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Abstract 

Selective attention is atypical in individuals with autism spectrum conditions. Evidence 

suggests this is also the case for those with high levels of autistic traits. Here we investigated 

the neural basis of spatial attention in those with high and low levels of self-reported autistic 

traits via analysis of ERP deflections associated with covert attention, target selection and 

distractor suppression (the N2pc, NT and PD). Larger N2pc and smaller PD amplitude was 

observed in those with high levels of autistic traits. These data provide neural evidence for 

differences in spatial attention, specifically, reduced distractor suppression in those with high 

levels of autistic traits, and may provide insight into the experience of perceptual overload 

often reported by individuals on the autism spectrum.   
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Introduction 

An important function of selective attention is to resolve competition in the visual 

environment by directing resources to goal relevant stimuli (Desimone & Duncan, 1995). 

Research has shown that those with autism spectrum conditions (ASC) demonstrate atypical 

selective attention compared to those who are typically developing (Burack, 1994; Plaisted, 

O’Riordan & Baron-Cohen., 1998). Here we used event-related potentials (ERPs) to 

investigate whether those who report high levels of autistic traits also show evidence of 

atypical selective attention. 

Tasks that are used to assess selective attention in ASC typically involve detecting a 

target in an array of distracting information (e.g. visual search). Using a modified visual 

search task, Burack (1994) found that those with ASC showed a search-advantage when 

attention was limited to a narrow visual field, constrained by a window (12.2° visual angle). 

However, when irrelevant distractors were presented within the window, as opposed to 

outside of the window, participants with ASC showed a greater detriment to response time 

than typically developing controls. Burack (1994) suggested that this reflects an “inefficient 

attentional lens” in ASC and subsequent studies have supported this claim (e.g Mann & 

Walker, 2003). Other work has shown that children with ASD show reduced supression of 

distractors in a flanker task (Adams & Jarrold, 2012). Remington et al., (2009) demonstrated 

that those with ASC show strong interference from distracting flanker letters at high levels of 

perceptual load, a finding they consider to reflect greater perceptual capacity in those with 

ASC. A similar finding was also observed in those with high scores on a questionnaire which 

measures self-reported autistic traits in the general population (Autism Spectrum Quotient, 

AQ, Baron-Cohen et al., 2001). Specifically, Bayliss & Kritikos, (2011) found that those with 

above average autism quotient (AQ) scores showed stronger interference from distractors at 

high levels of load than those with below average AQ scores. Taken together, there is an 
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array of evidence to suggest that individuals with ASD, and also those with high levels of 

autistic traits, have atypical spatial attention, which may be manifested by reduced 

suppression of distracting information.  

ERP research has identified robust neural correlates of selective attention (for a 

review see Luck & Kappenman, 2013). This research forms an excellent knowledge base 

from which to explore selective attention in the autism spectrum. In our recent paper 

investigating the neural basis of feature-based selective attention (Milne et al., 2013) we 

reported ERP data which revealed differences in resource allocation to irrelevant distractors 

between those with high and low levels of autistic traits. The task involved sequential 

presentations of single stimuli which differed in colour and / or orientation. Targets were 

identified on the basis of feature combination and distracters shared either two, one or zero 

features with targets. We found increased P3b amplitude following presentation of distractors 

which did not share features with the target in participants with more autistic traits compared 

to those with fewer autistic traits, indicating increased processing of irrelevant distractor 

stimuli in the high AQ group.   

Here we aimed to establish whether neural indices of spatial attention are also atypical 

in those with high levels of autistic traits. This was achieved by presenting stimulus arrays of 

two to four items from which the relevant target must be identified and processed while the 

distracting stimuli also present should be ignored. This task generates the N2pc ERP 

component, which is a posterior component in the N2 time-range, recorded from electrodes 

over temporal/parietal areas (~200 to 300 ms post stimulus onset, Luck & Hillyard, 1990; 

1994a; 1994b) The N2pc represents the difference between the signal recorded from 

electrodes that are either contralateral or ipsilateral to a target (Woodman & Luck, 1999). For 

example, when presented with a visual search display, amplitude is larger at electrodes that 

are contralateral to the target than electrodes that are ipsilateral to the target., The source of 
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the N2pc has been localised to the ventral occipital cortex (Hopf et al., 2000), and the 

cognitive process reflected by the N2pc is the deployment of covert attention in order to 

select a target in space (Eimer, 1996; Kiss, Van Velzen & Eimer., 2008). Hickey, DiLollo, 

and McDonald., (2009) identified two subcomponents of the N2pc, the PD, a positive 

difference between contralateral and ipsilateral waveforms, reflecting the suppression of 

distractors in space, and the NT, a negative difference between contralateral and ipsilateral 

waveforms which reflects target selection. Measuring these components in those who vary in 

levels of autistic traits enables us to investigate spatial attention in the autism spectrum. If 

mechanisms supporting spatial attention differ between those with high and low levels of 

autistic traits, then this will be evidenced by group-differences in N2pc amplitude.  

