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Abstract 

The ability to innovate successfully is a key corporate capability, depending strongly 

on firms’ access to knowledge capital: proprietary, tacit and embodied. Here, we 

focus on one specific source of knowledge – advanced manufacturing technologies 

or AMTs – and consider its impact on firms’ innovation success. AMTs relate to a 

series of process innovations which enable firms to take advantage of numerical and 

digital technologies to optimise elements of a manufacturing process. Using panel 

data for Irish manufacturing plants we identify lengthy learning-by-using effects in 

terms of firms’ ability to derive innovation benefits from AMT adoption. Disruption 

effects are evident in the short-term while positive innovation benefits occur six-plus 

years after adoption. Strong complementarities between simultaneously adopted 

AMTs suggest the value of disruptive rather than incremental AMT implementation 

strategies.  
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AMT adoption and innovation: An investigation of dynamic and 

complementary effects 

 

1. Introduction 

The ability to innovate successfully is a key corporate capability, depending strongly 

on firms’ access to knowledge capital: proprietary, tacit and embodied (Al-Laham, 

Tzabbar, and Amburgey 2011; Wu and Shanley 2009; Tzabbar et al. 2008; 

Kyriakopoulos and de Ruyter 2004). The relationship between proprietary 

knowledge (e.g. patents) and innovation has been widely explored (Artz et al. 2010; 

Mansfield 1986), as has the relationship between innovation and tacit or un-codified 

knowledge (e.g. workforce skills) (Knockaert et al. 2009; Ichijo and Kohlbacher 

2008). Less attention has been paid to the impact on innovation of the knowledge 

embodied in firms’ capital equipment. Here, we focus on one specific source of 

embodied knowledge – advanced manufacturing technologies or AMTs – and 

consider its impact on firms’ innovation success. AMTs relate to a series of process 

innovations which enable firms to take advantage of numerical and digital 

technologies to optimise elements of a manufacturing process. These may relate to 

the control of individual pieces of production equipment – as in numerically 

controlled, computer numerically controlled (CNC) machinery or robotics – the 

automated movement of items during the manufacturing process – as in automated 

materials handling (AMH) – or the integration and optimisation of the production 

process - as in computer aided production management or computer integrated 

manufacturing (CIM) (Zammuto and O'Connor 1992). In this paper, we specifically 

address the question of whether, and over what period, the adoption of AMTs 

impacts on firms’ innovation success. 

 

Previous studies have considered the factors which shape firms’ adoption of AMTs, 

suggesting positive links between AMT adoption and firm size, skill levels and more 

flexible organisational cultures (Zammuto and O'Connor 1992). A limited number of 

studies have also attempted to quantify the impact of AMT use on employment and 

productivity. Bartelsman, Van Leeuwen, and Nieuwenhuijsen (1998), for example, 

report higher average growth rates of total factor productivity and employment for 

Dutch firms which employed AMT. Employment growth has also been linked to 
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AMT use in France, the UK and the US, while employment reductions have been 

noted in Italy, Norway and Denmark (Bartelsman, Van Leeuwen, and 

Nieuwenhuijsen 1998). Arvantis and Hollenstein (2001), in their study of AMT 

adoption in Switzerland, highlight the need for further analysis of the relationship 

between technology diffusion and economic growth. In terms of the relationship 

between AMTs and innovation, research is limited. However, Barge-Gil et al. (2011) 

consider the impact on innovation where a firm uses forms of computerised aided 

manufacturing (CAM), robotics or CAD/CAM. In their data for Spain, adoption of 

AMTs is strongly correlated with firm size but only weakly correlated with other 

firm characteristics such as R&D intensity or design. AMT adoption then has a 

positive and significant effect on the probability of product innovation only for non-

R&D performers but a positive impact on probability of process innovation for both 

R&D performers and non-performers.  

 

Other studies report the influence of AMT in the innovative process for low-and-

medium technology firms (Santamaría, Nieto, and Barge-Gil 2009) and for small 

firms (Raymond, Croteau, and Bergeron 2009). Both studies suggest the potential 

value of considering in more detail the factors which may condition the effects of 

AMTs on innovation. Other studies have also suggested the difficulties which firms 

face in the effective implementation of AMTs, creating the potential for disruption 

effects, learning-by-using effects and time-lags in the effect of AMTs on innovation 

(Tyre and Hauptman 1992).  

 

Using panel data for Irish manufacturing firms, which provides AMT adoption 

histories, we focus here on the relationship between innovation and the prior 

adoption of AMTs. Specifically, we ask whether, and over what period, the adoption 

of AMTs impacts on firms’ innovation success. The AMTs examined include 

computer-aided manufacturing (CAM), automated materials handling (AMH), 

computer-integrated manufacturing (CIM) and robotics. Most, if not all, of the prior 

studies of the relationship between AMTs and innovation have been based on cross-

sectional data making causality difficult to identify, and providing little information 

on the nature of the learning effects and lags involved in AMT adoption and the 

potential benefits for innovation. Our study makes three main contributions. First, it 

clearly highlights the temporal profile of the performance benefits of individual 
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AMTs, highlighting short-term disruption effects but longer-term benefits. Second, it 

highlights complementarities between the adoption of specific AMTs, and third it 

suggests the role of learning-by-using effects in the shaping of the AMT–innovation 

relationship (Rosenberg 1982).  

 

The rest of the paper is organised as follows. Section 2 provides a brief overview of 

AMTs, and their degree of integration in the manufacturing process; a discussion of 

the relationship between innovation and AMTs; and, the role of complementarities 

learning-by-using effects in the enhancement of firms’ innovation performance. 

Section 2 also outlines our three hypotheses relating to the potential impacts of prior 

AMT adoption on innovation. Section 3 describes the data used in our study. Our 

empirical analysis is based on a panel dataset relating to Irish manufacturing firms 

which were surveyed at regular intervals over the 1994-2008 period. Section 4 

outlines the main empirical results and Section 5 discusses the implications of this 

work. Variable definitions are included in an Annex.  

 

2. Concepts and hypotheses 

 

2.1 AMTs and Innovation 

AMTs relate to a series of process innovations which enable firms to take advantage 

of numerical and digital technologies to optimise elements of a manufacturing 

process. We briefly describe the four AMTs studied in this paper and subsequently 

categorise them based on the extent to which they integrate elements of the 

manufacturing process. 

 

Computer-aided manufacturing (CAM) is the use of computer software to control 

machine tools and related machinery in manufacturing process and would include 

processes such as numerically controlled machining, laser cutting, water-jet cutting 

and robot control. Automated Materials Handling (AMH), sometimes called 

automated storage/retrieval systems, involves the automated movement of items 

during the manufacturing process. Such systems may use high-rise stacker cranes, 

automated guided vehicle systems, computerized conveyors, computerized carousels, 

and other such systems to store and retrieve materials. Computer-integrated 
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manufacturing (CIM) involves integrated systems of NC machines, robots, material 

conveyors, and other such computer-driven equipment. Robotics may involve simple 

pick and place robots, with 1, 2, or 3 degrees of freedom or more sophisticated 

robots that can handle tasks such as welding or painting on an assembly line and may 

also have the benefit of trajectory control (Kotha and Swamidass 2000).  

 

Innovation is identified as a critical driver of business productivity and economic 

growth (Schumpeter 1934; Romer 1990). Schumpeter (1934) argued that the catalyst 

to innovation is the transformation of knowledge into new products or processes. 

The relationship between innovation output and innovation inputs has been used 

extensively in the literature (Crepon, Duguet, and Mairessec 1998; McCann and 

Simonen 2005; Griffith et al. 2008.; Roper, Du, and Love 2008). Numerous scholars 

have attempted to explain why some firms are more likely to innovate, with firm 

characteristics, such as size, sector, ownership, and location being identified as 

influential drivers of innovation output (Audretsch and Feldman 1996; Boschma 

2005; Gordon and McCann 2005; Jordan and O'Leary 2008; McCann and Simonen 

2005; Tether 1998; Romer 1990; Roper, Du, and Love 2008). The importance of 

R&D to innovation activity within firms has also been established by many authors 

(Roper, Du, and Love 2008; Freel 2003). Firms engaging in R&D activity benefit 

their existing stock of knowledge resulting in commercial gains from the 

introduction of new products, processes and/ or organisational innovations (Roper, 

Hewitt-Dundas, and Love 2004). There is also considerable evidence of the 

importance of external sources of knowledge for innovation outputs (Mansury and 

Love 2008). These external sources of knowledge may include linkages with 

customers, suppliers, competitors and/or research institutes (Roper, Du, and Love 

2008). Likewise, managerial capabilities have been highlighted as an important 

factor in firm level innovation. Successful innovation requires that firms and 

managers provide clear and consistent signals to employees about the goals and 

objectives of the firm (Barnes et al. 2006). In addition, the technologies firms adopt 

and use, such as AMT, can influence innovation capabilities (Santamaría, Nieto, and 

Barge-Gil 2009; Raymond, Croteau, and Bergeron 2009). 

