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Abstract

Single particle tracking (SPT) trajectories are fundamentally stochastic, which
makes the extraction of robust biological conclusions difficult. This is especially the case
when trying to detect heterogeneous movement of molecules in the plasma membrane.
This heterogeneity could be due to a number of biophysical processes such as: receptor
clustering, traversing lipid microdomains or cytoskeletal barriers.

Working in a Bayesian framework, we developed multiple hidden Markov models
for heterogeneity, such as confinement in a harmonic potential well, switching between
diffusion coefficients, and diffusion in a fenced environment (or “hop” diffusion). We
implement these models using a Markov chain Monte Carlo (MCMC) methodology,
developing algorithms that infer model parameters and hidden states from single trajec-
tories. We also calculate model selection statistics, to determine the most likely model
given the trajectory.

For LFA-1 receptors diffusing on T cells we show that 12-26% of trajectories dis-
play clear switching between diffusive states, depending on treatment. We also demon-
strated that allowing for measurement noise is essential, as otherwise false detection of
heterogeneity may be observed. Analysis of the motion of GM1 lipids bound to the
cholera toxin B subunit (CTxB) in model membranes confirmed transient confinement.
On this dataset we also demonstrated a clear signature in the confinement shape for
individual tagging molecules, and showed that confinement events are not exponentially
distributed. Finally, we developed an algorithm which detects hopping diffusion, vali-
dating on simulated data.

Rather than methods which rely on generic properties of Brownian motions,
our approach allows us to test which biophysical model best fits a trajectory. Using a
model-based approach we can also extract biophysical parameters, segment trajectories
into different motion states, and hence analyse particle motion in high detail. With the
continuing improvement in spatial and temporal resolution of trajectories, these methods
will be important for biological interpretation of SPT experiments.
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Chapter 1

Introduction

1.1 Background

Cell membranes are vitally important for cell function, providing the link between the

cytoplasmic and extracellular environments. They are the site of many fundamental bio-

chemical processes such as signalling, trafficking and cell adhesion. In order to facilitate

these processes cells tightly regulate membrane structure, but many of the exact mech-

anisms remain unknown. It follows that to gain understanding of membrane function,

it is necessary to understand membrane structure.

The fluid mosaic structure of the plasma membrane was proposed by Singer and

Nicolson in 1972 [1], who argued that the membrane is composed of a two-dimensional

phospholipid bilayer which is fluid and dynamic. Within this bilayer multiple integral

proteins, which may form aggregates, are abundantly distributed, hence “mosaic” (Fig.

1.1, left panel). Whilst this view of membranes remains broadly accepted, there have

been multiple refinements to the model, in particular it is clear that the lateral diffusion

of proteins and lipids is not uniform [2, 3, 4].

Diffusion of membrane components has been extensively studied by population

level experiments, such as fluorescence recovery after photobleaching (FRAP) and flu-

orescence loss in photobleaching (FLIP) [5]. These methods by definition average over

any heterogeneity within the population. Other membrane techniques are highly invasive

(such as detergent extraction), or focus on artificial membranes. The advent of single

molecule techniques addresses many of the shortcomings of these approaches - there is

no need to average over particle populations, and minimally invasive experiments are

possible. For instance, methods such as single particle tracking (SPT) and fluorescence

correlation spectroscopy (FCS), have allowed direct characterisation of the motion of

1



single molecules in live cell membranes [6, 7].

However, moving from populations to single molecules brings new challenges.

Experimental measurements are no longer ensemble averaged, but rather a single real-

isation of a stochastic system. Thus, in order to draw robust conclusions from single

molecule data, robust statistics are necessary. This thesis focuses on the analysis of SPT

trajectories, for which there are a number of existing methods. Many of these, such as

those based on mean square displacements (MSD), are time-averaged in order to increase

statistical power. This is an attractive approach in many situations, such as calculat-

ing biophysical parameters in experiments with lots of short trajectories; yet with the

increasing availability of very long trajectories at high spatial and temporal resolution,

methods which can extract finer details from data (such as switches between different

motion modalities) are possible. An attractive proposition is a model based approach,

which allows parameterisation of an underlying mechanistic model. This brings an in-

crease in statistical power, allowing the extraction of more information from SPT data

and hence increasing biophysical knowledge. This powerful approach has been success-

fully demonstrated using Hidden Markov models (HMMs), where heterogeneity within

a trajectory is modelled as a hidden state variable [8, 9, 10, 11, 12].

Figure 1.1: Schematic diagram of plasma membrane structures. Left panel:
plasma membrane showing phospholipid bilayer (blue), cholesterol (red), transmem-
brane proteins (yellow), underlying actin cytoskeleton (brown), sphingolipids (green),
and other glycolipids (purple). Right panel: Lipid microdomains or “rafts”. Repro-
duced with permission from [13].

2



1.2 Membrane structure and heterogenous diffusion

The plasma membrane essentially consists of a hierarchical structure on the 2-300nm

scale [4, 14]. This causes a wide variety of membrane molecules to undergo heterogeneous

motion, which is observable in single molecule experiments [15, 16]. Depending on

specific membrane organisation, this heterogeneous motion may take many forms. We

now explore some examples of membrane structures, and their effect on the diffusion of

single molecules.

1.2.1 Lipid microdomains

There are hundreds of types of lipids residing in the cell membrane, which suggests that

each one may play a role in membrane function, structure and dynamics [4]. For ex-

ample, lipid organisation could directly affect protein organisation through hydrophobic

match sorting [17, 18]. Lipid microdomains (or “rafts”) are one proposed structure for

membrane organisation (Fig. 1.1, right panel). These are functional nanoscale assem-

blies of sphingolipids, cholesterol and proteins, and have been implicated in signalling

and trafficking [19, 20, 21]. However their specific nature, including size, exact com-

position and lifetime are not known [18], with size estimates varying across techniques

[22]. The existence of self-organising “rafts” is controversial, being in part based on the

separation of saturated and unsaturated lipids into liquid-ordered and liquid-disordered

phases in artificial membranes [23]. The applicability of this observation to live cell mem-

branes is not clear, one reason being that lipids diffuse a factor of 5-100 times faster in

model membranes than cell membranes [24]. Cell membranes also contain much higher

protein density [25]. Other evidence for phase separation comes from highly invasive

experiments, such as the extraction of detergent resistant membrane sections [26].

Cholesterol mediated trapping of sphingolipids on scales less than 20nm has been

directly observed [27, 28], yet there have been alternative explanations proposed for

the heterogeneous distribution of these molecules, such as membrane topography [29]

or specific protein-lipid interactions [30]. Non-invasive techniques, such as SPT, will

continue to be important in order to resolve these questions about lipid microdomains.

1.2.2 Receptor clustering

Receptor proteins are mobile in cell membranes [31], and generally exist in large clusters

[32, 33]. This can lead to heterogeneous motion, since the radius of a cluster affects the

rate of diffusion [34]. This clustering is implicated in cellular recognition, signalling [35],
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cell adhesion [36, 37] and chemotaxis [38]. For example, the formation of large signalling

rafts may cause signal amplification through sharing of downstream elements.

1.2.3 Membrane compartmentalisation

Direct observation has shown that some membrane molecules demonstrate so-called com-

partmentalised or hopping diffusion: short term confinement within a domain, and occa-

sional moves (or hops) between adjacent compartments [39, 24, 40]. Clearly the diffusion

of large transmembrane proteins could be hindered by the cytoskeleton, which resides

on the cytoplasmic side of the membrane and builds up a meshwork-like or compart-

mentalised network immediately beneath the plasma membrane [41]. However, more

surprisingly, hop diffusion of lipid molecules in the outer leaflet has also been observed

[42, 24, 43]. An explanation for both observations is provided by the fences and pickets

model, where diffusing molecules are trapped inside 40-300nm diameter compartments

by the actin cytoskeleton “fence” or cytoskeletal anchored protein “pickets” [3, 14], Fig.

1.2. Molecules can occasionally hop between compartments, perhaps through a gap in

the “fence” caused by brief separation of the cytoskeleton from the lower leaflet of the

bilayer.

Compartmentalisation is not independent of other membrane mechanisms. For

example an actin meshwork can induce lipid phase separation in model membranes [44],

and there are also interactions between the cytoskeleton and signalling domains [45, 46].
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Figure 1.2: Top-down view of the “fences and pickets” plasma membrane
model. Compartmentalised (or “hop”) diffusion is caused by membrane cytoskeleton
“fences” and anchored protein “pickets”. Adapted from [14].

1.2.4 Role of membrane structure

There are many reasons why cells laterally organise membrane components; in short,

membrane complexity allows for high level function and regulation. One example is the

enrichment of specific molecules in cell membrane regions such as the neuronal [31, 47]

and immunological [48] synapses. Receptor motility has evolved in order to faithfully

and efficiently communicate noisy external signals [49], and compartmentalisation may

align these with intracellular signalling complexes [24]. Lateral organisation may also

increase the probability of reactions between less abundant molecules [13].

1.3 Single particle tracking

Single particle tracking is a powerful technique for investigating the organisation of cell

membranes, through direct observation of the motion of membrane components. In

an SPT experiment the molecule of interest has an observable tag attached, allowing

tracking of the tag’s two-dimensional position over a number of time steps. The tag is

usually imaged optically with a camera or point detectors [15], although a scattering

microscopy approach has been demonstrated [50, 51].
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Possible tags include a gold nanoparticle (typical diameter 20-40nm) [50, 51, 39],

a quantum dot (10nm) [52, 53, 54, 42, 55], a latex bead (40-1000nm) [56, 57, 58], or

a single fluorescent molecule [27]. Gold nanoparticle, quantum dot, and latex bead

experiments can image the particle at high temporal resolution over a long period, yet

the tags are large relative to the molecules they label. There are concerns about how

this affects the tag-target complex - it has been shown that nanoparticle size can affect

the value of diffusion coefficients [58]. Tagging with single fluorescent molecules, such as

fluorophores or fluorescent lipid analogues, is an attractive alternative, but trajectories

are much shorter due to photobleaching. Quantum dots are often cited as the ideal

compromise due to their small size compared to other tagging molecules, yet they are

still larger than a single fluorescent molecule. They are also susceptible to temporary

loss of fluorescence or “blinking”, although this may be avoidable in the future [59].

1.4 Analysis of single particle tracking data

Whilst SPT can directly observe the motion of membrane molecules, this motion is

stochastic; hence an SPT trajectory only provides a single realisation of the system.

Thus, directly drawing conclusions from SPT data is not always possible - consideration

of the stochasticity of the data is necessary. In other words, statistical methods are

required to detect true heterogeneity and avoid overinterpretation of Brownian motion.

We define a single particle tracking trajectory X. Let Xi, where Xi = (X1i, X2i)

is two dimensional, be the measured particle positions in an experimental SPT trajectory

(or equivalently a simulated trajectory) and ti be the times of these measurements. In

other words, we have a time series of the 2D position of the particle. For analysis we

consider the displacements

X = {∆Xi,∆ti}Ni=1 (1.1)

where ∆Xi = Xi+1 −Xi and ∆ti = ti+1 − ti.

1.4.1 Mean squared displacement analysis

A useful approach to analysing SPT trajectories is to utilise the squared displacements.

Let ∆Xi,n = Xi+n −Xi and ∆ti,n = ti+n − ti be displacements and time steps of length

n from start point i. We also assume that all time steps are equal, and hence denote

∆tn = ∆t1,n. The mean squared displacement (MSD) function is an estimator of the
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theoretical MSD value, given by

MSD(∆tn) =
1

N − n

N−n∑
i=1

∆X2
i,n (1.2)

where ∆X2
i,n = (X1i+n−X1i)

2 +(X2i+n−X2i)
2 is the squared Euclidean distance. Thus,

the MSD time averages over the trajectory length in order to improve the estimate of

the average squared displacement. For an unconfined Brownian motion with diffusion

coefficient D, the theoretical value of the MSD is linear as a function of time [60, 61]

MSD(∆tn) = 4D∆tn. (1.3)

The localisation accuracy, σ2, is defined as the variance of an independent additive

measurement error. If this is non-zero then there is a shift in the MSD function [62]

MSD(∆tn) = 4D∆tn + 4σ2. (1.4)

Given an SPT trajectory and assuming an unconfined diffusion model, a straight line can

be fitted to the MSD function. The linear fit is then analysed for interpretable features

such as the linear gradient (diffusion coefficient, D) and intercept (localisation accuracy,

σ2).

Number of timepoints to include in MSD calculation

For the first timestep the MSD function is an average of N − 1 measurements, for the

second timestep N−2 measurements, and so on. Thus, the standard error of MSD(∆tn)

increases with increasing ∆tn. For this reason, only a proportion of the MSD function

is used for the linear fit, but determining this proportion is subjective.

Michalet and Berglund provided a theoretical framework for determining the

optimum number of points of the MSD function to include when estimatingD [62, 63, 64].

For example, if the optimum number of MSD points is two, then the optimal D estimate

comes from a linear fit to the first two MSD points. Failure to use the optimum number

of MSD points can lead to D estimates which are incorrect by many orders of magnitude

[62, 63].
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MSD for anomalous diffusion

The MSD analysis techniques introduced thus far have assumed that the particle is freely

diffusing. However, as noted earlier, many membrane components do not freely diffuse.

Thus, techniques that detect deviations from Brownian motion have been developed.

For anomalous diffusion the MSD has the form [65]

MSD(∆tn) = 4D∆tαn + 4σ2. (1.5)

The anomalous exponent can be estimated from the experimentally measured MSD

function [66, 67, 68], with a negative deflection (α < 1) suggesting movement in a

confined environment, and a positive deflection (α > 1) suggesting directed motion.

There are a number of possible physical models which reproduce anomalous diffusion,

including fractional Brownian motion and continuous-time random walks [69, 70], but

the parameter α has no direct physical meaning [42].

Fitting models to the MSD function

For a number of anomalous diffusion models, an analytical form of the MSD function

has been derived [71, 72]. For example, the MSD function for diffusion confined to a

circle of radius R is [73]

MSD(∆tn) = R2

[
1− exp

(
−4D∆tn

R2

)]
+ 4σ2. (1.6)

By comparing an experimentally measured MSD function to a theoretical curve, the

model which best explains the observed trajectory’s displacements can be ascertained.

Clearly a statistical approach is required, since MSD functions are noisy, and generally

only a small fraction of the trajectory can be used. A few approaches have been demon-

strated, such as using an F-test [42] or a Bayesian approach [74] to determine which

diffusion model best describes the experimental MSD function.

1.4.2 Single trajectory analysis

Time averaged methods are advantageous if the dataset contains many short trajecto-

ries, as more information can be extracted by pooling all trajectories. However, this

approach averages over any heterogeneity within trajectories. If trajectories are long

enough then transient, within trajectory heterogeneity can potentially be detected. Ra-

jani et al. formalised this distinction by defining micro-heterogeneity (anomalies within a
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single trajectory) and macro-heterogeneity (anomalies across multiple trajectories) [75].

Micro-heterogeneity may be caused by transient switching between motion models. For

example, there are methods which detect changes in the diffusion coefficient within a sin-

gle trajectory, either with [76], or without [77], time averaging. There are other methods

which are capable of detecting other diffusion modes, such as directed motion. One ap-

proach utilises additional information such as MSD curvature and trajectory asymmetry

[78], whilst another uses supervised support vector classification [79].

Confinement

Many methods for single trajectory analysis focus on detecting periods of confinement,

since within this approach a number of mechanistic models are detectable. These in-

clude: changes in the diffusion coefficient (a lower diffusion coefficient causing apparent

confinement), confinement due to impermeable barriers, or stationarity.

Saxton derived the form of the probability that a diffusing particle will remain in

a circle of radius R for time ∆tn [80]. If Ψ is this probability, the exact relationship is

log Ψ = 0.2048− 2.5117
D∆tn
R2

(1.7)

if D∆tn
R > 0.1 holds. A threshold α is set (by comparison with Brownian motion, such

that false detection of confinement is minimised) and if Ψ < α, then the particle is

considered confined.

Simson et al. extended this approach [81]. The trajectory is split into overlapping

windows of varying length, with each timepoint the start of windows of every possible

length. For each window a probability level L, based on Equation (1.7) is calculated.

L =

− log(Ψ)− 1 if Ψ ≤ 0.1

0 if Ψ > 0.1
(1.8)

where Ψ is calculated with R = Rmax, the furthest the trajectory moves from the

starting timepoint within the time window. Thus, for every timepoint there is an L

value for each time window size. Averaging the L’s for a timepoint gives an estimate

of the confinement level at that timepoint, and thus a confinement profile for the entire

trajectory can be plotted. Again there are parameters (such as the maximum window

length, threshold on L for confinement, and number of consecutive timepoints above

the threshold required for confinement) which are set by comparison with simulated

Brownian motion to minimise false positives.
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Meilhac et al. resolved two important limitations of the method [82]. Firstly,

rather than fixing the diffusion coefficient D over the entire trajectory, it is computed

locally on a time window. Secondly, the variance of displacements over the window

is utilised, rather than the maximum displacement Rmax. This is a more accurate

measure of the confinement size, and hence detects more general confinements, such as

in quadratic potentials.

Analysis of confinement in trajectories has also been demonstrated using a first

passage time (FPT) algorithm, which detects radii at which confinement is prevalent by

considering the number of displacements within a fixed radius [75].

1.4.3 Hidden Markov models

A recent development in trajectory analysis is the use of hidden Markov models (HMMs).

The trajectory is modelled as a (first order) Markov chain, so that it may switch between

a number of motion models, with the current motion state hidden to the observer. (See

Das et al. [8] for a discussion justifying the use of a first order Markov process.) This

hidden state can potentially parameterise any motion model. These methods have the

potential to extract more information from experiments, especially micro-heterogeneity,

provided they capture the true motion dynamics with sufficient accuracy.

One approach is to model the various states as having different diffusion coeffi-

cients. This has been utilised to detect heterogeneity both across multiple [8, 11], and

within single [9, 83, 12] trajectories, with one multiple trajectory approach including con-

sideration of measurement error [10]. The single trajectory HMM methods by Monnier

et al. (which take a Bayesian approach to analysis) can also detect directed diffusion,

and calculate the marginal likelihood over multiple models, and hence the most likely

model given the data [83, 12].

An attractive feature of this approach is flexibility, since many relevant anomalous

diffusion models can be described by a HMM. They are also suitable for analysing very

long trajectories at high spatial and temporal resolution, which are becoming more

prevalent as SPT technology continues to develop.

1.5 Overview of statistical techniques

1.5.1 Diffusion models

The natural model for a particle (Xt) moving in a two-dimensional fluid membrane is

Brownian motion, also known as free diffusion. In stochastic differential equation (SDE)
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form this is

dXt =
√

2DdWt, (1.9)

where Wt is a two dimensional Weiner process. (See Oksendal [84] or Karatzas and

Shreve [85] for an introduction to stochastic calculus.) The model has a single param-

eter, the diffusion coefficient D. A more general diffusion model could also include an

additional term µ (known as the drift coefficient), which in this case depends on Xt and

parameters θ

dXt = µ(Xt, θ)dt+
√

2DdWt. (1.10)

We can simulate this SDE for discrete time points {ti}Ni=1, effectively simulating a single

particle tracking experiment. Given X1 the Euler-Maruyama approximation to Equation

(1.10) for i = 1...N − 1 is [86] (we parameterise the normal PDF with the precision here

and throughout the thesis)

Xi+1|Xi ∼ N(Xi+µ(Xi, θ)∆ti, (2D∆ti)
−1). (1.11)

The Euler-Maruyama scheme is the natural approximation in this setting due to its

simplicity. The posterior distributions derived from this approximation are tractable,

and hence the subsequent statistical inference is more straightforward.

1.5.2 Bayesian inference

Equation (1.11) allows us to simulate data X = {Xi, ti}Ni=1 for this probability model.

Statistical inference addresses the opposite problem: given data X, and a probability

model with likelihood function π(X|θ), what are the parameters θ? Throughout this the-

sis, we address this question in a Bayesian framework. We thus estimate the parameters

using Bayes’ rule, which (up to proportionality) is

π(θ|X) ∝ π(θ)π(X|θ). (1.12)

The posterior distribution π(θ|X) gives the probability of the parameters given the data,

and π(θ) is the prior distribution on the parameters.

1.5.3 Hidden Markov models

In a hidden Markov model the observation Xi depends not only on the parameters θ,

but also on an unobserved state zi. The likelihood of an observation Xi, given zi and

θ, is hence π(Xi|θ,Xi−1, zi). The sequence of hidden states z = {zi}Ni=1 is a first order
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Markov chain since zi+1 depends only on zi (and the state transition parameters), i.e.

π(zi+1|zi, zi−1, zi−2, ..., z1, θ) = π(zi+1|zi, θ). (1.13)

For a HMM the posterior distribution is (again using Bayes’ rule)

π(θ, z|X) ∝ π(θ, z)π(X|θ, z). (1.14)

1.5.4 Markov chain Monte Carlo

For many probability models the posterior distributions are not analytically available.

Markov chain Monte Carlo (MCMC) algorithms are a means of drawing samples from

an arbitrary probability distribution, which we denote π(θ), by constructing a Markov

chain whose stationary distribution is equal to the distribution of interest. For example,

in this thesis MCMC algorithms allow us, given data X, to sample from the posterior

distributions of a hidden Markov model, π(θ, z|X). Given these samples, {θ(k), z(k)}Kk=1,

any number of relevant statistics can be calculated.

Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is a powerful generic MCMC algorithm [87, 88].

Here, the Markov chain is constructed as follows, given the current state of the chain

θ, propose a move to a new value θ′ using an arbitrary proposal distribution q(θ → θ′),

and accept this move with some probability α(θ → θ′). The equilibrium distribution of

this chain is π(θ) if the detailed balance condition is satisfied

π(θ)q(θ → θ′) = π(θ′)q(θ′ → θ). (1.15)

The Metropolis-Hastings acceptance probability, which satisfies detailed balance, is

α(θ → θ′) = min

{
1,
π(θ′)q(θ′ → θ)

π(θ)q(θ → θ′)

}
. (1.16)

The efficiency of the algorithm relies heavily on the choice of proposal distribution [89].

Common proposals are a random walk, where θ′ = θ + u for some random variable u,

and an independence sampler, where q(θ → θ′) is independent of θ [90].
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Gibbs algorithm

Suppose we want to sample π(θ), where θ = {θ1, θ2, ..., θM} is a set of M parameters. If

the conditional distribution for each parameter is available for sampling, then π(θ) can

be sampled using the Gibbs algorithm [91]. Given the current state of the Markov chain

θ(k) the next state is obtained by successive simulation from the conditionals

θ
(k+1)
1 ∼ π(θ1|θ(k)

2 , θ
(k)
3 ..., θ

(k)
M )

θ
(k+1)
2 ∼ π(θ2|θ(k+1)

1 , θ
(k)
3 ..., θ

(k)
M )

...

θ
(k+1)
M ∼ π(θM |θ(k+1)

1 , ..., θ
(k+1)
M−1 ).

These updates can be performed in any order. Additional MCMC samplers can be

constructed by combining Gibbs and Metropolis-Hastings moves [92, p. 280]. In fact, the

Gibbs sampler is essentially a special case of the Metropolis-Hastings. For a component-

wise Metropolis-Hastings algorithm on θ = {θ1, θ2, ..., θM}, the acceptance probability

for θ1 is

α(θ1 → θ′1) = min

{
1,
π(θ′1|θ2, θ3, ..., θM )q(θ′1 → θ1)

π(θ1|θ2, θ3, ..., θM )q(θ1 → θ′1)

}
. (1.17)

Using the full conditionals as proposal distributions, i.e.

q(θ1 → θ′1) = π(θ′1|θ2, θ3, ..., θM ) (1.18)

gives the acceptance ratio 1.

Convergence

An important consideration when using MCMC algorithms is how long the Markov

chains need to be run to achieve convergence, i.e. an adequate representation of the

target distribution. One issue is that if the starting point is in an area of low density,

then the first samples will not represent the target distribution. For this reason, a

proportion of early MCMC samples are generally discarded, known as the burn in.

However, determining how many iterations to discard is not obvious [93, p. 14].

There are a number of ways of assessing convergence, one simple method being

to run multiple chains and compare them. If the chains have converged then their

distributions should agree. The Gelman-Rubin point scale reduction factor (PSRF) is

a quantitative measure of this, requiring multiple chains from overdispersed starting

13



points [94, 95, 92]. In order to diagnose convergence using the PSRF two conditions are

required: the chains should have mixed (i.e. they should have the same distribution),

and each individual chain should be stationary [92, p. 284]. The version of the PSRF

utilised in this thesis is found in reference [92]. The PSRF gives an estimate of the

factor by which the scale of the posterior distribution might be reduced if the sampling

continued to infinity, thus a value close to 1 indicates convergence. In practice, a value

less than 1.2 is suggested as a reasonable bound for convergence [94]. For a model with

multiple parameters (or values of interest) the PSRF is calculated individually for each

parameter, but there is also a multivariate approach [95].

1.5.5 Model selection

A common inference problem is identifying the best model given the data X. In a

Bayesian framework, we use the marginal likelihood, the probability of the data given

the model,

π(X|M) =

∫
dθ π(X|θ,M)π(θ|M). (1.19)

Or in other words, the likelihood integrated over the parameters (or the parameters and

hidden states for HMMs). Given the marginal likelihoods, the Bayes factor B12 is a

measure of the relative strength of two competing models, M1 and M2,

B12 =
π(X|M1)

π(X|M2)
. (1.20)

If B12 > 1 then M1 is the better model, and vice versa. There are a number of standard

tables for assessing the strength of the evidence for the preferred model; here we followed

the Kass and Raftery approach [96].

There are methods for calculating the marginal likelihood given MCMC samples.

The method of Chen utilises a single MCMC run [99], and is described in detail in Sec-

tion 2.2.2 (Equations (2.22)-(2.26)). Chib’s methods for Gibbs and Metropolis-Hastings

output require additional MCMC runs [97, 98]. Chib’s methods centre on the so-called

basic marginal likelihood identity, given by

π(X|M) =
π(X|θ∗)π(θ∗)

π(θ∗|X)
(1.21)

where θ∗ is any value, but is chosen as a point of high density for numerical stability.

The right hand side of Equation (1.21) includes the likelihood, prior and “posterior

ordinate” for the relevant model M . Evaluating the likelihood and prior at θ∗ are usually
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straightforward, so estimating the marginal likelihood often reduces to estimating the

posterior ordinate. This is factorised to give

π(θ∗|X) = π(θ∗1|X)π(θ∗2|θ∗1,X)...π(θ∗N |θ∗1, θ∗2, ..., θ∗N−1,X) (1.22)

Estimation of the density π(θ∗1|X) is already possible given MCMC samples {θ(k)}Kk=1,

specifically

π̂(θ∗1|X) =
1

K

K∑
k=1

π(θ∗1|θ
(k)
2 , θ

(k)
3 , ..., θ

(k)
N ,X). (1.23)

Estimation of the subsequent terms in the right hand side of Equation (1.22) is achieved

by a series of reduced MCMC runs. For example, by fixing θ1 at θ∗1, and sampling

{θ(k)
2 , θ

(k)
3 , ..., θ

(k)
N }Kk=1 with a reduced MCMC sampler (requiring no additional coding),

an estimate of π(θ∗2|θ∗1,X) is available (similar to Equation (1.23)). We have used

both methods in this thesis as a consistency check on our algorithms. Typically we used

Chen’s method on a full data set due to its shorter computation time, whilst applying

Chib’s method on selected trajectories to test that marginal likelihood estimates from

these two algorithms were the same.
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Chapter 2

Detection of Diffusion

Heterogeneity in Single Particle

Tracking Trajectories using a

Hidden Markov Model with

Measurement Noise Propagation

2.1 Introduction

Single particle tracking (SPT), fluorescence recovery after photobleaching (FRAP), and

fluorescence correlation spectroscopy (FCS) experiments have demonstrated that rather

than moving freely, molecules in the plasma membrane tend to exhibit heterogenous

motion. This heterogeneity occurs on a variety of scales, and a number of potential

mechanisms have been proposed to explain the behaviour. These include: lipid mi-

crodomains [20, 28], compartmentalisation by the cytoskeleton (so-called ‘hop diffusion’)

[3, 42], protein-protein interactions [57], and inhomogeneity in the plasma membrane en-

vironment [100]. There are a number of mechanistic models which reproduce anomalous

diffusion [70]. Current thinking suggests that multiple mechanisms combine to form a

hierarchical structure in the plasma membrane [14].

