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Abstract

We study the existence and properties of metrics maximigiedirst Laplace eigen-
value among conformal metrics of unit volume on Riemanniafiases. We describe
a general approach to this problem and its higher eigenwatsions via the direct
method of calculus of variations. The principal resultdude the general regularity
properties ofA-extremal metrics and the existence of a partially regdamaximiser.
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0. Introduction

0.1. Preliminaries

Let M be a compact surface, possibly with boundary. For a Rienaarmietricg on M we
denote by

0=120(9) <A1(9) <A2(9) < ... <A(Q) < ...

the eigenvalues of the Laplace operataky. WhenM has a non-empty boundary we
assume that the Neumann boundary conditions are imposateBgsult of Korevaar [31],
each eigenvalugy(g) is bounded as the metrgcranges in a fixed conformal class bh
More precisely, ifM is an orientable surface of genysthen there exists an absolute
constantC, > 0 such that for any Riemannian metg¢he following estimate holds

A(@)Volg(M) < C.-k(y+1)

for eachk > 0. This is a generalisation of an earlier result by Yang-¥&j for the first
eigenvalue: for any Riemannian metgc

A1(9)Volg(M) < 8mt- (y+1). (0.1)

For genus zero surfaces the result of Hersch [20] statesht@aquality in the inequality
above is achieved on the standard round spherél In [2] Basled whether the flat equi-
lateral torus maximises the quantity(g)Voly(M) among all metrics on the torus. Later
Nadirashvili [35] developed an approach to the Berger mobby maximising the first
eigenvalues in conformal classes. Since his paper theredwasa growing interest in the



extremal problems for eigenvalues on surfaces, and inqodati extremal problems in con-
formal classes. For the progress on the subject we refeetpdpers/[6, 10, 11] as well
as [22[ 23, 12] and references there.

The previous work [22, 36] together with numerical evideimchicate that metrics max-
imising Laplace eigenvalues are expected to be singulds gdses the following natural
questions.

What singularities of maximal metrics can occur, in pririe Is it possible to describe
them?

From the perspective of calculus of variations, the ocaweeof singularities means that
the class of smooth Riemannian metricad naturalfor such extremal problems. In other
words, there should be developed a new formalism allowirdetd with singular objects.
This point of view leads to the questions of the followingdkin

What is an appropriate variational setting for the eigem@éxtremal problems on singular
metrics? In particular, what is the right notion of extrentwlfor singular metrics?

One of the purposes of this paper is to develop a generalgéttaddress a circle of similar
problems. Below we describe its content in more detail.

0.2. Outline of the results

We study the existence and properties of metrics maximishey first eigenvalue
A1(9)Volg(M), and more generally, thith eigenvaluei,(g)Voly(M), among conformal
metrics on Riemannian surfaces. More precisely, the perpbthis paper is to develop an
approach to this problem via tldérect method of calculus of variationBirst, we show that
the Laplace eigenvalugg(g) naturally extend to ‘weak conformal metrics’, understosd a
Radon measures and prove bounds for them (TheofgraadA;). This setting ofigen-
value problems on surfaces with measigi®s a uniform formalism of treating eigenvalue
problems on singular surfaces as well as eigenvalue prabhdth Steklov boundary con-
ditions. We also prove a general existence theorem (TheBi¢iof a measure maximising
the first non-trivial eigenvalug; under the hypothesis

sup{A1(g)Volg(M) : g € c} > 8. (0.2)

on a given conformal class The hypothesid(0.2) guarantees that the maximiser is not
pathologically singular. It satisfieslimear isocapacitory inequalitysee Secf]2; in partic-
ular, it vanishes on sets of zero capacity and the mass of foéll(x,r)) decays at least as
In=1(1/r) asr — O+.

Second, we define a notion af-extremality of general measures under "conformal
variations” and derive first variation formulas. The maisui¢ of the paper is concerned
with the study of regularity properties géneralAg-extremal measuredlore precisely, in
Sect[4 we prove the following statement (Theo@&h

Regularity Theorem. Let M be a compact surface, possibly with boundary, endovitéd w
a conformal class c of Riemannian metrics. pebe aAy-extremal measure which is not
completely singular and such that the embedding

Lo(M, u) NL3(M, Vol) € Lo(M, ) (0.3)

is compact.



(i) Then the measurg is absolutely continuous (with respect to ¢/of € c) in the
interior of its support S M, its density function is ©-smooth in S and vanishes at
isolated points only. In other words, the measurdefines a €C-smooth metric on S,
conformal to ge ¢ away from isolated degeneracies which are conical singfigs.

(i) If the support of the measung does not coincide with M, then the measure has a
non-trivial singular se& C M\ IntS.

It is important to mention that there are singularextremal measures, see Sédt. 4,
and thus, the regularity theory is non-trivial. The compass of embedding (0.3) in the
theorem is a delicate hypothesis. It is closely related édoshaviour of sharp constants in
the so-called isocapacitory inequalities. Studying thlationship, we obtain asymptotics
for the valuesu(B(x,r)) asr — 0, which describe the margin between the validity and
the failure of the compactness of embedding](0.3). Thesapimtics show that there are
capacitory measures for which embedding](0.3) is not compac

As an elementary application of the developed analysis, biaio the notion ofAy-
extremality for metrics with conical singularities undeméormal deformations, and are
able to characterise such metrics via harmonic maps intosphieres in the Euclidean
space, see Corollaky4.7. The latter statement generabsksr results in[11], see aldo |10,
35], known for Riemannian metrics.

In the final part of the paper, we prove the existence of aglbrtiegularA;-maximiser
(TheorenmD1) and study concentration-compactness propertiag-ektremal metrics. The
version of the latter result for the first eigenvalue (Theof ) says that any sequengg
of A;-extremal conformal metrics contains a subsequence tihatre&ionverges smoothly to
aAj-extremal metric or concentrates to a pure Dirac measurd giad) — 8rasn — +oo.

After the first preprint of the paper has appeared, there bas b number of develop-
ments on the subject. First, the results in our Exainple he3$teklov eigenvalue problem)
have been independently obtained[ih [7]. Extremal problemSteklov eigenvalues have
been also studied by Fraser and Schoeh ih [14] where therayihwve the existence of a
Ar-maximiser for zero genus surfaces. The state of the subgeaterning extremal prob-
lems for Laplace eigenvalues is also described in [15]. énr&tent preprini[37] Petrides
claims a general existence theorem dfamaximiser in every conformal class on a closed
Riemannian surface, the statement also announced by Nhifiiend Sire[[36]. The ar-
gument by Petrides uses the non-concentration analysistfie present paper as well as
the heat kernel regularization introduced by Fraser anad&tlil4]. Petrides also shows
that hypothesid(012) in our Theore®a always holds on closed Riemannian surfaces dif-
ferent from a sphere. On the other hand, by [24, 30] on susfadth boundary there are
conformal classes for which this hypothesis fails.

In spite of all this progress made within the last 2-3 yeareshave kept the main text
of the paper essentially unchanged making only the comestiequested by the referee.

0.3. Paper organisation

The paper is organised in the following way. In Sgtt. 1 we des@ general setup for the
variational problem. First, we show that Laplace eigenealuaturally extend to the set of
Radon measures (which play the role of "weakly conformaliogt) where they are upper
semi-continuous in the weak topology. We also discuss thendedness of eigenvalues
among non-atomic probability measures, based on earlseitseby Korevaar and their
improvements by Grigor'yan, Netrusov, and Yau.

In Sect[2 we study properties of the measures whose firsheagiees do not vanish.
We show that this hypothesis is equivalent to the validitp tihear isocapacitory inequal-



ity (Corollary[2.4). We proceed with comparing it with thengpactness hypothesis for
embedding[{0]3); our methods here are based on the isotmyadnequalities and the re-
sults by Maz'ja. In Secf.]3 we give a general statement ontisesnce of al;-maximal
Radon measure. Sett. 4 is devoted to the actual calculusiafivas — we define a notion
of extremality and derive the first variation formulas (Lealf3) for an arbitrary eigen-
valueAy. These are then used to prove the regularity of fagxtremal metric under the
hypothesis that the embedding (0.3) is compact. In Skct. givesan elementary argument
which yields the existence of partially regular maximisera conformal class.

The principal part of the paper ends with a collection of ottetated results and re-
marks in Sectl16. These include the concentration-compastproperties of extremal
metrics, geometric hypotheses allowing to obtain bettgulaity, and a number of open
guestions. The paper contains two appendices where wectdiails of technical or
complementary nature for reader’s convenience.

Acknowledgement®uring the course of the work | have benefited from the comment
and advice of Vladimir Eiderman, Alexander Grigor'yan, Eammel Hebey, Nikolai Nadi-
rashvili, and losif Polterovich. The work has been accosty@d during author’s stay at the
University of Cergy-Pontoise (France) during 2010/11 s by the EU Commission
via the Marie Curie Actions scheme.

1. Eigenvalues on measure spaces

1.1. Classical notation

LetM be a compact smooth surface with or without boundary. Réuaifor a Riemannian
metricg on M the Laplace operator/q in local coordinate$x'), 1 <i < 2, has the form

1 0 i 0
A== R
9 T 9% (\/Iglg axj) :
where(gij) are components of the metrig (g') is the inverse tensor, arjd| stands for
det(gi;). Above we use the summation convention for the repeatedésdiThe Laplace

eigenvalues
0=20(g) <A1(9) < ... <A(9) <.

are real numbers for which the equation
(Ag+Ak(g))u=0 1.1

has a non-trivial solution. In the case whihhas a non-empty boundary, we suppose
that the solutions! above satisfy Neumann boundary conditions. The solutidresjoa-
tion (I.1) are called eigenfunctions, and their collectioer all eigenvalues forms a com-
plete orthogonal basis ic?(M). Recall that by variational characterisation

A(9) = sup Rg(u), (1.2)

inf
Nk+1 ueAk+1

where the infimum is taken over gk + 1)-dimensional subspaces @’ (M), the supre-
mum is over non-trivial € AKt1, andR4(u) stands for the Rayleigh quotient,

Rg(u) = (/M |Du|2dVolg) / (/M udeob) .

The infimum in relation[{1]2) is achieved on the space spabgete first(k+ 1) eigen-
functions.



1.2. The setup for measure spaces. Korevaar eigenvaluedsoun

Let M be a compact surface ande a conformal class @*-smooth metrics oM. The
conformal metrics front can be identified with their volume measures, and to appliy var
ational methods, we consider eigenvalues as functionaisooé general measures bh
The reasoning is that the space of conformal Riemanniarigaelwes not possess any com-
pactness properties and, in fact, is not even closed in anyal@opology. Besides, we ex-
pect that maximal metrics (that is eigenvalues maximisaes) be degenerate, seéel[22], 36],
and we should be able to assign the valdie® such metrics.