 

In recent decades, firms have made substantial investments in AMT adoption and 

their diffusion across the manufacturing sector has been well documented. Factors 



6 
 

such as firm size (Battisti et al. 2007; Karshenas and Stoneman 1993); firm vintage 

(Arvantis and Hollenstein 2001; Battisti and Stoneman 2005); human capital 

(Arvantis and Hollenstein 2001; Parhi 2007); cumulative learning from previous 

adoption experience (learning-by-using) (Stoneman and Kwon 1994; Colombo and 

Mosconi 1995; McWilliams and Zilbermanfr 1996; Stoneman and Toivanen 1997; 

Arvantis and Hollenstein 2001) seem influential in AMT adoption. R&D (Karshenas 

and Stoneman 1993; Baptista 2000) and market conditions (Arvantis and Hollenstein 

2001) seem less important. To date, research has focused largely on explaining what 

influences and motivates AMT adoption and the relationship between manufacturing 

capabilities and AMT use (Spanos and Voudouris 2009). Empirical evidence in 

relation to AMT and flexibility (Meredith 1988; Lei and Goldhar 1990), low cost 

(Corbett and VanWassenhove 1993), and quality (Parthasarthy and Sethi 1992) is 

positive. It is generally accepted that the primary benefit of AMT use is cost-efficient 

flexibility in the manufacturing function (Sohal 1996). However, it is important to 

note that Boyer (1988) reports that manufacturing plants that emphasize low costs 

are also those investing more heavily in AMT. 

 

The potential for AMTs to contribute to innovation arises from the ability of AMTs 

to generate economies of scope, i.e. ‘the capacity to efficiently and quickly produce 

any of a range of parts within a family’ (Zammuto and O'Connor 1992, p. 702). 

AMTs may, first, enable firms to adopt more flexible production systems allowing 

smaller batch sizes and enabling firms to cope better with perceived environmental 

uncertainty (Hofmann and Orr 2005). Having more flexible production systems may 

also allow firms to adopt more complex innovation strategies with potentially higher 

returns (Hewitt-Dundas 2004). AMTs may also facilitate more radical innovation 

strategies as firms seek to create market turbulence by engaging in disruptive 

innovation in order to establish a position of market or technological leadership 

(Anthony et al. 2008; Hang, Chen, and Subramian 2010). Second, AMTs may lead 

to efficiency advantages, reducing the cost of innovations and increasing post 

innovation returns. Ceteris paribus this will mean that firms would be more likely to 

innovate or increase their level of innovative activity (Levin and Reiss 1984; 

Calantone, Harmancioglu, and Droge 2010). Third, AMTs may lead to 

improvements in product quality and reliability reducing the potential technical 

uncertainty of innovation, and again having positive effects on post-innovation 
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returns. Quality improvements may also have a negative impact on the commercial 

uncertainty of innovation (Astebro and Michela 2005). Both are likely to contribute 

positively to firms’ incentive to innovate.  

 

Despite the potential gains of AMT use there have been relatively few studies of the 

role of AMTs in shaping firms’ innovation activities. Hewitt-Dundas (2004) explores 

the role of AMTs in shaping small firms’ innovation strategy choices, indicating that 

firms which have adopted AMTs are more likely to adopt ‘complex’ strategies 

involving the production of new products for new markets. Raymond, Croteau, and 

Bergeron (2009) also focus on small firms and demonstrate a relationship between 

AMT adoption and innovation outputs in Spanish small firms. Also in the context of 

Spain, Barges-Gil et al. (2011) argue that AMTs may contribute to explaining 

innovation outcomes in firms which do not undertake R&D. They argue that 

including AMTs as part of the explanation of firms’ innovation achievements may 

help to broaden the relevance of research findings: ‘If the role of activities closer to 

daily routines were highlighted as sources of innovation, however, managers may be 

more likely to enter the innovation process. From the perspective of innovation 

policy, the majority of measures to foster innovation has focused on R&D activities 

and has therefore been limited to a subset of innovators’ (p. 416). Santamaría, Nieto, 

and Barge-Gil (2009) report that the use of AMT is a critical factor in the generation 

of product and process innovations in low-and-medium technology (LMT) firms but 

is of limited importance in the case of high technology firms. Santamaría, Nieto, and 

Barge-Gil (2009) argue that non-R&D internal activities are important for innovation 

in LMT industries given the innovation process in such industries is not usually the 

result of the latest scientific or technological knowledge, but more likely to involve 

transforming the general stock of knowledge into economically useful knowledge 

(Santamaría, Nieto, and Barge-Gil 2009). Santamaría, Nieto and Miles (2012) 

examine the determinants of service innovations in manufacturers in Spain and 

report that advanced machinery and information technologies significantly impact 

the achievement of service innovations. Interestingly, an earlier study reports a non-

significant association with respect to AMT use and innovation capabilities in Swiss 

firms (Arvanitis, Hollenstein, and Lenz 2002).  
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One potentially important issue in relating AMTs to innovation is that appropriating 

the potential benefits of AMTs may be difficult and time-consuming. Previous 

research has highlighted the many difficulties experienced by firms with respect to 

implementation and exploitation of AMTs (Sohal 1996). Zammuto and O’Connor 

(1992), for example, summarise the results of a number of studies which illustrate 

both the difficulties of implementing AMTs and the contingencies which may 

influence their effective implementation. As Barges-Gil et al. (2011) remark: ‘skilled 

use of AMT is not easy to attain and depends upon several contingencies. It triggers 

many changes and success depends upon the ability of a firm to assimilate them and 

upon changing practices in order to afford a better fit with the AMT’ (Barge-Gil, 

Jesus Nieto, and Santamaria 2011, p. 419). The process of AMT implementation 

itself, however, may also have positive benefits for innovation by stimulating new 

innovation as firms go through the process of learning-by-using the new technology. 

Training may, for example, contribute to enhance individual capabilities and firms’ 

abilities to take advantage of the innovation benefits of AMTs (Barge Gil et al 2011). 

Similarly, more flexible – less hierarchic – management structures and cultures may 

also make AMT implementation more effective (Zammuto and O'Connor 1992). We 

therefore anticipate that the initial adoption and implementation of AMT is likely to 

have a short term disruptive effect with benefits only being realised in the medium to 

long term (Spanos and Voudouris 2009). This leads us to our first hypothesis: 

H1a: Adoption of AMTs will lead to a short term disruptive effect on 

innovation performance. 

H1b: Adoption of AMTs will lead to longer-term beneficial effects on 

innovation performance. 

 

2.2 AMT Adoption: Complementarities and Learning-by-Using Effects 

Scholars of AMT adoption and diffusion have used two models to conceptualise the 

trajectories of AMT adoption: the incremental and the discontinuous models (Boyer 

1999). The incremental model assumes that there is a logical, sequential progression 

in AMT adoption from stand-alone to intermediate and finally to integrated 

technologies. According to the incremental model, adoption of a given technology 

should be deemed successful before the next, possibly more complicated, technology 

is adopted (Meredith and Hill 1987). In contrast, the discontinuous model of AMT 

adoption argues that firms move towards using an integrated system, such as CIM, in 



9 
 

a major discontinuous leap in which all the equipment is adopted at once rather than 

built up incrementally over time. The discontinuous model of AMT adoption claims 

that successful adoption of integrated AMT systems requires considerable planning 

and resources and is a complex investment decision largely independent of previous 

adoption decisions (Meredith 1987). A common factor in these contrasting AMT 

adoption models is that firms do not typically adopt one AMT in isolation, but 

various AMTs are adopted either sequentially (incremental model of adoption) or 

simultaneously (discontinuous model of adoption). Our analysis extends to 

investigating whether complementarities arising from simultaneous adoption and 

learning-by-using effects from sequential adoption enhance firms’ innovation 

performance.  

 

Harnessing complementarities between different activities is an important aspect of 

firms’ strategic decision-making (Milgrom and Roberts, 1990, 1995). While 

previous AMT studies have highlighted complementarities from adopting a suite of 

AMTs simultaneously; to date, there is little understanding of whether 

complementary AMTs benefit innovation performance. From the innovation 

literature, we know however that firm innovation benefits from complementary 

human resource management practices (Laursen and Foss, 2003) and organisational 

practices (Lhuillery, 2000). Therefore, any complementarities across AMTs are 

likely to enhance firm innovation. 

