University of York

This is a repository copy of Ball Computer or How I learned to stop worrying and love computing with wireless 3D grids.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/98605/

Conference or Workshop Item:

Kamali Sarvestani, Amir Mansoor, Crispin-Bailey, Christopher orcid.org/0000-0003-06139698 and Austin, James orcid.org/0000-0001-5762-8614 (2012) Ball Computer or How I learned to stop worrying and love computing with wireless 3D grids. In: Building Bridges to Brains Workshop, 01 Nov 2012.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Advanced Computer Architecture

Introduction

In this project we are investigating if wireless devices can replace wireline networks to serve as a connection network for a massively parallel computer. The radio devices are getting faster, cheaper and smaller. They are even buit drop in their power consumption, radio devices still consume more energy compared to wire connections. The data rates of wireless devices are still lower than their wired counterparts; although this gap is much narrower than past decade.
By using wireless devices a significant reduction of system complexity and cost
is anticipated due to elimination of wirinus. High flexibility and sand is anticipated due to elimination of wirings. High flexibility and scalability are also among the benefits of such a system. The lower bandwidth for data links
and higher power consumption are still big challenges which may limit the wide usage of such a scheme. In this project we want to find a more precise picture of the benefits and restrictions of a 3D wireless massively parallel machine. A novel concept machine called the Ball Computer is presented which is basically a multi-channel 3 D wireless grid which serves as a connection mplemented only in a simulation environment. A novel method to share the available radio bandwidth is invented. To test the performance of the system a couple of task models are built which are simulated traficic load generaiors implemented.
Wireline vs. Wireless
Wireless still has some big problems. Among the biggest: bandwidth and energy consumption.
Bandwidth
The gap between wireline and wireless technologies is narrowing

. A survey on on-chip data
shows a sharp increase:

Figure 2: On-chip shoot rans
Energy Consumption Wirelines need as low energy per bit as 1 pJ/bit while the same number for wireless transfer over 10 mm is at least in the range of 10 s. of pJ/bitit But the
figures (e.g. figure 3) show the energy per bit is falling for wireless figures (e.g.
transactions.

Figure 3: A ver rough Power Delivery

There are still big challenges on this field and an effective technology is yet
to be found. to be found.
Wireless solutions:
a) Capacitive coup
very short ranges in nanometre scale. b) Inductive coupling: Is capabte of transfer power to longer distances but both methods do not have high enough performance.
c) Radio waves.
Optic connections catal

Optic connections can also be a solution.

"Ball Computer"

 Or
How I Learned to Stop Worrying and Love Computing with 3D Wireless Grids

Amir Mansoor Kamali, Richard Hind, Christopher Crispin-Bailey, Jim Austin nsoor Kamali, Richard Hind, Christopher Crispin-Bailey, Jim
\{amir, rhind, chrisb\}@cs.york.ac.uk, jim.austin@york.ac.uk

A combination of RF for longer distances and optical links for shorter distances seems to be a good choice for an efficient power delivery.
Area
Area
Over recent decade the size of on-chip transceivers is sharply fis anticipated to keep falling over coming years.

$$
=\frac{\infty}{m}
$$

Figure 4: Today on-chip radios can send datat on tatserer rates and over Ion
Most researches are on implementing 60 GHz radios on silicon testing higher bands including 120 GHz . This can increase the data rate and started th lesting higher bands including 120 GHz . This can increase the data rate and at the
same time decrease the size of the devices as the size of on-chip antennas can be smaller.

Simplicity, Cost and Scalability
A wireless network
A wireless network does not need wiring costs. The complexity of the system is
A wireless network is highly scalable. In contrast, in a wired network there is a
limited capacity in adding new nodes to a shared bus. Using switches sier to let the baddwidith stay unaffected by new now. Using switches makes it switch capacity is still there. switch capacity is still there.
In a wireless scheme nodes
In a wireless scheme nodes can easily join the network just by tuning to a proper
frequency channel. There will be no worries on the shortage of neither bandwidtl nor I/O links.
Ball Computer Architecture
We propose a 3 D wireless network of processing elements that can perform as a
massively paralle computer. The machine is informally called the Ball Computer. Nodes are in their most compact form. Each node has up to 6 neighbours in a 2 D plain and 12 neighbours in a 3D grid
figure 6 shows the position of a node between its neighbours in both 2 D and 3D
networks.
networks.
 cm in diameter). Each node has a processor and a set of radio trassceivers At the current design the number of transceivers is 8 . The radios can be tuned to important to assign the channels that in order to have no packet collision it is That algorithm dictates that for a a 3 D grid of any size each node needs 8 radio links shared with its neighbours. Moreover, any increase in the size of the network links shared with its neighbours. Moreover,
does not affect the total number of channels.

Network Partitioning

Figure 7 shows how a node in a 3 D grid of a ball computer interacts with its
neighbours. The central node has eight radio links each of which is shared with eighours. Th.
Each pyramid-shape subset of the network is called a zone. This is the Each pyramid-shape subset of the network is outcome of a novel network partitioning algorithm. channels to each radio.
The algorithm is trying to satisfy the following criteria:
a) To eliminate packet collision:
a) To eliminate packet collision;
b) To maximise the connectivity
c) To provide redundant links betweeen nodes;
d) To keep the number of channels as low as possible

Network partitioning has been investigated mobile phone network design as ur network internet access networks.
Zoning

The network is partitioned into overlapoing subsets (zones) Inside a zone nodes can hear from others and no packet collision can happen.

figures 10 and 11 a 2 D multi-channel wireless grid is compared with its ireline equivalent.

hannel Assignmen
hannel assignment can be compared with map colouring problem. In channet assignment a zone not only cannot share its colour with that of its neighbours
but also it cannot share its colour with that of the neighbours of its neighbours.

e number of colours creases. For a network of any size the total number of channels is 86 . Task Modelling
Task models are artificial traffic load generators which mimic a certain task or class of tasks without dealing with task-specific details to get rid of unimportan details of real-world tasks. Two main task models were studied in this project: a) A task model which makes least possible dependencies between tasks o b) A task model inspired (but not restricted to) FFT algorithm which makes vast and tightly connected network of tasks. The finish time of nodes are directly dependent on their neighbours.

Simulation Results

The network partitioning algorithm produced perfect results and led to complete elimination of packet collision. Table 1 lists how many times packet collision occurs in a a Dimulated network when 1,2 and 6 distinct frequencies are used for each node.

The effect of using multiple channels is studied. The task time and the overal performance of the paralel machine are tested. The results can be seen in figures 13 and 14. The number of nodes was 800 in this test.
 The performance of an FFT task model is shown in figure 14. The performance
is measured over different data sizes and different intervals between data packets. It can be seen that for larger data sizes the ball computer perform much better.

 performance of the network
 The performance of the simulated network can be studied by measuring a
number of trafic and computation factors. As an example, figure 17 shows that number of traficic and computation factors. As an example, figure 17 shows a
there are a few nodes which are suffering from congestion of their I/O queues Architects and software designers can use these datat to fine-tune the network
parameters or develop more efficient programs for this topolog.

