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Abstract

We study the existence and properties of metrics maximisingthe first Laplace eigen-
value among conformal metrics of unit volume on Riemannian surfaces. We describe
a general approach to this problem and its higher eigenvalueversions via the direct
method of calculus of variations. The principal results include the general regularity
properties ofλk-extremal metrics and the existence of a partially regularλ1-maximiser.
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0. Introduction

0.1. Preliminaries

Let M be a compact surface, possibly with boundary. For a Riemannian metricg onM we
denote by

0= λ0(g)< λ1(g)6 λ2(g)6 . . .6 λk(g)6 . . .

the eigenvalues of the Laplace operator−∆g. WhenM has a non-empty boundary we
assume that the Neumann boundary conditions are imposed. Bythe result of Korevaar [31],
each eigenvalueλk(g) is bounded as the metricg ranges in a fixed conformal class onM.
More precisely, ifM is an orientable surface of genusγ, then there exists an absolute
constantC∗ > 0 such that for any Riemannian metricg the following estimate holds

λk(g)Volg(M)6C∗ ·k(γ+1)

for eachk > 0. This is a generalisation of an earlier result by Yang-Yau [44] for the first
eigenvalue: for any Riemannian metricg

λ1(g)Volg(M)6 8π· (γ+1). (0.1)

For genus zero surfaces the result of Hersch [20] states thatthe equality in the inequality
above is achieved on the standard round sphere. In [2] Bergerasked whether the flat equi-
lateral torus maximises the quantityλ1(g)Volg(M) among all metrics on the torus. Later
Nadirashvili [35] developed an approach to the Berger problem by maximising the first
eigenvalues in conformal classes. Since his paper there hasbeen a growing interest in the

2



extremal problems for eigenvalues on surfaces, and in particular, extremal problems in con-
formal classes. For the progress on the subject we refer to the papers [6, 10, 11] as well
as [22, 23, 12] and references there.

The previous work [22, 36] together with numerical evidenceindicate that metrics max-
imising Laplace eigenvalues are expected to be singular. This poses the following natural
questions.

What singularities of maximal metrics can occur, in principle? Is it possible to describe
them?

From the perspective of calculus of variations, the occurrence of singularities means that
the class of smooth Riemannian metrics isnot naturalfor such extremal problems. In other
words, there should be developed a new formalism allowing todeal with singular objects.
This point of view leads to the questions of the following kind.

What is an appropriate variational setting for the eigenvalue extremal problems on singular
metrics? In particular, what is the right notion of extremality for singular metrics?

One of the purposes of this paper is to develop a general setting to address a circle of similar
problems. Below we describe its content in more detail.

0.2. Outline of the results

We study the existence and properties of metrics maximisingthe first eigenvalue
λ1(g)Volg(M), and more generally, thekth eigenvalueλk(g)Volg(M), among conformal
metrics on Riemannian surfaces. More precisely, the purpose of this paper is to develop an
approach to this problem via thedirect method of calculus of variations. First, we show that
the Laplace eigenvaluesλk(g) naturally extend to ‘weak conformal metrics’, understood as
Radon measures and prove bounds for them (TheoremsAk andA1). This setting ofeigen-
value problems on surfaces with measuresgives a uniform formalism of treating eigenvalue
problems on singular surfaces as well as eigenvalue problems with Steklov boundary con-
ditions. We also prove a general existence theorem (TheoremB1) of a measure maximising
the first non-trivial eigenvalueλ1 under the hypothesis

sup
{

λ1(g)Volg(M) : g∈ c
}

> 8π. (0.2)

on a given conformal classc. The hypothesis (0.2) guarantees that the maximiser is not
pathologically singular. It satisfies alinear isocapacitory inequality, see Sect. 2; in partic-
ular, it vanishes on sets of zero capacity and the mass of balls µ(B(x, r)) decays at least as
ln−1(1/r) asr → 0+.

Second, we define a notion ofλk-extremality of general measures under ”conformal
variations” and derive first variation formulas. The main result of the paper is concerned
with the study of regularity properties ofgeneralλk-extremal measures. More precisely, in
Sect. 4 we prove the following statement (TheoremCk).

Regularity Theorem. Let M be a compact surface, possibly with boundary, endowed with
a conformal class c of Riemannian metrics. Letµ be aλk-extremal measure which is not
completely singular and such that the embedding

L2(M,µ)∩L1
2(M,Vol)⊂ L2(M,µ) (0.3)

is compact.
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(i) Then the measureµ is absolutely continuous (with respect to Volg, g ∈ c) in the
interior of its support S⊂ M, its density function is C∞-smooth in S and vanishes at
isolated points only. In other words, the measureµ defines a C∞-smooth metric on S,
conformal to g∈ c away from isolated degeneracies which are conical singularities.

(ii) If the support of the measureµ does not coincide with M, then the measure has a
non-trivial singular setΣ⊂ M\ IntS.

It is important to mention that there are singularλ1-extremal measures, see Sect. 4,
and thus, the regularity theory is non-trivial. The compactness of embedding (0.3) in the
theorem is a delicate hypothesis. It is closely related to the behaviour of sharp constants in
the so-called isocapacitory inequalities. Studying this relationship, we obtain asymptotics
for the valuesµ(B(x, r)) as r → 0, which describe the margin between the validity and
the failure of the compactness of embedding (0.3). These asymptotics show that there are
capacitory measures for which embedding (0.3) is not compact.

As an elementary application of the developed analysis, we obtain the notion ofλk-
extremality for metrics with conical singularities under conformal deformations, and are
able to characterise such metrics via harmonic maps into unit spheres in the Euclidean
space, see Corollary 4.7. The latter statement generalisesearlier results in [11], see also [10,
35], known for Riemannian metrics.

In the final part of the paper, we prove the existence of a partially regularλ1-maximiser
(TheoremD1) and study concentration-compactness properties ofλk-extremal metrics. The
version of the latter result for the first eigenvalue (Theorem E1) says that any sequencegn

of λ1-extremal conformal metrics contains a subsequence that either converges smoothly to
aλ1-extremal metric or concentrates to a pure Dirac measure andλ1(gn)→ 8π asn→+∞.

After the first preprint of the paper has appeared, there has been a number of develop-
ments on the subject. First, the results in our Example 1.3 (the Steklov eigenvalue problem)
have been independently obtained in [7]. Extremal problemsfor Steklov eigenvalues have
been also studied by Fraser and Schoen in [14] where the authors prove the existence of a
λ1-maximiser for zero genus surfaces. The state of the subjectconcerning extremal prob-
lems for Laplace eigenvalues is also described in [15]. In the recent preprint [37] Petrides
claims a general existence theorem of aλ1-maximiser in every conformal class on a closed
Riemannian surface, the statement also announced by Nadirashili and Sire [36]. The ar-
gument by Petrides uses the non-concentration analysis from the present paper as well as
the heat kernel regularization introduced by Fraser and Schoen [14]. Petrides also shows
that hypothesis (0.2) in our TheoremB1 always holds on closed Riemannian surfaces dif-
ferent from a sphere. On the other hand, by [24, 30] on surfaces with boundary there are
conformal classes for which this hypothesis fails.

In spite of all this progress made within the last 2-3 years, we have kept the main text
of the paper essentially unchanged making only the corrections requested by the referee.

0.3. Paper organisation

The paper is organised in the following way. In Sect. 1 we describe a general setup for the
variational problem. First, we show that Laplace eigenvalues naturally extend to the set of
Radon measures (which play the role of ”weakly conformal metrics”) where they are upper
semi-continuous in the weak topology. We also discuss the boundedness of eigenvalues
among non-atomic probability measures, based on earlier results by Korevaar and their
improvements by Grigor’yan, Netrusov, and Yau.

In Sect. 2 we study properties of the measures whose first eigenvalues do not vanish.
We show that this hypothesis is equivalent to the validity ofa linear isocapacitory inequal-
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ity (Corollary 2.4). We proceed with comparing it with the compactness hypothesis for
embedding (0.3); our methods here are based on the isocapacitory inequalities and the re-
sults by Maz’ja. In Sect. 3 we give a general statement on the existence of aλ1-maximal
Radon measure. Sect. 4 is devoted to the actual calculus of variations – we define a notion
of extremality and derive the first variation formulas (Lemma 4.3) for an arbitrary eigen-
valueλk. These are then used to prove the regularity of anyλk-extremal metric under the
hypothesis that the embedding (0.3) is compact. In Sect. 5 wegive an elementary argument
which yields the existence of partially regular maximisersin a conformal class.

The principal part of the paper ends with a collection of other related results and re-
marks in Sect. 6. These include the concentration-compactness properties of extremal
metrics, geometric hypotheses allowing to obtain better regularity, and a number of open
questions. The paper contains two appendices where we collect details of technical or
complementary nature for reader’s convenience.

Acknowledgements.During the course of the work I have benefited from the comments
and advice of Vladimir Eiderman, Alexander Grigor’yan, Emmanuel Hebey, Nikolai Nadi-
rashvili, and Iosif Polterovich. The work has been accomplished during author’s stay at the
University of Cergy-Pontoise (France) during 2010/11 supported by the EU Commission
via the Marie Curie Actions scheme.

1. Eigenvalues on measure spaces

1.1. Classical notation

Let M be a compact smooth surface with or without boundary. Recallthat for a Riemannian
metricg onM the Laplace operator−∆g in local coordinates(xi), 16 i 6 2, has the form

−∆g =−
1
√

|g|

∂
∂xi

(

√

|g|gi j ∂
∂x j

)

,

where(gi j ) are components of the metricg, (gi j ) is the inverse tensor, and|g| stands for
det(gi j ). Above we use the summation convention for the repeated indices. The Laplace
eigenvalues

0= λ0(g)< λ1(g)6 . . .6 λk(g)6 . . .

are real numbers for which the equation

(∆g+ λk(g))u= 0 (1.1)

has a non-trivial solution. In the case whenM has a non-empty boundary, we suppose
that the solutionsu above satisfy Neumann boundary conditions. The solutions of equa-
tion (1.1) are called eigenfunctions, and their collectionover all eigenvalues forms a com-
plete orthogonal basis inL2(M). Recall that by variational characterisation

λk(g) = inf
Λk+1

sup
u∈Λk+1

Rg(u), (1.2)

where the infimum is taken over all(k+ 1)-dimensional subspaces inC∞(M), the supre-
mum is over non-trivialu∈ Λk+1, andRg(u) stands for the Rayleigh quotient,

Rg(u) =

(

∫

M
|∇ u|2 dVolg

)

/

(

∫

M
u2dVolg

)

.

The infimum in relation (1.2) is achieved on the space spannedby the first(k+1) eigen-
functions.
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1.2. The setup for measure spaces. Korevaar eigenvalue bounds.

Let M be a compact surface andc be a conformal class ofC∞-smooth metrics onM. The
conformal metrics fromc can be identified with their volume measures, and to apply vari-
ational methods, we consider eigenvalues as functionals ofmore general measures onM.
The reasoning is that the space of conformal Riemannian metrics does not possess any com-
pactness properties and, in fact, is not even closed in any natural topology. Besides, we ex-
pect that maximal metrics (that is eigenvalues maximisers)may be degenerate, see [22, 36],
and we should be able to assign the valuesλk to such metrics.

For a Radon measureµ on M the kth eigenvalueλk(µ ,c) is defined by the min-max
principle

λk(µ ,c) = inf
Λk+1

sup
u∈Λk+1

Rc(u,µ),

where the infimum is taken over all(k+ 1)-dimensional subspacesΛk+1 ⊂ L2(M,µ)
formed byC∞-smooth functions, the supremum is over non-trivialu∈ Λk+1, andRc(u,µ)
stands for the Rayleigh quotient

Rc(u,µ) =
(

∫

M
|∇ u|2dVolg

)

/

(

∫

M
u2dµ

)

, (1.3)

whereg ∈ c is a reference metric. IfM has a non-empty boundary, we assume that the
test functions are continuous up to the boundary. By conformal invariance of the Dirichlet
energy, the Rayleigh quotient does not depend on a choice of such a metricg∈ c.

The following example shows that so defined eigenvalues are natural generalisations of
Laplace eigenvalues to certain degenerate metrics.