SPT experiments can directly observe the diffusion of lipids, proteins, and other

complexes in the cell membrane, providing significant insight into membrane structure.

In an SPT experiment the molecule of interest has an observable tag attached, allowing
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tracking of the tag’s 2D position over a number of time steps. Possible tags include

a gold nanoparticle [39], a quantum dot [42], a fluorophore [27], or a latex bead [57].

Gold nanoparticle, quantum dot, and latex bead experiments can image the particle

at high temporal resolution (up to 40000 frames s−1 [3]) over a long period (seconds).

However, the tags are large relative to the molecules they label, with typical diameters

of 10 nm for quantum dots [42]; 40 nm, gold nanoparticles [71]; 1000 nm, latex beads

[57]. Other experiments have tracked single molecules by tagging with much smaller

fluorophores but, due to photobleaching, can only track for much shorter periods [27],

and thus provide shorter trajectories.

An open question is the extent to which the tracked tag represents the movement

of the molecule of interest. General artifacts that may be associated with the use of

a tag for SPT experiments include multivalent binding, drag, interaction with the ex-

tracellular matrix, and the binding of the label itself [73]. Additionally, experimental

artifacts could result from movement of the particle out of the plane of focus or from the

tracking algorithm which converts the raw video data to a trajectory. There is evidence

that beads affect the estimated value of diffusion coefficients [58]. For example, results

from gold nanoparticle experiments by the Kusumi lab report the presence of very fast

diffusion within membrane compartments [39], much faster (by around a factor of ten)

than in all other studies in the field. A possible explanation is that the nanoparticles

used by Kusumi make the diffusion coefficient of the tag-target complex substantially

different than that of the untagged molecule [42]. The fact that the tag is diffusing in

solution whilst the molecule is in the membrane also causes a concern, potentially giving

a weighted average of these two diffusion coefficients. Another possible cause of bead

artifacts is crosslinking of proteins due to multivalent presentation. These issues high-

light the importance of decoupling the particle behaviour from that of the tag, including

dealing with experimental localisation error [72, 62, 63].

There are a number of techniques for analysing SPT data, including specific

methods for the detection of deviations from free diffusion. The simplest and most com-

mon approach is to use a mean squared displacement (MSD) analysis. An unconfined

random walk has a cumulative MSD that is linear as a function of time [60], whilst

a negative deflection in MSD (anomalous diffusion) can be caused by movement in a

confined environment, and a positive deflection suggests directed motion. MSD curves

are often analysed for interpretable features such as the linear gradient (diffusion coef-

ficient) and intercept (localisation accuracy); however, the subjectivity inherent in this

approach has been suggested as the cause of discrepancies between studies [62]. Alter-

natively, theoretical MSD curves can be fitted to the data for various physical models
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(e.g. free diffusion, confined diffusion, hop diffusion, directed motion) [71, 101, 102].

Statistical analysis can be used to determine which theoretical model best describes the

experimental MSD curve [42, 74]. However, these techniques are limited since they can

only detect heterogeneity across multiple trajectories.

Methods for detecting heterogeneity within single trajectories (or ‘microhetero-

geneity’ [75]) have also been developed, most utilising statistics that detect deviations

from random walk behaviour. For example, local periods of confinement can be detected

by particles spending a significantly longer period of time within a fixed circle than a

random walk [80, 81, 76], this has been utilised to detect trapping in experimental data

[103, 53, 104]. This method has been further developed as a first passage time (FPT)

analysis, which also gives an estimate of the size of confinement zones [75]. Other meth-

ods segment single trajectories based on transient changes in diffusion modalities, includ-

ing detection of changes in the diffusion coefficient [77], local confinement and directed

motion [78, 79]. Meilhac et al. [82] developed an algorithm which detects if a particle is

moving between different confinement zones (i.e. exhibiting hop diffusion). The majority

of these methods use generic properties of Brownian motion (random walks) to detect

deviations, and thus, do not have an underlying mechanistic model. More information

(with a corresponding increase in statistical power) can potentially be extracted by using

a model that allows parametrisation of the heterogeneity and associated processes. Such

models have been proposed in a hidden Markov model (HMM) framework. For instance,

Das et al. developed a HMM for LFA-1 interacting with the actin cytoskeleton, where

LFA-1 moves between “free” and “bound” states, moving with a different diffusion co-

efficient in each state [8]. Monnier developed a method which chooses between multiple

modes of diffusion, such as directed motion, and diffusion with a variable diffusion co-

efficient [83, 12]. Persson et al. developed a HMM based method which takes multiple

trajectories as input, and infers the number of diffusive states, the diffusion coefficients

and the state transition rates [11].

Here we develop an improved single trajectory analysis, based on the two-state

diffusion model of Das et al. [8]. We make two key changes to their analysis, firstly,

we analyse each trajectory separately; the pooled analysis of [8] assumes homogeneity

across trajectories, which we find is incorrect. This allows us to determine if individual

trajectories have evidence for switching between two diffusive states, as opposed to

remaining in one state throughout. Secondly, we allow for localisation accuracy. We

demonstrate that a failure to do so can lead to the erroneous detection of a high degree

of heterogeneity caused by structured measurement noise. We use a Bayesian analysis

for both model parameter inference and model selection, using Markov chain Monte
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Carlo (MCMC) algorithms for both.

We apply our methods to previously published LFA-1 SPT data [57, 8, 75], LFA-1

being a cell membrane adhesion receptor on T cells that is known to interact with the

cytoskeleton and exhibits multiple states with different diffusion properties, as shown by

previous SPT analysis [57, 8, 75, 37]. LFA-1 has at least two affinity states, including

a low affinity closed conformation and a high affinity open conformation, which are

dependent on the cytoskeletal protein talin [105]. Activation of T cells, e.g. with phorbol-

12-myristate-13-acetate (PMA), causes a number of changes in the behaviour of LFA-1,

including a shift from the low to the high affinity state [106, 107] with an associated

change in mobility [108, 109, 57]. The protease calpain releases LFA-1 from attachment

to the cytoskeleton by cleaving the talin head domain [110]. By examining 4 treatments

we find multiple modes of heterogeneity are present, including switching in the diffusion

coefficient within single trajectories.

2.2 Methods

Consider a single particle trajectory X = {∆Xi,∆ti}Ni=1 with displacements ∆Xi at dis-

crete time points i = 1, 2...N , where ∆Xi = (∆Xi1,∆Xi2) is 2D. We aim to determine if

a trajectory is consistent with a single diffusion process throughout, i.e. a one-state dif-

fusion with diffusion coefficient D (to be determined), or if there is evidence of switching

of the diffusion coefficient between two (again, to be determined) values, D0 and D1, i.e.

a two-state diffusion model,

D0
p01−−⇀↽−−
p10

D1 (2.1)

where p01, p10 are the probability of switching per frame. Both these models can be con-

sidered with or without measurement noise giving 4 models. Using a Bayesian method-

ology, for each model we developed an MCMC algorithm to sample the posterior dis-

tribution π(θ|X,Mi) of the model Mi and parameters θ, i.e. on individual trajectories

we estimate the diffusion coefficient D for the one-state model, and the two diffusion

coefficients D0, D1, with switching times between the two states for the two-state model.

We also computed the marginal likelihood π(X|Mi) (either analytically, through MCMC

sampling or, for the models with measurement noise, using an approximation). From

the marginal likelihood we can compute the support for each model from the data, and

thus determine the posterior model probability ratio π(M1D|X)
/
π(M2D|X) for each

trajectory. Under an equiprobable model prior this is equivalent to the Bayes factor

π(X|M1D)
/
π(X|M2D). These methods and associated algorithms are given here and in
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Appendix A.3, but the Results (Section 2.3) can be read without this section.

2.2.1 One-state diffusion model without measurement noise

For a particle diffusing with a diffusion coefficient D, the log likelihood of a trajectory

X is

loge π(X|D) =
N∑
i=1

logeN(∆Xi; 0, 2D∆ti). (2.2)

Here and throughout we use the same notation for a probability distribution and its

(joint) pdf. We use a flat prior on D, π(D) = Unif(D; 0, Dmax), so the posterior is

(∆X2
i = ∆X2

i,1 + ∆X2
i,2)

π(1/D|X) ∝ Gamma

(
1/D;N − 1,

1

4

N∑
i=1

∆X2
i

∆ti

)
1[0,Dmax](D) (2.3)

where 1[0,Dmax](D) = 1 if D ∈ (0, Dmax) and 0 otherwise. We use this notation for the

indicator function throughout.

Appropriate statistics can be computed from this posterior, either analytically or

using a rejection sampler. For a rejection sampler the update is

1/D ∼ GammaT

(
N − 1,

1

4

N∑
i=1

∆X2
i

∆ti
, 1/Dmax,∞

)
(2.4)

where GammaT (α, β, xmin, xmax) denotes a truncated Gamma distribution with param-

eters α and β, truncated at xmin and xmax. We sample K updates from this distribution

to give samples {D(k)}Kk=1, an estimate for the diffusion coefficient is then the posterior

mean D̂ = 1
K

∑K
k=1D

(k).

The marginal likelihood for this model is

π(X|M1D) =

∫ ∞
0

dDπ(X|D,M1D)π(D). (2.5)

Changing variables from D to D−1 and rearranging into a standard incomplete upper

gamma function gives

π(X|M1D) =
1

Dmax

N∏
i=1

1

4π∆ti

(
N∑
i=1

∆X2
i

4∆ti

)1−N

Γ

(
N − 1,

1

Dmax

N∑
i=1

∆X2
i

4∆ti

)
. (2.6)

where Γ is the upper incomplete Gamma function, see Appendix A.1.
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2.2.2 Two-state diffusion model without measurement noise

We use the hidden Markov model described by Das et al. [8] with four model parame-

ters, θ = {D0, D1, p01, p10}, two diffusion coefficients D0, D1 and transition probabilities

p10, p01 between the two hidden states. Denoting the hidden state by zi at time frame

i, the particle moves between zi = 0 (diffusion with D = D0) and zi = 1 (diffusion with

D = D1) for N time steps, giving a trajectory X and hidden state sequence z = {zi}Ni=1.

The model can be written

zi|zi−1 ∼ Bernoulli(zi−1(1− p10) + (1− zi−1)p01), ∆Xi|zi ∼ N(0, 2Dzi∆ti). (2.7)

We use conjugate priors, the full prior being

π(θ) = Unif(D0; 0, Dmax)Unif(D1; 0, Dmax)Beta(p01; a0, b0)Beta(p10; a1, b1) (2.8)

π(z1|θ) = Bernoulli

(
z1;

p01

p10 + p01

)
. (2.9)

The prior on the initial state is the stationary distribution for the Markov chain. The

posterior distribution is then given by,

π(θ, z|X) ∝ π(θ)π(z1|θ)
N∏
i=1

N(∆Xi; 0, 2Dzi∆ti)

×
N∏
i=2

Bernoulli (zi; zi−1(1− p10) + (1− zi−1)p01) . (2.10)

We developed an MCMC algorithm to sample this posterior, specifically we can generate

samples {D(k)
0 , D

(k)
1 , p

(k)
01 , p

(k)
10 , z

(k)}Kk=KB
from the posterior distribution using a Gibbs

sampler, see below and in Appendix A.3 as pseudocode. Here and throughout we denote

the total number of MCMC steps K and the length of the burn-in KB. The mean of

these posterior samples {D̂0, D̂1, p̂01, p̂10, ẑ} is an estimate for the parameters and hidden

state sequence.

We sample from the posterior distribution (2.10) by sampling sequentially from

the conditional distributions. For D0 and D1 these are

π(D0|D1, p01, p10, z,X) ∝ Unif(D0; 0, Dmax)
∏
zi=0

N(∆Xi; 0, 2Dzi∆ti) (2.11)

π(D1|D0, p01, p10, z,X) ∝ Unif(D1; 0, Dmax)
∏
zi=1

N(∆Xi; 0, 2Dzi∆ti). (2.12)

21



Hence the updates are

D−1
0 ∼ GammaT

(
η0 − 1,

∑
zi=0

∆X2
i

4∆ti
,

1

Dmax
,∞

)
(2.13)

D−1
1 ∼ GammaT

(
η1 − 1,

∑
zi=1

∆X2
i

4∆ti
,

1

Dmax
,∞

)
(2.14)

where η0 =
∑

zi=0 1 and η1 =
∑

zi=1 1. We sample from the truncated distribution, by

sampling from the full Gamma distribution, then resampling if D0 or D1 is bigger than

Dmax. If η0 = 0 then
∑

zi=0
∆X2

i
4∆ti

= 0, and the Gamma distribution is undefined, so we

sample D0 from the prior Unif(0, Dmax). If η1 = 0 we sample D1 from Unif(0, Dmax).

For the transition probabilities let njk be the number of transitions from state j to state

k in the hidden state sequence z, i.e.

njk =
∑

i|zi=j,zi+1=k

1. (2.15)

Since we have chosen conjugate priors the updates are (ignoring the first hidden state

z1)

p01|z ∼ Beta(a0 + n01, b0 + n00) (2.16)

p10|z ∼ Beta(a1 + n10, b1 + n11). (2.17)

The hidden state z is updated step by step. Since z is a Markov chain each zi depends

only on the neighbouring points zi−1 and zi+1, so the conditional distribution is

π(zi|zi−1, zi+1, θ,X) ∝ Bernoulli(zi; zi−1(1− p10) + (1− zi−1)p01)

×N(∆Xi; 0, 2Dzi∆ti)

× Bernoulli(zi+1; zi(1− p10) + (1− zi)p01). (2.18)

By normalising (2.18) we can compute the probabilities π(zi|zi−1, zi+1, θ,X) for zi = 0, 1

which gives the update

zi

∣∣∣
θ,zi±1

∼ Bernoulli (π(zi = 1|zi−1, zi+1, θ,X)) . (2.19)

The endpoint conditionals are slightly modified. For i = 1 and i = N we have (again
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ignoring z1)

π(z1|z2, θ,X) ∝ N(∆X1; 0, 2Dz1∆t1)Bernoulli (z2; z1(1− p10) + (1− z1)p01) (2.20)

π(zN |zN−1, θ,X) ∝ Bernoulli (zN ; zN−1(1− p10) + (1− zN−1)p01)N(∆XN ; 0, 2DzN∆tN ).

(2.21)

Thus, we can sequentially update z by updating each zi for i = 1..N .

We also impose the condition D0 < D1, which we enforce after the MCMC run

as follows: if the posterior means D̂0 > D̂1 then we swap the D0, D1 chains, swap the

p01, p10 chains, and swap the 0 and 1 states in the hidden state z throughout the run.

This is possible because although state identity switching (0↔ 1) is possible because of

a permutation symmetry during a run, it isn’t observed to occur.

There are a number of methods for estimating the marginal likelihood using

MCMC sampling, including that of Chen [99], utilising a single MCMC chain, and Chib

[97], requiring additional MCMC chains to be constructed. Typically we used both to

check our algorithms, but present the simplest approach in any given case. For this

model the conditional posterior π(θ|z,X) is normalisable; Chen’s formula then reads

π(X|M2D) = loge π(X|θ∗)− loge

 1

K

K∑
k=KB

g(θ(k)|z(k))

π(θ∗)

π(θ∗|z(k),X)

π(θ(k)|z(k),X)

 (2.22)

where θ∗ = {D∗0, D∗1, p∗01, p
∗
10} is a suitably chosen fixed point, such as the maximum

likelihood, θ(k) and z(k) are samples from the MCMC run and g(θ(k)|z(k)) is an arbitrary

distribution, but its choice affects the variance of the estimate. If we choose g(θ(k)|z(k)) =

π(θ(k)|z(k),X) then we remove θ(k) from the right hand side, obtaining

loge π(X|M2D) = loge π(X|θ∗)− loge

 1

K

K∑
k=KB

π(θ∗|z(k),X)

π(θ∗)

 . (2.23)

Thus, the sum runs over z(k), the MCMC samples, and for each z(k) we have to evaluate

π(θ∗|z(k),X)/π(θ∗). The log likelihood term, loge π(X|θ∗), is calculated by the forward

algorithm described in [8]. For the π(θ∗|z(k),X) term, we factorize

π(θ∗|z(k),X) = π(D∗0|z(k),X)π(D∗1|D∗0, z(k),X)π(p∗01|D∗0, D∗1, z(k),X)

× π(p∗10|p∗01, D
∗
0, D

∗
1, z

(k),X)

= π(D∗0|z(k),X)π(D∗1|z(k),X)π(p∗01|z(k),X)π(p∗10|z(k),X) (2.24)
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where the second line follows since the parameters are conditionally independent when

z(k) is given.

The joint pdf is thus,

π(θ∗|z(k),X) = GammaT

 1

D0
; η0 − 1,

1

4

∑
z

(k)
i =0

∆X2
i

∆ti
,

1

Dmax
,∞


×GammaT

 1

D1
; η1 − 1,

1

4

∑
z

(k)
i =1

∆X2
i

∆ti
,

1

Dmax
,∞


× Beta(p01;n01 + a0, n10 + b0)Beta(p10;n10 + a1, n11 + b1) (2.25)

at a given value θ∗, where η0 =
∑

z
(k)
i =0

1 and η1 =
∑

z
(k)
i =1

1, and z
(k)
i is the ith

term in the sequence z(k). The normalisation term for the truncated distribution is

Γ( 1
4Dmax

∑
z

(k)
i =0

∆X2
i

∆ti
, η0 + 1)−1, where Γ is the upper incomplete gamma function. In

practice, the normalisation factor is very close to 1, since the choice of Dmax is sufficiently

high.

Equation (2.25) is valid except when η0 = 0 or η1 = 0, in which case we have

π(D∗0|z(k),X) = Unif(D0; 0, Dmax) or π(D∗1|z(k),X) = Unif(D1; 0, Dmax) respectively.

The prior is

π(θ∗) =


D2

0
Dmax

D2
1

Dmax
Beta(p01; a0, b0)Beta(p01; a1, b1) if 1

D0
, 1
D1
∈ [ 1

Dmax
,∞]

0 otherwise
(2.26)

which is easy to evaluate for each z(k) from the MCMC output. Hence we can evaluate

Equation (2.23).

2.2.3 One-state diffusion model with measurement noise

We now add a localisation error to the previous one-state diffusion model. The true

particle position is hidden and denoted Ui, whilst the measured position is Ui up to

a Gaussian noise with variance σ2, assumed known. We attempted to construct infer-

ence schemes (for this model and the subsequent two-state version) which included a

Metropolis-Hastings update for σ, but we could not find an algorithm which accurately

recovered all parameters. We therefore use a fixed localisation error σ2. In discrete time

the model is

∆Ui ∼ N(0, 2D∆ti), Xi

∣∣∣
Ui
∼ N(Ui, σ

2) (2.27)
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where ∆Ui = Ui+1 −Ui. In order to develop an MCMC sampler for π(D,U|X) we note

that

π(D,U|X) ∝ π(D,U1)

N+1∏
i=1

N(Xi;Ui, σ
2)

N∏
i=1

N(∆Ui; 0, 2D∆ti). (2.28)

We select a conjugate prior π(D,U1) = Unif(D; 0, Dmax)N(U1;µU1 , σ
2
U ), so the updates

for D and U are Gibbs moves. The update for D is

1/D ∼ GammaT

(
N − 1,

1

4

N∑
i=1

∆U2
i

∆ti
, 1/Dmax,∞

)
. (2.29)

The conditional distribution for Ui is a bridging distribution

π(Ui|Ui−1, Ui+1, Xi, D) ∝ N(∆Ui−1; 0, 2D∆ti−1)

×N(∆Ui; 0, 2D∆ti)N(Ui;Xi, σ
2) (2.30)

comprising a product of three Gaussians. The update is thus,

Ui

∣∣∣
D,Ui±1

∼ N(µi, 1/τi) (2.31)

where, for i = 2 to i = N the precision and mean are

τi =
1

2D∆ti−1
+

1

2D∆ti
+

1

σ2
, µi =

(
Ui−1

2D∆ti−1
+

Ui+1

2D∆ti
+
Xi

σ2

)
τ−1
i (2.32)

at the endpoints i = 1 (with prior N(µU1 , 1/σU2)) and i = N + 1

τ1 =
1

2D∆t1
+

1

σ2
U

, µ1 =

(
U2

2D∆t1
+
µU1

σ2
U

)
τ−1

1 (2.33)

τN+1 =
1

2D∆tN
+

1

σ2
, µN+1 =

(
UN

2D∆tN
+
XN

σ2

)
τ−1
N+1. (2.34)

Updating a continuous-time latent state one step at a time can be very inefficient for

small ∆ti. However, perhaps since each Ui depends heavily on Xi, this was not found

to be a problem.

We used an approximation to compute the marginal likelihood; this involves

ignoring the covariance between the displacements ∆Xi ∼ N(∆Ui, 2σ
2) and ∆Xi+1 ∼

N(∆Ui+1, 2σ
2) that arises because of the common measurement error Xi − Ui at time
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point i. In this case the hidden variables Ui integrate out to give the posterior

π(D|X) ∝ π(D)
N∏
i=1

N
(
∆Xi; 0, 2D∆ti + 2σ2

)
. (2.35)

We modified the previous one-state MCMC sampler to sample from this distribution,

detailed in Appendix A.1 and as pseudocode in Appendix A.3.

The sampler has a single Metropolis-Hastings move, so we calculate the marginal

likelihood directly from the MCMC output, as described by Chib [98]. The log marginal

identity is

loge π̂(X|M1D) = loge π(X|D∗) + loge π(D∗)− loge π̂(D∗|X) (2.36)

where we take D∗ = D̂, the mean of the posterior samples. We can evaluate loge π(X|D∗)
and loge π(D∗) easily. We can write loge π(D∗|X) as [98]

loge π(D∗|X) = loge

[
E1 [α(D → D∗)q(D → D∗)]

E2 [α(D∗ → D)]

]
(2.37)

where E1 is with respect to π(D|X) and E2 is with respect to q(D∗ → D). From

the MCMC output we have K − KB samples from the posterior distribution π(D|X),

{D(k)}KK=KB
. We then simulate K−KB samples from the proposal distribution q(D∗ →

D) ∼ N(D∗, SD), giving {D̃(j)}K−KBj=1 . An estimate for loge π(D∗|X) is then

loge π̂(D∗|X) = loge

[
(K −KB)−1

∑K
k=KB

α(D(k) → D∗)q(D(k) → D∗)

(K −KB)−1
∑K−KB

j=1 α(D∗ → D̃(j))

]
. (2.38)

Hence we can calculate π̂(X|M1D) using Equation (2.36).

2.2.4 Two-state diffusion model with measurement noise

We now add a localisation error to the previous two-state diffusion hidden Markov model.

Again, the true position is hidden and denoted Ui. The model is given by,

zi|zi−1 ∼ Bernoulli(zi−1(1− p10) + (1− zi−1)p01),

∆Ui|zi ∼ N(0, 2Dzi∆ti),

Xi|Ui ∼ N(Ui, σ
2) (2.39)
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i.e. there is both a continuous hidden state Ui and a discrete hidden state zi. We

developed an MCMC algorithm which samples from the full conditional distribution

π(θ,U, z|X). Let θ = {D0, D1, p01, p10}, the posterior for this model is (∆Ui = Ui+1−Ui)

π(θ,U, z|X) ∝ π(θ, U1, z1)
N+1∏
i=1

N(Xi;Ui, σ
2)

N∏
i=1

N(∆Ui; 0, 2Dzi∆ti)

×
N−1∏
i=1

Bernoulli(zi+1; zi(1− p10) + (1− zi)p01). (2.40)

The priors on θ and z1 are the same as the two-state diffusion model without measure-

ment noise, given in Equation (2.8), and we use a normal prior (with mean µU1 , variance

σ2
U ) on U1. The full prior is then

π(θ, U1, z1) = Unif(D0; 0, Dmax)Unif(D1; 0, Dmax)Beta(p01; a0, b0)Beta(p10; a1, b1)

×N(U1;µU1 , σ
2
U )Bernoulli

(
z1;

p01

p10 + p01

)
. (2.41)

The MCMC updates are mostly identical to the two-state diffusion model without

measurement noise, but with the observed displacements ∆Xi replaced by the hidden

state displacements ∆Ui. Thus, for D0 and D1 we have

1/D0 ∼ GammaT

(
η0 − 1,

1

4

∑
zi=0

∆U2
i

∆ti
, 1/Dmax,∞

)
(2.42)

1/D1 ∼ GammaT

(
η1 − 1,

1

4

∑
zi=1

∆U2
i

∆ti
, 1/Dmax,∞

)
(2.43)

where η0 =
∑

zi=0 1 and η1 =
∑

zi=1 1 as before. Similarly, in the z update we substitute

∆Xi for ∆Ui in Equations (2.18), (2.20) and (2.21),

π(zi|zi−1, zi+1, θ,U) ∝ Bernoulli(zi; zi−1(1− p10) + (1− zi−1)p01)×N(∆Ui; 0, 2Dzi∆ti)

× Bernoulli(zi+1; zi(1− p10) + (1− zi)p01). (2.44)

π(z1|z2, θ,U) ∝ N(∆U1; 0, 2Dz1∆t1)Bernoulli (z2; z1(1− p10) + (1− z1)p01)

(2.45)

π(zN |zN−1, θ,U) ∝ Bernoulli (zN ; zN−1(1− p10) + (1− zN−1)p01)N(∆UN ; 0, 2DzN∆tN ).

(2.46)
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The transition probability updates are identical to Equations (2.16) and (2.17). The

update for U is almost the same as the one-state diffusion model with measurement

noise. We have a Gibbs update

Ui

∣∣∣
θ,z,Ui±1

∼ N(µi, 1/τi) (2.47)

where, for i = 2 to i = N , the precision and mean are

τi =
1

2Dzi−1∆ti−1
+

1

2Dzi∆ti
+

1

σ2
, µi =

(
Ui−1

2Dzi−1∆ti−1
+

Ui+1

2Dzi∆ti
+
Xi

σ2

)
τ−1
i (2.48)

at the endpoints i = 1 and i = N + 1

τ1 =
1

2Dz1∆t1
+

1

σ2
U

, µ1 =

(
U2

2Dz1∆t1
+
X1

σ2
U

)
τ−1

1 (2.49)

τN+1 =
1

2DzN∆tN
+

1

σ2
, µN+1 =

(
UN

2DzN∆tN
+
XN

σ2

)
τ−1
N+1. (2.50)

The MCMC updates for this model are given in pseudocode in Appendix A.3.

