

This is a repository copy of *Evaluating restoration in urban green spaces: Does setting type make a difference?*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/98357/

Version: Accepted Version

Article:

Van den Berg, A.E., Jorgensen, A. orcid.org/0000-0001-5614-567X and Wilson, E.R. (2014) Evaluating restoration in urban green spaces: Does setting type make a difference? Landscape and Urban Planning , 127. pp. 173-181. ISSN 0169-2046

https://doi.org/10.1016/j.landurbplan.2014.04.012

Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/ Evaluating restoration in urban green spaces: Does setting type make a difference?

Agnes E. VAN DEN BERG^{1,2} Anna JORGENSEN³, Edward R. WILSON⁴

¹ Department of Cultural Geography, Faculty of Spatial Sciences, University of Groningen,

PO Box 800, 9700AV, Groningen, The Netherlands. Tel.: +3150 363 3896. Email:

a.e.van.den.berg@rug.nl. Corresponding author.

² Wageningen University and Research Centre

³ Department of Landscape, University of Sheffield, Sheffield, United Kingdom. Email:

a.jorgensen@shef.ac.uk.

⁴ Silviculture Research International, Cumbria, United Kingdom. Email:

ted.wilson@silviculture.org.uk

Highlights:

- An experimental comparison of the restorative impacts of an urban streetscape and three common types of urban park and woodland settings.
- Stronger recovery from emotional stress on self-reported mood and restorative state in the natural conditions as compared to the urban street condition.
- No significant differences in recovery among the three natural settings.
- Restoration in urban green space varies with individual stress reactivity and perceptions of naturalness.

1 **1. Introduction**

Urban green space can make a significant contribution to people's overall well-being and quality 2 of life, as part of their everyday experiences (Bell et al., 2008). In particular, an expanding body 3 4 of research has shown green space to have restorative effects, reducing stress and mental fatigue. enhancing people's mood and helping to prevent depression (Van den Berg, Hartig, & Staats, 5 2007). The relevance of these benefits is increasing due to growing urbanization, and its negative 6 impact on mental health (Lederbogen et al., 2011; Peen et al., 2007). Nevertheless, whilst it is 7 generally recognised that urban green space has important restorative potential for city dwellers, 8 relatively little is known about how to plan, design and manage urban green spaces so as to 9 optimize their restorative impact. Most research on restorative environments has compared one 10 type of natural setting against one type of built setting (Velarde, Fry, & Tveit, 2007). To create 11 12 urban green spaces with optimal restorative potential, there is a need for a more diverse sampling of environments (Frumkin & Fox, 2011; Jorgensen & Gobster, 2010). To address this need, the 13 current study assesses the restorative impacts of different types of commonly found urban green 14 spaces. 15

16

Natural environments are traditionally regarded as more supportive of restoration from depleted
emotional and cognitive resources than built environments (Ward Thompson, 2011). The greater
restorative potential of natural as compared to built environments has been described and
predicted by Stress Recovery Theory (SRT; Ulrich, 1983; Ulrich et al., 1991) and Attention
Restoration Theory (ART; Kaplan & Kaplan, 1989; Kaplan, 1995). Although both theories share
common features, SRT has focused primarily on how nature can support affective and
physiological recovery from acute 'stress' or the depletion of emotional resources, while ART

24 has focused on attentional restoration from 'mental fatigue' or the depletion of cognitive resources. ART distinguishes four components of restorative environments which have become 25 the dominant framework for understanding restorative environment experiences: fascination, or 26 the capacity of an environment to automatically draw attention without cognitive effort, a sense 27 of extent or connectedness, being away from daily hassles and obligations, and a compatibility 28 between individual needs and the characteristics of the environment. Although each of these 29 components can be found in built as well as natural settings, ART contends that the combination 30 of the four components is most typical for natural settings, hence the greater restorative potential 31 32 of natural settings.

33

The greater restorative potential of natural as compared to built settings, particularly as reflected 34 in improved mood, has been demonstrated in many studies (for reviews, see Bowler, Buyung-35 Ali, Knight, & Pullin, 2010; Thompson Coon et al., 2011; Velarde, et al., 2007). The majority of 36 these studies have contrasted an activity in one type of natural setting to the same activity in one 37 type of built setting, e.g. walking in a park versus walking through an urban street (Hartig, 38 Evans, Jamner, Davis, & Gärling, 2003), working in a place with a view of trees and parks 39 versus working in a place with a view of buildings, parked cars and paved areas (Shin, 2007); or 40 viewing a video of a walk through a waterside environment versus viewing a video of a walk 41 through an urban pedestrian street (Laumann, Garling, & Stormark, 2003). Differences between 42 natural and built settings have been observed after brief exposure times of only a few minutes or 43 less, indicating the importance of 'micro-restorative experiences' with green space in the nearby 44 living environment (Barton & Pretty, 2010; Kaplan, 2001). 45

