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OPTIMAL CONSUMPTION AND SALE STRATEGIES FOR A RISK AVERSE

AGENT

DAVID HOBSON AND YEQI ZHU

Abstra
t. In this arti
le we 
onsider an optimal 
onsumption/optimal portfolio problem in

whi
h an agent with 
onstant relative risk aversion seeks to maximise expe
ted dis
ounted utility

of 
onsumption over the in�nite horizon, in a model 
omprising a risk-free asset and a risky asset

in whi
h the risky asset 
an only be sold and not bought.

The problem is an extension of the Merton problem and a spe
ial 
ase of the transa
tion 
osts

model of Constantinides-Magill and Davis-Norman. Via various transforms we are able to make


onsiderable progress towards an analyti
al solution. The solution 
an be expressed via a �rst


rossing problem for an initial-value, �rst order ODE.

The fa
t that we have a relatively expli
it solution means we are able to 
onsider the 
ompar-

ative stati
s of the problem. There are some surprising 
on
lusions, su
h as 
onsumption rates

are not monotone in
reasing in the return of the asset, nor are the 
ertainty equivalent values of

the risky positions monotone in the risk aversion.

Key words: Optimal 
onsumption/investment problem, transa
tion 
osts, sale strategy, re�e
t-

ing di�usion, lo
al time.

AMS subje
t 
lassi�
ations: 91G10, 93E20

1. Introdu
tion

This arti
le is 
on
erned with the optimal behaviour of an agent whose goal is to maximise the

expe
ted dis
ounted utility of 
onsumption, and who �nan
es 
onsumption from a 
ombination of

initial wealth and from the sale of an initial endowment of an in�nitely divisible se
urity. Her a
tions

are to 
hoose an optimal 
onsumption strategy and an optimal holding or portfolio of a risky se
urity,

under the restri
tion that the risky asset 
an only be sold, and pur
hases are not permitted. As

su
h this problem is a extension of the Merton [21℄ optimal 
onsumption/optimal portfolio problem

and a spe
ial 
ase of a 
onsumption/investment problem with proportional transa
tion 
osts.

Merton [21℄ 
onsidered portfolio optimisation and 
onsumption in a 
ontinuous-time sto
hasti


model, with an investment opportunity set 
omprising a risk-free bond and a risky asset with 
on-

stant return and volatility. Merton 
hose to study these issues by �rst understanding the behaviour

of a single agent a
ting as a pri
e-taker. Under an assumption of 
onstant relative risk aversion

(CRRA) he obtained a 
losed form solution to the problem and the optimal strategy in his model


onsists of trading 
ontinuously in order to keep the fra
tion of wealth invested in the risky se
urity

equal to a 
onstant.

Merton's model was subsequently generalised to an in
omplete �nan
ial market setting where

perfe
t hedging is no longer possible. Constantinides and Magill [4℄ (see also Constantinides [3℄)

introdu
ed proportional transa
tion 
osts to the model and 
onsidered an investor whose aim is to

maximise the expe
ted utility of 
onsumption over an in�nite horizon under power utility. They


onje
tured the existen
e of a `no-transa
tion' region, and that it is optimal to keep the proportion

of wealth invested in the risky asset within some interval. Subsequently Davis and Norman [5℄ gave
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a pre
ise formulation. The Davis and Norman [5℄ analysis of the problem via sto
hasti
 
ontrol is

a landmark in the study of transa
tion 
ost problems. This analysis was extended using vis
osity

solutions by Shreve and Soner [23℄.

Re
ently there have been a series of papers 
onsidering the problem from the dual perspe
tive

using the the 
on
ept of shadow pri
es. Kallsen and Muhle-Karbe [16℄ 
onsider an agent with

logarithmi
 utility, and their results are extended to power utility by Her
zegh and Prokaj [11℄.

Choi et al [2℄ give a deep analysis of the solution of the problem, in
luding several singular 
ases,

and give a 
omplete analysis of the parameter 
ombinations for whi
h a solution exists.

In this arti
le we 
onsider a spe
ial 
ase of the transa
tion 
ost model in whi
h the transa
tion


osts asso
iated with pur
hases of the risky asset are in�nite. E�e
tively pur
hases are disallowed,

and we may think of an agent who is endowed with a quantity of an asset whi
h she may sell,

but whi
h she may not trade dynami
ally. There are at least two main reasons for 
onsidering this

spe
ial 
ase. First, there are often situations whereby agents are endowed with units of assets whi
h

they may sell but may not repur
hase, whether for legal reasons or be
ause of liquidity or trading

restri
tions. Se
ond, our situation may be thought of as an approximation of the large transa
tion


ost regime.

The dual method via shadow pri
es has been exploited to great su

ess. Nonetheless, one of the

advantages of the primal method whi
h fo
usses on the value fun
tion (expressed via the solution

of a di�erential equation problem with free boundary) is that is possible to 
al
ulate the optimal


onsumption and investment strategy and the 
ertainty equivalent value of the holding of risky

asset dire
tly. For example, the optimal 
onsumption is given in terms of a derivative of the value

fun
tion. In general 
omparative stati
s are available more dire
tly from the primal approa
h.

In this paper we take the 
lassi
al, sto
hasti
 
ontrol approa
h to the primal problem, pla
ing us

in the tradition of [5, 23℄ rather than the shadow pri
e literature [16, 11, 2℄. Our methods arguably

lead to simpler set of governing equations than those that arise from the shadow pri
e method (see

Se
tion 4.1 for a 
omparison). In the setting of the sale problem we study the 
omparative stati
s

of the problem. To the best of our knowledge this has not been attempted via the shadow-pri
e

approa
h, and would appear to be quite 
hallenging even under the 
urrent best formulation of this

method.

The next two se
tions des
ribe the main results, �rst informally, and then more pre
isely. Then,

in Se
tion 4, we give the heuristi
s behind the results, whi
h are proved in Se
tion 5 (and the

appendi
es). A �nal se
tion dis
usses the 
omparative stati
s in the model.

2. Related literature and main 
on
lusions

2.1. Related literature. Davis and Norman [5℄ were the �rst to study the Merton model with

proportional transa
tion 
osts in a mathemati
ally pre
ise formulation. They showed that under

optimal behaviour the no transa
tion region is a wedge 
ontaining the Merton line and that the

optimal buying and selling strategies are lo
al times at boundaries 
hosen to keep the pro
ess inside

the wedge. In the transa
tion region, transa
tions take pla
e at in�nite speed and ex
ept for the

initial transa
tion, all transa
tions take pla
e at the boundaries. They obtained their results by

writing down the (non-linear, se
ond order) Hamilton-Ja
obi-Bellman (HJB) equation with free

boundary 
onditions and then by a series of transformations redu
ing the problem to one of solving

a system of �rst order ordinary di�erential equations. Motivated by Davis and Norman's work,

Shreve and Soner [23℄ studied the same problem but with an approa
h via vis
osity solutions. They

re
overed the results of Davis and Norman [5℄ without imposing all of the 
onditions of [5℄.

Kallsen and Muhle-Karbe [16℄ were the �rst to 
onsider using the shadow pri
e method. They

restri
ted attention to the 
ase of logarithmi
 utility and showed that the approa
h 
ould be used
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both to develop a 
andidate solution and to prove a veri�
ation result. Further, they showed it was

possible to determine the shadow pri
e pro
ess. Her
zegh and Prokaj [11℄ extended the results to

a power-law investor. In the logarithmi
 
ase the optimal 
onsumption plan is relatively simple,

so one of the 
ontributions of Her
zegh and Prokaj was to develop a heuristi
 for solving for the

optimal 
onsumption, and then
e the shadow pri
e in the power-law 
ase. At about the same

time, and independently, Choi et al [2℄ also undertook a detailed study of the problem for a power-

law investor. In their main result they determine pre
isely for whi
h parameter 
ombinations the

problem is well-posed, and they go on to give an expression for the shadow pri
e via the solution

of a di�erential equation.

In related work, Du�e and Sun [7℄, Liu [19℄ and Korn [20℄ study the problem when there are �xed

(as opposed to proportional) transa
tion 
osts. Liu used the HJB approa
h, deriving an ordinary

di�erential equation to 
hara
terise the value fun
tion and solving it numeri
ally. He found that if

there is only a �xed transa
tion 
ost, the optimal trading strategy is to trade to a 
ertain target

amount as soon as the fra
tion of wealth in sto
k goes outside a 
ertain range. Korn [20℄ solved

a similar problem by an impulse 
ontrol and optimal stopping approa
h. He proved the Bellman

prin
iple and solved for the reward fun
tion by an iteration pro
edure under the assumption that

the value fun
tion is �nite.

Whilst �nan
ial assets 
an often be a
tively traded, in other 
ontexts dynami
 trading is not

possible. Svensson and Werner [24℄ were the �rst to 
onsider the problem of pri
ing non-traded

assets in Merton's model. More generally, it is a standard assumption in the Real Options literature

(see Dixit and Pindy
k [6℄) that the underlying asset is not liquidly traded. An agent 
an sell the

asset, but 
annot pur
hase any units. In the simplest 
ase the agent is endowed with a single unit

of an indivisible asset whi
h 
annot be traded and the problem redu
es to an optimal sale problem

for an asset. Evans et al [8℄, see also Henderson and Hobson [13℄, 
onsider an agent with power-law

utility who owns an indivisible, non-traded asset and wishes to 
hoose the optimal time to sell the

asset in order to maximise the expe
ted utility of terminal wealth in an in
omplete market. Their

results show that the optimal 
riterion for the sale of the asset is to sell the �rst time the value

of the non-traded asset ex
eeds a 
ertain proportion of the agent's trading wealth and this 
riti
al

threshold is governed by a trans
endental equation.

A se
ond appli
ation where our assumption that the agent 
annot a
tively trade is reasonable is

in the 
ontext of exe
utive sto
k options. Legal restri
tions (see Carpenter [1℄) mean that exe
utives


annot short sell sto
k on their own 
ompany. If exe
utives are 
ompensated with a large tran
he

of options, then they might wish to hedge their position by selling sto
k and the restri
tion on short

sales be
omes an impli
it bar on any trading. Often, in the mathemati
al �nan
e literature (see

Grasselli and Henderson [10℄ and Leung and Sir
ar [18℄) the simple assumption is made that legal

restri
tions prevent the agent from any trading in the underlying asset.

2.2. Informal statement of the main 
on
lusions. This paper 
onsiders an individual who is

endowed with 
ash and units of an in�nitely divisible asset, whi
h 
an be sold but not dynami
ally

traded, and who aims to maximise the expe
ted dis
ounted utility of 
onsumption over an in�nite

horizon. (The 
ase of an indivisible asset is 
onsidered by Henderson and Hobson [14℄.) The

problem fa
ing the individual is to 
hoose the optimal strategy for the liquidation of the endowed

asset portfolio, and an optimal 
onsumption pro
ess 
hosen to keep 
ash wealth non-negative. The

pri
e pro
ess of the endowed asset is assumed to follow an exponential Brownian motion and the

agent is assumed to have 
onstant relative risk aversion.

The 
onstraint that the asset 
an be sold but not bought is equivalent to an assumption of no

transa
tion 
osts on sales, and an in�nite transa
tion 
ost on pur
hases. (The assumption of no

transa
tion 
ost on sales 
an easily be relaxed to a proportional transa
tion 
ost on sales by working
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with a pro
ess representing the post-transa
tion-
ost pri
e rather than the pre-
ost pri
e.) In this

sense the problem we 
onsider 
an be interpreted as a spe
ial 
ase of the Davis-Norman problem

for Merton's model with transa
tion 
osts in whi
h the transa
tion 
ost asso
iated with buying the

endowed asset is in�nite.

Our main results are of three types. First we are able to 
ompletely 
lassify the di�erent types

of optimal strategies and the parameter ranges over whi
h they apply. Se
ond, we 
an simplify

the problem of solving for the value fun
tion, espe
ially when 
ompared with dire
t approa
hes for

solving the HJB equation via smooth �t. Third, we 
an perform 
omparative stati
s on quantities

of interest, and un
over some surprising impli
ations of the model.

Some of our main results are as follows.

Result 1. If the endowed asset is depre
iating over time then the investor should sell immediately.

Conversely, if the mean return is too strong and the 
oe�
ient of relative risk aversion is less than

unity, then the problem is ill-posed, and provided the initial holding of the endowed asset is positive

the value fun
tion is in�nite.

Otherwise, there are two 
ases. For small and positive mean return there exists a �nite 
riti
al

ratio and the optimal sale strategy for the endowed asset is to sell just enough to keep the ratio

of wealth held in the endowed asset to 
ash wealth below this 
riti
al ratio. For larger returns

it is optimal to �rst 
onsume all 
ash wealth, and on
e this 
ash wealth is exhausted to �nan
e


onsumption through sales of the endowed asset.

Result 2. In the 
ase where the 
riti
al ratio is �nite then it is given via the solution of a �rst


rossing problem for a �rst-order initial-value ordinary di�erential equation (ODE). Other quantities

of interest 
an be expressed in terms of the solution of this ODE. In the 
ase where the 
riti
al ratio

is in�nite, the value fun
tion 
an again be expressed in terms of the solution of a �rst-order ODE.

Result 3. We give three sample 
on
lusions from the 
omparative stati
s:

(1) The optimal 
onsumption pro
ess is not monotone in the drift of the endowed asset. Al-

though we might expe
t that the higher the drift, the more the agent would 
onsume, some-

times the agent's 
onsumption is a de
reasing fun
tion of the drift.

(2) The 
ertainty equivalent value of the holdings of the risky asset is not monotone in risk

aversion. For small quantities of endowed asset, the 
ertainty equivalent value is in
reasing

in risk aversion, while for larger quantities, it is de
reasing.

(3) The 
ost of illiquidity (see De�nition 26 below), representing the loss in welfare of the agent

when 
ompared with an otherwise identi
al agent who 
an buy and sell the risky asset with

zero transa
tion 
osts, is a U-shaped fun
tion of the size of the endowment in the risky

asset.

We work with bond as numéraire (so that interest rate e�e
ts 
an be ignored) and then the

relevant parameters are the dis
ount parameter and the relative risk aversion of the agent, and the

drift and volatility of the pri
e pro
ess of the risky asset. In the non-degenerate parameter 
ases the

agent fa
es a 
on�i
t between the in
entive to keep a large holding in the risky asset (sin
e it has a

positive return) and the in
entive to sell in order to minimise risk exposure. From the homotheti


property we expe
t de
isions to depend on the ratio between the value of the holdings of risky asset

and 
ash wealth.

The HJB equation for our problem is se
ond order, non-linear and subje
t to value mat
hing and

smooth �t of the �rst and se
ond derivatives at an unknown free-boundary. One of our 
ontributions

is to show that the problem 
an be redu
ed to a 
rossing problem for the solution of a �rst order

ODE. (Choi et al [2℄ and Her
zegh and Prokaj [11℄ also redu
e the problem to a �rst order ODE, but

ours appears simpler in two ways. First, we have an initial value problem. This is a result of the fa
t
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that we do not allow sales. Se
ond, the ODE itself is simpler to analyse, be
ause the set of 
andidate


rossing points is expressed via a quadrati
 fun
tion (rather than an ellipse or hyperbola as in [2℄.)

This big simpli�
ation (
ompared with [5, 23℄) is useful both when 
onsidering analyti
al properties

of the solution, and when trying to 
onstru
t a solution numeri
ally. We 
lassify the parameter


ombinations whi
h lead to di�erent types of solutions and provide a thorough analysis of the

existen
e and �niteness of the 
riti
al ratio, and the 
orresponding optimal strategies. In the 
ase

of a �nite and positive 
riti
al ratio we show how the solution to the problem 
an be 
hara
terised

by an autonomous one-dimensional di�usion pro
ess with re�e
tion and its lo
al time.