For a Radon measufe on M the kth eigenvalue\g(u,c) is defined by the min-max
principle

Ak(p,c) = inf sup Re(u,p),
Nk+1 ueAk+1

where the infimum is taken over alk + 1)-dimensional subspaces! c Lo(M,u)
formed byC®-smooth functions, the supremum is over non-trivia A“t1, andR(u, i)
stands for the Rayleigh quotient

Re(u, ) = </M |Du|2dV0lg> / </M uzd;.l> , (1.3)

whereg € c is a reference metric. ¥ has a non-empty boundary, we assume that the
test functions are continuous up to the boundary. By condbmvariance of the Dirichlet
energy, the Rayleigh quotient does not depend on a choiagchfametriq € c.

The following example shows that so defined eigenvaluesatteal generalisations of
Laplace eigenvalues to certain degenerate metrics.

Examplel.1 (Metrics with conical singularities).et M be a compact surface, possibly
with boundary, andh be a metric orM with conical singularities. Then, as is known, such
a metrich is conformal to a genuine Riemannian megrizn M away from the singularities.
The Dirichlet integral with respect to the methiés defined as an improper integral; by the
conformal invariance, it satisfies the relation

/|Du|2dVo|h=/ |0ufdvol,
M M

for any smooth functiom. Thus, we conclude that the Laplace eigenvalues of a metric
coincide with the eigenvalues of the p#ifol,,[g]) in the sense introduced above. Men-
tion also that the\,(Voly, [g])’s coincide with other definitions of Laplace eigenvalues fo
metrics with conical singularities used in the literatisee e.gl[22, 28].

Clearly, the zero eigenvalul (1, c) vanishes for any measugeand any conformal
classc. The corresponding eigenfunctions coincide with condtamttions. The following
example shows that for higher eigenvalues the eigenfumetiorthogonal to constants) do
not always exist.

Examplel.2 (Possible pathologies) et u be a discrete measure supported distinct
points. Since the capacity of each point is equal to zers,straightforward to show that

0, ifl>k
/\k([.l,C){ too, if £ <K,

for an arbitrary conformal clagson M.

Despite this example, it is straightforward to see thatktheeigenvalueAy(u,c) is
finite for any measure whose support contains more thdistinct points. Further, the
following result shows that the quantify(u,c)u(M) is actually uniformly bounded for
all continuous (that is with trivial discrete part) Radonasereq..



Theorem A¢. Let M be a compact surface, possibly with boundary, endovigdacon-
formal class c. Then there exists a constant@© such that for any continuous Radon
measureu the following inequality holds:

Ac(p;c)p(M) <Ck

Moreover, if M is orientable, then the constant C can be chasdependently on the con-
formal class c in the form Gy + 1), where G > 0 is a universal constant, angis the
genus of M.

The theorem above is a basis for our variational approachprtiof is based on the
results by Grigor'yan, Netrusov, and Y&du [18/] 19], built dre toriginal method of Ko-
revaar [31]. It appears in AppendiX A. The estimate](0.1) ahy and Yau can be also
generalised for continuous Radon measures to give a moceseneersion of Theorery
for the first eigenvalue, see [30].

Theorem A;. Let M be an orientable compact surface, possibly with bouydandowed
with a conformal class c. Then for any continuous Radon nregsuhe first eigenvalue
satisfies the inequality

Ar(H,c)u(M) < 8m(y+1),

wherey is the genus of M.

Examplel.3 (Steklov eigenvalues) et M be a surface with boundary, endowed with a
conformal clasg. For a Riemannian metrig € c let pg be its boundary volume mea-
sure. Then the eigenvaludg(Lyg,c) coincide with the so-called Steklov eigenvalues of
a metricg, representing the spectrum of the Dirichlet-to-Neumanp.m&le refer to the
recent papers [17, 13] for the account and further refeiennghe subject. In particular,
TheoremsAy and A; above yield isoperimetric inequalities for the Steklovezigalues,
complementing earlier results by Weinstock|[43] and FraserSchoeri[13].

Now the existence problem for a maximising(g)Voly(M) metric inc splits into the
two separate parts: the existence of a weak maximiser -sthatantinuous Radon measure
maximising the quantity\c(u,c)u(M) among all continuous Radon measures, and the
regularity theory for weak maximisers. The followingper semi-continuitgroperty is an
important ingredient for the former.

Proposition 1.1 (Upper semi-continuity) Let (M, c) be a compact Riemann surface, and
(Un), n=1,2,..., be a sequence of Radon probability measures on M convevggagly
to a Radon probability measuge. Then for any kK= 0 we have

lim SUPA(n,©) < Ak(H,©).

Proof. For a givere > 0, letA¥+1 be a(k+ 1)-dimensional subspace 6f°(M) such that

sUp Re(H,U) < A(,C)+&.

ueAk+1

By weak convergence of measures, we obtain that

Sup Re(pn,U) —> sup Re(u, u).

ueNk+1 ueAk+1

In other words, for a sufficiently largewe have

sup Re(tn,U) < sup Re(H,u)+ € < Ak(U,C) + 2¢.

ueAk+1 ueNk+1



The latter implies that
/\k(“na C) < /\k(l'la C) +2¢

for all sufficiently largen, and passing to the limit, we obtain
lim supAg(tn, €) < Ak(U,c) + 2¢.

Sincee > 0 above is arbitrary, we are done. O

1.3. Preliminaries on eigenfunctions

Here we collect a number of elementary statements desgnivoperties of eigenfunctions
in the setting of measure spaces. We start with introducimataral space for the Rayleigh
quotient [1.B), that is the space

& = Lo(M, 1) NL3(M, Voly);

here the second space in the intersection is formed bylalisohs whose first derivatives
are inL>(M,Voly), seel[33]. Following classical terminology, a functiog .# is called an
eigenfunctiorfor Ax(u,c), if it is contained in ak + 1)-dimensional subspad€+t! ¢ .
such that

Re(u, 1) = sup Re(,H) (1.4)

¢€/\k+1

and the valu¢(u, i) coincides withAg(u,c). The following characterisation of eigen-
functions is often used in the sequel.

Proposition 1.2. Let M be a compact surface, possibly with boundary, endowtdawv
conformal class of Riemannian metrics. lugbe a continuous Radon measure on M whose
eigenvalue\(,c) is positive. Suppose that there exist eigenfunctions spaeding to the
first k eigenvalued,(u), 0 < £ < k. Then a non-trivial function & .% is an eigenfunction
for Ak(u, c) if and only if it satisfies the integral identity

[ (Cu.09)avoh = Ac(y.0) [ u- gau (L5)
M M
for any test-functionp € .Z.

Proof. Let u be an eigenfunction fok(u,c), and denote b\k* the span of eigenfunc-
tions corresponding td, (i, c), where 0< ¢ < k. For a test-functiogp € A1 the function

t— Re(u+to,u) (1.6)

has a maximum at= 0, and relation[(1]5) follows by differentiation of the Raigh quo-
tient att = 0. Further for a test-functiog from the orthogonal complement 6f*1 in .
the function[(Z.5) has a minimum &t 0, and the conclusion follows in the same fashion.
Conversely, suppose that a functiosatisfies identity[(1]5) for any € .. Then, in
particular, the value of the Rayleigh quotiétu, 1) coincides withA (1, c). The(k+ 1)-
dimensional space containinigand satisfyingl(1]4) can be constructed as a spanvith
eigenfunctions corresponding to lower eigenvalues asagadigenvalues that coincide with
Ak(,c). O

Note that the hypothesis on the existence of lower eigetifums, in Prop[112, is vac-
uous for the first eigenvalue. In general, the existencegdrdinctions is related to the
compactness of the embedding

& =La(M, 1) NL3 (M, Volg) C La(M, ). (1.7)



The following statement follows by fairly standard argunseme outline them for the sake
of completeness.

Proposition 1.3. Let M be a compact surface, possibly with boundary, endowtdav
conformal class of Riemannian metrics, gnde a Radon measure such that the embed-
ding (L1.7) is compact. Then for any k 0 the eigenvalue\c(u,c) is positive and has
an eigenfunction. Moreover, the space formed by eigenfurgetorresponding to equal
eigenvalues is finite-dimensional.

Proof. We prove the theorem by induction ik The statement on the existence of eigen-
functions is, clearly, true fok = 0. Suppose the eigenfunctions exist for @nyg (k— 1);
there is a collection of pair-wise orthogonal eigenfursigp, corresponding to\,(u),
where? < (k—1). We are to prove the existence of an eigenfunctiom{du) which is
orthogonal to the span of thie's.

Let (un) be a minimising sequence for the Rayleigh quotRytt, (1) in the orthogonal
complement of the span of thjg’s;

/uﬁduzl, /|Dun|2dVOb—))\k([.l), asn — +oo.
M M

Since the embedding(1.7) is compact, we conclude(thgtcontains a subsequence con-
verging weakly inL}(M, Volg) and strongly inLx(M, 1) to a functionu € .. Clearly, the
limit function u is orthogonal to the span of tife’s, and its norm ir_,(M, 1) equals one.
By lower semi-continuity of the Dirichlet energy, we furtrabtain

/ |0uldVoly < liminf / |Cun 2 dVolky = Ag().
M JM

Thus, we conclude that the functianis indeed a minimiser for the Rayleigh quotient
Re(u, ) among functions orthogonal to the span of {hés.

The statement on the dimension of eigenfunctions corretipgrio equal eigenvalues
follows by the same compactness argument. O

The existence of eigenfunctions lies at the heart of our otetstablishing the regu-
larity of extremal metrics in Sedi] 4. The hypotheses engutie existence are related to
the so-called Maz'ja isocapacitory inequalities and stddn more detail in the following
section.

2. Measures with non-vanishing first eigenvalue

2.1. No atoms lemma

In this section we study Radon measureshbrwith non-vanishing first eigenvalue. To
avoid dealing with trivial pathologies we always assumé the measures under consider-
ation are not Dirac measures. The first useful result shoatsstich measures have to be
continuous, that is with trivial discrete part.

Lemma 2.1. Let (M, c) be a compact Riemann surface, possibly with boundaryLe
a non-continuous Radon measure on M that is not a pure Diragsome. Then the first
eigenvalue\1(u,c) vanishes.

Proof. For the sake of simplicity, we prove the lemma for the casentiiés closed only.
Letx € M be a point of positive mase)= p(x) > 0. Denote by, the measuréu — mdy),



and letQ be a coordinate ball aroundsuch that = p,(M\Q) is strictly positive. Since
the capacity of a point is zero, then for a given- 0 there exists a functioth € C5(Q)
suchthat 6< ¢ <1,

¢ = 1in a neighbourhood of and/ I0¢|>dVoly < &.
M

The integral above refers to a fixed metge= c. Denote bya the mean-value of the
function¢,

a :/M¢dVo5>o.

Then by variational principle, we have

Mau.o) [ (¢—a)du< [ |09 dvop.
The right-hand side is not greater therand due to the choice gf, we obtain
M(p,c)(a?5+(1—a)’m) < e.
By elementary analysis, the left-hand side above is boubdkxv by the quantity
(A1(p,c)md) / (m+9d) > 0.

Sincemand? are strictly positive, and is arbitrary, we conclude that the first eigenvalue
A1(u,c) has to vanish. O

2.2. Bounds via fundamental tone and isocapacitory inatjesl

We proceed with showing that measures with non-vanishisgdigenvalue satisfy certain
Poincare inequalities. The latter are closely related éothie notion of the fundamental
tone, which we recall now.