 

In the innovation literature, there is also considerable evidence of the benefits of 

experiential learning from initial adoption decisions on subsequent adoption 

decisions. Rosenberg (1972) describes the process by which a firm increases its 

stock of knowledge based on its previous experience with technologies as learning-

by-using. Previous studies have highlighted the benefit to firms of learning-by-using 

new technology with respect to subsequent adoption decision-making. For instance, 

Colombo and Mosconi (1995) report cumulative learning effects from AMT 

adoption in the Italian metalworking industry, McWilliams and Zilbermanfr (1996) 

report learning-by-using from the adoption of computer technology by farmers in 

California, and Arvantis and Hollenstein (2001) report learning-by-using effects 

from use of an earlier generation of manufacturing technologies on AMT adoption 

by Swiss firms. In a study of 392 metal-working firms, Cagliano and Spina (2000) 
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examine the use and effectiveness of various AMTs and their computer-based 

integration in the context of Strategically Flexible Production (SFP). SFP comprises 

three principles: (i) strategic multi-focusedness, (ii) process integration across 

functions, and (iii) process ownership. Their examination focuses on the use of 

AMTs by three groups: core adopters, partial adopters and non-adopters of SFP. 

Cagliano and Spina (2000) report the adoption of stand-alone AMT does not provide 

companies with superior improvements in performance, but rather the integrated use 

of ATMs fosters increased time responsiveness. 

 

In order to determine the influence of AMT complementarities and learning-by-using 

effects on innovation, we examine the effect of simultaneous and sequential AMT 

adoption on innovation performance. Two discrete activities are complementary if 

adding one activity increases the returns from doing the other. Therefore, we 

examine how adoption of one AMT may complement early adoption of another 

AMT, and hypothesise that simultaneous adoption of two AMTs will lead to 

increased returns on innovation performance. 

 

H2:  – Simultaneous AMT adoption generates positive complementarities 

increasing the benefits for innovation 

 

The cross-over and learning from simultaneous adoption is likely to benefit firm 

innovation to a greater extent than singular adoption. However, it is difficult to 

predict in advance where the complementarities, if any, are likely to exist between 

the four AMTs examined in this paper.  

 

In relation to the sequential adoption of AMTs, previous studies have illustrated how 

AMT adoption benefits subsequent adoption (Arvantis and Hollenstein 2001; 

Colombo and Mosconi 1995; McWilliams and Zilbermanfr 1996). It is likely that as 

a firm increases its stock of knowledge due to learning from earlier AMT adoption, 

the disruptive effects of subsequent AMT adoption and implementation will be 

eased. Firms that sequentially adopt AMTs are likely to reap the benefits of previous 

ATM experience to a greater extent than firms who have no previous ATM 
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experience. Therefore, we hypothesise that early adoption and implementation of an 

ATM will enhance the innovation returns from subsequent adoption decisions.  

 

H3:  Early adoption of one AMT will generate learning-by-using effects 

increasing the innovation benefits of subsequent QIM adoption 

 

3. Data and methods 

Our empirical analysis is based on the Irish Innovation Panel (IIP) which provides 

data on the innovation activity and AMT use of manufacturing plants in Ireland and 

Northern Ireland over the period 1994 to 2008. More specifically, this element of the 

IIP comprises five surveys or waves each conducted using similar survey 

methodologies and common questions. Individual survey waves were designed to be 

representative of the population of manufacturing plants in Ireland and Northern 

Ireland at the time of the survey. Sampling frames were derived either from 

administrative data provided by government agencies in Ireland and Northern Ireland 

or private sector data providers.  Each survey was conducted by post with extensive 

telephone follow-up and was structured by plant sizeband and industry. Each survey 

related to the innovation activities of plants with 10 or more employees over a three-

year reference period.  Combining the individual surveys into the IIP results in a 

highly unbalanced panel reflecting plants’ non-response to individual surveys but 

also the opening and closure of individual plants over the 1994 to 2008 period.  

 

Plants’ innovation activity in the IIP is represented by the standard Community 

Innovation Survey indicator: the proportion of plants’ total sales (at the end of each 

three-year reference period) derived from products newly introduced during the 

previous three years. This variable has been widely used as an indicator of plants’ 

innovation output (Laursen and Salter 2006; Roper, Du, and Love 2008; Love, 

Roper, and Du 2009), and reflects not only plants’ ability to introduce new products 

to the market but also their short-term commercial success. Across those elements of 

the IIP used in the current analysis, 16.3 per cent of plants’ sales were derived from 

newly introduced products (Table 1) a figure which remained relatively constant 

through the different waves of the IIP (Figure 1). Variable definitions are given in 

Annex 1. 
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One rather unusual feature of the IIP is that alongside plants’ innovation activity it 

also provides information on the use and adoption of AMTs by manufacturing 

plants. While this data is helpful one important limitation of the IIP is also worth 

noting. The structure of the survey questionnaire means that this adoption data is 

only collected for plants which reported undertaking some process innovation during 

the previous three years. Plants need not, however, have undertaken product 

innovation. Four specific AMTs are considered: Robotics, Automated materials 

handling, Computer aided production management, and Computer integrated 

manufacturing. For each of these technologies survey respondents were asked to 

indicate whether or not they used the technology and, if so, whether they had first 

introduced this technology in the three year period covered by the survey, the 

previous three years, or prior to this. For each respondent this provides an indication 

of whether they are using each technology and an indication of the length of time in 

which it has been in use in the plant. For example, around 17.5 per cent of the 1593 

observations in the IIP were using Robotics with 6.3 per cent of plants adopting this 

in the three years prior to the date of the survey, 4.4 per cent adopting 3-6 years 

before the survey, and 6.4 per cent earlier than that (Table 1). Computer Integrated 

Manufacturing (CIM) was implemented in around a quarter of plants of which 8.6 

per cent reported having adopted this technology in the previous 3 years.  

 

The IIP also provides information on a number of other plant characteristics which 

previous studies have linked to innovation outputs.  For example, plants’ in-house 

R&D activities are routinely linked to innovation performance in econometric 

studies with suggestions that the innovation-R&D relationship reflects both 

knowledge creation (Harris and Trainor 1995) and absorptive capacity effects 

(Griffith, Redding, and Van Reenan 2003). 52.0 per cent of plants were conducting 

in-house R&D at the time of the IIP surveys (Table 1). Reflecting recent writing on 

open innovation  (Chesbrough 2007; Chesborough 2006) external innovation 

relationships have also been shown to play an important role in shaping innovation 

outputs (Oerlemans, Meeus, and Boekema 1998; Ritala et al. 2013), complementing 

plants’ internal capabilities (He and Wong 2012; Cassiman and Veugelers 2006; 

Arora and Gambardella 1990; Belderbos, Carree, and Lokshin 2006; Cassiman and 

Veugelers 2006). Here, we include three separate variables representing plants’ 

external innovation co-operation with customers, suppliers and other organisations 
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outside the supply chain. Around 29.1 per cent of plants reported having innovation 

cooperation with customers, while 31.5 per cent had backwards innovation 

cooperation with suppliers (Table 1). Links outside the supply chain could be with a 

variety of different types of organisation (e.g. universities, consultants) and here we 

construct a count variable representing the number of types of partner with which a 

plant was cooperating. On average, plants were cooperating with around 0.79 

organisations outside the supply chain (Table 1). We also include in the analysis a 

variable reflecting the proportion of each plant’s workforce which have a degree 

level qualification to reflect potential labour quality impacts on innovation (Freel 

2005; Leiponen 2005) or absorptive capacity. Finally, studies of the impact of 

publicly funded R&D have, since Griliches (1995),  repeatedly suggested that 

government support for R&D and innovation can have positive effects on innovation 

activity both by boosting levels of investment (Hewitt-Dundas and Roper 2009) and 

through its positive effect on organisational capabilities (Buiseret, Cameron, and 

Georgiou 1995). Here, we therefore include a dummy variable where plants received 

public support for innovation. Elsewhere we profile the range of public support 

initiatives for innovation in Ireland and Northern Ireland over the period covered by 

the IIP (Meehan 2000; O'Malley, Roper, and Hewitt-Dundas 2008). 

 

Our empirical approach focuses on the innovation or knowledge production function 

which represents the process through which plants’ intellectual capital is transformed 

into innovation outputs (Griliches 1995; Love and Roper 2001; Laursen and Salter 

2006). If Ii is an innovation output indicator for plant i the innovation production 

function might be summarised in cross-sectional terms as:  

iiiiiiii CONTHSBSFSRDAMTI   6543210
                 

(1)  

Where: AMTi denotes plants’ adoption of AMTs, RDi are plants’ in-house R&D 

investments, FSi, BSi and HSi are forwards, backwards and horizontal knowledge 

search respectively, and CONTi is a vector of other plant level controls (Annex 1). 