We reasoned that enhanced perceptual capacity as reported in ASC (Remington et al., 

2009; 2012) and in those without ASC but with high levels of autistic traits (Bayliss & 

Kritikos, 2011) may enable participants to process relevant and irrelevant items in a 

simultaneous parallel-like manner. Indeed this has been suggested as one explanation for 

superior visual search seen in those with ASC (Remington et al., 2009). Processing relevant 

and irrelevant items simultaneously may be reflected by a larger N2pc amplitude because of 

the need for more focused attention (Sawaki, Luck & Raymond, 2015) and an attenuated PD 

because of a lack of distracter suppression. Therefore, in our first study we predicted that the 

N2pc would be larger in those with high levels of autistic traits compared to those with low 

levels of autistic traits. In our second study we predict that a large N2pc in those with high 

levels of autistic traits will be accompanied by an attenuated PD. 

Study One 

Method 

AQ Questionnaire 
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The AQ is a brief questionnaire which asks respondents to indicate whether they 

agree or disagree with 50 statements describing social/communication and behavioural traits 

and preferences (Baron-Cohen et al., 2001). Each of the 50 items is scored as 0 or 1, with 1 

being indicative of a response associated with an autistic-trait, thus the maximum score 

indicative of a high level of autistic traits is 50. An example item from the AQ is: “I prefer to 

do things with others rather than on my own.” The Cronbach alpha for the overall AQ score 

was found to be satisfactory in a student sample (.81) and general population sample (.71) by 

Hoekstra et al., (2008). 

Participants 

Participants were recruited on the basis of their level of self-reported autistic traits as 

measured by the AQ. A link to an online version of the AQ was distributed by email to all 

students at the University of Sheffield and was completed by 1256 people. The mean AQ 

score from this population was 17.8 with a range of 2-44. The top and bottom 10th percentiles 

of the distribution corresponded to AQ scores of 27 and 10 respectively. From these tails of 

the distribution thirty-four participants were invited to take part in the ERP study reported 

here. As detailed below, some participants were excluded from the analysis. This was either 

because their EEG data was contaminated with artifacts (N = 10) or because they showed 

chance performance on the behavioural task (N = 2). The final sample was comprised of ten 

individuals (four female, six male) with high AQ scores and twelve individuals (seven 

female, five male) with low AQ scores. The high AQ group had a mean AQ score of 31 (s.d 

= 2.7, score range = 28 - 37), and a mean age of 25 (s.d = 9.2, range = 19 - 49), and the low 

AQ group had a mean AQ score of 8.5 (s.d = 1.6, score range = 6 - 10), and a mean age of 22 

(s.d = 3.1, range = 19 – 28). Age did not significantly differ between groups t (20) = 1.1, p = 

.30, d = 0.5. Three participants (two in the high AQ group) were left handed. The remaining 

participants were right handed. Written informed consent was obtained from all participants 
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and the study received ethical approval from the department of Psychology ethics sub-

committee. All participants were invited to declare any personal or close family ASC 

diagnosis (parent/sibling) before the study began and none did so. The experimenter was 

blind to the AQ score of each participant until post testing. 

Design and Stimuli  

EEG was recorded while participants completed a spatial attention task which was 

based on Luck et al., (1997). Targets in the task were defined by colour (blue/green), target 

colour alternated between blocks. Participants sat 70cm from the screen and were instructed 

to report whether the target letter T was upright or inverted. Each search array was composed 

of 4 letters. The two coloured letter Ts were presented in opposing visual hemifields and were 

always presented in the lower visual field. Next to each coloured T was a grey distractor T at 

a distance which ranged from 0.7° to 1.6° (measured centre to centre). A white fixation cross 

remained visible at the centre of the display at all times and participants were instructed to 

remain focussed on this for the duration of the task. The stimuli were presented on a grey 

background (3.98cd/m2) and the coloured search items were green (CIE coordinates u’ = 

0.278, v’ = 0.567) and blue (CIE coordinates u’ = 0.204, v’ = 0.274) with luminance ranges 

within 3% of 18cd/m2. The grey distractor Ts were also within this luminance range. Of the 

900 total trials, the green T appeared in the left visual field (LVF) in 50% of trials and in the 

RVF in the other 50% of trials, randomly determined within a given block. The blue T was 

always placed in the opposite hemifield to the green T. The letters were presented at random 

locations within rectangular areas that were 1.4°*1.4° in size, located 2.7° below and to the 

left and right of fixation. The letter Ts were 0.6° high and 0.5° wide. Of the 900 trials the Ts 

occurred equally in green/blue, left/right and upright/inverted. An example of this task can be 

seen in Figure 1. 
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Procedure 

Each array remained on screen for 750 ms during which time participants were 

required to discriminate the orientation of the target T. There was a randomly varying ISI 

between successive arrays of 1350 ms or 1650 ms. The experimental session was preceded by 

two blocks of 12 practice trials, one blue and one green block. Accuracy feedback was given 

on screen during the practice trials but was not given during experimental trials. Participants 

pressed a response key with their left index finger if the target was upright and with their 

right index finger if the target was inverted.   