For a subdomai® C M with non-empty boundary thieindamental tond..(Q, ) is
defined as the infimum of the Rayleigh quoti&®atu, 1) over all smooth functions sup-
ported inQ. The following lemma gives bounds for the first eigenvaluéeinms of the
fundamental tone; a similar statement in a slightly différeontext can be found inl[4].

Lemma 2.2. Let M be a compact surface, possibly with boundary, endovitbdazonfor-
mal class of Riemannian metrics, apde a Radon probability measure on M. Then, we
have

infA.(Q, 1) < A1(p,¢) < 2infA.(Q, ),

where the infimums are taken over all subdom&ns M such thaD < p(Q) < 1/2.

Proof. First we prove the upper bound. Lebe a smooth function supported@®) and we
suppose that the integrali’du equals one. Denote hyits mean value, that is the integral
Judu. Then we have

[o-wPau=1-@>1- </u2du> H(Q) =1 H(Q) = p(M\Q).
From this, we conclude that

A1(H,0) < A(Q, 1)/ H(M\Q).

10



Since the domaiR is arbitrary, we further obtain

M(p,0) < _inf  min{A.(Q, 1)/ u(M\Q), A (M\Q, 1) /1 (Q)}
<p(Q)<1

< inf A(Q, M\Q)<2 inf  A(Q ).
L (Q,1)/u(M\Q) ocumly 2 (Q,u)

We proceed with demonstrating the lower bound. udie a test-function for the first
eigenvalue, that is

/uzdu =1 and /udu =0. (2.1)
Let c be a median ofi, that is a real number such that
pu<c)<1/2 and pu>c)<1l/2

Denote byul andug the non-negative and non-positive part§of- c), and byQ* their
supports respectively. First, note that

[ 1PuPavoy = [ ou¢ Favol+ [ [Pug [*avol,
Using this relation, we obtain
Re(u 1) > A(Q°) [ (W Pdu+ (@) [ (ug)au

> i A@ ( [wraus [ <uc>2du)

0<u(Q)<1/2
— inf A [ —u)2du = inf )\*Q/ o).
NG [~ ot A @) [ ofau

By (2.1) the last integral clearly equdls+- c?), and we conclude that

Re(u, ) = inf A (Q).
C( 7“) 0<U(Q)<l/2 ( )

Taking the infimum over all test-functions, we thus get thedobound forAy(u, ). O

One of the consequences of this lemma is the characterisaftimeasures with non-
vanishing first eigenvalug; (i, ¢) via isocapacitory inequalities. To explain this we intro-
duce more notation.

Let Q € M be an open subdomain. For any compactset Q the capacity Caff-, Q)
is defined as

CagF,Q) = inf{/|m¢|2dv% P eC(Q)p=1 onF} .
Further, by thdésocapacity constarf(Q, i) of Q we call the quantity

sup{u(F)/CapF,Q): F C Qis a compact set.

By the results of Maz'jal[33, Sect. 2.3.3], see alsb [4], thacapacity constant and the
fundamental tone are related by the following inequalities

(4B(Q, 1) S A(Q ) < (B(Q ) (2.2)
Combining these with Lemnia 2.2, we obtain the following diarg.

11



Corollary 2.3. Under the hypotheses of Lemmal 2.2, we have

INf(4B(Q. 1))~ < Aa(p,0) < 2inf(B(Q, 1)) Y,

where the infimums are taken over all subdomains M such that0 < p(Q) < 1/2. In
particular, the first eigenvaluds(u,c) is positive if and only if the isocapacity constant
B(Q, ) is bounded a$) ranges over all subdomains such tiat 1(Q) < 1/2.

As another consequence, we mention the following statement

Corollary 2.4 (Linear isocapacitory inequality)Under the hypotheses of Lemmal 2.2, the
first eigenvalué\1(, c) does not vanish if and only if there exists a positive cort€ian 0
such that the measuye satisfies the following inequality

u(F) <C-CapgF,Q)

for any closed subset & Q and any subdomaifd such thab < u(Q) < 1/2. In particular,
if a measureu with non-vanishing\1 (U, c) is not a pure Dirac measure, then it vanishes
on sets of zero capacity.

The last statement of the corollary follows from the linesrdapacitory inequality to-
gether with Lemm&2]1. The linear isocapacitory inequalisp implies that

H(B(X.1) <C.-In1(1/r)

for some constar@@. and all sufficiently smalf > 0. The last relation can be also obtained
directly from the hypothesid;(u,c) > 0 by constructioning appropriate test-functions,
thus avoiding Lemmia2l.2 and the Maz’ja inequalify{2.2).

2.3. Existence of eigenfunctions and Maz'ja theorems

As we know, see Se(il 1, the existence of eigenfunctionssisred by theompact embed-
ding of the spaces
& = La(M, 1) NL3(M,Volg) C La(M, p). (2.3)

In this section we describe necessary and sufficient camdifior this hypothesis. First, re-
call that a Radon measure is callgampletely singulaif it is supported in a Borel st of
zero Lebesgue measure, thatig\Z) = 0. The measures that are not completely singular
are precisely the measures with non-trivial absoluteltiooiwus parts. The following aux-
iliary lemma reduces the compactness question to the cdrapdedding results, obtained
by Maz'ja in [33].

Lemma 2.5. Let M be a compact surface, possibly with boundary, endovitbdazonfor-

mal class ¢ of Riemannian metrics, ande a Radon measure on M.

(i) Suppose that the embeddi@3) is compact. Then the space™(M, Volg), where
g € ¢, embeds compactly inte (M, ).

(i) Conversely, suppose that the measurie not completely singular, has a positive first
eigenvalued1 (i, c), and the space W?(M, Voly) embeds compactly into, (M, ).
Then the embeddin@.3)is compact.

Proof. We start with the proof of the statemefiy; it is sufficient to show that any se-
quence(un) bounded inW*2(M,Voly) is also bounded in the spatg(M, ). Since the
embedding(2]3) is compact, by Prbp.]1.3 the first eigenvalpesitive, and by Lemnia 3.2

12



so is the fundamental torke (Q) of any sufficiently small subdoma®@ C M. Let(Q;) be a
finite covering ofM by such subdomains, arigh) be the corresponding partition of unity.
Then we obtain

Jtwntozan < 220 (f 1wl ofavoy + [ 067 davop
<G </|Dun|2deb+/u§deb> ,

where the positive consta@ depends om.(Q;) and theg;, and the claim follows by
summing up these inequalities.

Now we demonstarte the stateméiny. First, denote by, the subspace o formed
by functions with zero mean value with respectito It is sufficient to show that any
bounded sequence of smooth functions4 is also bounded iW2(M,Voly). More
precisely, we claim that there exists a cons@stich that for any smooth functiane %,
the inequality

/udeobgc-/ |Ouf?d Vol
M M

holds. Indeed, suppose the contrary. Then there existsugesee(u,) such that
/ u?dVoy =1, and / | Oun|?dVoly — 0. (2.4)
M M
Since the first eigenvalue does not vanish, we also have

/ Wy g;\fl(u,c)./ |C0ufd Vol 2.5)
M JM

for anyu € .%. Then, after a selection of a subsequenceuffgconverge weakly in%p,
and also strongly it.o(M, Volg), to some functiov € %. By the second relation if (2.4)
this limit function has to be constant almost everywherenwéspect tovoly. Further,
relation [25) shows that vanishes almost everywhere with respect to the measure
Sincep is not completely singular, then from the above we conclhdétvanishes almost
everywhere also with respect ¥ly. However, from[(Z}4) we see that the-norm ofv
equals one. Thus, we arrive at a contradiction, and the daproved. O

By the results of Maz’ja the compactness of the embedW%&(M,Volg) into the
spacel (M, u) is characterised by the decay of the isocapacity constastrail balls.
More precisely, the following result is essentially contad in [33], see alsd [1, Sect. 7].

First Maz'jatheorem. Letu be a Radon measure supported in a bounded doRairR?
with smooth boundary. Then the embeddintAM2, Voly) into Lp(Q, i) is compact if and
only if sup B(B(x,r), u) — 0 as r— 0, where the supremum is taken ovef Q.

Combining this result with Lemnia2.5, we obtain the follog/itonsequence.
Corollary 2.6. Under the hypotheses of Lemmal 2.5, we have
(i) if the embeddingZ.3)is compact, then

supB(B(x,r),u) — 0 r—0; (2.6)

XeM

(ii) if the measurey is not completely singular, has positive eigenvalue, aniksa
fies(2.8), then the embeddin@.3)is compact.
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Remark. First, mention that due t§ (2.2) the decay hypothesis onstheaipacity constant
is equivalent to the growth of the fundamental tone on smallsb Second, following
Maz'ja [33], one can also consider tlscapacity functior, (Q), defined as the quantity

sup{u(F)/CapF,Q): F C Qis a compact setiamF) <r}.

Then the hypothesi§ (2.6) in the corollary above can be cepldy the supposition that
M can be covered by open s&swhose isocapacity functiorfs (Q;) converge to zero as
r—0.

Recall that by Prod_113, the compactness of the embeddiB) {& a measurgu
implies that its first eigenvalu®; (i, c) does not vanish. However, tlwenverse does not
hold. More precisely, by Corollarff 2.6 the measures for which éngbedding[(213) is
compact satisfy the following (weaker than (2.6)) hypoibes

supu(B(x,r))In(1/r) =0 asr — 0. (2.7)
XeM

We claim that there are measures with positive first eigemgafor which this hypothesis
fails. For this itis sufficient to construct a compactly sapgpd measure iR? with bounded
logarithmic potential such that the quantpy(B(x,r))In(1/r) does not converge to zero
uniformly. The boundedness of the potential implies thatifocapacity constat(Q, i)
is bounded a€) ranges over a certain class of subdomains and, byLCor. 23;ancludes
that the first eigenvalue has to be positive. (The detailsoearommunicated on request.)
The next statement says that a slightly stronger decay hgpist than[(2]7) is often
sufficient for the embedding compactness.

Lemma 2.7. Let M be a compact surface, possibly with boundary, endovitbdazonfor-
mal class of Riemannian metrics, apde a Radon measure on M. Suppose fhé& not
completely singular, and its values on small balls satisg/relation:

supu(B(x,r))In%1/r) -0  as r—0, (2.8)

XeM

where > 1. Then the embeddin@.3) is compact and, in particular, the first eigenvalue
A1(U,c) is positive.

The hypotheses above actually yield a stronger concluglespace?’ in this case
embeds compactly intbyq(M, it). Conversely, the compact embedding itig(M, i)
implies relation[(2.8), under the hypotheses on the meashwee. The proof appears at
the end of the section; it is based on the following theoremtdMaz’ja, contained in [33,
Sect. 8.8], see alsbl[1, Sect. 7].

Second Maz’ja theorem. Let 4 be a Radon measure supported in a bounded domain
Q c R? with smooth boundary. Then for anyql the embedding of\}‘\F(Q,VoIg) into the
space bq(Q, i) is compact if and only if the measure satisfies the followigcay property

supu(B(x,r))In%(1/r) -0 asr—0,
X

where the sup is taken over alkxQ.