Our hypotheses suggest, however, that the innovation benefits of AMT adoption may 

vary depending on the time since adoption with the potential for short-term 

disruption (H1a) and longer-term gains (H1b).  To test our hypotheses we estimate a 
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dynamic version of equation (1) explicitly identifying AMT adoption in the current 

(three-year) period and in two previous periods, i.e. 

iiii

iiititti
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(2)  

Support for H1a requires β10<0, with H1b requiring β11>0 and β12>0.  

 

Our second and third hypotheses relate to potential complementarities and learning-

by-using effects between AMTs, denoted here AMTA and AMTB. If 𝐴𝑀𝑇𝑡−2
𝐵 = 1 

where a firm is an early adopter of AMTB and zero otherwise we estimate: 
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    (3) 

For Hypothesis 2, which reflects the complementary benefits of simultaneous 

adoption we anticipate that early adoption of AMTA in period t-2 will have greater 

benefits where a firm also adopts AMTB  in period t-2. Here, we test β121>β122. For 

Hypothesis 3 which reflects the potential learning-by-using effects from early 

adoption of AMTB we test whether β101>β102 and/or β111>β112. 

 

Our choice of estimation method is dictated largely by the fact that we are using 

plant-level data from a highly unbalanced panel and that our dependent variables are 

percentages. We therefore make use of tobit estimators, including in each model a 

set of sector controls at the 2- digit level and a series of time dummies to pick up any 

secular differences between the waves of the IIP. Observations are also weighted to 

provide representative results and take account of the structured nature of the IIP 

surveys.  

 

4. Results 
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4.1. Dynamic Analysis 

Replicating previous cross-sectional studies of the AMT-innovation relationship, we 

initially undertake a static analysis to determine whether AMT use benefits firm 

innovation (Equation 1). As presented in Table 3, only one AMT significantly 

impacts innovation output. Robotics has a marginally significant positive influence 

on firm innovation. We find no evidence of such a relationship between the CAM, 

AMH or CIM technologies and innovation. Our static analysis, similar to previous 

work in this area, therefore indicates a very weak positive relationship between AMT 

adoption and innovation. Arvanitis, Hollenstein, and Lenz (2002) report no 

significant association between AMT adoption and innovation, while a positive 

AMT-innovation relationship is reported in a number of studies, albeit in specific 

circumstances, such as small firms (Raymond, Croteau, and Bergeron 2009), firms 

that do not undertake R&D (Barge-Gil, Jesus Nieto, and Santamaria 2011), and LMT 

firms (Santamaría, Nieto, and Barge-Gil 2009).   

 

 

A limitation of this static approach to the AMT-innovation relationship is that the 

AMT coefficients capture the effects of both current and lagged or prior adoption. 

Our dynamic analysis (Eqn. 2) removes this implicit restriction and allows us to test 

H1 which envisages a short term disruption (H1a) and a longer term beneficial (H2b) 

effect from AMT adoption on firm innovation. Dynamic analysis of the impact of 

‘early’ (t-2), ‘previous’ (t-1) and ‘current’ AMT adoption on innovation performance 

is presented in Table 4. In relation to CAM, we see a marginally significant 

disruption effect in the second period and a significant long-term beneficial effect. 

Contrary to expectations, the disruption effects of CAM adoption last for six years 

before the benefits arise. With respect to AMH adoption, there is evidence of a weak 

disruption effect, with positive benefits experienced three or more years after 

adoption. A similar pattern to the CAM-innovation relationship is evident in the CIM 

analysis. CIM adoption results in a negative disruption effect over two periods, 

followed by a significantly stronger longer-term beneficial effect (Table 4).  Finally, 

in relation to robotics, there is no evidence of a disruption effect and limited 

evidence of longer tem innovation benefits.  
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We hypothesised that AMT adoption would result in a short term disruption effect 

(H1a) and a longer term beneficial effect (H1b). We do find consistent but weak 

support for H1a. In relation to three technologies, CAM, AMH and CIM, we do find 

evidence of short-term disruption effects, although this finding is significant only in 

the case of CAM. We find stronger evidence in support of H1b, particularly in 

relation to CAM and CIM where there are strong longer-term innovation benefits 

from adoption. The short-term disruption and longer-term beneficial effects pattern 

for CAM, AMH and CIM adoption is not evident in relation to robotics. 

 

Our static and dynamic estimations highlightthe different innovation effects of 

AMTs depending on their period of adoption. We might conclude from our static 

analysis, for example, that there is no positive innovation benefit from CAM, AMH 

and CIM adoption. This would be wrong as our dynamic analysis clearly identifies 

the longer-term innovation benefits which do arise from AMT adoption.  

 

Other factors also prove important in determining firms’ innovation outputs. For 

example, R&D has a consistently positive and significant effect on firm innovation 

performance. This finding is in line with previous studies (Harris and Trainor 1995; 

Griffith, Redding, and Van Reenan 2003). We also find that interactions with 

suppliers have a positive influence on firm innovation performance. Many studies 

have also reported the positive influence of external relationships on firm innovation 

outputs (Oerlemans, Meeus, and Boekema 1998; Ritala et al. 2013; He and Wong 

2012; Cassiman and Veugelers 2006; Arora and Gambardella 1990; Belderbos, 

Carree, and Lokshin 2006; Cassiman and Veugelers 2006).There is no evidence of a 

relationship between interactions with customers or competitors and firms’ 

innovation performance. Firm size, measured by number of employees, does not 

influence firm innovation performance. We do, however, find a positive relationship 

between a graduate workforce and firms’ innovation performance. Firms with 

increasing proportions of graduates on their workforce report an increasing 

percentage of sales from new products. Firm vintage negatively influences firm 

innovation, whereas exporting and externally-owned firms are marginally more 

innovative. We also find that Government support for innovation has a consistently 
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positive and statistically significant influence on firm innovation performance. Thus, 

firms who receive government support for innovation report a higher percentage of 

sales from new products relative to those firms who do not receive such support. 

This finding is in line with earlier studies (Buiseret, Cameron, and Georgiou 1995; 

Love, Roper, and Bryson 2011).  

 

 

4.2 Complementarities and Learning-by-Using Effects 

In our investigation of complementarities and learning-by-using effects, we attempt 

to determine if simultaneous and sequential adoption of AMTs benefit the firm (see 

Figure 2). We hypothesise that simultaneous AMT adoption (i.e. the adoption of 

more than one AMT in a given period) may generate positive complementarities 

increasing the benefits to innovation (H2), and that (early) adoption of one AMT will 

generate learning-by-using effects increasing the innovation benefits of subsequent 

AMT adoption (H3).  We undertake four sets of analyses which examine the 

influence of simultaneous and sequential adoption of AMTs on innovative sales. 

These analyses are reported in  Tables 5-8, with each Table relating to the 

complementarities and learning-by-using effects associated with one AMT. Table 5, 

for example, presents the results of our complementarity and learning-by-using 

analyses for CAM, and Tables 6, 7 and 8 present these analyses for AMH, CIM and 

robotics (Rob) respectively. In each case the structure of the table is similar with the 

first model in Table 5, for example, examining if early CAM adoption and early 

robotics adoption generate complementarities and learning-by-using effects for 

innovation. For our examination of complementarities, we include two variables in 

the first model, one of which captures whether firms were early adopters of both 

CAM and robotics (Early CAM * Early robotics) and another which captures those 

that were early CAM adopters but not early robotics adopters (Early CAM *no early 

robotics). In the same model we include variables which capture the potential 

learning-by-using effects generated by sequential adoption of AMTs. For instance, in 

the first model in Table 5, we examine if early adoption of robotics and subsequent 

CAM adoption, in both the current and previous time periods influence sales. As 

with the complementarities we include two variables to test each potential effect: to 

test for learning by using effects on the innovation benefits of current CAM adoption 
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we include ‘Current CAM * Early robotics’ and ‘Current CAM *no early robotics’; 

to test for learning by using effects on the innovation benefits of previous adoption 

we include ‘Previous CAM *early robotics’ and ‘Previous CAM *no early robotics’.  

In a similar pattern, the second model in Table 5 examines if early adoption of both 

CAM and AMH generates complementarities for innovation and, if early adoption of 

AMH and subsequent adoption of CAM in the current and previous time periods 

generates learning-by-using benefits of innovation.  The third model in Table 5 

examines if early adoption of both CAM and CIM generates complementarities for 

innovation and, if early adoption of CIM and subsequent adoption of CAM in the 

current and previous time periods generates learning-by-using benefits. Each model 

includes the same set of control variables as those in Table 3 and 4 although for 

simplicity these are not reported. Full results are available on request.   