The stru
ture of the paper is as follows. First, we give a pre
ise des
ription of the model and then

a statement of the main results. The HJB equation for the problem is se
ond order and non-linear,

but a 
hange of variable makes the equation homogeneous and then a 
hange of dependent variable

redu
es the order. Hen
e the form of the solution is governed by the solution of a �rst 
rossing

problem of an initial value problem for a �rst order ODE. Even though 
losed-form solutions of

this ODE are not available we 
an provide a 
omplete 
hara
terisation of when the �rst 
rossing

problem has a solution, and given a solution of the �rst 
rossing problem we show how to 
onstru
t

the (
andidate) value fun
tion. There are two types of degenerate solution (in one 
ase it is always

optimal to liquidate all units of the risky asset immediately, and in the other the value fun
tion is

in�nite and the problem is ill-posed). In addition there are two di�erent types of non-degenerate

behaviour (in one 
ase the agent sells units of asset in order to keep the proportion of wealth held

in the risky asset below a 
ertain level, and in the other the agent exhausts all her 
ash reserves

before selling any units of the risky asset.) We give proofs of all the main results, although te
hni
al

details of the veri�
ation arguments are sometimes relegated to the appendi
es.

On
e the analysis of the problem is 
omplete we are in a position to 
onsider the 
omparative

stati
s of the problem. We 
onsider the 
omparative stati
s of the 
riti
al ratio, the value fun
tion,

the optimal 
onsumption, the 
ertainty equivalent value of the portfolio and the 
ost of illiquidity.

3. The model and main results

We work on a �ltered probability spa
e

(
Ω,F ,P, (Ft)t≥0

)
su
h that the �ltration satis�es the

usual 
onditions and is generated by a standard Brownian motion B = (Bt)t≥0. The pri
e pro
ess

Y = (Yt)t≥0 of the endowed asset is assumed to be given by

(3.1) Yt = y0 exp

[(
α−

η2

2

)
t+ ηBt

]
,

where α and η > 0 are the 
onstant mean return and volatility of the non-traded asset, and y0 is

the initial pri
e.

Let C = (Ct)t≥0 denote the 
onsumption rate of the individual and let Θ = (Θt)t≥0 denote the

number of units of the endowed asset held by the investor. The 
onsumption rate is required to be

progressively measurable and non-negative, and the portfolio pro
ess Θ is progressively measurable,

right-
ontinuous with left limits (RCLL), non-negative and non-in
reasing to re�e
t the fa
t that

the non-traded asset is only allowed for sale. We assume the initial number of shares held by the

investor is θ0. Sin
e we allow for an initial transa
tion at time 0 we may have Θ0 < θ0. We write

Θ0− = θ0. This is 
onsistent with our 
onvention that Θ is right-
ontinuous.

We denote by X = (Xt)t≥0 the wealth pro
ess of the individual, and suppose that the initial

wealth is x0 where x0 ≥ 0. Provided the only 
hanges to wealth o

ur from either 
onsumption or

from the sale of the endowed asset, X evolves a

ording to

(3.2) dXt = −Ctdt− YtdΘt,



OPTIMAL CONSUMPTION AND SALE STRATEGIES FOR A RISK AVERSE AGENT 6

subje
t to X0− = x0, and X0 = x0 + y0(θ0 − Θ0). We say a 
onsumption/sale strategy pair is

admissible if the 
omponents satisfy the requirements listed above and if the resulting 
ash wealth

pro
ess X is non-negative for all time. Let A (x0, y0, θ0) denote the set of admissible strategies for

initial setup (X0− = x0, Y0 = y0,Θ0− = θ0).

The obje
tive of the agent is to maximise over admissible strategies the dis
ounted expe
ted

utility of 
onsumption over the in�nite horizon, where the dis
ount fa
tor is β and the utility

fun
tion of the agent is assumed to be CRRA with relative risk aversion R ∈ (0,∞) \ 1. In

parti
ular, the goal is to �nd

(3.3) sup
(C,Θ)∈A(x0,y0,θ0)

E

[
ˆ ∞

0

e−βt
C1−R
t

1−R
dt

]
.

Sin
e the set-up has a Markovian stru
ture, we expe
t the value fun
tion, optimal 
onsumption

and optimal sale strategy to be fun
tions of the 
urrent wealth and endowment of the agent and

of the pri
e of the risky asset. Let V = V (x, y, θ, t) be the forward starting value fun
tion for the

problem so that

(3.4) V (x, y, θ, t) = sup
(C,Θ)∈A(x,y,θ,t)

E

[
ˆ ∞

t

e−βs
C1−R
s

1−R
ds

∣∣∣∣Xt− = x, Yt = y,Θt− = θ

]
.

Here the spa
e of forward starting, admissible strategies A(x, y, θ, t) is su
h that C = (Cs)s≥t is a

non-negative progressively measurable pro
ess, Θ = (Θs)s≥t is a right-
ontinuous, de
reasing and

progressively measurable pro
ess and satis�es Θt− (∆Θ)t = θ, and X given by Xs = x−
´ s

t Cudu−
´

[t,s]
YudΘu is non-negative.

De�ne the 
ertainty equivalent value (see, for example, [12℄) p = p(x, y, θ, t) of the holdings of

the risky asset to be the solution to

(3.5) V (x+ p, y, 0, t) = V (x, y, θ, t).

In fa
t, by the s
alings of the problem it will turn out that p is independent of time (and hen
eforth

we write p = p(x, y, θ)), and depends on the pri
e y of the risky asset and the quantity θ of the

holdings in the risky asset, only through the produ
t yθ.

Our goal is to 
hara
terise the value fun
tion, the optimal 
onsumption and sale strategies, and

the 
ertainty equivalent pri
e p.

The key to the form of the solution to the problem is 
ontained in the following proposition,

whi
h 
on
erns the solution of an ODE on [0, 1) and whi
h is proved in Appendix A. There is a

one-to-one 
orresponden
e between the four 
ases in the proposition and the four types of solution

to the optimal sale problem.

Let ǫ = α/β and δ2 = η2/β.

Proposition 1. For q ∈ [0, 1] de�ne m(q) = 1 − ǫ (1−R) q + δ2

2 R (1−R) q2 and ℓ(q) = 1 +(
δ2

2 − ǫ
)
(1−R)q − δ2

2 (1−R)2q2 = m (q) + q (1− q) δ
2

2 (1−R). Let n = n(q) solve

(3.6) n′(q) = O(q, n(q))

where

(3.7) O(q, n) =
(1−R)

R

n

(1− q)
−
δ2

2

(1−R)2

R

qn

ℓ (q)− n
=

(1 −R)

R

n

(1− q)

m(q)− n

ℓ(q)− n

subje
t to n(0) = 1 and

n′(0)
1−R < ℓ′(0)

1−R = δ2

2 − ǫ. Suppose that if n hits zero, then 0 is absorbing for

n. See Figure 3.1.

For R < 1, let q∗ = inf{q > 0 : n(q) ≤ m(q)}. For R > 1, let q∗ = inf{q > 0 : n(q) ≥ m(q)}.

For j ∈ {ℓ,m, n} let qj = inf{q > 0 : j(q) = 0} ∧ 1.
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Figure 3.1. Stylised plot of m(q), n(q), ℓ(q) and q∗. Parameters are 
hosen to

satisfy the 
onditions in the se
ond 
ase of Proposition 1 so that q∗ ∈ (0, 1). The
left �gure is in the 
ase R < 1 and the right �gure R > 1.

(1) Suppose ǫ ≤ 0. Then q∗ = 0.

(2) Suppose 0 < ǫ < δ2R and if R < 1, suppose in addition that ǫ < δ2

2 R + 1
1−R . Then

0 < q∗ < 1.

(3) Suppose ǫ ≥ δ2R and if R < 1, ǫ < δ2

2 R+ 1
1−R . Then q

∗ = 1 = qℓ = qn = qm.

(4) Suppose R < 1 and ǫ > δ2

2 R + 1
1−R . Then qm < qn = qℓ < 1. If R < 1, ǫ = δ2

2 R + 1
1−R

and ǫ < δ2R then qm < qn = qℓ = 1. If R < 1, ǫ = δ2

2 R + 1
1−R and ǫ ≥ δ2R then

q∗ = 1 = qℓ = qn = qm.

Remark 2. Note that the 
ondition ǫ < δ2R is equivalent to (1 − R)m′(1) > 0. Further, if R < 1,

then the 
ondition ǫ < δ2

2 R+ 1
1−R is equivalent to m(1) > 0. Also, n has a turning point at q∗ < 1

if and only if n(q∗) = m(q∗). See Figure 3.1. In parti
ular, if m is monotone (and ǫ > 0) then

q∗ = 1. Then, if R < 1, 0 < ǫ < δ2R and ǫ < δ2

2 R + 1
1−R , we have qℓ = qn = 1.

Remark 3. It is easy to see that (1−R)n is de
reasing in ǫ. In fa
t it 
an also be shown that over

parameter ranges where 0 < q∗ < 1 then q∗ is in
reasing in ǫ.

Theorem 4 divides the parameter spa
e into the four distin
t regions. In parti
ular, it distin-

guishes the degenerate 
ases, and it gives ne
essary and su�
ient 
onditions for the two di�erent

regimes in the non-degenerate 
ase.

Theorem 4. (1) Suppose ǫ ≤ 0. Then it is always optimal to sell the entire holding of the

endowed asset immediately, so that Θt = 0 for t ≥ 0. The value fun
tion for the problem

is V (x, y, θ, t) = (R/β)Re−βt(x + yθ)1−R/1 − R; and the 
ertainty equivalent value of the

holdings of the asset is p(x, y, θ) = yθ.

(2) Suppose 0 < ǫ < δ2R and ǫ < δ2

2 R + 1
1−R if R < 1. Then there exists a positive and �nite


riti
al ratio z∗ and the optimal behaviour is to sell the smallest possible quantity of the

risky asset whi
h is su�
ient to keep the ratio of wealth in the risky asset to 
ash wealth at

or below the 
riti
al ratio. If θ > 0 then p(x, y, θ) > yθ.
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(3) Suppose ǫ ≥ δ2R and ǫ < δ2

2 R + 1
1−R if R < 1. Then the optimal 
onsumption and

sale strategy is �rst to 
onsume liquid (
ash) wealth, and then when this liquid wealth is

exhausted, to �nan
e further 
onsumption from sales of the illiquid asset. If θ > 0 then

p(x, y, θ) > yθ.

(4) Suppose R < 1 and ǫ ≥ δ2

2 R+ 1
1−R . Then the problem is ill-posed, and provided θ is positive,

the value fun
tion V = V (x, y, θ, t) is in�nite. There is no unique optimal strategy, and the


ertainty equivalent value p is not de�ned.

Remark 5. In light of Proposition 1 there is one fewer 
ase for R > 1. The fourth 
ase in the theorem

does not happen for R > 1 sin
e the value fun
tion is always �nite, as in Merton's problem.

Similarly, when R < 1, if δ2 ≥ 2/(R(1−R)) then the third 
ase above does not happen. In that


ase, as ǫ in
reases we move dire
tly from ǫ < δ2

2 R + 1
1−R and a �nite value fun
tion and z∗ to

ǫ ≥ δ2

2 R+ 1
1−R and an in�nite value fun
tion.

Remark 6. In their more general model with transa
tion 
osts Choi et al [2℄ show that if R < 1

and ǫ ≥ δ2R
2 + 1

1−R then the problem is ill-posed, so the �nal part of the theorem is a 
orollary of

[2, Theorem 2.6℄

The se
ond and third 
ases above are non-degenerate and they are further 
hara
terised in

Theorem 7 and Theorem 10. In Theorem 7 the solution is expressed in terms of a one-dimensional

autonomous re�e
ting sto
hasti
 pro
ess J and its lo
al time at zero L, see (3.14).

For 0 ≤ q ≤ q∗ de�ne N(q) = n(q)−R(1− q)R−1
where n is the solution to (3.6). Assuming that

N is monotoni
, let W be inverse to N . Let h∗ = N(q∗). Then W (h∗) = q∗, and h∗(1 − q∗)1−R =

m(q∗)−R.

Theorem 7. i) Suppose R < 1. Suppose 0 < ǫ < δ2R and ǫ < δ2

2 R + 1
1−R so that 0 < q∗ < 1.

Then N as de�ned above is in
reasing, and W is well de�ned.

Let z∗ be given by

(3.8) z∗ = (1 − q∗)−1 − 1 =
q∗

1− q∗
∈ (0,∞).

On [1, h∗] let h be the solution of

(3.9) u∗ − u =

ˆ h∗

h

1

(1−R)fW (f)
df,

where u∗ = ln z∗. Let g be given by

(3.10) g (z) =





(
R
β

)R
m(q∗)−R (1 + z)1−R

(
R
β

)R
h (ln z)

z ∈ [z∗,∞);

z ∈ (0, z∗].

Then, the value fun
tion V is given by

(3.11) V (x, y, θ, t) = e−βt
x1−R

1−R
g

(
yθ

x

)
, x > 0, θ > 0

and we 
an extend this to x = 0 and θ = 0 by 
ontinuity to give

V (x, y, 0, t) = e−βt
x1−R

1−R

(
R

β

)R
(3.12)

V (0, y, θ, t) = e−βt
y1−Rθ1−R

1−R

(
R

β

)R
m(q∗)−R(3.13)

Fix z0 = y0θ0/x0. Let (J, L) = (Jt, Lt)t≥0 be the unique pair su
h that
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(a) J is positive,

(b) L is in
reasing, 
ontinuous, L0 = 0, and dLt is 
arried by the set {t : Jt = 0},

(
) J solves

(3.14) Jt = (z∗ − z0)
+ −

ˆ t

0

Λ̃(Js)ds−

ˆ t

0

Γ̃(Js)dBs + Lt,

where Λ(z) = αz + z
(
g(z)− 1

1−Rzg
′(z)

)−1/R

, Γ(z) = ηz, Λ̃(j) = Λ(z∗ − j) and Γ̃(j) =

Γ(z∗ − j).

For su
h a pair 0 ≤ Jt ≤ z∗.

If z0 ≤ z∗ then set Θ∗
0 = θ0 and X∗

0 = x0; else if z0 > z∗ then set

Θ∗
0 = θ0

z∗

(1 + z∗)

(1 + z0)

z0

and X∗
0 = x0+ y0(θ0−Θ0). This 
orresponds to the sale of a positive quantity θ0−Θ0 of units

of the endowed asset at time 0.

Then, the optimal holdings Θ∗
t of the endowed asset, the optimal 
onsumption pro
ess C∗

t =

C(X∗
t , Yt,Θ

∗
t ), the resulting wealth pro
ess and the 
ertainty equivalent value are given by

Θ∗
t = Θ∗

0 exp

{
−

1

z∗(1 + z∗)
Lt

}
;(3.15)

X∗
t =

YtΘ
∗
t

(z∗ − Jt)
;(3.16)

C(x, y, θ) = x

[
g

(
yθ

x

)
−

1

1− R

yθ

x
g′
(
yθ

x

)]− 1
R

;(3.17)

p(x, y, θ) = x



g
(
yθ
x

)

g(0)




1
1−R

− x.(3.18)

ii) Now suppose R > 1 and 0 < ǫ < δ2R so that 0 < q∗ < 1. Let all quantities be de�ned as before.

Then N is de
reasing. On (h∗, 1) h is de�ned via

u∗ − u =

ˆ h

h∗

1

(R− 1)fW (f)
df.

The value fun
tion, the optimal holdings Θ∗
, the optimal 
onsumption pro
ess C∗

, the resulting

wealth pro
ess X∗
and the 
ertainty equivalent value p are the same as before.

Remark 8. Re
all that n solves the �rst order di�erential equation (3.6), and q∗ ∈ (0, 1) is the

solution of a �rst 
rossing problem for n. On
e we have 
onstru
ted n and determined q∗, numeri-


ally if appropriate, expressions for all other quantities 
an be derived by solving a further integral

equation, whi
h 
an be re-expressed as a �rst order di�erential equation. This two-stage pro
edure

is signi�
antly simpler than solving the HJB equation dire
tly, as this equation is se
ond order and

non-linear, and subje
t to se
ond-order smooth �t at an unknown free boundary.