To compute the marginal likelihood we used the same approximation as the

one-state diffusion model with measurement noise, ignoring the covariance between the

displacements ∆Xi ∼ N(∆Ui, 2σ
2) and ∆Xi+1 ∼ N(∆Ui+1, 2σ

2). We failed to find an

efficient algorithm that could integrate over both hidden states (Ui and zi) to allow the

(exact) marginal likelihood π(X|M2D) to be computed. (We found implementation of

Chib’s method difficult on continuous hidden states, as well as very computationally

expensive.) In this case the hidden variables Ui integrate out to give a posterior

π(θ, z|X) ∝ π(θ)π(z1|θ)
N∏
i=1

N(∆Xi; 0, 2(Dzi∆ti + σ2))

×
N−1∏
i=1

Bernoulli(zi+1; zi(1− p10) + (1− zi)p01). (2.51)

We modified the two-state diffusion model sampler to incorporate the σ2 terms, see

Appendix A.1 and pseudocode in Appendix A.3. This sampler can be used with the
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method of Chen, rewriting Chen’s formula as

loge π(X|M2D) = loge π(X|θ∗)− loge

[
1

K

K∑
k=1

g(θk|z(k))

π(θ(k))

π(X|θ∗, z(k))

π(X|θ(k), z(k))

π(z(k)|θ∗)
π(z(k)|θ(k))

]
(2.52)

where g is any density function, θ(k), z(k) are samples from the posterior distribution,

and θ∗ is a point of high density. If we choose g = π(θ(k)), then an estimate for the

marginal likelihood is

loge π̂(X|M2D) = loge(X|θ∗)− loge

[
1

K

K∑
k=1

∏N
i=1N(∆X2

i ; 0, 2D∗
z

(k)
i

∆ti + 2σ2)∏N
i=1N(∆X2

i ; 0, 2D
(k)

z
(k)
i

∆ti + 2σ2)

× Beta (p∗01;n01 + 1, n00 + 1) Beta (p∗10;n10 + 1, n11 + 1)

Beta
(
p

(k)
01 ;n01 + 1, n00 + 1

)
Beta

(
p

(k)
10 ;n10 + 1, n11 + 1

)]. (2.53)

The log likelihood, loge π(X|θ∗), is calculated using a forward algorithm (Appendix A.1

and pseudocode in Appendix A.3). By computation of the marginal on multiple chains

we found that its variance was small despite using the prior for the distribution g,

(relative sd < 0.0001%). Chib’s method on selected trajectories also gave consistent

findings.

2.2.5 Priors

In all algorithms we use weak priors. SpecificallyD ∼ Unif(0, Dmax = 106nm2s−1) for the

one-state diffusion model, and additionally U1 ∼ N
(
µU1 = [ 0

0 ] , σ2
U =

[
106nm2 0

0 106nm2

])
for the one-state diffusion model with measurement noise. For the two-state diffusion

model we use: D0, D1 ∼ Unif(0, Dmax = 106nm2s−1), p10, p01 ∼ Beta(1, 1), with an

initial (i = 1) hidden state, z1 ∼ Bernoulli
(

p01

p01+p10

)
. Additionally, we used U1 ∼

N
(
µU1 = [ 0

0 ] , σ2
U =

[
106nm2 0

0 106nm2

])
for the two-state diffusion model with measure-

ment noise. Our choice of weak priors has implications for model selection. Specifically

the choice of Dmax directly affects the Bayes’ factor (an example of Lindley’s paradox

[111]). However, in Section 2.3 (and Fig. A.3 B) we demonstrate the consistency of our

choice on simulated data.
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2.2.6 Convergence of MCMC runs

To assess the convergence of the two-state diffusion model with measurement noise we

used a multiple chain convergence diagnostic [92], specifically 12 chains with overdis-

persed initial values. We initialisedD0 andD1 by sampling values u0, u1 from Beta(0.1, 0.1),

then setting D0 = u0Dmax and D1 = u1Dmax. The transition probabilities p01 and p10

were initialised from Beta(1, 1). The hidden state z was initialised by simulating a

Markov chain using the initial transition probabilities p01 and p10. The initial value of

U was set to the observed trajectory {Xi}N+1
i=1 . We considered the chains converged

when the Gelman-Rubin diagnostic for each parameter was less than 1.1 [95, 93].

2.2.7 Model selection between one-state and two-state diffusion mod-

els

We can calculate the log marginal likelihoods to compare the evidence for the one-

state and two-state diffusion models; this can be done with or without measurement

noise. Hence for each case we can calculate the log (base e) Bayes factor, logeB1D,2D =

loge π(X|M1D)) − loge π(X|M2D). The extent to which a model is supported by the

evidence (i.e. the observed trajectory X) can then be assessed using a standard table

such as in Kass et al., where a log Bayes factor of 3 is considered “strong” evidence

for the relevant model [96]. We hence consider a value logeB1D,2D > 3 as preference

for a one-state diffusion model, and logeB1D,2D < −3 as preference for a two-state

diffusion model. The remaining trajectories (where −3 < logeB1D,2D < 3) have no

strong preference for either model.

2.3 Results

Given a 2D trajectory, X, we developed MCMC algorithms (both with and without

measurement noise) for inferring the posterior distribution of the parameters and hidden

states of a two-state diffusion process, π(θ, z|X). The parameters, θ = {D0, D1, p01, p10},
are the diffusion coefficients and frame transition probabilities, Equation (2.1), and z

is the sequence of the inferred hidden diffusion state. Allowing for measurement noise

propagates that uncertainty to the parameter estimates. We tested our algorithms on

simulated data (full details of each simulation study are given in the corresponding figure

legend); Fig. A.1 (in Section A.5 in Appendix A) shows an MCMC run of the two-state

model with measurement noise, demonstrating accurate reconstruction of the parameters

and hidden states. We also tested the sensitivity of the method to closely matched
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diffusion states, Fig. A.2. The two-state model with measurement noise algorithm

can accurately detect switching between regimes where diffusion coefficients differ by

a factor of 1.5 (trajectory parameters set to those typical for the LFA-1 data). To

determine whether the trajectory is better explained by this two-state model or a one-

state diffusion (single diffusion coefficient D) we used the marginal likelihoods π(X|M);

however, this proved difficult to calculate in our hands for the two-state model (with

measurement noise). Therefore, we used an approximate likelihood (where the covariance

between consecutive displacements is ignored, essentially a low measurement noise limit)

where the marginals are computable for both the one-state and two-state models, see

Methods. We used the Bayes factor of this approximation to determine if the two-state

model is supported by the data more than a one-state diffusion process. We tested the

model selection between the approximate one-state and two-state diffusion models with

measurement noise; both on trajectories simulated from the full measurement noise

model, and trajectories simulated without noise, Fig. A.3. The model was able to

successfully discriminate between one-state and two-state simulations, with a very low

false positive rate when the diffusion coefficients were separated by a factor of 5 (0.005%,

using loge Bayes factor equal to ±3 as the threshold for model preference, see Methods).

When separated by a factor of 2.5 there is a bias towards the one-state model, especially

on two-state model simulations without measurement noise, Fig. A.3 B. Thus, we may

fail to detect some switching events between close diffusion coefficients, underestimating

the number of trajectories preferring a two-state model.

We used our algorithms to analyse SPT data sets for the LFA-1 receptor on

Jurkat T cells (4 s trajectories at 1000 frames s−1 [57]). The receptor was tagged

with 1000 nm latex beads coated with the LFA-1 binding antibody TS-1/18. This

dataset has been analysed previously [57, 8, 75] demonstrating that LFA-1 diffusion is

heterogeneous. We applied our methods to four treatments: control (DMSO), treated

with cytochalasin D (Cyto D), treated with phorbol-12-myristate-13-acetate (PMA),

and treated with PMA with calpain inhibition (PMA+Cal-I). Cytochalasin D is an

inhibitor of actin polymerisation, so effects due to the cytoskeleton should be decreased,

PMA is a T cell activator, moving LFA-1 to the high affinity conformational state,

and calpain releases LFA-1 from attachment to the cytoskeleton by cleaving the talin

head domain [110]. Thus, the first two treatments explore the effect of the cytoskeleton

on the predominantly low affinity LFA-1. PMA examines dynamics of high affinity

LFA-1, whilst PMA+Cal-I examines high affinity LFA-1 under conditions of enhanced

interaction with the cytoskeleton.

To determine the measurement accuracy, and whether measurement noise had

31



to be incorporated into the model, we examined stationary beads (3 trajectories were

available). These beads are attached to the surface and thus represent thermal motion

and instrument noise. These beads are effectively stuck in a potential well and their

movement is expected to be temporally homogeneous; thus no two-state diffusion struc-

ture should be detected. As presented below, we find that this is not the case unless a

Gaussian measurement noise is incorporated into the inference. Therefore, throughout

we present the analysis of LFA-1 trajectory data using the measurement noise models,

comparing between the one-state diffusion and two-state diffusion model in the presence

of noise. We use the approximate likelihood models for model discrimination only; all

inferred parameters refer to the exact models.

2.3.1 Stationary bead analysis to determine measurement accuracy

and the importance of propagating measurement noise

Trajectories of stationary beads (immobilised on glass using cell-tak, imaged using the

same set up as the LFA-1 data [57]) were used to determine the signal to noise ratio

(S/N) and to estimate the measurement noise (σ2). For each trajectory (2 s at 1000

frames s−1) we calculated the variance of individual displacements {∆Xi}Ni=1 for both

x and y directions, giving 6 estimates for the localisation accuracy (29.09 nm2, 23.55

nm2, 65.01 nm2, 39.31 nm2, 30.27 nm2, 59.41 nm2). This gives a mean σ2 = 41.09 nm2

which we used as an estimate of the localisation accuracy throughout. The variance

of individual displacements, ∆Xi for the LFA-1 data are: DMSO, 133.5 nm2 (giving

S/N 3.25); Cyto D, 133.7 nm2 (S/N 3.25); PMA, 135.1 nm2 (S/N 3.29); PMA+Cal-I,

89.4 nm2 (S/N 2.18), indicating that signal is present in these displacements at this

resolution.

The stationary beads also provide an opportunity to check that the measurement

noise does not affect model selection: stationary beads should prefer a one-state diffusion

model since the time series is homogeneous. If the two-state diffusion model is preferred

then measurement noise, the tracking algorithm, or instrument noise contributes to

the heterogeneity in the trajectory. We applied the one-state and two-state diffusion

model algorithms (without measurement noise) to the three stationary beads. The two-

state diffusion model showed high frequency switching behaviour (Fig. 2.1A-C), with

two distinct (well separated) diffusion coefficients, (Fig. 2.1D-F). Crucially, the two-

state diffusion model is strongly preferred for all 3 trajectories (Fig. 2.2, red asterisks).

Therefore there is evidence that tracked bead displacements are not unstructured and

an analysis of LFA-1 trajectories using the models without allowing for measurement

32



noise may be unreliable, due to this inherent inhomogeneity.
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Figure 2.1: Fit of a two-state diffusion model without measurement noise to
three stationary latex bead trajectories. MCMC output from chains of 20000
MCMC steps with a 10000 step burn-in. (A-C) Inference of the hidden state z shown as
the probability of being in the low diffusion state. (D-F) Posterior distributions for the
two diffusion coefficients: D0 (red) and D1 (blue). See Methods for priors and initial
conditions.
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Figure 2.2: Model selection for one-state and two-state diffusion models on
simulated stationary beads and stationary latex bead trajectories. Blue
bars: Bayes factors from model selection on simulated stationary beads (n = 240) with
added Gaussian noise (σ2 = 41.09nm2). Single data points on axis: Bayes factors from
model selection on stationary latex bead trajectories, both without (red asterisks) and
with (green circles, σ2 = 41.09nm2) measurement noise incorporated into the inference
algorithm. Priors, see Methods.

The stationary bead data were then analysed with the approximate one-state and

two-state diffusion models with measurement noise using the estimated noise variance

σ2 = 41.09nm2 (recall the approximate models ignore the covariance between displace-

ments since the marginal cannot be calculated for the full model). The incorporation of

localisation accuracy eliminates the previous preference for a two-state diffusion model

(Fig. 2.2, green circles); preference for the one-state diffusion model is in fact very

strong. We also tested whether Gaussian noise can cause deterioration of the model

selection accuracy. We tested the model selection analysis without measurement noise

on a set (n = 240) of simulated stationary bead trajectories with added Gaussian noise

(the localisation error in the simulations was set to 41.09nm2). The model selection

has a very strong preference for the one-state diffusion model (Fig. 2.2, blue bars), so

Gaussian noise alone causes a low false detection rate. The 3 stationary bead trajectory

Bayes factors (Fig. 2.2, red asterisks) are clearly not from the same distribution as the

Bayes factors for the Gaussian noise trajectories (blue bars), therefore the noise in the

beads cannot be Gaussian and/or independent.

There are two important conclusions: firstly, as pointed out by Michalet [62], the

localisation accuracy is a potential source of bias, particularly for low signal to noise

ratios, as found here. Thus, in any SPT analysis the measurement accuracy should

be separately determined and an assessment made as to whether it affects the results.
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Secondly, the noise of the stationary beads does not appear to be independent, having

a temporal correlation. Thus, the localisation accuracy is likely not constant along a

trajectory. However, as shown here, incorporating Gaussian measurement noise into

the model inference removes the erroneous preference for the two-state model for the

stationary beads.

2.3.2 Analysis of LFA-1 data: evidence of multiple diffusion states

We fitted the one-state and two-state diffusion models with measurement noise to each

trajectory in the four treatments (36-75 trajectories depending on treatment, 4 s tra-

jectories at 1000 frames s−1), thereby estimating parameters for these models for each

trajectory. Convergence was confirmed using a multiple chain protocol, see Methods.

An example of a fit to the two-state diffusion model with measurement noise is shown

in Fig. 2.3; inference of the hidden state shows clear evidence of state switching in this

trajectory with a high probability of being in one or other of the two diffusion states and

tight switching times. There is a large separation in the posterior distributions for the

low and high diffusion coefficients, with the ratio of the posterior mean estimates being

around 10.
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By calculating the marginal likelihood for the approximate one-state and two-

state diffusion models with measurement noise, and hence the Bayes factor B1D,2D =
π(X|M1D)
π(X|M2D) , we then ascertained for each trajectory the evidence for a two-state compared

to a one-state diffusion process. As described in Methods, we used fairly stringent

criteria: if the log (base e) Bayes factor is smaller than -3 then we consider this preference

for the two-state diffusion model, and greater than 3 as preference for the one-state

diffusion model [96]. The number of trajectories with preference for each model was

robust to the choice of Bayes factor threshold (Table A.1). Fig. 2.4 shows the Bayes

factor estimates for each condition, and the number of trajectories which preferred each

model, grouped by treatment. There are a total of 16 DMSO (out of a total of 75, 21%),

8 Cyto D (out of 36, 22%), 13 PMA (out of 19, 33%) and 8 PMA+Cal-I (out of 46,

17%) trajectories where the two-state diffusion model is preferred, Table A.1. Thus,

in all treatments we detected evidence of switching within trajectories with a similar

level of preference. However, a proportion of the trajectories that preferred the two-

state diffusion model showed extremely fast switching; we define fast switching as either

p̂01 > 0.1 or p̂10 > 0.1, giving counts: DMSO, 3 trajectories; Cyto D, 5 trajectories;

PMA, 5 trajectories; PMA+Cal-I, 2 trajectories, Table A.1. Thus, over all treatments,

for trajectories where the two-state diffusion model was preferred, we saw fast switching

in 33% of trajectories.
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This fast switching was similar to that observed for the fixed beads, questioning

whether it is an experiment artifact or a true phenomena. We limited our analysis in

the following to the slow (clear) switching trajectories and non-switching trajectories

since the fast switchers clearly represent a different category of behaviour, irrespective

of cause. Discounting those trajectories which have no strong model preference or are

fast switchers, the proportion of trajectories where the two diffusion model was preferred

over the one-state were: DMSO 13/64 (20%), Cyto D 3/25 (12%), PMA 8/31 (26%),

PMA+Cal-I 6/42 (14%), Table A.1.

We next analysed the consistency of the diffusion coefficient estimates between

trajectories. We note that the diffusion coefficients can be estimated below the measure-

ment noise effective diffusion coefficient of σ2/(2∆t) since estimates are based on multiple

time points, the error falling as σ2/(2n∆t) for n displacements. On the 4000 time points

this gives a lower threshold of log(D) = 1.64, so well below the lowest inferred diffusion

coefficient. For both sets of trajectories, those that preferred the one-state diffusion (D)

or two-state diffusion (D0, D1), we computed the posterior mean diffusion coefficient

and pooled their posterior distributions (in the full likelihood model, Fig. 2.5, 2.6). All

four conditions demonstrated similar features:

• There are two distinct clusters in the D estimates (trajectories conforming to a

single homogeneous diffusion): a high (mean) diffusion coefficient greater than

3.0 × 103 nm2 s−1, and an essentially immobile state with a (mean) diffusion

coefficient less than 3.0 × 103 nm2 s−1, Fig. 2.5E. Over the four conditions this

split is very consistent, (Fig. A.4). We refer to these as the mobile state, with

D > 3.0× 103 nm2 s−1 (loge(D) > 8), and the immobile state, with D < 3.0× 103

nm2 s−1 (loge(D) < 8) (classified on the posterior mean of the diffusion coefficient).

The mobile state may further decompose into a ‘low’ and ‘high’ diffusing state as

the pooled D distribution is bimodal with separation at 2× 104 nm2/s, (Fig. 2.6).

The pooled distribution for D0 also suggests a mixture distribution, although the

small number of trajectories (29) makes it difficult to reliably interpret.

• Trajectories with switching of the diffusion coefficient typically exhibit two different

mobile states; only 1 trajectory (out of 31) is observed to exhibit switching with

the immobile state (Fig. 2.5A-D).

• The variance in the diffusion coefficient estimate for each trajectory is smaller

than the variance between trajectories, (Fig. 2.6); this implies that the bimodality

(‘low’, ‘high’ diffusion coefficients) is further subdivided. This explains the distinct
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peaks in the pooled posterior distributions, Fig. 2.5. Thus, there is variability

in the diffusion coefficient estimates suggesting the presence of a heterogeneity

amongst individual trajectories.
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Figure 2.5: Posterior estimates of diffusion coefficients for single LFA-1 tra-
jectories. (A-D) Pooled posterior samples of logeD0 and logeD1 for trajectories pre-
ferring the two-state diffusion model (fast switching, p̂01 > 0.1 or p̂10 > 0.1, trajectories
removed). The posterior means for logeD0 (red squares) and logeD1 (green triangles),
are also shown. Black line indicates value of σ2/2∆t. Dashed line indicates thresh-
old used to categorise immobile and mobile diffusion states. Treatments: (A) DMSO,
two-state model preferred for 13 trajectories; (B) Cyto D, 3 trajectories; (C) PMA, 8
trajectories; (D) PMA+Cal-I, 6 trajectories. (E) Pooled logeD estimates and posterior
means (blue circles) over all treatments, for trajectories where one-state diffusion model
was preferred (132 trajectories).
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There are however differences between the four conditions. Most notably, the

proportion of time in the immobile state is highest in PMA+Cal-I (47%, Table A.1).

This is significantly higher than DMSO (5%, p = 2.8×10−8), Cyto D (17%, p = 0.0091),

and PMA (23% p = 0.031).

For trajectories where the two-state diffusion model was preferred, (excluding

the fast-switching trajectories), we examined if the diffusion coefficients between the two

diffusive states are related (Fig. 2.7A). The correlation coefficient is high (r=0.84), whilst

a linear relation is strongly suggested, D1 = 0.68D0 − 1.5× 104 nm2s−1, independent of

treatment, using all points except the 2 outliers. This suggests that the switching events

we are detecting are likely due to a single process. We also examined the relationship

between D0 and p10, D0 and the time in the high (z = 0) diffusion state and D1 and the

time in the low (z = 1) diffusion state, but found no correlation, Fig. 2.7B-D.
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Figure 2.7: Dependences of parameter estimates from two-state diffusion
model. (A-D) Scatter plots of posterior means for the two-state model with mea-
surement noise, for trajectories where the approximate two-state diffusion model was
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removed, D1 = aD0 +b, a = 0.68, b = −1.5×104 nm2 s−1; black dashed line is the double
iterate, D1 = a(aD0 + b) + b.
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We also examined the frequency of switching events for trajectories where the

two-state diffusion model was preferred, excluding fast switching trajectories. Fig. 2.8A

plots the exponentially distributed waiting times in each state (i.e. the reciprocal of

the inferred transition probabilities), demonstrating a broad range of values. Some

trajectories exhibit fast transient switching (Fig. 2.8A, trajectories clustered around

origin, example in Fig. 2.8B), although slower than that in stationary beads. Another

group of trajectories switch less frequently, with the time in a single state on the order of

tenths of seconds (Fig. 2.8C-D). We also observe trajectories with very slow switching,

Fig. 2.8E is an example of a trajectory with a single switch point, whilst some trajectories

spend the majority of time in the z = 0 (fast) state, with transient switching to the z = 1

(slow) state (Fig. 2.8F). This variety suggests that multiple processes are affecting the

waiting times since this range of behaviours would not be observed in a single exponential

waiting time model.
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Figure 2.8: Mean waiting times and example trajectories showing confinement
for two-state diffusion model fit to LFA-1 trajectories. (A) Mean waiting time
in seconds (1/(1000p̂01) for z = 0 state, 1/(1000p̂10) for z = 1 state) for trajectories
where approximate two-state diffusion model was preferred (fast switching, p̂01 > 0.1
or p̂10 > 0.1, trajectories removed). Treatments: DMSO, blue asterisks; Cyto D, red
squares; PMA black circles; PMA+Cal-I, green triangles. Labels B-F correspond to
example confinement state trajectories in B-F. (B-F) Confinement state inference shown
as the probability of being in the low (z = 1) diffusion state. (B) DMSO treatment
(mean waiting time in z = 0 state 0.02s, in z = 1 state 0.04s) (C) PMA treatment (z = 0
state 0.32s, z = 1 state 0.16s) (D) PMA treatment (z = 0 state 0.09s, z = 1 state 0.12s)
(E) PMA+Cal-I treatment (z = 0 state 1.48s, z = 1 state 0.39s) (F) DMSO treatment
(z = 0 state 0.04s, z = 1 state 0.72s).
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We examined the trajectories identified to be in the immobile state in the one-

state model. These trajectories show apparent phases of linear motion in arbitrary

directions, Fig. 2.9. Many trajectories have periods of consistent linear drifts in one

direction, (examples in Fig. 2.10), having speeds around 110 nm s−1. Some trajectories

also have distinct changes in direction, (Fig. 2.10 B,C). Since the stationary beads do

not show such drift, and the drift direction is variable, this is not due to microscope

or sample drift (Jurkat cells in this assay being immobile [57]), but most likely reflects

movements in the underlying actin cortex. These speeds are of the same order as the

retrograde flow of actin in Jurkat cells (50 nm s−1) [112].
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Figure 2.9: LFA-1 trajectories categorised as immobile (logeD < 8 in the one-
state model). Trajectories are from different cells, with the first timepoints shifted
to (0,0). Each trajectory is plotted in a different colour. Treatments: DMSO (3 of 75 in
immobile state), Cyto D (4 of 36 in immobile state), PMA (7 of 39 in immobile state),
PMA+Cal-I D (20 of 46 in immobile state). Scalebars: 50nm.

50



Time (s)

0 0.5 1 1.5 2 2.5 3 3.5 4

y
 p

o
si

ti
o
n
 (

n
m

)

-100

0

100

200

300

400

500
A  

Time (s)

0 2 4

x
 p

o
si

ti
o
n
 (

n
m

)

-50

0

50

100

150

200

250

300
B  

Time (s)

0 2 4

y
 p

o
si

ti
o
n
 (

n
m

)

-50

0

50

100

150

200
C  

Figure 2.10: Linear drifts in LFA-1 trajectories categorised as immobile
(logeD < 8 in the one-state model). (A) Vertical displacements for two example
trajectories. Blue line: DMSO treatment, v̄y = 117 nm s−1; red line: PMA treatment,
v̄y = 110 nm s−1. (B-C) Displacements for a trajectory (PMA treatment) with a switch
in drift direction. Estimated velocities: v̄x = 64 nm s−1, v̄y = 80 nm s−1, (average
between 0 s and 2.25 s), v̄y = −79 nm s−1 (average between 2.25 s and 3.75 s), giving
an average speed of 102 nm s−1.
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2.3.3 Approximate versus exact models with measurement noise

We used an approximate model (low noise limit) to compute the Bayes factor to deter-

mine which of the one and two-state diffusion models are preferred by each trajectory.

This approximation is justified since it gives similar results to the (exact) model on in-

dividual trajectories (Fig. A.5). On the LFA-1 trajectories that prefer the approximate

model the hidden state correlation between these two algorithms is typically 80% or

higher (Fig. A.6). The diffusion coefficient estimates are also highly correlated (Fig.

2.11), although they are lower under the approximation (significantly in a one-tailed

Mann-Whitney test, with p = 0.02 for D0 and p = 0.001 for D1), indicating that failing

to account for noise correlations in displacements introduces an estimation bias; this

may potentially reduce the ability to detect two-state diffusion processes when the two

diffusion coefficients are small (of order σ2/∆t). In fact we detect no intra-trajectory

switchings with both diffusion coefficients below 2 × 104 nm2s−1, Fig. 2.5. However,

trends are similar under both analyses - in common with the one-state and two-state

diffusion models with measurement noise, we also see two clear subpopulations in the

posterior mean and pooled posterior samples (Fig. A.7), and a linear relationship be-

tween the D0 and D1 posterior means (Fig. A.8). The approximate model therefore

performs well on real data although it underestimates diffusion coefficients (Fig. 2.11).

Thus, we consider the approximate model sufficiently accurate for model selection SPT

analysis, although parameter estimates are biased so we used the (exact) model for any

estimates and interpretation after model selection.
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Figure 2.11: Comparison of parameter estimates for exact and approximate
two-state diffusion models with measurement noise. (A-D) Scatter plots of two-
state parameter estimates for exact model against approximate model, for 30 trajectories
preferring the approximate two-state model (fast-switching, p̂01 > 0.1 or p̂10 > 0.1 in the
exact model, trajectories removed). Line of equality is shown as dashed. Treatments:
DMSO (blue asterisks), Cyto D (red squares), PMA (black circles), PMA+Cal-I (green
triangles).
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2.4 Discussion

We developed models and techniques for analysing single particle tracking data based

on displacements between frames, including a Bayesian model selection methodology

to ascertain whether the trajectory is more consistent with a one or two-state diffusion

process. We confirmed the accuracy of our methods on simulated data. Two key elements

of our analysis that distinguish it from other methods is the demonstration that model

parameters can be estimated with high confidence from individual trajectories (1000

frames s−1 over 4 s), thereby not requiring trajectories to be pooled, and the inclusion

of measurement noise in the trajectory inference, this propagating measurement error

through to parameter estimates. We demonstrate that failure to do so leads to an

inconsistency on stationary beads, (Fig. 2.1), while use of the noiseless model on the

LFA-1 trajectory data results in a doubling of the detection frequency of switching within

trajectories (Table A.2). In part this is a consequence of the low signal to noise ratio in

this data. An alternative method to deal with this low S/N is to subsample the data

so that the signal is larger (Fig. A.9). For example, modelling displacements over 4

time points reduces the effect of measurement noise. This unfortunately reduces the

sample size so a balance is needed between increasing the S/N without losing too much

data. We subsampled by applying a criteria per trajectory (see Appendix A.2 and Fig.

A.10). This subsampling analysis gave comparative results to those obtained for the

model with measurement noise on the whole data set, specifically similar numbers of

trajectories showed preference for the two-state model while there is a high correlation

in the model preference for each trajectory (Table A.3). This consistency between these

two independent methods indicates that experimental or tracking artifacts are present,

but effectively dealt with through these two alternative strategies.

