectively. The εhm, εpw and εh2inf in Ekim reflect,

respectively, the tendency of (1) a hydrophobic bead to stay in membrane, (2) a

hydrophilic bead to stay in water, and (3) an H2-bead to stay in either side of the

interface.

Table A.1 lists the parameter values used in the lattice polymer model.
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Appendix B

The PTDW simulation

For technical reasons [41], the following modifications were made in the weight

updating process:

1. If the Metropolis ratio is too small, then rejection does not cause the weight

to change.

2. A random multiplier with mean 1 is included in the weight updating scheme.

More precisely, the log weight process of a Q-type move in the PTDW sim-

ulation has the form:

logw(t+1) =


max{0, logw(t) + log r(t)}+ log v(t) if u ≤ min{1, w(t)r(t)}

logw(t) + log a+ log v(t) if rejected and r(t) ≥ ε

logw(t) if rejected and r(t) < ε,

where v ∼ Uniform(1− δ, 1 + δ) and a > 1. In the simulation we used δ = 0.4, a = 2

and ε = 10−10.

The histogram matrix of the PT simulation in Section 3.2.2 is listed in Ta-

ble B.1.

Table B.1: The full Hm×k matrix, including all observed energy values, of the PT
simulation in Section 3.2.2. Row labels (energy values) and column labels (temper-
atures) are typeset in bold. The entry Hkm is the observed count of samples in bin
m at temperature k, where a bin size of 0.5 is used.

0.3 0.48 0.85 1.3 2

-220.25 5135 751 9 0 0
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Table B.1— Continued from previous page.

0.3 0.48 0.85 1.3 2

-219.75 48013 11046 26 0 0

-219.25 75586 34289 48 0 0

-218.75 40165 32597 429 0 0

-218.25 17345 28783 638 2 0

-217.75 9165 27181 550 2 0

-217.25 3012 20646 456 1 0

-216.75 957 11846 487 3 0

-216.25 290 7793 646 2 0

-215.75 236 9648 638 4 0

-215.25 62 4412 537 1 0

-214.75 26 4979 1121 9 1

-214.25 5 1605 756 10 0

-213.75 1 1757 988 15 0

-213.25 1 857 797 14 0

-212.75 1 852 907 15 1

-212.25 0 360 515 7 3

-211.75 0 329 761 23 1

-211.25 0 94 435 21 1

-210.75 0 90 570 26 2

-210.25 0 40 498 31 2

-209.75 0 34 366 21 2

-209.25 0 4 239 22 1

-208.75 0 3 223 14 1

-208.25 0 0 202 29 1

-207.75 0 1 133 19 5

-207.25 0 0 102 14 9

-206.75 0 0 96 21 3

-206.25 0 0 135 34 7

-205.75 0 0 382 148 36

-205.25 0 0 547 242 67

-204.75 0 3 89888 44136 12870

-204.25 0 0 951 601 222

-203.75 0 0 47079 37483 15311

-203.25 0 0 820 712 332

-202.75 0 0 1709 1850 1003
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Table B.1— Continued from previous page.

0.3 0.48 0.85 1.3 2

-202.25 0 0 21920 29278 16650

-201.75 0 0 1496 2652 1949

-201.25 0 0 9132 19308 15615

-200.75 0 0 3059 7455 6582

-200.25 0 0 1670 5140 5503

-199.75 0 0 3801 13727 15799

-199.25 0 0 1069 5366 7461

-198.75 0 0 1186 6808 10461

-198.25 0 0 602 4462 7938

-197.75 0 0 497 4398 9286

-197.25 0 0 331 3162 7556

-196.75 0 0 158 2288 6284

-196.25 0 0 158 2772 8385

-195.75 0 0 78 1419 5337

-195.25 0 0 71 1746 7162

-194.75 0 0 27 855 4182

-194.25 0 0 25 943 5348

-193.75 0 0 14 637 4041

-193.25 0 0 12 565 4303

-192.75 0 0 4 352 2872

-192.25 0 0 1 322 2896

-191.75 0 0 2 233 2407

-191.25 0 0 1 161 2193

-190.75 0 0 2 105 1492

-190.25 0 0 0 96 1714

-189.75 0 0 0 60 1089

-189.25 0 0 0 47 1181

-188.75 0 0 0 31 691

-188.25 0 0 0 27 804

-187.75 0 0 0 13 535

-187.25 0 0 0 15 589

-186.75 0 0 0 4 293

-186.25 0 0 0 9 387

-185.75 0 0 0 5 190

-185.25 0 0 0 2 222
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Table B.1— Continued from previous page.