Remark 9. In the 
orresponding Merton problem for the un
onstrained agent who may both buy

and sell the risky asset at zero transa
tion 
ost, optimal behaviour for the agent is to hold a

�xed proportion qM = α/η2R = ǫ/δ2R of total wealth in the risky asset. This 
orresponds to

keeping Qt := YtΘt/(Xt + YtΘt) equal to the 
onstant qM or equivalently Zt = YtΘt/Xt equal to

zM := qM/(1−qM ) = ǫ/(δ2R−ǫ). In Lemma 27 below we show that if ǫ > 0 then q∗ > ǫ/δ2R = qM

so that optimal behaviour for the agent who 
annot buy units of the risky asset is to keep the ratio

of money invested in the risky asset to 
ash wealth in in interval [0, q∗] where qM ∈ (0, q∗).
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The following theorem 
hara
terises the solution to the problem in the se
ond non-degenerate


ase (the third 
ase in Theorem 4). In this 
ase, the optimal strategy is to �rst hold the endowed

asset and �nan
e 
onsumption with initial wealth. When liquid wealth is exhausted, 
onsumption

is further �nan
ed by the sale of endowed asset. Here, the 
riti
al threshold z∗ = ∞.

Theorem 10. Suppose ǫ ≥ δ2R and if R < 1, ǫ < δ2

2 R+ 1
1−R .

Let n solve (3.6) on [0, 1]. Then for the given parameter 
ombinations we have q∗ = 1. As in

Theorem 7, let N(q) = n(q)−R(1− q)R−1
. Then N is monotoni
.

Let W be inverse to N . For R < 1 de�ne γ : (1,∞) 7→ R by

(3.19) γ(v) =
ln v

1−R
+

R

1−R
lnm(1)−

1

1−R

ˆ ∞

v

(1−W (s))

sW (s)
ds.

If R > 1 de�ne γ : (0, 1) 7→ R by

(3.20) γ(v) = −
ln v

R− 1
−

R

R− 1
lnm(1)−

1

R− 1

ˆ v

0

(1−W (s))

sW (s)
ds.

Let h be inverse to γ and let g(z) = (R/β)Rh(ln z).

Then, the value fun
tion V is given by

(3.21) V (x, y, θ, t) = e−βt
x1−R

1−R
g

(
yθ

x

)
, x > 0, θ > 0

whi
h 
an be extended by 
ontinuity to give

V (x, y, 0, t) = e−βt
x1−R

1−R

(
R

β

)R
,(3.22)

V (0, y, θ, t) = e−βt
y1−Rθ1−R

1−R

(
R

β

)R
m(1)−R.(3.23)

The optimal 
onsumption pro
ess C∗
is given by C∗

t = C(X∗
t , Yt,Θ

∗
t ) where C(x, y, θ) is as in

(3.17) and the optimal holdings Θ∗
t of the endowed asset and the resulting wealth pro
ess are given

by

(3.24) Θ∗
t =

{
θ0 t ≤ τ

θ0e
− β

R
m(1)(t−τ) t > τ

, X∗
t =

{
x0 −

´ t

0
C(X∗

s , Ys, θ0)ds t ≤ τ

0 t > τ
,

where τ = inf{t ≥ 0 : X∗
t = 0}. Finally the 
ertainty equivalent value is given by (3.18).

Remark 11. Note that limz↑∞
1
z (g(z) −

zg′(z)
1−R )−1/R = βm(1)/R and hen
e by 
ontinuity we may

set C(0, y, θ) = yθβm(1)/R. Then for t > τ we have that

C∗
t = C(0, Yt,Θ

∗
t ) =

β

R
m(1)YtΘ

∗
t .

4. Heuristi
s

The goal is to solve for the value fun
tion V = V (x, y, θ, t) as in (3.4). From the s
alings of the

problem we expe
t that we 
an write

V (x, y, θ, t) = e−βt
x1−R

1−R
g

(
yθ

x

)

where the key variable is the ratio z = yθ/x of wealth held in the risky asset to 
ash wealth. Note

that if θ = 0 then the problem is purely deterministi
, the optimal strategy is to 
onsume a 
onstant

fra
tion of wealth per unit time, and the value fun
tion is su
h that g(0) = (R/β)R.

Further, we expe
t that the no-transa
tion region will be a wedge 0 ≤ yθ ≤ z∗x and that for

Y0Θ0− > z∗X0− the optimal sale strategy in
ludes an immediate sale to bring the ratio of risky
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wealth to 
ash wealth below z∗. In parti
ular, if Y0 = y and if the initial portfolio (X0− = x,Θ0− =

θ) is su
h that yθ > xz∗ then we sell φ = −(∆Θ)0 units of the risky asset where φ = θ− z∗

1+z∗
x+yθ
y0

so that (re
all Θ is right 
ontinuous so that Θ0+ = Θ0)

yΘ0

X0
=
y(θ − φ)

x0 + y0φ
= z∗.

This should not 
hange the value fun
tion and we 
on
lude: for yθ > xz∗

x1−Rg

(
yθ

x

)
= (x+ yφ)1−Rg(z∗) =

(x + yθ)1−R

(1 + z∗)1−R
g(z∗),

or equivalently g(z) = (Rβ )
RA(1 + z)1−R for z > z∗ where A = ( βR )

R g(z∗)
(1+z∗)1−R .

We expe
t that

ˆ t

0

e−βs
C1−R
s

1−R
ds+ V (Xt, Yt,Θt, t)

will be a supermartingale in general and a martingale under the optimal strategy. Applying It�'s

formula, and optimising over Ct and Θt we �nd the Hamilton-Ja
obi-Bellman equation is a (se
ond

order, semi-linear) di�erential equation for g in the no-transa
tion region:

(4.1) 0 =
R

1−R

(
g −

zg′(z)

1−R

)1−1/R

− β
g

1−R
+ µ

zg′(z)

1−R
+
η2

2

z2g′′

1−R
z ≤ z∗.

Finally, we expe
t that there will be value mat
hing and se
ond-order smooth �t at the free bound-

ary.

In analysing the problem our �rst goal is to solve (4.1). The equation in the no-transa
tion region


an be simpli�ed by setting z = eu and h(u) = h(ez) = ( βR )
Rg(z). Then h(−∞) = 1, h′(−∞) = 0

and h solves a (se
ond-order, non-linear) autonomous equation (with no u-dependen
e):

0 =

(
h−

h′

1−R

)1−1/R

− h+

(
ǫ−

δ2

2

)
h′ +

δ2

2
h′′.

This equation 
an be simpli�ed by setting

dh
du = w(h) so that

d2h
du2 = h′′ = w′(h)w(h). After the

transformations we �nd that w solves (5.8) below. In parti
ular w solves a �rst-order equation,

with w(1) = 0.

Various further transformations do not redu
e the order of the problem, but rather simplify

the problem signi�
antly in appearan
e, and improve our ability to interpret the solution. Set

W (h) = (1−R)hw(h), N =W−1
and �nally n(q) = N(q)−1/R(1− q)1−1/R

. Then (at least for the

range of problems we 
onsider) 0 ≤ W ≤ 1, so that N and n are de�ned on [0, 1] and n solves the

linear �rst order equation (3.6) subje
t to n(0) = 1.

The advantage of swit
hing to n be
omes apparent when we 
onsider the solution outside the

no-transa
tion region. For z ≥ z∗, g(z) = (Rβ )
RA(1 + z)1−R for A to be determined. Then using

the same transformations we �nd that for h ≥ h∗ = A(1 + z∗)1−R we have h(u) = ( βR )
Rg(eu) =

A(1 + eu)1−R and

w(h) =
dh

du
= (1 −R)h

eu

1 + eu
= (1−R)h

(h/A)1/(1−R) − 1

(h/A)1/(1−R)
.

It follows that for h > h∗,W (h) = 1−(A/h)1/(1−R)
and for q > q̃∗ :=W (h∗), N(q) = A(1−q)−(1−R)

and n(q) = A−1/R
whi
h is a 
onstant.

Se
ond order smooth �t of g 
orresponds to �rst order smooth �t of w (andW , N and n). Hen
e

we are looking for a solution n and free boundary q∗ su
h that n ∈ C1
and n′ = 0 at q = q̃∗.

However, the pla
es in (q, n) spa
e where n′ = 0 are exa
tly the points on the 
urve (q,m(q)) where
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m is the quadrati
 fun
tion of q given in the statement of Proposition 1. Hen
e the free boundary

problem be
omes a �rst 
rossing problem for n, and q̃∗ = q∗, the �rst 
rossing point by n of m.

Suppose 0 < R < 1. (The analysis for R > 1 is similar, but sometimes the inequalities and

monotoni
ities are reversed.) It is 
lear from the form of the di�erential equation for n that if

n(q̂) ∈ (0, ℓ(q̂)) for some q̂ ∈ (0, 1) then n(q) < ℓ(q) on [q̂, 1 ∧ qℓ), where qℓ is the �rst time that ℓ

hits zero. Further, n is de
reasing at q if n(q) ∈ (m(q), ℓ(q)). By the above arguments A = n(q∗)−R

and by 
onstru
tion

q∗ =W (h∗) =
w(h∗)

(1−R)h∗
= 1−

(
A

h∗

)1/(1−R)

= 1−
1

(1 + z∗)
.

In parti
ular, we 
an read o� the limits of the no-transa
tion region and the value fun
tion outside

the no-transa
tion region dire
tly from the solution of the �rst 
rossing problem for n; z∗ = q∗

1−q∗

and g(z) = (Rβ )
Rn(q∗)−R(1 + z)1−R for z ≥ z∗. This simpli�es many of the 
omparative stati
s

for the problem signi�
antly. Finally, given h∗ and q∗ we 
an solve for h and hen
e g and V via

w(h) = dh
du or equivalently (3.9).

4.1. Relationship with Choi et al. In a re
ent paper, Choi et al [2℄ 
onsider the �nite transa
tion


ost version of the problem we dis
uss here. Their results 
an be spe
ialized to our problem.

Conversely our approa
h as des
ribed above extends to the 
ase of transa
tion 
osts; the main


hange is that instead of solving a �rst order equation for n started at n(0) = 1 we need to �nd a

solution for n whi
h starts and ends on the 
urve (q,m(q)). One unimportant distin
tion between

this paper and [2℄ is that we insist that X ≥ 0 whereas Choi et al work in the solven
y region

whereby agents are allowed negative 
ash wealth, provided any borrownings 
an be 
overed by the

sale of the risky asset, net of any transa
tion 
osts. In our 
ase the stronger requirement X ≥ 0 is

not unnatural, and does have the advantage of simplifying the analysis, in that some of the singular


ases dis
ussed in [2℄ do not o

ur. Instead we have the results in Theorem 10.

In their more 
ompli
ated problem with an extra parameter 
orresponding to the round-trip

transa
tion 
ost, Choi et al [2℄ 
on
entrate on deriving the form of the value fun
tion, and delimiting

the various parameter regimes under whi
h the solution takes di�erent forms. They �nd some very

interesting results 
on
erning how the solution 
hanges within the di�erent regimes. In our simpler

problem when the risky asset 
an be sold but not bought, we prove a similar set of results. The

innovation in our paper is that we dis
uss in detail the 
omparative stati
s.

The solution approa
h in Choi et al is di�erent to that proposed here in that the approa
h is

via the dual problem and shadow pri
es. In 
ontrast our approa
h is 
lassi
al and is based on


onsideration of the HJB equation for the value fun
tion. In prin
iple, the two formulations should

be equivalent, and one is a re-parametrisation of the other, and one or other approa
h in a given

appli
ation may lead to a more dire
t solution or an easier veri�
ation. But, our belief is that our

�nal problem, as expressed as a �rst 
rossing problem for the solution of a �rst order di�erential

equation is simpler, at least in appearan
e, than that in [2℄, and this remains the 
ase, both when

our approa
h is extended to �nite transa
tion 
osts, and when their method is spe
ialised to allow

sales but not pur
hases. (It may be the 
ase that the sour
e of this apparent simpli�
ation is the

extra e�ort we expend after the order redu
tion i.e. after 
hanging the dependent variable from u

to h. In parti
ular, the transformation from w to n leads to an equation whi
h is mu
h simpler to

interpret. Choi et al [2℄ make a similar order redu
ing transformation, but then pro
eed dire
tly

from the resulting equation.)
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Choi et al [2, Se
tion 5℄ redu
e the problem

1

to solving

s′(p) =
P (p, s)

Q(p, s)

where P is a polynomial in s and p whi
h is quadrati
 in both p and s and Q is a polynomial whi
h

is quadrati
 in p and linear in s. In Choi et al's method the 
andidate lo
ations of the smooth-�t

points are the solutions to P (p, s) = 0 whi
h are points on an ellipse, or on a hyperbola. In 
ontrast,

in our formulation the 
andidate lo
ations of the smooth �t points lie on the quadrati
 m. Further,

in our formulation, and as des
ribed above, the value fun
tion outside the no-transa
tion region

and the lo
ation of the free boundary 
an be inferred dire
tly from the solution of the �rst 
rossing

problem for n. Finally, we note that in a 
losing remark Choi et al [2, Remark 6.15℄ state that

they are unable to give a dire
t argument for the monotoni
ity of one of the important quantities

of interest. In our spe
i�
ation, this monotoni
ity is easy to prove.

5. Proofs and verifi
ation arguments

For F = F (x, y, θ, t) ∈ C1,2,1,1
su
h that Fx > 0 de�ne operators L and M by

LF = sup
c>0

{
e−βt

c1−R

1−R
− cFx

}
+ αyFy + Ft +

1

2
η2y2Fyy

=
R

1−R
e−

β
R
tF 1−1/R
x + αyFy + Ft +

1

2
η2y2Fyy,

MF = Fθ − yFx.

Remark 12. The state spa
e of (Xt, Yt,Θt, t) is [0,∞)× (0,∞) × [0,∞) × [0,∞), and we want to

de�ne L and M on this region in
luding at the boundary. In pra
ti
e, all the fun
tions to whi
h

we apply the operators are of the form F (x, y, θ, t) = e−βtF (x, y, θ) for some fun
tion F whi
h is

independent of t in whi
h 
ase Ft = −βF , and this latter form is well de�ned at t = 0. Also, we

typi
ally need MF only for θ > 0. Then, given F de�ned for x > 0 we 
an de�ne F at x = 0 by


ontinuity, and then MF |x=0 is also well de�ned. LF at θ = 0 
an be de�ned similarly, by �rst

de�ning F at θ = 0 by 
ontinuity. In order to de�ne LF at x = 0 for θ > 0 we extend the domain

of F to x > −θy and then show that Fx and the other derivatives of F are 
ontinuous a
ross x = 0

with this extension.

5.1. The Veri�
ation Lemma in the 
ase of a depre
iating asset. Suppose ǫ ≤ 0. Our goal

is to show that the 
on
lusions of Theorem 4(1) hold.

From Proposition 1 we know q∗ = 0. De�ne the 
andidate value fun
tion via

(5.1) G(x, y, θ, t) = e−βt
(
R

β

)R
(x + yθ)1−R

1−R
x ≥ 0, θ ≥ 0.

The 
andidate optimal strategy is to sell all units of the risky asset immediately. The domain of G


an be extended to −θy < x < 0 for θ > 0, using the same fun
tional form as in (5.1).

Prior to the proof of the theorem, we need the following lemma.

Lemma 13. Suppose ǫ ≤ 0. Consider the 
andidate value fun
tion 
onstru
ted in (5.1). Then on

(x ≥ 0, θ > 0) we have MG = 0, and on (x ≥ 0, θ ≥ 0) we have LG ≤ 0 with equality at θ = 0.

1

The methodologies of Kallsen and Muhle-Karbe [16℄, Her
zegh and Prokaj [11℄ and Choi et al [2℄ all lead to a

di�erential equation whi
h must be solved. In [16, Equation (3.13)℄ this is expressed as a semi-linear se
ond order

equation f ′′ = LKM (f, f ′) where LKM is a polynomial of third order in f ′
with 
o-e�
ients whi
h are ratios of linear

fun
tions of ef . In [11, Equation (55)℄ the problem is redu
ed to a �rst order di�erential equation f ′ = LHP (x, f)
where LHP is 
ubi
 in f with 
o-e�
ients whi
h are rational fun
tions of x.
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Proof. Given the form of the 
andidate value fun
tion in (5.1), we have

MG = e−βt
(
R

β

)R
y(x+ yθ)−R − e−βt

(
R

β

)R
y(x+ yθ)−R = 0.