Example1.1 (Metrics with conical singularities). Let M be a compact surface, possibly
with boundary, andh be a metric onM with conical singularities. Then, as is known, such
a metrich is conformal to a genuine Riemannian metricg onM away from the singularities.
The Dirichlet integral with respect to the metrich is defined as an improper integral; by the
conformal invariance, it satisfies the relation

∫

M
|∇ u|2dVolh =

∫

M
|∇ u|2dVolg

for any smooth functionu. Thus, we conclude that the Laplace eigenvalues of a metrich
coincide with the eigenvalues of the pair(Volh, [g]) in the sense introduced above. Men-
tion also that theλk(Volh, [g])’s coincide with other definitions of Laplace eigenvalues for
metrics with conical singularities used in the literature,see e.g. [22, 28].

Clearly, the zero eigenvalueλ0(µ ,c) vanishes for any measureµ and any conformal
classc. The corresponding eigenfunctions coincide with constantfunctions. The following
example shows that for higher eigenvalues the eigenfunctions (orthogonal to constants) do
not always exist.

Example1.2 (Possible pathologies). Let µ be a discrete measure supported atℓ distinct
points. Since the capacity of each point is equal to zero, it is straightforward to show that

λk(µ ,c) =
{

0, if ℓ > k,
+∞, if ℓ6 k,

for an arbitrary conformal classc onM.

Despite this example, it is straightforward to see that thekth eigenvalueλk(µ ,c) is
finite for any measure whose support contains more thank distinct points. Further, the
following result shows that the quantityλk(µ ,c)µ(M) is actually uniformly bounded for
all continuous (that is with trivial discrete part) Radon measuresµ .
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Theorem Ak . Let M be a compact surface, possibly with boundary, endowed with a con-
formal class c. Then there exists a constant C> 0 such that for any continuous Radon
measureµ the following inequality holds:

λk(µ ,c)µ(M)6Ck.

Moreover, if M is orientable, then the constant C can be chosen independently on the con-
formal class c in the form C∗(γ+1), where C∗ > 0 is a universal constant, andγ is the
genus of M.

The theorem above is a basis for our variational approach. Its proof is based on the
results by Grigor’yan, Netrusov, and Yau [18, 19], built on the original method of Ko-
revaar [31]. It appears in Appendix A. The estimate (0.1) of Yang and Yau can be also
generalised for continuous Radon measures to give a more precise version of TheoremAk

for the first eigenvalue, see [30].

Theorem A1. Let M be an orientable compact surface, possibly with boundary, endowed
with a conformal class c. Then for any continuous Radon measure µ the first eigenvalue
satisfies the inequality

λ1(µ ,c)µ(M)6 8π(γ+1),

whereγ is the genus of M.

Example1.3 (Steklov eigenvalues). Let M be a surface with boundary, endowed with a
conformal classc. For a Riemannian metricg ∈ c let µg be its boundary volume mea-
sure. Then the eigenvaluesλk(µg,c) coincide with the so-called Steklov eigenvalues of
a metricg, representing the spectrum of the Dirichlet-to-Neumann map. We refer to the
recent papers [17, 13] for the account and further references on the subject. In particular,
TheoremsAk and A1 above yield isoperimetric inequalities for the Steklov eigenvalues,
complementing earlier results by Weinstock [43] and Fraserand Schoen [13].

Now the existence problem for a maximisingλk(g)Volg(M) metric inc splits into the
two separate parts: the existence of a weak maximiser – that is a continuous Radon measure
maximising the quantityλk(µ ,c)µ(M) among all continuous Radon measures, and the
regularity theory for weak maximisers. The followingupper semi-continuityproperty is an
important ingredient for the former.

Proposition 1.1(Upper semi-continuity). Let (M,c) be a compact Riemann surface, and
(µn), n= 1,2, . . ., be a sequence of Radon probability measures on M convergingweakly
to a Radon probability measureµ . Then for any k> 0 we have

limsupλk(µn,c)6 λk(µ ,c).

Proof. For a givenε > 0, letΛk+1 be a(k+1)-dimensional subspace ofC∞(M) such that

sup
u∈Λk+1

Rc(µ ,u)6 λk(µ ,c)+ ε.

By weak convergence of measures, we obtain that

sup
u∈Λk+1

Rc(µn,u)−→ sup
u∈Λk+1

Rc(µ ,u).

In other words, for a sufficiently largen we have

sup
u∈Λk+1

Rc(µn,u)6 sup
u∈Λk+1

Rc(µ ,u)+ ε 6 λk(µ ,c)+2ε.
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The latter implies that
λk(µn,c)6 λk(µ ,c)+2ε

for all sufficiently largen, and passing to the limit, we obtain

limsupλk(µn,c)6 λk(µ ,c)+2ε.

Sinceε > 0 above is arbitrary, we are done.

1.3. Preliminaries on eigenfunctions

Here we collect a number of elementary statements describing properties of eigenfunctions
in the setting of measure spaces. We start with introducing anatural space for the Rayleigh
quotient (1.3), that is the space

L = L2(M,µ)∩L1
2(M,Volg);

here the second space in the intersection is formed by distributions whose first derivatives
are inL2(M,Volg), see [33]. Following classical terminology, a functionu∈L is called an
eigenfunctionfor λk(µ ,c), if it is contained in a(k+1)-dimensional subspaceΛk+1 ⊂ L

such that
Rc(u,µ) = sup

ϕ∈Λk+1
Rc(ϕ ,µ) (1.4)

and the valueRc(u,µ) coincides withλk(µ ,c). The following characterisation of eigen-
functions is often used in the sequel.

Proposition 1.2. Let M be a compact surface, possibly with boundary, endowed with a
conformal class of Riemannian metrics. Letµ be a continuous Radon measure on M whose
eigenvalueλk(µ ,c) is positive. Suppose that there exist eigenfunctions corresponding to the
first k eigenvaluesλℓ(µ), 0< ℓ < k. Then a non-trivial function u∈ L is an eigenfunction
for λk(µ ,c) if and only if it satisfies the integral identity

∫

M
〈∇ u, ∇ ϕ 〉dVolg = λk(µ ,c)

∫

M
u ·ϕdµ (1.5)

for any test-functionϕ ∈ L .

Proof. Let u be an eigenfunction forλk(µ ,c), and denote byΛk+1 the span of eigenfunc-
tions corresponding toλℓ(µ ,c), where 06 ℓ6 k. For a test-functionϕ ∈ Λk+1 the function

t 7−→ Rc(u+ tϕ ,µ) (1.6)

has a maximum att = 0, and relation (1.5) follows by differentiation of the Rayleigh quo-
tient att = 0. Further for a test-functionϕ from the orthogonal complement ofΛk+1 in L

the function (1.6) has a minimum att = 0, and the conclusion follows in the same fashion.
Conversely, suppose that a functionu satisfies identity (1.5) for anyϕ ∈ L . Then, in

particular, the value of the Rayleigh quotientRc(u,µ) coincides withλk(µ ,c). The(k+1)-
dimensional space containingu and satisfying (1.4) can be constructed as a span ofu with
eigenfunctions corresponding to lower eigenvalues as wellas eigenvalues that coincide with
λk(µ ,c).

Note that the hypothesis on the existence of lower eigenfunctions, in Prop. 1.2, is vac-
uous for the first eigenvalue. In general, the existence of eigenfunctions is related to the
compactness of the embedding

L = L2(M,µ)∩L1
2(M,Volg)⊂ L2(M,µ). (1.7)
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The following statement follows by fairly standard arguments; we outline them for the sake
of completeness.

Proposition 1.3. Let M be a compact surface, possibly with boundary, endowed with a
conformal class of Riemannian metrics, andµ be a Radon measure such that the embed-
ding (1.7) is compact. Then for any k> 0 the eigenvalueλk(µ ,c) is positive and has
an eigenfunction. Moreover, the space formed by eigenfunctions corresponding to equal
eigenvalues is finite-dimensional.

Proof. We prove the theorem by induction ink. The statement on the existence of eigen-
functions is, clearly, true fork = 0. Suppose the eigenfunctions exist for anyℓ 6 (k−1);
there is a collection of pair-wise orthogonal eigenfunctions ϕℓ corresponding toλℓ(µ),
whereℓ 6 (k−1). We are to prove the existence of an eigenfunction forλk(µ) which is
orthogonal to the span of theϕℓ’s.

Let (un) be a minimising sequence for the Rayleigh quotientRc(u,µ) in the orthogonal
complement of the span of theϕℓ’s;

∫

M
u2

ndµ = 1,
∫

M
|∇ un|

2dVolg −→ λk(µ), asn→+∞.

Since the embedding (1.7) is compact, we conclude that(un) contains a subsequence con-
verging weakly inL1

2(M,Volg) and strongly inL2(M,µ) to a functionu∈ L . Clearly, the
limit function u is orthogonal to the span of theϕℓ’s, and its norm inL2(M,µ) equals one.
By lower semi-continuity of the Dirichlet energy, we further obtain

∫

M
|∇ u|2dVolg 6 lim inf

∫

M
|∇ un|

2dVolg = λk(µ).

Thus, we conclude that the functionu is indeed a minimiser for the Rayleigh quotient
Rc(u,µ) among functions orthogonal to the span of theϕℓ’s.

The statement on the dimension of eigenfunctions corresponding to equal eigenvalues
follows by the same compactness argument.

The existence of eigenfunctions lies at the heart of our method establishing the regu-
larity of extremal metrics in Sect. 4. The hypotheses ensuring the existence are related to
the so-called Maz’ja isocapacitory inequalities and studied in more detail in the following
section.

2. Measures with non-vanishing first eigenvalue

2.1. No atoms lemma

In this section we study Radon measures onM with non-vanishing first eigenvalue. To
avoid dealing with trivial pathologies we always assume that the measures under consider-
ation are not Dirac measures. The first useful result shows that such measures have to be
continuous, that is with trivial discrete part.

Lemma 2.1. Let (M,c) be a compact Riemann surface, possibly with boundary. Letµ be
a non-continuous Radon measure on M that is not a pure Dirac measure. Then the first
eigenvalueλ1(µ ,c) vanishes.

Proof. For the sake of simplicity, we prove the lemma for the case when M is closed only.
Let x∈ M be a point of positive mass,m= µ(x)> 0. Denote byµ∗ the measure(µ −mδx),
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and letΩ be a coordinate ball aroundx such thatδ = µ∗(M\Ω) is strictly positive. Since
the capacity of a point is zero, then for a givenε > 0 there exists a functionϕ ∈ C∞

0 (Ω)
such that 06 ϕ 6 1,

ϕ = 1 in a neighbourhood ofx, and
∫

M
|∇ ϕ |2dVolg < ε.

The integral above refers to a fixed metricg ∈ c. Denote byα the mean-value of the
functionϕ ,

α =

∫

M
ϕdVolg > 0.

Then by variational principle, we have

λ1(µ ,c)
∫

M
(ϕ −α )2dµ 6

∫

M
|∇ ϕ |2dVolg.

The right-hand side is not greater thanε, and due to the choice ofϕ , we obtain

λ1(µ ,c)(α 2δ +(1−α )2m)6 ε.

By elementary analysis, the left-hand side above is boundedbelow by the quantity

(λ1(µ ,c)mδ)/(m+δ)> 0.

Sincem andδ are strictly positive, andε is arbitrary, we conclude that the first eigenvalue
λ1(µ ,c) has to vanish.

2.2. Bounds via fundamental tone and isocapacitory inequalities

We proceed with showing that measures with non-vanishing first eigenvalue satisfy certain
Poincare inequalities. The latter are closely related to the the notion of the fundamental
tone, which we recall now.

For a subdomainΩ ⊂ M with non-empty boundary thefundamental toneλ∗(Ω,µ) is
defined as the infimum of the Rayleigh quotientRc(u,µ) over all smooth functions sup-
ported inΩ. The following lemma gives bounds for the first eigenvalue interms of the
fundamental tone; a similar statement in a slightly different context can be found in [4].

Lemma 2.2. Let M be a compact surface, possibly with boundary, endowed with a confor-
mal class of Riemannian metrics, andµ be a Radon probability measure on M. Then, we
have

inf λ∗(Ω,µ)6 λ1(µ ,c)6 2infλ∗(Ω,µ),

where the infimums are taken over all subdomainsΩ ⊂ M such that0< µ(Ω)6 1/2.

Proof. First we prove the upper bound. Letu be a smooth function supported inΩ, and we
suppose that the integral

∫

u2dµ equals one. Denote by ¯u its mean value, that is the integral
∫

udµ . Then we have

∫

(u− ū)2dµ = 1− ū2
> 1−

(

∫

u2dµ
)

·µ(Ω) = 1− µ(Ω) = µ(M\Ω).