46

47 A disadvantage of the prevalent natural-built dichotomy in restorative environments research is that it does not provide guidelines on which options for urban green space design and 48 management are most effective in providing restoration. In response to these concerns, research 49 50 on restorative environments has expanded to include a more diverse sampling of different types of natural and/or built environments. Part of this expansion is being achieved by running 51 experiments with multiple natural and/or built conditions (e.g. Antonson, Mårdh, Wiklund, & 52 Blomqvist, 2009; Beil & Hanes, 2013; Gatersleben & Andrews, 2013; Karmanov & Hamel, 53 2008; Martens, Gutscher, & Bauer, 2011; Tyrväinen et al., 2014). At the same time, however, 54 research has increasingly employed descriptive and correlational designs that allow for a more 55 cost and time efficient measurement of the restorative potential of large numbers of settings (De 56 Jong, Albin, Skärbäck, Grahn, & Björk, 2012; Hartig, Korpela, Evans, & Gärling, 1997; Herzog, 57 Colleen, Maguire, & Nebel, 2003; Nordh, Hartig, Hagerhall, & Fry, 2009; Purcell, Peron, & 58 Berto, 2001; Van Dillen, De Vries, Groenewegen, & Spreeuwenberg, 2011; White, Pahl, 59 Ashbullby, Herbert, & Depledge, 2013). 60

61

These lines of enquiry have made some progress in identifying green space options with a high 62 restorative potential. In terms of overall landscape type, a recent survey among a large sample of 63 the English population revealed, among other things, that visits to rural woodlands and forest 64 areas were associated with more recalled restoration than visits to open countryside settings and 65 town parks (White et al., 2013). On a theoretical level woodlands and other densely vegetated 66 green spaces would also appear to conform to all four components of restorative environments as 67 described by ART (Kaplan & Kaplan, 1989; Kaplan, 1995): they are rich in complexity and 68 69 therefore have the potential to generate fascination, the enclosing vegetation may contribute to a

sense of being away and extent, and they support many different types of activities, ensuring a
high compatibility. These ideas receive some support from a study among Norwegian students,
who were asked to rate videos of different types of environments, including a forest and a
botanical park, on a rating scale that measures the four components of ART (Laumann, Gärling,
& Stormark, 2001). The video of the forest was rated higher on fascination, being away, extent
and compatibility than the video of the park.

76

Within the urban context, a photo perception study showed that the likelihood of restoration in 77 small 'pocket parks' in Norwegian cities was positively related to the naturalness of the parks as 78 measured by percentage of ground surface covered by grass and the amount of trees and bushes 79 visible (Nordh et al., 2009). This study also demonstrated that the greater likelihood of 80 81 restoration in the more natural parks could be explained by the greater sense of being away and fascination provided by these parks. The positive contribution of naturalness to the perceived 82 restorativeness of urban green spaces is corroborated by a survey in nine Swedish cities, which 83 revealed that green spaces exemplifying the dimensions 'refuge', 'nature' and 'rich in species' 84 were preferred by stressed individuals (Grahn & Stigsdotter, 2009). Interestingly the main item 85 loading onto 'refuge' was 'The park or open space contains many bushes'. A field study among 86 visitors of green spaces in and around the English city of Sheffield found positive associations 87 between the species richness of the areas and the perceived contribution of the green space to 88 restoration and well-being, with the perceived benefit being most strongly related to species 89 richness of plants and to a lesser extent of birds (Fuller, Irvine, Devine-Wright, Warren, & 90 Gaston, 2007). 91

92

93 While naturalness is generally a positive predictor of restoration, there is some indication that the presence of very dense vegetation may compromise restoration by evoking feelings of insecurity 94 Dense urban woodlands have, for example, come to be seen as likely settings for physical or 95 96 sexual assault and other incivilities (Jorgensen & Anthopoulou, 2007; Jorgensen, Hitchmough, & Dunnett, 2007). Research has generally confirmed that fully enclosed green spaces tend to be 97 perceived as less restorative than open or half-open spaces (Antonson et al., 2009; Han, 2010; 98 Herzog & Chernick, 2000; Herzog et al., 2003), although a study in Finland showed that urban 99 forests were seen as more restorative when the surrounding urban matrix was not visible through 100 the forest (Hauru, Lehvävirta, Korpela, & Kotze, 2012). A recent experimental study in the UK 101 demonstrated that a field or laboratory walk through an enclosed country park with unstructured, 102 dense vegetation further increased levels of stress and attentional fatigue, while walks through a 103 104 more open park promoted restoration (Gatersleben & Andrews, 2013).

105

Feelings of insecurity associated with dense natural settings may be mitigated by signs of 106 107 tendedness or 'human care' (De Jong et al., 2012; Herzog & Chernick, 2000; Martens et al., 2011; Nordh et al., 2009). For example, a field experiment in Switzerland showed that a 30-108 minute walk through a tended dense forest with visible signs of maintenance fostered stronger 109 mood improvements than a walk through an equally dense, but more wild part of the forest that 110 had not been maintained for many years (Martens et al., 2011). It has been suggested that the 111 presence of clear signs of maintenance enhances perceived safety because it is suggestive of the 112 presence of friendly, caring others (Jorgensen et al., 2007), while a lack of signs of human care 113 and control may remind people of their own mortality and vulnerability to the forces of nature 114 115 (Koole & Van den Berg, 2005).