On the other hand, writing z = yθ/x, provided x > 0

LG = β

(
R

β

)R
e−βt

(x+ yθ)1−R

1−R

[
ǫ(1−R)

z

1 + z
−

1

2
δ2R(1−R)

(
z

1 + z

)2
]
≤ 0,

with equality at z = 0. If x = 0 then LG = βG(1 −R)[ǫ− δ2R
2 ] < 0. �

Theorem 14. Suppose ǫ ≤ 0. Then the value fun
tion is

(5.2) V (x, y, θ, t) = e−βt
(
R

β

)R
(x + yθ)1−R

1−R
,

and the optimal holdings Θ∗
t of the endowed asset, the optimal 
onsumption pro
ess C∗

t and the

resulting wealth pro
ess are given by

(5.3) (△Θ∗)t=0 = −θ0, C∗
t =

β

R
(x0 + y0θ0)e

− β
R
t, X∗

t = (x0 + y0θ0)e
− β

R
t.

Proof. Note that 
andidate optimal strategy given in (5.3) is to sell the entire holding of the risky

asset at time zero (whi
h gives X∗
0 = x0 + y0θ0) and thereafter to �nan
e 
onsumption from liquid

wealth, when
e the wealth pro
ess (X∗
t )t≥0 is deterministi
 and evolves as dX∗

t = −C∗
t dt. This

gives X∗
t = (x0 + y0θ0)e

− β
R
t
. It follows that the 
andidate optimal strategy is admissible.

The value fun
tion under the strategy proposed in (5.3) is

E

[
ˆ ∞

0

e−βt
C∗
t
1−R

1−R
dt

]
=

ˆ ∞

0

e−βt
(
β

R

)1−R
(
e−

β
R
t(x0 + y0θ0)

)1−R

1−R
dt

=

(
R

β

)R
(x0 + y0θ0)

1−R

1−R
= G(x0, y0, θ0, 0).

Hen
e V ≥ G.

Now, 
onsider general admissible strategies. Suppose �rst that R < 1. De�ne the pro
ess

M = (Mt)t≥0 by

(5.4) Mt =

ˆ t

0

e−βs
C1−R
s

1−R
ds+G (Xt, Yt,Θt, t) .

Applying the generalised It�'s formula [9, Se
tion 4.7℄ toMt and suppressing the argument (Xs−, Ys,Θs−, s)

in derivatives of G, leads to

Mt −M0 =

ˆ t

0

[
e−βs

C1−R
s

1−R
− CsGx + αYsGy +

1

2
η2Y 2

s Gyy +Gs

]
ds

+

ˆ t

0

(Gθ − YsGx)dΘs

+
∑

0≤s≤t
[G(Xs, Ys,Θs, s)−G(Xs−, Ys−,Θs−, s)−Gx(△X)s −Gθ(△Θ)s](5.5)

+

ˆ t

0

ηYsGydBs

= N1
t +N2

t +N3
t +N4

t .

(Note that in the sum we allow for a portfolio rebalan
ing at s = 0.)
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Lemma 13 implies that LG ≤ 0 and MG = 0, whi
h leads to N1
t ≤ 0 and N2

t = 0. Using the

fa
t that (∆X)s = −Ys(∆Θ)s and writing θ = Θs−, x = Xs−, χ = −(∆Θ)s ea
h non-zero jump in

N3
is of the form

(∆N3)s = G(x + yχ, y, θ − χ, s)−G(x, y, θ, s) + χ [Gθ(x, y, θ, s)− yGx(x, y, θ, s)] .

Given the form of the 
andidate value fun
tion in (5.1), it is easy to see that ψ(φ) = G(x+yφ, y, θ−

φ, s) is 
onstant in φ, whi
h gives ψ(χ) = ψ(0) and yGx = Gθ when
e (∆N3) = 0. Then, sin
e

R < 1, we have 0 ≤Mt ≤M0 +N4
t , and the lo
al martingale N4

t is bounded from below and hen
e

a supermartingale. Taking expe
tations we �nd E(Mt) ≤M0 = G(x0, y0, θ0, 0), whi
h gives

(5.6) G(x0, y0, θ0, 0) ≥ E

ˆ t

0

e−βs
Cs

1−R

1−R
ds+ EG(Xt, Yt,Θt, t) ≥ E

ˆ t

0

e−βs
Cs

1−R

1−R
ds,

where the last inequality follows sin
e G(Xt, Yt,Θt, t) ≥ 0 for R ∈ (0, 1). Letting t → ∞ in (5.6)

leads to

G(x0, y0, θ0, 0) ≥ E

ˆ ∞

0

e−βt
Ct

1−R

1−R
dt,

and taking a supremum over admissible strategies leads to G ≥ V .

The 
ase R > 1 is 
onsidered in the Appendix C.

�

5.2. Proof in the ill-posed 
ase of Theorem 4. Re
all we are in the 
ase where R < 1 and

ǫ ≥ δ2R/2 + 1/(1−R).

It is su�
ient to give an example of an admissible strategy when θ > 0 for whi
h the expe
ted

utility of 
onsumption is in�nite. Note that V (x, y, 0, t) = e−βtx1−RRRβ−R/(1 − R) so that the

value fun
tion is not 
ontinuous at θ = 0.

Consider a 
onsumption and sale strategy pair ((C̃)t≥0, (Θ̃)t≥0), given by

(5.7)

Θ̃t = Θ̃t(φ) = e−φtθ0, C̃t = C̃t(φ) = φYtΘ̃t = φy0θ0 exp
{
β(ǫ − δ2/2− φ/β)t+ δ

√
βBt

}
,

where φ is some positive 
onstant.

Note �rst that that su
h strategies are admissible sin
e the 
orresponding wealth pro
ess satis�es

dX̃t = −φYtΘ̃tdt+ YtdΘ̃t = 0, and hen
e (X̃t)t≥0 = x0 > 0. In parti
ular, 
onsumption is �nan
ed

by the sale of the endowed asset only.

The expe
ted dis
ounted utility from 
onsumption G̃ = G̃(φ) 
orresponding to the 
onsumption

and sale pro
esses (C̃, Θ̃) is given by

G̃ = E

[
ˆ ∞

0

e−βt
C̃1−R
t

1−R
dt

]

=
(φy0θ0)

1−R

1−R
E

[
ˆ ∞

0

exp

{
β

[
(1−R)

(
ǫ−

δ2

2
−
φ

β

)
− 1

]
t+ (1−R)δ

√
βBt

}
dt

]

=
(φy0θ0)

1−R

1−R

ˆ ∞

0

exp

{
β(1 −R)

[(
ǫ−

δ2R

2
−

1

1−R

)
−
φ

β

]
t

}
dt

Suppose �rst that ǫ > δ2R/2+1/(1−R). Then for λ ∈ (0, 1) and φ = λβ(ǫ− δ2R/2−1/(1−R))

we have (
ǫ−

δ2R

2
−

1

1−R

)
−
φ

β
= (1− λ)

(
ǫ−

δ2R

2
−

1

1−R

)
> 0,

and G̃ is in�nite.
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Now suppose that ǫ = δ2R/2 + 1/(1−R). Then

G̃(φ) =
(φy0θ0)

1−R

(1−R)

1

φ(1 −R)
= φ−R

(y0θ0)
1−R

(1−R)2

and G̃(φ) ↑ ∞ as φ ↓ 0.

5.3. The Veri�
ation Lemma in the �rst non-degenerate 
ase with �nite 
riti
al exer
ise

ratio. Suppose 0 < ǫ < δ2R and if R < 1, ǫ < δ2

2 R+ 1
1−R . From Proposition 1 we know 0 < q∗ < 1.

Re
all the de�nition N(q) = n(q)−R(1−q)R−1
and thatW is inverse to N . We have h∗ = N(q∗).

Proposition 15. (1) For R < 1, N is in
reasing on [0, q∗]. W is in
reasing and 0 < W (v) <

q∗ on (1, h∗). For R > 1, N is de
reasing on [0, q∗]. W is de
reasing and 0 < W (v) < q∗

on (h∗, 1).

(2) Let w(v) = v(1 −R)W (v). Then w solves

(5.8)

δ2

2
w(v)w′(v) − v +

(
ǫ−

δ2

2

)
w(v) +

(
v −

w(v)

1−R

)1−1/R

= 0.

(3) For R < 1 and 1 < v < h∗, and for R > 1 and h∗ < v < 1 we have w′(v) < 1−Rw(v)/((1−

R)v) with w′(h∗) = 1−Rw(h∗)/((1−R)h∗).

The proof of Proposition 15 is given in the appendix.

Now de�ne h on [1, h∗) by dh
du = w(h) = (1 − R)hW (h) subje
t to h(u∗) = h∗. Then h solves

(3.9) and w′(h)w(h) = d2h
du2 . Let g(z) = (Rβ )

Rh(ln z). Then g solves (3.10).

Lemma 16. Let m(q∗)−R, z∗ and g be as given in Equations (3.8) and (3.10) of Theorem 7. Then,

g (z), g′ (z), g′′ (z) are 
ontinuous at z = z∗.

Proof. We have

g(z∗+) =

(
R

β

)R
h∗(1 − q∗)1−R (1 + z∗)1−R =

(
R

β

)R
h∗ =

(
R

β

)R
h(u∗) = g(z∗−).

For the �rst derivative we have for z > z∗,

zg′(z) = (1 −R)

(
zg(z)

1 + z

)

and then sin
e

z∗

1+z∗ = q∗, z∗g′(z∗) = (1 − R)
(
R
β

)R
h∗q∗. Meanwhile, for z < z∗, and noting that

dh
du = h(1 −R)W (h) = w(h),

zg′(z) =

(
R

β

)R
h′(u) =

(
R

β

)R
w(h)

so that z∗g′(z∗−) =
(
R
β

)R
w(h∗) and the result follows from the substitution w(h∗) = (1 −

R)h∗W (h∗) = (1−R)h∗q∗.

Finally, for z > z∗

(5.9) z2g′′(z) = −R(1−R)

(
R

β

)R
m(q∗)−R(1 + z)1−R

(
z

1 + z

)2

= −R(1−R)g(z)

(
z

1 + z

)2

and (z∗)2g′′(z∗+) = −R(1−R)g(z∗)(q∗)2. For z < z∗,

(5.10) z2g′′(z) =

(
R

β

)R
(h′′ − h′) =

(
R

β

)R
(w′(h)− 1)w(h)

and at z∗, (z∗)2g′′(z∗−) = −R(1−R)
(
R
β

)R
h∗(q∗)2 where we use Proposition 15 (3). �
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Proposition 17. Suppose g (z) solves (3.10). Then for R < 1, g is an in
reasing 
on
ave fun
tion

su
h that g(0) = (Rβ )
R
. Otherwise, for R > 1, g is a de
reasing 
onvex fun
tion su
h that g(0) =

(R/β)R and g(z) ≥ 0. Further, for all values of R we have that 0 ≥ Rg′(z)2 + (1 − R)g(z)g′′(z)

with equality for z ≥ z∗.

Proof. Consider �rst R < 1. Sin
e the statements are immediate in the region z ≥ z∗, and sin
e

there is se
ond order smooth �t at z∗ the result will follow if h(−∞) = 1, h is in
reasing and, using

(5.10), w(h)w′(h) − w(h) ≤ 0. The last two properties follow from Proposition 15 sin
e w(h) ≥ 0

and w′(h) < 1.

To evaluate h(−∞) note that

u∗ − u =

ˆ h∗

h(u)

df

(1−R)fW (f)
=

ˆ q∗

W (h(u))

N ′(q)

(1−R)N(q)q
dq =

ˆ q∗

W (h(u))

δ2

2 (1−R)

ℓ(q)− n(q)
dq.

We have that ℓ(q)− n(q) is bounded away from zero when q is bounded away from zero. Further,

near q = 0 we have ℓ(q) − n(q) ∼ Cq for some positive 
onstant C = ℓ′(0) − n′(0+). Hen
e

W (h(−∞)) = 0 and h(−∞) = 1, sin
e W (1) = 0.

For R > 1, and z ≥ z∗, the statement holds immediately. For z ≤ z∗, Proposition 15 implies

that h is de
reasing and w(h) ≤ 0, w′(h) < 1. Together with (5.10), we have g is a de
reasing


onvex fun
tion and g(z) ≥ 0 given that h ∈ [0, 1].

For the �nal statement of the proposition, for z ≥ z∗ the result follows immediately, whereas for

z < z∗

(1−R)gg′′z2 +R(zg′)2 =

(
R

β

)2R [
(1−R)hw(h)[w′(h)− 1] +Rw(h)2

]
≤ 0

where the �nal inequality follows from Proposition 15(3), noting that (1−R)w(h) ≥ 0.

�

De�ne the 
andidate value fun
tion via

(5.11) G(x, y, θ, t) = e−βt
x1−R

1−R
g

(
yθ

x

)
x > 0, θ > 0;

and extend to x ≤ 0 and θ = 0 using the formulae

G(x, y, θ, t) = e−βt
(x+ yθ)1−R

1−R
m(q∗)−R − θy < x ≤ 0, θ > 0;(5.12)

G(x, y, 0, t) = e−βt
x1−R

1−R

(
R

β

)R
x ≥ 0, θ = 0.(5.13)

Lemma 18. Fix y and t. Then G = G(x, θ) is 
on
ave in x and θ on [0,∞)× [0,∞). In parti
ular,

if ψ(χ) = G(x− χyφ, y, θ + χφ, t), then ψ is 
on
ave in χ.

Proof. Consider �rst R < 1. In order to show the 
on
avity of the 
andidate value fun
tion it is

su�
ient to show that G(x, 0) is 
on
ave in x, G(0, θ) is 
on
ave in θ and that the Hessian matrix

given by

HG =

(
Gxx Gxθ
Gxθ Gθθ

)
.

has a positive determinant, and that one of the diagonal entries is non-positive. The 
onditions on

G(x, 0) and G(0, θ) are trivial to verify.
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Dire
t 
omputation leads to

Gxx (x, y, θ, y) = e−βtx−R−1

[
−Rg (z) +

2R

1−R
zg′ (z) +

1

1−R
z2g′′ (z)

]
,

Gxθ (x, y, θ, t) = −e−βtx−R−1 y

1−R
[Rg′ (z) + zg′′ (z)] ,

Gθθ (x, y, θ, t) = e−βtx−R−1 y2

1−R
g′′ (z) ,

and the determinant of the Hessian matrix is

(5.14) GxxGθθ − (Gxθ)
2
= −e−2βtx−2Rθ−2 R

(1−R)2

[
(1−R)g (z) z2g′′ (z) +R (zg′ (z))

2
]

whi
h is non-negative by Proposition 17. Further, sin
e g is 
on
ave we have that Gθθ ≤ 0.

In order to show the 
on
avity of ψ in χ, it is equivalent to examine the sign of

d2ψ
dχ2 . But

d2ψ

dχ2
= φ2

[
y2Gxx +Gθθ − 2yGxθ

]
= φ2(y, 1) det(HG)(y, 1)

T ≤ 0.

For R > 1 the argument is similar, ex
ept that Gθθ ≤ 0 is now implied by the 
onvexity of g. �

Lemma 19. Consider the 
andidate value fun
tion 
onstru
ted in (5.11).

(a) For θ > 0 and 0 ≤ x ≤ yθ/z∗, MG = 0 and LG ≤ 0.

(b) For θ > 0 and x ≥ yθ/z∗, MG ≥ 0. For θ ≥ 0 and x ≥ yθ/z∗, LG = 0.

Proof. (a) For z ≥ z∗, MG = 0 is immediate from the de�nition of G. For 0 < x ≤ yθ/z∗ LG we

have that G(x, y, θ, t) =
(
R
β

)R
m(q∗)−Re−βt x

1−R

1−R (1 + z)
1−R

and then

LG = βG

[
m(q∗)− 1 + ǫ (1−R)

z

1 + z
−

1

2
δ2R (1−R)

z2

(1 + z)2

]
,

= βG

[
m(q∗)−m

(
z

1 + z

)]
.

The required inequality follows from Part (5) of Lemma 27 in Appendix A and the fa
t that

m(q)/(1 − R) is in
reasing on (q∗, 1). At x = 0 using both (5.11) and (5.12) we have LG|x=0+ =

LG|x=0−βG[m(q∗)−m(1)] < 0.