Our methods were applied to single trajectories of LFA-1 tagged with latex beads

under four conditions; this allowed us to show that a low but significant proportion of

trajectories display within trajectory diffusion heterogeneity with switching between two

distinct diffusion coefficients over a range of values (1.6×102−2.6×105 nm2 s−1), while

the majority of trajectories conform to an homogeneous diffusion over the time scale of

the trajectory. By treating each trajectory individually, rather than pooling trajectories

in the analysis, we separate the heterogeneity due to this diffusive switching from a

heterogeneity across trajectories, i.e. there are considerably more than two diffusive

states. Previous LFA-1 studies that have pooled trajectory data miss a large component

of this variability because pooling averages the heterogeneity. Basic trends are however

consistent between the approaches, for instance Das et al., [8] demonstrated switching
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between two states which are comparable to our estimates (e.g. 8.5×104 nm2s−1 and

3.1 ×104 nm2s−1 for DMSO treatment). Three states of LFA-1 mobility have also been

previously reported - “stationary”, “slow” and “fast” with estimated diffusion coefficients

1.4 ± 0.1 × 104 nm2 s−1 and 5.6 ± 0.2 × 104 nm2 s−1 for the slow and fast components

respectively [37]. These are broadly in agreement with the two main peaks in the diffusion

coefficient distribution (Fig. 2.6A). However, our analysis demonstrates that fine detail

of particle behaviour can be detected in single trajectories, in particular the diffusion

coefficients can be estimated with high confidence thereby demonstrating that there

is a large variability between the mobilities in individual trajectories (Fig. 2.7). The

interpretation of the distribution of observed (mobile) diffusion coefficients, (Fig. 2.5E,

Fig. 2.6) is subjective, for instance two Gaussians could be fitted to model the main peaks

in Fig. 2.6A, thereby splitting the mobile trajectories into what could be interpreted as

slow and fast populations. However, as we demonstrate here the variability is not due

to measurement noise, but is intrinsic to the tagged-LFA-1 molecules, our confidence

intervals per trajectory being much smaller than the range. Thus, we prefer to interpret

this as a graded diffusion coefficient in a continuum. We demonstrated that for LFA-

1 there is switching between diffusion states on time scales of 10-100 ms, consistent

with previous analyses, [8, 75]. The former demonstrated confinement within single

trajectories, corresponding to our observation of the diffusion coefficient being reduced

by a factor of 1.6-23.2 under switching (Fig. A.11). However, our analysis extracts finer

details than these two studies, specifically we show that there are multiple categories

of behaviour, a low diffusion state consistent with immobility, and a sequence of higher

diffusion states; the existence of more than two states was hinted at in the analysis of

[8].

The high variability of the estimated diffusion coefficients among both fast and

slow trajectories may provide biological insight into the organisation of LFA-1 in the

membrane. Clustering and cytoskeletal contacts are central to the regulation of LFA-1

in the membrane [113]. Previous work has found that the movement of clusters on live

cells is dependent on the conformation of the receptor [109, 57]. We propose that the

multi-state diffusion observed in the current analysis is a result of changes in the size

of clusters, or the number of cytoskeletal contacts for those clusters. The relationship

in Fig. 2.7A suggests that the switching events we are detecting are all due to a com-

mon process. One interpretation is that we are observing diffusing aggregates of LFA-1,

either in protein islands [114], or due to multiple attachments of LFA-1 molecules with

the bead, a change in the aggregate size by 1 corresponding to a switch in the diffusion

coefficient. We hypothesise that the diffusion coefficient reflects the size of the aggregate;
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the cross section of a receptor or complex in the membrane has a predictable effect on

its diffusion [34]. However, the variability in the (high) diffusion coefficients that we

observe is inconsistent with this process alone. Since diffusion coefficients are observed

along the straight line in Fig. 2.7A, there is an heterogeneity that determines the diffu-

sion coefficient by smaller increments, and is presumably also responsible for the large

variability in the switching frequency, (Fig. 2.8). We thus have a hierarchy of processes:

on time scales less than 4 s we observe changes in the aggregate size producing large

changes in the diffusion coefficient according to Fig. 2.7A, and these aggregates are

also affected by a slower process that results in a finer heterogeneity (Fig. 2.6, 2.12).

A potential mechanism is cytoskeletal attachment, with the number of attachments in-

creasing with aggregate size thereby increasing the drag, and a sufficiently large number

of these interactions making the receptor aggregate immobile, giving an interpretation

of the non-zero intercept of the D0/D1 relationship in Fig. 2.7. This is consistent with

calpain inhibition having the highest level of immobility, Table A.1, since calpain cleaves

the talin head domain and releases LFA-1 from the cytoskeleton [110]. The fact that the

mobile diffusion coefficient is reduced under calpain treatment, Table A.1, also supports

the fact that cytoskeletal interactions are contributing to the aggregate drag. We also

demonstrated that the immobile states (detected predominantly as immobile through-

out) typically have a slow linear drift, with speeds of around 110 nm s−1. We suggest

that these correspond to LFA-1 (possibly clusters) strongly bound to the actin cortex,

and these drift phases correspond to cortex remodelling under actin (de)polymerisation,

myosin contraction or retrograde flux, [112]. Such drift was also detected by MSD anal-

ysis as super-diffusion (α > 1) [57].

Alternative interpretations are possible, we cannot discount the possible effect of

the multivalent probe on the experiment. It is possible that changes in diffusive states

are the result of different numbers of contacts between the probe and receptors in the

membrane. Resolving these issues will require a larger amount of data, of the order

of 100s of trajectories, and ideally across different sized and variable antibody density

beads.

Our analysis thus highlights the importance of large trajectory databases, with

trajectory resolution and length reflecting the dynamics of the system. Quantum dots

are an attractive option, since they are smaller than typical labelling molecules, and

provide long trajectories [53, 55]. Ideally data on different tagging regimes is also needed

to distinguish tag artifacts from molecule dynamics. With such data, sophisticated

(HMM) models of temporal heterogeneity can be utilised, extending for instance to

multi-diffusion states, confinement zones and drift, implemented with the algorithms and
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techniques demonstrated here to analyse individual trajectories. These methods applied

to large trajectory databases of long high-resolution trajectories will be an important

contribution to the understanding of the complexity of membrane organisation and the

multiple diffusion modalities present in cells [14].

Figure 2.12: Observed variation in the diffusion coefficient of LFA-1 in single
particle tracking trajectories, with proposed mechanisms.
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Chapter 3

A Confinement Hidden Markov

Model Analysis Identifies

Tag-Specific Signatures within

Single Particle Trajectories

3.1 Introduction

Single particle tracking (SPT) experiments offer a powerful method to analyse the mem-

brane environment through analysis of single particle movements. However, these meth-

ods require the molecule of interest to be tagged with a (trackable) label that is imaged

over a number of time steps. A number of experimental design limitations constrain

the amount of information that can be extracted from such data, including spatial ac-

curacy, temporal resolution and tracking period. New technologies are however capable

of extending both the trajectory length and achieving high sampling rates and spatial

resolution. A recent interferometric scattering microscopy (iSCAT) method [51, 50] can

generate very long high spatiotemporal resolution trajectories (< 2 nm spatial reso-

lution, sampled at 50 kHz, tracking GM1 lipid molecules in model membranes [51]).

However, a fundamental problem that impacts on interpretation is the effect of the tag

itself [58]. For example, an iSCAT study demonstrated both Gaussian-like and ring-like

confinement events; this was ascribed to multivalent binding of the tag [51]. Thus, a

clear problem in extending this technique to in vivo situations is the need to separate

out patterns that are due to the tag as opposed to the environment. Without achieving
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this separation, the high resolution dynamics measured by these techniques may well be

uninterpretable. A first step in this programme is to determine the statistical nature of

the tag’s signature on the trajectory.

Analysis of SPT data is not straightforward primarily because of the highly

stochastic nature of diffusion, making identification of deviations from free diffusion

difficult. This has led to the development of a range of statistical methods for trajectory

analysis, allowing statistical significance of heterogeneities to be assessed, and avoiding

over interpretation of Brownian motion. This includes a range of approaches that detect

deviations from Brownian motion, such as mean square displacement (MSD) methods

[60, 62, 63, 74, 42], confinement time methods [80, 81, 82, 75], and a new breed of

methods implementing a model based analysis within a hidden Markov chain framework

[8, 9, 10, 11, 12]. The latter methods allow for a switching of the movement dynamics to

different states along the trajectory, e.g. directed versus free diffusion, so offer a power-

ful method to capture the detail of the different states. For high resolution data, these

techniques have a clear advantage since they can utilise the high level of information

within the trajectory to extract fine detail in the movement characteristics.

In this chapter, we develop a harmonic potential well confinement hidden Markov

model (HMM) where the particle moves between two (hidden) states: a freely diffusing

state with (to be determined) diffusion coefficient D, and confinement in a harmonic po-

tential well (centre and strength to be determined). Working in a Bayesian framework,

we derived a Markov chain Monte Carlo (MCMC) algorithm to infer model parame-

ters and hidden states from a single trajectory. We tested the algorithm on simulated

data, and then applied it to a set of experimental GM1 lipid trajectories diffusing in

model membranes (generated by iSCAT microscopy). Specifically a (20nm or 40nm)

gold nanoparticle (AuNP) was coated in cholera toxin B subunits (CTxB), which then

bind to GM1 to form an AuNP/CTxB/GM1 complex [51], Fig. 3.1. On trajectories

of 20nm AuNP/CTxB/GM1 diffusing in model membranes on a glass substrate, we de-

tected clear periods of trapping in wells of mean radius 18nm with a mean trapping time

0.017s. However, we detected a number of deviations from homogeneity. Specifically the

trapping time distribution does not fit an exponential distribution - there is a far higher

frequency of longer trapping times than expected. Further, we observed that physical

trapping parameters, such as the confinement radius, do not come from the same dis-

tribution across the population of trajectories. Trapping events are thus heterogeneous,

suggesting different types of binding are occurring. We demonstrate that binding events

within individual trajectories are more similar than between trajectories; thus indicating

that the AuNP/CTxB/GM1 particles are not homogeneous and individual particles have
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specific binding characteristics. We also analysed 40nm AuNP/CTxB/GM1 diffusing in

model membranes on a mica substrate, and detected no trapping. This is consistent

with previous analysis of this data indicating that glass substrates possess impurities

where GM1 (on the lower leaflet) is immobilised, these impurities being absent on mica

surfaces.

AuNP

Streptavidin

CTxB

GM1

DOPC

Glass

Surface patch

Figure 3.1: Schematic of AuNP/CTxB/GM1 structure in Spillane et al. iS-
CAT SPT experiment. Based on a figure in reference [51].

This chapter is organised as follows. In Results we introduce the harmonic poten-

tial well confinement model (HPW model) and associated inference (MCMC) algorithm

then demonstrate accurate inference of model parameters and hidden states on simulated

trajectories. We then apply the algorithm to iSCAT trajectories of AuNP/CTxB/GM1

diffusing in model membranes. The full derivation of the MCMC algorithm is then

described in Methods.
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3.2 Results

3.2.1 Harmonic potential well model

For a single particle tracking trajectory X = {∆Xi,∆ti}Ni=1, where ∆Xi = {∆X(1)
i ,∆X

(2)
i }

is 2D, we build a model where the particle switches between free and confined states. We

let zi = 0 if the particle is in the free state at time ti and zi = 1 for the confined state.

The state zi+1 depends only on zi and, assuming a constant frame rate, the transition

probabilities are

free (z = 0)
pesc
�
ptrap

confined (z = 1). (3.1)

ptrap and pesc are the probability per frame of switching to the confinement state and

out of confinement respectively. The probability of being in state zi+1 given state zi is

therefore

π(zi+1|zi) = Bernoulli(zi+1; zi(1− pesc) + (1− zi)ptrap) (3.2)

where Bernoulli(x; p) denotes the Bernoulli probability distribution with variable x and

parameter p. We use this notation for probability distributions throughout.

In the free state the particle diffuses freely with diffusion coefficient D. In the

confined state the particle is assumed to have a directed component to its diffusive

motion, proportional to the distance from the well centre Ci = {C(1)
i , C

(2)
i }, i.e. the

force is proportional to Xi − Ci. We refer to this as harmonic potential well (HPW)

confinement. During confinement the centre diffuses much slower than the particle itself

(diffusion coefficient DC << D). When the particle is free C diffuses with diffusion

coefficient D̂, where D̂ is sufficiently high that the centre can relocate between different

confinement zones; the centre is thus still present even when it is not affecting the

particle. In particular this means that the centre C can diffuse as fast as the particle

during free diffusion; we thus use the maximum likelihood estimate of the diffusion

coefficient for D̂ estimated directly from the trajectory, although any other value can be

used that is sufficiently large as it does not affect estimation of the other parameters.

The stochastic differential equations (SDEs) for this model are

dXt = −κzt(Xt − Ct)dt+
√

2DdWt (3.3)

dCt =

√
2
(
DCzt + D̂(1− zt)

)
dW

(C)
t , (3.4)

where Wt,W
(C)
t are independent Weiner processes. The model has two hidden states to

be inferred throughout the trajectory: z (the state, confined or free) and C (position

61



of HPW centre when confined); and five parameters: diffusion coefficients D and DC ,

strength of the harmonic potential well κ, and transition probabilities pesc, ptrap. Fig. 3.2

is a simulated HPW model trajectory, and Algorithm 1 shows the simulation algorithm in

pseudocode (using the Euler approximation to the SDEs). For the simulation algorithm

we used a slightly different model, where the centre C tracks X when not confined,

so that when z moves from free diffusion to confinement X is close to C. (Note the

difference between Equation (3.4) and the distribution of Ci+1 in Algorithm 1.) This

allows for confinement zones to be small relative to the field of view.

Figure 3.2: Simulated harmonic potential well (HPW) model trajectory.
Model parameters: D = 0.5 µm2 s−1, D̂ = 0.5 µm2 s−1, DC = 0.01 µm2 s−1, κ = 3000 s−1,
pesc = 0.001, ptrap = 0.002, time step 0.0002s. Colormap represents confinement state,
with blue free diffusion and yellow confined. Colorbar length 0.1 µm.

MCMC sampler. We developed an MCMC algorithm (see Methods) to fit the HPW

model to 2D trajectory data, X = {∆Xi,∆ti}Ni=1. For an SPT trajectory, the algorithm

samples the posterior distribution, π(θ, z,C|X), giving samples of the parameters θ(k) =

{D(k), D
(k)
C , κ(k), p

(k)
esc, p

(k)
trap}Kk=1, and the hidden states {z(k),C(k)}Kk=1, where z = {zi}Ni=1

and C = {Ci}Ni=1. (Recall that Xi = {X(1)
i , X

(2)
i } and Ci = {C(1)

i , C
(2)
i } are 2D). We

determined convergence of the MCMC sampler by calculating the Gelman point scale

reduction factor (PSRF) [92].

62



Algorithm 1 Simulation algorithm for harmonic potential well model.

{D, D̂,DC , κ, pesc, ptrap} ← choice of model parameters
{∆ti}N+1

i=1 ← choice of time steps (∆ti = ti+1 − ti)
X1 ← initial particle position
C1 ← initial harmonic well centre position
z1 ← initial confinement state
for i = 1 to i = N − 1 do

zi+1 ← random number drawn from Bernoulli(zi(1− pesc)) + (1− zi)ptrap)
Ci+1 ← random number drawn from

N

(
Ci + κ∆ti(1− zi)(Xi − Ci),

(
2∆ti(DCzi + D̂(1− zi))

)−1
)

Xi+1 ← random number drawn from N
(
Xi − κ∆tizi(Xi − Ci), (2D∆ti)

−1
)

end for
XN+1 ← random number drawn from N

(
XN − κ∆tNzN (XN − CN ), (2D∆tN )−1

)
3.2.2 MCMC on simulated data

The HPW model sampler was extensively tested on simulated data. Figs. 3.3 and 3.4

show an MCMC run on a simulated trajectory (previously shown in Fig. 3.2). The

parameter posteriors are consistent with the true (i.e. simulation) values (Fig. 3.3); the

ptrap distribution is based on only 2 events hence explaining its poor reconstruction of

the true value. Longer trajectories with more events gave consistent reconstruction in all

parameters (not shown). When confined, the inferred centre closely tracks the simulated

centre (Fig. 3.4A,B), and every confinement event is accurately inferred (Fig. 3.4C).

During periods of free diffusion the centre diffuses; the inferred model parameters are

independent of the algorithm parameter D̂ (diffusion coefficient of the centre during free

diffusion of the particle).
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Figure 3.3: Posterior parameter distributions of the HPW model for a simu-
lated trajectory. (A) Posterior distribution for D (blue) and DC (red), with simula-
tion values (circles), (B) corresponding MCMC values (12 independent chains of 10000
steps with a 5000 step burn in, dashed line). (C) Posterior for κ and simulation value
(circle), (D) corresponding MCMC values. (E) Posterior for pesc (blue) and ptrap (red),
with simulation values (circles), (F) corresponding MCMC values. Simulation parame-
ters: D = 0.5 µm2 s−1, D̂ = 0.5 µm2 s−1, DC = 0.01 µm2 s−1, κ = 3000 s−1, pesc = 0.001,
ptrap = 0.002, time step 0.0002s. MCMC priors as Methods.
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Figure 3.4: Hidden state inference for the HPW model for a simulated trajec-
tory. (A-B) Mean inferred position of the harmonic potential centre in x and y directions
(black), and simulated centre (red). Coloured line at the top represents particle state:
free diffusion (blue) and and confinement (yellow). (C) Inferred confinement probabil-
ity (black line) and simulated confinement value (red area). (D) trajectory coloured by
mean inferred confinement state, from π(zi|X) = 0 (blue, free) to π(zi|X) = 1 (yellow,
confined). Colorbar length 0.1µm. Trajectory and MCMC as Fig. 3.3.
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3.2.3 GM1 molecules diffusing in model membranes

We applied the MCMC algorithm to previously published iSCAT SPT data [51], where

CTxB coated AuNPs were introduced to a DOPC lipid bilayer containing 0.03% GM1

lipids. Confinement events were detected, which displayed two distinct spatial localisa-

tions: a Gaussian-like localisation and a ring-like confinement. The authors proposed

that the CTxB attached to the AuNP (by streptavidin) binds multiple GM1 on the

upper membrane leaflet; these GM1 interact with GM1 in the lower leaflet. A bind-

ing (confinement) event corresponds to an interaction with a lower leaflet GM1 that is

immobilised to the glass surface; no binding events were observed for GM1 in model

membranes on mica surfaces. Rocking of the AuNP around the binding site then pro-

duces a Gaussian confinement localisation. Non-Gaussian confinement distributions are

explained by a second CTxB on the nanoparticle transiently binding to another, pos-

sibly diffusing GM1. These multiple-bound particles yield trajectories centered around

an immobilized central CTxB that resembles a ring-like structure at the nanoscale. We

investigated these confinement events in greater detail using our hidden Markov model.

The dataset includes 71 trajectories of 20nm AuNP/CTxB/GM1 diffusing in a

model membrane on a glass substrate, and 18 trajectories of 40nm AuNP/CTxB/GM1

diffusing in a model membrane on a mica substrate. To determine if subsampling is

necessary (to increase the signal to noise ratio), we performed an MSD analysis indicating

that a subsampling of 10 is appropriate, (Appendix B.1, [62]). This analysis in fact

revealed a dynamic error in the localisation efficiency at the 50 kHz sampling rate, that

results in apparent superdiffusive behaviour at short times, [51]. Subsampling down

to 5 kHz removes this problem. We also removed trajectory artifacts due to multiple

AuNPs in the focal area (Appendix B.1).

Bayesian inference (MCMC) - fitting models to trajectories. We applied the

HPW model inference algorithm individually to trajectories, thus computing samples

from the parameter posterior distributions θ(k) = {D(k), D
(k)
C , κ(k), p

(k)
esc, p

(k)
trap}Kk=KB

and

hidden state posteriors {z(k),C(k)}Kk=KB
, where KB is the length of the MCMC burn in.

As described in Methods, we determined convergence by calculating the Gelman point

scale reduction factor (PSRF) [92], considering a trajectory converged if the PSRF was

less than 1.2 for all parameters. The MCMC run length was increased for runs that

failed to converge up to a maximum of 4 × 105 steps. Out of a total of 71 20nm

AuNP/CTxB/GM1 trajectories, the MCMC did not converge for 1 trajectory according

to this condition. (Running 4 × 105 steps for a single trajectory took around 3 days of
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CPU time, hence significantly longer runs were not feasible.) The following analysis is

therefore based on the set of 70 trajectories with converged MCMC runs.

3.2.4 Analysis of 20nm AuNP/CTxB/GM1 on glass trajectories

An example of the model fit is shown in Fig. 3.5, with associated (posterior) parameter

estimates in Fig. 3.6. Particle state (confined or free diffusion) is well distinguished

(probabilities near 0 or 1, Fig. 3.5C). The parameter estimates for D and κ are tight (low

relative standard deviation), while the diffusion coefficient of the centre is very low, DC =

0.011±0.0012 µm2 s−1 (mean ± s.d.) compared to D = 0.18±0.0048 µm2 s−1, indicating

near complete immobilisation of the well. The inferred position of the well centre is also

practically stationary in both coordinates during periods of confinement, Fig. 3.5A,B. As

an independent measure of changes in mobility, we examined the local diffusion coefficient

(Fig. 3.5D), which demonstrates a clear shift at around 0.5 s (i.e. the first inferred switch

point). By colour coding the trajectory according to the probability of being confined

per frame, we can also detect clear periods of confinement with approximately circular

occupation profiles (Fig. 3.5E). The probability per frame of switching is reasonably well

inferred (Fig. 3.6C), the broadness of the distributions coming from the small number of

events. The probability of escape from a confinement zone is smaller than the probability

of trapping, reflecting the short periods of time that the AuNP/CTxB/GM1 complex

is undergoing free diffusion. We also observed that some confinement zones are visited

multiple times, Fig. 3.7.

Since our method is applied to individual trajectories, we can examine the pa-

rameter estimates across the population of particles and determine if the population is

homogeneous, Fig. 3.8. This allows quantification of the level of variability in parameters

across trajectories. The marginal posterior means for D are consistent with estimates

from an MSD analysis, with a mean diffusion coefficient D over all trajectories of 0.41 ±
0.025 µm2 s−1 (0.34 ± 0.03 µm2 s−1 in the MSD analysis, Appendix B.1). However the

spread between trajectories is substantially larger than the uncertainty on individual

trajectories (the ratio of the mean within trajectory posterior variance to population

variance of means is 0.0016 and 0.0071 for D and κ respectively). The parameter dis-

tributions would be Gaussian if the trajectories are statistically identical, i.e. derive

from the same mechanistic and environmental processes. However, both D and κ show

distinct deviations from being Gaussian, suggesting that binding mechanisms are not

identical across AuNPs and heterogeneity is present across trajectories.
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Figure 3.5: Hidden state inference for the HPW model applied to a 20nm
AuNP/CTxB/GM1 trajectory. (A-B) Mean inferred position of the harmonic po-
tential well centre C (x, y components) and upper coloured bar representing π(z|X),
(colour scale goes from π(zi|X) = 0 (blue, free) to π(zi|X) = 1 (yellow, confined)). (C)
Inferred mean confinement state, (D) moving average of local maximum likelihood dif-
fusion coefficient estimate, window size 100, (E) trajectory coloured by mean inferred
confinement state, colorbar length 0.1 µm. Data based on mean of 12 independent chains.
MCMC priors and convergence criteria as Methods.
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Figure 3.6: Posterior parameters of the HPW model applied to a 20nm
AuNP/CTxB/GM1 trajectory. (A) Posterior distributions for D (blue) and DC

(red). (B) Posterior for κ. (C) Posteriors for pesc and ptrap. Distributions consist of
samples pooled from 12 independent runs. Corresponding MCMC chains shown in Fig.
B.3. Trajectory and MCMC runs as Fig. 3.5.

State lifetimes. We examined the state lifetimes for confinement events and free

diffusion by examining the posterior hidden state distribution of z. For each trajectory,

at each time point i, we have the probability of confinement π(zi|X). To partition

the trajectory into states we turned this into a Binary signal, zB = 0 or zB = 1, for

free diffusion and confinement respectively. We used a threshold of 0.5; for all i with

π(zi|X) < 0.5, zB = 0 and for all i with π(zi|X) > 0.5, zB = 1. We then defined trapping

events as a series of ones in the (posterior) binary state vector zB, and free diffusions

as a series of zeros. We did not include events which contained either the first or last

timepoint, as we had not witnessed the full event, and hence the exact state lifetime is

unknown. Thus for some trajectories no events were included in this analysis. There is

a large variation in confinement event lifetimes across trajectories (Fig. 3.9A-B), which

was significant in a one-way ANOVA (p = 6.1×10−80, 1959 events across 59 trajectories).

The lifetimes of free diffusion events were also heterogeneous, (p = 1.2× 10−26, one-way

ANOVA on 63 trajectories, 2011 events).

To test the assumption that switching between the two states obeys first order

kinetics, we fitted an exponential distribution to all state events, and plotted a Q-Q

plot of the events against these distributions, Fig. 3.9C-E. The Q-Q plot for trapping

events (Fig. 3.9C) shows a distinct deviation from an exponential distribution fit (PDF:
1
µ exp− t

µ , mean event time µ = 0.017s), specifically there are a far higher proportion

of longer trapping events, indicative of mechanism heterogeneity. A mixture of 2 expo-
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Figure 3.7: 3D representation of HPW model applied to a 20nm
AuNP/CTxB/GM1 trajectory. Colour represents the inferred hidden state. Cor-
responding hidden state and parameter posteriors are shown in Figs. 3.5 and 3.6 respec-
tively.
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Figure 3.8: Histogram of the mean (posterior) parameters for HPW model
applied to 20nm AuNP/CTxB/GM1 on glass trajectories. A) Particle diffusion
coefficient, B) harmonic well centre diffusion coefficient, C) harmonic well strength.

nentials (µ1 = 0.0034s, µ2 = 0.076s with weights 0.81 and 0.19 respectively) is a better

fit, Fig. 3.9D, suggesting that the confinement events are a heterogeneous population

with at least two components. (The two-component exponential parameters are max-

imum likelihood estimates, for PDF αµ1 exp(µ1x) + βµ2 exp(µ2x), where α and β are

the weights of the two components.) For free events the exponential fit (µ = 0.0023s,

mean of 11.5 frames in the subsampled data) is a much closer fit to the observed event

lengths, Fig. 3.9E.

Confinement event profiling. The population heterogeneity detected above in bind-

ing time (Fig. 3.9), in the parameter estimates for κ and D (Fig. 3.8A,C), and the

confinement event shape [51] may arise through a mechanism operating on indivdual

events, or at the level of trajectories. To determine if there is structure in the hetero-

geneity we analysed trapping events restricted to events of at least 0.01s (50 subsampled

timepoints). Unlike the earlier state lifetime analysis, for spatial statistics we included

events which contain the first or last timepoint. We also removed events which revisited

a previous trapping zone, as these events could potentially have greater similarity and

dependence than spatially independent events, e.g. Fig. 3.7. We only included subse-

quent events if the confinement centre C was at least 30nm away from all previous event

centres in that trajectory. This left a set of 325 confinement events, with the number of

events within a trajectory varying from 1 (there were 6 examples where the particle re-

mained trapped for the entire trajectory) to 12 under these restrictions. (When directly

comparing spatial statistics to lifetime statistics, we clearly have to remove the events
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Figure 3.9: Confinement event lifetimes are not exponentially distributed.
Plots A-E include all confinement events (no length restriction), with the exception that
events which contained either the first or last timepoint are excluded. A) Histogram of
all confinement lifetimes (1959 events). B) Scatterplot of confinement lifetimes against
trajectories ordered by mean lifetimes. (C-E) Q-Q plots of state lifetimes against expo-
nential fits. C) Confinement events against exponential (µ = 0.017 s, R2 = 0), D) con-
finement events against samples (n = 104) from mixture of 2 exponentials (µ1 = 0.0034
s, µ2 = 0.076 s, weights 0.81 and 0.19 respectively, R2 = 0.99), E) free diffusion lifetimes
(2011 events) against exponential (µ = 0.0023, R2 = 0.98). Red line is extrapolated
linear fit to the first and third quantiles.
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that include the first or last timepoint, this leaves a set of 269 events.) We denote the

timepoints of the mth confinement event in the lth trajectory Tlm, with associated par-

ticle positions Xlm and harmonic well centre positions Clm. For each confinement event

we define a number of spatial statistics, Table 3.1; the length constraint ensures that

the confinement event shape can be quantified. These were based on the (Euclidean)

distance between particle positions and the mean confinement centre, which we call the

confinement radius. (Note that we have ignored the uncertainty in the confinement

centre, and therefore this error is not propagated to the estimates of spatial statistics.)