 

Complementarities exist where the sum of the benefits of adopting AMTs separately 

is less than the benefit of adopting them simultaneously (Equation 3). Empirically, 

we are examining the influence of simultaneous early adoption of two AMTs on 

innovative sales. We first examine if complementarities exist between early CAM 

adoption and early adoption of the other three AMTs and these results are presented 

in the first rows of Table 5. Our analysis reveals that, in each case, early adoption of 

other AMTs increases the innovation value of early adoption of CAM (as is evident 

from the significant and larger coefficient for the first variable in each model 

capturing simultaneous early adoption) (Table 5). For AMH we see from Table 6 

that simultaneous early adoption of AMH with CAM and with CIM enhances the 

innovation value of AMH; although there is no evidence that simultaneous AMH 

and robotics adoption has a value enhancing effect on AMH. Our complementarity 

results in relation to CIM (Table 7) are similar to those for CAM, i.e. we find 

simultaneous adoption with any of the other AMTs enhances the innovation value of 

CIM. In relation to robotics (Table 8), we find that simultaneous early adoption of 

CAM or CIM with robotics has a positive effect on the innovation value of adopting 

robotics, although there is no value enhancing effect from simultaneous adoption of 

AMH. Overall, we therefore find strong support for H2 and the idea that 

complementarities between AMTs increase the benefits to innovation.  
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Next, we investigate whether early adoption of one AMT generates learning-by-

using effects increasing the innovation benefits of subsequent adoption of other 

AMTs. The motivation for investigating whether learning-by-using effects impact on 

firm innovation is that early adoption of one AMT creates the potential for learning 

and hence subsequent adoption and implementation of an additional AMT is likely 

to be less onerous. Empirically, we test for learning-by-using effects by including 

variables which capture sequential adoption patterns (Equation 3). For instance, in 

Table 5 we examine if early robotics adoption and subsequent CAM adoption, in 

both the current (Current CAM * Early robotics & Current CAM *no early robotics) 

and previous (Previous CAM *early robotics & Previous CAM *no early robotics) 

time periods, influence innovative sales. In the second and third columns of this 

table, the results for early AMH adoption and subsequent CAM adoption and early 

CIM adoption and subsequent CAM adoption are presented.  

 

In relation to learning-by-using effects from early robotics adoption on subsequent 

CAM adoption, the direction of the insignificant coefficients is not as anticipated 

(Table 5). In our initial dynamic analysis (Table 4), there was a disruptive effect 

from CAM adoption in the t-1 (previous) period for innovation. Early AMH 

adoption reduced the power of the negative effect from CAM adoption in the 

previous period. The same is true for early CIM and robotics adoption both of which 

negate the disruptive effect of subsequent CAM adoption on innovation (Table 5).  

 

Learning-by-using results for AMH, CIM and robotics adoption are reported in 

Tables 6, 7 and 8 respectively. Examining learning-by-using effects for AMH 

adoption, we find no evidence of significant learning-by-using from early adoption 

of CIM, CAM and robotics on subsequent AMH adoption benefitting innovation 

(Table 6). Similarly, there is no evidence of significant learning-by-using effects 

from early adoption of AMH, CAM and robotics for subsequent CIM adoption 

(Table 7). For robotics adoption, however, we do see evidence of learning-by-using 

effects from the early adoption of CAM and CIM on subsequent robotics adoption.  

Early adoption of CAM and CIM, positively impacts the innovation value of 

previous robotics adoption (Table 8). Adding robotics to a process that already has 

one of these AMTs is advantageous to firm innovation.  
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In summary, we find some support for H3 that early adoption of one AMT will 

generate learning-by-using effects increasing the innovation benefits of subsequent 

AMT adoption. In particular we find some evidence of learning-by-using effects 

enhancing the innovation benefits from subsequent CAM and robotics adoption, 

although there is no evidence of AMH or CIM adoption benefitting from learning-

by-using effects from earlier AMT adoption. 

 

 

4.3 Robustness Tests 

We conducted two robustness tests to validate our results with an alternative measure 

of innovative output, and using an alternative estimation approach allowing for the 

potential endogeneity of the ‘treatment’ represented by firms’ AMT adoption 

(Maddala 1983). First, in our main analysis we use a dependent variable which 

reflects firms’ sales derived from new products. This reflects an emphasis on more 

radical innovation rather than either imitation or more incremental product change 

(Schnaars 1994). To consider whether our results also hold for more imitative 

strategies we repeated the analysis using an alternative and more broadly defined 

dependent variable - innovative sales from new and improved products. Results for 

the static and dynamic analysis using this broader innovation output measure were 

very similar to those reported in Tables 3 and 4 with estimated coefficients having 

identical sign patterns but slightly lower significance levels. Similarly, in terms of 

complementarity between the various AMTs, and in terms of the leaning-by-using 

effects, we find almost identical results for our main dependent variable and the 

broader alternative. Again, complementarity effects between AMTs prove strong but 

leaning-by-using effects are universally positive but almost wholly insignificant.  

 

In a second robustness test we sought to allow for the potential endogeneity of the 

adoption of each of the AMTs, i.e. the possibility that the determinants of adoption 

may also be the determinants of innovation outcomes. We estimated two-stage 

models estimating first a model for the probability of adoption and then including the 

implied Inverse Mills Ratio (IMRs) in equations (1) to (3) (Heckman 1979). For both 

our main and alternative dependent variables the IMRs proved largely insignificant 

with the coefficients of interest remaining unchanged in sign and significance. The 

full robustness tests are available from the authors on request. 
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6. Discussion  

Implications for practice 

Three key findings follow from our analysis which together have implications for 

managerial practice. First, we find clear evidence of the dynamic profile of benefits 

of AMT adoption – particularly CIM, CAM and AMT - with weak short-term 

disruption effects but strong and significant long-term benefits for innovation. 

Robotics has weak but consistently positive innovation effects. Second, these longer-

term innovation benefits are strongest where AMTs are adopted contemporaneously 

suggesting that simultaneous adoption creates complementarities between the 

different AMTs. Third, we find only weak evidence of any positive learning-by-

using effects which may arise where AMTs are adopted sequentially. This contrasts 

strongly with other adoption studies which suggest, for example, strong learning-by-

using effects between quality improvement measures (Bourke and Roper 2015).  

 

In general terms our results confirm those of other studies (Barge-Gil et al., 2011; 

Raymond, Croteau and Bergeron, 2009) which find a positive link between AMT 

adoption and aspects of firm performance. In particular, as Barge-Gil et al. (2011) 

suggest, including AMT use and/or adoption enriches our understanding of the 

drivers of firms’ innovation. Because of the dynamic nature of our data, however, we 

are also able to provide new insight into the time profile of these effects with 

strategic implications. Specifically, firms considering the adoption of AMTs may 

choose either an incremental strategy – adopting AMTs sequentially – or a 

discontinuous strategy – adopting AMTs simultaneously (Boyer 1999). An 

incremental strategy may minimise disruption and maximise the potential for 

organisational learning, while our results suggest that a discontinuous strategy may 

risk greater short term disruption but generate complementarities in implementation. 

Our evidence suggests that both strategies will generate innovation benefits but that a 

discontinuous strategy is likely to be most beneficial as the benefits of the 

simultaneous adoption of AMTs prove stronger than any learning-by-using effects. 

This is not of course to minimise the difficulties of AMT adoption – particularly 

where multiple AMTs are being adopted simultaneously. As Barge-Gil et al. (2011, 

p. 419) suggest ‘skilled use of AMT is not easy to attain and depends on several 
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contingencies’. Indeed, our evidence suggests that it may be some years after the 

initial adoption of AMTs before their full performance benefits are realised.  

 

Implications for theory 

Aside from suggesting the potential superiority of discontinuous AMT adoption 

strategies our analysis has methodological implications for those engaged in studies 

of AMTs and/or innovation. In terms of AMTs and adoption our results suggest the 

misleading implications which might be drawn from cross-sectional studies, and the 

need to take longer-term dynamics into account. The timing of AMT adoption 

appears crucial to its business benefits with coefficients in cross-sectional analyses 

implicitly ‘averaging’ opposing short-term disruption and longer-term beneficial 

effects. Second, as our results on the complementarities between AMTs suggest, the 

benefits of individual AMTs are strongly contextual, depending on the timing of 

adoption of other AMTs and potentially on other firm capabilities or structural 

characteristics (Zammuto and O’Connor 1992). In terms of innovation, our results 

reinforce the arguments of Barge Gil et al. (2011) and the value of considering 

tangible as well as intangible investments as part of any explanation of firms’ 

innovation.  

 

 

7. Conclusion 

This study highlights the temporal profile of the performance benefits of individual 

AMTs, highlighting short-term disruption effects but longer-term benefits. In 

addition, we find complementarities between the adoption of specific AMTs, 

suggesting the value of disruptive rather than incremental AMT implementation 

strategies when simultaneously adopting AMTs. 