(b) In order to prove LG = 0 for θ > 0 we 
al
ulate

LG(x, y, θ, t) = e−βt
x1−R

1−R

[
R

(
g −

zg′(z)

1 −R

)1−1/R

− βg + αzg′(z) +
η2

2
z2g′′(z)

]

= βe−βt
x1−R

1−R

[
h1−1/R

(
1−

w(h)

(1−R)h

)
− h+

(
ǫ−

δ2

2

)
w(h) +

δ2

2
w′(h)w(h)

]

and the result follows from Proposition 15. For θ = 0, LG = 0 is a simple 
al
ulation.

Now 
onsider MG. We have

(5.15) MG = e−βtx−Ry

[
(1 + z)

1−R
g′ (z)− g (z)

]
.

Hen
e for R < 1, it is su�
ient to show that ψ(z) ≥ 0 on (0, z∗] where

ψ (z) =
1 + z

1−R
−
g (z)

g′ (z)
.



OPTIMAL CONSUMPTION AND SALE STRATEGIES FOR A RISK AVERSE AGENT 19

By value mat
hing and smooth �t g(z∗) = m(q∗)−R (1 + z∗)1−R and z∗g′(z∗) = m(q∗)−R(1 −

R) (1 + z∗)−R. Hen
e ψ(z∗) = 0 and it is su�
ient to show that ψ is de
reasing. But

ψ′ (z) =
R

1−R
+
g (z) g′′ (z)

g′ (z)2

=
R

1−R
+
h [w (h)w′ (h)− w (h)]

w (h)
2

≤ 0(5.16)

where the last inequality follows from Proposition 15. Similarly, for R > 1, provided that g is

de
reasing by Proposition 17, it is su�
ient to show that ψ is in
reasing. But Proposition 15 gives

ψ′ (z) =
R

1−R
+
g (z) g′′ (z)

g′ (z)2
=

R

1−R
+
h [w (h)w′ (h)− w (h)]

w (h)2
≥ 0.

�

Proposition 20. Let X∗
, Θ∗

and C∗
be as de�ned in Theorem 7. Then they 
orrespond to an

admissible wealth pro
ess. Moreover Z∗
t = YtΘ

∗/X∗
t satis�es 0 ≤ Z∗

t ≤ z∗.

Proof. Note that if y0θ0/x0 > z∗ then the optimal strategy in
ludes a sale of the endowed asset

at time zero, and the e�e
t of the sale is to move to new state variables (X∗
0 , y0,Θ

∗
0, 0) with the

property that Z∗
0 = y0Θ

∗
0/X

∗
0 = z∗.

Re
all the de�nitions of Λ̃ and Γ̃ and set Σ(z) = z(1 + z) and Σ̃(j) = Σ(z∗ − j).

Consider the equation

(5.17) Ĵt = Ĵ0 −

ˆ t

0

Λ̃
(
Ĵs

)
ds−

ˆ t

0

Γ̃
(
Ĵs

)
dBs + L̂t

with initial 
ondition Ĵ0 = (z∗ − z0)
+
. This equation is asso
iated with a sto
hasti
 di�erential

equation with re�e
tion (Revuz and Yor [22, p385℄) and has a unique solution (J, L) for whi
h (J, L)

is adapted, J ≥ 0, L0 = 0 and L only in
reases when J is zero.

Note that Λ̃(z∗) = Λ(0) = 0 = Γ(0) = Γ̃(z∗) and hen
e J is bounded above by z∗.

Re
all that Θ∗
t = Θ∗

0 exp(−Lt/Σ̃(0)). Then Θ∗
t is adapted, 
ontinuous and hen
e progressively

measurable (Karatzas and Shreve [17, p5℄). Θ∗
t is also de
reasing and dΘ∗

t = −Θ∗
tdLt/Σ̃(0) =

−Θ∗
tdLt/Σ̃(Jt) sin
e L only grows when J = 0.

Then let Z∗
t = z∗ − Jt, X

∗
t = Θ∗

tYt/Z
∗
t and C∗

t = X∗
t (g(Z

∗
t )−Z∗

t g
′(Z∗

t )/(1−R))−1/R
. Then X∗

and C∗
are positive and progressively measurable. It remains to show that X is the wealth pro
ess

arising from the 
onsumption and sale strategy (C∗,Θ∗). But, from (5.17) and using, for example

Λ̃(Jt) = Λ(Z∗
t ),

dZ∗
t = Λ (Z∗

t ) dt+ Γ (Z∗
t ) dBt +Σ(Z∗

t )
dΘ∗

t

Θ∗
t

.

and then

dX∗
t =

Θ∗
tYt
Z∗
t

[
dΘ∗

t

Θ∗
t

+
dYt
Yt

−
dZ∗

t

Z∗
t

+

(
dZ∗

t

Z∗
t

)2

−
dYt
Yt

dZ∗
t

Z∗
t

]

= X∗
t

[(
η −

Γ(Z∗
t )

Z∗
t

)
dBt +

(
α−

Λ(Z∗
t )

Z∗
t

+
Γ(Z∗

t )
2

(Z∗
t )

2
− η

Γ(Z∗
t )

Z∗
t

)
dt

]
+

(
Yt
Z∗
t

−
Yt
Z∗
t

Σ(Z∗
t )

Z∗
t

)
dΘ∗

t

= −C∗
t dt− YtdΘ

∗
t

as required, where we use the de�nitions of Λ, Γ and Σ for the �nal equality. �

Proof of Theorem 7. First we show that there is a strategy su
h that the 
andidate value fun
tion

is attained, and hen
e that V ≥ G.
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Observe �rst that if y0θ0/x0 > z∗ then

θ0 −Θ∗
0 = θ0

(
1−

z∗

1 + z∗
1 + z0
z0

)

and

X∗
0 = x0 + y0(θ0 −Θ∗

0) = x0
(1 + z0)

(1 + z∗)

Then, sin
e g(z∗)/g(z0) = (1 + z∗)1−R/(1 + z0)
1−R

for z0 > z∗,

G(X∗
0 , y0,Θ

∗
0, 0) =

(X∗
0 )

1−R

1−R
g(z∗) =

x1−R0

1−R
g(z0) = G(x0, y0, θ0, 0).

For a general admissible strategy de�ne the pro
ess M = (Mt)t≥0 by

(5.18) Mt =

ˆ t

0

e−βs
C1−R
s

1−R
ds+G (Xt, Yt,Θt, t) .

WriteM∗
for the 
orresponding pro
ess under the proposed optimal strategy. ThenM∗

0 = G(X∗
0 , y0,Θ

∗
0, 0) =

G(x0, y0, θ0, 0) so there is no jump of M∗
at t = 0. Further, although the optimal strategy may

in
lude the sale of a positive quantity of the risky asset at time zero, it follows from Proposition 20

that thereafter the pro
ess Θ∗
is 
ontinuous and su
h that Z∗

t = YtΘ
∗
t/X

∗
t ≤ z∗.

From the form of the 
andidate value fun
tion and the de�nition of g given in (3.10), we know

that G is C1,2,1,1
. Then applying It�'s formula to Mt, using the 
ontinuity of X∗

and Θ∗
for t > 0,

and writing G· as shorthand for G·(X∗
s , Ys,Θ

∗
s, s) we have

M∗
t −M0 =

ˆ t

0

[
e−βs

(C∗
s )

1−R

1−R
− C∗

sGx + αYsGy +
1

2
η2Y 2

s Gyy +Gt

]
ds

+

ˆ

(0,t]

(Gθ − YsGx) dΘ
∗
s(5.19)

+

ˆ t

0

ηYsGydBs

=: N1
t +N2

t +N3
t

Sin
e Z∗
t ≤ z∗, and sin
e C∗

t = e−βs/RG−1/R
x and LG = 0 for z ≤ z∗ we have N1

t = 0. Further,

dΘs 6= 0 if and only if Z∗
t = z∗ and then MG = 0, so that N2

t = 0.

To 
omplete the proof of the theorem we need the following lemma whi
h is proved in Appendix B.

Lemma 21. (1) N3
given by N3

t =
´ t

0 ηYsGy(X
∗
s , Ys,Θ

∗
s, s)dBs is a martingale.

(2) limt↑∞ E[G(X∗
t , Yt,Θ

∗
t , t)] = 0.

Returning to the proof of the theorem, and taking expe
tations on both sides of (5.19), we have

E [M∗
t ] =M0, whi
h leads to

G (x0, y0, θ0, 0) = E

(
ˆ t

0

e−βs
(C∗

s )
∗1−R

1−R
ds

)
+ E [G (X∗

t , y,Θ
∗
t , t)] .

Using the se
ond part of Lemma 21 and applying the monotone 
onvergen
e theorem, we have

G (x0, y0, θ0, 0) = E

(
ˆ ∞

0

e−βs
C∗1−R
s

1−R
ds

)

and hen
e V ≥ G.

Now we 
onsider general admissible strategies. Applying the generalised It�'s formula [9, Se
tion

4.7℄ toMt leads to the same expression as in (5.5). Lemma 19 implies that under general admissible
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strategies, N1
t ≤ 0, N2

t ≤ 0. Consider the jump term,

(5.20) N3
t =

∑

0≤s≤t
[G (Xs, Ys,Θs, s)−G (Xs−, Ys,Θs−, s)−Gx(∆X)s −Gθ(∆Θ)s]

Using the fa
t that (∆X)s = −Ys(∆Θ)s and writing θ = Θs−, x = Xs−, χ = −(∆Θ)s ea
h non-zero

jump in N3
is of the form

(∆N3)s = G(x + yχ, y, θ − χ, s)−G(x, y, θ, s) + χ [Gθ(x, y, θ, s)− yGx(x, y, θ, s)] .

But, by Lemma 18, G(x + yχ, y, θ − χ, s) is 
on
ave in χ and hen
e (∆N3) ≤ 0.

For R < 1 the rest of the proof is exa
tly as in Theorem 14. The 
ase of R > 1 is 
overed in

Appendix C.

�

5.4. The Veri�
ation Lemma in the se
ond non-degenerate 
ase with no �nite 
riti
al

exer
ise ratio. Throughout this se
tion we suppose that ǫ ≥ δ2R and that if R < 1 then 0 < ǫ <
δ2

2 R+ 1
1−R . It follows that q

∗ = 1 and z∗ = ∞, and that n(1) = m(1) > 0.

Re
all the de�nition of n in (3.6) and the subsequent de�nitions ofN byN(q) = n(q)−R(1−q)R−1

and W = N−1
. Suppose R < 1 and de�ne γ as in (3.19) by

γ(v) =
1

1−R
ln v +

R

1−R
lnm(1)−

1

1−R

ˆ ∞

v

1−W (s)

sW (s)
ds.

In the 
ase R > 1 de�ne γ via (3.20) so that

γ(v) = −
1

R− 1
ln v −

R

R− 1
lnm(1)−

1

R− 1

ˆ v

0

1−W (s)

sW (s)
ds.

For all R de�ne also γ̃ by

γ̃(v) =
ln v

1−R
− γ(v).

Let h be inverse to γ and set g(z) = (R/β)Rh(ln z).

Lemma 22. (1) Suppose R < 1. Then γ : (1,∞) 7→ (−∞,∞) is well de�ned, in
reasing,


ontinuous and onto. Furthermore,

lim
v↑∞

γ̃(v) =
−R

1−R
lnm(1) and lim

v↑∞
(1−W (v))eγ(v) = 1.

Suppose R > 1. Then γ : (0, 1) 7→ (−∞,∞) is well de�ned, de
reasing, 
ontinuous and

onto. Furthermore,

lim
v↓0

γ̃(v) =
R

R− 1
lnm(1) and lim

v↓0
(1−W (v))eγ(v) = 1.

(2) h solves h′ = (1−R)hW (h), and h(−∞) = 1.

Proof. Suppose R < 1, the proof for R > 1 being similar. First we want to show that

ˆ ∞ 1−W (s)

sW (s)
ds <∞, and

ˆ

1+

1−W (s)

sW (s)
ds = ∞,

whi
h, given lims↑∞W (s) = 1 and lims↓1W (s) = 0 is equivalent to

ˆ ∞ 1−W (s)

s
ds <∞;

ˆ

1+

1

W (s)
ds = ∞.

But (1 − q)N(q)1/(1−R) q↑1
−→ n(1)−R/(1−R)

and so (1 −W (s)) ∼ n(1)−R/(1−R)s−1/(1−R)
for large

s and the �rst integral is �nite. Conversely, sin
e N ′(0+) = κ for some κ ∈ (0,∞) we have
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W ′(1+) = κ−1
and W (s) ∼ (s − 1)κ−1

for s near 1. Sin
e 1/(s − 1) is not integrable near 1, the

se
ond integral explodes.

It follows that γ is onto; the fa
t that γ is in
reasing follows on di�erentiation. Indeed γ′(v) =

1/((1−R)vW (v)) and hen
e h′ = (1− R)hW (h). Also h(−∞) := limu↓−∞ h(u) = 1.

The �rst limit result for γ̃ follows immediately from the de�nition. For the se
ond,

lim
v↑∞

eγ(v)(1−W (v)) = lim
v↑∞

e−γ̃(v)v1/(1−R)(1−W (v)) = lim
v↑∞

e−γ̃(v) lim
q↑1

N(q)1/(1−R)(1 − q)

= m(1)R/(1−R) lim
q↑1

n(q)−R/(1−R) = 1.

�

De�ne the 
andidate value fun
tion via

(5.21) G(x, y, θ, t) = e−βt
x1−R

1−R
g

(
yθ

x

)
, x > 0, θ > 0

and extend the de�nition to θ = 0 and −θy < x ≤ 0 by

G(x, y, θ, t) = e−βt
(x + yθ)1−R

1−R

(
R

β

)R
m(1)−R − θy < x ≤ 0, θ > 0;(5.22)

G(x, y, 0, t) = e−βt
x1−R

1−R

(
R

β

)R
x ≥ 0, θ = 0.(5.23)

Here 
ontinuity of G at x = 0 follows from the identity

(5.24) lim
z↑∞

zR−1g(z) = lim
u↑∞

e−(1−R)uh(u) = lim
v
e−(1−R)γ(v)v = lim

v
e−(1−R)γ̃(v) = m(1)−R.

Lemma 23. Fix y and t. Then G = G(x, θ) is 
on
ave in x and θ on [0,∞)× [0,∞). In parti
ular,

if ψ(χ) = G(x− χy, y, θ + χ, t), then ψ is 
on
ave in χ.

Proof. The proof follows similarly to the proof of Lemma 18, and makes use of the fa
t dh/du =

(1−R)hW (h) proved in Lemma 22. �

Lemma 24. Consider the 
andidate fun
tion 
onstru
ted in (5.21)�(5.23). Then for x > 0, θ > 0,

LG = 0, and MG ≥ 0. Further, MG = 0 at (x = 0, θ > 0) and LG = 0 at x = 0 and at θ = 0.

Proof. The majority of the lemma follows exa
tly as in Lemma 19.

For MG|x=0, note that Gθ|x=0 = yG(1 − R)/(x + yθ)|x=0 = (1 − R)G/θ. Then, yGx|x=0− =

yG(1−R)/(x+ yθ)|x=0− = (1−R)G/θ, whereas for x > 0,

yGx =
y(1−R)G

x
−
g′

g

y2θ

x2
G =

(1−R)G

θ

[
z −

z2g′(z)

(1−R)g(z)

]
,

and then for �xed (y, θ)

lim
x↓0

[
z −

z2g′(z)

(1−R)g(z)

]
= lim

u↑∞
eu

(
1−

h′(u)

(1−R)h(u)

)
= lim

v
eγ(v) (1−W (v)) = 1.

�

Proof of Theorem 10. For an admissible strategy (C,Θ) = (Ct,Θt)t≥0 de�ne the pro
essM(C,Θ) =

(Mt)t≥0 via

(5.25) Mt =

ˆ t

0

e−βs
C1−R
s

1−R
ds+G (Xt, Yt, 0, t) .

where G is as given in (5.21)�(5.23).