0.3 0.48 0.85 1.3 2

-184.75 0 0 0 3 127

-184.25 0 0 0 2 149

-183.75 0 0 0 0 100

-183.25 0 0 0 0 91

-182.75 0 0 0 0 58

-182.25 0 0 0 0 44

-181.75 0 0 0 0 38

-181.25 0 0 0 0 37

-180.75 0 0 0 0 6

-180.25 0 0 0 0 15

-179.75 0 0 0 0 8

-179.25 0 0 0 0 9

-178.75 0 0 0 0 9

-178.25 0 0 0 0 5

-177.75 0 0 0 0 3

-177.25 0 0 0 0 3

-176.75 0 0 0 0 3

-176.25 0 0 0 0 4

-175.75 0 0 0 0 2

-175.25 0 0 0 0 2

-174.75 0 0 0 0 1

-174.25 0 0 0 0 0

-173.75 0 0 0 0 1

-173.25 0 0 0 0 1

-172.75 0 0 0 0 2

-172.25 0 0 0 0 1

-171.75 0 0 0 0 0

-171.25 0 0 0 0 0

-170.75 0 0 0 0 0

-170.25 0 0 0 0 0

-169.75 0 0 0 0 0

-169.25 0 0 0 0 0

-168.75 0 0 0 0 0

-168.25 0 0 0 0 1

-167.75 0 0 0 0 0
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Table B.1— Continued from previous page.

0.3 0.48 0.85 1.3 2

-167.25 0 0 0 0 1

-166.75 0 0 0 0 0

-166.25 0 0 0 0 1
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Appendix C

Additional simulation

infomation

The statistical example in Section 5.4.1, Chapter 5 used as the proposal distribution

the bivariate normal distribution centered at the current configuration and with

the identity covariance matrix. The same covariance matrix was used in proposal

distributions across all temperature levels, and so no optimizations have been made.

The PT sampler was run for 3 × 104 iterations and data were collected after an

equilibration period of 104 iterations. The timeseries module of pymbar [56] was

used to calculate the statistical inefficiency of the correlated PT trajectory; this was

also used, where necessary, in Section 5.4.2. The bin width ∆U = 0.1 was used in

the statistical example; and each of the 10 independent MUCA runs used the same

number of iterations and equilibration time as the original PT simulation.

The chain sequence used in Chapter 6 was (P )12(H2)16(P )8(H)16(H2)2,

where the notation (X)n means that bead type X is repeated n times. More details

of the simulations done in this chapter are listed in Table C.1 on page 101. The ma-

jority of simulations were conducted on the Cluster of Workstations in the Centre for

Scientific Computing, University of Warwick, and some simulations in Section 6.3

were run in Apocrita, a cluster hosted at the Queen Mary University of London.
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case temperature ladder box size PT iters (per tem-
perature)

MUCA iters pull move accep-
tance in MUCA

approx CPU time
per 107 iters
(PT/MUCA)

Two-chain

1 0.8 1 1.2 1.5

90

3× 107 7× 107 0.31

7h/1h
2 0.8 1 1.2 1.4 3× 107 1.9× 108 0.20
3 0.9 1.1 1.35 1.6 3× 107 1.9× 108 0.21
4 1.1 1.25 1.4 1.6 5× 107 3.7× 108 0.09

Four-chain
1 1 1.15 1.3 1.5

114
3× 107 1.9× 108 0.28

9h/2h2 1 1.1 1.25 1.4 5× 107 2.5× 108 0.18
3 1.15 1.3 1.55 1.8 5× 107 2.5× 108 0.20

Table C.1: Additional information for simulations in Chapter 6: temperature ladder, the size of the cubic simulation box with
periodic boundary condition, number of parallel tempering iterations per temperature, number of multicanonical iterations, pull
move acceptance rate in MUCA simulations, and approximate CPU time for 107 iterations in PT/MUCA. Here, an iteration
refers to one Monte Carlo step, as in Algorithm 2, page 15. The number of attempted pull moves is 70 per 100 iterations, the
remianing 30 is the number of translation move attempts.
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[9] Thomas Brüser and Carsten Sanders. “An alternative model of the twin argi-

nine translocation system”. In: Microbiol. Res. 158.1 (2003), pp. 7–17.

[10] Troy Cellmer et al. “Thermodynamics of folding and association of lattice-

model proteins”. In: J. Chem. Phys. 122.17 (2005).

[11] Hue Sun Chan and Ken A Dill. “The protein folding problem”. In: Physics

today 46.2 (1993), pp. 24–32.

[12] John D Chodera et al. “Use of the weighted histogram analysis method for

the analysis of simulated and parallel tempering simulations”. In: J. Chem.

Theory Comput. 3.1 (2007), pp. 26–41.

103



[13] Anthony Christopher Davison and David Victor Hinkley. Bootstrap Methods

and Their Application. Cambridge: Cambridge University Press, 1997.

[14] Christopher M Dobson. “Protein folding and misfolding”. In: Nature 426.6968

(2003), pp. 884–890.
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