Please insert Figure 1 here 

EEG Recording and Processing 

EEG was recorded continuously using a high-density array of 128 Ag/AgCl 

electrodes (Electrical Geodesics Inc.). The signal was amplified by 1000, filtered on line with 

a band-pass of 0.01 – 80Hz and digitised with a sampling rate of 1000Hz. Impedance was 

kept below 50 kȍ. Electro-oculogram (EOG) was also recorded from electrodes located 

above and below the left and right eyes and from the left and right canthus. Data were 

referenced to the vertex electrode. The data were filtered offline using 0.1Hz high pass and 

30Hz low pass cut offs. Visibly noisy channels were removed from the data by hand. The 

data were then epoched with a time window of -200 to 800 ms pre and post stimulus.  

Artifact Rejection 

Epochs were excluded from all remaining channels if the signal went above 75µV or 

below -75µV. Epochs demonstrating increases in amplitude associated with blinks were 

excluded using the 5 electrodes surrounding the eyes (EGI electrodes; 14, 17, 22, 126 &127), 

epochs were excluded if they contained signal above 50 µV or below -50µV. Eye movements 
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were identified by subtracting the signal from the left canthus from the signal at the right 

canthus, creating a difference wave. Epochs were rejected when activity in the resulting 

difference wave went above 16 µV or below -16 µV (Woodman & Luck, 2003), 

corresponding to approximately one degree of eye movement (Luck, 2005).  

ERP datasets were excluded on the basis of being contaminated by excessive eye or muscle 

movements (N = 10). Datasets were also excluded if participants did not understand 

instructions as reflected in accuracy being below 50% correct (N = 2).  

As described below, two ERP waveforms were computed, reflecting the signal 

contralateral and ipsilateral to the target. There was no difference in the number of trials used 

to calculate contralateral (Mean = 315.2, s.d = 75.5), or ipsilateral ERPs (Mean = 323.4, s.d = 

79.2). Additionally there was no group difference in the amount of trials used to calculate 

ERPs (High AQ Mean = 630.1, s.d = 177.1), (Low AQ Mean = 645.6, s.d = 124.8). 

ERP Processing 

Amplitude 

In order to calculate the N2pc, the average signal between 180 and 300 ms was 

calculated from trials during which a correct behavioural response was made. This was 

obtained from four pairs of electrodes (T7/T8, P3/P4, P07/08 and P7/P8) relative to a 200 ms 

pre stimulus baseline voltage. The numbers on the EGI cap for these pairs of electrodes are 

(46/109, 53/87, 59/92 & 66/85). The time window and electrodes used are in line with 

previous work (Luck et al., 1997). The signal contralateral to a target was acquired by taking 

the mean amplitude from the four electrodes on the opposite side of the head to the target. 

Ipsilateral amplitudes were acquired by taking the mean amplitude from the four electrodes 

on the same side of the head as the target.  
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Latency 

Because latency measures are nonlinear and vulnerable to high levels of measurement error, 

the jackknife approach was used (Miller, Patterson & Ulrich, 1998; Kiesel, Miller, Jolicoeur 

& Brisson, 2008, Luck et al., 2009). Latencies were measured from a number of difference 

waves, computed from a subsample of n – 1 of the individual participants. These were 

calculated separately for high and low AQ groups. These iterations inflate the t value; 

therefore, before testing for significance, the t value must be adjusted according to:   

Adjusted t = t / (n -1) 

Onset latency was calculated with the fractional area latency method, using 15% area latency 

(Luck et al., 2009) on the N2pc difference wave (Contralateral minus Ipsilateral) between 

180 and 300 milliseconds. Kiesel et al., (2008) concluded that the jack knife method 

combined with fractional area latency is a superior approach to investigate onset latency in 

difference wave components.  

Results 

Behavioural Results  

As reported in table 1, accuracy was high and did not vary significantly between high and 

low AQ scorers, t (20) = 1.8, p = .08, d = 0.8. Similarly, median reaction time did not differ 

between groups, t (20) = 1.2, p = .23, d = 0.5.  