For each event we have a sample of confinement radius values, Rlm = {Ri}i∈Tlm , where

Ri = ‖Xi − C̄lm‖, from which we can compute for each event the mean confinement

radius, R̄lm, and various measures of deviation of the 2D distribution from a Gaussian

(Table 3.1), including the skewness of this confinement radius distribution (or “radial

skewness”), Slm. For a 2D Gaussian distribution the radial displacements from the mean

are Rayleigh distributed, and hence have skewness 2
√
π(π−3)

(4−π)3/2 ≈ 0.63. The mean R̄lm over

all trajectories is 18 nm (Fig. 3.10A), comparable to the size of the AuNP.

Table 3.1: Calculation of confinement event statistics.

Statistic Calculation

Confinement radius Rlm = {Ri}i∈Tlm , Ri = ‖Xi − C̄lm‖
Mean confinement radius R̄lm = 1

Mlm

∑
i∈Tlm Ri

Radial skewness Slm = E[Rlm−R̄lm]3

(var[Rlm])3/2

Radial mean-median distance |R̄lm − R̂lm|
Radial SD

√
var[Rlm]

We denote the set of timepoints of the mth trapping event in the lth trajectory Tlm.
Events have associated particle positions Xlm = {Xi}i∈Tlm and harmonic well centre
positions Clm = {Ci}i∈Tlm . When calculating these statistics we restricted to trapping
events of at least 0.01s. In general, we also removed events which revisit a previous
trapping zone (we didn’t include events if C̄lm was within 30nm of a previous C̄lm
within trajectory l). In some cases we also included events that contained the first or
last timepoint (leaving a set of 325 events). In other cases (generally when comparing
to event lifetime statistics) we remove them, leaving a set of 269 events (or 486 if
including events revisiting the same location). Mlm is the number of timepoints in Tlm,
thus C̄lm = 1

Mlm

∑
i∈Tlm Ci is the mean posterior harmonic well centre. ‖.‖ denotes the

Euclidean distance, andˆdenotes the median.

It is reasonable to suppose that both the non-exponential lifetime and the non-
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Figure 3.10: Shape statistics for confinement events in 20nm
AuNP/CTxB/GM1 trajectories. Plots include all confinement events of at
least 0.01s, with events revisiting a previous trapping zone removed (giving 325 events,
as described in Table 3.1). (A-B) Histograms over all confinement events. (C-D)
Scatterplots against trajectories ordered by average within trajectory value of the
statistic. (E-F) Scatterplots of statistics against (log) event lifetime.
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Gaussian shape of confinement events may have the same underlying cause. However,

we found no correlation between confinement state lifetime and R̄lm (Table 3.2, Fig.

3.10E), and only a weak correlation between Slm and lifetime, (Table 3.2, Fig. 3.10F).

This suggests that the non-exponential nature of the binding lifetime is only weakly

related to the shape of the binding event.
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Confinement event statistics varied across the population of events (Fig. 3.10 A-

B) with a large variation across trajectories (Fig. 3.10 C-D). A one-way ANOVA showed

that the population was not homogeneous and within trajectory variation was lower than

between trajectories for R̄lm (p = 2.3 × 10−12, 325 events across 70 trajectories), and

Slm (p = 3.2 × 10−8, 325 events across 70 trajectories). (This was more significant if

including events revisiting the same location: for Rlm p = 5.5× 10−47, 542 events across

70 trajectories; for Slm p = 6.8×10−18, 542 events across 70 trajectories.) This compared

to confinement event lifetimes as calculated earlier (p = 6.1× 10−80, one-way ANOVA),

indicating that lifetimes also have greater variability between trajectories. For instance,

some particles remain trapped for the entire trajectory (1 s), whereas others rapidly

switch in and out of confinement. Additionally, the mean variance within trajectories

was smaller than the variance across all events for R̄lm and Slm with ratios of around 0.6

(Table 3.3). Events within a trajectory are thus more similar to each other than events

in different trajectories.

77



T
ab

le
3.

3:
C

o
m

p
a
ri

so
n

o
f

w
it

h
in

a
n

d
b

e
tw

e
e
n

tr
a
je

c
to

ry
v
a
ri

a
n

c
e
s

fo
r

c
o
n

fi
n

e
m

e
n
t

e
v
e
n
t

st
a
ti

st
ic

s.

S
ta

ti
st

ic
M

ea
n

w
it

h
in

tr
a
je

ct
or

y
va

ri
an

ce
V

ar
ia

n
ce

ac
ro

ss
al

l
ev

en
ts

M
ea

n
co

n
fi

n
em

en
t

ra
d

iu
s

(R̄
lm

)
2.

5
×

10
−

5
µm

2
4
.4
×

10
−

5
µm

2

R
ad

ia
l

sk
ew

n
es

s
(S
lm

)
0.

69
1.

17

R
ad

ia
l

m
ea

n
-m

ed
ia

n
d

is
ta

n
ce

7.
0
×

10
−

7
µm

2
1
.1
×

10
−

6
µm

2

R
ad

ia
l

S
D

4.
5
×

10
−

6
µm

2
9
.0
×

10
−

6
µm

2

C
on

fi
n

em
en

t
ev

en
t

li
fe

ti
m

e
0.

02
3

s2
0
.0

19
s2

S
p

at
ia

l
st

at
is

ti
cs

ca
lc

u
la

te
d

on
th

e
se

t
of

32
5

ev
en

ts
ob

ta
in

ed
b
y

ap
p

ly
in

g
th

e
re

st
ri

ct
io

n
s

gi
ve

n
in

T
ab

le
3.

1.
L

if
et

im
e

st
at

is
ti

cs
ca

lc
u
la

te
d

on
se

t
of

26
9

ev
en

ts
,

al
so

d
es

cr
ib

ed
in

T
ab

le
3.

1.

78



To determine which physical variable is most strongly conserved within individual

trajectories, we clustered (using k-means with squared Euclidean distance) our confine-

ment event statistics and calculated the sum of the Shannon diversity index over all

trajectories (Fig. 3.11). This gives a measure of how events from the same trajectory

are distributed across the clusters, a lower Shannon Index indicating that events from

the same trajectories remain grouped in the same cluster. Since we are comparing spa-

tial and lifetime statistics, we removed events that include the first or last timepoint

(leaving 269 or 486 events, depending on the inclusion of events revisiting the same

location). The property that is most highly preserved in trajectories is the mean con-

finement radius (R̄lm), whilst the other statistics all performed better than random, (Fig.

3.11). Spatial statistics performed better when repeat confinement events were included

(Fig. 3.11B). This supports the conclusion above that an individual AuNP/CTxB/GM1

complex determines the characteristics of the binding events throughout the trajectory,

events within a trajectory being more similar than events between trajectories.

In order to illustrate the conservation of statistics within trajectories, and their

variation across trajectories, we compared two representative trajectories with 18 con-

finement events of at least 0.01s (11 and 7 on removal of events revisiting the same

location), Fig. 3.12 A,B. A histogram of the particle positions pooled over the confine-

ment events (as defined to give 325 events in Table 3.1) in each trajectory demonstrates

a clear difference in 2D confinement shape, Fig. 3.12 C, E. The mean confinement ra-

dius (R̄lm) for events was significantly different across these trajectories (p = 0.0019,

two-tailed t-test); the difference between the skewness (p = 0.34) and the confinement

lifetime (p = 0.40) was not significant. However, the confinement event signatures are

stronger if confinement events that revisit a previous trapping zone are included, Fig.

3.12 D, F. In this case, there is also a significant difference in the skewness (p = 0.04),

yet the confinement lifetime is still insignificant (p = 0.93).

These trajectories highlight that a clear confinement signature is present in tra-

jectories, thereby indicating that an individual nanoparticle determines the nature of

the confinement events, each having a similar confinement time, radius of confinement

and degree of non-Gaussian localisation. We also plotted the representative confinement

histograms for all 70 20nm AuNP/CTxB/GM1 trajectories, which showed a wide variety

of confinement shapes (ordered by the average within trajectory R̄lm, Fig.B.4; and by

the average within trajectory Slm, Fig. B.5).
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Figure 3.11: Clustering of confinement events in 20nm AuNP/CTxB/GM1
trajectories. Individual confinement events were clustered (k-means with squared Eu-
clidean distance metric) based on event statistics. For each trajectory, l, the Shannon
diversity index, Hl = −

∑Nclusters
j=1 pj log pj , was calculated (pj is the proportion of the

events in trajectory l that appeared in cluster j). The sum of the Shannon diversity in-
dex over all trajectories is then a measure of the similarity of events within trajectories.
The event statistics (shown in the legend) are defined in Table 3.1. For each choice of
Nclusters, 50 separate clusterings were performed. and the sum of the Shannon diversity
index was averaged over these clusterings. A) 269 events, obtained as described in the
main text and Table 3.1. B) Same as (A), except with events which revisited a previous
trapping zone included (486 events).
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Figure 3.12: Two example 20nm AuNP/CTxB/GM1 trajectories. (A-B) Tra-
jectories coloured by mean inferred confinement state, from π(zi|X) = 0 (blue, free) to
π(zi|X) = 1 (yellow, confined), colorbar length 0.1 µm. (C-D) Histograms of particle po-
sitions pooled over all confinement events for trajectory A. For each event, the mean par-
ticle position was shifted to (0, 0). For (C) confinement events were included based on the
criteria in Table 3.1; for (D) we also included events that revisit a previous trapping zone
(C: 11 events, average R̄lm = 0.014 µm; D 18 events, average R̄lm = 0.014 µm). (E-F)
Corresponding pooled histograms for trajectory B. (E: 7 events, average R̄lm = 0.012 µm;
F: 18 events, average R̄lm = 0.012 µm). Side length of images (C-F) is 0.1 µm.
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To dissect the relationship between event lifetime and confinement shape further

we split the population of events (269, Table 3.1) into two equal groups by thresholding

R̄lm and Slm at the population medians. For R̄lm this gives a value of 0.017 µm; a Q-Q

plot (Fig. 3.13A) and two-tailed t-test (p = 0.56) are consistent with the confinement

event lifetimes of these groups coming from the same distribution. This strongly suggests

that the non-exponential nature of trapping lifetime (Fig. 3.9) does not have the same

underlying cause as the observed heterogeneity in the confinement event radius between

trajectories. We also split Slm at the median (0.96) which yielded groups where event

lifetimes had different distributions, Fig. 3.13B. There are clearly more events with

non-Gaussian characteristics (i.e. Slm > 0.96) and short lifetimes, Fig. 3.14A, and

the difference between these groups is significant (p = 5.8 × 10−7, two-tailed t-test).

For Slm > 0.96 there is a reasonable fit to an exponential distribution (Fig. 3.14C,

R2 = 0.93). Thus there may be a common mechanism causing both the non-exponential

lifetime of confinement events (Fig. 3.9) and higher radial skewness (Fig. 3.10B,D,F).
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Figure 3.13: Q-Q plots of confinement event lifetimes split by confinement
shape statistics. Lifetimes were split into two groups (134 events in each group) by
thresholding at the median of the shape statistic, then the quantiles of these groups
were plotted against each other. (A) Events grouped by confinement radius (R̄lm) with
threshold 0.017 µm (mean event times: 0.08 s for R̄lm < 0.017 µm, 0.09 s for R̄lm >
0.017 µm). (B) Events grouped by radial skewness (Slm) with threshold 0.96 (mean
event times: 0.13 s for radial skewness < 0.96, 0.05 s for radial skewness > 0.96).
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Figure 3.14: Confinement event lifetimes are affected by radial skewness.
(A) Histogram of confinement event lifetimes, split into two groups (134 events in each
group) by thresholding the median radial skewness over all events. (B-C) Q-Q plots of
corresponding grouped confinement event lifetimes against exponential fit. (B) Radial
skewness < 0.96 (parameter for exponential fit, µ = 0.13 s; R2 = 0.72), (C) radial
skewness > 0.96 (µ = 0.05 s, R2 = 0.93).
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Analysis of 40nm AuNP/CTxB/GM1 on mica trajectories. As a control, we

analysed trajectories of 40nm AuNP/CTxB/GM1 diffusing in SLBs on a mica sub-

strate. A previous analysis demonstrated that no confinement for this treatment was

present [51]. We applied the HPW model to 18 40nm AuNP/CTxB/GM1 trajectories;

all MCMC chains converged according to the Gelman PSRF condition (described in

Methods). No confinement events were detected in any trajectory (Fig. 3.15).

Time (s)

0 0.2 0.4 0.6 0.8

C
o
n
fi
n
e
m

e
n
t 
P

ro
b
a
b
ili

ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.15: GM1 trajectories in SLBs on a mica substrate show no confine-
ment. Inferred mean confinement state (average from 12 MCMC chains) from the
harmonic potential well model applied to 40nm AuNP/CTxB/GM1 trajectories in SLBs
on mica. 18 trajectories of varying lengths (0.16-0.8s) each plotted in a different colour.
The highest confinement (posterior) probability in any trajectory, at any time was 0.12.

3.3 Discussion

We developed a harmonic potential well HMM for the partitioning of single particle

tracking trajectories into periods of free diffusion and confinement within a Bayesian

framework. The model determines the times for switching between the two states, the

diffusion coefficient D, and characteristics of the confinement: potential well strength

κ, centre C and centre diffusion coefficient DC . On simulated data confinement zones

were accurately detected, and on experimental GM1 trajectories (that are known to

display immobilisation) it partitioned the trajectory with high confidence, Fig. 3.5. By

examining partitioned events we also demonstrated heterogeneity in the confinement

events with respect to the confinement strength (potential well strength κ, Fig. 3.8C),

confinement radius (Fig. 3.10), and confinement lifetime (Fig. 3.9). Event charac-
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teristics were also more similar within trajectories than between. We also used a two

diffusion coefficient HMM to partition these trajectories (data not shown), specifically

a model where the particle’s diffusion coefficient switches between two (or more) states

[8, 9, 10, 11, 12]. Using a Bayesian algorithm for inference of this model (i.e. [115])

failed to detect periods of immobility. This implies that the the diffusion coefficient of

the AuNP/CTxB/GM1 complex doesn’t change during confinement events; the wobble

of the nanoparticle within the confinement zone allowing the diffusion coefficient to be

estimated because of the high positional accuracy and high temporal sampling of these

data. Subsampling could potentially lead to a difference in the (effective) diffusion coeffi-

cient between periods of confinement and free diffusion, but the short half-life of periods

of free diffusion would mean that many switching events would be lost. This implies

that appropriate models need to be used for analysis of high resolution data sets, models

that correctly reflect the particle’s behaviour. To this end, we also developed a HPW

model incorporating measurement error. We did not use this model for the full analysis

because of the unnecessary (we obtained almost identical results on both the 20nm glass

and 40nm mica datasets when subsampling and discounting measurement error) and

higher model complexity the increased computational time. These HMM methods of

analysis of SPT trajectories have advantages over other methods for detecting confine-

ment in single trajectories [80, 81, 82, 75], since they do not rely on tuning algorithm

parameters by comparison with Brownian motion. Additional parameters (such as con-

finement strength κ and centre C) can also be extracted which allow comparison of

confinement events across and within trajectories.

We demonstrated that confinement events have more similar physical characteris-

tics (confinement time, confinement radius, radial skewness - defined in Table 3.1) within

a trajectory, than between trajectories. The mean confinement radius and confinement

time are the statistics most strongly conserved within trajectories (Fig. 3.11, Fig. B.4).

However, it is clear that R̄lm does not correlate with confinement event lifetime (Table

3.2, Fig. 3.10E, Fig. 3.13A). On the other hand, there is a weak dependence between

radial skewness and confinement lifetime (Fig. 3.10F, Fig. 3.14); as skewness increases,

the lifetime typically decreases. This indicates that the tag-target complex itself deter-

mines the characteristics of the binding events along these 3 predominantly independent

factors. The non Gaussian nature of the confinement strength and the non exponential

nature of the confinement time indicate heterogeneity in binding events, suggestive of

higher order binding.

These dependencies are consistent with the AuNP/CTxB/GM1 particles com-

prising a mixed population that have various numbers of CTxB attachments to GM1 on
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the surface, and these remain attached throughout the trajectory thereby giving con-

finement events similar characteristics (Fig. 3.16). The CTxB/GM1 bond has a high

affinity - the disassociation rate in SLBs was measured as (2.8± 0.1)× 10−4 s−1, giving

a mean binding lifetime of 3.6× 104 s [116]. This is consistent with these surface attach-

ments being present throughout the course of the trajectory. Confinement events occur

when a GM1 (in the upper leaflet) attached to CTxB interacts with an immobilised

GM1 in the lower leaflet, [51]. We propose that variation in the observed confinement

radius is caused by differences in the geometry of bound CTxB/GM1 complexes; tightly

packed (or single) CTxBs having more freedom to “wobble” (Fig. 3.16B) and broadly

spaced, multiple CTxBs having less freedom (Fig. 3.16C). Non-Gaussian confinement

events occur when a second (or more) CTxB/GM1 attachment is not fully immobilised

allowing rotation around the immobilised binding site (Fig. 3.16D). The distance be-

tween these attachments would determine the deviation from a Gaussian and the radius

of confinement, Fig. 3.10C,D. CTxB attachments have to be a sufficient distance apart

for non-Gaussian profiles to be detected, whilst the CTxB molecules have to be close

enough for both to bind to surface GM1 lipids. These hypotheses are consistent with

the fact that there are around 25 CTxB per 20nm AuNP [51] - it would be expected

that there is heterogeneity in both their number and spatial distribution. By varying

the number of bound CTxB and their spatial configuration, both confinement radius

and radial skewness can be altered.

We also demonstrated that confinement event lifetimes are not exponentially

distributed, whilst also being conserved within trajectories. However, the fact that the

mean confinement radius doesn’t correlate with confinement time suggests that the area

of the GM1 platform generated by the CTxB is only weakly dependent on the geometry

of the bindings. The confinement time is expected to be determined by the degree of

overlap of the GM1s associated with the AuNP (its GM1 platform), and the number

of locally immobilised GM1 in the lower leaflet. The GM1 in the lower leaflet are

immobilised by hydroxyl pinning sites on the glass surface [51], large sites aggregating a

higher number of GM1 in the lower leaflet, and hence trapping the AuNP/CTxB/GM1

particle for longer. These surface hydroxyl groups have an estimated size of <10nm [51],

although the aggregation of GM1 in supported lipid bilayers has been observed in AFM

experiments, with domain sizes of approximately 15-60nm [117]. Larger pinning sites

may trap multiple CTxB molecules on the AuNP, leading to more Gaussian behaviour as

rotational degrees of freedom are lost. This would then lead to the negative correlation

of non-Gaussian events and event lifetime; i.e. the lower the Slm statistic (more Gaussian

the confinement), the longer the typical confinement time, Fig. 3.10F. In this model,
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Figure 3.16: Schematic of AuNP/CTxB/GM1 structures leading to Gaussian
and non-Gaussian confinement profiles. (A) Free diffusion, (B) wide Gaussian-
like confinement, (C) narrow Gaussian-like confinement, (D) non-Gaussian confinement.
Insets in (B-D) are example histograms of particle positions pooled over trajectories (e.g.
Fig. 3.12, Fig. B.4, Fig. B.5). Insets have side length 0.1 µm. Schematic based on a
figure in reference [51].
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heterogeneity in the lifetime and shape are determined by different characteristics of the

CTxB interaction with the surface, hence explaining their weak correlation.

The fact that we have demonstrated that a particular nanoparticle has a specific

signature means that distinguishing the effects of this tag from other factors (such as

environmental factors in cell membranes) is more difficult because of tag signature vari-

ability. Thus, using tags that have a common signature would improve extraction of

environment signatures. Since the variability in the tag signature arises from the ran-

dom placing of CTxB molecules on the AuNP surface, using particles with a structured

surface would eliminate this problem. Virions are ideal, given their highly geometric 3D

structure. Interferometric label-free tracking of virions has been demonstrated at 3s tem-

poral resolution [118]; thus achieving the high spatial and temporal resolution of recent

iSCAT microscopy (such as in the data set explored here) utilising viral particle tags is a

distinct possibility. This could lead to improved deconvolution of the tagged particle sig-

nature from the environment dictated movement signal, and thus higher discrimination

of different types of particle movement.

3.4 Methods

3.4.1 MCMC algorithm for harmonic potential confinement HMM

We derive an MCMC algorithm for inference of the harmonic potential well (HPW)

model, as described in Results. For a 2D trajectory X = {Xi, ti}N+1
i=1 the probability of

observing X given the parameters (θ) and hidden states (z, C) is (recall that ∆Xi =

Xi+1 −Xi,∆ti = ti+1 − ti)

π(X|θ, z,C) =
N∏
i=1

N(∆Xi;−κ∆tizi(Xi − Ci), (2D∆ti)
−1) (3.5)

where we have used the Euler-Maruyama approximation to the SDEs (Equations (3.3)

and (3.4)), although we could also solve the SDEs analytically. N(x;µ, τ) is the normal

PDF with mean µ and precision τ , we use this parameterisation and notation throughout.

88



Using Bayes’ rule we can write the posterior (∆Ci = Ci+1 − Ci)

π(θ, z,C|X) ∝ π(θ, z1, C1)
N−1∏
i=1

Bernoulli(zi+1; zi(1− pesc) + (1− zi)ptrap)

×
N∏
i=1

N
(
∆Xi;−κ∆tizi(Xi − Ci), (2D∆ti)

−1
)

×
N−1∏
i=1

N

(
∆Ci; 0,

(
2∆ti(DCzi + D̂(1− zi))

)−1
)
. (3.6)

We use conjugate priors for all parameters, specifically

π(θ, z1, C1) =Unif(D;Dmin, Dmax)Unif(DC ;DCmin , Dmax/Dratio)Unif(κ;κmin, κmax)

× Beta(pesc; aesc, besc)Beta(ptrap; atrap, btrap)

× Bernoulli(z1;πtrap)N(C1;µC1 , τC1). (3.7)

We choose prior parameters which enforce model conditions, for example a large Dratio

implies D >> DC a priori. A conjugate prior allows us to construct Gibbs moves to

sample values from the parameter posterior distributions. The updates for D and DC

are inverse Gamma

D−1|DC ,κ,pesc,ptrap,X,C,z ∼ GammaT

(
N − 1,

1

4

N∑
i=1

(∆Xi + κ∆tizi(Xi − Ci))2

∆ti
, Dmin, Dmax

)
(3.8)

D−1
C |D,κ,pesc,ptrap,X,C,z ∼ GammaT

(
−1 +

∑
i|zi=1

1,
1

4

∑
i|zi=1

∆C2
i

∆ti
, DCmin , Dmax/Dratio

)
(3.9)

where GammaT (α, β, xmin, xmax) denotes a truncated Gamma distribution with param-

eters α and β, truncated at xmin and xmax. We enforce the truncation by rejecting any

moves which lie outside this region (Algorithm 2). If
∑

i|zi=1 1 = 0 then the conditional

for DC reduces to the prior, so we update by sampling from Unif(DCmin , Dmax/Dratio).

To calculate an update for κ we rearrange the conditional distribution into a

product of Gaussian distributions in terms of κ

π(κ|D,Dc, pesc, ptrap,X,C, z) ∝
∏
i|zi=1

N

(
κ;

−∆Xi

∆tizi(Xi − Ci)
,
∆tiz

2
i (Xi − Ci)2

2D

)
.
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This gives the update

κ|D,DC ,pesc,ptrap,X,z,C ∼ N
([
− 1

2D

∑
i|zi=1

∆Xizi(Xi − Ci)
]
τ−1
κ , τκ

)
(3.10)

where

τκ =
1

2D

∑
i|zi=1

∆tiz
2
i (Xi − Ci)2. (3.11)

We enforce the prior, Unif(κ;κmin, κmax), by rejecting any values of κ lying outside this

interval. If
∑

i|zi=1 1 = 0 then τκ = 0, so we update by sampling κ ∼Unif(κmin, κmax).

The updates for the transition probabilities are

pesc|D,DC ,κ,ptrap,X,z,C ∼ Beta

(
aesc + n10, besc + n11

)
(3.12)

ptrap|D,DC ,κ,pesc,X,z,C ∼ Beta

(
atrap + n01, btrap + n00

)
(3.13)

where nml is the number of transitions from state m to state l, i.e.

nml =
∑

i|zi−1=m,zi=l

1. (3.14)

Gibbs update for harmonic well centre. For the centre, C, we update using a

blocked Gibbs move. We report the update here without calculation, since the full

derivation (given in Appendix B.3) is somewhat lengthy. Let Cj,n be a block of length

n starting at j, i.e. Cj,n = {Ci}j+ni=j . The update is

Cj,n ∼ N(µCj,n ,Σ
−1
Cj,n

) (3.15)

where the n× n precision matrix is

Σ−1
Cj,n

=



Σ−1
j,j Σ−1

j,j+1

Σ−1
j+1,j Σ−1

j+1,j+1 Σ−1
j+1,j+2

Σ−1
j+2,j+1

. . .

. . .

. . . Σ−1
j+n−1,j+n

Σ−1
j+n,j+n−1 Σ−1

j+n,j+n


(3.16)
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with elements

Σ−1
i,i−1 = Σ−1

i−1,i = − 1

2∆ti(D̂(1− zi) +DCzi)
(3.17)

Σ−1
i,i

∣∣
2≤i≤N−1

=
1

2∆ti−1(DCzi−1 + D̂(1− zi−1))
+

(κzi)
2∆ti

2D
+

1

2∆ti(DCzi + D̂(1− zi))
.

(3.18)

If the block contains the first timepoint, i.e. j = 1, then the first element is

Σ−1
1,1 = τC1 +

(κz1)2∆t1
2D

+
1

2∆t1(DCz1 + D̂(1− z1))
(3.19)

and if the block contains the last timepoint, i.e. j + n = N , then the last element is

Σ−1
N,N =

1

2∆tN−1(DCzN−1 + D̂(1− zN−1))
+

(κzN )2∆tN
2D

. (3.20)

The mean µCj,n is given by solving

Σ−1
Cj,n

µCj,n = bj,n (3.21)

where bj,n = {bi}j+ni=j is an n-vector with elements

bi

∣∣∣∣
j+1≤i≤j+n−1

=
κzi
2D

(∆Xi + κ∆tiziXi) (3.22)

bj

∣∣∣∣
j 6=1

=
Cj−1

2∆tj−1(DCzj−1 + D̂(1− zj−1))
+
κzj
2D

(∆Xj + κ∆tjzjXj) (3.23)

bj+n

∣∣∣∣
j+n6=N

=
Cj+n+1

2∆tj+n(DCzj+n + D̂(1− zj+n))
+
κzj+n

2D
(∆Xj+n + κ∆tj+nzj+nXj+n).