116

117 In sum, there is a body of evidence suggesting that woodlands and forest areas are associated with high perceived restoration, and that the presence of natural elements such as trees, bushes, 118 119 grass and species richness is conducive to restorative experience within urban green spaces, provided that the vegetation is not so dense and wild that it creates feelings of insecurity. It is, 120 however, important to note that most of the evidence for a positive impact of naturalness comes 121 from studies that measured perceived restorativeness, experimental studies have often failed to 122 demonstrate differences in actual restorative impact between natural conditions (Beil & Hanes, 123 2013; Sonntag-Öström et al., 2011; Tsunetsugu et al., 2013; Tyrväinen et al., 2014; Ulrich et al., 124 1991; Van den Berg, Koole, & Van der Wulp, 2003). This suggests that there may be a 125 publication bias favouring studies that report differences in restoration between natural settings. 126 127 The aim of the present study was to establish whether commonly found urban public spaces with 128 varying degrees of naturalness differ in their restorative impact. Perceived naturalness has 129 130 previously been associated with vegetation structure and the presence of structural change (with tall dense vegetation seen as more natural) (Lamb & Purcell, 1990); and with the growth of scrub 131 and woodland, a more spatially varied woodland edge, and the number of woodland patches 132 (Ode, Fry, Tveit, Messager, & Miller, 2009). In this study we therefore interpreted naturalness as 133 the amount and structural variety of vegetation including the number of vegetation layers. 134 Following these considerations, we selected three types of urban green spaces with increasing 135 degrees of naturalness: open parkland, tended woodland, and wild woods. We also included a 136 completely built-up, unnatural urban street setting. We expected all three natural settings to be 137 more restorative than the urban street setting. We also expected the two more 'natural' (i.e. more 138

vegetated and structurally varied) wooded settings to be more restorative than the parkland
setting. With respect to the two wooded settings, we were interested to find out whether
tendedness (signs of vegetation care and management) would enhance restoration by mitigating
the feelings of personal insecurity that may occur in these densely vegetated and enclosed
settings.

144

145 **2. Method**

146 2.1. Participants and design

The study consisted of a laboratory experiment in which participants were first exposed to a 147 stressful video and then were randomly assigned to one of four conditions where they viewed a 148 short, simulated walk through an urban built or green space. Participants were 102 university 149 150 students (54 females), ranging in age from 17 to 40 years (mean age 22.2 years). The sample was ethnically diverse, with 58% identifying themselves as 'white', 35% as 'Asian' and 7% as 151 'black', 'mixed' or 'other'. The sample was recruited via email invitations sent to all students at 152 153 the University of Sheffield, and represented a diverse selection of disciplines, including 10% from the Department of Landscape. Participants were approximately equally distributed across 154 the four environmental conditions: urban street (n = 24), parkland (n = 27), tended woodland (n = 27)155 = 25), and wild woods (n = 26). The four conditions did not differ in gender, age, ethnicity or 156 study background. Participation was voluntary, and participants received a payment of £10 on 157 completion of the experiment. Ethical approval for the study was given by the Department of 158 Landscape's Research Ethics Committee. 159

160

161 2.2. Environments

162 Four short photo/video presentations were made in PowerPoint to simulate the experience of 163 walking through common built and natural urban spaces. Simulated walks are commonly used in restorative environments research and have been successfully applied before (Gatersleben & 164 Andrews, 2013; Laumann, Garling, & Stormark, 2003; Van den Berg et al., 2003). The urban 165 street presentation (Figure 1.1) showed a sequence of streets, alleys and open spaces in an 166 historic part of the city of Sheffield. Key features of this setting were that it contained virtually 167 no vegetation, but had a well-defined sense of enclosure provided by the buildings and 168 streetscape. The parkland presentation (Figure 1.2) showed a part of the Sheffield Graves Park 169 with generally mature specimen trees, pruned to remove lower branches, set in mown grass. Key 170 features of this setting were that it contained only two vegetation layers (mature trees and mown 171 grass), as well as being well-tended and open, so that distant elements within the park were 172 173 clearly visible. The tended woodland presentation (Figure 1.3) depicted the Sheffield Botanical Gardens, a park-like woodland setting containing clumps of native and exotic vegetation 174 consisting of trees, shrubs and ground-covering plants, separated by small mown grass glades. 175 176 Key features of this setting were that the vegetation was denser and more structurally complex than the parkland, containing ground covering vegetation and shrub layers, as well as trees and 177 mown grass, and was well-tended with a well-defined sense of enclosure. The wild woods 178 presentation (Figure 1.4) depicted parts of Sheffield Greno Woods, a mature woodland with a 179 number of vegetation 'layers', including a well-developed understorey of shrubs and 180 regenerating trees and rough ground cover. This setting had roughly the same level of enclosure 181 as the tended woodland but with a less-tended, more irregular and 'wild' appearance. People 182 could be seen in the middle to far distance of the urban street and parkland presentations, but not 183 184 in the tended woodland or wild woods. No steep slopes, water bodies or surrounding urban

infrastructure were visible in the presentations of the natural settings apart from brief shots of
parked or passing cars in the parkland and tended woodland, and of a boundary wall in the
tended woodland.

188

Each setting was photographed and filmed during a 250m walk along a road or path on a sunny 189 day in June, with pauses as if to take a closer look at the surroundings. These recordings were 190 191 used to create a photo/video presentation of 6 minutes and 40 seconds that simulated the walk using 50 still photographs (displayed for 2 seconds each) and five 60 second film clips. A Flip 192 Ultra HD camcorder was used to create the film footage, which was inserted roughly every 8th 193 photo. Each film clip consisted of 4 x 15 second pans (two horizontal, and two vertical) filmed 194 from a stationary position on the path and simulating a look around the immediate surroundings 195 196 of the viewer, picking up on details e.g. of trees or buildings. Ambient sound was included with the film clips to capture noise that was consistent with each site, such as people talking in the 197 distance, birds singing or the sound of rustling leaves. Background noise, such as distant traffic, 198 199 was deemed acceptable, but filming was restarted when an emergency vehicle sounding a siren passed by. 200

201

202 *2.3. Measures*

Measurements of mood and restorative state were taken at baseline (T1), after watching the scary movie (T2), and then again after viewing the simulated walk (T3). Items of the mood and restorative state scales were presented in different order at each time of measurement.

