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Trade-offs of EEG data reduction on

Introduction

Electroencephalogram (EEG) has been proved as a noninvasive and reliable way for collecting a per-
son’s brain wave data which can be used in numerous areas such as epilepsy diagnosis [1], brain-
computer interface (BCI), etc.
B - Wearable EEG recorder has drawn a lot of attention in recent years
since it saves much more time and money for researchers com-
paring to traditional data collecting equipment. A wearable EEG
recorder can be as small as a 10p coin (Figure 1) so that the ob-

ject of recording will not even notice it. Such device is preferable
to be able to transmit the data via wireless transceiver to
achieve the real-time monitoring and data analysis. However,
wireless transmission apparently shortens device’s running time
because of the extra power consumed by the transceiver. The
most obvious way to extend running time is to compress the

%
Figure 1. A wearable EEG recorder with a - R
4-channel input designed by Advanced EEG data before transmission, and with less data to be trans-
Computer Architecture Group in Univer-  mitted, the overall power consumption will be largely reduced
sity of York (Figure 3).

Meanwhile, adding on a data compressor to the device also in-
creases the complexity of the system, and compression unit it-
self is one of the contributors to recorder’s power consumption,
so exploring a best set of trade-offs between compression ratio
(CR) and the power consumption of compressing the data will
be helpful to solve all these problems, and that is the purpose of
doing this research.

Figure 2. Current solution of reading in
the EEG data, a docking station.
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Figure 3. A simplified architecture of wearable EEG recorder

Experiments

Several compression method candidates have been simulated so far including most well-known lossless
Huffman coding [2], a lossy encoding technique called Discrete Wavelet Transform (DWT) [3], as well as a
lossless log2 sub-band algorithm we designed which will be introduced in detail below.

Currently, EEG signals are usually quantized to no more than 16 bits in most experiments, and take this
resolution as an example, in log2 sub-band algorithm scheme, we first compare the first 4 bits from 16
bits of the current sample with the same part in previous sample, and if they are identical, next 4 bits will
be further compared, and the transceiver only transmits the bits that are different from previous sample.
A flag of 2 bits is introduced to indicate how many nibbles are transmitted in a sample (Figure 4), which
can be used to decompress the data.

The dataset used for simulation come from an EEG experiment taken in University Hospital of Bonn [4],
and the sampling rate of data is 173.61 Hz, and are quantized into 10 bits for the simulation.

[ 16 bits ]

Figure 4. ‘00’ indicates that 4 nibbles of this sample are transmit-
ted, ‘01’ indicates 3, ‘10’ indicates 2, and ‘11’ indicates 1 nibble.

Results

The CR is defined as
size of compressed data

CR=

The data set for testing the Huffman coding is divided into 2 subsets, and each contains 10 files with 4096
data samples in every file. One subset is used to generate the Huffman tree (dictionary) so that the other
subset can be encoded based on the previous dictionary. The result of log2 sub-band algorithm will also

size of original data

shown in the Figure 5.

According to [5], the DC-bias of EEG signal degrades the inter-channel decorrelation performance, and it
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Figure 5. Compression Ratio of presented techniques

can be simply removed by using the differential
pulse-code modulation (DPCM) which calculates .

the difference between adjacent samples. The ) D ——
performance of Huffman coding and log2 sub- . J P I

band algorithm are both increased after applying g = = = = = = - -
DPCM (Figure 5). wl ]
As for DWT, it expresses a signal as a weighted A H o = — = = = L,

sum of basis functions, and these basis are de-

) : ; Figure 6. Reconstructed with Harr, and from top to bottom
rived from dilated and translated versions of a are original signal, reconstructed signal and differentials

function which is called mother wavelet [6]. So the

original signal can be defined with coefficients of o .

the set of basis functions, and this process causes =

some loss of the original signals, but as long as a - . N T - - N
optimal mother wavelet is chosen, the discrepan- : 1
cies between original and reconstructed signals 0 - - R - = =
are still acceptable. One file with 4096 data sam- !

ples is used for simulation, and the mother wave- ’MMME\MMWM

let applied are Haar (Figure 6), Daubechies 10
(Figure 7), and Coiflet (Figure 8) [3]. The recon-
structed signal is recovered with 50 percent coeffi- . )
cients of original signal, so the CR is 0.5 in this ﬂﬁ » ) " A ‘ Y \ q

case, and as they are shown in the figures, using

Haar as mother wavelet gives worst reconstruc-
tion quality, and the results of using Daubechies
10 and Coiflet are close.

Figure 8. Reconstructed with Coiflet
Conclusions
For a simplified wearable EEG recorder, which is only consisted with amplifiers, ADCs, and the transceiv-

er, and power consumption of DSPs and the processor are neglected, the overall power consumption of
the recorder can be given as

Poys = Pamp + Papc + Peomp + CR * Py

Where Fima and £o¢ are the power consumption of amplifiers and ADCs, and P and Feoms are the
power consumption of transceiver and doing data compression. Then the power reduction is
(1—CR) = Pr,
By implementing a popular off-the-shelf GFSK transceiver nRF24L01 [7](TX power consumption is 23 mW),
the power saving for using Huffman coding is at least 5.5mW, 11.5mW for using DWT, and 3.45mW for
using log2 sub-band algorithm. As a result, these are power budgets for future hardware implementation
of data compression techniques, and any technique requires lower power than its saving is considered as
a proper method which leads to a longer working time of wearable EEG recorder. Furthermore, possible
data compression techniques may also applicable to other biomedical data recorders as these signals
have many similarities.
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