Case 1: θ0 = 0 and x0 > 0: we show V = G. For these initial values the agent does not own

any units of asset for sale and 
onsumption 
an only be �nan
ed from liquid (
ash) wealth. Then
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(Θt)t≥0 = 0, dXt = −Ctdt and the problem is non-sto
hasti
. The 
andidate optimal 
onsumption

fun
tion is C(x, y, 0) = βx/R and the asso
iated 
onsumption pro
ess is C∗
t = β

Rx0e
− β

R
t
with

resulting wealth pro
ess X∗
t = x0e

− β
R
t
.

Then the value fun
tion is

E

[
ˆ ∞

0

e−βt
C∗
t
1−R

1−R
dt

]
=

ˆ ∞

0

e−βt
(
β

R

)1−R
(
e−

β
R
tx0

)1−R

1−R
dt

=

(
R

β

)R
x1−R0

1−R
= G(x0, y0, 0, 0),

where the last equality follows from (5.23). Hen
e, we have V ≥ G.

Now 
onsider general admissible strategies. LetM0
be given byM0

t =Mt(Ct, 0). Applying It�'s

formula to M0
, we get

M0
t −M0

0 =

ˆ t

0

[
e−βs

C1−R
s

1−R
− CsGx + αYsGy +

1

2
η2Y 2

s Gyy +Gs

]
ds

+

ˆ t

0

ηYsGydBs

= N1
t +N3

t .

Lemma 24 implies that LG = 0 and hen
e N1
t = 0.

Suppose R < 1. Then we have 0 ≤ M0
t ≤ M0

0 + N3
t , and the lo
al martingale N3

t is now

bounded from below and hen
e a supermartingale. Taking expe
tations we 
on
lude E(M0
t ) ≤

M0
0 = G(x0, y0, 0, 0), and hen
e

(5.26) G(x0, y0, 0, 0) ≥ E

ˆ t

0

e−βs
Cs

1−R

1−R
ds+ EG(Xt, Yt, 0, t) ≥ E

ˆ t

0

e−βs
Cs

1−R

1−R
ds,

Letting t→ ∞, (5.26) we 
on
lude

G(x0, y0, 0, 0) ≥ E

ˆ ∞

0

e−βt
Ct

1−R

1−R
dt.

and taking a supremum over admissible strategies we have G ≥ V , and hen
e G = V .

For R > 1, a modi�
ation of the proof of Theorem 14 applies here also and G = V .

Case 2: x0 = 0 and θ0 > 0: we show V ≥ G. Under the 
andidate optimal strategy de�ned

in Theorem 10 the 
onsumption and sale pro
esses evolve a

ording to Ctdt = −YtdΘt, meaning

that the investor �nan
es 
onsumption only from the sales of the endowed asset and wealth stays


onstant and identi
ally zero. In this 
ase, the proposed strategies in (3.24) be
ome

Θ∗
t = θ0e

− β
R
φt, C∗

t =
β

R
φYtΘ

∗
t =

β

R
φy0θ0 exp

{
β(ǫ − δ2/2− φ/R)t+ δ

√
βBt

}
.

where temporarily we write φ = m(1) = δ2R(1−R)/2− ǫ(1−R) + 1 > 0.
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The 
orresponding value fun
tion is

G∗ = E

[
ˆ ∞

0

e−βt
C∗
t
1−R

1−R
dt

]

=

(
β

R

)1−R
(φy0θ0)

1−R

1−R
E

[
ˆ ∞

0

e−βte(1−R)β(ǫ− δ2

2 − φ
R
)t+δ

√
β(1−R)Btdt

]

=

(
β

R

)1−R
(φy0θ0)

1−R

1−R

ˆ ∞

0

e{(ǫ(1−R)− δ2

2 R(1−R)−1)− (1−R)
R

φ}βtdt

=

(
R

β

)1−R
(φy0θ0)

1−R

1−R

ˆ ∞

0

e−(βφ/R)tdt =

(
R

β

)R
(y0θ0)

1−R

1−R
φ−R = G(0, y0, θ0, 0).

Then, under the 
andidate optimal strategy,

G(0, y0, θ0, 0) = E

[
ˆ ∞

0

e−βt
(C∗

t )
1−R

1−R
dt

]
,

and we have G(0, y0, θ0, 0) ≤ V (0, y0, θ0, 0).

Case 3: x0 > 0 and θ0 > 0: we show V ≥ G. Let M∗ = M(C∗,Θ∗) for the 
andidate optimal

strategies in Theorem 10.

From the form of the 
andidate value fun
tion we know that G is C1,2,1,1
. Then applying It�'s

formula to M∗
, we have

M∗
t −M∗

0 =

ˆ t

0

[
e−βs

(C∗
s )

1−R

1−R
− C∗

sGx + αYsGy +
1

2
η2Y 2

s Gyy +Gt

]
ds

+

ˆ

(0,t]

(Gθ − YsGx) dΘs(5.27)

+

ˆ t

0

ηYsGydBs

=: N1
t +N2

t +N3
t .

Sin
e C∗
s = G

−1/R
x eβs/R is optimal and, by Lemma 24, LG = 0, we have N1

t = 0. Further, under

the proposed strategies in (3.24), dΘt 6= 0 if and only if Xt = 0. Then, by Lemma 24, MG|x=0 = 0

and N2
t = 0.

The following Lemma is proved in the appendix.

Lemma 25. (1) N3
given by N3

t =
´ t

0 ηYsGy(X
∗
s , Ys,Θ

∗
s, s)dBs is a martingale.

(2) limt↑∞ E[G(X∗
t , Yt,Θ

∗
t , t)] = 0

The 
on
lusion that V ≥ G now follows exa
tly as in the proof of Theorem 7 but using Lemma 25

in pla
e of Lemma 21.

Case 4: x0 ≥ 0 and θ0 > 0: V ≤ G. To 
omplete the proof of the theorem, it remains to show

for θ0 > 0 and general admissible strategies, we have V (x0, y0, θ0, 0) ≤ G(x0, y0, θ0, 0). Re
all the

de�nition of M in (5.25).

Applying the generalised It�'s formula [9, Se
tion 4.7℄ to Mt leads to the expression in (5.5) and

Mt −M0 = N1
t +N2

t +N3
t +N4

t .

Lemma 24 implies that under general admissible strategies, N1
t ≤ 0, and N2

t ≤ 0 with equality at

x = 0. Consider the jump term,

(5.28) N3
t =

∑

0≤s≤t
[G (Xs, Ys,Θs, s)−G (Xs−, Ys,Θs−, s)−Gx(∆X)s −Gθ(∆Θ)s]
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Using the fa
t that (∆X)s = −Ys(∆Θ)s and writing θ = Θs−, x = Xs−, χ = −(∆Θ)s ea
h non-zero

jump in N3
is of the form

(∆N3)s = G(x + yχ, y, θ − χ, s)−G(x, y, θ, s) + χ [Gθ(x, y, θ, s)− yGx(x, y, θ, s)] .

Note that by Lemma 23, G(x+ yχ, y, θ − χ, s) is 
on
ave in χ and hen
e (∆N3) ≤ 0.

For the 
ase R < 1 the remainder of the proof follows as in the proof of Theorem 14. The 
ase

R > 1 for general admissible strategies is 
overed in Appendix C.

�

6. Comparative stati
s

In this se
tion, we provide 
omparative stati
s des
ribing how the outputs of the model depend

on market parameters. This se
tion 
onsists of �ve parts, analysis of the optimal threshold z∗, the

value fun
tion g, the optimal 
onsumption C(x, y, θ), the utility indi�eren
e pri
e p(x, y, θ), and

the 
ost of illiquidity p∗(x, y, θ), and are based on our numeri
al results. The 
ost of illiquidity,

de�ned in (6.3) below represents the loss in 
ash terms fa
ed by our agent when 
ompared with an

otherwise identi
al agent with the same initial portfolio who is able to adjust her portfolio of the

risky asset in either dire
tion at zero 
ost.

The equations des
ribing the fun
tion n and the �rst 
rossing of m are simple to implement in

MATLAB, and then it also proved straightforward to 
al
ulate h or γ and then
e the value fun
tion

in the non-degenerate 
ases. Figures 6.1 and 6.2 are generi
 plots of the various fun
tions used in

the 
onstru
tion of the value fun
tion. The parameter values are su
h that we are in the se
ond

non-degenerate 
ase (ǫ ≥ δ2R and ǫ < δ2R
2 + 1

1−R if R < 1), but the �gures would be similar for

the �rst non-degenerate 
ase (0 < ǫ < δ2R and ǫ < δ2R
2 + 1

1−R if R < 1). The two �gures 
over the


ases R < 1 and R > 1 respe
tively. For R < 1, as plotted in Figure 6.1, m and n are monotone

de
reasing and W is in
reasing on [1,∞) with limv→1W (v) = 0 and limv→∞W (v) = 1. Further,

we have γ(v) is in
reasing on [1,∞) and g is 
on
ave and in
reasing. For R > 1, as plotted in

Figure 6.2, m and n are monotone in
reasing and W is de
reasing on (0, 1] with limv→0W (v) = 1

and limv→1W (v) = 0. Finally, we have γ(v) is de
reasing on (0, 1] and g is 
onvex de
reasing and


onvergent to zero as z tends to in�nity.

Figures 6.3 and 6.4 show that z∗ in
reases as mean return ǫ in
reases and de
reases as volatility

δ in
reases or risk aversion R in
reases. As ǫ in
reases, the non-traded asset Y be
omes more

valuable and it is optimal for the investor to wait longer to sell Y for a higher return. For ǫ = 0,

when the endowed asset has zero return but with additional risk, the optimal strategy is to sell

immediately to remove the risk. Similarly, as δ in
reases, the level of z∗ de
reases as holding Y

involves additional risk. Hen
e, it is optimal for the investor to sell units of Y sooner in order to

mitigate this risk. As the risk aversion of the investor in
reases, she is less tolerant to the risk of

the endowed asset and hen
e more in
lined to sell Y earlier. As R → 0, (provided ǫ > 0) we have

z∗ → ∞, whi
h implies the optimal strategy is never to sell the asset. In the limit the investor is not


on
erned about the risk of holding the risky asset. Conversely, as R→ ∞, we have z∗ → 0. In this


ase, the investor 
annot tolerate any risks and it is therefore optimal to sell the asset immediately

to arrive at a safe position.

The value fun
tion as expressed via g in non-degenerate 
ases is plotted in Figures 6.5 and 6.6

under di�erent drifts and risk aversions. These �gures show that g is in
reasing in drift while g

has no monotoni
ity in risk aversion. (A similar plot shows that g is de
reasing in volatility.) As

the non-traded asset be
omes more valuable, the investor 
an 
hoose optimal sale and 
onsumption

strategies whi
h lead to a larger value fun
tion. (Further, as the asset be
omes more risky, the

additional risk makes the value fun
tion smaller.) Meanwhile, as ǫ in
reases, z∗ in Figure 6.5 is
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Figure 6.1. Transformations from m,n, ℓ toW (v) to γ(v) to h(u) and g(z) in the

se
ond non-degenerate s
enario in the 
ase R < 1. Parameters are ǫ = 1 δ = 1,
β = 0.1 and R = 0.5. For these parameters m is monotoni
 de
reasing.

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

q

l, 
m

, n

 

 

0 0.2 0.4 0.6 0.8 1
−20

−10

0

10

20

v

γ

 

 

−20 −15 −10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

u

h

 

 

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

z

g

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

v

W

 

 

 n
 m
 l

 W(v)

 γ(v)  h(u)

 g(z)

Figure 6.2. Transformations from m,n, ℓ toW (v) to γ(v) to h(u) and g(z) in the

se
ond non-degenerate s
enario in the 
ase R > 1. Parameters are ǫ = 3 δ = 1,
β = 0.1 and R = 2.

de
reasing (and as δ in
reases, z∗ is in
reasing). These results are 
onsistent with the results in

des
ribed in the previous paragraph. At z = z∗, smooth �t 
onditions are satis�ed. Observe

also that for di�erent values of drift, we nonetheless have that g starts at the same point. This


orresponds to the value fun
tion when θ0 = 0 whereby 
onsumption is only �nan
ed by initial

wealth and the problem is deterministi
. In this 
ase, we have g(0) = (R/β)R.

Optimal 
onsumption C(x, y, θ) is 
onsidered in Figures 6.7�6.9. Figure 6.7 plots the optimal


onsumption C(1, 1, θ) as a fun
tion of endowed units θ and shows that the optimal 
onsumption
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reases as ǫ in
reases or as δ in
reases. Here β = 0.1 and R = 0.5.
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Figure 6.4. z∗ de
reases as R in
reases or as ǫ de
reases. Here δ = 3 and β = 0.1.

in
reases in θ: as the size of the holdings of the non-traded asset Y in
reases, the agent feels ri
her

and hen
e 
onsumes at a faster rate. For θ = 0, the optimal 
onsumption C(x, y, 0) = xg(0)−
1
R =

β
Rx is stri
tly positive and is �nan
ed from 
ash wealth. Figure 6.7 also suggests that the optimal


onsumption C(1, 1, θ) de
reases in risk aversion. Given the set of parameters the 
riti
al risk

aversion (i.e. the boundary between the two non-degenerate 
ases) is at R = ǫ/δ2 = 0.75. For the

bottom two lines in Figure 6.7 with R > 0.75, we have ǫ < δ2R and this falls into the �rst non-

degenerate 
ase with �nite z∗. For R ≤ 0.75, we have ǫ ≥ δ2R, whi
h is the se
ond non-degenerate


ase with in�nite z∗. As we see, there is no dis
ontinuity in 
onsumption with respe
t to risk
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ond non-degenerate s
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Dotted line: z ≥ z∗, solid line: z ≤ z∗ and dots represent z∗. ǫ varies from top

to bottom as 2, 1.5, 1, 0.5, with �xed parameters δ = 2, β = 0.1 and R = 0.5.
The top line is the value fun
tion g in the se
ond non-degenerate s
enario given

ǫ = δ2R = 2 and z∗ is in�nite.
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Figure 6.6. g(z) with di�erent risk aversion R in the �rst and se
ond non-

degenerate s
enarios. In the left graph, R takes values in 0.7, 0.8 and 0.9. The

rest of the parameters are ǫ = 3, δ = 2, β = 0.1. The 
riti
al risk aversion is

R = ǫ/δ2 = 0.75. The dots represent �nite z∗ and the solid line is the value fun
-

tion g in the se
ond non-degenerate s
enario with in�nite z∗. In the right graph,

R takes values in 1.3, 1.4 and 1.5 and the rest of the parameters are ǫ = 6, δ = 2
and β = 0.1.

aversion at either R = 0.75 or R = 1. The optimal 
onsumptions for di�erent risk aversions di�er

primarily in the levels, and the dominant fa
tor is the optimal 
onsumption for θ = 0. As argued

above C(x, y, 0) = βx/R is de
reasing in R.
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Figure 6.7. Optimal 
onsumption C(1, 1, θ) as R varies. R takes values in 0.6,

0.75, 0.9, 1.05 with parameters ǫ = 3, δ = 2, β = 0.1 and θ ∈ [0, 1]. The 
riti
al risk
aversion is R = ǫ/δ2 = 0.75. The top two lines 
orrespond to the optimal 
onsump-

tion in the se
ond non-degenerate s
enario where z∗ is in�nite under the 
ondition
that ǫ ≥ δ2R. The bottom two lines 
orrespond to the �rst non-degenerate 
ase

with �nite z∗.

Figure 6.8 plots both 
onsumption as a fun
tion of wealth C(x, 1, 1) and the ratio of 
onsumption

to wealth C(x, 1, 1)/x as a fun
tion of x with di�erent risk aversions. Note that this 
an only be

shown for x > yθ/z∗ = 1/z∗ sin
e if x < 1/z∗ the agent makes an immediate sale of units of

risky asset. The 
riti
al value of the risk aversion is R = ǫ/δ2 = 0.75. For R > 0.75, we have

z∗ < ∞ and x∗ = 1/z∗ > 0 while for R ≤ 0.75, z∗ = ∞ and x∗ = 1/z∗ = 0. The results show

that the optimal rate of 
onsumption is an in
reasing fun
tion of wealth but that 
onsumption per

unit wealth is a de
reasing fun
tion of wealth. (In the standard Merton problem, 
onsumption

is proportional to wealth.) As the agent be
omes ri
her, she 
onsumes more, but the fra
tion of

wealth that she 
onsumes be
omes smaller. The explanation is that her endowed wealth is being

held 
onstant. By s
aling we have that if both x and θ are in
reased by the same fa
tor, then


onsumption would also rise by the same fa
tor, but here x is in
reasing, but θ (and y) are held


onstant, and hen
e 
onsumption in
reases more slowly than wealth. In the limit x → ∞ we have

limx→∞ C(x, 1, 1) = ∞ and limx→∞ C(x, y, θ)/x = g(0)−
1
R = β/R.