We proceed with examples illustrating Lemmal 2.7 in action.
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Example2.1 Let u be an absolutely continuous measure, that is given by tkgriat
H(E) :/ fdVo, whereE C M.
E

Suppose that the density functibns Lp-integrable for some > 1. Then we claim that re-
lation (2.8) holds, and by Lemnha 2.7 the embeddingd (2.3) isgaxct. Indeed, by Holder’s
inequality we obtain

H(B(x,)) < |f],- Volg(B(x.r)YP",

where|f|, denotes for thé,-norm, andp* is the Holder conjugate tp. Now the claim
follows from the fact that the volume term behaves lig?/P") whenr tends to zero.

Example2.2. Generalising the example above one can also consider tleallsalo-
uniform measures; they satisfy the relation

pU(B(x,r)) <Cr®  foranyxec M,

and some positive constai@sanda. These, for example, include measures that are abso-
lutely continuous with respect to tieedimensional Hausdorff measurg$ with densities

in Lp(M, u%), wherep > 1. Adding such measures to the one in the example above, we
obtain a variety of non-absolutely continuous measuresvfich the embeddindg(2.3) is
compact.

2.4. Proof of Lemma2.7

We start with the following statement.

Claim 2.8. Let u be a finite Radon measure supported in a bounded domainR3.
Suppose that the valugsB(x,r))In9(1/r) are uniformly bounded in x an@l < r < 1.
Then there exists a constant 8uch that

H(F) <Cy-CagF,Q) (2.9)
forany FC Q C G, where F is a closed set.

Proof. First, we introduce another capacity quantity on compatstiSen the Euclidean
plane:

cap(F) = inf{/‘¢2dv+/|D¢|2dv ¢ €CF(R?) and¢ >1 onF}.

As is known [33[.38], its values on balls behave asymptdtidiéde O(In(1/r)), and by the
claim hypotheses we obtain that

U(B(x,r)) < Cy-capB(x,r))4

for some constar@,, wherex € R? and 0< r < 1. By the result of Maz’ja in[33, Sect. 8.5],
this inequality extends to any compact Bet

u(F) < Cs-cagF)9, (2.10)

possibly with another consta@ independent oF. Now we claim that the latter implies
that
H(F) < Cy4-CapF, Q)1 (2.11)
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foranyF C Q C G. Indeed, as is known [38, Sect. 6], there is a consEgntiepending on
the diameter o only, such that

capF) < Cs-CafF,G) < Cs-CapF,Q)

foranyF c Q C G, where the second inequality is a monotonicity property ap CThis
together with[[Z.10) demonstrates inequality (2.11), Whie turn, yields inequality (2]9);
the constant; can be chosen to be the maximunafand the total mass ¢f. O

To prove LemmaZ2l7 we fix a reference meie ¢ and choose a finite open covering
(Vi) of M by charts on whicly is conformally Euclidean. Using the partition of unity, we
can decomposg into the sum of measureg, where eachy; is supported inv;. By ¢; we
denote the conformal class & obtained by restricting the metrics froom Combining
Claim[Z.8 and Corollarfy 213, we see that the first eigenvald€gi,c;) are positive. It is
straightforward to see that so are the first eigenvaliégi, c),

Ar(pi,¢) = Aa(pi,ci) > 0.

Now we apply the second Maz’ja theorem together with LerimBa@ conclude that the
embedding
L2(M, i) NL3(M, Volg) C La(M, )

is compact for any, and hence so is the embedding12.3). O

3. Weak maximisers for the first eigenvalue

3.1. The main theorem

Recall that, identifying conformal metrics with their vohe forms, we extended the eigen-
valuesAg(g) to a class of Radon probability measureshdn On theclass of continuous
measuresghe eigenvalues are still bounded, and the purpose of thigds to show the
supA1(U,c) is achieved in this class. More precisely, we have the faligvgtatement.

Theorem B;. Let M be a compact surface, possibly with boundary, endowitdaxcon-
formal class ¢ of Riemannian metrics. Suppose that

sup{A1(u,c)u(M) : u is a continuous Radon measure or} M 8. (3.1)

Then anyA;-maximising sequence of Radon probability measures aohtasubsequence
that converges weakly to a continuous Radon meagua¢ which the supremum on the
left-hand side is achieved.

Before proving the theorem we make two remarks. First, theinma measure clearly
has a positive first eigenvalue and, thus, satisfies a cegagapacitory inequality, see
Sect[2. In particular, the class of continuous Radon measurthe theorem above can
be significantly narrowed, for example, to the Radon measilva do not charge sets of
zero capacity. Second, the following result of Colbois ahdG&ufi [6] shows that the
hypothesis[(311) is not very significant for closed surfade$or any conformal class on
a closed surfachl the quantity

sup{A1(g)Volg(M) : g € ¢}

is greater or equal tor8

Due to the upper-semicontinuity property of the eigenvalthe proof of Theorem B
is essentially concerned with ruling out measures with trmial discrete part as limit
maximal measures.
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Proof of TheorenB;. Denote byA\; the quantity
sup{A1(u,c) : 4 is a continuous Radon probability measure\bh,

and letu, be a maximising sequence of continuous Radon measMgs;,c) — /A1 as
n— +oo. Since the space of Radon probability measures on a compéateM is weakly
compact, we can assume that th¢s converge weakly to a Radon probability measure
By upper semi-continuity (Lemnia.1), for a proof of the thezu it is sufficient to show
thaty is continuous. SincA; > 81, then by Lemm&3]1 below the measyrean not be a
Dirac measure. Further, the combination of upper semikcoity and Lemm&2]1 implies
thatu can not have a non-trivial discrete part and, thus, is a ocootis Radon measureld

3.2. Concentration of measures

Recall that by the example in Selt. 1 the first eigenvalue @iinac measure is infinite.
Nevertheless, the following lemma shows that it is possibleound the limsup1(n)
for a sequencel, converging to the Dirac measure. A similar statement fonRienian
volume measures has been sketched in [35, p. 888-889], artkthils have been worked
out in [1€]; we give a proof following the idea ih [27].

Lemma 3.1. Let (M,c) be a compact Riemann surface, possibly with boundary,.and
be a sequence of continuous Radon probability measureeging weakly to the Dirac
measuredy, X € M. ThenlimsupA;(Un) is not greater thar8rt.

Proof. First, if M has a boundary, then it can be viewed as a subdomain of arRifraan-
nian surface. Thus, without loss of generality we may asdhats is an interior point. Let
Q be an open coordinate ball arouxd M on which the metrig is conformally Euclidean,
and let

0:Q-SFCcR®

be a conformal map into the unit sphereRA. Since a point on Euclidean plane has zero
capacity, then for ang > 0 there exists a functiogy € C3(Q) such that 0< ¢ < 1,

@ = 1in a neighbourhood of,  and / |Ow|?dVolg< «.
M

By the Hersch lemma, AppendiX A, there exists a conformaildi@rmations, : & — S
such that

/(,U(Xiosnoqo)d[.ln:O forany i=1,2,3,
M

where(x') are coordinate functions iR3. Using the function®/, = (X o s, 0 @) as test-
functions for the Rayleigh quotient, we obtain

Malun.©) [ (84)dHn < [ |00} aVol

foranyi = 1,2,3. Summing over all’s yields
Makns©) [ WP <y [ |06} % dvob, (3.2)
M = /M

The right-hand side can be estimated as
‘ i 12 21/ 2
.Z./M |09}, [2dvol, < Z/M W2 0K 050 ¢)[2dVol

+2|Z./h;|w‘|j(xi05r10¢)’|Dlll|dVob+/M|Equ|2dVob.
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The first sum on the right-hand side can be further estimatedebquantity
' ] 2 i 2 B
IZ/Q |0(X osho @)|"dVoly < |Z/52 |0(X os)|"dVolkp = 871,

here we used the conformal invariance of the Dirichlet epextpich in particular implies
that the energy of a conformal diffeomorphism3fequals 8t. Similarly the second sum
is not greater that

| ' - 1/2
2.2./9 (O om0 )| [0y dvol < 26725 </Q 0 OSnoqo)‘deOb)

< 10mY/2e%2,

Using these two estimates and the fact that the Dirichletggnef  is less thare, we
obtain

Z/ |0¢|* dVoly < 8+ 10212 4 €.
M
I
Combining the last inequality witti (3.2), and passing tolilmét asn — +o0, we arrive at
the following relation
limsupA1 (n,c) < 8+ 1022 1 ¢.
Sincee > 0 is arbitrary, we conclude that the left-hand side is noagmethan &r. O

Remark. There is a version of Lemnia3.1 also for higher eigenvaluesreMprecisely,
the arguments outlined in AppendiX A yield the followingtstaent: for any sequence of
Radon measuregi,) converging weakly to a pure discrete measure the inequality

limsupAg(tn, c) < C.k

holds, whereC, is the universal Korevaar(-Grigor'yan-Yau) constant.

4. Elements of regularity theory

4.1. The main theorem

Let (M, c) be a compact Riemann surface. For a given Radon probabiigsorg: onM
by its conformal deformatiomve call the family of probability measures

w00 = ([ emau) /([ enau), @.1)

whereX C M is a Borel subset, ang € L*(M) is a generating function Clearly, any
two generating functions that differ by a constant definestme familyr;. Thus, it is
sufficient to consider generating functiopghat have zero mean-value with respectito
This assumption is made throughout the rest of the paper.

Definition 4.1. A Radon probability measune on a compact Riemann surfad,c) is
calledextremalfor thekth eigenvalué\(u,c) if for any ¢ € L*(M) the functionAy (4, c),
wherey; is defined by[(411), satisfies either the inequality

A, €) < A(H,0) +0(t)  ast -0,

or the inequality
Ak(tt,€) > Ak(p,c)+o(t) ast— 0.
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In particular, we see that any-maximiselis extremal under conformal deformations.
The definition above is a natural generalisation of the owergby Nadirashvili[[3b5], and
also studied in[10, 11], for smooth Riemannian metrics.

The purpose of this section is to study regularity propsmieextremal measures. Re-
call that any Radon measugedecomposes into the sum

u:/fdv%wp

of its absolutely continuous and singular parts; the>sbas zero Lebesgue measure and
is called thesingular setof u. This decomposition motivates the terminology used in the
sequel: we say that a measwrédefines a metric conformal tg away from the singular
set”, viewing the density functiorf as the "conformal factor of such a metric”. The
regularity properties of a measyueare essentially concerned with the following questions.

(i) How smooth is the density functioh of a given extremal measure? When is it
C*-smooth?

(i) What are the properties of the singular &edf an extremal measure, and when is it
empty?

Below we give complete answers to these questions underyfhahesis that the embed-
ding

& = La(M, ) NL3(M,Volg) C Lo(M, p). (4.2)
is compact. We refer to Se€i. 2 for the examples and desmnipfi measures that satisfy
this hypothesis.