N2pc amplitude 

N2pc amplitude was analysed using a 2 x 2  repeated measures ANOVA with a within-

subjects factor of laterality (contralateral vs ipsilateral) and a between-subjects factor of AQ 

group. All reported values reflect the Greenhouse-Geisser corrected statistic. Partial eta-
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squared was used to report effect size. Guidelines for interpreting partial eta-squared values 

are: 0.01 = small effect, 0.09 = medium and 0.25 = large (See Cohen, 1988).  A highly 

significant interaction between contraleteral and ipsilateral signal confirmed the presence of a 

reliable N2pc, F (1, 20) = 27.1, p = <.001, Șp² = 0.58. In addition, there was a significant 

interaction between AQ group and laterality, F (1, 20) = 5.4, p = .03, Șp²= 0.21. Paired 

samples t-tests revealed that the difference between the ipsilateral and contralateral signal 

was significant for both the high AQ group t(9) = 4.1, p = <.001, d = 1.3, and the low AQ 

group, t(11) = 2.9, p = .02, d = 0.9, but effect sizes indicated that the difference was larger in 

the high AQ group. In Figure 2, ERPs ipsilateral and contralateral to the appearance of a 

target are shown separately for high and low AQ scorers. Figure 3 shows the difference wave 

where a larger N2pc amplitude is evident in the high AQ scorers. 

Please insert Figure 2 here 

Please insert Figure 3 here 

Onset Latency 

Latency values were calculated as the time point in which the difference wave (contralateral 

minus ipsilateral) reached 15% of the area under the curve between 180 and 300 

milliseconds. 

An independent measures t-test with a between factor of AQ group revealed no significant 

group difference in the onset of the N2pc, t (20) = .31, p = .76, d = .03. Mean latency values 

are given in Table 2. 

Additional ERP analyses 

In order to establish whether the groups differed in any ERP components other than N2pc 

additional analyses were conducted on earlier and later components of the ERP including P1 
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and SPCN amplitude. The P1 is an early component, normally peaking around 100 ms. The 

P1 reflects visual processing and is thought to originate in extra striate cortex (Luck & 

Kappenman, 2013). The SPCN (sustained posterior contralateral negativity) occurs between 

350 and 650 ms and this was the time window used (Jolicoeur, Brisson & Robitaille, 2008). 

The SPCN represents the difference between the signal recorded from electrodes that are 

either contralateral or ipsilateral to a target and is interpreted as an electrophysiological 

marker of working memory maintenance (Luck & Kappenman, 2013).  

Peak P1 amplitude (Time window: 70-170ms) was analysed at occipital electrodes 

(O1/O2 EGI: 72/77) using an independent measures t-test with a between subjects factor of 

AQ group. Although Figure 3 suggests a potential between group difference in the amplitude 

of the P1, statistical analysis indicated no signficant difference in P1 amplitude between 

groups t (20) = 1.6, p = .13, d = 0.7.   

Mean SPCN amplitude (350-650 ms) was analysed at all four pairs of electrodes 

described above using a 2 x 2  mixed measures ANOVA with a within-subjects factor of 

laterality (contralateral vs ipsilateral) and a between-subjects factor of AQ group. This 

revealed a main effect of laterality F (1, 20) = 16.8, p = .001, Ș²P = .46, showing a clear SPCN 

in these data. This did not interact with AQ group F (1, 20) = .48, p = .50, Șp²= .02, indicating 

that SPCN did not differ between the high and low AQ scorers.  

These additional analyses confirm that there was no between-group difference in the 

amplitude of either of the early (P1) or late (SPCN) ERP components confirming that 

differences between groups were uniquely observed in the N2pc component. 

Simon Effect Analysis 
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A Simon effect analysis was conducted in order to ensure that the laterality of stimuli and 

responses did not influence N2pc amplitude. For this analysis the magnitude of the N2pc was 

calculated by subtracting mean ipsilateral amplitude between 200 and 300 ms from mean 

contralateral amplitude between 200 and 300 ms. These values were calculated separately 

from trials in which the stimulus hemifield was compatible or incompatible with response 

side, and were entered into a 2 x 2 ANOVA with compatibility as the within subjects factor 

and AQ group as the between subjects factor. This analysis revealed no significant difference 

in N2pc amplitude between trials where appearance of the target and response were 

compatible or where they were incompatible, F (1, 20) = .01, p = .93, Șp²= .001 and no 

significant interaction between these variables and AQ group, F (1, 20) = .02, p = .89, Șp²= 

.001. This analysis confirms that the Simon effect did not influence N2pc amplitude which is 

in line with previous work (Cespón, Galdo-Álvarez & Díaz., 2012).  

Interim Discussion 

The objective of Study One was to establish whether an ERP signature of covert deployment 

of attention, i.e. the N2pc component, differed between those with either high or low levels of 

autistic traits. We found a clear between group difference in N2pc amplitude, providing direct 

evidence for differences in the mechanisms underlying spatial attention in those with high 

and low levels of autistic traits. In order to be sure that this effect was not driven by 

differences in other ERP components, and to confirm that N2pc was the only component that 

differed between the low and high AQ scorers, we also checked for differences between 

groups in P1 peak amplitude and mean SPCN amplitude. No between group differences were 

observed in these components.  