Figure 6.9 plots the optimal 
onsumption C(1, 1, θ) as a fun
tion of θ and ǫ. Here we �nd a �rst

surprising result: we might expe
t the optimal 
onsumption C(x, y, θ) to be in
reasing in the drift,

but this is not the 
ase for large θ. For an explanation of this phenomena, re
all that the optimal

exer
ise ratio z∗ is in
reasing in the drift. As the drift in
reases, the asset has a more promising

return on average whi
h makes the agent feel ri
her and 
onsume at a higher rate. However, a larger

drift also implies a larger z∗, indi
ating that the agent should postpone the sale of the risky asset.

Hen
e, a larger drift involves more risk, and in order to mitigate this risk, the agent 
onsumes less in

the short term. Hen
e, the optimal 
onsumption de
reases in the drift for large θ. We �nd similar

results if we 
onsider C(1, 1, θ) as a fun
tion of δ. Optimal 
onsumption is not ne
essarily de
reasing

in volatility and 
onsumption 
an be in
reasing in volatility for large values of θ. Analogously, if we

plot C(x, 1, 1) we �nd that 
onsumption is a de
reasing (in
reasing) fun
tion of return ǫ if wealth

x is small (large).
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Figure 6.8. Optimal 
onsumption C(x, 1, 1) and C(x, 1, 1)/x as R varies. R takes

values in 0.6, 0.75, 0.9 and 1.05 with parameters ǫ = 3, δ = 2, y0 = 1 and θ0 = 1.
The dots represent x∗ = 1/z∗ and the 
riti
al risk aversion is R = ǫ/δ2 = 0.75.
In both graphs, the top two lines 
orrespond to the optimal 
onsumptions in the

se
ond non-degenerate 
ase with x∗ = 0. The bottom two lines are the optimal


onsumptions in the �rst non-degenerate 
ase with �nite z∗, or equivalently, x∗ > 0.
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Figure 6.9. Optimal 
onsumption C(1, 1, θ) as ǫ varies. ǫ takes values in 0.5, 1,

1.5 and 2 with parameters δ = 2, β = 0.1, R = 0.5, x0 = 1 and y0 = 1. The 
riti
al
mean return is ǫ = δ2R = 2. When ǫ = 2 we are in the se
ond non-degenerate


ase.

Figures 6.10�6.13 plot the utility indi�eren
e pri
e or 
ertainty equivalen
e value p(x, y, θ).

Re
all that in the se
ond and third 
ases of Theorem 4 the 
ertainty equivalent value of the non-

traded asset is given by

p(x, y, θ) = x



g
(
yθ
x

)

g(0)




1
1−R

− x
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Figure 6.10. Indi�eren
e pri
e p(x, 1, 1) as ǫ varies. ǫ varies from top to bottom

as 2.5, 2.1, 1.5, 1 with �xed parameters δ = 2, β = 0.1, R = 0.5, θ0 = 1 and y0 = 1.
The dots represent x∗ = 1/z∗ and the 
riti
al mean return is ǫ = δ2R = 2.

Figures 6.10 and 6.11 
onsider the indi�eren
e pri
e as a fun
tion of wealth. Dots in �gures represent

the optimal exer
ise ratio z∗ = yθ/x. In ea
h of the �gures we 
hoose a range of parameter values

su
h that sometimes we are in the �rst non-degenerate 
ase, and sometimes in the se
ond non-

degenerate 
ase. In Figure 6.10, for ǫ < 2, we have z∗ < ∞ and x∗ = 1/z∗ > 0, and for ǫ ≥ 2,

we have z∗ = ∞ and x∗ = 0. We 
an see p(x, 1, 1) is 
on
ave and in
reasing in x. It follows from

Theorem 7 that g(z) = (R/β)Rm(q∗)−R(1 + z)1−R for z ≥ z∗. Further, under the 
ondition that

0 < ǫ < δ2R and ǫ < δ2

2 R+ 1
1−R , whi
h ensures a �nite exer
ise ratio,

lim
x→0

p(x, y, θ) = lim
x→0

x







g
(
yθ
x

)

g(0)




1
1−R

− 1





= lim
x→0

{
m(q∗)

R
R−1 (x+ yθ)− x

}
= m(q∗)

R
R−1 yθ > yθ.

In that 
ase, for x = 0, where no initial wealth is available to �nan
e 
onsumption, it is optimal for

the investor to sell some units of the endowed asset Y immediately so as to keep the ratio of the

wealth invested in the endowed asset to liquid wealth below z∗, i.e. from the initial portfolio (x = 0,

θ = Θ0−) the agent moves to (x = X0+, θ = Θ0+), where Θ0+ = z∗

1+z∗Θ0− and X0+ = 1
1+z∗ yΘ0−.

The monotoni
ity of p(x, 1, 1) in ǫ and δ is also illustrated in Figures 6.10 and 6.11: a higher mean

return adds value to the asset, while the in
reasing volatility makes Y more risky and redu
es value.

Also observe that for the drift larger than the 
riti
al value, the 
hange in drift does not move the

dot (representing the 
riti
al ratio) while for the drift smaller than the 
riti
al value, the dot moves

rightwards as drift in
reases. To the left of the dot, the agent should sell the endowed asset initially,

while to the right of the dot, the agent should wait. As drift in
reases, the agent should wait longer

for a higher return when selling the asset.

Figure 6.12 
onsiders the indi�eren
e pri
e p(1, 1, θ) and unit indi�eren
e pri
e p(1, 1, θ)/θ as a

fun
tion of θ. We see that p(1, 1, θ) is in
reasing in θ and for θ = 0, p(1, 1, 0) = 0, re�e
ting the fa
t

that a null holding is worth nothing. We also have the unit pri
e p(1, 1, θ)/θ is de
reasing in the

units of asset θ. For small holdings, the marginal pri
e limθ→0 p(1, 1, θ)/θ is in�nite. As θ → ∞,

the �gures imply that the unit pri
e p(1, 1, θ)/θ tends to some 
onstant larger than the unit pri
e
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Figure 6.11. Indi�eren
e pri
e p(x, 1, 1). δ varies from top to bottom as 2.1, 2.4,

2.8 and 3.2 with �xed parameters ǫ = 3, β = 0.1, R = 0.5, θ0 = 1 and y0 = 1.
The dots represent x∗ = 1/z∗ and the 
riti
al volatility is δ =

√
ǫ/R = 2.45. The

top two lines 
orrespond to the indi�eren
e pri
es in the se
ond non-degenerate


ase with x∗ = 0. The bottom two lines are indi�eren
e pri
es in the �rst non-

degenerate 
ase with x∗ > 0.

y of Y :

lim
θ→∞

p(x, y, θ)

θ
= lim

θ→∞

x

[
g( yθ

x )
g(0)

] 1
1−R

− x

θ
= lim
θ→∞

m(q∗)
R

R−1 (x+ yθ)− x

θ
= m(q∗)

R
R−1 y > y,

where the se
ond equality follows sin
e for z ≥ z∗, we have g(z) = (R/β)Rm(q∗)−R(1 + z)1−R.

Figure 6.12 also illustrates the monotoni
ity of p in the drift parameter ǫ and we have p(1, 1, θ)

and p(1, 1, θ)/θ both in
rease in the drift. Similarly, it 
an be shown that p(1, 1, θ) and p(1, 1, θ)/θ

are both de
reasing in δ, re�e
ting the in
reased riskiness of positions as volatility in
reases.

Figure 6.13 plots the indi�eren
e pri
e as a fun
tion of 
ash wealth for di�erent risk aversions.

Naively we might expe
t the pri
e to be monotone de
reasing in risk aversion - a more risk averse

agent will assign a lower value to a risky asset. However, the results show that this not the 
ase, and

for large wealths the utility indi�eren
e pri
e is in
reasing in R. (If we �x wealth x and 
onsider

the 
ertainty equivalent value as a fun
tion of quantity θ then we �nd a similar reversal, and the


ertainty equivalent value is in
reasing in R for small θ.)

An explanation of this phenomena is as follows. Consider an agent with positive 
ash wealth

and zero endowment of the risky asset. This agent 
onsumes at rate βx/R; in parti
ular, as the

parameter R in
reases, the agent 
onsumes more slowly. The introdu
tion of a small endowment

will not 
hange this result, and in general, an in
rease in the parameter R postpones the time at

whi
h the 
riti
al ratio rea
hes z∗. (Although z∗ depends on R also, this is a se
ondary e�e
t.)

Sin
e the endowed asset is appre
iating, on average, by the time the agent 
hooses to start selling

the asset, it will be worth more. The total e�e
t is to make the indi�eren
e pri
e in
reasing in R.

Similarly, the indi�eren
e pri
e p(1, 1, θ) and the unit indi�eren
e pri
e p(1, 1, θ)/θ as fun
tions of

θ are not ne
essarily monotone in risk aversion.
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Figure 6.12. Indi�eren
e pri
e p(1, 1, θ) and unit pri
e p(1, 1, θ)/θ. ǫ varies from
top to bottom as 2, 1.5, 1, 0.5 with �xed parameters δ = 2, β = 0.1, R = 0.5,
x0 = 1 and y0 = 1. The dots represent θ∗ = z∗ and the 
riti
al mean return is

ǫ = δ2R = 2. The top line 
orresponds to the indi�eren
e pri
e in the se
ond

non-degenerate 
ase with in�nite z∗.
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Figure 6.13. Indi�eren
e pri
e p(x, 1, 1). R takes values in 0.5, 0.75, 0.9 and

1.2 with �xed parameters ǫ = 3, δ = 2, β = 0.1, y0 = 1 and θ0 = 1. The dots

represent x∗ = 1/z∗ and the 
riti
al risk aversion is R = ǫ/δ2 = 0.75. The top

two lines for x ∈ [0, 1] 
orrespond to the indi�eren
e pri
es in the se
ond non-

degenerate 
ase with x∗ = 0. The bottom two lines are indi�eren
e pri
es in the

�rst non-degenerate 
ase with x∗ > 0.

Finally, we 
onsider the impa
t of the illiquidity assumption. We do this by 
onsidering the

value fun
tion of our agent who 
annot buy the endowed asset and 
omparing it with the value

fun
tion of an otherwise identi
al agent, but who 
an both buy and sell the endowed asset with

zero transa
tion 
osts. Suppose parameters are su
h that we are in the se
ond 
ase of Theorem 4.
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In the illiquid market, where Y is only allowed for sale, Theorem 7 proves the value fun
tion is

(6.1) VI(x, y, θ, 0) =
x1−R

1−R
g

(
yθ

x

)
= sup

(C,Θ)

E

[
ˆ ∞

0

e−βt
C1−R
t

1−R
dt

]
,

where the newly introdu
ed subs
ript I stands for the value fun
tion in the illiquid market, in whi
h

the asset 
an only be sold.

In a liquid market su
h that Y 
an be dynami
ally traded, wealth evolves as dXt = −Ctdt +

ΠtdYt/Yt. Here (Π)t≥0 represents the portfolio pro
ess. We suppose the agent is endowed with Θ0

units of Y initially and is 
onstrained to keep X positive. This is Merton's model and we know the

optimal strategy is to keep a 
onstant fra
tion of wealth in the risky asset. The initial endowment

therefore only 
hanges initial wealth and the value fun
tion is

(6.2) VL(x, y, θ, 0) = sup
(C,Π)

E

[
ˆ ∞

0

e−βt
C1−R
t

1−R
dt

]
=

(x+ yθ)1−R

1− R

[
β

R
−
α2(1−R)

2σ2R2

]−R
,

where the subs
ript L stands for the value fun
tion in the liquid market.

Now we 
onsider the 
ost of illiquidity.

De�nition 26. The 
ost of illiquidity, denoted p∗ = p∗(x, y, θ) is the solution to

(6.3) VL(x− p∗, y, θ, t) = VI(x, y, θ, t).

and represents the amount of 
ash wealth the agent who 
an only sell the risky asset would be

prepared to forgo, in order to be able to trade the risky asset with zero transa
tion 
osts.

Equating (6.1) and (6.2), we 
an solve for p∗ to obtain

(6.4) p∗(x, y, θ) = x

[
1 +

yθ

x
− g

(
yθ

x

) 1
1−R

(
β

R
−
α2(1−R)

2σ2R2

) R
1−R

]
.

Consider (6.4) when θ = 0, where the investor is not endowed any units of Y initially, we have

p∗(x, y, 0) = x

[
1−

(
β

R
−
α2(1−R)

2σ2R2

) R
1−R

g(0)
1

1−R

]
= x

[
1−

(
1−

ǫ2(1 −R)

2δ2R

) R
1−R

]
> 0.

Suppose R < 1, 0 < ǫ < δ2

2 R+ 1
1−R and ǫ < δ2R, so that z∗ is �nite. Figure 6.14 plots p∗(1, 1, θ)

for θ ∈ [0, 10]. Noti
e that p∗ de
reases initially, has a stri
tly positive minimum near 0.95 and

then in
reases, before be
oming linear beyond θ = z∗. Clearly, whatever the initial endowment of

the agent, she has a smaller set of admissible strategies than an agent who 
an trade dynami
ally,

and the 
ost of liquidity is stri
tly positive. For small initial endowments the agent would like to

in
rease the size of her portfolio of the risky asset, and the smaller her initial endowment the more

she would like to pur
hase at time zero. Hen
e the 
ost of illiquidity is de
reasing in θ for small

θ. However, for large θ, the agent would like to make an initial transa
tion (to redu
e the ratio

of wealth held in the risky asset to 
ash wealth to below z∗), and indeed sin
e she is free to do

so, her optimal strategy involves su
h a transa
tion at time zero. Hen
e for large wealth the 
ost

of liquidity is proportional to (x + yθ), and hen
e is in
reasing in θ. For this reason, the 
ost of

illiquidity is a U-shaped fun
tion of θ.

Appendix A. Properties of n

Re
all the de�nitions of m and ℓ and the di�erential equation (3.6) for n, and also the de�nitions

of qℓ, qm, qn and q∗. De�ne q̃ = inf{q > 0 : (1−R)n(q) ≥ (1−R)ℓ(q)} ∧ 1. Note that m (0) = 1 =

ℓ (0) and m (1) = 1− ǫ(1−R) + δ2R (1−R) /2 = ℓ (1). The 
on
ave fun
tion ℓ is positive on (0, 1)

if ℓ(1) = 1− ǫ(1−R) + δ2R (1−R) /2 ≥ 0.
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Figure 6.14. Cost of illiquidity p∗(1, 1, θ) as θ varies. Parameters are ǫ = 1, δ = 2
and R = 0.5. Here, we �x x0 = y0 = 1 and θ ∈ [0, 1]. For the 
orresponding Merton

problem with dynami
 trading in Y we have that it is optimal to invest a 
onstant

fra
tion zM = ǫ
δ2R−ǫ in the risky asset. Re
all Remark 9 and observe that zM ≤ z∗.

Lemma 27. (1) De�ne Φ via

Φ(χ) = χ2 − (1 −R)

(
δ2

2
− ǫ+

1

R

)
χ− ǫ

(1−R)2

R
.

Then for R ∈ (0, 1), n′(0) is the smaller root of Φ(χ) = 0 and for R ∈ (1,∞), n′(0) is the

larger root.

(2) For q ∈ (0, qn ∧ q̃), n′(q) > 0 if and only if n(q) < m(q), similarly n′(q) = 0 if and only if

n(q) = m(q).

(3) If ℓ(1) ≥ 0 then q̃ = qn = qℓ = 1.

(4) If ℓ(1) < 0 then q̃ = qn = qℓ < q∗.