(3.24)

If the block contains the first timepoint then

b1 = τC1µC1 +
κz1

2D
(∆X1 + κ∆t1z1X1) (3.25)

and if the block contains the last timepoint,

bN =
κzN
2D

(∆XN + κ∆tNzNXN ). (3.26)
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Since Σ−1
Cj,n

is tridiagonal, Equation (3.21) can be efficiently solved for µCj,n , for example

using the left matrix division function in Matlab (with Σ−1
Cj,n

encoded as a sparse matrix).

Hence the update can be sampled from Equation (3.15).

Metropolis-Hastings move for z and C. Since the hidden states in the model

are highly correlated, we developed a joint update for z and C, a blocked Metropolis-

Hastings move. To simulate values from π(z,C|θ,X), we first propose new values of

{z,C} by moving a block of length n, let {zj,n,Cj,n} = {zi, Ci}j+ni=j denote this block.

We use a joint proposal distribution

q(z′j,n,C
′
j,n|zj,n) = q(z′j,n|zj,n)q(C′j,n|z′j,n). (3.27)

For zj,n we use a proposal distribution q(z′j,n|zj,n) which is weighted towards confinement

or free diffusion. Specifically, let 0n and 1n denote a sequence of 0’s or 1’s of length n,

we propose z′j,n = 0n and z′j,n = 1n both with probability 1/3. We otherwise (i.e. also

with probability 1/3) propose by simulating a Markov chain using the parameters pesc,

ptrap. The proposal density is hence

q(z′j,n|zj,n)

∣∣∣∣
j 6=1

=

1
3 + 1

3

∏n+j+1
i=j Bernoulli (zi; zi−1(1− pesc) + (1− zi−1)ptrap) if z′j,n = 0n

1
3 + 1

3

∏n+j+1
i=j Bernoulli (zi; zi−1(1− pesc) + (1− zi−1)ptrap) if z′j,n = 1n

1
3

∏n+j+1
i=j Bernoulli (zi; zi−1(1− pesc) + (1− zi−1)ptrap) any other z′j,n.

(3.28)
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If j = 1, then the first term in the product in Equation (3.28) is undefined, so we propose

z1 from the prior distribution, Bernoulli(z1; ptrap/(ptrap + pesc)), giving

q(z′1,n|z1,n) =



1

3
+

1

3

(
1− ptrap

ptrap + pesc

)
×
n+2∏
i=2

Bernoulli (zi; zi−1(1− pesc) + (1− zi−1)ptrap)
if z′1,n = 0n

1

3
+

1

3

ptrap
ptrap + pesc

×
n+2∏
i=2

Bernoulli (zi; zi−1(1− pesc) + (1− zi−1)ptrap)
if z′1,n = 1n

1

3
Bernoulli

(
z1;

ptrap
ptrap + pesc

)
×
n+2∏
i=2

Bernoulli (zi; zi−1(1− pesc) + (1− zi−1)ptrap)
any other z′1,n.

(3.29)

The right hand terms in the top two cases of Equations (3.28) and (3.29) are required

because the sequences 0n and 1n are possible when simulating a Markov chain with

parameters pesc and ptrap.

We next propose a value for Cj,n using the block Gibbs update density derived

earlier (Equations (3.15)-(3.26))

q(C′j,n|z′j,n) = N(C′j,n;µCj,n ,Σ
−1
Cj,n

) (3.30)

where µCj,n , Σ−1
Cj,n

are calculated (using Equations (3.16)-(3.21)) with the proposed value

z′j,n. Up to proportionality, the density of interest is

π(z,C|θ,X) ∝
N∏
i=1

N
(
∆Xi;−κ∆tizi(Xi − Ci), (2D∆ti)

−1
)

×N(C1, µC1 , τC1)

N−1∏
i=1

N

(
∆Ci; 0,

(
2∆ti

(
DCzi + D̂(1− zi)

))−1
)

× Bernoulli

(
z1;

ptrap
ptrap + pesc

)N−1∏
i=1

Bernoulli (zi+1; zi(1− pesc) + (1− zi)ptrap)

(3.31)
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which we call P (z,C). The acceptance probability is thus

α(z′,C′|z,C) = min

{
1,
P (z′,C′)q(zj,n|z′j,n)q(Cj,n|zj,n)

P (z,C)q(z′j,n|zj,n)q(C′j,n|z′j,n)

}
. (3.32)

By sequentially calculating these MCMC updates, we can hence sample from

the posterior distribution π(θ, z,C|X). Algorithm 2 details this HPW model MCMC

algorithm in pseudocode.

Blocking choice. The two blocked moves require a choice of block size n and starting

point j. For the blocked Gibbs move for C we found that updating the whole Markov

chain at once, i.e. j = 1 and n = N − 1 was most efficient. For the blocked Metropolis-

Hastings move for {z,C} we sample the block size n from Unif(Bmin, Bmax), and then

sample j from Unif(1, N − n). For all MCMC runs we set Bmin = 3 and Bmax = 200.

Initial values and priors. For all MCMC runs on simulated and experimental data

the priors were as follows

π(D) = Unif(D; 0, 2 µm2 s−1)

π(DC) = Unif(DC ; 1× 10−10 µm2 s−1, 0.04 µm2 s−1)

π(κ) = Unif(κ; 100 s−1, 10 000 s−1)

π(pesc) = Beta(pesc; 1, 1000)

π(ptrap) = Beta(ptrap; 1, 1000). (3.33)

We chose non-zero DCmin because very low DC values occasionally caused computational

overflow in the blocked update covariance matrix ΣCk,n . We chose non-zero κmin because

MCMC chains were occasionally very slow to converge from very low values of κ. Inferred

posterior distributions for both these parameters were much higher than these minimum

values. We initialised D,DC , κ, pesc and ptrap by sampling from the prior distributions.

For D̂ (the diffusion coefficient of C when X is confined) we used the Brownian motion

maximum likelihood estimate

D̂ =
1

4N

N∑
i=1

∆X2
i

∆ti
. (3.34)

For z we initialised by simulating a Markov chain using the initial pesc and ptrap. For C

we initialised by a Gibbs block update given z.
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Convergence diagnostics. For the parameters, we ran multiple chains and assessed

convergence using the Gelman point scale reduction factor (PSRF) [92], we considered

an MCMC run converged if the PSRF was less than 1.2 for all parameters. We initialised

the parameter chains by sampling from the prior distributions. Under the given prior

parameters the initial values were over dispersed with respect to the target distributions

on all trajectories (a requirement of the PSRF method).
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Algorithm 2 Metropolis-within-Gibbs sampler for harmonic potential well model
K ← number of MCMC steps
Dmin, DCmin , Dmax, Dratio, κmin, κmax, aesc, besc, atrap, btrap ← prior parameters
Bmax, Bmin ← maximum and minimum Metropolis-Hastings block sizes
D̂ ← estimated value for D (Equation (3.34))

Choose initial values of D(0), D
(0)
C , κ(0), p

(0)
esc, p

(0)
trap (e.g. sample from Equation (3.7))

Calculate µC1,N−1 (mean vector) and Σ−1
C1,N−1

(precision matrix) using Equations (3.16)-(3.21)

C(0) ← random number drawn from N(µC1,N−1 ,Σ
−1
C1,N−1

)

for k = 1 to k = K do
D(k) ← random number drawn from Γ

(
N − 1, 1

4

∑N
i=1

(∆Xi+κ∆tizi(Xi−Ci))
2

∆ti

)
if D < Dmin or D > Dmax then

D(k) ← D(k−1)

end if
if
∑
i|zi=1 1 = 0 then

D
(k)
C ← random number drawn from Unif(DCmin , Dmax/Dratio)

else
D

(k)
C ← random number drawn from Γ

(
−1 +

∑
i|zi=11, 1

4

∑
i|zi=1

∆C2
i

∆ti

)
end if
if DC < DCmin or DC > Dmax/Dratio then

D
(k)
C ← D

(k−1)
C

end if
Calculate τκ using Equation (3.11)
if
∑
i|zi=1 1 = 0 then

κ(k) ← random number drawn from Unif(κmin, κmax)
else

κ(k) ← random number drawn from N
([
− 1

2D

∑
i|zi=1 ∆Xizi(Xi − Ci)

]
τ−1
κ , τκ

)
end if
if κ < κmin or κ > κmax then

κ(k) ← κ(k−1)

end if
Calculate n00, n01, n10, n11 using Equation (3.14)

p
(k)
esc ← random number drawn from Beta

(
aesc + n10, besc + n11

)
p

(k)
trap ← random number drawn from Beta

(
atrap + n01, btrap + n00

)
Calculate µC1,N−1 (mean vector) and Σ−1

C1,N−1
(precision matrix) using Equations (3.16)-(3.21)

C← random number drawn from N(µC1,N−1 ,Σ
−1
C1,N−1

)

n← random integer drawn from {Bmin, Bmin + 1, ..., Bmax}
j ← random integer drawn from {1, ..., N − n}
z′ ← proposed value drawn from q(z) (Equation (3.28))
Calculate µCj,n (mean vector) and Σ−1

Cj,n
(precision matrix) using Equations (3.16)-(3.21)

C′j,n ← random number drawn from N(µCj,n ,Σ
−1
Cj,n

)

calculate α(z′,C′|z,C) using Equation (3.32)
u← random number drawn from Unif(0, 1)
if u < α(z′,C′|z,C) then

z← z′

C← C′

end if
z(k) ← z
C(k) ← C

end for
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Chapter 4

Hop Diffusion Model

4.1 Introduction

Multiple single particle tracking (SPT) studies have demonstrated that some membrane

molecules exhibit so called “hop” diffusion [71, 24, 40, 39, 42, 43], characterised by

short term confinement in domains, and occasional “hopping” between adjacent com-

partments. An explanation for hop diffusion, which has been observed for both lipids

and proteins, is the fences and pickets model (Fig. 1.2).

Since individual SPT trajectories are stochastic, statistical methods are required

to robustly detect hop diffusion, particularly to differentiate true inter-compartmental

hopping from random fluctuations. Some methods fit experimental mean squared dis-

placement (MSD) curves to theoretical MSD functions (as described in Section 1.4.1)

[71, 72, 42]; hence deriving parameters such as the domain size and hopping frequency.

Powles et al. derived the exact solution for particles diffusing in a meshwork of squares

[101]. There are also methods which pinpoint hopping events in single trajectories. For

example, data from the Kusumi lab has been segmented into confinement zones using a

simple method which detects sharp increases in the apparent diffusion coefficient [24, 39].

Meilhac et al. developed a method for detecting hops between confinement zones [82],

which detected two-thirds of jumps on example simulated trajectories. The missed jumps

were double (or more) events which could only be resolved as a single jump.

4.2 Simulation

We followed existing methods [119, 120] for simulating hop diffusion by considering a

particle undergoing Brownian motion in a series of square domains, of side length L.
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When the particle encounters a domain barrier it crosses with some probability phop.

We denote the 2D position of the particle at time ti as Xi. At each timepoint Xi is in a

square box Bi, which has side length L and (2D) centre CBi ,

Bi =

x : CBi −

L/2
L/2

 < x < CBi +

L/2
L/2

 (4.1)

where x is also 2D. We simulate the particle position at time ti+1 using the Euler

approximation (which is actually exact for constant D), giving Xi+1 ∼ N(Xi, 2D∆ti).

If Xi+1 /∈ Bi, then it crosses the barrier with probability phop, i.e. if u < phop for

u ∼ Unif(0, 1). If u > phop then we resimulate Xi+1 until Xi+1 ∈ Bi. An example of

a simulated trajectory is shown in Fig. 4.1, and the simulation algorithm is given in

pseudocode in Algorithm 3.

Figure 4.1: Simulation of a molecule diffusing in a series of partially permeable
square domains. Simulation parameters: D = 1× 105 nm2 s−1, L = 20 nm and phop =
0.005. The time step was 0.001 s, and a Gaussian measurement noise with variance
σ2 = 10 nm2 was added.

4.3 Inference

In order to fit a model to hop diffusion data, we propose a simplified model and an MCMC

algorithm for its inference. Given a single trajectory, the exact geometry of domains is

often difficult to determine, so we model the confinement as a harmonic potential well
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Algorithm 3 Simulation algorithm for diffusion in a meshwork of partially permeable
squares.

{D, phop, L} ← choice of model parameters
{∆ti}N+1

i=1 ← choice of time steps (∆ti = ti+1 − ti)
X1 ← initial particle position
C1 ← initial box centre position

B1 =

x : CB1 −

L/2
L/2

 < x < CB1 +

L/2
L/2

← initial confinement box

for i = 1 to i = N − 1 do
Xi+1 ← random number drawn from N

(
Xi, (2D∆ti)

−1
)

if Xi+1 /∈ Bi then
u← uniform random number
if u < phop then

Ci+1 ← new box centre (position depends on direction of exit)

Bi+1 =

x : CBi+1 −

L/2
L/2

 < x < CBi+1 +

L/2
L/2

 ← new confine-

ment box
else

while Xi+1 /∈ Bi+1 do
Xi+1 ← random number drawn from N

(
Xi, (2D∆ti)

−1
)

end while
Bi+1 ← Bi
Ci+1 ← Ci

end if
end if
zi+1 ← random number drawn from Bernoulli(zi(1− phop)) + (1− zi)ptrap)

end for
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(HPW). This effectively blurs the effect of the barriers. We propose a model with M

harmonic potential wells, each well having a unique centre C and strength κ. At any

one time, the particle is trapped in one of these M wells. The hidden state zi denotes

the current well at time i. The associated (2D) centre and strength for a well are

Czi = (C1zi , C2zi) and κzi respectively. We simplify by fixing the potential for all wells

as κ. Thus, if there are M wells then the parameters are θM = {D,C1, ..., CM , κ, P}.
P is an M by M transition matrix, with Pm1,m2 giving the probability of hopping from

well m1 to well m2. We simplify by setting

Pm1,m2 =


1− phop if m1 = m2

phop if m1 6= m2

(4.2)

so that the probability of hopping between any two wells is equal. The likelihood of a

trajectory, X = {Xi}Ni=1 where Xi = (X1i, X2i) is 2D, conditioned on z = {zi}Ni=1 is

π(X|θ, z) =
N∏
i=1

N(∆Xi;−κ∆ti(Xi − Czi), 2D∆ti). (4.3)

The posterior distribution is hence

π(θ, z|X) ∝ π(θM )π(z1|θM )

N∏
i=2

Pzi−1,zi

N∏
i=1

N(∆Xi;−κ∆ti(Xi − Czi), 2D∆ti). (4.4)

We now derive an MCMC algorithm for the inference of this HPW hop model.

4.3.1 Parameter updates

We use conjugate priors for the parameters, and hence Gibbs moves for their inference.

Specifically, the prior distribution is

π(θM ) = Unif(D,Dmin, Dmax)Unif(κ, κmin, κmax)Beta(phop, ahop, bhop)
M∏
m=1

N(Cm;µC , τC).

(4.5)

The update for D is hence

D−1 ∼ Gamma

(
N − 1,

1

4

N∑
i=1

(∆Xi + κ∆ti(Xi − Czi))2

∆ti

)
(4.6)
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with any D values outside the interval [Dmin, Dmax] automatically rejected. For κ we

have

κ ∼ N(µκ, τκ) (4.7)

where

µκ = − 1

τκ

1

2D

N∑
i=1

∆Xi(Xi − Czi), τκ =
1

2D

N∑
i=1

∆ti(Xi − Czi)2 (4.8)

again, any κ values outside [κmin, κmax] are rejected. The update for phop is

phop ∼ Beta (ahop + nhop, bhop + (N − nhop)) (4.9)

where nhop is the number of hopping events, i.e. nhop =
∑

i|zi−1 6=zi 1. To derive updates

for the well centres, C = {C1, C2, ..., Cm}, we note that the conditional distribution is a

product of Gaussians

π(Cm|C−m, D, κ, P,X) ∝ π(Cm)
∏
i|zi=j

N (∆Xi;−κ∆ti(Xi − Czi), 2D∆ti) (4.10)

= π(Cm)
∏
i|zi=j

N

(
Czi ;

∆Xi + κ∆tiXi

κ∆ti
,
κ2∆ti

2D

)
(4.11)

where C−m = C \ Cm. This gives the update

Cm ∼ N(µCm , τCm) (4.12)

where

µCm =

µCτC +
∑
i|zi=m

κ

2D
(∆Xi + κ∆tiXi)

 τ−1
Cm

(4.13)

τCm = τC +
∑
i|zi=j

κ2∆ti
2D

. (4.14)

4.3.2 Metropolis-Hastings move for shifting hop events

In order to calculate an update for z we choose an uninformative prior on the well at

the first timepoint, z1

π(z1 = m|θM ) =
1

M
. (4.15)
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We developed a Gibbs move for single zi’s, but since consecutive values are highly cor-

related this was very inefficient. We thus developed two Metropolis-Hastings moves to

sample π(z|C1, ..., CM , D, κ, P,X).

We first consider a move which shifts a hop event. Given z, we propose z′ by

picking a hopping event k and shift length n, where n is a random integer sampled from

{1, ..., Nmax}. We then shift k, either to k + n or k − n, each with probability 1/2. In

other words we first set z′ = z, then set

z′k,n = zk−1 with probability 1/2 (4.16)

z′k−n,n = zk with probability 1/2 (4.17)

where z′k,n = {z′i}
k+n
i=k . The proposal density is hence

q(z′|z) =
1

2Nmax
. (4.18)

Fig. 4.2A is a graphical representation of this proposal.

We choose Nmax to enforce the following conditions on the position of the shifted

hopping event (k + n or k − n):

• it remains within the interval [1, N ]

• it does not overlap the nearest hopping event to k, which we denote k′

• the proposal density for the reverse move, q(z|z′), is non-zero.

We therefore need to ensure that the shifted event is less than halfway to 1, N , and k′, so

we set Nmax =
⌊

1
2 min {|k − k′|, k − 1, N − k}

⌋
. The acceptance probability is therefore

α(z→ z′) = min

{
1,
P (z′)

P (z)

q(z|z′)
q(z′|z)

}
= min

{
1,
P (z′)

P (z)

Nmax

N ′max

}
(4.19)

where P (z) is the conditional distribution given by

π(z|C1, ..., CM , D, κ, P,X) ∝ π(z1)
N∏
i=2

Pzi−1,zi

N∏
i=1

N(∆Xi;−κ∆ti(Xi − Czi), 2D∆ti)

:= P (z). (4.20)
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We note that this calculation is only valid if the proposed move does not remove a well,

which would reduce the number of parameters in the model. However, our choice of

Nmax ensures that a well cannot be removed, and hence Equation (4.19) remains valid.
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Figure 4.2: Confinement state proposals for HPW hop MCMC algorithm. The
solid blue line is the current confinement state (z), and the dotted red line shows a
possible proposed move (z′). (A) Shifted hop event (described in Section 4.3.2). (B)
Moving a block to a new confinement zone (Section 4.3.3), (C) simulating a Markov
chain for the new block (Section 4.3.3).

4.3.3 Metropolis-Hastings move for z, C

The hidden state z and well centre C are highly correlated, so we also developed a

Metropolis-Hastings (MH) move to sample them concurrently. To achieve this, we first

propose a new value of the confinement state z′, then propose new centres given z′,

C′ = {C ′m}Mm=1. We propose z′ by moving a (randomly sampled) block of z, starting

at timepoint k and of length n, which we again denote zk,n = {zi}k+n
i=k . This block can

contain any sequence of confinement states (i.e. all zi within the block may be in the

same well, or otherwise). Our choice of proposal distribution is (m(n) denote a sequence

of m’s of length n)

q(z′k,n|zk,n) =


1

2M + 1
2Pz′k−1,z

′
k
(1− phop)n if z′k,n = m(n)

1
2

∏k+n+1
i=k Pz′i−1,z

′
i

otherwise.

(4.21)
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In other words, we propose by either (each with probability 1/2): moving the entire

block (zk,n) to a new confinement zone (Fig. 4.2B), or simulating a Markov chain for

the new block (z′k,n) using the transition matrix P (Fig. 4.2C). The extra term in the

z′k,n = m(n) case is required because the sequence m(n) is possible to simulate with a

Markov chain using the matrix P .

For C we propose using the previously derived Gibbs density, for m = 1...M we

have

q(Cm|zk,n) = N(µCm , τCm) (4.22)

where µCm , τCm are given in Equations (4.13) and (4.14). Up to proportionality the joint

density is

π(z, Cm|C−m, D, κ, P,X) ∝ π(Cm)π(z1)
N∏
i=2

Pzi−1,zi

N∏
i=1

N(∆Xi;−κ∆ti(Xi − Czi), 2D∆ti)

:= P (z, Cm). (4.23)

Again, if the proposed move removes a well, then there is a reduction in dimension and

Equation (4.23) is not valid, so if the proposed move removes a well (i.e. m /∈ {zi}Ni=1 for

some m ∈ {1, 2, ...,M}) then we set P (z′, C ′m) = 0. The acceptance probability is then

α({zk,n, Cm} → {z′k,n, C ′m}) = min

{
1,
P (z′k,n, C

′
m)q(zk,n)q(Cm|zk,n)

P (zk,n, Cm)q(z′k,n)q(C ′m|z′k,n)
.

}
(4.24)

The MCMC sampler for the HPW hop model is given as pseudocode in Algorithm 4.

4.3.4 Reversible jump MCMC for number of wells

All the MCMC moves so far have assumed that the number of wells, M , is known. Clearly

this is not the case for most practical applications, so we now develop a move which can

also sample the marginal distribution for M , π(M |X). Let θM = {D,κ, phop, C1, ..., CM}
be the set of parameters for the model with M wells. To switch the number of wells in

the model we derive an algorithm to sample from π(M, θM , z|X) using reversible-jump
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Algorithm 4 Metropolis-within-Gibbs sampler for hop diffusion model
K ← number of MCMC steps
M ← number of wells
Dmin, Dmax, κmin, κmax, ahop, bhop, µC , τC ← prior parameters

D(0) ← random number drawn from Unif(Dmin, Dmax)
κ(0) ← random number drawn from Unif(κmin, κmax)

p
(0)
hop ← random number drawn from Beta(ahop, bhop)

for m = 1 to m = M do
Cm ← random number drawn from N(µC , τC)

end for
C(0) ← {Cm}M

(0)

m=1
for i = 1 to i = N do

zi ← random integer from {1, ...,M}
end for
z← {zi}Ni=1
for k = 1 do to k = K

D(k) ← random number drawn from Γ

(
N + 1, 1

4

∑N
i=1

(∆Xi+κ∆ti(Xi−Czi
))2

∆ti

)
if D < Dmin or D > Dmax then

D(k) ← D(k−1)

end if
calculate µκ, τκ using Equation (4.8)
κ(k) ← random number drawn from N(µκ, τκ)
if κ < κmin or κ > κmax then

κ(k) ← κ(k−1)

end if
nhop ←

∑
i|zi−1 6=zi 1

phop ← random number drawn from Beta
(
ahop + nhop, bhop + (N − nhop)

)
for m = 1 to m = M do

calculate µCm , τCm using Equations (4.13) and (4.14)
Cm ← random number drawn from N(µCm , τCm )

end for
k ← random hopping event drawn from i|zi 6=zi+1

k′ ← closest hopping event to k
Nmax ← min {|k − k′|, k − 1, N − k}
n← random integer drawn from {1, ..., Nmax}
propose z′ using Equations (4.16) and (4.17)
calculate α(z→ z′) using Equations (4.19) and(4.20)
u← random number drawn from Unif(0, Dmax)
if u < α(z→ z′) then

z← z′

end if
propose z′k,n using Equation (4.21)

for m = 1 to m = M do
propose C′m using Equations (4.13), (4.14) and (4.22)

end for
calculate α({zk,n,C} → {z′k,n,C

′}) using Equation (4.24)

u← random number drawn from Unif(0, Dmax)
if α({zk,n,C} → {z′k,n,C

′}) then

z← z′

C← C′

end if
end for
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MCMC methodology [121]. Up to proportionality the posterior distribution is

π(M, θM , z|X) ∝ π(M, θM , z)π(X|M, θM , z)

= π(M)π(θM |M)π(z1|θM ,M)
N∏
i=2

Pzi−1,zi

N∏
i=1

N(∆Xi;−κ∆ti(Xi − Czi), 2D∆ti).

(4.25)

We use a flat prior on the number of wells, π(M) = Unif(Mmin,Mmax), and propose well

addition (move from M →M + 1) or well removal (M + 1→M) with equal probability.

Other priors are possible, such as a Poisson distribution, although there is no natural

choice for the mean number of wells. For the addition of a well we propose by selecting

a well m, and splitting it into two new wells (Fig. 4.3A). We denote the new wells m

and M + 1, with corresponding centres C ′m and C ′M+1. The proposal density for adding

a well is hence

j(M + 1, θM+1|M, θM ) =
1

2
× 1

M
. (4.26)

In other words, the first term (1/2) denotes the probability of choosing well addition,

and the second term (1/M) denotes the probability of choosing a specific well. For the

removal of a well we pick two wells and merge them (Fig. 4.3B), for simplicity here we

also denote these two wells m and M + 1, with centres C ′m and C ′M+1. The proposal

density for well removal is

j(M, θM |M + 1, θM+1) =
1

2
× 1

M(M + 1)
(4.27)

the second term denoting the probability of choosing the two wells to merge.

For addition of a well we need to define a mapping from (θM , z) to (θ′M+1, z
′).

We make a simplification by assuming that there is a single hop between the proposed

wells (e.g. Fig. 4.3A). Since we propose the new well centres (C ′m, C ′M+1) based on

Cm, all other parameters and hidden states, zi|i 6=m, are fixed between the two models.

We therefore need to construct a function which maps from (Cm, z) to (C ′m, C
′
M+1, H

′),

where H ′ is the timepoint of the proposed hop between wells m and M + 1, i.e. H ′ =

i|z′i=m,z′i+1=M+1. Following the approach of Green [121], this mapping is a function h

(C ′m, C
′
M+1, u

′) = h(Cm, u) (4.28)

where u ∼ g is a vector of random numbers which parameterises the move between

dimensions. The variables u′ are required for the reverse move from M to M + 1. We
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Figure 4.3: Reversible jump move for the number of wells. The solid blue line
is the current confinement state (z), and the dotted red line shows a possible proposed
move (z′), which also changes the number of wells in the model. (A) Well addition (z = 1
well split into two). (B) Well removal (z = 2 and z = 4 wells combined).
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choose the position of the new wells by first simulating u1 ∼ N(0, τC), then setting

C ′m = Cm + u1 and C ′M+1 = Cm − u1. We choose the hop time H ′ = u2 by simulating

from the set of all timepoints where zi = m, excluding the first and last timepoint. The

probability of drawing u2 is hence 1
K−2 where K =

∑
i|zi=m 1. Therefore our choice of

h, mapping from (Cm, u) to (C ′m, C
′
M+1, H

′), is

(C ′m, C
′
M+1, H

′) = h(Cm, u) = (Cm − u1, Cm + u1, u2). (4.29)

The Jacobian determinant of this transformation is

∣∣∣∣∂(C ′m, C
′
M+1, H

′)

∂(Cm, u)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣
1 −1 0

1 1 0

0 0 1

∣∣∣∣∣∣∣∣∣∣
= 2. (4.30)

And the density for u = (u1, u2) is

q(u1, u2) =
N(u1; 0, σ2

C)

K − 2
. (4.31)

For the reverse move, we propose a move from (C ′m, C
′
M+1, H) to (Cm, u) using

h′, the inverse of h

(Cm, u) = h′(C ′m, C
′
M+1, H

′) =

(
1

2

(
C ′m + C ′M+1

)
,
1

2

(
C ′M+1 − C ′m

)
, H ′

)
(4.32)

The Jacobian determinant for the reverse transformation is

∣∣∣∣ ∂(Cm, u)

∂(C ′m, C
′
M+1, H

′)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣
1/2 1/2 0

−1/2 1/2 0

0 0 1

∣∣∣∣∣∣∣∣∣∣
= 1/2. (4.33)

The acceptance probability for the move M →M + 1 is hence [121]

α(M + 1|M) = min

{
1,
π(M + 1, θM+1, z

′|X)

π(M, θM , z|X)

j(M, θM |M + 1, θM+1)

j(M + 1, θM+1|M, θM )q(u1, u2)

∣∣∣∣∂h(Cm, u)

∂(Cm, u)

∣∣∣∣}
= min

{
1,
π(CM+1)π(X|M + 1, θM+1, z

′)

π(X|M, θM , z)

K − 2

M + 1
N(u1; 0, τU )−1 × 2

}
.