 

Our analysis suffers from two main limitations. First, our analysis focuses on Irish 

manufacturing businesses only and may therefore be influenced by specific national 

circumstances. The 1994-2008 period considered here, however, was a period of 

rapidly changing institutions in Ireland as well as marked changes in the nation’s 

economic fortunes - the Irish recovery of the late 1990s, the 2000-02 high-tech crash, 

and a period of rapid subsequent growth. Second, we focus here purely on the 
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average AMT-innovation relationship and make little allowance for differences in 

absorptive capacity between firms. The work of Sohal and others (Hofmann and Orr 

2005; Sohal 1996), however, suggests the potential importance of corporate 

capabilities linked to absorptive capacity for the effective implementation of AMTs. 

Sohal (1996), for example, in his examination of AMT adoption by seven 

manufacturing companies identified a number of advantages achieved through AMT 

adoption including improved flexibility, reduced process time, reduced unit costs and 

improvements in product quality. Problems during implementation arose from a lack 

of in-house programming skills, communication between departments and 

management, and the trade-off between short-term production targets and the 

disruption involved in AMT implementation. Other studies have emphasised the 

importance of organisational culture as a pre-condition for successful AMT 

implementation (Zammuto and Oconnor 1992). Are firms with stronger skill 

endowments, for example, able to accelerate the process of effective AMT 

implementation? How does this influence innovation outputs and competitive 

outcomes? Similar questions might also be posed in terms of R&D or other in-house 

resources such as production engineering capabilities. Each of these questions might 

provide a useful focus for future research.  
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Table 1: Sample Descriptives 

 

No. of 

Observat

ions 

Mean 

 

Std.Dev. 

 

 

observations 

  Innovative sales from 

new products (%) 

1704 16.312 22.571 

 

  Innovative sales from 

new and 

 improved products 

(%) 

1700 27.612 30.515 

   

    

AMT variables    

Robotics Use 1593 0.175 0.380 

AMH Use 1622 0.272 0.445 

CAM Use 1704 0.385 0.487 

CIM Use 1625 0.214 0.410 

Robotics current 

adopter 

1585 0.063 0.242 

Robotics previous 

adopter 

1585 0.044 0.205 

Robotics early 

adopter 

1585 0.064 0.245 

AMH current adopter 1602 0.107 0.309 

AMH previous 

adopter 

1602 0.064 0.244 

AMH early adopter 1602 0.093 0.290 

CAM current adopter 1679 0.154 0.361 

CAM previous 

adopter 

1679 0.095 0.293 

CAM early adopter 1679 0.125 0.331 

CIM current adopter 1611 0.086 0.280 

CIM previous adopter 1611 0.054 0.226 

CIM early adopter 1611 0.067 0.250 

    

Plant characteristics    

R&D in house  1704 0.520 0.500 

Linkages with 

customers 

1704 0.291 0.455 

Linkages with 

suppliers 

1704 0.315 0.465 

Horizontal linkages 1704 0.793 1.387 

Employment (log) 1704 3.693 1.102 

Firm Vintage 1704 29.020 28.543 

Externally Owned 1704 0.220 0.414 

Workforce with 

degree (%) 

1704 10.330 12.893 

Government  support  1704 0.261 0.439 

Exports (%) 1704 21.209 32.096 

Source: Irish Innovation Panel– waves 2-6. Observations are 

weighted. Variable definitions in Annex 1.   
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Table 2: Correlation Matrix 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 Sales from New Products 1.00 

             2 Sales from New & Improved Products 0.77 1.00 

            3 Robotics Use 0.15 0.14 1.00 

           4 AMH Use 0.09 0.11 0.36 1.00 

          5 CAM Use 0.09 0.13 0.24 0.28 1.00 

         6 CIM Use 0.09 0.09 0.35 0.35 0.45 1.00 

        7 Current Robotics Adoption 0.08 0.09 0.56 0.26 0.16 0.26 1.00 

       8 Previous Robotics Adoption 0.11 0.10 0.48 0.16 0.11 0.16 -0.06 1.00 

      9 Early Robotics Adoption 0.05 0.05 0.57 0.16 0.11 0.14 -0.07 -0.06 1.00 

     10 Current AMH Adoption -0.01 0.03 0.17 0.55 0.16 0.21 0.28 0.03 -0.03 1.00 

    11 Previous AMH Adoption 0.08 0.08 0.22 0.47 0.11 0.20 0.10 0.24 0.03 -0.09 1.00 

   12 Early AMH Adoption 0.07 0.06 0.17 0.54 0.17 0.13 0.01 0.00 0.25 -0.10 -0.09 1.00 

  13 Current CAM Adoption 0.04 0.08 0.22 0.24 0.57 0.37 0.25 0.09 0.02 0.29 0.07 0.00 1.00 

 14 Previous CAM Adoption -0.01 0.02 0.07 0.04 0.42 0.18 0.02 0.06 0.04 -0.04 0.05 0.06 -0.12 1.00 

15 Early CAM Adoption 0.09 0.09 0.04 0.13 0.50 0.10 -0.05 0.01 0.10 -0.04 0.05 0.19 -0.15 -0.11 

16 Current CIM Adoption 0.02 0.04 0.26 0.26 0.30 0.60 0.32 0.08 0.01 0.30 0.09 0.01 0.51 -0.05 

17 Previous CIM Adoption 0.03 0.05 0.11 0.13 0.21 0.49 0.03 0.13 0.04 0.05 0.16 0.00 0.07 0.30 

18 Early CIM Adoption  0.09 0.06 0.17 0.15 0.20 0.51 0.04 0.04 0.18 -0.05 0.08 0.21 -0.04 0.07 

19 R&D in house  0.20 0.31 0.08 0.12 0.13 0.08 0.03 0.03 0.07 0.06 0.05 0.08 0.04 0.06 

20 Linkages with customers 0.17 0.23 0.17 0.14 0.13 0.12 0.14 0.09 0.05 0.09 0.08 0.05 0.12 0.04 

21 Linkages with suppliers 0.19 0.23 0.17 0.18 0.16 0.16 0.12 0.09 0.06 0.11 0.09 0.07 0.13 0.04 

22 Horizontal linkages 0.15 0.22 0.20 0.22 0.19 0.21 0.16 0.11 0.06 0.16 0.13 0.05 0.16 0.02 

23 Employment (log) 0.15 0.18 0.35 0.27 0.29 0.25 0.25 0.18 0.12 0.17 0.14 0.12 0.27 0.09 

24 Firm Vintage -0.14 -0.10 -0.03 0.03 0.00 0.00 -0.03 0.00 -0.02 0.05 -0.01 0.00 0.03 0.01 

25 Externally Owned 0.13 0.12 0.23 0.14 0.16 0.14 0.16 0.14 0.08 0.08 0.09 0.05 0.19 0.05 

26 Workforce with degree (%) 0.16 0.17 0.06 0.01 0.02 0.04 0.05 0.02 0.02 0.03 0.01 -0.02 0.05 -0.01 

27 Government  support  0.17 0.25 0.07 0.06 0.10 0.03 0.06 0.04 0.01 0.02 0.04 0.03 0.05 0.03 

28 Exports (%) 0.18 0.21 0.22 0.09 0.15 0.13 0.15 0.14 0.07 0.05 0.08 0.02 0.15 0.08 

  

15 16 17 18 19 20 21 22 23 24 25 26 27 28 
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15 Early CAM Adoption 1.00 

             16 Current CIM Adoption -0.07 1.00 

            17 Previous CIM Adoption -0.03 -0.07 1.00 

           18 Early CIM Adoption  0.28 -0.08 -0.06 1.00 

          19 R&D in house  0.09 0.04 0.02 0.06 1.00 

         20 Linkages with customers 0.03 0.09 0.04 0.05 0.23 1.00 

        21 Linkages with suppliers 0.07 0.11 0.08 0.06 0.20 0.62 1.00 

       22 Horizontal linkages 0.09 0.16 0.06 0.11 0.23 0.59 0.55 1.00 

      23 Employment (log) 0.06 0.22 0.11 0.06 0.19 0.16 0.19 0.26 1.00 

     24 Firm Vintage -0.04 0.06 -0.02 -0.06 -0.04 -0.04 -0.01 0.05 0.09 1.00 

    25 Externally Owned -0.01 0.12 0.10 0.00 0.00 0.07 0.11 0.11 0.42 0.04 1.00 

   26 Workforce with degree (%) -0.02 0.04 -0.01 0.02 0.13 0.17 0.12 0.17 0.06 -0.01 0.16 1.00 

  27 Government  support  0.06 0.02 0.00 0.02 0.37 0.22 0.16 0.26 0.13 -0.03 -0.07 0.14 1.00 

 28 Exports (%) -0.02 0.11 0.09 0.00 0.11 0.13 0.11 0.16 0.35 -0.10 0.48 0.31 0.09 1.00 

Source: Irish Innovation Panel – waves 2-6. Variable definitions in Annex 1.  
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Table 3. Static models: Tobit Models of Innovative Sales of New Products 