From this, we conclude that

λ1(µ ,c)6 λ∗(Ω,µ)/µ(M\Ω).

10



Since the domainΩ is arbitrary, we further obtain

λ1(µ ,c)6 inf
0<µ(Ω)<1

min{λ∗(Ω,µ)/µ(M\Ω),λ∗(M\Ω,µ)/µ(Ω)}

6 inf
0<µ(Ω)61/2

λ∗(Ω,µ)/µ(M\Ω)6 2 inf
0<µ(Ω)61/2

λ∗(Ω,µ).

We proceed with demonstrating the lower bound. Letu be a test-function for the first
eigenvalue, that is

∫

u2dµ = 1 and
∫

udµ = 0. (2.1)

Let c be a median ofu, that is a real number such that

µ(u< c)6 1/2 and µ(u> c)6 1/2.

Denote byu+c andu−c the non-negative and non-positive parts of(u− c), and byΩ± their
supports respectively. First, note that

∫

|∇ u|2dVolg =
∫

∣

∣∇ u+c
∣

∣

2
dVolg+

∫

∣

∣∇ u−c
∣

∣

2
dVolg.

Using this relation, we obtain

Rc(u,µ)> λ∗(Ω+)

∫

(u+c )
2dµ + λ∗(Ω−)

∫

(u−c )
2dµ

> inf
0<µ(Ω)61/2

λ∗(Ω)

(

∫

(u+c )
2dµ +

∫

(u−c )
2dµ

)

= inf
0<µ(Ω)61/2

λ∗(Ω)

∫

(u+c −u−c )
2dµ = inf

0<µ(Ω)61/2
λ∗(Ω)

∫

(u− c)2dµ .

By (2.1) the last integral clearly equals(1+ c2), and we conclude that

Rc(u,µ)> inf
0<µ(Ω)61/2

λ∗(Ω).

Taking the infimum over all test-functions, we thus get the lower bound forλ1(u,µ).

One of the consequences of this lemma is the characterisation of measures with non-
vanishing first eigenvalueλ1(µ ,c) via isocapacitory inequalities. To explain this we intro-
duce more notation.

Let Ω ⊂ M be an open subdomain. For any compact setF ⊂ Ω the capacity Cap(F,Ω)
is defined as

Cap(F,Ω) = inf

{

∫

|∇ ϕ |2dVolg : ϕ ∈C∞
0 (Ω),ϕ ≡ 1 onF

}

.

Further, by theisocapacity constantβ(Ω,µ) of Ω we call the quantity

sup{µ(F)/Cap(F,Ω) : F ⊂ Ω is a compact set} .

By the results of Maz’ja [33, Sect. 2.3.3], see also [4], the isocapacity constant and the
fundamental tone are related by the following inequalities:

(4β(Ω,µ))−1
6 λ∗(Ω,µ)6 (β(Ω,µ))−1. (2.2)

Combining these with Lemma 2.2, we obtain the following corollary.
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Corollary 2.3. Under the hypotheses of Lemma 2.2, we have

inf(4β(Ω,µ))−1
6 λ1(µ ,c)6 2inf(β(Ω,µ))−1,

where the infimums are taken over all subdomainsΩ ⊂ M such that0< µ(Ω) 6 1/2. In
particular, the first eigenvalueλ1(µ ,c) is positive if and only if the isocapacity constant
β(Ω,µ) is bounded asΩ ranges over all subdomains such that0< µ(Ω)6 1/2.

As another consequence, we mention the following statement.

Corollary 2.4 (Linear isocapacitory inequality). Under the hypotheses of Lemma 2.2, the
first eigenvalueλ1(µ ,c) does not vanish if and only if there exists a positive constant C> 0
such that the measureµ satisfies the following inequality

µ(F)6C ·Cap(F,Ω)

for any closed subset F⊂Ω and any subdomainΩ such that0< µ(Ω)6 1/2. In particular,
if a measureµ with non-vanishingλ1(µ ,c) is not a pure Dirac measure, then it vanishes
on sets of zero capacity.

The last statement of the corollary follows from the linear isocapacitory inequality to-
gether with Lemma 2.1. The linear isocapacitory inequalityalso implies that

µ(B(x, r))6C∗ · ln−1(1/r)

for some constantC∗ and all sufficiently smallr > 0. The last relation can be also obtained
directly from the hypothesisλ1(µ ,c) > 0 by constructioning appropriate test-functions,
thus avoiding Lemma 2.2 and the Maz’ja inequality (2.2).

2.3. Existence of eigenfunctions and Maz’ja theorems

As we know, see Sect. 1, the existence of eigenfunctions is ensured by thecompact embed-
dingof the spaces

L = L2(M,µ)∩L1
2(M,Volg)⊂ L2(M,µ). (2.3)

In this section we describe necessary and sufficient conditions for this hypothesis. First, re-
call that a Radon measure is calledcompletely singularif it is supported in a Borel setΣ of
zero Lebesgue measure, that isµ(M\Σ) = 0. The measures that are not completely singular
are precisely the measures with non-trivial absolutely continuous parts. The following aux-
iliary lemma reduces the compactness question to the compact embedding results, obtained
by Maz’ja in [33].

Lemma 2.5. Let M be a compact surface, possibly with boundary, endowed with a confor-
mal class c of Riemannian metrics, andµ be a Radon measure on M.

(i) Suppose that the embedding(2.3) is compact. Then the space W1,2(M,Volg), where
g∈ c, embeds compactly into L2(M,µ).

(ii) Conversely, suppose that the measureµ is not completely singular, has a positive first
eigenvalueλ1(µ ,c), and the space W1,2(M,Volg) embeds compactly into L2(M,µ).
Then the embedding(2.3) is compact.

Proof. We start with the proof of the statement(i); it is sufficient to show that any se-
quence(un) bounded inW1,2(M,Volg) is also bounded in the spaceL2(M,µ). Since the
embedding (2.3) is compact, by Prop. 1.3 the first eigenvalueis positive, and by Lemma 2.2
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so is the fundamental toneλ∗(Ω) of any sufficiently small subdomainΩ ⊂M. Let (Ωi) be a
finite covering ofM by such subdomains, and(ϕi) be the corresponding partition of unity.
Then we obtain

∫

(unϕi)
2dµ 6 2λ −1

∗ (Ωi)

(

∫

|∇ un|
2ϕ 2

i dVolg+
∫

|∇ ϕi |
2u2

ndVolg

)

6Ci

(

∫

|∇ un|
2 dVolg+

∫

u2
ndVolg

)

,

where the positive constantCi depends onλ∗(Ωi) and theϕi , and the claim follows by
summing up these inequalities.

Now we demonstarte the statement(ii). First, denote byL0 the subspace ofL formed
by functions with zero mean value with respect toµ . It is sufficient to show that any
bounded sequence of smooth functions inL0 is also bounded inW1,2(M,Volg). More
precisely, we claim that there exists a constantC such that for any smooth functionu∈ L0

the inequality
∫

M
u2dVolg 6C ·

∫

M
|∇ u|2dVolg

holds. Indeed, suppose the contrary. Then there exists a sequence(un) such that
∫

M
u2

ndVolg = 1, and
∫

M
|∇ un|

2dVolg → 0. (2.4)

Since the first eigenvalue does not vanish, we also have
∫

M
u2dµ 6 λ −1

1 (µ ,c) ·
∫

M
|∇ u|2dVolg (2.5)

for anyu∈ L0. Then, after a selection of a subsequence, theun’s converge weakly inL0,
and also strongly inL2(M,Volg), to some functionv∈ L0. By the second relation in (2.4)
this limit function has to be constant almost everywhere with respect toVolg. Further,
relation (2.5) shows thatv vanishes almost everywhere with respect to the measureµ .
Sinceµ is not completely singular, then from the above we conclude thatv vanishes almost
everywhere also with respect toVolg. However, from (2.4) we see that theL2-norm of v
equals one. Thus, we arrive at a contradiction, and the claimis proved.

By the results of Maz’ja the compactness of the embeddingW1,2(M,Volg) into the
spaceL2(M,µ) is characterised by the decay of the isocapacity constant onsmall balls.
More precisely, the following result is essentially contained in [33], see also [1, Sect. 7].

First Maz’ja theorem. Letµ be a Radon measure supported in a bounded domainΩ⊂R2

with smooth boundary. Then the embedding W1,2(Ω,Volg) into L2(Ω,µ) is compact if and
only if supxβ(B(x, r),µ)→ 0 as r→ 0, where the supremum is taken over x∈ Ω.

Combining this result with Lemma 2.5, we obtain the following consequence.

Corollary 2.6. Under the hypotheses of Lemma 2.5, we have

(i) if the embedding(2.3) is compact, then

sup
x∈M

β(B(x, r),µ) −→ 0 r → 0; (2.6)

(ii) if the measureµ is not completely singular, has positive eigenvalue, and satis-
fies(2.6), then the embedding(2.3) is compact.
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Remark.First, mention that due to (2.2) the decay hypothesis on the isocapacity constant
is equivalent to the growth of the fundamental tone on small balls. Second, following
Maz’ja [33], one can also consider theisocapacity functionβr(Ω), defined as the quantity

sup{µ(F)/Cap(F,Ω) : F ⊂ Ω is a compact set,diam(F)6 r} .

Then the hypothesis (2.6) in the corollary above can be replaced by the supposition that
M can be covered by open setsΩi whose isocapacity functionsβr(Ωi) converge to zero as
r → 0.

Recall that by Prop. 1.3, the compactness of the embedding (2.3) for a measureµ
implies that its first eigenvalueλ1(µ ,c) does not vanish. However, theconverse does not
hold. More precisely, by Corollary 2.6 the measures for which theembedding (2.3) is
compact satisfy the following (weaker than (2.6)) hypothesis

sup
x∈M

µ(B(x, r)) ln(1/r)→ 0 as r → 0. (2.7)

We claim that there are measures with positive first eigenvalues for which this hypothesis
fails. For this it is sufficient to construct a compactly supported measure inR2 with bounded
logarithmic potential such that the quantityµ(B(x, r)) ln(1/r) does not converge to zero
uniformly. The boundedness of the potential implies that the isocapacity constantβ(Ω,µ)
is bounded asΩ ranges over a certain class of subdomains and, by Cor. 2.3, one concludes
that the first eigenvalue has to be positive. (The details canbe communicated on request.)

The next statement says that a slightly stronger decay hypothesis than (2.7) is often
sufficient for the embedding compactness.

Lemma 2.7. Let M be a compact surface, possibly with boundary, endowed with a confor-
mal class of Riemannian metrics, andµ be a Radon measure on M. Suppose thatµ is not
completely singular, and its values on small balls satisfy the relation:

sup
x∈M

µ(B(x, r)) lnq(1/r)→ 0 as r→ 0, (2.8)

where q> 1. Then the embedding(2.3) is compact and, in particular, the first eigenvalue
λ1(µ ,c) is positive.

The hypotheses above actually yield a stronger conclusion:the spaceL in this case
embeds compactly intoL2q(M,µ). Conversely, the compact embedding intoL2q(M,µ)
implies relation (2.8), under the hypotheses on the measureabove. The proof appears at
the end of the section; it is based on the following theorem due to Maz’ja, contained in [33,
Sect. 8.8], see also [1, Sect. 7].

Second Maz’ja theorem. Let µ be a Radon measure supported in a bounded domain
Ω ⊂R2 with smooth boundary. Then for any q> 1 the embedding of W1,2(Ω,Volg) into the
space L2q(Ω,µ) is compact if and only if the measure satisfies the following decay property

sup
x

µ(B(x, r)) lnq(1/r)→ 0 as r→ 0,

where the sup is taken over all x∈ Ω.

We proceed with examples illustrating Lemma 2.7 in action.
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Example2.1. Let µ be an absolutely continuous measure, that is given by the integral

µ(E) =
∫

E
f dVolg, whereE ⊂ M.

Suppose that the density functionf is Lp-integrable for somep> 1. Then we claim that re-
lation (2.8) holds, and by Lemma 2.7 the embedding (2.3) is compact. Indeed, by Holder’s
inequality we obtain

µ(B(x, r))6 | f |p ·Volg(B(x, r))
1/p∗ ,

where| f |p denotes for theLp-norm, andp∗ is the Holder conjugate top. Now the claim
follows from the fact that the volume term behaves likeO(r2/p∗) whenr tends to zero.