Another question, closely related to regularity, is coneerwith the properties of the
supportS of a givenAg-extremal measure. For example, ilgmaximal measure is the
limit of Riemannian volume measures, then the regions wie@anishes are precisely the
regions where the corresponding Riemannian metrics a@lafm general, the support of
a Ag-extremal measure does not have to coincide WithMore precisely, the examples
below show that there are completely singular extremal oreasthat is, supported in zero
Lebesgue measure sets.

Example4.1 (SingularA;-extremal measure on a disk).et M be a 2-dimensional disk,
and Ly be a boundary length measure of the Euclidean metriRescaling the metric,
we can suppose thag is a probability measure. Its first eigenvallig Lig, [g]) coincides
with the first Steklov eigenvalue gfand, as is known [43, 13], is equal tet2Moreover,
the argument in[[13, Th. 2.3] shows tha} maximisesA1 (i, [g]) among all continuous
probability measures supported in the bound2¥. Since the conformal deformations
given by [4.1) do not change the support of a measure, we wdathatyy is A1-extremal
in the sense of Definitidn 4.1.

Examplet.2 (Singula1-extremal measure on a spherkegt M be a 2-dimensional sphere,
E be its equator, antM™ be a hemisphere whose boundaryEs For any continuous
probability measurg supported irkE it is straightforward to show that

A1, [oR]) = 2A1(u, [9R]),

whereggr andgy, denote the round metrics v andM ™ respectively. Letr be a length
measure on the equatircorresponding to the round metric &1 we may assume that it
is rescaled to be a probability measure. Using the resulkanipld 4.1, it then follows that
Ur Maximisesi; onM among all continuous probability measures supported ieduator
E. Since the conformal deformations given by{4.1) do not glegthe support of a measure,
as in Examplé4l1, we conclude that is A;-extremal in the sense of Defintibn ¥.1.
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Now we state our principal result; it deals with regularitpperties of aAx-extremal
measure in the interior of its support.

Theorem Ci. Let M be a compact surface, possibly with boundary, endovitbdveonfor-
mal class c of Riemannian metrics. ltebe aAy-extremal measure which is not completely
singular and such that the embeddi@@@2) is compact.

(i) Then the measurgt is absolutely continuous (with respect to y/og € c) in the
interior of its support S- M, its density function is ©-smooth in S and vanishes at
isolated points only. In other words, the measurdefines a €C-smooth metricon S,
conformal to ge ¢ away from isolated degeneracies which are conical singfiga.

(i) If the support of the measurg does not coincide with M, then the measure has a
non-trivial singular se& C M\ IntS.

The following example suggests that the compact embeddjpgthesis may hold
when an extremal metric has sufficiently many symmetries.

Example4.3 (Symmetries and regularity). et M be a surface, possibly with boundary,
andc be a conformal class of Riemannian metrics on it. Furthénlbe aA-extremal
metric onM, understood as a non-completely singular Radon measwtasugpose that

is invariant under a free smooth circle actiondn Thenyu is a Riemannian metric which
is C*-smooth in the interior of its support. Indeed, by the cleasilisintegration theory [8]
any circle-invariant measure locally splits as a produdivaf measures; one of them is a
uniform measure on a reference orbit, see details in [29F JHows that there is a constant
C such that for any sufficiently small bai(x,r) C M the following inequality holds

pu(B(x,r)) <Cr  foranyxe M.

Now Lemma2.)V implies that the embedding{4.2) is compadd, lan TheorenCy the
measuret is the volume measure ofG°-smooth metric in the interior of its support.

We end this introduction with remarks on conical singuiasitof extremal metrics.
Recall that for a given metric a poiqt€ M is called its conical singularity of order
(or of angle 21(a + 1)) if in an appropriate local complex coordinate the metris Hee
form |2° p(z) |dZ% wherep(z) > 0. In other words, neap the metric is conformal to
the Euclidean cone of total anglet@x + 1). First, the conical singularities of an extremal
metric in TheorenCy have angles that are integer multiples af. Z'his follows from the
proof, where we show that they correspond to branch pointedfin harmonic maps.
The above applies to singularities in the interior of theparps only. Mention that on the
boundary an extremal metric can have more complicated @egeies. For example, the
metric on a 2-dimensional didR, regarded as a punctured round sphere, maximises the
first eigenvalue and vanishes on the boundary.

Examplet.4 (Smoothness of conical singularitielt g be a metric with conical singular-
ities and unit volume oM. Suppose that it id-extremal under conformal deformations,
that is in the sense of Definitidn 4.1. We claim that such a iméts to beC*-smooth,
and the angles at its conical singularities are integeripli@é of 2. Indeed, by Ex-
ample[Z.1 the embedding_(#.2) is compact, and the staterbboivé from TheorenCy
together with the discussion above. Mention that the hygtathl A1-maximal metric on a
genus 2-surface, obtained in [22], satisfies this conctusio

Example4.5 (Extremal absolutely continuous measurést ¢ be an absolutely continu-
ous probability measure dl, whose density function ikP-integrable, where > 1; see
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Exampld_Z.lL. One can view as the volume measure of a metric conformal to a genuine
Riemannian metric oM whose conformal factor ikP-integrable. Such singular metrics
naturally occur on Alexandrov surfaces of bounded integuavature, see [28]. Suppose
thatu is Ag-extremal under conformal deformations. Then by Theo@rthe support of

U coincides with the whole surfadd, and the density function 8*-smooth everywhere
onM.

4.2. Continuity properties

We start with establishing the continuity properties ofegigalues and eigenspaces corre-
sponding to the family of measurgs. We consider these issues in a slightly more general
setting that is necessary for applications, describingitalse topology on the space of
probability measures.

Definition 4.2. By theintegral distancebetween two probability measurgsand p’, we

call the quantity
In </Vd[.l/ /vdu’)

where the supremums are taken owen-trivial continuous functions o.

d(p,p) = sup

v=0

3

In general, the distanad( 1, ') may take infinite values; however, it does determine a
topology on the space of probability measures, which isgfeo than the weak topology.
For example, the family of measurgsgiven by [4.1), is always continuous in it. Mention
that for measures with finite distance the correspontingpaces, regarded as topological
vector spaces, coincide. In particular, the embedding) (4.2ompact or not for such
measures simultaneously. In the sequel we often use tloaglinted distance in the form of
the following inequality:

‘1 (/vdu//vdu’)

wherev is an arbitrary non-negative function. We demonstrateithiise following lemma.

< O, p') == expd(p, p') - 1,

Lemma 4.1. Let (M,c) be a compact Riemann surface, possibly with boundary,jand
be a probability measure on M whose eigenvaly@u,c) is finite. Then for any sequence
(un) of probability measures that converge in the integral disetou, we have

Ak(Un,€) — Ak(u,c) as n— +oo.

Proof. First, in view of the upper semi-continuity property (Prpl), it is sufficient to
prove that
Ak(i,€) < liminf A(pn, ). (4.3)

Let An be a(k+ 1)-dimensional space such that

SUpRC(U, IJFI) < Ak(IJmC) + 1/n

uen

We claim that the sequence

SAUpRc(LL Hn) — SAUpRc(Ua 1) (4.4)
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converges to zero as— +. Indeed, for any € A,, we have

[Re(U, pin) = Re(U, 1)| < S(H, Mn)Re(U, Hn) < S(H, tn) (Ak(Hn, €) +1/n)

Here the first inequality follows by the definition of the qtiand (., un), and the constant

C is an upper bound for the sequer{@g(un,c) + 1/n). SinceAx(u,c) is finite, by upper
semi-continuity such a bound exists. The last estimate stibat the absolute value of
quanity [4.4) is also bounded & d(u, Un), and hence converges to zero. Thus, we have

Ak(,c) < liminf(supRe(u, t)) = liminf (supR¢(u, pn)) = liminf Ax(n, ),

An An
and the claim is demonstrated. O

We proceed with the continuity properties of eigenspacego® we suppose that for
Radon measureg and un the embedding (412) is compact. DenotefyandE,y the
eigenspaces correspondingXig 11, c) andAg(Ln, €) respectively, and byl andMy y the
orthogonal projections ofy andEp, regarded as subspacesLifiM, ). The follow-
ing lemma can be obtained as a consequence of Kato’s petiturtiheory for Dirichlet
forms [26]; the proof details can be found in Appendix B.

Lemma 4.2. Let (M, c) be a compact Riemann surface, possibly with boundary, and le
(un) be a sequence of Radon probability measures convergingimtégral distance to a
Radon measurg. Then the eigenspace projectiofig, converge to the projectiofly in

the norm topology as operators in(M, ).

Remark. The arguments in Appendix]B show that the lemma above can -‘parased
in a number of other ways. For example[Tf,, is an orthogonal projection o,k as
a subspace (M, 1), then the normM, — M} | of the operators irLo(M, L) also
converges to zero as— +oo. ’

4.3. First variation formulas

For a zero mean-value functigne L*(M) by Ly (u, u) we denote the quotient

—Re(u, ) - (/M uzfpdu) / (/M uzdu) .

The purpose of this sub-section is to prove the following fieriation formulas for the
eigenvalue functionals.

Lemma 4.3. Let (M, c) be a compact Riemann surface, possibly with boundarypabd
a Radon probability measure on M such that the embed@i®)is compact. Then for any
family of measureg:, generated by a zero mean-valgpes L*(M), the functiomy( Lk, C)
has left and right derivatives which satisfy the relations

d

7 /\k(IJtaC) = SUpr(Uau)a
dti_o- ueEy

d .

a —os /\k(IJt ) C) = Ulgék L(P(u7 IJ);

where K is the space spanned by eigenfunctions corresponding ®igeavaluei,(u,c),
and the sup and inf are taken over non-trivial functions.
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Proof. Below we prove the second identity. The first identity folkly similar arguments.
Let Ex; andEy be the eigenspaces correspondingttu,c) andAy(u,c).The following
statements are proved in Appendik B.

Claim 4.4. The eigenvalues (1) andAx(u) satisfy the following inequalities:

Ak(t) < inf Re(u, ) +o(t) as t—0,
ueky

A(p) < inf Re(u,p) +o(t) as t—0,
UEEk‘t

where the infimums are taken over non-trivial functions.

Claim 4.5. The following limit identities hold:

infLg(u, 1) — infLg(u, 1) as t—0,

Byt Ex

supLy(u, 4) — suplLe(u, ) as t—0,

Byt By

where the infimums and supremums are assumed to be takenomvétuial functions u.

First, it is straightforward to see from the definitionigfthat for anyu € . the following
relation holds:

‘} (/ uzdutf/ uzdu) 7/ uzqodu‘ gs(t)-/ u’dp,
t \Jm M M M

wheree(t) is a quantity that does not dependwand converges to zero tis» 0. A further
computation yields

Rl 1)~ Relt0) Lot )] < Refwp) - (B(u w0l +20) (49

for any functionu € .. Evaluating the quantities in this inequality o Ey, we conclude
that

1 . .
{(U'QékRC(Uvﬂt)*)\k(ﬂ))"JQéqua(UalJ) as t—0+.