206

207	Mood was measured by the short form of the Profile of Mood States (POMS-SF; Curran,
208	Andrykowski, & Studts, 1995). This scale consists of 37 mood words representing six mood
209	states named anger, tension, fatigue, confusion, depression and vigour. Participants rated the
210	extent to which each word described the way they were feeling right now on a 7-point scale (1 =
211	'do not feel at all'; 7 = 'feel very strongly'). The six subscales were combined into two broad
212	mood dimensions: 'negative mood' (computed as the weighted average of the anger, tension,
213	confusion, and depression subscales) and 'vitality' (computed as the weighted average of the
214	vigour subscale and the reverse coded fatigue subscale). Both scales had good reliability,
215	Cronbach's alpha for the negative mood scale (26 items) was .90 at T1, and .95 at T2 and T3,
216	Cronbach's alpha for the vitality scale (11 items) was .89 at T1, .80 at T2 and .88 at T3. Negative
217	mood was weakly to moderately negatively correlated with vitality with <i>rs</i> between -31 and29.
218	This suggests that the subscales are related but not redundant.

219

220 Restorative state was measured with a self-developed scale consisting of nine statements 221 developed to monitor changes in actual restorative state over time (Table 1). Existing measures such as the Perceived Restorativeness Scale (PRS; Hartig et al., 1997) or the Restorative 222 Components Scale (Laumann et al., 2001) all focus on the perceived restorativeness or likelihood 223 of restoration, with items such as 'There are many objects here that attract my attention'. 224 Essentially, these are instruments to evaluate settings, they are not suitable for measuring 225 changes in restorative state over time. Han's (2003) Short-Term Revised Restoration Scale 226 (SRRS) contains some state items but is not suitable overall as the other items relate to 227 evaluative judgments of environments. Our own Restorative State Scale (RSS) was inspired by 228 229 Kaplan & Kaplan's description of the restorative nature experience as sequence of interrelated

230 and deepening levels of restorativeness (1989, p. 196-197). We selected items that capture the 231 overall experience (e.g. 'I feel connected to the natural world') as well as items that tap into more distinct levels or functions of the restorative nature experience such as 'clearing the head' 232 233 (e.g. 'my mind is not invaded by stressful thoughts') and 'reflection on one's life and one's priorities and possibilities (e.g. 'I can make space to think about my problems'). Response 234 options ranged from 1 = 'do not feel at all' to 7 = 'feel very strongly'. After removal of items 235 that were weakly correlated with the other items, the 9-item RSS showed sufficient reliability, 236 Cronbach's alpha was .63 at T1, .72 at T2, and .79 at T3. Scale scores were derived by averaging 237 the responses. Restorative state was weakly correlated with negative mood with rs between -.16 238 and .19, and weakly to moderately positively correlated with vitality, with rs between .09 and 239 .46. This indicates that the RSS is distinct from, but meaningfully related to, the more established 240 241 POMS.

242

At the end of the experiment, participants rated the environment they had seen on a number of dimensions, including perceived naturalness, using a 7-point scale with 1 = 'not at all natural' and 7 = 'very natural'. For exploratory purposes, participants were also asked to list three keywords describing their overall reaction to the environment.

247

248 *2.4. Procedure*

A total of ten sessions (2-3 sessions per condition) were run with groups of 2-24 participants in the Spring semester outside of the exam period. All sessions were held in the same lecture room at the University of Sheffield. This room had no windows and was completely blacked out when the presentations were shown on a large screen of 3×2 m. At the start of each session, the

253 sequence of experimental procedures was explained, participants were required to give their 254 informed consent, and were told that they were free to leave at any time. Following the baseline measurements of mood and restorative state, participants were exposed to an affective stressor 255 256 consisting of a 14 minute excerpt from an 18+ rated scary movie. The excerpt contained sequences high in suspense depicting extremes of human emotion and graphic violence against 257 the person set mainly inside buildings. Previous studies have effectively used similar scenes to 258 induce emotional stress (Ulrich et al., 1991; Van den Berg et al., 2003). The stressor was 259 followed by a second series of mood and restorative state measurements, after which the 260 participants watched one of the four simulated walks. Participants were instructed to watch the 261 presentation carefully, and to imagine themselves walking through the setting shown. The 262 presentation was followed by a third series of measurements and additional questions related to 263 264 the perceived naturalness and other characteristics of the environment shown. Participants then completed the last part of the questionnaire, which contained questions about gender, age, field 265 of study and ethnicity, and a question asking for feedback and suggestions. Finally, participants 266 267 were thanked, paid and their questions on the study were answered. The total duration of each session was approximately 1 hour. 268

269

270 2.5 Data Analysis

All analyses were carried out using SPSS for Windows version 20.0. We used one-way analyses of variance to examine differences between the conditions in baseline measurements and perceived naturalness. We performed three sets of repeated-measures analyses of variance to examine changes in negative mood, vitality and restorative state across the three times of measurement. The first set of repeated-measures analyses examined changes from T1 to T2