Example2.2. Generalising the example above one can also consider the so-called α -
uniform measures; they satisfy the relation

µ(B(x, r))6Crα for anyx∈ M,

and some positive constantsC andα . These, for example, include measures that are abso-
lutely continuous with respect to thes-dimensional Hausdorff measuresµs with densities
in Lp(M,µs), wherep > 1. Adding such measures to the one in the example above, we
obtain a variety of non-absolutely continuous measures forwhich the embedding (2.3) is
compact.

2.4. Proof of Lemma 2.7

We start with the following statement.

Claim 2.8. Let µ be a finite Radon measure supported in a bounded domain G⊂ R2.
Suppose that the valuesµ(B(x, r)) lnq(1/r) are uniformly bounded in x and0 6 r 6 1.
Then there exists a constant C1 such that

µ(F)6C1 ·Cap(F,Ω) (2.9)

for any F⊂ Ω ⊂ G, where F is a closed set.

Proof. First, we introduce another capacity quantity on compact sets F in the Euclidean
plane:

cap(F) = inf

{

∫

ϕ 2dV+

∫

|∇ ϕ |2dV : ϕ ∈C∞
0 (R

2) andϕ > 1 onF

}

.

As is known [33, 38], its values on balls behave asymptotically like O(ln(1/r)), and by the
claim hypotheses we obtain that

µ(B(x, r)) 6C2 ·cap(B(x, r))q

for some constantC2, wherex∈R2 and 06 r 6 1. By the result of Maz’ja in [33, Sect. 8.5],
this inequality extends to any compact setF ,

µ(F)6C3 ·cap(F)q, (2.10)

possibly with another constantC3 independent ofF . Now we claim that the latter implies
that

µ(F)6C4 ·Cap(F,Ω)q (2.11)
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for anyF ⊂ Ω ⊂ G. Indeed, as is known [38, Sect. 6], there is a constantC5, depending on
the diameter ofG only, such that

cap(F)6C5 ·Cap(F,G)6C5 ·Cap(F,Ω)

for anyF ⊂ Ω ⊂ G, where the second inequality is a monotonicity property of Cap. This
together with (2.10) demonstrates inequality (2.11), which, in turn, yields inequality (2.9);
the constantC1 can be chosen to be the maximum ofC4 and the total mass ofµ .

To prove Lemma 2.7 we fix a reference metricg∈ c and choose a finite open covering
(Vi) of M by charts on whichg is conformally Euclidean. Using the partition of unity, we
can decomposeµ into the sum of measuresµi , where eachµi is supported inVi. By ci we
denote the conformal class onVi obtained by restricting the metrics fromc. Combining
Claim 2.8 and Corollary 2.3, we see that the first eigenvaluesλ1(µi ,ci) are positive. It is
straightforward to see that so are the first eigenvaluesλ1(µi ,c),

λ1(µi ,c)> λ1(µi ,ci)> 0.

Now we apply the second Maz’ja theorem together with Lemma 2.5 to conclude that the
embedding

L2(M,µi)∩L1
2(M,Volg)⊂ L2(M,µi)

is compact for anyi, and hence so is the embedding (2.3).

3. Weak maximisers for the first eigenvalue

3.1. The main theorem

Recall that, identifying conformal metrics with their volume forms, we extended the eigen-
valuesλk(g) to a class of Radon probability measures onM. On theclass of continuous
measuresthe eigenvalues are still bounded, and the purpose of this section is to show the
supλ1(µ ,c) is achieved in this class. More precisely, we have the following statement.

Theorem B1. Let M be a compact surface, possibly with boundary, endowed with a con-
formal class c of Riemannian metrics. Suppose that

sup{λ1(µ ,c)µ(M) : µ is a continuous Radon measure on M}> 8π. (3.1)

Then anyλ1-maximising sequence of Radon probability measures contains a subsequence
that converges weakly to a continuous Radon measureµ at which the supremum on the
left-hand side is achieved.

Before proving the theorem we make two remarks. First, the maximal measure clearly
has a positive first eigenvalue and, thus, satisfies a certainisocapacitory inequality, see
Sect. 2. In particular, the class of continuous Radon measures in the theorem above can
be significantly narrowed, for example, to the Radon measures that do not charge sets of
zero capacity. Second, the following result of Colbois and El Soufi [6] shows that the
hypothesis (3.1) is not very significant for closed surfacesM: for any conformal classc on
a closed surfaceM the quantity

sup{λ1(g)Volg(M) : g∈ c}

is greater or equal to 8π.
Due to the upper-semicontinuity property of the eigenvalues the proof of Theorem B1

is essentially concerned with ruling out measures with non-trivial discrete part as limit
maximal measures.
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Proof of TheoremB1. Denote byΛ1 the quantity

sup{λ1(µ ,c) : µ is a continuous Radon probability measure onM},

and letµn be a maximising sequence of continuous Radon measures,λ1(µn,c) → Λ1 as
n→+∞. Since the space of Radon probability measures on a compact surfaceM is weakly
compact, we can assume that theµn’s converge weakly to a Radon probability measureµ .
By upper semi-continuity (Lemma 1.1), for a proof of the theorem it is sufficient to show
thatµ is continuous. SinceΛ1 > 8π, then by Lemma 3.1 below the measureµ can not be a
Dirac measure. Further, the combination of upper semi-continuity and Lemma 2.1 implies
thatµ can not have a non-trivial discrete part and, thus, is a continuous Radon measure.

3.2. Concentration of measures

Recall that by the example in Sect. 1 the first eigenvalue of the Dirac measure is infinite.
Nevertheless, the following lemma shows that it is possibleto bound the limsupλ1(µn)
for a sequenceµn converging to the Dirac measure. A similar statement for Riemannian
volume measures has been sketched in [35, p. 888-889], and the details have been worked
out in [16]; we give a proof following the idea in [27].

Lemma 3.1. Let (M,c) be a compact Riemann surface, possibly with boundary, andµn

be a sequence of continuous Radon probability measures converging weakly to the Dirac
measureδx, x∈ M. Thenlimsupλ1(µn) is not greater than8π.

Proof. First, if M has a boundary, then it can be viewed as a subdomain of anotherRieman-
nian surface. Thus, without loss of generality we may assumethatx is an interior point. Let
Ω be an open coordinate ball aroundx∈M on which the metricg is conformally Euclidean,
and let

φ : Ω → S2 ⊂ R3

be a conformal map into the unit sphere inR3. Since a point on Euclidean plane has zero
capacity, then for anyε > 0 there exists a functionψ ∈C∞

0 (Ω) such that 06 ψ 6 1,

ψ = 1 in a neighbourhood ofx, and
∫

M
|∇ ψ|2dVolg< ε.

By the Hersch lemma, Appendix A, there exists a conformal transformationsn : S2 → S2

such that
∫

M
ψ(xi ◦ sn◦φ)dµn = 0 for any i = 1,2,3,

where(xi) are coordinate functions inR3. Using the functionsϕ i
n = ψ(xi ◦ sn ◦φ) as test-

functions for the Rayleigh quotient, we obtain

λ1(µn,c)
∫

M
(ϕ i

n)
2dµn 6

∫

M

∣

∣∇ ϕ i
n

∣

∣

2
dVolg

for any i = 1,2,3. Summing over allı’s yields

λ1(µn,c)
∫

M
ψ2dµn 6∑

i

∫

M

∣

∣∇ ϕ i
n

∣

∣

2
dVolg. (3.2)

The right-hand side can be estimated as

∑
i

∫

M

∣

∣∇ ϕ i
n

∣

∣

2
dVolg 6∑

i

∫

M
ψ2
∣

∣∇ (xi ◦ sn◦φ)
∣

∣

2
dVolg

+2∑
i

∫

M
ψ
∣

∣∇ (xi ◦ sn◦φ)
∣

∣ |∇ ψ|dVolg+
∫

M
|∇ ψ|2dVolg.
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The first sum on the right-hand side can be further estimated by the quantity

∑
i

∫

Ω

∣

∣∇ (xi ◦ sn◦φ)
∣

∣

2
dVolg 6∑

i

∫

S2

∣

∣∇ (xi ◦ sn)
∣

∣

2
dVolS2 = 8π;

here we used the conformal invariance of the Dirichlet energy, which in particular implies
that the energy of a conformal diffeomorphism ofS2 equals 8π. Similarly the second sum
is not greater that

2∑
i

∫

Ω

∣

∣∇ (xi ◦ sn◦φ)
∣

∣ |∇ ψ|dVolg 6 2ε1/2∑
i

(

∫

Ω

∣

∣∇ (xi ◦ sn◦φ)
∣

∣

2
dVolg

)1/2

6 10π1/2ε1/2.

Using these two estimates and the fact that the Dirichlet energy of ψ is less thanε, we
obtain

∑
i

∫

M

∣

∣∇ ϕ i
n

∣

∣

2
dVolg 6 8π+10π1/2ε1/2+ ε.

Combining the last inequality with (3.2), and passing to thelimit as n→+∞, we arrive at
the following relation

limsupλ1(µn,c)6 8π+10π1/2ε1/2+ ε.

Sinceε > 0 is arbitrary, we conclude that the left-hand side is not greater than 8π.

Remark.There is a version of Lemma 3.1 also for higher eigenvalues. More precisely,
the arguments outlined in Appendix A yield the following statement: for any sequence of
Radon measures(µn) converging weakly to a pure discrete measure the inequality

limsupλk(µn,c)6C∗k

holds, whereC∗ is the universal Korevaar(-Grigor’yan-Yau) constant.

4. Elements of regularity theory

4.1. The main theorem

Let (M,c) be a compact Riemann surface. For a given Radon probability measureµ onM
by its conformal deformationwe call the family of probability measures

µt(X) =

(

∫

X
eφtdµ

)

/

(

∫

M
eφtdµ

)

, (4.1)

whereX ⊂ M is a Borel subset, andφ ∈ L∞(M) is a generating function. Clearly, any
two generating functions that differ by a constant define thesame familyµt . Thus, it is
sufficient to consider generating functionsφ that have zero mean-value with respect toµ .
This assumption is made throughout the rest of the paper.

Definition 4.1. A Radon probability measureµ on a compact Riemann surface(M,c) is
calledextremalfor thekth eigenvalueλk(µ ,c) if for any φ ∈ L∞(M) the functionλk(µt ,c),
whereµt is defined by (4.1), satisfies either the inequality

λk(µt ,c)6 λk(µ ,c)+o(t) ast → 0,

or the inequality
λk(µt ,c)> λk(µ ,c)+o(t) ast → 0.
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In particular, we see that anyλk-maximiseris extremal under conformal deformations.
The definition above is a natural generalisation of the one given by Nadirashvili [35], and
also studied in [10, 11], for smooth Riemannian metrics.

The purpose of this section is to study regularity properties of extremal measures. Re-
call that any Radon measureµ decomposes into the sum

µ =

∫

f dVolg+ µ⌊Σ

of its absolutely continuous and singular parts; the setΣ has zero Lebesgue measure and
is called thesingular setof µ . This decomposition motivates the terminology used in the
sequel: we say that a measureµ ”defines a metric conformal tog away from the singular
setΣ”, viewing the density functionf as the ”conformal factor of such a metric”. The
regularity properties of a measureµ are essentially concerned with the following questions.

(i) How smooth is the density functionf of a given extremal measure? When is it
C∞-smooth?

(ii) What are the properties of the singular setΣ of an extremal measure, and when is it
empty?

Below we give complete answers to these questions under the hypothesis that the embed-
ding

L = L2(M,µ)∩L1
2(M,Volg)⊂ L2(M,µ). (4.2)

is compact. We refer to Sect. 2 for the examples and description of measures that satisfy
this hypothesis.

Another question, closely related to regularity, is concerned with the properties of the
supportS of a givenλk-extremal measure. For example, if aλk-maximal measure is the
limit of Riemannian volume measures, then the regions whereit vanishes are precisely the
regions where the corresponding Riemannian metrics collapse. In general, the support of
a λk-extremal measure does not have to coincide withM. More precisely, the examples
below show that there are completely singular extremal measures, that is, supported in zero
Lebesgue measure sets.

Example4.1 (Singularλ1-extremal measure on a disk). Let M be a 2-dimensional disk,
and µg be a boundary length measure of the Euclidean metricg. Rescaling the metric,
we can suppose thatµg is a probability measure. Its first eigenvalueλ1(µg, [g]) coincides
with the first Steklov eigenvalue ofg and, as is known [43, 13], is equal to 2π. Moreover,
the argument in [13, Th. 2.3] shows thatµg maximisesλ1(µ , [g]) among all continuous
probability measures supported in the boundary∂M. Since the conformal deformations
given by (4.1) do not change the support of a measure, we conclude thatµg is λ1-extremal
in the sense of Definition 4.1.