(4.34)
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And for the reverse move from M + 1→M we have

α(M |M + 1) = min

{
1,

π(X|M, θM , z
′)

π(CM+1)π(X|M + 1, θM+1, z)

M + 1

K − 2
N

(
1

2

(
C ′M+1 − C ′m

)
; 0, τU

)
× 1

2

}
.

(4.35)

4.4 Application to simulated data

We tested the reversible jump MCMC algorithm for the HPW hop model on the simu-

lated trajectory shown in Fig. 4.1. For MCMC inference we ran 12 parallel chains with

priors

D ∼ Unif(0, Dmax = 1× 105 nm2 s−1) (4.36)

κ ∼ N(0, κmax = 2000 s−1) (4.37)

phop ∼ Beta(1, 1) (4.38)

M ∼ Unif(0, 20) (4.39)

Cm ∼ N
(
µC = [ 0

0 ] , τC =
[

1× 10−3 nm−2 0
0 1× 10−3 nm−2

])
, for all m = 1, ...,M. (4.40)

Fig. 4.4 shows the MCMC chains for the parameters and number of wells, Fig. 4.5A

shows the trajectory coloured by inferred confinement well, and Fig. 4.5B plots these

wells, showing accurate inference of the simulated well values. In order to estimate

the domain size based on the inferred parameters, we also defined a mean confinement

diameter statistic. The stationary distribution for the harmonic potential is Gaussian

with PDF
√

κ
2πD exp

(
− κ

2D (Xi − Ci)2
)
, which has standard deviation

√
D/κ. We define

the mean confinement diameter equal to 4
√
D/κ, corresponding to a domain which

encloses 95% of expected particle positions. For the simulations this statistic accurately

estimated the size of the square domains, Fig. 4.6A. The simulation hopping probability,

phop, and number of wells, M , were also well estimated, Fig. 4.6B,C.
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Figure 4.4: MCMC chains from HPW hop model fit to a simulated hop
diffusion trajectory. (A) Diffusion coefficient (D), (B) harmonic well strength (κ),
(C) hopping probability (phop), (D) number of wells (M). For each parameter 12 parallel
MCMC chains are plotted.
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4.5 Conclusion

We propose a simplified hop diffusion model, where confining domains are modelled

as harmonic potential wells. We developed a reversible jump MCMC algorithm for the

model which (given a trajectory) infers model parameters, hidden states, and the number

of confining wells. On simulated data the algorithm accurately infers the parameter

values, hidden states, and number of wells. This approach can potentially extract more

information from trajectories than existing methods, in part because it can resolve double

events (i.e. two hops in quick succession). The method of Meilhac et al. could not resolve

double events separated by around 100 timepoints [82], instead detecting only a single

jump. In Fig. 4.5B we see that our method resolved two hopping events separated by

around 20 timepoints (at around 0.8s into the trajectory). However, confirming if this

algorithm is better at resolving double jumps would require a full comparison between

the two methods, which is beyond the scope of this chapter.

Applying this algorithm to an experimental dataset is an obvious option for fur-

ther work, since (as described in Section 4.1) hop diffusion has been observed in a number

of SPT experiments. One potential problem is that in a plasma membrane partitioned

by an actin meshwork (e.g. Fig. 1.2), the size of domains would not be expected to

be uniform [39]. This observation could be incorporated into the model by allowing a

different strength (κzi) for each harmonic potential well (reversing a simplification we

made in Section 4.3), hence enabling detection of variation in the domain size.

Another interesting avenue for future work regards artificial membranes. As

shown in Chapter 3, these provide a useful model system for algorithm development, in

addition to their value as a model membrane system. These experiments are especially

useful for testing which components are required to reproduce effects seen in live cell

membranes. For example, construction of an artificial membrane with the addition of an

actin meshwork on the surface has been demonstrated [44]. An SPT experiment on this,

or a similar, model membrane would be very interesting, potentially providing insight

into whether hop diffusion of lipids in live cells can be reproduced by the addition of an

actin meshwork to a model membrane.
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Chapter 5

Discussion

5.1 Thesis summary

Working in a Bayesian framework, we have developed multiple biophysical models for the

heterogeneous motion of single molecules in membranes. We implemented these models

using MCMC methodology, deriving algorithms that infer model parameters and hidden

states from SPT trajectories.

We first (Chapter 2) expanded an existing two-state diffusion HMM [8], where

the diffusion coefficient of the particle switches between two values. We derived a Gibbs

algorithm to fit the model to individual trajectories, and calculated the marginal like-

lihood (using an approximation) for one-state and two-state diffusion models, hence

determining the most likely model given the trajectory. This approach included the

effect of measurement error in the inference, and we showed (using fixed latex bead

trajectories) that this is essential to prevent false detection of two-state behaviour. On

SPT data of LFA-1 receptors diffusing on T cells we showed that 12-26% of trajectories

show clear switching between diffusion states, depending on treatment. This within-

trajectory switching was well described by a linear relationship, suggesting that the

heterogeneity is due to a common mechanistic process. We also showed that there is

heterogeneity in the diffusion coefficient across trajectories, with estimates being highly

variable (1.6× 102 − 2.6× 105 nm2 s−1). Thus, LFA-1 diffusion is affected by a number

of processes on a number of timescales. We hypothesise that this heterogeneity is due

to clustering and cytoskeletal attachment.

We then proposed a confinement HMM (Chapter 3), where the particle switches

between periods of free diffusion and confinement in a harmonic potential well (HPW).

We derived an MCMC algorithm to infer model parameters and hidden states, and ap-
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plied this to trajectories of GM1 lipids tagged with cholera toxin B subunit (CTxB)

coated AuNPs in supported lipid bilayers (SLBs), confirming transient trapping in do-

mains of mean radius 18 nm. The algorithm allowed us to segment trajectories into

periods of free and confined motion. This revealed that confinement event shape within

trajectories is more similar than across trajectories; we hence concluded that individ-

ual AuNP/CTxB/GM1 complexes have varying confinement shape signatures. We also

showed that confinement event lifetimes are not exponentially distributed.

Finally (Chapter 4), we proposed a model for analysing diffusion in a series of

square domains (“hop” diffusion), approximating confinement in a square as a harmonic

potential well. We derived an MCMC algorithm for model inference, which contains a

reversible jump move for inferring the number of wells. We demonstrated the validity of

this algorithm on simulated hop diffusion trajectories.

To sum up, we have proposed multiple new HMMs, and MCMC algorithms for

their inference, for the analysis of SPT trajectories. These algorithms have been applied

to experimental data, extracting biophysical information which would not have been

available using standard analysis techniques.

5.2 Context and further work

5.2.1 SPT in context

In addition to SPT, there are a number of other techniques for analysing membrane het-

erogeneity. Many of these, such as fluorescence recovery after photobleaching (FRAP)

and fluorescence loss in photobleaching (FLIP), can only extract population-level in-

formation. A method which, in common with SPT, can extract information (i.e. bio-

physical parameters) on single particles is fluorescence correlation spectroscopy (FCS).

Recent advances, such as STED-FCS [28, 30, 15], have greatly improved the character-

isation of heterogeneous diffusion. These single particle methods are complementary,

since SPT can track the motion of a particle within a large focal area, whereas FCS

provides information on multiple particles at a single location.

5.2.2 Comparison with non-HMM approaches

As described in Chapter 1, there are a number of existing methods for detecting hetero-

geneity in SPT trajectories, with many approaches focusing on mean square displace-

ments (MSD). HMM and MSD analysis have different aims and extract different (and

complementary) information from trajectories. For example, MSD analysis should yield
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more accurate estimates of diffusion coefficients for non-heterogeneous (i.e. Brownian)

motion, as a result of pooling displacements across different timescales. Hence MSD

techniques are often preferable for detecting heterogeneity across multiple trajectories.

However, as shown for multiple models in this thesis, HMMs are capable of extracting

fine spatiotemporal information from single trajectories, unlike an MSD analysis.

A comparison of the statistical power of various SPT analysis methods would be

an interesting avenue for future work. For example, the two-state diffusion algorithm

(Chapter 2) could be compared with algorithms that detect changes in the diffusion

coefficient [77, 78, 79]. The HPW confinement algorithm (Chapter 3) could be compared

with methods that detect spatial confinement [80, 81, 82]. This would need a careful

approach since there is crossover when detecting changes in the diffusion coefficient

and spatial confinement, with some methods theoretically capable of detecting both. A

particularly interesting comparison could be made between the algorithm in Chapter 4

and previous methods for detecting hop diffusion [24, 39, 82]. As suggested by Meilhac

et al. [82], these methods often cannot detect “double events” - hops between confining

domains in quick succession. These events should be detectable using our algorithm.

Many existing non-HMM single trajectory analysis methods require “tuning” by

comparison with Brownian motion, in order to minimise false detection of heterogeneity

[80, 81, 82]. This is not necessary for the algorithms developed in this thesis.

5.2.3 HMM approach

HMM methods have been used previously to detect changes in the diffusion coefficient

[8, 9, 10, 11, 12] and directional diffusion [12] in SPT trajectories. We have extended this

by developing algorithms which detect transient confinement and hop diffusion. Thus

a broad range of behaviour in trajectories can now theoretically be detected within a

HMM approach.

The majority of previously published HMM methods segment trajectories into

periods of different motion dynamics (e.g. diffusion states) along a trajectory, using

either the Viterbi [9, 10, 83] or forward-backward [8] algorithms, and hence calculate

the most likely value of the hidden state at each timepoint along the trajectory. This is

analogous to our majority state thresholding in Chapter 3, where we approximated the

posterior hidden state probabilities as a binary signal. On the other hand, the algorithms

presented in this thesis calculate posterior hidden state probabilities at each timepoint,

these estimates quantify the estimation uncertainty in the hidden state values. The

Bayesian approach we have taken also has advantages over previous HMM algorithms,
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since prior information (such as biophysical parameters obtained through previous exper-

iments) can be incorporated into the inference. It is also a natural method for answering

hypotheses (through model selection).

5.2.4 Effect of tagging molecules on particle trajectories

The extent to which a tag-target complex truly represents the motion of the target

molecule in an SPT experiment is controversial [73, 58]. Additionally, as shown in

Chapter 2, the tagging molecule (or tracking algorithm) can affect a single displace-

ment analysis. In order to resolve these questions SPT data from a variety of tagging

regimes (including smaller tags, such as small fluorescent molecules or quantum dots)

is necessary. These trajectories will be analysable with the methods presented in this

thesis.

We also showed that AuNP/CTxB/GM1 complexes have a specific confinement

signature, this having implications for the reproducibility of trajectories. An attractive

alternative is label-free tracking of biomolecules. For example, a viral molecule which

also has GM1 as its cellular receptor is simian virus 40 (SV40). The SV40 virion is

encased by a capsid containing 360 VP1 protein copies organised into an icosahedral

shape [122]. Thus, unlike the random attachment of CTxB to the AuNP surface, the

capsid always has the same structure, and we would not expect to see a specific con-

finement signature in individual virions. Interferometric, label-free, SPT of virions on

supported lipid bilayers has been previously demonstrated [118], and with the subse-

quent improvement in the resolution of iSCAT methods, virion trajectories with high

spatial and temporal resolution are theoretically obtainable.

5.2.5 Software package

A software package encompassing all the models proposed in this thesis, with some

simplifications, is possible. This would be similar to the HMM-Bayes package which

implements the Bayesian HMM modelling approach of Monnier et al. [12]; given an

SPT trajectory, it would return parameter estimates for a number of models, and also

the most likely model given the trajectory. In order to be attractive to experimentalists

this would need to be user-friendly, requiring few input parameters. Another important

feature would be a reasonable runtime on a regular desktop (as opposed to a high-

performance cluster). In order to achieve this speed up model simplifications may be

necessary.

A potential runtime saving could be made by using a reversible jump sampler
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rather than Bayes factors. When using Bayes factors for model selection, the MCMC

inference and marginal likelihood calculation has to be performed for all competing

models. This computation is potentially wasteful - for example if some models have a

very small marginal likelihood compared to others. A jump sampler would be preferable

in this case, since it would spend almost no time inferring parameters for models with

very low marginal likelihood. However, one potential drawback is that efficient proposal

distributions for switching between models can be difficult to design. Additionally, since

MCMC code consists mainly of loops, there is a limit to the speed that can be achieved

in Matlab. Thus the algorithms, or certain sections thereof, could be improved by

implementation in another language.

Another useful simplification would be to model HPW confinement zones with

fixed centres, hence using a discrete (rather than continuous, as in Chapter 3) hidden

state. If we denote this z(C) then, similarly to the hop diffusion model, it would denote

the current confinement zone, i.e. z
(C)
i ∈ {1, ..,M} where M is the number of zones. If

z(C) = 0 then we have free diffusion. To develop an MCMC algorithm for this model,

with a jump sampler to determine the number of confinement zones, would be a simple

extension to the algorithm in Chapter 4. The jump sampler could also remove the free

diffusion component, and hence switch to a hop diffusion model.

This model could also contain switches between an arbitrary number of diffusion

states, via a second hidden state z(D) which denotes the current diffusion coefficient. A

jump sampler for the number of diffusion states could then be derived. Putting these al-

gorithms together could yield an MCMC algorithm which, provided sufficiently efficient

proposal distributions could be found, infers the most likely model (and model param-

eters and hidden states) from the following: multi-state diffusion, HPW confinement,

hop diffusion, and combinations of these models.

5.2.6 Final comments

In this thesis, we have demonstrated the utility and flexibility of using HMMs to analyse

SPT data of membrane molecules. With sufficient (spatial and temporal) resolution of

trajectories, this approach can extract information from experimental data that would

not otherwise be available. It is reasonable to suppose that in the future, new single

molecule techniques will emerge; these being capable of producing longer, higher resolu-

tion trajectories. The HMM methods presented here (and elsewhere) will be immediately

applicable to these datasets. This data will also inspire the development of more intricate

HMMs, enabling to the extraction of yet more detailed biophysical information. Thus,
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the development of HMM methods is complementary to the continuing improvement in

spatial and temporal resolution of data. This dual theoretical and experimental devel-

opment will ultimately lead to more detailed biological interpretation of experiments,

and hence more detailed knowledge of cell membranes.
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[69] Regner BM, Vučinić D, Domnisoru C, Bartol TM, Hetzer MW, Tartakovsky DM,

et al. Anomalous Diffusion of Single Particles in Cytoplasm. Biophysical Journal.

2013 Apr;104(8):1652–1660.
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Appendix A

Supporting Information for

Chapter 2

A.1 Supplementary mathematical derivations

This document includes step by step calculation of likelihoods, marginal likelihoods and

MCMC algorithms, for one-state and two-state diffusion models as described in the

Methods section.

A.1.1 One-state diffusion model marginal likelihood calculation

The marginal likelihood is defined

π(X|M1D) =

∫ ∞
0

dDπ(X|D,M1D)π(D)

since π(D) = Uniform(0, Dmax) we can write

π(X|M1D) =
1

Dmax

∫ Dmax

0
dDπ(X|D,M1D)

131



changing variables from D to D−1 gives

π(X|M1D) =
1

Dmax

∫ ∞
1/Dmax

dD−1D2π(X|D,M1D)

=
1

Dmax

∫ ∞
1/Dmax

dD−1D2
N∏
i=1

1

4πD∆ti
exp

(
−

N∑
i=1

∆X2
i

4D∆ti

)

=
1

Dmax

N∏
i=1

1

4π∆ti

∫ ∞
1/Dmax

dD−1

(
1

D

)N−2

exp

(
− 1

D

N∑
i=1

∆X2
i

4∆ti

)
.

In general
∫∞
x dt tα−1e−βt = 1

βαΓ(α, βx), where Γ(α, βx) is an upper incomplete gamma

function. Using this gives

π(X|M1D) =
1

Dmax

N∏
i=1

1

4π∆ti

(
N∑
i=1

∆X2
i

4∆ti

)1−N

Γ

(
N − 1,

1

Dmax

N∑
i=1

∆X2
i

4∆ti

)
.

A.1.2 Approximate one-state diffusion model with measurement noise

We consider a trajectory X subject to Gaussian observation error, with fixed localisation

accuracy σ2. By a result in [62] (also see Section A.1.4) an approximation for the

likelihood of X given D is

π(X|D) =
N∏
i=1

N
(
∆Xi; 0, 2(D∆ti + σ2)

)
.

The associated posterior is

π(D|X) ∝ π(D)

N∏
i=1

N
(
∆Xi; 0, 2D∆ti + 2σ2

)
,

which can be sampled using a Metropolis-Hastings algorithm. We set π(D) = Unif(D; 0, Dmax),

and use a random walk sampler (RW MCMC) with a symmetric Gaussian proposal,

q(D → D′) = N(D′;D,SD), giving the acceptance probability

α(D → D′) = min

{
1,

∏N
i=1N

(
∆Xi; 0, 2(D′∆ti + σ2)

)∏N
i=1N (∆Xi; 0, 2(D∆ti + σ2))

}
1[0,Dmax](D).

132



Thus, any moves outside [0, Dmax] are automatically rejected. The value of SD is tuned

during the burn-in to ensure that the acceptance rate is approximately 0.25 [89]. The

MCMC sampler is also given as pseudocode in Section A.3.

A.1.3 Approximate two-state diffusion model with measurement noise

We now add fixed localisation error to the previous two-state diffusion hidden Markov

model. Using the same approximation to the likelihood as the approximate one-state

model we can write

zi|zi−1 ∼ Bernoulli(zi−1(1− p10) + (1− zi−1)p01)

∆Xi|zi ∼ N(0, 2(Dzi∆ti + σ2)).

Letting θ = {D0, D1, p01, p10} we can write the posterior as

π(θ, z|X) ∝ π(θ)π(z1|θ)
N∏
i=1

N(∆Xi; 0, 2(Dzi∆ti + σ2))

×
N−1∏
i=1

Bernoulli(zi+1; zi(1− p10) + (1− zi)p01). (A.1)

We use the same priors on D0, D1, p01, p10 and z1 as in the two-state diffusion model

without measurement noise, given in Equation (2.8), main text. D0, D1 are updated with

Metropolis-Hastings moves. The proposals are Gaussians centred at the current value

q(D0 → D′0) = N(D′0;D0, SD0), q(D1 → D′1) = N(D′1;D1, SD1) and the acceptance

probabilities are

α(D0 → D′0|z,X) = min

{
1,

∏
zi=0N(∆Xi; 0, 2(D′0∆ti + σ2))∏
zi=0N(∆Xi; 0, 2(D0∆ti + σ2))

}
1[0,Dmax](D

′
0)

α(D1 → D′1|z,X) = min

{
1,

∏
zi=1N(∆Xi; 0, 2(D′1∆ti + σ2))∏
zi=1N(∆Xi; 0, 2(D1∆ti + σ2))

}
1[0,Dmax](D

′
1).

SD0 , SD1 are tuned during the burn-in to ensure an acceptance rate of approximately

0.25. We also impose the condition that D0 < D1, which we enforce after the MCMC

run as follows: if the posterior means D̂0 > D̂1 then we swap the D0, D1 chains, swap

the p01, p10 chains, and swap the 0 and 1 states in the hidden state z throughout the run.

This is possible because although state identity switching (0 ↔ 1) is possible because

of a permutation symmetry during a run, it isn’t observed to occur. The updates for
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the transition probabilities are Gibbs moves, identical to the two-state model without

measurement noise, given by Equations (2.16) and (2.17), main text. The z update is

similar to the other two-state models, the conditional is

π(zi|zi−1, zi+1, ..) ∝ Bernoulli(zi; zi−1(1− p10) + (1− zi−1)p01)

×N(∆Xi; 0, 2Dzi∆ti + 2σ2)

× Bernoulli(zi+1; zi(1− p10) + (1− zi)p01). (A.2)

And again the update is

zi

∣∣∣
θ,U,zi±1

∼ Bernoulli (π(zi = 1|zi−1, zi+1, θ,X)) .

At the endpoints i = 1 and i = N we have

π(z1|z2, θ,X) ∝ N(∆X1; 0, 2Dz1∆t1 + 2σ2)Bernoulli (z2; z1(1− p10) + (1− z1)p01)

(A.3)

π(zN |zN−1, θ,X) ∝ Bernoulli (zN ; zN−1(1− p10) + (1− zN−1)p01)N(∆XN ; 0, 2DzN∆tN + 2σ2).

(A.4)

Pseudocode for this MCMC sampler is given in Section A.3.

A.1.4 Approximation to the likelihood for one-state diffusion model

with measurement noise

(This method is mentioned in reference [62].) Consider a 2D trajectory observed with

experimental noise with known localisation accuracy σ2. Let {Ui}N+1
i=1 be the underlying

particle position and {Xi}N+1
i=1 be the observed positions. For each time step

Ui − Ui−1 ∼ N(0, 2D∆ti−1)

Xi ∼ N(Ui, σ
2).

Which we can write as (summing two Gaussians)

Xi −Xi−1 ∼ N(Ui − Ui−1, 2σ
2)

shifting the mean

Xi −Xi−1 ∼ N(0, 2σ2) + Ui − Ui−1
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since Ui − Ui−1 ∼ N(0, 2D∆ti−1) we can write

Xi −Xi−1 ∼ N(0, 2D∆ti−1 + 2σ2).

So we know that the measured displacement then satisfies Xi+1|Xi ∼ Xi +

N(0, 2D∆ti + 2σ2), which suggests that the likelihood is given by

π(X|D) =

N∏
i=1

N(∆Xi; 0, 2D∆ti + 2σ2). (A.5)

However, this is only true if the displacements are independent, which not the case since

the displacements Ui+1−Ui and Ui−Ui−1 both depend on the measurement noise Ui−Xi

at time point i. However, we demonstrate that Equation (A.5) is sufficient for model

selection, see Results.

A.1.5 Log likelihood for approximate two-state diffusion model with

measurement noise

We use a modified version of the Das et al. forward algorithm [8] to calculate π(X|θ).
The initial forward probabilities in log scale are

loge α1(z1 = 0) = loge
p10

p10 + p01
+ loge π(∆X1|z1 = 0, D0, D1)

loge α1(z1 = 1) = loge
p01

p10 + p01
+ loge π(∆X1|z1 = 1, D0, D1)

where loge π(∆Xi|zi, D0, D1) = N(∆Xi; 0, 2(Dzi∆ti + σ2)) for i = 1..N . The recursion

for i = 2 to i = N is then

loge αi(zi = 0) = loge

[
eloge αi−1(zi−1=0)+loge(1−p01)+loge π(∆Xi|zi=0,D0,D1)

+ eloge αi−1(zi−1=1)+loge(p10)+loge π(∆Xi|zi=0,D0,D1)

]
loge αi(zi = 1) = loge

[
eloge αi−1(zi−1=1)+loge(p01)+loge π(∆Xi|zi=1,D0,D1)

+ eloge αi−1(zi−1=0)+loge(1−p10)+loge π(∆Xi|zi=1,D0,D1)

]
.

And the final likelihood is

π(X|θ) = loge

[
eloge αN (zN=0) + eloge αN (zN=1)

]
.

135



A.2 Subsampling trajectories to reduce the effect of mea-

surement noise

Here we provide justification and description of the subsampling approach described

in the Discussion. We showed (Fig. 2.1) that stationary beads show fast switching

between two distinct diffusion coefficients, and prefer a two-state diffusion model in

a model selection analysis. To address this problem, we tried subsampling the data

to increase the S/N ratio, and hence minimise bias caused by the inherent two-state

diffusion behaviour observed on stationary beads. This should enable differentiation

between real biological switching between states with different mobilities, and artificial

two diffusion behaviour.

For a trajectory X, we subsample by taking every nth time point to obtain a

trajectory of length
⌊
N
n

⌋
. Different choices of n can greatly affect the inferred parameters.

Michalet provides some theoretical reasoning for the choice of subsampling rate n by

determining the optimum number of points of the mean square displacement (MSD)

function to include when estimating D [62]. For example, if the optimum number of

MSD points is two, then the optimal D estimate comes from a linear fit to the first two

MSD points (ignoring the (0, 0) point). Selecting a suboptimal number of MSD points

can lead to large errors.

If the optimum number of MSD points is large then single displacement estimates

for D can be out by orders of magnitude [62, 63]. The D value from a single displacement

analysis is equivalent to fitting a straight line from (0, 0) to the first MSD point. For the

trajectories in Fig. A.10 A (fixed latex bead) and Fig. A.10 B (slow moving LFA-1) the

single displacement fit is not a good approximation for an MSD fit using the optimum

number of points. Fig. A.10 C shows a fast moving LFA-1 trajectory, in this case the

single displacement fit is a good approximation to the MSD fit.

Intuitively, the optimum number of MSD points should be a good approximation

to the best subsampling rate. To test this the one-state and two-state diffusion model

and model selection analysis (without measurement noise) was run with a subsampling

rate equal to the theoretical optimum number of MSD points. Table A.3 compares

the preferred model from this approach to the preferred model using the one-state and

two-state diffusion models with measurement noise.