276 (stress reactivity), using condition (street, parkland, woodland, wild woods) as a between factor. 277 The second set of repeated-measures analyses examined changes from T2 to T3 (recovery), using condition as a between factor and stress reactivity (as measured by T1-T2 change scores) as a 278 279 covariate. The third set of repeated-measures analyses examined influences of perceived naturalness on recovery in the natural conditions with stress reactivity and condition (dummy-280 coded) as covariates. For these latter analyses, participants in the natural conditions were 281 reallocated to three groups using a tertile split on the naturalness scores, with scores 1-4 for the 282 low naturalness group (n = 21), score 5 for the medium naturalness group (n = 21) and scores 7-8 283 for the high naturalness group (n = 36). Participants in the urban street condition were excluded 284 from these analyses because of the smaller range of their naturalness scores. We applied post-hoc 285 comparisons to test for contrasts between the built vs. the natural settings, and pairwise 286 287 differences among the conditions. To control for multiple testing, we adjusted the *p*-values of the pairwise comparisons using Šidák correction. 288

289

Keywords were classified by two researchers along the dimensions of valence (positive/negative)
and arousal (high/low) using the circumplex model of affect (Russell, 1980). Occasional
disagreements (< 5%) were discussed to reach a consensus. Nearly all keywords (95%) could be
placed within one of the four affective categories of the model. Remaining keywords (which
mostly consisted of comments on the quality of the presentation e.g. "well-filmed") were
excluded from the analysis. Differences between conditions were assessed using Chi-square tests
for independence of categorical data.

297

298 **3. Results**

299 3.1. Manipulation checks

300 *3.1.1. Stress induction*

301 The main effect of time (T1, T2) was significant for all three restoration measures, p-values <

- 302 .05. Negative mood was significantly higher at T2 after the scary movie than during the baseline
- measurement at T1, mean change = 0.73, 95% CI = 0.53 to 0.91, p < .001. Vitality was generally
- lower after the scary movie than at baseline, mean change = -0.24, 95% CI = -0.41 to -.07, p < -0.41
- .01. Restorative state was also lower after the scary movie than at baseline, mean change = -0.15,

95% CI = -0.28 to -0.01, p < .05. Responses to the stressor did not differ between the four

307 conditions, all p-values > .35 (see Table 2 for the means per condition). The four conditions also

did not differ significantly on any of the three dependent variables at baseline or after the scary

movie, p-values >.75. Thus, the stress induction was successful for all three dependent measures.

310

311 *3.1.2. Perceived naturalness*

The four environments differed significantly in perceived naturalness, F(3, 98) = 21.68, p < .001, 312 $\eta_p^2 = .4$. The urban street was rated significantly less natural (M = 2.46, SD = 1.59, range 1-5) 313 than the parkland (M = 4.89, SD = 1.15, range 3-7), the tended woodland (M = 4.88, SD = 1.39, 314 range 2-7) and the wild woods (M = 5.96, SD = 1.46, range 2-7), all corrected *p*-values < . 001. 315 The wild woods were rated significantly more natural than the parkland and the tended 316 woodland, corrected *p*-values < .05. These findings are largely consistent with our a-priori 317 classification of the environments as ranging from built-up to very natural. However, contrary to 318 our expectations, the tended woodland was not rated as more natural than the parkland, 319 corrected *p*-value =1, and the large ranges indicate that there were substantial individual 320 321 differences in perceived naturalness.

322

323 3.2. Recovery from stress

324 *3.2.1. Negative mood*

Negative mood generally decreased after viewing the environmental presentation, F(1, 97) =325 17.81, p < .001, $\eta_p^2 = .16$, but the amount of decrease differed significantly across conditions, as 326 indicated by a significant interaction between time of measurement (T2, T3) and condition F(3, 1)327 97) = 2.77, p < .05, $\eta_p^2 = .08$. As shown by the unadjusted means in the upper part of Table 2 and 328 the covariate-adjusted means in Figure 2a, participants in the three natural conditions generally 329 showed stronger and more complete recovery (estimated mean change = -0.83, SE = 0.07) than 330 participants in the urban street condition (estimated mean change = -0.45, SE = 0.13). This 331 contrast in recovery between the built and the natural conditions was significant, estimated mean 332 difference = 0.38, 95% CI = 0.09 to 0.67, p < .05. The decrease in negative mood was only 333 significant in the parkland condition, p < .001, decreases in the other conditions did not reach 334 significance, p-values > .13. There was a significant pairwise difference in recovery between the 335 336 urban street and the urban park, corrected p < .05. None of the other pairwise comparisons reached significance, corrected p-values > .27. 337

338

339 *3.2.2. Vitality*

Recovery of vitality differed marginally across conditions, F(3, 97) = 2.09, p = .1, $\eta_p^2 = .06$, while the main effect of time was not significant, F(1, 97) = 0.05, p > .82. As shown in the middle part of Table 2 and in Figure 2b, participants in the natural conditions generally showed an increase in vitality (estimated mean change = 0.21, SE = 0.1) while participants in the urban street condition showed a further decrease in vitality (estimated mean change = -0.28, SE = 0.19). This contrast in recovery between the built and the natural conditions was significant, mean difference = 0.49, 95% CI = 0.07 to 0.91, p < .05. The decrease in vitality in the urban street condition was significant, p < .05, but the increases in vitality in the natural conditions were not significant, p-values > .16. None of the pairwise comparisons of recovery of vitality among the four conditions reached significance, corrected p-values > .1.