Combining this with the first relation in Claim 4.4, we get
. 1 .
lim sup = (Ai(k) = A(k) < inf Lo(u, ). (4.6)
t—0+ ueEy
Now evaluating the quantities in inequalify (4.5) o& Ei, we obtain that
inf Lqp(u,u)f}()\k(ut)f inf Re(u,u)) —0 as t—0+.
t UGEk‘t

ue Ek,t

Combining this with the second relation in Cldim]4.4, we dade that

L . L 1
im inf (inf Lo(u,p)) < lim inf = (h(b) = Aul10) )

Now by Claim[4.5 the quantity on the left-hand side above cidies with inf, Ly(u, 1),
and the second identity of the lemma follows by combinatiinequalities[[4.5) and (41.7).
[l
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4.4. Proof of Theorem,C

The following lemma is a key ingredient in our approach to tbgularity theory for ex-
tremal measures. It is a sharpened version of the staterrigmadly discovered by Nadi-
rashvili [35] for Riemannian metrics.

Lemma 4.6. Let (M, c) be a compact Riemannian surface, possibly with boundad/pan
be a Radon probability measure on M such that the embeddi@yis compact. Then the
following hypotheses are equivalent:

(i) the measurgu is A-extremal;
(ii) the quadratic form
U / updu
M
is indefinite on the eigenspaceg fr any zero mean-value functigne L*(M);

(i) there exists a finite collection of-eigenfunctiongy;) such thaty;u? = 1 on the
support ofu.

Proof. The equivalence of the first two statements is a direct caresgze of Lemmpa4]3.
Indeed, since the left and right derivatives\gfLk, c) exist, theAc-extremality is equivalent

to the relation q

- Ak(Ht,€) <0
dtf_o,

/\k(l'ltvc) : a 0
t=0—

for any conformal deformatiog;. Using the formulas for the derivatives, we conclude that
U is A-extremal if and only if the fornhy (u, 1) is indefinite orEy for any zero mean-value
functiong € L*(M). The latter is equivalent to the hypothe§is.

(i) = (iii). LetK c Ly(M, u) be the convex hull of the set of squarkgfunctions{u? :

u € Ex}. Suppose the contrary to the hypothe@g$; then 1+# K. By classical separation
results, there exists a functighe L*(M) such that

/ 1-¢dp <0 and / g-ydu >0, foranyge K\{0}.
M M
Let i be the mean-value part ¢f,
wo=w- | wdu
JM

Then for any eigenfunction € Ex we have

/Muzl,llod[.l :/Muzl,lld[.lf (/M t,ud;.l) (/M uzdu) > 0.

This is a contradiction witffii ).
(iii) = (ii). Conversely, lefu;) be a finite collection of eigenfunctions satisfying the hy-
pothesigiii ). Then for anyp € L*(M) with zero mean-value, we have

/M(Zuiz)codu = /M @dp =0.

This demonstrates the hypothe§ig. O
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Proof of TheorenCy: part (i). Let (uj), wherei =1,....¢, be a collection of eigenfunc-
tions from Lemm&4l6. By Prop. 1.2 they satisfy the integiahitity

/M<Dui,m¢>dv% :Ak(u,c)/M U - pdu (4.8)

for any functiong € .£. Let SC M be the support of an extremal measpreve suppose
that its interior is not empty. Taking to beu; - ¢, wherey € C3(S), we can re-write
relation [4.8) in the form

./l\;l||]ui|2L/JdVol3+%/M@(uiz),mw)dVob:Ak(u,c)/M mm

Summing up and using the relatigmui2 =1 onS, we obtain

/:;(Z |Dui|2> wdVol = (11, c) ./S‘wdu

for any compactly supported smooth functigmn This implies that the measureis abso-
lutely continuous with respect tdoly in the interior ofS, and its density function has the
form

<z |Dui|2> /(0. (4.9)

Now equation[(4]8) can be re-written in the form

/S<Dui,D¢>dVolg = é (,Z |Dui|2> ui(l)dVOb,

where¢ is a smooth function supported # This relation is precisely the equation on a
map
U:MDIntSs x—s (Ug(X),...,u(x)) € S 1R’ (4.10)

to beweakly harmoniavith respect to the standard round metric®n?, and by Helein’s
regularity theoryl[211] we conclude that the map given[by@#i C*-smooth. The zeroes
of the density functior[{419) correspond to the branch poaftthe harmonic map and,
as is known([25, 40], are isolated. As a branch point such @ xas a well-defined order,
that is in an appropriate local complex coordinate nearatdansity| U |2 has the form
72 p(2), wherep(z) > 0 andl > 1 is an integer. O

Proof of TheorenCy: part (ii). Setting¢ to be equal tay; in relation [4.8), and summing
over thei’s, we obtain

/M<IZ|Dui|2> dVob:,\k/M(zuiz)d“_

Since, by Lemmg416, the suﬁui2 equals one on the supp&@of the measurg, we obtain

/M <z |Dui|2> Vol = Ar. (4.11)
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On the other hand, the absolutely continuous pgstof 1t has the form({4]9) in the interior
of S, and

Pabs(S) = A /S (z |Dui|2) dvol,. (4.12)

Suppose the contrary to the statement, that is the singetar af 1 is empty. Then, the
massiiaps(S) equals one. By the hypotheses the complerive(gis a non-empty open set,
and comparing relations (4111) aid (4.12), we concludelfiiavanishes oM\ S for any
i=1,...,¢. ltis then straightforward to see that thés are constant functions ov\S,
and the suny u? equals one almost everywhere kin

Now the repetition of the argument in the proof of part (i) wkdhat the weakly har-
monic map

U:M3x— (u(x),...,u(x)) e STLc R’

is defined on the whole surface, and by Helein’s reguldrit},[3 C”-smooth everywhere.

Since it is constant on a non-empty open sub&e$, by the unique continuation [41], we

conclude that it is constant everywhere. Thus, the SUfu;|* vanishes identically, and

by (4.12) we obtain a contradiction with the assumption thgtis a probability measure.
O

Finally, mention that Lemm@a_4.6 together with the argumémtthe proof of Theo-
rem Cy show thatAg-extremal metrics with conical singularities correspoadh&rmonic
maps into a Euclidean sphere defined by a collectiokafigenfunctions. This statement
is a generalization of the results [n[11], see also [10, B&pwn for Riemannian metrics.
Due to its importance we state it below as a corollary.

Corollary 4.7. Let(M, c) be a compact Riemannian surface, possibly with boundad/han
be a metric with conical singularities conformal tosgc. Then the metric h i3g-extremal

if and only if there exists a finite collection a§-eigenfunctiongu;), where i=1,...,¢,
such thaty; u? = 1, and hence, the map

M 3 x— (ug(X),...,u(x) e St c R

is a harmonic map into a unit sphere in the Euclidean space.

5. Existence of partially regular maximisers

5.1. The main theorem

Recall that TheorerB; states that ang;-maximising sequence of continuous Radon mea-
sures converges to a maximal continuous Radon measprevided

sup{A1(u,c)u(M) : u is a continuous Radon measureMh > 87t. (5.1)

Due to Theoren€y the complete regularity of any maximiser requires the cartyss of
the embedding
& = La(M, ) NL3(M,Volg) € Lo(M, p), (5.2)

which, as the results in Sekt. 2 show, is a rather indepemgy@othesis. As was mentioned
earlier, Nadirashvili and Siré [36], and very recently Ris [37], announced the result
stating the existence of a completely reguligimaximiser. Both papers develop a delicate
analysis related to the construction of a special maximgisi@quence that converges to
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such a maximiser. The purpose of this section is to give alsisgument that proves the
existence of a partially regular maximiser.

For a given increasing sequen®) of real numbers such th@, — +c0 asn — oo,
we consider the seftg, formed by continuous Radon measugesuch that

p(B(x,r)) < Cq-r?

for any closed metric baB(x,r). Equivalently, thesy's can be described as sets of abso-
lutely continuous measures whose densitieare bounded above I83,. Clearly, eacl¥;

is closed in the weak topology, and thus, contains a megsyutieat maximises\1(u,c)

in ¢n. If a given conformal class satisfies the hypothesis(5.1), then, by TheoRnthe
sequencéLl,) contains a subsequence that converges weakly to a condganaximal
measure. Moreover, by the results in SEtt. 2, the meagssatisfies the linear isocapac-
itory inequality and, in paricular, vanishes on sets of zsapacity. Our following result
describes further regularity properties of this limit meas

Theorem Dy. Let (M,c) be a compact surface, possibly with boundary, endowed with a
conformal class ¢ of Riemannian metrics that satisfies ththesis(c. ). Letu be a
continuousA;-maximal measure constructed in the fashion describedegbawd S be the
interior of its support. Then the singular part pfis supported in a nowhere dense Zet

(of zero Lebesgue measure), and one of the following twdkplitéss holds:

(i) either the absolutely continuous part pfis trivial, or

(i) the absolutely continuous part pf has a C’-smooth density_in\ithat vanishes at
most at a finite number of points on any compact subsetin S

The theorem says that if the maximal measures not completely singular, than it
is the volume measure of a smooth Riemannian metrig iconformal to the ones in,
outside of a nowhere dense set of zero Lebesgue measure .ThsanemCy, the zeroes
of its density inS\X correspond to conical singularities of this metric. We depose the
singular set into the union of two set&j,; andXy, defined as

Si=2NS and Sou=32\S

Recall that by Theorer@y, if the embeddind(5]2) is compact, thEp; = @. In addition, if
the complemeni\Sis non-empty, theilXo # @. These statements indicate on relation-
ships between the isocapacitory inequalities and the ptiepeof the singular set. More
precisely, let3(B(x,r), i) be an isocapacity constant of a closed ball, see Bect. 2 and
be the complement i& of a maximal set wher@(B(x,r)) — 0 asr — 0 uniformly in x.
ThenZ, is a subset of the singular sBft, and is empty if and only if so i&jy;. The last
statement here is a consequence of Corollady 2.6. Alteslgtifor a givena > 1 one can
also consider the s&t, that is the complement i of a maximal set where

H(B(%,r))In%(1/r)—0 asr—0

uniformly inx € S. Then,Zy C Zint and from Lemma2]7 we conclude tt&af is empty if
and only if so is the singular s&t.;.

5.2. Preliminary considerations

Let u, € %, be a probability measure that maximises the first eigenvil(e,c) among
all measures if%,. By xn we denote its density, and [, the setx;; (C,). Changingxn
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on a zero Lebesgue measure set, we can always assume that Ihessregular in the
following sense: for ang > O there exist a closed and open fetandG such that

FcZI,CG and  Voly(G\F) < &. (5.3)

Let u be the weak limit of the measurgg, andS be the interior of its support. We fix an
open seD & S; without loss of generality, we can suppose that it belondghé support of
eachup.

Now consider the family of conformal deformations

b0 = ( o)/ ([ el

with a zero mean-value functiape L*(M) that vanishes o&,. Since the measurgg,;
belong to%,, we conclude that

Al(ﬂn,tac) < /\l(llnac)- (5.4)

Clearly, the embeddin§ (8.2) is compact for any measuf& jrand thus the spaces of first
eigenfunctions are non-empty and finite-dimensional. Tlewing claim is essentially a
consequence of the first variation formulas (Lenima 4.3).