 Model 1 Model 2 Model 3 Model 4 

CAM Use 0.103    

 (-1.103)    

AMH Use  0.827   

  (-1.22)   

CIM Use   1.966  

   (-1.318)  

Robotics Use    2.806* 

    (-1.446) 

In-plant R&D 6.355*** 5.770*** 5.587*** 6.174*** 

 (-1.167) (-1.185) (-1.197) (-1.206) 

Linkages with Clients 2.306 2.59 2.376 2.899* 

 (-1.574) (-1.608) (-1.599) (-1.624) 

Linkages with Suppliers 4.246*** 4.361*** 4.643*** 4.288*** 

 (-1.47) (-1.488) (-1.497) (-1.504) 

Horizontal Linkages -0.186 -0.373 -0.396 -0.316 

 (-0.491) (-0.497) (-0.501) (-0.503) 

Employment (Log) 0.105 0.265 -0.017 -0.254 

 (-0.555) (-0.562) (-0.566) (-0.574) 

Firm Vintage -0.072*** -0.076*** -0.066*** -0.063*** 

 (-0.019) (-0.019) (-0.02) (-0.02) 

Export Sales 0.032 0.029 0.026 0.028 

 (-0.02) (-0.02) (-0.021) (-0.021) 

Workforce with Degree  0.148*** 0.157*** 0.160*** 0.154*** 

 (-0.044) (-0.045) (-0.046) (-0.046) 

Government Support  3.387** 3.717*** 3.735*** 3.781*** 

 (-1.315) (-1.327) (-1.344) (-1.357) 

Externally Owned 2.517* 2.518* 2.894* 2.107 

 (-1.502) (-1.512) (-1.537) (-1.554) 

Constant 3.76 3.388 3.62 4.09 

 (-2.589) (-2.609) (-2.632) (-2.67) 

N 1704 1674 1652 1626 

Chi-squared 265.944 261.718 248.948 255.126 

P 0 0 0 0 

Pseudo – R2 0.017 0.017 0.017 0.017 

Notes: * denotes significance at 10% level; ** at 5% level and *** at 1% level. Source: Irish 

Innovation Panel – waves 2-6. Observations are weighted. All models contain industry and wave 

dummies. A full set of tables, which include industry and wave dummies, is available from the 

authors on request. Variable definitions in Annex 1.  
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Table 4. Dynamic models: Tobit Models of Innovative Sales of New Products 

 Model 1 Model 2 Model 3 
Model 4 

 
Current CAM Adoption -1.385 

  

 

 (-1.547) 

  

 

Previous CAM Adoption -3.379* 

  

 

 (-1.818) 

  

 

Early CAM Adoption 5.169*** 

  

 

 (-1.632) 

  

 

Current AMH Adoption 

 

-2.119 

 

 

  

(-1.746) 

 

 

Previous AMH Adoption 

 

3.650* 

 

 

  

(-2.146) 

 

 

Early AMH Adoption 

 

2.400 

 

 

  

(-1.807) 

 

 

Current CIM Adoption  

 

-1.061  

 

 

 

(-1.91)  

Previous CIM Adoption  

 

-0.283  

 

 

 

(-2.329)  

Early CIM Adoption  

 

6.977***  

 

 

 

(-2.11)  

Current robotics Adoption 

  

 2.902 

   

 (-2.239) 

Previous robotics Adoption 

  

 3.522 

   

 (-2.564) 

Early robotics Adoption 

  

 2.406 

   

 (-2.115) 

In-plant R&D 5.979*** 5.807*** 5.505*** 6.133*** 

 (-1.178) (-1.193) (-1.196) (-1.206) 

Linkages with Clients 2.047 2.357 1.853 2.489 

 (-1.591) (-1.617) (-1.605) (-1.627) 

Linkages with Suppliers 4.619*** 4.415*** 4.965*** 4.610*** 

 (-1.479) (-1.496) (-1.495) (-1.506) 

Horizontal Linkages -0.16 -0.25 -0.333 -0.275 

 (-0.496) (-0.502) (-0.504) (-0.503) 
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Notes: * denotes significance at 10% level; ** at 5% level and *** at 1% level. Source: Irish 

Innovation Panel – waves 2-6. Observations are weighted. All models contain industry and wave 

dummies. A full set of tables, which include industry and wave dummies, is available from the 

authors on request. Variable definitions in Annex 1.  

 

Employment (Log) 0.22 0.383 0.232 -0.239 

 (-0.566) (-0.572) (-0.567) (-0.576) 

Firm Vintage -0.069*** -0.079*** -0.067*** -0.063*** 

 (-0.019) (-0.02) (-0.02) (-0.02) 

Export Sales 0.034* 0.031 0.027 0.027 

 (-0.02) (-0.02) (-0.021) (-0.021) 

Workforce with Degree  0.153*** 0.157*** 0.158*** 0.133*** 

 (-0.044) (-0.046) (-0.046) (-0.047) 

Government Support  3.421** 3.481*** 3.775*** 4.097*** 

 (-1.335) (-1.34) (-1.347) (-1.36) 

Externally Owned 2.516* 2.291 2.717* 2.259 

 (-1.509) (-1.53) (-1.54) (-1.556) 

Constant 3.369 2.963 3.25 4.267 

 (-2.614) (-2.635) (-2.632) (-2.675) 

N 1679 1651 1638 1618 

Chi-squared 273.795 270.695 258.286 247.654 

P 0 0 0 0 

Pseudo – R2 0.018 0.018 0.017 0.017 
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Table 5. CAM Adoption: Complementarities and Learning By Using Effects 

 Innovation Sales 

 

Innovation Sales 

 

Innovation Sales 

 Simultaneous CAM Adoption: Complementarities 
Early CAM Adoption: w/wo early Rob Early CAM Adoption: w/wo early AMH Early CAM Adoption: w/wo early CIM 

Early CAM* Early Rob 12.462*** Early CAM * Early AMH   7.650** Early CAM * Early CIM 6.444** 

 (-4.075)  (-3.066)  (-2.892) 
Early CAM * No Early Rob 3.470* Early CAM * No Early AMH 4.719** Early CAM * No Early CIM 4.234** 

 (-1.873)  (-1.939)  (-1.987) 

Sequential CAM Adoption: Learning By Using 

  

  

  

  

  

CAM Adoption: w/wo early Rob adoption CAM Adoption: w/wo early AMH adoption CAM Adoption: w/wo early CIM adoption 
Current CAM * Early Rob -5.804 Current CAM * Early AMH 10.616** Current CAM * Early CIM -6.182 
 (-5.658)  (-4.824)  (-6.740) 

Current CAM * No Early Rob -0.191 Current CAM * No Early AMH -1.717 Current CAM * No Early CIM -1.831 

 (-1.739)  (-1.712)  (-1.675) 
Previous CAM * Early Rob -7.142 Previous CAM * Early AMH -4.982 Previous CAM * Early CIM 3.881 

 (-6.217)  (-4.479)  (-5.764) 
Previous CAM * No Early Rob -3.923* Previous CAM * No Early AMH -3.837* Previous CAM * No Early CIM -5.537*** 

 (-2.119)  (-2.139)  (-2.059) 

CAM adoption conditional on  Rob CAM adoption conditional on AMH CAM adoption conditional on CIM 
Complementarities 4.26** Complementarities 0.71 Complementarities 0.43 

LBU Current 0.94 LBU Current 6.08** LBU Current 0.40 
LBU Previous 0.25 LBU Previous 0.05 LBU Previous 2.44 

Observations 1,704   1,704   1,704 

Notes: * denotes significance at 10% level; ** at 5% level and *** at 1% level. Source: Irish Innovation Panel – waves 2-6. Observations are weighted. Models contain 

identical control variables as reported in initial dynamic analysis (Table 4). A full set of tables, is available from the authors on request. Variable definitions in Annex 1.  
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Table 6. AMH Adoption: Complementarities and Learning By Using Effects 

 Innovation Sales 

 

Innovation Sales 

 

Innovation Sales 

 Simultaneous AMT Adoption: Complementarities 

Early AMH Adoption: w/wo early robotics Early AMH Adoption: w/wo early CAM Early AMH Adoption: w/wo early CIM 

Early AMH* Early Rob 4.033 Early AMH* Early CAM  7.774** Early AMH* Early CIM 7.916** 

 (-3.787)  (-3.07)  (-3.895) 

Early AMH* No Early Rob 1.822 Early AMH* No Early CAM 1.297 Early AMH* No Early CIM 1.537 

 (-2.246)  (-2.261)  (-2.187) 