350

351 *3.2.2. Restorative State*

Restorative state generally increased after viewing the environmental presentation, F(1, 97) =352 23.54, p < .001, $\eta_p^2 = .2$, with the amount of increase differing significantly across conditions, F 353 (3, 97) = 3.64, p < .05, $\eta_p^2 = .1$. As shown in the lower part of Table 2 and in Figure 2c, 354 restorative state increased significantly to scores above baseline values in each of the three 355 356 natural conditions (estimated mean change = 0.67, SE = 0.1) while it remained approximately constant in the urban street condition (estimated mean change = 0.03, SE = 0.1). This contrast in 357 recovery between the built and the natural conditions was significant, mean difference = 0.64, 358 95% CI = 0.23 to 1.05, p < .01. There were significant pairwise differences in recovery of 359 restorative state between the urban street and the parkland, and between the urban street and the 360 wild woods, corrected *p*-values <.05. None of the other pairwise comparisons reached 361 significance, corrected *p*-values > .35. 362

363

364 3.2.3 Covariate effects

Stress reactivity, as measured by the T1-T2 change scores, was significantly related to recovery in negative mood, F(1, 97) = 61.41, p < .001, $\eta_p^2 = .39$, vitality, F(1, 97) = 11.31, p < .01, $\eta_p^2 =$ 367 .1, and restorative state, F(1, 97) = 13.1, p < .001, $\eta_p^2 = .12$. In general, participants who reacted 368 more negatively to the stressor, reacted more positively to the environmental presentation.

369

370 *3.2.4 Influence of perceived naturalness*

Perceived naturalness significantly affected recovery of vitality in the natural conditions, F(1,371 72) = 3.92, p < .05, $\eta_p^2 = .1$. As shown in Figure 3, participants who perceived the green spaces 372 373 as natural (score 5) or very natural (score 6 or 7) showed an increase in vitality (estimated mean change = 0.31, SE = 0.11) while participants who perceived the green space as not so natural 374 (score 4 or lower) showed a further decrease in vitality (estimated mean change = -0.25, SE = 375 0.14). Although the increase in the high perceived naturalness group, and the decrease in the low 376 perceived naturalness groups were not significant, p-values > .31, the contrast in recovery 377 378 between the low and the two high perceived naturalness groups was significant, mean difference = 0.56; 95% CI = 0.21 to 0.92, p < .01. Perceived naturalness did not significantly affect 379 recovery of negative mood and restorative state, p-values > .34. 380

381

382 *3.3 Keyword analysis*

As shown in Table 3, reactions to the urban street were predominantly negative (64%), while reactions to the parkland (80%), tended woodland (75%) and wild woods (77%) were predominantly positive. The difference in frequency of positive and negative keywords between the urban street and the three natural conditions was significant, $\text{Chi}^2(1) = 42.63$, p < .001. Most of the negative reactions to the urban street reflected low arousal e.g. 'boring' and 'uninteresting'. However, more high-arousal negative terms such as 'claustrophobic' and 'confusing' were also used.

All three natural settings were most commonly described with positive, low arousal terms such 391 as 'calming', 'peaceful', and 'relaxing', underlining their high restorative potential. The wild 392 393 woods were less often (65%) described with low arousal positive and negative keywords such as 'calming' and 'boring' than the other two more tended natural settings (85%), and this setting 394 also attracted more high arousal positive and negative descriptors (35%) such as 'refreshing' and 395 'disorienting' than the tended natural settings (16%). This difference in frequencies of high and 396 low arousal keywords between the wild woods and the other two natural settings was significant, 397 $Chi^2(1) = 10.06, p < .01.$ 398

399

400 **4. Discussion**

The results of this study add to the mounting evidence for the greater restorative potential of 401 urban green spaces relative to built urban spaces (Bowler, Buyung-Ali, Knight, & Pullin, 2010; 402 Van den Berg et al., 2007; Velarde et al., 2007). Using an experimental design, in which 403 404 participants were first exposed to a scary movie and then randomly assigned to conditions of viewing natural and built urban spaces, we measured stronger recovery in negative mood, vitality 405 and restorative state in the natural conditions as compared to the built urban street condition. 406 Contrary to expectations, we did not find significant differences in recovery between the natural 407 conditions, which included a parkland, a tended woodland and wild woods. These non-408 significant findings are noteworthy given that other experimental studies have also found few 409 differences in restorative impacts between different types of natural settings (Beil & Hanes, 410 2013; Tyrväinen et al., 2014), except for studies comparing extreme - very dense and wild-411 412 natural settings (Gatersleben & Andrews, 2013; Martens et al., 2011). Thus, the lack of

413 differences in restorative impacts between three natural conditions could be a genuine

414 phenomenon, perhaps reflecting the operation of a common (visual) trigger of restoration that is

415 inherent to all natural stimuli and settings (see Joye & Van den Berg, 2011).

416

The null findings regarding the impacts of degree of naturalness may also have been driven by 417 methodological issues. Although we took extensive precautions to standardize our presentations 418 on all relevant dimensions except naturalness, there were some possible confounders, such as the 419 presence of exotic plant species and a boundary wall in the tended woodland, which may have 420 influenced the results. It is also possible that our measures were not sensitive enough to pick up 421 more subtle nuances in restorative experiences. In particular, the analysis of keyword data 422 suggests that our measures may have missed the more intense, high arousal positive and negative 423 424 feelings that were reported by participants who viewed the wild woods. Alternatively, it is also possible that participants' personal impressions of their reactions to the setting do not provide 425 accurate information as to their actual recovery. 426