Example4.2 (Singularλ1-extremal measure on a sphere). LetM be a 2-dimensional sphere,
E be its equator, andM+ be a hemisphere whose boundary isE. For any continuous
probability measureµ supported inE it is straightforward to show that

λ1(µ , [gR]) = 2λ1(µ , [g+R ]),

wheregR andg+R denote the round metrics onM andM+ respectively. LetµR be a length
measure on the equatorE corresponding to the round metric onM; we may assume that it
is rescaled to be a probability measure. Using the result in Example 4.1, it then follows that
µR maximisesλ1 onM among all continuous probability measures supported in theequator
E. Since the conformal deformations given by (4.1) do not change the support of a measure,
as in Example 4.1, we conclude thatµR is λ1-extremal in the sense of Defintion 4.1.
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Now we state our principal result; it deals with regularity properties of aλk-extremal
measure in the interior of its support.

Theorem Ck . Let M be a compact surface, possibly with boundary, endowed with a confor-
mal class c of Riemannian metrics. Letµ be aλk-extremal measure which is not completely
singular and such that the embedding(4.2) is compact.

(i) Then the measureµ is absolutely continuous (with respect to Volg, g ∈ c) in the
interior of its support S⊂ M, its density function is C∞-smooth in S and vanishes at
isolated points only. In other words, the measureµ defines a C∞-smooth metric on S,
conformal to g∈ c away from isolated degeneracies which are conical singularities.

(ii) If the support of the measureµ does not coincide with M, then the measure has a
non-trivial singular setΣ⊂ M\ IntS.

The following example suggests that the compact embedding hypothesis may hold
when an extremal metric has sufficiently many symmetries.

Example4.3 (Symmetries and regularity). Let M be a surface, possibly with boundary,
andc be a conformal class of Riemannian metrics on it. Further, let µ be aλk-extremal
metric onM, understood as a non-completely singular Radon measure, and suppose thatµ
is invariant under a free smooth circle action onM. Thenµ is a Riemannian metric which
isC∞-smooth in the interior of its support. Indeed, by the classical disintegration theory [8]
any circle-invariant measure locally splits as a product oftwo measures; one of them is a
uniform measure on a reference orbit, see details in [29]. This shows that there is a constant
C such that for any sufficiently small ballB(x, r)⊂ M the following inequality holds

µ(B(x, r))6Cr for anyx∈ M.

Now Lemma 2.7 implies that the embedding (4.2) is compact, and by TheoremCk the
measureµ is the volume measure of aC∞-smooth metric in the interior of its support.

We end this introduction with remarks on conical singularities of extremal metrics.
Recall that for a given metric a pointp ∈ M is called its conical singularity of orderα
(or of angle 2π(α + 1)) if in an appropriate local complex coordinate the metric has the
form |z|2α ρ(z) |dz|2, whereρ(z) > 0. In other words, nearp the metric is conformal to
the Euclidean cone of total angle 2π(α +1). First, the conical singularities of an extremal
metric in TheoremCk have angles that are integer multiples of 2π. This follows from the
proof, where we show that they correspond to branch points ofcertain harmonic maps.
The above applies to singularities in the interior of the supports only. Mention that on the
boundary an extremal metric can have more complicated degeneracies. For example, the
metric on a 2-dimensional diskD, regarded as a punctured round sphere, maximises the
first eigenvalue and vanishes on the boundary.

Example4.4 (Smoothness of conical singularities). Let g be a metric with conical singular-
ities and unit volume onM. Suppose that it isλk-extremal under conformal deformations,
that is in the sense of Definition 4.1. We claim that such a metric has to beC∞-smooth,
and the angles at its conical singularities are integer multiplies of 2π. Indeed, by Ex-
ample 2.1 the embedding (4.2) is compact, and the statement follows from TheoremCk

together with the discussion above. Mention that the hypotheticalλ1-maximal metric on a
genus 2-surface, obtained in [22], satisfies this conclusion.

Example4.5 (Extremal absolutely continuous measures). Let µ be an absolutely continu-
ous probability measure onM, whose density function isLp-integrable, wherep> 1; see
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Example 2.1. One can viewµ as the volume measure of a metric conformal to a genuine
Riemannian metric onM whose conformal factor isLp-integrable. Such singular metrics
naturally occur on Alexandrov surfaces of bounded integralcurvature, see [28]. Suppose
thatµ is λk-extremal under conformal deformations. Then by TheoremCk the support of
µ coincides with the whole surfaceM, and the density function isC∞-smooth everywhere
onM.

4.2. Continuity properties

We start with establishing the continuity properties of eigenvalues and eigenspaces corre-
sponding to the family of measuresµt . We consider these issues in a slightly more general
setting that is necessary for applications, describing a suitable topology on the space of
probability measures.

Definition 4.2. By the integral distancebetween two probability measuresµ andµ ′, we
call the quantity

d(µ ,µ ′) = sup
v>0

∣

∣

∣

∣

ln

(

∫

vdµ/
∫

vdµ ′

)∣

∣

∣

∣

,

where the supremums are taken overnon-trivial continuous functions onM.

In general, the distanced(µ ,µ ′) may take infinite values; however, it does determine a
topology on the space of probability measures, which is stronger than the weak topology.
For example, the family of measuresµt given by (4.1), is always continuous in it. Mention
that for measures with finite distance the correspondingL2-spaces, regarded as topological
vector spaces, coincide. In particular, the embedding (4.2) is compact or not for such
measures simultaneously. In the sequel we often use the introduced distance in the form of
the following inequality:

∣

∣

∣

∣

1−

(

∫

vdµ/
∫

vdµ ′

)∣

∣

∣

∣

6 δ(µ ,µ ′) := expd(µ ,µ ′)−1,

wherev is an arbitrary non-negative function. We demonstrate thisin the following lemma.

Lemma 4.1. Let (M,c) be a compact Riemann surface, possibly with boundary, andµ
be a probability measure on M whose eigenvalueλk(µ ,c) is finite. Then for any sequence
(µn) of probability measures that converge in the integral distance toµ , we have

λk(µn,c)−→ λk(µ ,c) as n→+∞.

Proof. First, in view of the upper semi-continuity property (Prop.1.1), it is sufficient to
prove that

λk(µ ,c)6 lim inf λk(µn,c). (4.3)

Let Λn be a(k+1)-dimensional space such that

sup
u∈Λn

Rc(u,µn)6 λk(µn,c)+1/n.

We claim that the sequence

sup
Λn

Rc(u,µn)− sup
Λn

Rc(u,µ) (4.4)
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converges to zero asn→+∞. Indeed, for anyu∈ Λn, we have

|Rc(u,µn)−Rc(u,µ)|6 δ(µ ,µn)Rc(u,µn)6 δ(µ ,µn)(λk(µn,c)+1/n)

6C ·δ(µ ,µn).

Here the first inequality follows by the definition of the quantity δ(µ ,µn), and the constant
C is an upper bound for the sequence(λk(µn,c)+1/n). Sinceλk(µ ,c) is finite, by upper
semi-continuity such a bound exists. The last estimate shows that the absolute value of
quanity (4.4) is also bounded byC ·δ(µ ,µn), and hence converges to zero. Thus, we have

λk(µ ,c)6 lim inf(sup
Λn

Rc(u,µ)) = lim inf(sup
Λn

Rc(u,µn)) = lim inf λk(µn,c),

and the claim is demonstrated.

We proceed with the continuity properties of eigenspaces. Below we suppose that for
Radon measuresµ and µn the embedding (4.2) is compact. Denote byEk andEn,k the
eigenspaces corresponding toλk(µ ,c) andλk(µn,c) respectively, and byΠk andΠn,k the
orthogonal projections onEk andEn,k, regarded as subspaces inL2(M,µ). The follow-
ing lemma can be obtained as a consequence of Kato’s perturbation theory for Dirichlet
forms [26]; the proof details can be found in Appendix B.

Lemma 4.2. Let (M,c) be a compact Riemann surface, possibly with boundary, and let
(µn) be a sequence of Radon probability measures converging in the integral distance to a
Radon measureµ . Then the eigenspace projectionsΠn,k converge to the projectionΠk in
the norm topology as operators in L2(M,µ).

Remark. The arguments in Appendix B show that the lemma above can be re-phrased
in a number of other ways. For example, ifΠ∗

n,k is an orthogonal projection onEn,k as
a subspace inL2(M,µn), then the norm|Πk − Π∗

n,k| of the operators inL2(M,µn) also
converges to zero asn→+∞.

4.3. First variation formulas

For a zero mean-value functionφ ∈ L∞(M) by Lφ(u,µ) we denote the quotient

−Rc(u,µ) ·
(

∫

M
u2φdµ

)

/

(

∫

M
u2dµ

)

.

The purpose of this sub-section is to prove the following first variation formulas for the
eigenvalue functionals.

Lemma 4.3. Let (M,c) be a compact Riemann surface, possibly with boundary, andµ be
a Radon probability measure on M such that the embedding(4.2) is compact. Then for any
family of measuresµt , generated by a zero mean-valueφ ∈ L∞(M), the functionλk(µt ,c)
has left and right derivatives which satisfy the relations

d
dt

∣

∣

∣

∣

t=0−
λk(µt ,c) = sup

u∈Ek

Lφ(u,µ),

d
dt

∣

∣

∣

∣

t=0+
λk(µt ,c) = inf

u∈Ek
Lφ(u,µ),

where Ek is the space spanned by eigenfunctions corresponding to theeigenvalueλk(µ ,c),
and the sup and inf are taken over non-trivial functions.
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Proof. Below we prove the second identity. The first identity follows by similar arguments.
Let Ek,t andEk be the eigenspaces corresponding toλk(µt ,c) andλk(µ ,c).The following
statements are proved in Appendix B.

Claim 4.4. The eigenvaluesλk(µt) andλk(µ) satisfy the following inequalities:

λk(µt)6 inf
u∈Ek

Rc(u,µt)+o(t) as t→ 0,

λk(µ)6 inf
u∈Ek,t

Rc(u,µ)+o(t) as t→ 0,

where the infimums are taken over non-trivial functions.

Claim 4.5. The following limit identities hold:

inf
Ek,t

Lφ(u,µ)−→ inf
Ek

Lφ(u,µ) as t→ 0,

sup
Ek,t

Lφ(u,µ)−→ sup
Ek

Lφ(u,µ) as t→ 0,

where the infimums and supremums are assumed to be taken over non-trivial functions u.

First, it is straightforward to see from the definition ofµt that for anyu∈ L the following
relation holds:

∣

∣

∣

∣

1
t

(

∫

M
u2dµt −

∫

M
u2dµ

)

−

∫

M
u2φdµ

∣

∣

∣

∣

6 ε(t) ·
∫

M
u2dµ ,

whereε(t) is a quantity that does not depend onu and converges to zero ast → 0. A further
computation yields

∣

∣

∣

∣

1
t
(Rc(u,µt)−Rc(u,µ))−Lφ(u,µ)

∣

∣

∣

∣

6 Rc(u,µt) · (δ(µ ,µt) |φ|∞ + ε(t)) (4.5)

for any functionu∈L . Evaluating the quantities in this inequality onu∈ Ek, we conclude
that

1
t
( inf
u∈Ek

Rc(u,µt)− λk(µ))−→ inf
u∈Ek

Lφ(u,µ) as t → 0+ .

Combining this with the first relation in Claim 4.4, we get

lim sup
t→0+

1
t
(λk(µt)− λk(µ))6 inf

u∈Ek
Lφ(u,µ). (4.6)

Now evaluating the quantities in inequality (4.5) onu∈ Ek,t , we obtain that

inf
u∈Ek,t

Lφ(u,µ)−
1
t
(λk(µt)− inf

u∈Ek,t
Rc(u,µ))−→ 0 as t → 0+ .

Combining this with the second relation in Claim 4.4, we conclude that

lim inf
t→0+

( inf
u∈Ek,t

Lφ(u,µ))6 lim inf
t→0+

1
t
(λk(µt)− λk(µ)). (4.7)

Now by Claim 4.5 the quantity on the left-hand side above coincides with infEk Lφ(u,µ),
and the second identity of the lemma follows by combination of inequalities (4.6) and (4.7).
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4.4. Proof of Theorem Ck

The following lemma is a key ingredient in our approach to theregularity theory for ex-
tremal measures. It is a sharpened version of the statement originally discovered by Nadi-
rashvili [35] for Riemannian metrics.