Claim 5.1. For each measurg, there exists a finite collection of eigenfunctigng,) such
that
> wn(x)=1  forany xe D\Z,.
1

Proof. Combining Lemm&4]3 with relatiof (3.4), we conclude thatdguadratic form

u—s u?gd i
M\Zn

is indefinite on the first eigenspaéefor any zero mean-value functiop € L*(M\Z,,).
Now the conclusion follows from a separation argument simib the one used in the
proof of Lemma4.p. O

The following claim yields a formula for the densitigs; its proof is a repetition of the
argument in the proof of Theore@y, see Sect]4.

Claim 5.2. Under the conditions of Claiin 5.1, the eigenfuncti¢ns,) are smooth in the
interior of D\ %y, and so are the densitigg. Moreover, we have the following relation

Xn(X) = (z |Dui,n|2<x>> /Aa(bn.)

for any interior point x D\ Zp.
Finally, we need the following statement.

Claim 5.3. The multiplicities of the first eigenvalu@s(u,,c) are bounded by a quantity
that depends on the topology of M only.

When the measung is the genuine volume measure d€&-smooth Riemannian met-
ric, the statement is classical and is due to Chehg [5]. (falis a partial case of a more
general result proved in [28, Sect. 5].
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5.3. Proof of Theorem D

Denote byz}, the unionUy-n2k. Since the volumes of thg,’'s converge to zero,
Voly(Zh) <1/Ch— 0 asn— +oo,

then selecting their subsequence, if necessary, we camsapipat so do the volumes of
theZ;i's. Further, the sequencg is nested, and b we denote its limit, that is),2};.
Clearly, the limit sez has a zero Lebesgue measure. Besides, it satisfies prdped}y (
and, in particular, is nowhere dense\in

Now let G be an open neighbourhood Bf it also contains setX;, for a sufficiently
largen. By Claim[5.1, for any measurg, there exists a collection of eigenfunctions
(uin) such thaty;u?, = 1 onD\G, whereD € Sis a fixed open set. By Clailn 5.3, the
multiplicities of theyeigenvalue/kl(un,c) are bounded and, choosing a subsequence of the
Un's, we can suppose that for eacke N there is the same number of eigenfunctioms,),
wherei = 1,...,m, such thaty; uﬁn = 1. In other words, for any measurg, we have a
harmonic map _

Un:D\G > x+— (Uin(x)) € S™ 1 R™.

By Claim[5.2, we conclude that their energies are also badinde

E(Uy) = / |OUn|?dVol < A1 (pn, C).
D\G

Now thebubble convergence theordB8,[25] for harmonic maps applies on any compact
subsef in the interior ofD\G. More precisely, there exists a subsequence, also denoted
by (Up), that converges weakly W?(F,S™ 1) to a smooth harmonic map: F — S™ 1,
Moreover, there exists a finite number of ‘bubble poidts, ..., x,} C F such that th&,’'s
converge irC”-topology on compact sets i\ {xs, ..., %}, and the energy densiti{a@U,ﬂ2
converge weakly in the sense of measureiﬂtm2 plus a finite sum of Dirac measures:

|0Un|?dVoly — [OU [ dVol + 5 m; &
J

By the uniqueness of the weak limit, we conclude that theictisin of the limit maximal
measurgi on the interior oD\ G has the form

<|DU 2dVoly + > m; 5x,-> /A1(l,c).
J

However, by TheorenB;, the maximal measurg is continuous and, thus, no ‘bubble
points’ can occur in the expression above. Taking smalley Gewe conclude that the
limit harmonic mapJ is well-defined orD\Z, and is a finite energy map on the wh@e
Exhausting the se (the interior of the support gft) by setsD & S, we further conclude
thatU extends to it as a finite energy harmonic map. Thus, the maximasureu on S
has the form

du = (|Du |2//\l(u,c)) dVoly + dit | Sint,

where the last term stands for the interior singular pagt.ofinally, if |[OU| # 0, then the
zeroes ofJU| correspond to the branch pointsdf as is known[[25,_40], there can be
only finite number of them on any compact subses\&. O
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6. Other related results and remarks

6.1. Concentration-compactness of extremal metrics

The ideas developed in Selcl B-5 allow also to analyse thisslioh sequences formed by
extremal conformal metrics. The following statement is aeyal result in this direction.

Theorem E,. Let M be a closed surface endowed with a conformal class c,(gsicbe
a sequence afg-extremal smooth metrics in ¢ (possibly with conical siagities) nor-
malised to have a unit volume. Then there exists a subsegqign¢ such that one of the
following holds:

(i) the volume measures Vgh,) converge weakly to a pure discrete measure supported
at k points at most, and
limsupAi(gn,) < Cik,

where G is the Korevaar constant;

(i) the subsequenc@n,) converges smoothly to a Riemannian metric (which may have
conical singularities only) away from k points at most where volumes concen-
trate.

The proof is based on the characterisation of extremal osetis harmonic maps into Eu-
clidean spheres (Corollaty 4.7) together with Cheng’s iplidity bounds in [5]. The ar-
gument is similar to the one in the proof of TheorBmand uses the bubble convergence
theorem for harmonic maps. The estimate in the ¢gss a consequence of the remark at
the end of Secll]3.

For the case of the first eigenvalue the above result can h#isantly sharpened.

Theorem E;. Let M be a closed surface endowed with a conformal class c,(@fdoe
a sequence af;-extremal smooth metrics in ¢ (possibly with conical siagities) nor-
malised to have a unit volume. Then there exists a subseqign¢ such that one of the
following holds:

(i) the volume measures Vgh,) converge weakly to a pure Dirac measuyefor some
x €M, andA1(gn,) — 8masl — +oo;

(i) the subsequendg,, ) converges smoothly to/a -extremal metric g (possibly with a
finite number of conical singularities) and (gn,) — A1(Q) as¢ — +oo.

In particular, the theorem says that the set of conforkpadxtremal metrics whose first
eigenvalues are bounded away from 8 always compact. The critical valugt8s the
maximal first eigenvalue of unit volume metrics on the 2-sphand as is known (due to
the non-compactness of the conformal group 3C)) the maximal metrics on it form
a non-compact space. This compactness statement can baealsal as a version of the
following result by Montiel and Ros [34]on a compact surface of positive genus each
conformal class has at most one metric which admits a minimadersion into a unit
sphere by first eigenfunctionindeed, our statement says that the set of conformal metrics
that admit harmonic maps (of energy bounded away frathiBto a unit sphere by first
eigenfunctions is compact. Here we, of course, assumelthaetmetrics are allowed to
have conical singularities.

The proof of Theorent; follows closely the line of the argument in_ [27] where anal-
ogous results for Schrodinger eigenvalues have been prdwefdct, the formalism de-
veloped in the present work allows to shorten the originabpm [27] significantly. The
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statement of Theorer; continues to hold when extremal metrig:is belong to variable
conformal classes, that lie in a bounded domain of the moduli space of conforrmats
tures onM. We refer to[[27] for details.

6.2. Remarks and open questions

1. As was mentioned, Nadirashvili and Sire[[36] and Petrid@$&Bnounced the existence
of a completely regulak;-maximiser in every conformal class on a closed surface. How
ever, it is important to understand up to what extemy A;-maximal measure is regular
Recall that, as we saw in Seki. 4, there Areextremal completely singular measures. It
is extremely interesting to understand whether there amgptately singulan;-maximal
measures. It seems plausible that such maximal measurest ésist, and moreover, the
support of anyA;-maximal measure has to coincide with Similar questions one can also
pose forAg-maximisers.

2. The properties of the singular sEtof a partially regular maximiser, constructed in
Sect[b, seem to be closely related to the properties oflitsete> ., where the isocapacity
constantB(B(x,r)) fails to converge to zero uniformly imasr — 0. It is interesting to
know more about the relationship between these sets; ircplart, whether it is possible
to describe the differenc®\Z, and the hypotheses when it is empty. Similarly, the prop-
erties of the differenc&\Z,, see Secfl5, are also very interesting. They could leaceto th
estimates for the Hausdorff dimension of the singulazset

3. Maximising eigenvalues among circle-invariant confarrmetrics. One of the pos-
sibilities to achieve complete regularity of extremal riestris to impose extra geomet-
ric hypotheses on them. For example, one can consider me&tiih symmetries. In the
note [29], we show how this works for a class of conformal mstinvariant under a free
circle action on the torus. In this setting one can show tbhaahyk > 0 there exists a
circle-invariant metric (in any conformal clasgormed by such metrics), understood as a
capacitory Radon measure, which maximisesktheeigenvalue among all such measures.
Besides, any suchg-extremal metric is

(i) either completely singular and is supported in a zerodsgjue measure set which is
a union of circle orbits, or

(ii) itis a genuine metric irc,"which isC”-smooth in the interior of its support.

Mention that here there is no hypothesis on the maxitgalalue, unlike in Theorerd;.
The reason is that any circle-invariant Radon measure haga tliscrete part. The circle-
invariance also implies that the maximal metric (in the ¢@pehas no conical singularities
and, thus, is a genuine Riemannian metric.

More generally, it is interesting to understand how any $gg partial) symmetry of
a Ag-extremal metric (in the sense of Sddt. 4) improves its @iyl properties; cf. the
example after Theore.

4. Maximising eigenvalues among conformal metrics withgrdl curvature boundAn-
other example when eigenvalue maximisers have good réyypaoperties is the extremal
problem for conformal metrics with the integral Gaussiarvature bound

/]Kg]pdVol‘J <C< +o, wherep> 1. (6.1)
As is known, seel[[42] and Appendix inl[3], sequences of suahfazmal metrics of

bounded volume satisfy concentration-compactness piiepeand the concentration phe-
nomenon can be controlled by positive lower bounds on eeng. For example, there
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always exists £%%-smoothA;-maximiser among conformal metrics satisfyifig{6.1). On
the other hand, maximising sequences for higher eigensdiaee limits that ar€%7-
smooth metrics away from a finite number of points. The ladter characterised by the
volume concentration and, after an appropriate rescatiogespond to the metrics on a
collection of "bubble spheres” glued by thin tubes.

A. Appendix: details on Theorems A and A

A.1. Proof of TheoremA

First, we explain the following version of the result by Yaaigd Yau [44, p. 58]. Recall
that a measurg is calledcontinuousf the mass of any point(x) is equal to zero.

Proposition A.1. Let M be a closed Riemann surface and c be the conformal ¢ldsséd
by the complex structure. Suppose that M admits a holomorphap¢ : M — S of degree
d. Then for any continuous Radon meaguien M the first eigenvalue satisfies the estimate

A1(p,c)p(M) < 8rd.
The key ingredient of the proof is the following lemma, se@,[22].

Hersch Lemma. Let ¥, i = 1,2, 3, be coordinate functions iR, and¢ : M — & ¢ R® be
a conformal map to the unit sphere centred at the origin. Tioermny continuous Radon
measurgu on M there exists a conformal diffeomorphisr® — S such that

/(xiosmp)duzo foranyi=1,2,3.
M

Proof of Prop[A.lL.Let s be the conformal transformation from the Hersch lemma. ¢Jsin
(X oso ¢)’s as test functions for the Rayleigh quotient, we obtain

Al(u,c)/'\ﬂ(xiosmp)zdug/'\A‘D(xiOSqu)‘deob*.