Remington and colleagues have shown that those with ASC do not show the usual 

detriment in search tasks under conditions of high perceptual load. The authors suggest that 
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this is a facet of higher perceptual capacity in individuals with ASC, and one consequence 

appears to be that those with ASC are able to allocate attention to task-irrelevant items in a 

scene even at high levels of load (Remington et al., 2009). We (Milne et al., 2013) recently 

demonstrated that those with high levels of autistic traits showed larger P3b amplitude 

following the presentation of irrelevant non-target stimuli than those with lower levels of 

autistic traits, suggesting that there may be reduced suppression of irrelevant or distracting 

stimuli in those with high levels of autistic traits. N2pc amplitude, as measured here, reflects 

the processes of both target selection and suppression, so it is not possible to identify whether 

the larger N2pc amplitude reflects differences in target selection or suppression. However, 

measuring the amplitude of the PD (Hickey et al., 2009) may offer a useful insight into this.  

If our hypothesis that those with high levels of autistic traits show reduced distractor 

suppression is correct then we would predict that larger N2pc amplitude will be accompanied 

by reduced PD amplitude in those with high levels of autistic traits. The aim of study two was 

therefore to attempt to replicate the finding from study one of increased N2pc in individuals 

with higher levels of autistic traits, and to establish whether differences in distractor 

suppression (PD) and / or target selection (NT) were also evident in those with more autistic 

traits.    

Study Two 

Method 

For this study an entirely new cohort of participants was recruited. All first year 

students at our institution were invited to complete the AQ online. 864 participants completed 

the AQ; the mean score was 18.6 with a range of 1 - 45.  The top and bottom 10th percentiles 

of the distribution corresponded to AQ scores of 28 and 11 respectively. From this 

distribution, forty-five participants were invited to take part in the ERP study reported here. 
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Nine participants were excluded from analysis due to EEG artifacts. This resulted in a final 

sample of 36, with 17 high AQ (11 female, 6 male) participants and 19 low AQ (15 female, 4 

male) participants. The high AQ group had a mean AQ score of 30 (s.d = 3.9, score range = 

28 - 40) and a mean age of 21 (s.d = 3.4, range = 18 - 30) the low AQ group had a mean AQ 

score of 8.5 (s.d = 2.1, score range = 5 – 11) and a mean age of 20 (s.d = 1.5, range = 18 - 

23). Age did not significantly differ between groups t (34) = 1.0, p = .33, d = 0.3. Six 

participants (five in the high AQ group) were left handed. Written informed consent was 

obtained from all participants and the study received ethical approval from the department of 

Psychology ethics sub-committee. All participants were invited to declare any personal or 

close family ASC diagnosis before the study began and none did so. The experimenter was 

blind to AQ score until post testing.  

Design and Stimuli  

Stimuli were the same as in study one, with the removal of the grey distractor Ts and the 

addition of letter positions on the vertical meridian. This was a replication of Hickey et al, 

(2009) experiment 4. The lateral/vertical organisation (see Figure 4) allowed for the isolation 

of components related to lateral targets (NT) and lateral distractors (PD).  

Search arrays were composed of 2 letters: equiluminant green and blue letter T’s 

(measuring 1° of visual angle). The Ts were equidistant from central fixation and from each 

other (5°) with 2 positions in the vertical meridian (directly above fixation and below: 0° and 

180°) and 6 lateral positions (60°, 90°, 120°, 240°, 270° and 300°), 2 above the horizontal 

meridian, 2 on the horizontal meridian and 2 below. There were 576 trials where a target 

appeared laterally and 576 trials where a distractor appeared laterally. There were also 576 

trials with the target and distractor were presented in opposing lateral positions to elicit the 

N2pc. Green and blue appeared with equal occurrence in lateral (1/3 of trials) and vertical 
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positions. The opposing sides set up, as a balanced visual search display was intended to 

elicit the N2pc (a summation of distractor and target processing). 

Please insert Figure 4 here 

Procedure 

The procedure was the same as in study one. However, participants were now required to 

respond with the index and middle finger of their dominant hand. This change was made as 

an improvement on Study One, eliminating the need for Simon effect analysis. EEG 

recording, pre-processing and artefact rejection were the same as in study one.  

EEG Recording and Processing  

EEG recording and processing was the same as in Study One.  

Artifact Rejection 

Artifact rejection procedures were the same as in Study One. 

There was no significant difference in the number of trials used to calculate ERPs between 

contralateral and ipsilateral ERPs for N2pc, (Contralateral Mean = 200.2, s.d = 48.4; 

Ipsilateral Mean = 202.4, s.d = 37.2), PD (Contralateral Mean = 161.2, s.d = 52.8; Ipsilateral 

Mean = 164.7, s.d = 47.1), or NT (Contralateral Mean = 167.4, s.d = 50.6; Ipsilateral Mean = 

159.1, s.d = 51.1). There was also no significant difference in the number of trials used to 

calculate ERPs between AQ groups for N2pc, (High AQ Mean = 413.4, s.d = 97.2; Low AQ 

Mean = 396.2, s.d = 78.4), PD (High AQ Mean = 305.6, s.d = 98.8; Low AQ Mean = 336.5, 

s.d = 90.6), or NT (High AQ Mean = 302.7, s.d = 97.1; Low AQ Mean = 318, s.d = 88.1) 

trials. 