Lemma 4.6. Let (M,c) be a compact Riemannian surface, possibly with boundary, and µ
be a Radon probability measure on M such that the embedding(4.2) is compact. Then the
following hypotheses are equivalent:

(i) the measureµ is λk-extremal;

(ii) the quadratic form

u 7−→

∫

M
u2φdµ

is indefinite on the eigenspace Ek for any zero mean-value functionφ ∈ L∞(M);

(iii) there exists a finite collection ofλk-eigenfunctions(ui) such that∑i u
2
i = 1 on the

support ofµ .

Proof. The equivalence of the first two statements is a direct consequence of Lemma 4.3.
Indeed, since the left and right derivatives ofλk(µt ,c) exist, theλk-extremality is equivalent
to the relation

d
dt

∣

∣

∣

∣

t=0+
λk(µt ,c) ·

d
dt

∣

∣

∣

∣

t=0−
λk(µt ,c)6 0

for any conformal deformationµt . Using the formulas for the derivatives, we conclude that
µ is λk-extremal if and only if the formLφ(u,µ) is indefinite onEk for any zero mean-value
functionφ ∈ L∞(M). The latter is equivalent to the hypothesis(ii).
(ii)⇒ (iii ). Let K ⊂ L1(M,µ) be the convex hull of the set of squaredλk-functions{u2 :
u∈ Ek}. Suppose the contrary to the hypotheses(iii ); then 16= K. By classical separation
results, there exists a functionψ ∈ L∞(M) such that

∫

M
1 ·ψdµ < 0 and

∫

M
q ·ψdµ > 0, for anyq∈ K\{0}.

Let ψ0 be the mean-value part ofψ,

ψ0 = ψ−

∫

M
ψdµ .

Then for any eigenfunctionu∈ Ek we have

∫

M
u2ψ0dµ =

∫

M
u2ψdµ −

(

∫

M
ψdµ

)(

∫

M
u2dµ

)

> 0.

This is a contradiction with(ii).
(iii ) ⇒ (ii). Conversely, let(ui) be a finite collection of eigenfunctions satisfying the hy-
pothesis(iii ). Then for anyφ ∈ L∞(M) with zero mean-value, we have

∫

M
(∑

i
u2

i )φdµ =

∫

M
φdµ = 0.

This demonstrates the hypothesis(ii).
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Proof of TheoremCk: part (i). Let (ui), wherei = 1, . . . , ℓ, be a collection of eigenfunc-
tions from Lemma 4.6. By Prop. 1.2 they satisfy the integral identity

∫

M
〈∇ ui , ∇ ϕ 〉dVolg = λk(µ ,c)

∫

M
ui ·ϕdµ (4.8)

for any functionϕ ∈ L . Let S⊂ M be the support of an extremal measureµ ; we suppose
that its interior is not empty. Takingϕ to beui ·ψ, whereψ ∈ C∞

0 (S), we can re-write
relation (4.8) in the form

∫

M
|∇ ui |

2ψdVolg+
1
2

∫

M
〈∇ (u2

i ), ∇ ψ〉dVolg = λk(µ ,c)
∫

M
u2

i ψdµ .

Summing up and using the relation∑i u
2
i = 1 onS, we obtain

∫

S

(

∑
i
|∇ ui |

2

)

ψdVolg = λk(µ ,c)
∫

S
ψdµ

for any compactly supported smooth functionψ. This implies that the measureµ is abso-
lutely continuous with respect toVolg in the interior ofS, and its density function has the
form

(

∑
i
|∇ ui |

2

)

/λk(µ ,c). (4.9)

Now equation (4.8) can be re-written in the form

∫

S
〈∇ ui , ∇ ϕ 〉dVolg =

∫

S

(

∑
i
|∇ ui |

2

)

uiϕdVolg,

whereϕ is a smooth function supported inS. This relation is precisely the equation on a
map

U : M ⊃ IntS∋ x 7−→ (u1(x), . . . ,uℓ(x)) ∈ Sℓ−1 ⊂ Rℓ (4.10)

to beweakly harmonicwith respect to the standard round metric onSℓ−1, and by Helein’s
regularity theory [21] we conclude that the map given by (4.10) isC∞-smooth. The zeroes
of the density function (4.9) correspond to the branch points of the harmonic mapU and,
as is known [25, 40], are isolated. As a branch point such a zero has a well-defined order,
that is in an appropriate local complex coordinate near it the density|∇ U |2 has the form
z2l ρ(z), whereρ(z)> 0 andl > 1 is an integer.

Proof of TheoremCk: part (ii). Settingϕ to be equal toui in relation (4.8), and summing
over thei’s, we obtain

∫

M

(

∑
i
|∇ ui |

2

)

dVolg = λk

∫

M

(

∑u2
i

)

dµ .

Since, by Lemma 4.6, the sum∑u2
i equals one on the supportSof the measureµ , we obtain

∫

M

(

∑
i
|∇ ui |

2

)

dVolg = λk. (4.11)
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On the other hand, the absolutely continuous partµabsof µ has the form (4.9) in the interior
of S, and

µabs(S) = λ −1
k

∫

S

(

∑
i

|∇ ui |
2

)

dVolg. (4.12)

Suppose the contrary to the statement, that is the singular set Σ of µ is empty. Then, the
massµabs(S) equals one. By the hypotheses the complementM\S is a non-empty open set,
and comparing relations (4.11) and (4.12), we conclude that∇ ui vanishes onM\S for any
i = 1, . . . , ℓ. It is then straightforward to see that theui ’s are constant functions onM\S,
and the sum∑u2

i equals one almost everywhere onM.
Now the repetition of the argument in the proof of part (i) shows that the weakly har-

monic map
U : M ∋ x 7−→ (u1(x), . . . ,uℓ(x)) ∈ Sℓ−1 ⊂ Rℓ

is defined on the whole surface, and by Helein’s regularity [21], isC∞-smooth everywhere.
Since it is constant on a non-empty open subsetM\S, by the unique continuation [41], we
conclude that it is constant everywhere. Thus, the sum∑ |∇ ui |

2 vanishes identically, and
by (4.12) we obtain a contradiction with the assumption thatµabs is a probability measure.

Finally, mention that Lemma 4.6 together with the argumentsin the proof of Theo-
remCk show thatλk-extremal metrics with conical singularities correspond to harmonic
maps into a Euclidean sphere defined by a collection ofλk-eigenfunctions. This statement
is a generalization of the results in [11], see also [10, 35],known for Riemannian metrics.
Due to its importance we state it below as a corollary.

Corollary 4.7. Let(M,c) be a compact Riemannian surface, possibly with boundary, and h
be a metric with conical singularities conformal to g∈ c. Then the metric h isλk-extremal
if and only if there exists a finite collection ofλk-eigenfunctions(ui), where i= 1, . . . , ℓ,
such that∑i u

2
i = 1, and hence, the map

M ∋ x 7−→ (u1(x), . . . ,uℓ(x)) ∈ Sℓ−1 ⊂ Rℓ

is a harmonic map into a unit sphere in the Euclidean space.

5. Existence of partially regular maximisers

5.1. The main theorem

Recall that TheoremB1 states that anyλ1-maximising sequence of continuous Radon mea-
sures converges to a maximal continuous Radon measureµ provided

sup{λ1(µ ,c)µ(M) : µ is a continuous Radon measure onM} > 8π. (5.1)

Due to TheoremCk the complete regularity of any maximiser requires the compactness of
the embedding

L = L2(M,µ)∩L1
2(M,Volg)⊂ L2(M,µ), (5.2)

which, as the results in Sect. 2 show, is a rather independenthypothesis. As was mentioned
earlier, Nadirashvili and Sire [36], and very recently Petrides [37], announced the result
stating the existence of a completely regularλ1-maximiser. Both papers develop a delicate
analysis related to the construction of a special maximising sequence that converges to
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such a maximiser. The purpose of this section is to give a simple argument that proves the
existence of a partially regular maximiser.

For a given increasing sequence(Cn) of real numbers such thatCn →+∞ asn→+∞,
we consider the setsCn formed by continuous Radon measuresµ such that

µ(B(x, r)) 6Cn · r
2

for any closed metric ballB(x, r). Equivalently, theCn’s can be described as sets of abso-
lutely continuous measures whose densitiesχn are bounded above byCn. Clearly, eachCn

is closed in the weak topology, and thus, contains a measureµn that maximisesλ1(µ ,c)
in Cn. If a given conformal classc satisfies the hypothesis (5.1), then, by TheoremB1 the
sequence(µn) contains a subsequence that converges weakly to a continuousλ1-maximal
measure. Moreover, by the results in Sect. 2, the measureµ satisfies the linear isocapac-
itory inequality and, in paricular, vanishes on sets of zerocapacity. Our following result
describes further regularity properties of this limit measure.

Theorem D1. Let (M,c) be a compact surface, possibly with boundary, endowed with a
conformal class c of Riemannian metrics that satisfies the hypothesis(5.1). Let µ be a
continuousλ1-maximal measure constructed in the fashion described above, and S be the
interior of its support. Then the singular part ofµ is supported in a nowhere dense setΣ
(of zero Lebesgue measure), and one of the following two possibilities holds:

(i) either the absolutely continuous part ofµ is trivial, or

(ii) the absolutely continuous part ofµ has a C∞-smooth density in S\Σ̄ that vanishes at
most at a finite number of points on any compact subset in S\Σ̄.

The theorem says that if the maximal measureµ is not completely singular, than it
is the volume measure of a smooth Riemannian metric inS, conformal to the ones inc,
outside of a nowhere dense set of zero Lebesgue measure . As inTheoremCk, the zeroes
of its density inS\Σ̄ correspond to conical singularities of this metric. We decompose the
singular setΣ into the union of two setsΣint andΣout, defined as

Σint = Σ∩S, and Σout = Σ\S.

Recall that by TheoremCk, if the embedding (5.2) is compact, thenΣint =∅. In addition, if
the complementM\S is non-empty, thenΣout 6= ∅. These statements indicate on relation-
ships between the isocapacitory inequalities and the properties of the singular set. More
precisely, letβ(B(x, r),µ) be an isocapacity constant of a closed ball, see Sect. 2, andΣ∗

be the complement inS of a maximal set whereβ(B(x, r)) → 0 asr → 0 uniformly in x.
ThenΣ∗ is a subset of the singular setΣint, and is empty if and only if so isΣint. The last
statement here is a consequence of Corollary 2.6. Alternatively, for a givenα > 1 one can
also consider the setΣα that is the complement inSof a maximal set where

µ(B(x, r)) lnα (1/r)→ 0 asr → 0

uniformly in x∈ S. Then,Σα ⊂ Σint and from Lemma 2.7 we conclude thatΣα is empty if
and only if so is the singular setΣint.

5.2. Preliminary considerations

Let µn ∈ Cn be a probability measure that maximises the first eigenvalueλ1(µ ,c) among
all measures inCn. By χn we denote its density, and byΣn the setχ−1

n (Cn). Changingχn
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on a zero Lebesgue measure set, we can always assume that the set Σn is regular in the
following sense: for anyε > 0 there exist a closed and open setsF andG such that

F ⊂ Σn ⊂ G and Volg(G\F)< ε. (5.3)

Let µ be the weak limit of the measuresµn, andSbe the interior of its support. We fix an
open setD ⋐ S; without loss of generality, we can suppose that it belongs to the support of
eachµn.

Now consider the family of conformal deformations

µn,t(X) =

(

∫

X
eφtdµn

)

/

(

∫

M
eφtdµn

)

with a zero mean-value functionφ ∈ L∞(M) that vanishes onΣn. Since the measuresµn,t

belong toCn, we conclude that

λ1(µn,t ,c)6 λ1(µn,c). (5.4)

Clearly, the embedding (5.2) is compact for any measure inCn, and thus the spaces of first
eigenfunctions are non-empty and finite-dimensional. The following claim is essentially a
consequence of the first variation formulas (Lemma 4.3).

Claim 5.1. For each measureµn there exists a finite collection of eigenfunctions(ui,n) such
that

∑
i

u2
i,n(x)≡ 1 for any x∈ D\Σn.