(5) If 0 ≤ q∗ < 1 then q∗ > ǫ/δ2R and (1−R)m is in
reasing on (q∗, 1).

Proof. (1) From the expression (3.6) and l'H�pital's rule, n′(0) = χ solves

χ =
1−R

R
−
δ2

2

(1−R)2

R

1

(1−R)( δ
2

2 − ǫ)− χ
,

or equivalently Φ(χ) = 0. Further ℓ′(0) = (1 −R)
(
δ2

2 − ǫ
)
and

Φ

(
(1−R)

(
δ2

2
− ǫ

))
= −

δ2

2

(1−R)2

R
< 0.

For R < 1, we have n′(0) < ℓ′(0) by hypothesis, so that n′(0) is the smaller root of Φ. For R > 1,

we have n′(0) > ℓ′(0) by hypothesis and n′(0) is the larger root of Φ.

(2) This follows immediately from the expression for n′(q).

(3) Suppose R < 1. Sin
e n′(0) < ℓ′(0) we have q̃ > 0. Noti
e that if 0 < n(q) < ℓ(q) and

ℓ(q) − n(q) is su�
iently small, then n′(q) < ℓ′(q). Hen
e q̃ ≥ qn. Further, if n (q) < ℓ (q) − φ for

some φ > 0 on some interval

[
q, q

]
⊂ (0, 1), then n′ (q) /n (q) is bounded below by a 
onstant on

that interval and provided n
(
q
)
> 0 it follows that n (q) > 0 also. Hen
e, if ℓ is positive on [0, 1)
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then so is n and qn = 1. For R > 1, we have n′(0) > ℓ′(0) and the result follows via a similar

argument.

(4) Suppose R < 1. The same argument as above gives that q̃ = qn = qℓ and now these quantities

are less than one. Clearly qm < qℓ, and m is de
reasing on (0, qm). We 
annot have q∗ ≤ qm for

then n′(q∗) − m′(q∗) > 0 and n(q∗) − m(q∗) = 0 
ontradi
ting the minimality of q∗, nor 
an we

have qm < q∗ ≤ qℓ for on this region m < 0 ≤ n.

(5) We 
an only have q∗ < 1 if m(1) > 0 and (1 − R)m′(1) > 0. For R < 1 we must have

n′(q∗) = 0 < m′(q∗). But m has a minimum at ǫ/δ2R, so q∗ > ǫ/δ2R. For R > 1, we must have

n′(q∗) = 0 > m′(q∗). But m has a maximum at ǫ/δ2R, so q∗ > ǫ/δ2R.

�

Proof of Proposition 1. (1) Note that Φ(m′(0)) = (1 − R)2δ2ǫ/2. Then, if ǫ < 0 we have n′(0) <

m′(0) for R < 1 and q∗ = 0. Otherwise, for R > 1, we have n′(0) > m′(0) and q∗ = 0. If ǫ = 0 then

n′(0) = m′(0) and more 
are is needed.

Consider R < 1. Sin
e ǫ ≤ 0, m is in
reasing. Suppose n (q̂) > m (q̂) for some q̂ in [0, 1] . Let

q = sup {q < q̂ : n (q) = m (q)}. Then on

(
q, q̂

)
we have n′ (q) < 0 < m′ (q) and m (q̂) − n (q̂) =

m
(
q
)
− n

(
q
)
+
´ q̂

q
[m′ (y)− n′ (y)]dy > 0, a 
ontradi
tion.

For R > 1, the only di�eren
e is that m is de
reasing given ǫ ≤ 0 and n′(0) > m′(0).

(2) Consider �rst R < 1 and suppose that 0 < ǫ < min{δ2R, δ
2

2 R + 1
1−R}. Then m′ (1) > 0

and m(1) > 0. Sin
e ǫ > 0 we have n′ (0) > m′ (0) and n −m is positive at least initially. Write

n (q) = m (q) + δ2 (1−R) qb (q) /2. Then n (q) ≤ ℓ (q) implies b (q) ≤ 1− q.

Suppose b (q) > 0 for all q ∈ (0, 1). Then n (q) ≥ m (q) and n′ (q) < 0 so that n (q) ≥ n (1) =

m (1) and

m (1) = m (q)− (1− q) (1−R)
(
ǫ− δ2R

)
− (1− q)

2
δ2R (1−R) /2

> m (q) + φ (1− q) δ2 (1−R) q/2,

for q > ǫ/δ2R and φ < (δ2R− ǫ)min{ 2
δ2 ,

R
ǫ }. For su
h q, b (q) > φ (1− q). Hen
e

n′ (q)

n (q)
= −

1−R

R

b (q)

(1− q) (1− q − b (q))
≤ −

1−R

R

φ

(1− q) (1− φ)

and we must have n′ (1−) = −∞ 
ontradi
ting the fa
t that n (q) ≤ ℓ (q). It follows that we must

have b (q) = 0 for some q ∈ (0, 1). At this point n 
rossesm. Note that this 
rossing point is unique:

at any 
rossing point m′ (q) > 0 = n′ (q), so that all 
rossings of 0 in (0, 1) by n−m are from above

to below.

For R > 1, we have m′(1) < 0 and m(1) > 0. Sin
e ǫ > 0, we have n′(0) < m′(0) and n −m

is negative initially. Let n(q) = m(q) + δ2(1 − R)qb(q)/2. Then n(q) ≥ ℓ(q) implies b(q) ≤ 1 − q.

Suppose b(q) > 0 for all q ∈ (0, 1), then it leads to the same 
ontradi
tion for R < 1. It follows that

b(q) = 0 for some q ∈ (0, 1), where n 
rosses m. At any 
rossing point m′(q) < 0 = n′(q), so that n


rosses m from below.

(3) ǫ ≥ δ2R and if R < 1, ǫ < δ2

2 R + 1
1−R .

Consider �rst R < 1. Sin
e ǫ > 0 we have that n′ (0) > m′ (0) and n > m in a neighbourhood to

the right of zero. Further, m is de
reasing and there are no solutions of n = m sin
e at any solution

we must have that 0 = n′ < m′ < 0.

For R > 1, we have m is in
reasing and n′(0) < m′(0). There are no solutions of n = m in that

at any solution we should have 0 = n′ > m′ > 0.

(4) R < 1 and ǫ ≥ δ2

2 R+ 1
1−R

Then m (1) ≤ 0. Sin
e m is de
reasing at least until it hits zero, and sin
e n′ = 0 at a 
rossing

point we 
annot have that n 
rosses m before it hits zero. �
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Proof of Proposition 15. (1) N solves

N ′ (q) =
1
2δ

2 (1−R)
2
qN (q)

ℓ (q)−N (q)
−1/R

(1− q)
1−1/R

and N is stri
tly in
reasing for R < 1. Otherwise, it is de
reasing for R > 1. W solves

(A.1) W ′ (v) =
ℓ (W (v))− v−1/R (1−W (v))1−1/R

1
2δ

2 (1−R)
2
vW (v)

(2) Follows from (3.9) and (A.1).

(3) Consider �rst R < 1. On (0, q∗) we have n(q) > m(q) and then ℓ(q)− n(q) < ℓ(q)−m(q) =

q(1− q)δ2(1−R)/2. Then v−1/R(1−W (v))1−1/R = n(W (v)) and

v(1−R)W ′(v) =
ℓ(W (v))− n(W (v))

δ2

2 (1−R)W (v)
< 1−W (v)

It follows that w′(v) = (1−R)W (v) + v(1−R)W ′(v) < 1−RW (v). At q∗, n(q∗) = m(q∗) and the

inequality be
omes an equality throughout.

For R > 1, we have n(q) < m(q) on (0, q∗) and ℓ(q)− n(q) > ℓ(q)−m(q) = q(1− q)δ2(1−R)/2.

Then again v(1 −R)W ′(v) < 1−W (v) and w′(v) < 1−RW (v) with equality at h∗.

Note that sin
e W is non-negative, 1−RW (h) ≤ 1. �

Appendix B. The martingale property of the value fun
tion

Proof of Lemma 21. First we want to show the the lo
al martingale

N3
t =

ˆ t

0

ηYsGy(X
∗
s , Ys,Θ

∗
s, s)dBs

is a martingale. This will follow if, for example,

(B.1) E

ˆ t

0

(YsGy(X
∗
s , Ys,Θ

∗
s, s))

2 ds <∞

for ea
h t > 0. From the form of the value fun
tion (5.11), we have

(B.2) yGy(x, y, θ, s) = e−βt
x1−R

1−R
zg′ (z) = G (x, y, θ, t)

zg′ (z)

g (z)
≤ (1 −R)G (x, y, θ, t)

where we use that

zg′(z)
g(z) = w(h)

h = (1−R)W (h) and 0 ≤W (h) ≤ 1.

De�ne a pro
ess (Dt)t≥0 by Dt = lnG (X∗
t , Yt,Θ

∗
t , t). Then D solves

Dt −D0 =

ˆ t

0

1

G

(
Gt − C∗

sGx + αYsGy +
1

2
η2Y 2

s Gyy

)
ds

+

ˆ t

0

1

G
(Gθ − YsGx) dΘs +

ˆ t

0

1

G
ηYsGydBs −

ˆ t

0

1

2G2
η2Y 2

s G
2
yds

= −

ˆ t

0

e−
β
R
s

1−R

1

G
G

R−1
R

x ds+

ˆ t

0

1

G
ηYsGydBs −

ˆ t

0

1

2G2
η2Y 2

s G
2
yds.

It follows that the 
andidate value fun
tion along the optimal traje
tory has the representation

(B.3) G (X∗
t , Yt,Θ

∗
t , t) = G (X∗

0 , y0,Θ
∗
0, 0) exp

{
−

ˆ t

0

e−
1
R
βs

1−R

1

G
G

R−1
R

x ds

}
Ht

where H = (Ht)t≥0 is the exponential martingale

Ht = E

(
ηYsGy
G

◦B

)

t

:= exp

{
ˆ t

0

1

G
ηYsGydBs −

ˆ t

0

1

2G2
η2Y 2

s G
2
yds

}
.
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Note that (B.2) implies

1
GηyGy ≤ η(1 − R), so that H is indeed a martingale, and not merely a

lo
al martingale.

From (B.2) and (B.3), we have

(yGy)
2

= G (X0, y0,Θ0, 0)
2

(
zg′ (z)

g (z)

)2

× exp

{
−2

ˆ t

0

e−
1
R
βs

(1−R)

1

G
G

R−1
R

x ds

}
H2
t

≤ G (X0, y0,Θ0, 0)
2
(1−R)2H2

t .

But

H2
t = E

(
2

G
ηYsGy ◦B

)

t

exp

{
ˆ t

0

1

G2
η2Y 2

s G
2
yds

}
≤ E

(
2

G
ηYsGy ◦B

)

t

e(1−R)2η2t.

Hen
e E[H2
t ] ≤ e(1−R)2η2t

and it follows that (B.1) holds for every t, and hen
e that the lo
al

martingale N3
t =
´ t

0 ηyGydBs is a martingale under the optimal strategy.

(ii) Consider

´ t

0
e−

1
R

βs

1−R
1
GG

R−1
R

x ds. To date we have merely argued that this fun
tion is in
reasing

in t. Now we want to argue that it grows to in�nity at least linearly. By (5.11), we have

e−
1
R
βt

1−R

1

G
G

R−1
R

x =

[
g (z)− 1

1−Rzg
′ (z)

]R−1
R

g (z)
=

[
h− 1

1−Rw (h)
]R−1

R

h

= (1−W (h))1−1/Rh−1/R = n(W (h)) ≥ min{1, n(W (h∗))} > 0.

Hen
e from (B.3) there exists a 
onstant k > 0 su
h that

0 ≤ (1 −R)G(X∗
t , Yt,Θ

∗
t , t) ≤ (1 −R)G(x0, y0, θ0, 0)e

−ktHt → 0

and then G→ 0 in L1
, as required. �

Proof of Lemma 25. This follows exa
tly as in the proof of Lemma 21.

�

Appendix C. Extension to R > 1

Veri�
ation Lemmas for the 
ase R > 1. It remains to extend the proofs of the veri�
ation lemmas

to the 
ase R > 1. In parti
ular we need to show that the 
andidate value fun
tion is an upper

bound on the value fun
tion. The main idea is taken from Davis and Norman [5℄.

Suppose G (x, y, θ, t) is the 
andidate value fun
tion. Consider for ε > 0,

(C.1) Ṽε(x, y, θ, t) = Ṽ (x, y, θ, t) = G (x+ ε, y, θ, t)

and M̃t = M̃t(C,Θ) given by

M̃t =

ˆ t

0

e−βs
C1−R
s

1−R
ds+ Ṽ (Xt, Yt,Θt, t) ,
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Then,

M̃t − M̃0 =

ˆ t

0

[
e−βs

C1−R
s

1−R
− CsṼx + αYsṼy +

1

2
η2Y 2

s Ṽyy + Ṽt

]
ds

+

ˆ t

0

(
Ṽθ − YsṼx

)
dΘs

+
∑

0≤s≤t

[
Ṽ (Xs, Ys,Θs, s)− Ṽ (Xs−, Ys−,Θs−, s−)− Ṽx(△X)s − Ṽθ(△Θ)s

]

+

ˆ t

0

ηYsṼydBs

= Ñ1
t + Ñ2

t + Ñ3
t + Ñ4

t .

Lemma 13 (in the 
ase ǫ ≤ 0 and otherwise Lemma 19 or Lemma 24) implies Ñ1
t ≤ 0 and Ñ2

t ≤ 0.

The 
on
avity of Ṽ (x+yχ, y, θ−χ, s) in χ (either dire
tly if ǫ ≤ 0, or using Lemma 18 or Lemma 23)

implies (∆Ñ3) ≤ 0.

Now de�ne stopping times τn = inf
{
t ≥ 0 :

´ t

0
η2Y 2

s Ṽ
2
y ds ≥ n

}
. It follows from (B.2) that yṼy

is bounded and hen
e τn ↑ ∞. Then the lo
al martingale (Ñ4
t∧τn)t≥0 is a martingale and taking

expe
tations we have E

(
M̃t∧τn

)
≤ M̃0, and hen
e

E

(
ˆ t∧τn

0

e−βs
C1−R
s

1−R
ds+ Ṽ (Xt∧τn , Yt∧τn ,Θt∧τn , t ∧ τn)

)
≤ Ṽ (x0, y0, θ0, 0) .

In the 
ase ǫ ≤ 0, (5.1) and (C.1) imply

Ṽ (x, y, θ, t) = e−βt
(x+ ε)

1−R

1−R

(
1 +

yθ

x+ ε

)1−R(
R

β

)R
≥ e−βt

(x+ ε)
1−R

1−R

(
R

β

)R
≥

ε1−R

1−R

(
R

β

)R
.

Thus Ṽ is bounded, lim
n→∞

EṼ (Xt∧τn , Yt∧τn ,Θt∧τn, t ∧ τn) = E

[
Ṽ (Xt, Yt, θt, t)

]
, and

Ṽ (x0, y0, θ0, 0) ≥ E

(
ˆ t

0

e−βs
C1−R
s

1−R
ds

)
+ E

[
Ṽ (Xt, Yt,Θt, t)

]
.

Similarly,

Ṽ (x, y, θ, t) ≥ e−βt
ε1−R

1−R

(
R

β

)R

and hen
e E

[
Ṽ (Xt, Yt,Θt, t)

]
→ 0. Then letting t → ∞ and applying the monotone 
onvergen
e

theorem, we have

Ṽε (x0, y0, θ0, 0) = Ṽ (x0, y0, θ0, 0) ≥ E

(
ˆ ∞

0

e−βs
C1−R
s

1−R
ds

)

Finally let ε→ 0. Then V ≤ limε↓0 Ṽ = G. Hen
e, we have V ≤ G.

The two non-degenerate 
ases are very similar, ex
ept that now from (5.11) and (C.1),

Ṽ (x, y, θ, t) = e−βt
(x+ ε)

1−R

1−R
g

(
yθ

x+ ε

)
≥ e−βt

ε1−R

1−R

(
R

β

)R
.

where we use that for R > 1, g is de
reasing with g (0) = (Rβ )
R > 0. Hen
e Ṽ is bounded, and the

argument pro
eeds as before.

�
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