ERP Processing 
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ERP amplitudes were calculated using the same procedure as in study one. For N2pc 

amplitude the time window used was 180-300 ms; for NT, 175-325 ms and for PD, 230-280 ms 

(in line with Corriveau et al., 2012; Sawaki & Luck, 2010; Hickey et al., 2009). 

N2pc/NT Amplitude 

The signal contralateral to a target was acquired by taking the mean amplitude from the 

electrodes on the opposite side of the head to the target. Ipsilateral amplitudes were acquired 

by taking the mean amplitude from the four electrodes on the same side of the head as the 

target.  

PD Amplitude 

The signal contralateral to a distractor was acquired by taking the mean amplitude from the 

electrodes on the opposite side of the head to the distractor. Ipsilateral amplitudes were 

acquired by taking the mean amplitude from the four electrodes on the same side of the head 

as the distractor.  

Latency 

The same jack knife procedure was used as in study one. 

Onset latency was calculated with the fractional area latency method, using 15% area latency 

(Luck et al., 2009) on the difference wave (Contralateral minus Ipsilateral). For the N2pc 

difference wave this was between 180 and 300 milliseconds. On the PD difference wave, 

between 230 and 280 milliseconds and on the NT difference wave between 175 and 325 

milliseconds. 

Results 

Behavioural Results 
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As reported in Table 1, accuracy was high and did not vary significantly between high and 

low AQ scorers, t (1, 34) = 1.0, p = .32, d = 0.3, similarly median correct-trial reaction times 

did not differ between high and low AQ scorers, t (1, 34) = .06, p = .95, d = <.01. 

Please insert Table 1 here 

N2pc Amplitude  

N2pc amplitude was analysed using a 2 x 2  repeated measures ANOVA with a within-

subjects factor of laterality (contralateral vs ipsilateral) and a between-subjects factor of AQ 

group. A highly significant interaction between contraleteral and ipsilateral signal confirmed 

the presence of a reliable N2pc, F (1, 34) = 19.7, p = <.001, Șp² = 0.58. In addition, there was 

a significant interaction between AQ group and laterality, F (1, 34) = 9.1, p = .005, Șp²= 

0.21. This result is consistent with the findings of study one. Paired sample t-tests revealed 

that the difference between ipsilateral and contralateral signal was significant for the high AQ 

group t(16) = 4.3, p = .001, d = 1.2, however it was not significant for the low AQ group, 

t(18) = 1.3, p = .19, d = 0.3. In Figure 5, ERPs ipsilateral and contralateral to the appearance 

of a target are shown separately for high and low AQ scorers. Figure 6 demonstrates a larger 

N2pc amplitude in those with high levels of autistic traits. 

Onset Latency 

An independent measures t-test with a between factor of AQ group revealed no significant 

group difference in the onset of the N2pc, t (34) = .02, p = .81, d = <.01, again consistent 

with the findings of study one. The mean values are shown in Table 2. 

Please insert Table 2 here 

PD Amplitude 
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PD amplitude was analysed using a 2 x 2  repeated measures ANOVA with a within-subjects 

factor of laterality (contralateral vs ipsilateral) and a between-subjects factor of AQ group. A 

highly significant interaction between contraleteral and ipsilateral signal confirmed the 

presence of a reliable PD, F (1, 34) = 7.2, p = .01, Șp²= .17. In addition, there was a significant 

interaction between AQ group and laterality, F (1, 34) = 5.7, p = .02, Șp²= .15. Paired 

samples t-test revelead that the difference between ipsilateral and contralateral signal was 

significant for the low AQ group t(18) = 3.9, p = .001, d = 1.0, but was not significant for the 

high AQ group, t(16) = .43, p = .67, d = 0.1, suggesting that those with high levels of autistic 

traits did not show a PD. In Figure 5, ERPs ipsilateral and contralateral to the appearance of a 

target are shown separately for high and low AQ scorers. Figure 6 demonstrates a smaller PD 

amplitude in those with high levels of autistic traits. 

Onset Latency 

An independent measures t-test with a between factor of AQ group revealed no significant 

group difference in the onset of the PD, t (34) = .10, p = .91, d = <.01. The mean values are 

shown in Table 2. 

NT Amplitude 

NT amplitude was analysed using a 2 x 2  repeated measures ANOVA with a within-subjects 

factor of laterality (contralateral vs ipsilateral) and a between-subjects factor of AQ group. A 

highly significant interaction between contralateral and ipsilateral signal confirmed the 

presence of a reliable NT, F (1, 34) = 22.1, p = <.001, Șp²= .39. There was no significant 

interaction between AQ group and laterality, F (1, 34) = .18, p = .38, Șp²= .01. In Figure 5, 

ERPs ipsilateral and contralateral to the appearance of a target are shown separately for high 

and low AQ scorers.  
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Onset Latency 

An independent measures t-Test with a between factor of AQ group revealed no significant 

group difference in the onset of the NT, t (34) = .61, p = .60, d = 0.2. The mean values are 

shown in Table 2. 