427

Participants' reactivity to the stressor was found to be an effective covariate that eliminated part 428 of the individual variance in recovery that was unrelated to the environmental conditions. This 429 finding underlines the importance of selecting appropriate covariates when comparing restorative 430 effects of different types of settings. The stronger recovery of participants who showed more 431 stress reactivity may be partly explained by the mere fact that their post-stressor reactions created 432 more potential, and perhaps also a greater need, for recovery. Additionally, individual 433 differences in the degree to which people rely on external support to regulate their emotions may 434 also have played a role (Koole, 2009). 435

436

437 Previous research has found positive relationships between perceptions of naturalness and selfreported likelihood of restoration and well-being (Dallimer et al., 2012; Fuller et al., 2007). 438 439 However, to the extent of our knowledge, our study is the first to show that perceptions of naturalness are positively related to actual restoration as measured by changes in self-rated 440 vitality, independent of the physical characteristics of settings. The causal direction of this 441 relationship remains unclear. It is possible that people's conceptions of naturalness and attitudes 442 toward nature influence their restorative nature experiences, as recently suggested by Wilkie and 443 Stavridou (Wilkie & Stavridou, 2013). However, it is also possible that the experience of 444 recovery from stress guided participants' perceptions of naturalness, or a third variable (e.g. 445 optimism) could have influenced both recovery and perceived naturalness. 446

447

The focus on common types of green space makes our research very relevant to green space 448 policy and practice. However, a limitation of our approach is that it does not provide insight into 449 450 the contributions of specific physical dimensions like enclosure and tendedness. Because we did not vary the presence of acoustic information, it is also not possible to make inferences about the 451 contributions of sound to the restorative capacity of the environments. The use of a student 452 sample was also an important limitation of the study, because their responses may not be 453 representative for the general population. A further limitation is that we used only self-report 454 measures, we did not measure physiological reactions or other more objective measures of 455 restoration. The short length of exposure in combination with the use of photos and videos may 456 have compromised the applicability of our results to real-life experiences. The restriction to 457 458 urban spaces in Sheffield in the month of June may limit the generalizability of the results to

other geographical regions and seasons. We did not measure participants' familiarity with thesettings, and thus were unable to control for possible influences of this variable.

461

By selecting more extreme (e.g. very wild or very dense) urban green space settings future 462 research may enhance the chances of finding significant differences among natural conditions. 463 At the same time, however, such an approach is less relevant to the everyday practice of green 464 space management and design and could even provide misleading information. For example, the 465 finding that very dense and unstructured natural settings can hamper restoration (Gatersleben & 466 Andrews, 2013) may lead managers and decision-makers to ban all wild nature from urban areas, 467 while our research suggests that moderate types of 'urban wilderness' can promote levels of 468 restoration comparable with more tended types of green space, and may stimulate feelings of 469 470 excitement and refreshment.

471

Future experiments could also manipulate other theoretically relevant physical characteristics 472 473 such as variations in topography or the presence of water (Ulrich, 1983), and additional variables like sounds (Alvarsson, Wiens, & Nilsson, 2010), the presence of others (Staats & Hartig, 2004), 474 or medium of presentation (Kahn et al., 2008). The range of environments could be extended to 475 include different types of built settings or mixed scene types with urban and green elements (e.g. 476 pocket parks or green rooftops and walls) (Peschardt & Stigsdotter, 2013; Tenngart Ivarsson & 477 Hagerhall, 2008). More insight into the cumulative effects of long term exposure to actual green 478 space in the living environment is also warranted (Bowler et al., 2010). To identify sources of 479 individual variability in stress reactivity and recovery, future research needs to consider 480 481 individual difference variables such as emotion regulation style (Koole, 2009). The validity and

reliability of our self-developed restorative state scale needs further testing in future studies,
preferably in relation to physiological and attentional outcomes. To avoid publication bias it is
important that non-significant findings are published.

485

To learn more about the causal direction of the relationship between perceived naturalness and recovery of vitality, future research could measure perceptions of naturalness in advance of the experimental treatment, e.g. by means of a photo perception study (see Wilkie & Stavridou, 2013). Future research could also explore whether recovery rates vary with known predictors of individual differences in perceived naturalness like socio-economic status, age and personality characteristics (Jorgensen & Tylecote, 2007; Van den Berg & Van Winsum-Westra, 2010).

492

Overall this study has made some important first steps to obtaining a more nuanced picture of 493 restorative experiences in urban public spaces that goes beyond the natural versus built 494 dichotomy. Most importantly, the findings suggest that the relationship between naturalness and 495 496 restorativeness may not be as strong and straightforward as is often assumed. Besides physical characteristics like naturalness, individual perceptions and needs should also be taken into 497 account when designing urban green spaces. Nevertheless, the question of whether 'setting type 498 499 matters' still remains one of the more outstanding problems in restorative environments research and much remains to be learned about how to create optimally restorative urban built and green 500 501 spaces.