Sequential AMT Adoption: Learning By Using 

  

  

  

  

  

AMH Adoption: w/wo early AMH adoption AMH Adoption: w/wo early CAM adoption AMH Adoption: w/wo early CIM adoption 

Current AMH* Early Rob 1.344 Current AMH* Early CAM 1.523 Current AMH* Early CIM 1.052 

 (-7.576)  (-5.448)  (-9.404) 

Current AMH* No Early Rob -2.208 Current AMH* No Early CAM -1.864 Current AMH* No Early CIM -1.666 

 (-1.963)  (-1.883)  (-1.921) 

Previous AMH* Early Rob 5.458 Previous AMH* Early CAM 2.101 Previous AMH* Early CIM 6.335 

 (-7.561)  (-4.502)  (-5.217) 

Previous AMH* No Early Rob 3.703 Previous AMH* No Early CAM 5.103** Previous AMH* No Early CIM 3.825 

 (-2.389)  (-2.514)  (-2.484) 

AMH adoption conditional on  Rob AMH adoption conditional on CAM AMH adoption conditional on CIM 

Complementarities 0.27 Complementarities 3.09** Complementarities 2.14 

LBU Current 0.21 LBU Current 0.36 LBU Current 0.08 

LBU Previous 0.05 LBU Previous 0.36 LBU Previous 0.19 

Observations 1,704   1,704   1,704 
Notes: * denotes significance at 10% level; ** at 5% level and *** at 1% level. Source: Irish Innovation Panel – waves 2-6. Observations are weighted. Models contain 

identical control variables as reported in initial dynamic analysis (Table 4). A full set of tables, is available from the authors on request. Variable definitions in Annex 1.  

 

  



32 
 

Table 7. CIM Adoption: Complementarities and Learning By Using Effects 

 Innovation Sales 

 

Innovation Sales 

 

Innovation Sales 

 Simultaneous CIM Adoption: Complementarities 

CIM Adoption: w/wo early Rob Early CIM Adoption: w/wo early AMH Early CIM Adoption: w/wo early CAM 

Early CIM* Early Rob 14.209*** Early CIM * Early AMH   7.874** Early CIM * Early CAM 6.719** 

 (-4.557)  (-3.888)  (-2.889) 

Early CIM * No Early Rob 2.53 Early CIM * No Early AMH 5.136* Early CIM * No Early CAM 2.329 

 (-2.616)  (-2.744)  (-3.104) 

Sequential CIM Adoption: Learning By Using 

  

  

  

  

  

CIM Adoption: w/wo early Rob adoption CIM Adoption: w/wo early AMH adoption CIM Adoption: w/wo early CAM adoption 

Current CIM * Early Rob -7.749 Current CIM * Early AMH -0.043 Current CIM * Early CAM 6.569 

 (-6.483)  (-6.197)  (-8.833) 

Current CIM * No Early Rob -0.18 Current CIM * No Early AMH -0.509 Current CIM * No Early CAM -2.215 

 (-2.192)  (-2.177)  (-2.015) 

Previous CIM * Early Rob -7.306 Previous CIM * Early AMH -0.479 Previous CIM * Early CAM -6.241 

 (-7.876)  (-6.185)  (-7.258) 

Previous CIM * No Early Rob 1.891 Previous CIM * No Early AMH 0.303 Previous CIM * No Early CAM 0.409 

 (-2.703)  (-2.679)  (-2.493) 

CIM adoption conditional on  Rob CIM adoption conditional on AMH CIM adoption conditional on CAM 

Complementarities 5.13** Complementarities 0.35 Complementarities 1.13 

LBU Current 1.26 LBU Current 0.01 LBU Current 0.95 

LBU Previous 1.24 LBU Previous 0.01 LBU Previous 0.76 

Observations 1,704   1,704   1,704 
Notes: * denotes significance at 10% level; ** at 5% level and *** at 1% level. Source: Irish Innovation Panel – waves 2-6. Observations are weighted. Models contain 

identical control variables as reported in initial dynamic analysis (Table 4). A full set of tables, is available from the authors on request. Variable definitions in Annex 1.  
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Table 8. Robotics Adoption: Complementarities and Learning By Using Effects 

 Innovation Sales 

 

Innovation Sales 

 

Innovation Sales 

 Simultaneous AMT Adoption: Complementarities 

Early Robotics Adoption: w/wo early AMH Early Robotics Adoption: w/wo early CAM Early RoboticsAdoption: w/wo early CIM 

Early Rob* Early AMH 4.351 Early Rob * Early CAM  13.059*** Early Rob * Early CIM 14.514*** 

 (-3.771)  (-4.059)  (-4.552) 

Early Rob* No Early AMH 4.03 Early Rob * No Early CAM -0.013 Early Rob* No Early CIM 0.694 

 (-2.787)  (-2.588)  (-2.566) 

Sequential AMT Adoption: Learning By Using 

  

  

  

  

  

Robotics Adoption: w/wo early AMH adoption Robotics Adoption: w/wo early CAM adoption Robotics Adoption: w/wo early CIM adoption 

Current Rob* Early AMH 13.403 Current Rob * Early CAM -0.641 Current Rob * Early CIM 2.935 

 (-8.66)  (-7.518)  (-6.252) 

Current Rob* No Early AMH -0.165 Current Rob * No Early CAM 3.24 Current Rob * No Early CIM 1.345 

 (-2.431)  (-2.434)  (-2.534) 

Previous Rob * Early AMH 12.702 Previous Rob * Early CAM 16.567** Previous Rob * Early CIM 15.658** 

 (-8.299)  (-6.833)  (-7.539) 

Previous Rob * No Early AMH 2.439 Previous Rob * No Early CAM 1.35 Previous Rob * No Early CIM 3.177 

 (-2.863)  (-2.913)  (-2.933) 

Robotics adoption conditional on  AMH Robotics adoption conditional on CAM Robotics adoption conditional on CIM 

Complementarities 0.00 Complementarities 7.65*** Complementarities 7.21*** 

LBU Current 2.33 LBU Current 0.25 LBU Current 0.06 

LBU Previous 1.39 LBU Previous 4.29** LBU Previous 2.42 

Observations 1,704   1,704   1,704 
Notes: * denotes significance at 10% level; ** at 5% level and *** at 1% level. Source: Irish Innovation Panel – waves 2-6. Observations are weighted. Models contain 

identical control variables as reported in initial dynamic analysis (Table 4). A full set of tables, is available from the authors on request. Variable definitions in Annex 1.  
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Figure 1: Innovative sales by Irish manufacturing plants: by period 

 

Source: Irish Innovation Panel – waves 2-6. Observations are weighted. Variable 

definitions in Annex 1.  
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Figure 2: Overview of complementarity and LBU hypotheses 

 

CAM

Adoption

Earlier period

CIM

Adoption

Earlier period

CIM 

Adoption 

Previous period

CIM 

Adoption

Current period 

Current

 period

Previous

 period

Earlier

 period

H3

H3

H2

 

  



36 
 

Annex 1: Description of Variables 

Table A1.1: Variable Definitions 

Innovation   

Innovative sales (new)  

(% sales) 

An indicator representing the percentage of firms’ sales at the 

time of the survey accounted for by products which had been 

newly introduced over the previous three years.  

AMT variables   

Use  A binary variable taking value one if the plant uses the AMT 

Current adopter 

 

A binary indictor taking value one if the plant had first 

introduced the AMT in the previous three years and zero 

otherwise and is currently using the technology. 

Early adopter 

 

A binary indictor taking value one if the plant had first 

introduced the AMT in the previous six years and zero otherwise 

and is currently using the technology. 

Previous adopter 

 

A binary indictor taking value one if the plant had introduced the 

AMT at any time and is currently using the technology.  

Plant characteristics   
In plant R&D A binary indictor taking value one if the plant has an in-house 

R&D capacity  

Percentage with degree Percentage of the workforce with a degree or equivalent 

qualification  

Public support for 

product innovation  

A binary indicator taking value one if the plant had received 

government support for product innovation over the previous 

three years. 

Client Linkages 

 

A binary indicator taking value one if the plant is co-operating 

with customers as part of its innovation activity.  

Supplier Linkages A binary indicator taking value one if the plant is co-operating 

with suppliers as part of its innovation activity. 

Horizontal Linkages A count indicator of the breadth of plants’ other innovation 

partnering activity. Takes values 0 to 7 depending on how many 

different types of partner the plant is working with: consultant, 

competitor, joint venture, government laboratory, university, 

private laboratory, industry research centre.  

Employment Employment at the time of the survey.  

External  ownership A binary indicator taking a value of one if the firm is owned 

outside Ireland. 

Firm vintage The age of the firm in years. 

Export sales Percentage of sales outside the British Isles  
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