Summing up these inequalities over edl and using the identityz(xi)2 =1 on the unit
sphere, we see that

M OuM) < Y [ |00 os09)[dVol.

The right-hand side here is the energy of the rf&pg ), which equals &d; see[[9]. O

Now TheoremA; follows by application of the Riemann-Roch theorem in thmea
fashion as in Yang-Yau_[44]. As a consequence, we also olataiarsion of Hersch'’s
isoperimetric inequality for continuous Radon measuretherspheré&’. The estimates of
Li and Yau [32] for the first eigenvalue via the conformal volel carry over our setting as
well.

A.2. Proof of Theorem A

Recall that thecapacitorin M is a pair(F,G) of Borel subsets C G. Given a reference
metricg € c, thecapacityof a capacitofF, G) is defined as

Cap(F,G)=inf{ I |D¢|2dVOb}7
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where the infimum is taken over &Ff°-smooth functions oM whose support lies in the
interior of G and such thap = 1 in a neighbourhood d¥.

The idea of the proof s to find a collection ¢+ 1) disjoint capacitorgF, G;), that is
with the disjointG;’s, such that

(i) p(F) >v
(i) Cap(F,Gi) < K

foranyi =0,...,kand some positive constamandk. Given such capacitors one directly
obtains the bound
A(14,€) < KV (A1)

Indeed, any test-functiogy for the capacito(F;, G;) whose Dirichlet integral is not greater
than(k + ¢) satisfies the inequality

' 12 ) 2
| 1007 avol < (x+&)/v- [ 9P,

Since the capacitors are disjoint, this inequality holdsaioy function from the span of
the¢’s,i =0,...,k. Thus, we conclude that theh eigenvalue\g(u, c) is not greater than
(k +¢&)/v, and since is arbitrary, we get the bound (A.1).

The existence of a collection of disjoint capacitors sgiigf the hypothesié) for any
non-atomic measure is the main resultin/[18, 19]. On therdihad, since the capacity is
defined with respect to a fixed Riemannian metric, the secgpdthesiq(ii) can be often
easily demonstrated. Before explaining these ingrediantsore detail, we first introduce
more notation.

We regard the surfackl as a metric space whose distarttés induced by the path
lengths in the metrig. By an annulug\ in M we call a subset of the following form

{xeM:r<d(x,a) <R},
whereac M and 0< r < R < o, We also use the notatioiAZor the annulus
{xeM:r/2<d(x,a) < 2R}.

It is a consequence of standard results (see the proof ofr@treb.3 in [19]) that there

exists a constar® (depending on a reference metgcsuch that for any open metric ball
B the capacity Ca(B,2B) is not greater tha@. It is then straightforward to show that for
any annuluf\ in M one has Caf#\, 2A) < 4Q, seel[19, Lemma 2.3].

Building on the ideas of Korevaar [B81], Grigor'yan and Yawsfed that for any con-
tinuous measurg one can always find a collection of disjoint ann{®4;} such that the
valuesu(A;) are bounded below by some positive constant. More precise(iL8,(19]
they prove the following statement.

Grigor'yan-Yau theorem. Let(M,d) be a metric space satisfying the following covering
property: there exists a constant N such that any metricdfathdius r in M can be covered
by at most N balls of radii f2. Suppose that all metric balls in M are precompact. Then
for any continuous Radon measure on M and any positive inkethere exists a collection
{2Ai}, where i=0,.. .k, of disjoint annuli such that

H(A) > cu(M)/k  foranyi (A2)

where the constant ¢ depends only on N.
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Clearly, the metric spacéM,d) under consideration satisfies the hypothesis of this
theorem, and using (A.2) we obtain the bounds

where the constat equals 9/c. Now we show that wheM is an orientable surface, the
constanC can be chosen in the for@,(y+ 1), whereC, is a universal constant aryds
the genus oM.

RegardingM as a Riemann surface and using the Riemann-Roch theorenanfand
a holomorphic branch cover M — S? whose degree is not greater than+- 1). Applying
Grigor'yan-Yau theorem to the push-forward measuteon & we find a collection of
disjoint annuli{2A;'} such that

HE(A) > el (S) /K
Besides, we also have
Cap(A',2A)) < 4Q.
for some constar.., where the capacity is understood in the sense of the stnuktric
onS?. Setting
F=u(A) and G =u'(A),
we obtain a collection of disjoint capacitors bhthat satisfy(i) with v equal toc, (M) /k.
Further, since the Dirichlet integral is locally preserbgd, we conclude that these capac-

itors also satisfyii ) with k equal to Q..(y+ 1). Now the arguments described above yield
the eigenvalue bounds

Ak(H, 0 (M) < C.(v+ 1)k,

whereC, equals Q. /c.. In particular, we see thai(u,c)u(M) is bounded over all con-
formal classes and continuous Radon measugesen M.

B. Appendix: proofs of statements in Sec{ 14

B.1. Proof of Lemm@ga4] 2

Recall that, since the integral distanckgt, L) are finite, theL,-spaces, regarded as topo-
logical vector spaces, corresponding to the meagueesiu, coincide. Below by(-,-) and
(+,-)n we denote the scalar products on this space correspondin@b 1) andL,(M, L)
respectively. We claim that the Dirichlet form

D[] = /M |l dvoly

is closed with respect to each of the scalar products aboseed, by Prop.11.3, the first
eigenvalue\1(u, c) does not vanish, and for amywith zero mean-value we have

[ wau <A (10 [ Ouldvop,
M JM

Now the closeness on the zero mean-vaisdollows from the completeness of the space
L(M, Volg) modulo constants, sele [33]. Sinbéu] vanishes on constants, it is also closed
on the wholeL,-space. The same argument also yields the claim for the mesggu

Now we apply the representation theoreml[inl [26, Chap. VIh® tlosed symmetric
form D[u] to conclude that there exist closed self-adjoint operafcaadT, such that

D(u,v) = (Tu,v), D(u,v) = (Thu,V)n.
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It is straightforward to see that the eigenvaluesToand T, coincide with A (u,c) and
Ak(n, c) respectively, and so do their eigenspaces. Further, siictopologies induced
by the scalar products,-) and(-, - ), coincide, the operatoi®, are also closed iby(M, u).
From the definition of the integral distance we obtain

|1_ (Tnu7 U)/(TU, U)| < 5(H,Hn)

for any non-constant € L»(M, ). Now the perturbation theorerm [26, Chap. VI, Th. 3.6]
applies, and we conclude thgt — T in a generalised sense as closed operators, and the
corresponding spectral projectors converge in the normologyy. O

Remark.Mention that, in fact, a stronger statement holds: for lathere exists a constant
C(k) such that

Mk — Mk <C(K) - 3(H, ) (B.1)

for any sufficiently largen. Indeed, by([26, Chap. VI, Th. 3.4] the resolventdadndT, at
the point(—1) satisfy the relation

|<%(_17T) _%(_LTn)l < C- 5(“;““)

Further, by the results if_[26, Chap. IV] the differenc@({,T) — %2({,Tn)), where
{ ranges over a compact subset of the common resolvent sebecastimated in the
same fashion for a sufficiently large Now relation [B.1) follows from the fact that the
eigenspace projections are integrals of the resolventsaosmall closed curve bounding a
region containing\x(u, c) andAy(un,c) .

B.2. Proof of Claini 414

We demonstrate the proof of the first relation; the seconidvia by similar arguments.
Denote by/\; the sum of all eigenspaces corresponding; tpk, ¢) < Ax(Lk,c), wherel <Kk,
and byR andPR’* the orthogonal projections on it ip(M, 1) andLy(M, ) respectively.
Define the modified Rayleigh quotieRg(u, 1) as

</M |O(u— Pt*u)|2dV0lg) / (/M u— Pt*u|2dl-1t) -

Clearly, the following relation holds:
(€)= inf Re(u, 1),

where the infimum is taken over all non-triviathat do not lie in/\;. The first inequality
of the claim is a straightforward consequence of the foltmyrielation

Re(U, k) = Re(u, ) +0(t)  as t—0,
whereu € Ey, ando(t) denotes the quantity such ttat) /t converges to zero uniformly in

u € E\{0}. Denote byA(t) the difference of the Rayleigh quotierRs(u, tt) — Re(u, tk);
it is given by the formula

) = Retu ) - ([ 1rruam )/ ( 1o Pruae).

Now by the remark after Lemnfa 4.2, for a proof of the claim &udficient to show that

/‘|Pt*u|2dut < (/‘uzdu) .O(t?) as t—0 (B.2)
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for anyu € E¢\{0}. To see that this holds, choose a bdsis) for the spacé\; orthogonal
in Lo(M, it) and normalised iho(M, u). By (&) we denote the corresponding basis at
t = 0. Then for anyu € E\ {0}, we have

2
/|Pt*u|2dut < miaX(/Ia,tIZdut) -y (/a,tudut—/audu) :
|

By Cauchy’s inequality, each term in the sum on the rightehside can be estimated by

twice the sum 5

</a,tudut/a,tudu)2+ </(a,te)udu) -

Finally, each term here can be now estimated by the righttkate in [B.2): for the first it
follows from the definition ofu;, for the second — from the inequality

/(a,t —@a)%du < 4Ry —R?,

seel[26, Chap. IV], and relation (B.1). O

Remark.For the case of the first eigenvalue estimiaiel(B.2) can beegrdivectly, without
appealing to Kato's perturbation theory and relation (B lhdeed, in this case the lower
eigenspaces coincide and, hence, the differ¢Rge- R) is identically zero.

B.3. Proof of Claini 45

Let M; be the orthogonal projection on in L>(M, 1t). By Lemmd 4.2, for a proof of the
claim it is sufficient to show that the family,(M;u, 1) converges to the quantity,(u, 1)
ast — 0 uniformly inu € E\{0}. Denote byQ(u, 1) the quotient

(o) (o)

By the triangle inequality, we obtain

|Lo(u, 1) — Lp(Meu, )| < A(1)[Q(u, 1) — Q(Meu, )|
+ |(0|oo |Rc(uau) - Rc(ntU7H)| ) (BS)

where| -|,, stands for thé.,.-norm. By Lemm&4]2 we conclude that the quotient

(f ze) /([ ean)

converges to 1 uniformly il € E\{0}. Using this, it is straightforward to estimate the
first term on the right-hand side in(B.3) by the quanfigyu) |@|,, times the sum

1 () ((f nwtan ) e (1 ?lan) /([ véan)

for all sufficiently smallt. By the discussion above the first term here converges to zero
uniformly over non-trivialu € Ey, and by Lemm&4]2 so does the second term. Further, the
term involving the difference of the Rayleigh quotients ba tight hand-side i (Bl 3) can

be estimated in the following fashion:

[Re(U, 1) = Re(Meu, )| < Ak(k) = A(pe) [ + [Re(Meu, pe) — Re(Meu, ),

where the second term is boundedAyyp: )d(u, 1t ). Thus, we see that it also converges
to zero uniformly inu. O
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