Please insert Figure 5 here 

Please insert Figure 6 here 

Additional ERP analyses 

In order to be sure that the group difference in the ERP was present for the N2pc 

component only; additional analyses were conducted on earlier and later components of the 

ERP including P1 and SPCN amplitude.  

P1 Amplitude  

Peak P1 amplitude (time window: 70-170ms) was analysed at occipital electrodes (O1/O2 

EGI: 72/77) using an independent measures t-test with AQ group as a between subjects 

factor. Peak P1 amplitude did not differ between groups during N2pc trials, t (34) = .57, p = 

.58, d = 0.2, PD trials t (34) = 1.1, p = .28, d = 0.4, or NT trials t (34) = .18, p = .86, d = 0.1. 

SPCN Amplitude 

Mean SPCN amplitude (350-650 ms) was analysed at all four pairs of electrodes described 

above using 2 x 2  mixed measures ANOVA’s with a within-subjects factor of laterality 

(contralateral vs ipsilateral) and a between-subjects factor of AQ group. This revealed a main 

effect of laterality for N2pc F (1, 34) = 11.1, p = .002, Șp²= .25 and NT trials, F (1, 34) = 7.3, 

p = .02, Șp²= .13, showing a clear SPCN in these data. This did not interact with AQ group F 
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(1, 34) = <.01, p = .97, Șp²= <.01 in N2pc or NT trials F (1, 34) = .42, p = .52, Șp²= .01, 

indicating that SPCN did not differ between the high and low AQ scorers.  

For PD trials there was no main effect of laterality F (1, 34) = 2.4, p = .13, Șp²= .07, which is 

consistent with expectations as we would not expect to see an SPCN in response to 

distractors.  

General Discussion 

The objective of this work was to establish whether an ERP signature of the 

deployment of covert attention, i.e. the N2pc component, differed between those with either 

high or low levels of autistic traits. In two separate studies, involving two entirely separate 

cohorts of participants, we found that N2pc amplitude was significantly larger in individuals 

with high, rather than low, levels of autistic traits. This finding provides neural evidence that 

the deployment of attention differs between high and low AQ scorers. Specifically, larger 

N2pc amplitude suggests more effortful processing, or greater allocation of attentional 

resources, during target search. Study two indicated that the higher AQ scorers also had no 

PD, a finding which indicates a lack of distractor suppression in the high AQ scorers. 

Together, these results show that individuals with higher levels of autistic traits show 

increased deployment of attention during a spatial search task, most likely as a result of a lack 

of distractor suppression. No group differences were found in the NT component, indicating 

that the neural mechanisms underpinning target selection do not differ between those with 

high and low levels of autistic traits.   

In study one, ERP amplitude was significantly larger when recorded from electrodes 

contralateral to the target than electrodes ipsilateral to the target in both the high and low AQ 

scorers. That is, both groups showed a significant N2pc component. However, in study two, 

the contralateral/ipsilateral difference only reached significance in the high AQ scorers.  The 
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N2pc has been shown to be larger when stimuli are presented in the lower visual field (Luck 

et al., 1997), therefore the stimuli in study one were always presented below fixation. In 

study two, the task was modified so that we could measure NT and PD in addition to N2pc. 

We used an existing paradigm (Hickey et al., 2009), which had previously been used to 

measure these components, however this second paradigm did not limit stimuli to appearing 

only in the lower visual field. This may explain why the low AQ group did not show a 

significant N2pc in these data, especially given that N2pc onset was later (although not-

significantly so) in the low AQ group compared to the high AQ group. Importantly, the high 

AQ group showed a significant N2pc in both study one and study two, providing support for 

our conclusion that N2pc amplitude is increased in individuals with high AQ scores.  

Previous work suggests that those with ASC (Remington et al., 2009) and those with 

high levels of autistic traits (Bayliss & Kritikos, 2011) have an enhanced perceptual capacity. 

Ultimately the result of this enhanced capacity appears to be the processing of normally 

irrelevant distracting items in a visual scene and this could lead to the overwhelming 

perceptual experience often reported by those with an ASC. Similarly, Adams and Jarrold, 

(2012) used a flanker paradigm and found that when their task was made more simple for 

participants (i.e increasing the size of the target), those with an ASC continued to show 

interference errors from incongruent distracting flankers. Also, we (Milne et al., 2013) 

recently demonstrated that those with high levels of autistic traits showed a larger response to 

irrelevant stimuli compared to those with low levels of autistic traits, resulting in less 

difference between the P3b response to targets and distractors. We suggested that there may 

be reduced suppression of distractors in those with high levels of autistic traits, a claim which 

is further supported by the data reported here.  The small PD suggests a lack of active 

suppression of distractors in those with high levels of autistic traits which may be a 

consequence of an enhanced perceptual capacity. Our previous study found that the smaller 
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P3b amplitude was associated with more efficient visual search, which led us to the rather 

counter-intuitive conclusion that those who are better at visual search are those who are less 

efficient at filtering out irrelevant stimuli. Therefore we might expect that those with a lack of 

PD, and who are not suppressing irrelevant information, may be more efficient at visual 

search, however further data is required to test this suggestion directly. 