Proof. Combining Lemma 4.3 with relation (5.4), we conclude that the quadratic form

u 7−→
∫

M\Σn

u2φdµn

is indefinite on the first eigenspaceE for any zero mean-value functionφ ∈ L∞(M\Σn).
Now the conclusion follows from a separation argument similar to the one used in the
proof of Lemma 4.6.

The following claim yields a formula for the densitiesχn; its proof is a repetition of the
argument in the proof of TheoremCk, see Sect. 4.

Claim 5.2. Under the conditions of Claim 5.1, the eigenfunctions(ui,n) are smooth in the
interior of D\Σn, and so are the densitiesχn. Moreover, we have the following relation

χn(x) =

(

∑
i
|∇ ui,n|

2 (x)

)

/λ1(µn,c)

for any interior point x∈ D\Σn.

Finally, we need the following statement.

Claim 5.3. The multiplicities of the first eigenvaluesλ1(µn,c) are bounded by a quantity
that depends on the topology of M only.

When the measureµ is the genuine volume measure of aC∞-smooth Riemannian met-
ric, the statement is classical and is due to Cheng [5]. Claim5.3 is a partial case of a more
general result proved in [28, Sect. 5].
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5.3. Proof of Theorem D1

Denote byΣ∗
n the union∪k>nΣk. Since the volumes of theΣn’s converge to zero,

Volg(Σn)6 1/Cn → 0 as n→+∞,

then selecting their subsequence, if necessary, we can suppose that so do the volumes of
the Σ∗

n’s. Further, the sequenceΣ∗
n is nested, and byΣ we denote its limit, that is∩nΣ∗

n.
Clearly, the limit setΣ has a zero Lebesgue measure. Besides, it satisfies property (5.3)
and, in particular, is nowhere dense inM.

Now let G be an open neighbourhood ofΣ; it also contains setsΣ∗
n for a sufficiently

large n. By Claim 5.1, for any measureµn there exists a collection of eigenfunctions
(ui,n) such that∑i u

2
i,n = 1 on D\G, whereD ⋐ S is a fixed open set. By Claim 5.3, the

multiplicities of the eigenvaluesλ1(µn,c) are bounded and, choosing a subsequence of the
µn’s, we can suppose that for eachn∈ N there is the same number of eigenfunctions(ui,n),
wherei = 1, . . . ,m, such that∑i u

2
i,n = 1. In other words, for any measureµn, we have a

harmonic map
Un : D\Ḡ∋ x 7−→ (ui,n(x)) ∈ Sm−1 ⊂ Rm.

By Claim 5.2, we conclude that their energies are also bounded,

E(Un) :=
∫

D\G

|∇ Un|
2dVolg 6 λ1(µn,c).

Now thebubble convergence theorem[39, 25] for harmonic maps applies on any compact
subsetF in the interior ofD\Ḡ. More precisely, there exists a subsequence, also denoted
by (Un), that converges weakly inW1,2(F,Sm−1) to a smooth harmonic mapU : F → Sm−1.
Moreover, there exists a finite number of ‘bubble points’{x1, . . . ,xℓ}⊂ F such that theUn’s
converge inC∞-topology on compact sets inF\{x1, . . . ,xℓ}, and the energy densities|∇ Un|

2

converge weakly in the sense of measures to|∇ U |2 plus a finite sum of Dirac measures:

|∇ Un|
2dVolg ⇀ |∇ U |2dVolg+∑

j
mjδxj .

By the uniqueness of the weak limit, we conclude that the restriction of the limit maximal
measureµ on the interior ofD\Ḡ has the form

(

|∇ U |2dVolg+∑
j

mjδxj

)

/λ1(µ ,c).

However, by TheoremB1, the maximal measureµ is continuous and, thus, no ‘bubble
points’ can occur in the expression above. Taking smaller sets G, we conclude that the
limit harmonic mapU is well-defined onD\Σ̄, and is a finite energy map on the wholeD.
Exhausting the setS (the interior of the support ofµ) by setsD ⋐ S, we further conclude
thatU extends to it as a finite energy harmonic map. Thus, the maximal measureµ on S
has the form

dµ =
(

|∇ U |2/λ1(µ ,c)
)

dVolg+dµ⌊Σint,

where the last term stands for the interior singular part ofµ . Finally, if |∇ U | 6≡ 0, then the
zeroes of|∇ U | correspond to the branch points ofU ; as is known [25, 40], there can be
only finite number of them on any compact subset inS\Σ̄.
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6. Other related results and remarks

6.1. Concentration-compactness of extremal metrics

The ideas developed in Sect. 3-5 allow also to analyse the limits of sequences formed by
extremal conformal metrics. The following statement is a general result in this direction.

Theorem Ek . Let M be a closed surface endowed with a conformal class c, and(gn) be
a sequence ofλk-extremal smooth metrics in c (possibly with conical singularities) nor-
malised to have a unit volume. Then there exists a subsequence (gnℓ) such that one of the
following holds:

(i) the volume measures Vol(gnℓ) converge weakly to a pure discrete measure supported
at k points at most, and

limsupλk(gnℓ)6C∗k,

where C∗ is the Korevaar constant;

(ii) the subsequence(gnℓ) converges smoothly to a Riemannian metric (which may have
conical singularities only) away from k points at most wherethe volumes concen-
trate.

The proof is based on the characterisation of extremal metrics as harmonic maps into Eu-
clidean spheres (Corollary 4.7) together with Cheng’s multiplicity bounds in [5]. The ar-
gument is similar to the one in the proof of TheoremD1 and uses the bubble convergence
theorem for harmonic maps. The estimate in the case(i) is a consequence of the remark at
the end of Sect. 3.

For the case of the first eigenvalue the above result can be significantly sharpened.

Theorem E1. Let M be a closed surface endowed with a conformal class c, and(gn) be
a sequence ofλ1-extremal smooth metrics in c (possibly with conical singularities) nor-
malised to have a unit volume. Then there exists a subsequence (gnℓ) such that one of the
following holds:

(i) the volume measures Vol(gnℓ) converge weakly to a pure Dirac measureδx for some
x∈ M, andλ1(gnℓ)→ 8π asℓ→+∞;

(ii) the subsequence(gnℓ) converges smoothly to aλ1-extremal metric g (possibly with a
finite number of conical singularities) andλ1(gnℓ)→ λ1(g) asℓ→+∞.

In particular, the theorem says that the set of conformalλ1-extremal metrics whose first
eigenvalues are bounded away from 8π is always compact. The critical value 8π is the
maximal first eigenvalue of unit volume metrics on the 2-sphere, and as is known (due to
the non-compactness of the conformal group PSL(2,C)) the maximal metrics on it form
a non-compact space. This compactness statement can be alsoviewed as a version of the
following result by Montiel and Ros [34]:on a compact surface of positive genus each
conformal class has at most one metric which admits a minimalimmersion into a unit
sphere by first eigenfunctions.Indeed, our statement says that the set of conformal metrics
that admit harmonic maps (of energy bounded away from 8π) into a unit sphere by first
eigenfunctions is compact. Here we, of course, assume that these metrics are allowed to
have conical singularities.

The proof of TheoremE1 follows closely the line of the argument in [27] where anal-
ogous results for Schrodinger eigenvalues have been proved. In fact, the formalism de-
veloped in the present work allows to shorten the original proof in [27] significantly. The
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statement of TheoremE1 continues to hold when extremal metricsgn belong to variable
conformal classescn that lie in a bounded domain of the moduli space of conformal struc-
tures onM. We refer to [27] for details.

6.2. Remarks and open questions

1. As was mentioned, Nadirashvili and Sire [36] and Petrides [37] announced the existence
of a completely regularλ1-maximiser in every conformal class on a closed surface. How-
ever, it is important to understand up to what extentanyλ1-maximal measure is regular.
Recall that, as we saw in Sect. 4, there areλ1-extremal completely singular measures. It
is extremely interesting to understand whether there are completely singularλ1-maximal
measures. It seems plausible that such maximal measures do not exist, and moreover, the
support of anyλ1-maximal measure has to coincide withM. Similar questions one can also
pose forλk-maximisers.

2. The properties of the singular setΣ of a partially regular maximiser, constructed in
Sect. 5, seem to be closely related to the properties of its subsetsΣ∗, where the isocapacity
constantβ(B(x, r)) fails to converge to zero uniformly inx asr → 0. It is interesting to
know more about the relationship between these sets; in particular, whether it is possible
to describe the differenceΣ\Σ∗ and the hypotheses when it is empty. Similarly, the prop-
erties of the differenceΣ\Σα , see Sect. 5, are also very interesting. They could lead to the
estimates for the Hausdorff dimension of the singular setΣ.

3. Maximising eigenvalues among circle-invariant conformal metrics. One of the pos-
sibilities to achieve complete regularity of extremal metrics is to impose extra geomet-
ric hypotheses on them. For example, one can consider metrics with symmetries. In the
note [29], we show how this works for a class of conformal metrics invariant under a free
circle action on the torus. In this setting one can show that for anyk > 0 there exists a
circle-invariant metric (in any conformal class ˜c formed by such metrics), understood as a
capacitory Radon measure, which maximises thekth eigenvalue among all such measures.
Besides, any suchλk-extremal metric is

(i) either completely singular and is supported in a zero Lebesgue measure set which is
a union of circle orbits, or

(ii) it is a genuine metric in ˜c, which isC∞-smooth in the interior of its support.

Mention that here there is no hypothesis on the maximalλk-value, unlike in TheoremD1.
The reason is that any circle-invariant Radon measure has a trivial discrete part. The circle-
invariance also implies that the maximal metric (in the case(ii)) has no conical singularities
and, thus, is a genuine Riemannian metric.

More generally, it is interesting to understand how any (possibly partial) symmetry of
a λk-extremal metric (in the sense of Sect. 4) improves its regularity properties; cf. the
example after TheoremCk.

4. Maximising eigenvalues among conformal metrics with integral curvature bound.An-
other example when eigenvalue maximisers have good regularity properties is the extremal
problem for conformal metrics with the integral Gaussian curvature bound

∫

∣

∣Kg
∣

∣

p
dVolg 6C<+∞, wherep> 1. (6.1)

As is known, see [42] and Appendix in [3], sequences of such conformal metrics of
bounded volume satisfy concentration-compactness properties, and the concentration phe-
nomenon can be controlled by positive lower bounds on eigenvalues. For example, there
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always exists aC0,α -smoothλ1-maximiser among conformal metrics satisfying (6.1). On
the other hand, maximising sequences for higher eigenvalues have limits that areC0,α -
smooth metrics away from a finite number of points. The latterare characterised by the
volume concentration and, after an appropriate rescaling,correspond to the metrics on a
collection of ”bubble spheres” glued by thin tubes.

A. Appendix: details on Theorems A1 and Ak

A.1. Proof of Theorem A1

First, we explain the following version of the result by Yangand Yau [44, p. 58]. Recall
that a measureµ is calledcontinuousif the mass of any pointµ(x) is equal to zero.

Proposition A.1. Let M be a closed Riemann surface and c be the conformal class induced
by the complex structure. Suppose that M admits a holomorphic mapϕ : M → S2 of degree
d. Then for any continuous Radon measureµ on M the first eigenvalue satisfies the estimate

λ1(µ ,c)µ(M)6 8πd.

The key ingredient of the proof is the following lemma, see [20, 32].

Hersch Lemma. Let xi , i = 1,2,3, be coordinate functions inR3, andϕ : M →S2 ⊂ R3 be
a conformal map to the unit sphere centred at the origin. Thenfor any continuous Radon
measureµ on M there exists a conformal diffeomorphism s: S2 → S2 such that

∫

M
(xi ◦ s◦ϕ )dµ = 0 for any i= 1,2,3.

Proof of Prop. A.1.Let s be the conformal transformation from the Hersch lemma. Using
(xi ◦ s◦ϕ )’s as test functions for the Rayleigh quotient, we obtain

λ1(µ ,c)
∫

M
(xi ◦ s◦ϕ )2dµ 6

∫

M

∣

∣∇ (xi ◦ s◦ϕ )
∣

∣

2
dVolg∗ .

Summing up these inequalities over allı’s and using the identity∑(xi)2 = 1 on the unit
sphere, we see that

λ1(µ ,c)µ(M)6∑
i

∫

M

∣

∣∇ (xi ◦ s◦ϕ )
∣

∣

2
dVolg∗ .

The right-hand side here is the energy of the map(s◦ϕ ), which equals 8πd; see [9].