136



A.3 Pseudocode for one-state and two-state diffusion model

MCMC algorithms.
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Algorithm 5 Gibbs sampler for two-state diffusion model without measurement noise
K ← number of MCMC steps
Dmax, a0, b0, a1, b1 ← choice of prior parameters (Equation (2.8))
D0 ← random number drawn from Unif(0, Dmax)
D1 ← random number drawn from Unif(0, Dmax)
p01 ← random number drawn from Beta(a0, b0)
p10 ← random number drawn from Beta(a1, b1)
θ(1) ← {D0, D1, p01, p10}
z1 ← random number drawn from Bernoulli

(
p10

p10+p01

)
for i = 2 to i = N do

zi ← random number drawn from Bernoulli(zi−1(1− p10) + (1− zi−1)p01)
end for
z(1) ← {zi}Ni=1

for k = 2 to k = K do
η0 ←

∑
zi=0 1

η1 ←
∑
zi=1 1

if η0 = 0 then
D0 ← random number drawn from Unif(0, Dmax)

else
while D0 > Dmax do

D−1
0 ← random number drawn from Gamma

(
η0 − 1,

∑
i|zi=0

∆X2
i

4∆ti

)
D0 ← 1/D−1

0

end while
end if
if η1 = 0 then

D1 ← random number drawn from Unif(0, Dmax)
else

while D1 > Dmax do

D−1
1 ← random number drawn from Gamma

(
η1 − 1,

∑
i|zi=1

∆X2
i

4∆ti

)
D1 ← 1/D−1

1

end while
end if
Update n10, n11, n01, n00 using Equation (2.15)
p01 ← random number drawn from Beta

(
a0 + n10, b0 + n11

)
p10 ← random number drawn from Beta

(
a1 + n01, b1 + n00

)
for i = 1 to i = N do

Calculate π(zi = 1|zi−1, zi+1, D0, D1, p01, p10,X) by normalising Equation (2.18), (2.20)
or (2.21)

zi ← random number drawn from Bernoulli(π(zi = 1|zi−1, zi+1, D0, D1, p01, p10,X))
end for
θ(k) ← {D0, D1, p01, p10}
z(k) ← {zi}Ni=1

end for
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Algorithm 6 Gibbs sampler for one-state diffusion model with measurement noise
K ← number of MCMC steps
Dmax, µU1

, σ2
U ← choice of prior parameters

σ2 ← choice of localisation accuracy
D ← random number drawn from Unif(0, Dmax)
D(1) ← D
U1 ← random number drawn from N(µU1 , σ

2
U )

for i = 2 to i = N + 1 do
Ui ← random number drawn from N(Ui−1, 2D∆ti−1)

end for
U(1) ← {Ui}N+1

i=1

for k = 2 to k = K do
D−1 ← random number drawn from Gamma

(
N − 1,

∑N
i=1

∆U2
i

4∆ti

)
while D > Dmax do

D−1 ← random number drawn from Gamma
(
N − 1,

∑N
i=1

∆U2
i

4∆ti

)
end while
D(k) ← D
for i = 1 to i = N + 1 do

Calculate µi, τi from Equations (2.32), (2.33) or (2.34)
Ui ← random number drawn from N(µi, 1/τi)

end for
U(k) ← {U (k)

i }
N+1
i=1

end for

139



Algorithm 7 Gibbs sampler for two-state diffusion model with measurement noise
K ← number of MCMC steps
Dmax, a0, b0, a1, b1, µU1

, σ2
U ← choice of prior parameters (Equation (2.41))

σ2 ← choice of localisation accuracy
D0 ← random number drawn from Unif(0, Dmax)
D1 ← random number drawn from Unif(0, Dmax)
p01 ← random number drawn from Beta(a0, b0)
p10 ← random number drawn from Beta(a1, b1)
θ(1) ← {D0, D1, p01, p10}
z1 ← random number drawn from Bernoulli

(
p10

p10+p01

)
for i = 2 to i = N do

z
(1)
i ← random number drawn from Bernoulli(zi−1(1− p10) + (1− zi−1)p01)

end for
z(1) ← {zi}Ni=1
U1 ← random number drawn from N(µU1 , σ

2
U )

for i = 2 to i = N + 1 do
Ui ← random number drawn from N(Ui−1, 2Dzi−1∆ti−1)

end for
U(1) ← {Ui}N+1

i=1
for k = 2 to k = K do

η0 ←
∑
zi=0 1

η1 ←
∑
zi=1 1

if η0 = 0 then
D0 ← random number drawn from Unif(0, Dmax)

else
while D0 > Dmax do

D−1
0 ← random number drawn from Gamma

(
η0 − 1,

∑
i|zi=0

∆U2
i

4∆ti

)
D0 ← 1/D−1

0
end while

end if
if η1 = 0 then

D1 ← random number drawn from Unif(0, Dmax)
else

while D1 > Dmax do

D−1
1 ← random number drawn from Gamma

(
η1 − 1,

∑
i|zi=1

∆U2
i

4∆ti

)
D1 ← 1/D−1

1
end while

end if
Update n10, n11, n01, n00 using Equation (2.15)
p01 ← random number drawn from Beta

(
a0 + n10, b0 + n11

)
p10 ← random number drawn from Beta

(
a1 + n01, b1 + n00

)
θ(k) ← {D0, D1, p01, p10}
for i = 1 to i = N do

Calculate π(zi = 1|zi−1, zi+1, D0, D1, p01, p10,U) by normalising Equation (2.44), (2.45) or (2.46)
zi ← random number drawn from Bernoulli(π(zi = 1|zi−1, zi+1, D0, D1, p01, p10,U))

end for
z(k) ← {zi}Ni=1
for i = 1 to i = N + 1 do

Calculate µi, τi from Equation (2.48), (2.49) or (2.50)
Ui ← random number drawn from N(µi, 1/τi)

end for
U(k) ← {Ui}N+1

i=1
end for
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Algorithm 8 Metropolis-Hastings sampler for one-state diffusion model with measure-
ment noise incorporated as independent displacements (approximate model)

K ← number of MCMC steps
Dmax ← choice of prior parameters
σ2 ← choice of localisation accuracy
SD ← variance of proposal distribution
D ← random number drawn from Unif(0, Dmax)
D(1) ← D
for k = 2 : K do

D′ ← random number drawn from N(D,SD)

α(D → D′) = min

{
1,

∏N
i=1N(∆Xi;0,2(D′∆ti+σ

2))∏N
i=1N(∆Xi;0,2(D∆ti+σ2))

}
1[0,Dmax](D)

u← random number drawn from Unif(0, 1)
if α(D → D′) > 1 then

D ← D′

else if α(D → D′) > u then
D ← D′

end if
D(k) ← D

end for
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Algorithm 9 Metropolis-within-Gibbs sampler for two-state diffusion model with mea-
surement noise incorporated as independent displacements (approximate model)

K ← number of MCMC steps
Dmax, a0, b0, a1, b1 ← choice of prior parameters
σ2 ← choice of localisation accuracy
SD0

, SD1
← variance of proposal distributions

D0 ← random number drawn from Unif(0, Dmax)
D1 ← random number drawn from Unif(0, Dmax)
p01 ← random number drawn from Beta(a0, b0)
p10 ← random number drawn from Beta(a1, b1)
θ(1) ← {D0, D1, p01, p10}
z1 ← random number drawn from Bernoulli

(
p10

p10+p01

)
for i = 2 to i = N do

zi ← random number drawn from Bernoulli(zi−1(1− p10) + (1− zi−1)p01)
end for
z← {zi}Ni=1

for k = 2 to k = K do
D′0 ← random number drawn from N(D0, SD0)

α(D0 → D′0|z,X)← min

{
1,

∏
zi=0N(∆Xi;0,2D

′
0∆ti+2σ2)∏

zi=0N(∆Xi;0,2D0∆ti+2σ2)

}
1[0,Dmax](D0)

u← random number drawn from Unif(0, 1)
if α(D0 → D′0|z,X) > 1 then

D0 ← D′0
else if α(D0 → D′0|z,X) > u then

D0 ← D′0
end if
D′1 ← random number drawn from N(D1, SD1

)

α(D1 → D′1|z,X)← min

{
1,

∏
zi=1N(∆Xi;0,2D

′
1∆ti+2σ2)∏

zi=1N(∆Xi;0,2D1∆ti+2σ2)

}
1[0,Dmax](D1)

u← random number drawn from Unif(0, 1)
if α(D1 → D′1|z,X) > 1 then

D1 ← D′1
else if α(D1 → D′1|z,X) > u then

D1 ← D′1
end if
Update n10, n11, n01, n00 using Equation (2.15)
p01 ← random number drawn from Beta

(
a0 + n10, b0 + n11

)
p10 ← random number drawn from Beta

(
a1 + n01, b1 + n00

)
θ(k) ← {D0, D1, p01, p10}
for i = 1 to i = N do

Calculate π(zi = 1|zi−1, zi+1, D0, D1, p01, p10,X) by normalising Equation (A.2), (A.3)
or (A.4)

zi ← random number drawn from Bernoulli(π(zi = 1|zi−1, zi+1, D0, D1, p01, p10,X))
end for
z(k) ← z

end for
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Figure A.1: Fit of the exact two-state diffusion model with measurement
noise to a simulated two-state diffusion trajectory. (A) The posteriors for the
two diffusion coefficients with true D1 (red square) and D0 (blue asterisk) values plotted,
(B) corresponding samples for D0 (red) and D1 (blue) including burn-in (dashed line).
(C) Posteriors for the switching probabilities per frame, with true p01 (blue asterisk) and
p10 (red square) values plotted (D) corresponding samples for p01 (red) and p10 (blue)
including burn-in (dashed line). (E) Diffusion state inference (blue, dashed) and true
state (red) shown as the probability of being in the low diffusion state. (F) Trajectory
coloured by the probability of being in the low diffusion state. Colour scale represents
π(z = 1|X) from 0 (blue, high diffusion state) to 1 (green, low diffusion state). Colorbar
length: 100nm. (G,H) Mean inferred position of U (blue, dashed) and true particle
position (red). Trajectory was simulated as Equation (2.39). Simulated measurement
noise and measurement noise for inference both set to σ2 = 41.09nm. Data from 20000
MCMC steps with a 10000 step burn-in. See Section 2.2 for priors and initial conditions.
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Figure A.2: Diffusion coefficients separated by a factor of 1.5 can be detected
on the exact two-state diffusion model with measurement noise. (A-D) The
posteriors for the two diffusion coefficients with true D1 (red square) and D0 (blue
asterisk) values plotted; true D0, D1 differ by a factor of 1.5 (A,C) and 2 (B,D), with
low (A,B) and high (C,D) diffusion coefficients. (E-H) Corresponding diffusion state
inference (blue, dashed) and true state (red) shown as the probability of being in the
low diffusion state. The transition probabilities for all trajectories were p01 = 0.005,
p10 = 0.005. Measurement noise set to σ2 = 41.09nm for both the simulated data and
inference algorithm. Trajectories comprise 4000 frames. Data from 20000 MCMC steps
with a 10000 step burn-in. See Section 2.2 for priors and initial conditions.
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Figure A.3: Model selection between one-state and two-state diffusion models
with measurement noise on simulated trajectories. Box and whisker plots of log
Bayes factors for simulated datasets (trajectories are length 4 s with 1000 frames s−1).
Trajectories with log Bayes factor outside 1.5 times IQR are plotted as outliers (red
crosses). Red lines correspond to the log Bayes factor thresholds of -3 and 3 (see Section
2.2.7). (A) Parameters for simulated data (50 trajectories for each model): two-state and
two-state with noise, D0 = 105 nm2s−1, D1 = 2 × 104 nm2s−1, p01 = 0.01, p10 = 0.01;
one-state and one-state with noise, D = 105 nm 2s−1. (B) Parameters for simulated
data (20 trajectories for each model): two-state and two-state with noise, D0 = 5× 105

nm2s−1, D1 = 2 × 104 nm2s−1, p01 = 0.01, p10 = 0.01; one-state and one-state with
noise, D = 5 × 105 nm2s−1. Measurement noise in the simulations was σ2 = 41.09 nm.
MCMC runs were 20000 steps with a 10000 step burn in, with measurement noise fixed
as σ2 = 41.09 nm.
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Figure A.4: Posterior estimates of diffusion coefficients for single LFA-1 tra-
jectories. (A-D) Pooled posterior samples of logeD for trajectories preferring the
one-state diffusion model. The posterior means (blue circles) are also shown. Black line
indicates value of σ2/2∆t. Treatments: (A) DMSO, one-state model preferred for 51
trajectories; (B) Cyto D, 22 trajectories; (C) PMA, 23 trajectories; (D) PMA+Cal-I, 36
trajectories.

151



0 1 2 3 4

x 10
4

0

0.005

0.01

0.015

D
0
,D

1
 (nm

2
 s

−1
)

P
o
st

er
io

r 
d
en

si
ty

 A

0 1 2

x 10
4

0

0.5

1

1.5

2
x 10

5

MCMC step

D
0
,D

1
 (

n
m

2
 s

−
1
)

 

 

 
B

D
0

D
1

0 0.005 0.01 0.015
0

100

200

300

400

p
01

,p
10

P
o
st

er
io

r 
d
en

si
ty

 C

0 1 2

x 10
4

0

0.2

0.4

0.6

0.8

1

MCMC step

p
1
0
,p

0
1

 

 

 
D

p
10

p
01

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

π
(z

=
1
|X

)

Time (s)

 E  F

Figure A.5: Fit of the approximate two-state diffusion model with measure-
ment noise to an LFA-1 trajectory (PMA+Cal-I treatment). Compare to Fig.
2.3 fitting the exact noise model to the same trajectory. (A) The posteriors for the
two diffusion coefficients, (B) corresponding samples (12 independent chains plotted in
the same colour) for D0 and D1 including burn-in (dashed line), (C) posteriors for the
switching probabilities per frame, (D) corresponding samples (12 chains) for p01 and p10

including burn-in (dashed line), (E) State inference shown as the probability of being
in the low diffusion state, (F) trajectory coloured by the probability of being in the low
diffusion state. Colour scale represents π(z = 1|X) from 0 (blue, high diffusion state) to
1 (green, low diffusion state). Colorbar length: 100nm. Data from 12 parallel chains of
20000 MCMC steps with a 10000 step burn-in. Priors, see Section 2.2.

152



0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

Correlation

N
u

m
b

er
 o

f 
tr

aj
ec

to
ri

es

 A

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

π
(z

|X
)

 B

Figure A.6: Comparison of hidden state inference for the exact and approx-
imate two-state diffusion models with measurement noise. (A) Correlation
between inferred hidden state z for each model, pooled across all treatments for 30
trajectories preferring the approximate two-state model (fast-switching, p̂01 > 0.1 or
p̂10 > 0.1 in the exact model, trajectories removed). (B) Example hidden state posterior
for approximate two-state model (blue) and exact two-state model (red) for a single
trajectory (PMA+Cal-I treatment).
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Figure A.7: Posterior estimates of diffusion coefficients from fitting approx-
imate two-state diffusion model with measurement noise to LFA-1 trajecto-
ries. (A-D) Pooled posterior samples of logeD (blue lines) for trajectories with one-state
diffusion model preference, or logeD0 (red lines) and logeD1 (green lines) for trajecto-
ries with two-state diffusion model preference (fast switching, p̂01 > 0.1 or p̂10 > 0.1,
trajectories removed). Also plotted are the posterior means of logeD for each trajec-
tory with one-state model preference (blue circles), and posterior means of logeD0 (red
squares) and logeD1 (green triangles) for each trajectory with two-state model prefer-
ence. Black line indicates value of σ2/2∆t. Treatments: (A) DMSO, one-state model
preferred for 51 trajectories, two-state model preferred for 14 trajectories; (B) Cyto D,
22 one-state, 5 two-state; (C) PMA 23 one-state, 14 two-state (D) PMA+Cal-I, 36 one-
state, 7 two-state. (E) Pooled logeD estimates and posterior means for each trajectory
over all treatments for trajectories where one-state diffusion model was preferred.
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Figure A.8: Dependences of parameter estimates from approximate two-
state diffusion model with measurement noise. (A-D) Scatter plots of posterior
means of stated parameters for approximate two-state model with measurement noise
inference, for trajectories where the approximate two-state diffusion model was preferred,
(fast switching, p̂01 > 0.1 or p̂10 > 0.1, trajectories removed). Treatments: DMSO,
blue asterisks; Cyto D, red squares; PMA black circles; PMA+Cal-I, green triangles.
In panel (A) the black solid line is a linear fit with two outlier trajectories removed,
D1 = aD0 + b, a = 0.57, b = −1.3 × 104 nm2 s−1; black dashed line is double iterate,
D1 = a(aD0 + b) + b.
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Figure A.10: Mean square displacement plots for three SPT trajectories. Red
line is the straight line fit to the optimum number of MSD points to use when estimating
the diffusion coefficient D [62]. (A) Stationary latex bead. (B) Slow diffusing LFA-1
trajectory (PMA+Cal-I treatment). (C) Fast diffusing LFA-1 trajectory (PMA+Cal-I
treatment).
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Figure A.11: Posterior estimates of D0/D1 ratio for the two-state diffusion
model with measurement noise fitted to LFA-1 trajectories. Posterior mean
D0/D1, for trajectories where two-state diffusion model was preferred, pooled across
treatments (fast switching, p̂01 > 0.1 or p̂10 > 0.1, trajectories removed).
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A.6 SI Files: Single particle tracking trajectories in MAT

and HDF5 file formats

Available at http://tinyurl.com/DetectionofDiffusion.

159



Appendix B

Supporting Information for

Chapter 3

B.1 MSD Analysis and Optimal Resampling

The iSCAT dataset contains trajectories sampled at 50 kHz. An alternative to modelling

single displacements is to subsample the data, i.e. model displacements over n time steps

(rather than a single time step), thereby increasing the signal to noise (S/N). Here, we use

two approaches to determine a reasonable subsampling rate; both approaches suggested

a subsampling rate of around 10. We also describe an additional preprocessing step; this

was necessary to remove clear artifacts from a minority of trajectories.

B.1.1 Subsampling of trajectories

We used the mean square displacement (MSD) analysis of Michalet [62] to analyse each

trajectory. This analysis also infers the optimum number of points to use in the MSD cal-

culation, Table B.1. This is relevant for our methods as it determines whether modelling

single displacements is reasonable, i.e. whether S/N is sufficiently high.
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Trajectories with 20nm AuNP show a variety of optimum number of MSD points

(Table B.1) indicating that subsampling the data is necessary. Since the number of MSD

points for estimating D ranges from 6-43 with mean 11.6, for simplicity we subsampled

all trajectories at rate 10. The time between observations is thus 0.0002s, which we call

the “subsampled time step”. We could alternatively subsample at a rate equal to the

optimum number of MSD points on a trajectory by trajectory basis, although results

were similar on the trajectories tested.

B.1.2 Directionality of diffusion

For trajectories with 40nm AuNP, the number of points included when estimating D is

always two, i.e. a fit to the first two MSD points, not including the origin. This suggests

that the S/N is high enough for a single displacement analysis. However for 40nm

AuNPs, at time delays less than 10−4s, superdiffusive behaviour was reported (attributed

to dynamic error in measurements due to sub-nanometre localisation precision) [51].

We investigated this, and noticed that displacement angles showed a bias towards

horizontal displacements (Fig. B.1). This was statistically significant in a Chi-squared

test (with the null hypothesis that angular displacements follow a uniform distribution),

Fig. B.2. This bias was resolved, in 40nm AuNP/CTxB/GM1 on mica trajectories, by

subsampling at rate 10 (Fig. B.2A). These trajectories were previously shown to display

no trapping [51]; hence the remaining bias (even when subsampling at higher rates) in

displacement angles for other treatments is presumably due to directional displacements

in trapping events. (We also investigated the effect of window averaging, taking the

average particle position over a window size n, and found similar trends to subsampling,

Fig. B.2B.) Thus, this analysis is further evidence for a subsampling rate of 10, and also

suggests that we should subsample 40nm AuNP trajectories.
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Figure B.1: Radial histogram of angular displacements for 40nm
AuNP/CTxB/GM1 on mica trajectory. The angular displacement (plotted in
degrees) in radians is Ri = atan2(∆X1i,∆X2i) + π, where ∆Xi = {∆X1i,∆X2i}.
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Figure B.2: GM1 trajectory displacements have an angular bias. Percentage
of trajectories where the null hypothesis (angular displacements follow a uniform dis-
tribution) was rejected in a Chi-square test, plotted against subsampling or averaging
rate. For each trajectory, the null hypothesis was rejected if p < 0.0003 (p=0.05 with
Bonferroni correction, 169 trajectories in total). A) Subsampling, B) averaging.
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B.1.3 Preprocessing of trajectories

Some 20nm AuNP/CTxB/GM1 on glass trajectories (7 out of 71) had clear artifactual

displacements, probably caused by an additional AuNP in the focal area. We dealt

with this by visually inspecting the trajectories, and removing (before subsampling) the

section of the trajectory with the artifacts.

B.2 Gaussian and ring-like confinements

It was previously shown, using goodness of fit to a Rayleigh distribution [51], that

AuNP/CTxB/GM1 trajectories had both Gaussian and ring-like confinement events.

We repeated this analysis on 20nm and 40nm AuNP/CTxB/GM1 on glass trajectories,

by first splitting each trajectory into 0.01s intervals. For each interval, if the particle

was restricted to a region of 0.1 µm in both the x and y directions then we considered

it confined. We thus split each trajectory into confined and free intervals. For each

confined interval of length N , we calculated the radius, Ri = ‖∆Xi‖, for all timepoints

to give {Ri}Ni=1. We then fit a Rayleigh distribution to {Ri}Ni=1 values, and calculated

the coefficient of determination, R2. This statistic gives a measure of how Gaussian-

like the confinement events are. We calculated a Gaussian-like statistic for individual

trajectories by averaging R2 values over all the confinement intervals, weighted by con-

finement length. The mean value of this statistic over all trajectories was 0.96 for 20nm

AuNP/CTxB/GM1 on glass and 0.94 for 40nm AuNP/CTxB/GM1 on glass. (In the pre-

vious study 0.95 was used as a threshold for Gaussian confinement [51].) Our algorithm

is suited to inferring Gaussian confinement events, so we thus applied the algorithm only

to 20nm AuNP/CTxB/GM1 on glass trajectories in this study.

B.3 Full derivation of Gibbs move for harmonic well centre

Here we calculate a Gibbs update for the harmonic well centre (C). As described in

Methods, we update in blocks of length n, Cj,n = {Ci}j+ni=j , where 1 ≤ j ≤ N − n. We

derive an update by comparing the conditional distribution for a block (obtained from

the posterior distribution, Equation (3.6) in the main text), and the multivariate normal

PDF. On the one hand we have the conditional distribution for Cj,n, for which there are
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two cases

π(Cj,n|C−j,n, z, θ,X)

∣∣∣∣
j 6=1

∝ exp

j+n∑
i=j

− (∆Xi + κ∆tizi(Xi − Ci))2

4D∆ti
+

j+n+1∑
i=j

−∆C2
i

4∆ti(DCzi + D̂(1− zi))


(B.1)

π(Cj,n|C−j,n, z, θ,X)

∣∣∣∣
j=1

∝ exp

(
−τC1

2
(C1 − µC1)2 +

j+n∑
i=j

− (∆Xi + κ∆tizi(Xi − Ci))2

4D∆ti

+

j+n+1∑
i=j

−∆C2
i

4∆ti(DCzi + D̂(1− zi))

)
(B.2)

where C−j,n = C \Cj,n. On the other hand, the multivariate normal PDF with mean

µCj,n and precision matrix Σ−1
Cj,n

, up to proportionality with respect to Cj,n, is

exp

[
− 1

2

(
(Cj,n − µCj,n)TΣ−1

Cj,n
(Cj,n − µCj,n)

)]
= exp

[
− 1

2

j+n∑
l=j

j+n∑
m=j

(Cl − µl)(Cm − µm)Σ−1
l,m

]

= exp

[
− 1

2

j+n∑
l=j

j+n∑
m=j

(ClCm − Clµm − Cmµl + µlµm)Σ−1
l,m

]
(B.3)

where Σ−1
l,m denotes the (l,m)th element of the precision matrix and µl denotes the lth

element of the mean vector. Thus we can calculate a multivariate normal update by

comparing the coefficients in the exponential for Equations (B.1) and (B.3) (also using

Equation (B.2) if j = 1). For the squared and cross terms this gives

C2
i

∣∣∣∣
2≤i≤N−1

: − 1

4∆ti−1(DCzi−1 + D̂(1− zi−1))
− κ2∆tizi

4D
− 1

4∆ti(DCzi + D̂(1− zi))
= −1

2
Σ−1
i,i

(B.4)

CiCi−1 :
1

2∆ti−1(DCzi−1 + D̂(1− zi−1))
= −Σ−1

i,i−1 = −Σ−1
i−1,i. (B.5)
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And for i = 1 and i = N we have

C2
1 : −τC1

2
− κ2∆t1zi

4D
− 1

4∆t1(DCz1 + D̂(1− z1))
= −1

2
Σ−1

1,1 (B.6)

C2
N : − 1

4∆tN−1(DCzN−1 + D̂(1− zN−1))
− κ2∆tNzN

4D
= −1

2
Σ−1
N,N . (B.7)

By solving Equations (B.4)-(B.7) we can hence write the n by n precision matrix

Σ−1
Cj,n

=



Σ−1
j,j Σ−1

j,j+1

Σ−1
j+1,j Σ−1

j+1,j+1 Σ−1
j+1,j+2

Σ−1
j+2,j+1

. . .

. . .

. . . Σ−1
j+n−1,j+n

Σ−1
j+n,j+n−1 Σ−1

j+n,j+n


. (B.8)

For j + 1 ≤ i ≤ j + n− 1, comparing the Ci coefficients gives

Ci

∣∣∣∣
j+1≤i≤j+n−1

:
κzi
2D

(∆Xi + κ∆tiziXi) =

j+n∑
m=j

µmΣ−1
i,m. (B.9)

And providing the block does not contain the first or last timepoint, we have

Cj :
Cj−1

2∆tj−1(DCzj−1 + D̂(1− zj−1))
+
κz1

2D
(∆Xj + κ∆tjzjXj) =

j+n∑
m=j

µmΣ−1
j,m (B.10)

Cj+n :
Cj+n+1

2∆tj+n(DCzj+n + D̂(1− zj+n))
+
κzj+n

2D
(∆Xj+n + κ∆tj+nzj+nXj+n) =

j+n∑
m=j

µmΣ−1
j+n,m.

(B.11)

If the block contains the first timepoint, i.e. j = 1 we have

C1 : τC1µC1 +
κz1

2D
(∆X1 + κ∆t1z1X1) =

j+n∑
m=j

µmΣ−1
1,m (B.12)
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and if the block contains the last timepoint, i.e. j + n = N , then

CN :
κzN
2D

(∆XN + κ∆tNzNXN ) =

j+n∑
m=j

µmΣ−1
N,m. (B.13)

To calculate µCj,n we solve the system of linear equations

Σ−1
Cj,n

µCj,n = bj,n (B.14)

where bj,n is a column vector with elements bi =
{
κzi
2D (∆Xi + κ∆tiziXi)

}j+n−1

i=j+1
and bj ,

bj+n from the left hand side of Equations (B.10) and (B.11). (Or Equation (B.12) or

(B.13) if j = 1 or j + n = N respectively.) Since Σ−1
Cj,n

is tridiagonal this equation can

be efficiently solved, for example using the left matrix division function (with Σ−1
Cj,n

as

a sparse matrix) in Matlab. Given µCj,n and Σ−1
Cj,n

the Gibbs update is

Cj,n ∼ N(µCj,n ,Σ
−1
Cj,n

). (B.15)

B.4 SI Figures

MCMC step

0 2000 4000

D
,D

C
 (
µ

m
2
 s

-1
)

0

0.2

0.4

0.6

0.8

1
A

D

D
C

MCMC step

0 2000 4000

κ
 (

s
-1

)

0

2000

4000

6000

8000

10000
B

κ

MCMC step

0 2000 4000

p
e
s
c
,p

tr
a
p

0

0.2

0.4

0.6

0.8

1
C

p
esc

p
trap

Figure B.3: Fit of HPW model to a 20nm AuNP/CTxB/GM1 trajectory in
a model membrane on glass. (A) MCMC chains for D (blue) and DC (red). (B)
MCMC chain for κ. (C) MCMC chains for pesc and ptrap. For each parameter 12
independent MCMC runs are shown. Corresponding parameter posterior distributions
are shown in Fig. 3.6.
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Figure B.4: Pooled confinement histograms for all AuNP/CTxB/GM1 trajec-
tories. Histograms of particle positions pooled over confinement events for a trajectory.
Trajectories are ordered by the average of the mean confinement radius statistic (R̄lm)
over all events (i.e. the order in Fig. 3.10C). Confinement events were included based
on the criteria which yield 325 events in Table 3.1, except that we also included events
revisiting a previous trapping zone (i.e. we did not enforce the condition that confine-
ment event centres have to be 30nm away from all previous centres in that trajectory).
Each plot has side length 0.1 µm.
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Figure B.5: Pooled confinement histograms for all AuNP/CTxB/GM1 trajec-
tories. Histograms of particle positions pooled over confinement events for a trajectory.
Trajectories are ordered by the average of the radial skewness statistic (Slm) over all
events (i.e. the order in Fig. 3.10D). Confinement events were included based on the
criteria which yield 325 events in Table 3.1, except that we also included events revisiting
a previous trapping zone (i.e. we did not enforce the condition that confinement event
centres have to be 30nm away from all previous centres in that trajectory). Each plot
has side length 0.1 µm.
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