Further analyses confirmed that the group differences were unique to the N2pc and 

PD. P1 amplitude did not differ between the high and low AQ scorers indicating that there 

was no difference between the groups in terms of the initial sensory encoding of the stimuli. 

In addition, SPCN did not differ between the groups indicating that post-perceptual processes 

such as working memory maintenance and representations (Eimer & Kiss, 2010) do not differ 

between those with high and low AQ scores. Rather, the group differences we report here are 

restricted to processes that reflect attention deployment to goal relevant stimuli, and active 

suppression of distractor stimuli.   

As discussed by Gregory and Plaisted-Grant (2013), in any study of autistic traits, 

there is the possibility that those with high AQ scores, particularly above the clinical cut off 

defined by Baron-Cohen et al., (2001) could meet diagnostic criteria for an ASC. We 

attempted to mitigate this by asking participants to declare any ASC diagnosis for themselves 

or a close family member (parent/sibling) with the intention of excluding any participant who 

did so. None of our participants indicated that either they or any of their first-degree relatives 

had a diagnosis of ASD, making it likely that our findings do reflect differences in N2pc 

amplitude on the basis of AQ score alone. Further research is needed to establish whether this 

finding is replicated in individuals who have a clinical diagnosis of ASC.  

In conclusion, here we present data which demonstrates that the amplitude of the 

N2pc, an ERP component which reflects deployment of covert attention, is significantly 
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larger in those with high levels of autistic traits compared to those with low levels of autistic 

traits. In addition, the PD, which reflects active suppression of distractors, is reduced in those 

with high levels of autistic traits. Reduced distractor suppression in those with increased 

autistic traits is in-line with previous data showing that children with autism are less able to 

supress distractors during a flanker task (Adams and Jarrold, 2012), and may reflect increased 

perceptual capacity in those with high AQ scores (c.f. Kritikos & Bayliss, 2011). Taken 

together with our previous findings of altered feature based attention in those with high levels 

of autistic traits (Milne et al., 2013), this work adds to a growing literature demonstrating 

atypical attentional processes in the autism spectrum. Additionally, the neural atypicalities 

reported here could ultimately underlie the experience of perceptual overload often reported 

by individuals on the autism spectrum. 
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Table 1. Mean and Standard Deviation for Accuracy and Reaction Time Data for high and 

low AQ scorers for both study one and two 

  Accuracy (%)  Median RT  (ms) 

Study One  High AQ  

(N=10) 

Low AQ 

(N =12) 

High AQ Low AQ 

 Mean 82.1 87.1 545.5 523.8 

 SD 6.5 6.4 38.5 42.5 

Study Two  High AQ  

(N = 17) 

Low AQ 

(N = 19) 

High AQ Low AQ 

 Mean 83.7 82.5 506.9 503.6 

 SD 6.1 4.7 31.6 32.0 
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Table 2. Mean and standard deviation for onset latency, shown for high and low AQ scorers 

for both Study One and Study Two 

 

Onset 

Latency 

(ms) 

 N2pc  PD  NT  

  Mean  S.D Mean S.D Mean S.D 

Study One High AQ 243.3 11.1     

 Low AQ 213.5 7.0     

Study Two High AQ 227.0 10.3 247.8 7.7 266.0 11.9 

 Low AQ 246.2 7.0 241.5 1.2 211.3 2.6 
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Figure 1. Example of a stimulus array used in study one. In a given trial, either coloured 
letter could serve as a target while the opposing letter was the distractor. 



  32 
 

 

 

Figure 2. Grand average ERPs obtained from study one shown separately for high and low 
AQ scorers with the time window for N2PC marked. 
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Figure 3. Difference waves (contralateral minus ipsilateral) from study one shown for high 
(dashed line) and low AQ scorers with time windows for P1, N2pc and SPCN marked. 
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Figure 4. Example of a stimulus array from study two showing the set up with one letter on 
the vertical meridian. If the target in this example was the green T, we would expect to see a 
contralateral positivity to the blue distractor T and no lateral response to the target on the 
meridian.  
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Figure 5. Grand average ERPs from study two; N2pc, PD and NT are shown separately for 
high and low AQ scorers with the time window for the relevant ERP component marked. 
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Figure 6. Difference waves from study two (contralateral minus ipsilateral) shown for high 
(dashed line) and low AQ scorers with the relevant time window marked 

 

 