Now TheoremA1 follows by application of the Riemann-Roch theorem in the same
fashion as in Yang-Yau [44]. As a consequence, we also obtaina version of Hersch’s
isoperimetric inequality for continuous Radon measures onthe sphereS2. The estimates of
Li and Yau [32] for the first eigenvalue via the conformal volume carry over our setting as
well.

A.2. Proof of Theorem Ak

Recall that thecapacitorin M is a pair(F,G) of Borel subsetsF ⊂ G. Given a reference
metricg∈ c, thecapacityof a capacitor(F,G) is defined as

Cap(F,G) = inf

{

∫

M
|∇ ϕ |2dVolg

}

,
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where the infimum is taken over allC∞-smooth functions onM whose support lies in the
interior ofG and such thatϕ ≡ 1 in a neighbourhood ofF .

The idea of the proof is to find a collection of(k+1) disjoint capacitors(Fi ,Gi), that is
with the disjointGi ’s, such that

(i) µ(Fi)> v

(ii) Cap(Fi ,Gi)6 κ

for anyi = 0, . . . ,k and some positive constantsv andκ . Given such capacitors one directly
obtains the bound

λk(µ ,c)6 κ/v. (A.1)

Indeed, any test-functionϕi for the capacitor(Fi ,Gi) whose Dirichlet integral is not greater
than(κ + ε) satisfies the inequality

∫

M
|∇ ϕi |

2dVolg 6 (κ + ε)/v ·
∫

M
ϕ 2

i dµ .

Since the capacitors are disjoint, this inequality holds for any function from the span of
theϕ ’s, i = 0, . . . ,k. Thus, we conclude that thekth eigenvalueλk(µ ,c) is not greater than
(κ + ε)/v, and sinceε is arbitrary, we get the bound (A.1).

The existence of a collection of disjoint capacitors satisfying the hypothesis(i) for any
non-atomic measure is the main result in [18, 19]. On the other hand, since the capacity is
defined with respect to a fixed Riemannian metric, the second hypothesis(ii) can be often
easily demonstrated. Before explaining these ingredientsin more detail, we first introduce
more notation.

We regard the surfaceM as a metric space whose distanced is induced by the path
lengths in the metricg. By an annulusA in M we call a subset of the following form

{x∈ M : r 6 d(x,a)< R},

wherea∈ M and 06 r < R< ∞. We also use the notation 2A for the annulus

{x∈ M : r/26 d(x,a)< 2R}.

It is a consequence of standard results (see the proof of Theorem 5.3 in [19]) that there
exists a constantQ (depending on a reference metricg) such that for any open metric ball
B the capacity Cap(B,2B) is not greater thanQ. It is then straightforward to show that for
any annulusA in M one has Cap(A,2A)6 4Q, see [19, Lemma 2.3].

Building on the ideas of Korevaar [31], Grigor’yan and Yau showed that for any con-
tinuous measureµ one can always find a collection of disjoint annuli{2Ai} such that the
valuesµ(Ai) are bounded below by some positive constant. More precisely, in [18, 19]
they prove the following statement.

Grigor’yan-Yau theorem. Let (M,d) be a metric space satisfying the following covering
property: there exists a constant N such that any metric ballof radius r in M can be covered
by at most N balls of radii r/2. Suppose that all metric balls in M are precompact. Then
for any continuous Radon measure on M and any positive integer k there exists a collection
{2Ai}, where i= 0, . . . ,k, of disjoint annuli such that

µ(Ai)> cµ(M)/k for any i, (A.2)

where the constant c depends only on N.
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Clearly, the metric space(M,d) under consideration satisfies the hypothesis of this
theorem, and using (A.2) we obtain the bounds

λk(µ ,c)µ(M)6Ck,

where the constantC equals 4Q/c. Now we show that whenM is an orientable surface, the
constantC can be chosen in the formC∗(γ+1), whereC∗ is a universal constant andγ is
the genus ofM.

RegardingM as a Riemann surface and using the Riemann-Roch theorem, we can find
a holomorphic branch coveru : M → S2 whose degree is not greater than(γ+1). Applying
Grigor’yan-Yau theorem to the push-forward measureµ∗ on S2 we find a collection of
disjoint annuli{2A∗

i } such that

µ∗(A∗
i )> c∗µ∗(S2)/k.

Besides, we also have
Cap(A∗

i ,2A∗
i )6 4Q∗

for some constantQ∗, where the capacity is understood in the sense of the standard metric
onS2. Setting

Fi = u−1(A∗
i ) and Gi = u−1(2A∗

i ),

we obtain a collection of disjoint capacitors onM that satisfy(i) with v equal toc∗µ(M)/k.
Further, since the Dirichlet integral is locally preservedby u, we conclude that these capac-
itors also satisfy(ii) with κ equal to 4Q∗(γ+1). Now the arguments described above yield
the eigenvalue bounds

λk(µ ,c)µ(M) 6C∗(γ+1)k,

whereC∗ equals 4Q∗/c∗. In particular, we see thatλk(µ ,c)µ(M) is bounded over all con-
formal classesc and continuous Radon measuresµ onM.

B. Appendix: proofs of statements in Sect. 4

B.1. Proof of Lemma 4.2

Recall that, since the integral distancesd(µ ,µn) are finite, theL2-spaces, regarded as topo-
logical vector spaces, corresponding to the measuresµ andµn coincide. Below by(·, ·) and
(·, ·)n we denote the scalar products on this space corresponding toL2(M,µ) andL2(M,µn)
respectively. We claim that the Dirichlet form

D[u] =
∫

M
|∇ u|2dVolg

is closed with respect to each of the scalar products above. Indeed, by Prop. 1.3, the first
eigenvalueλ1(µ ,c) does not vanish, and for anyu with zero mean-value we have

∫

M
u2dµ 6 λ −1

1 (µ ,c) ·
∫

M
|∇ u|2dVolg.

Now the closeness on the zero mean-valueu’s follows from the completeness of the space
L1

2(M,Volg) modulo constants, see [33]. SinceD[u] vanishes on constants, it is also closed
on the wholeL2-space. The same argument also yields the claim for the measuresµn.

Now we apply the representation theorem in [26, Chap. VI] to the closed symmetric
form D[u] to conclude that there exist closed self-adjoint operatorsT andTn such that

D(u,v) = (Tu,v), D(u,v) = (Tnu,v)n.
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It is straightforward to see that the eigenvalues ofT and Tn coincide withλk(µ ,c) and
λk(µn,c) respectively, and so do their eigenspaces. Further, since the topologies induced
by the scalar products(·, ·) and(·, ·)n coincide, the operatorsTn are also closed inL2(M,µ).
From the definition of the integral distance we obtain

|1− (Tnu,u)/(Tu,u)|6 δ(µ ,µn)

for any non-constantu∈ L2(M,µ). Now the perturbation theorem [26, Chap. VI, Th. 3.6]
applies, and we conclude thatTn → T in a generalised sense as closed operators, and the
corresponding spectral projectors converge in the norm topology.

Remark.Mention that, in fact, a stronger statement holds: for anyk there exists a constant
C(k) such that

∣

∣Πk−Πn,k

∣

∣6C(k) ·δ(µ ,µn) (B.1)

for any sufficiently largen. Indeed, by [26, Chap. VI, Th. 3.4] the resolvents ofT andTn at
the point(−1) satisfy the relation

|R(−1,T)−R(−1,Tn)|6C ·δ(µ ,µn).

Further, by the results in [26, Chap. IV] the difference(R(ζ ,T)− R(ζ ,Tn)), where
ζ ranges over a compact subset of the common resolvent set, canbe estimated in the
same fashion for a sufficiently largen. Now relation (B.1) follows from the fact that the
eigenspace projections are integrals of the resolvents over a small closed curve bounding a
region containingλk(µ ,c) andλk(µn,c) .

B.2. Proof of Claim 4.4

We demonstrate the proof of the first relation; the second follows by similar arguments.
Denote byΛt the sum of all eigenspaces corresponding toλ i(µt ,c)< λk(µt ,c), wherei < k,
and byPt andP∗

t the orthogonal projections on it inL2(M,µ) andL2(M,µt ) respectively.
Define the modified Rayleigh quotientR̄c(u,µt) as

(

∫

M
|∇ (u−P∗

t u)|2dVolg

)

/

(

∫

M
|u−P∗

t u|2dµt

)

.

Clearly, the following relation holds:

λk(µt ,c) = inf
u
R̄c(u,µt),

where the infimum is taken over all non-trivialu that do not lie inΛt . The first inequality
of the claim is a straightforward consequence of the following relation

R̄c(u,µt) = Rc(u,µt)+o(t) as t → 0,

whereu∈ Ek, ando(t) denotes the quantity such thato(t)/t converges to zero uniformly in
u∈ Ek\{0}. Denote by∆(t) the difference of the Rayleigh quotientsR̄c(u,µt)−Rc(u,µt);
it is given by the formula

∆(t) = Rc(u,µt) ·

(

∫

|P∗
t u|2dµt

)

/

(

∫

|u−P∗
t u|2dµt

)

.

Now by the remark after Lemma 4.2, for a proof of the claim it issufficient to show that
∫

|P∗
t u|2dµt 6

(

∫

u2dµ
)

·O(t2) as t → 0 (B.2)
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for anyu∈ Ek\{0}. To see that this holds, choose a basis(ei,t) for the spaceΛt orthogonal
in L2(M,µt) and normalised inL2(M,µ). By (ei) we denote the corresponding basis at
t = 0. Then for anyu∈ Ek\{0}, we have

∫

|P∗
t u|2dµt 6 max

i

(

∫

|ei,t |
2dµt

)

·∑
i

(

∫

ei,tudµt −
∫

eiudµ
)2

.

By Cauchy’s inequality, each term in the sum on the right-hand side can be estimated by
twice the sum

(

∫

ei,tudµt −

∫

ei,tudµ
)2

+

(

∫

(ei,t −ei)udµ
)2

.

Finally, each term here can be now estimated by the right-hand side in (B.2): for the first it
follows from the definition ofµt , for the second – from the inequality

∫

(ei,t −ei)
2dµ 6 4|Pi,t −Pi|

2 ,

see [26, Chap. IV], and relation (B.1).

Remark.For the case of the first eigenvalue estimate (B.2) can be proved directly, without
appealing to Kato’s perturbation theory and relation (B.1). Indeed, in this case the lower
eigenspaces coincide and, hence, the difference(Pi,t −Pi) is identically zero.

B.3. Proof of Claim 4.5

Let Πt be the orthogonal projection ontoEt in L2(M,µ). By Lemma 4.2, for a proof of the
claim it is sufficient to show that the familyLφ(Πtu,µ) converges to the quantityLφ(u,µ)
ast → 0 uniformly in u∈ Ek\{0}. Denote byQ(u,µ) the quotient

(

∫

M
u2φdµ

)

/

(

∫

M
u2dµ

)

.

By the triangle inequality, we obtain
∣

∣Lφ(u,µ)−Lφ(Πtu,µ)
∣

∣6 λk(µ) |Q(u,µ)−Q(Πtu,µ)|
+ |φ|∞ |Rc(u,µ)−Rc(Πtu,µ)| , (B.3)

where| ·|∞ stands for theL∞-norm. By Lemma 4.2 we conclude that the quotient
(

∫

M
(Πtu)

2dµ
)

/

(

∫

M
u2dµ

)

converges to 1 uniformly inu ∈ Ek\{0}. Using this, it is straightforward to estimate the
first term on the right-hand side in (B.3) by the quantityλk(µ) |φ|∞ times the sum

∣

∣

∣

∣

1−

(

∫

M
u2dµ

)

/

(

∫

M
(Πtu)

2dµ
)∣

∣

∣

∣

+C

(

∫

M

∣

∣u2− (Πtu)
2
∣

∣dµ
)

/

(

∫

M
u2dµ

)

for all sufficiently smallt. By the discussion above the first term here converges to zero
uniformly over non-trivialu∈ Ek, and by Lemma 4.2 so does the second term. Further, the
term involving the difference of the Rayleigh quotients on the right hand-side in (B.3) can
be estimated in the following fashion:

|Rc(u,µ)−Rc(Πtu,µ)|6 |λk(µ)− λk(µt)|+ |Rc(Πtu,µt)−Rc(Πtu,µ)| ,

where the second term is bounded byλk(µt)δ(µ ,µt ). Thus, we see that it also converges
to zero uniformly inu.
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Sup. (4)11 (1978), 211–228.

[42] Troyanov, M.Un principe de concentration-compacité pour les suites desurfaces riemanni-
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