References

- Antonson, H., Mårdh, S., Wiklund, M., & Blomqvist, G. (2009). Effect of surrounding landscape on driving behaviour: A driving simulator study. *Journal of Environmental Psychology*, 29(4), 493-502. doi: 10.1016/j.jenvp.2009.03.005
- Barton, J., & Pretty, J. (2010). What is the best dose of nature and green exercise for improving mental health? A multi-study analysis. *Environmental Science & Technology*, 44(10), 3947-3955. doi: 10.1021/es903183r
- Beil, K., & Hanes, D. (2013). The Influence of urban natural and built environments on physiological and psychological measures of stress. A pilot study. *International Journal* of Environmental Research and Public Health, 10(4), 1250-1267. doi: 10.3390/ijerph10041250
- Bell, S., Hamilton, V., Montarzino, A., Rothnie, H., Travlou, P., & Alves, S. (2008). *Greenspace and quality of life: A critical literature review*. Stirling: Greenspace Scotland.
- Bowler, D., Buyung-Ali, L., Knight, T., & Pullin, A. (2010). A systematic review of evidence for the added benefits to health of exposure to natural environments. *BMC Public Health*, *10*(1), 456. doi: 10.1186/1471-2458-10-456
- Curran, S. L., Andrykowski, M. A., & Studts, J. L. (1995). Short Form of the Profile of Mood States (POMS-SF): Psychometric information. *Psychological Assessment*, 7(1), 80-83. doi: 10.1037/1040-3590.7.1.80
- Dallimer, M., Irvine, K. N., Skinner, A. M. J., Davies, Z. G., Rouquette, J. R., Maltby, L. L., . . .
 Gaston, K. J. (2012). Biodiversity and the feel-good factor: Understanding associations
 between self-reported human well-being and species richness. *Bioscience*, 62(1), 47-55.
 doi: 10.1525/bio.2012.62.1.9

- De Jong, K., Albin, M., Skärbäck, E., Grahn, P., & Björk, J. (2012). Perceived green qualities were associated with neighborhood satisfaction, physical activity, and general health: Results from a cross-sectional study in suburban and rural Scania, southern Sweden. *Health & Place*, *18*(6), 1374-1380. doi: 10.1016/j.healthplace.2012.07.001
- Frumkin, H., & Fox, J. (2011). Contact with nature. In A. J. Dannenberg, H. Frumkin & R. J. Jackson (Eds.), *Making healthy places: Designing and building for health, well-being, and sustainability* (pp. 229-243). Washington, DC: Island Press.
- Fuller, R., Irvine, K., Devine-Wright, P., Warren, P., & Gaston, K. (2007). Psychological benefits of greenspace increase with biodiversity. *Biology Letters*, *3*, 390 - 394. doi: 10.1098/rsbl.2007.0149
- Gatersleben, B., & Andrews, M. (2013). When walking in nature is not restorative—The role of prospect and refuge. *Health & Place*, 20(0), 91-101. doi: 10.1016/j.healthplace.2013.01.001
- Grahn, P., & Stigsdotter, U. K. (2009). The relation between perceived sensory dimensions of urban green space and stress restoration. *Landscape and Urban Planning*, 94(3-4), 264-275. doi: 10.1016/j.landurbplan.2009.10.012
- Han, K.-T. (2003). A reliable and valid self-rating measure of the restorative quality of natural environments. *Landscape and Urban Planning*, 64(4), 209-232. doi: 10.1016/S0169-2046(02)00241-4
- Han, K.-T. (2010). An exploration of relationships among the responses to natural scenes: Scenic beauty, preference, and restoration. *Environment and Behavior*, 42(2), 243-270. doi: 10.1177/0013916509333875

- Hartig, T., Korpela, K., Evans, G. W., & Gärling, T. (1997). A measure of restorative quality in environments. *Scandinavian Housing and Planning Research*, *14*(4), 175 194. doi: 10.1080/02815739708730435
- Hauru, K., Lehvävirta, S., Korpela, K., & Kotze, D. J. (2012). Closure of view to the urban matrix has positive effects on perceived restorativeness in urban forests in Helsinki, Finland. *Landscape and Urban Planning*, *107*(4), 361-369. doi: 10.1016/j.landurbplan.2012.07.002
- Herzog, T. R., & Chernick, K. K. (2000). Tranquility and danger in urban and natural settings. *Journal of Environmental Psychology*, 20(1), 29-39. doi: 10.1006/jevp.1999.0151,
- Herzog, T. R., Colleen, Maguire, P., & Nebel, M. B. (2003). Assessing the restorative components of environments. *Journal of Environmental Psychology*, 23(2), 159-170. doi: 10.1016/S0272-4944(02)00113-5
- Jorgensen, A., & Anthopoulou, A. (2007). Enjoyment and fear in urban woodlands–Does age make a difference? *Urban Forestry & Urban Greening*, 6(4), 267-278. doi: 10.1016/j.ufug.2007.05.004
- Jorgensen, A., & Gobster, P. H. (2010). Shades of green: Measuring the ecology of urban green space in the context of human health and well-being. *Nature and Culture*, 5(3), 338-363. doi: 10.3167/nc.2010.050307
- Jorgensen, A., Hitchmough, J., & Dunnett, N. (2007). Woodland as a setting for housingappreciation and fear and the contribution to residential satisfaction and place identity in Warrington New Town, UK. *Landscape and Urban Planning*, *79*(3–4), 273-287. doi: 10.1016/j.landurbplan.2006.02.015

- Jorgensen, A., & Tylecote, M. (2007). Ambivalent landscapes Wilderness in the urban interstices. *Landscape Research*, *32*(4), 443-462. doi: 10.1080/01426390701449802
- Joye, Y., & Van den Berg, A. E. (2011). Is love for green in our genes? A critical analysis of evolutionary assumptions in restorative environments research. Urban Forestry & Urban Greening, 10(4), 261-268. doi: 10.1016/j.ufug.2011.07.004
- Kaplan, R. (2001). The nature of the view from home Psychological benefits. *Environment and Behavior*, *33*(4), 507-542.
- Kaplan, R., & Kaplan, S. (1989). The experience of nature: A psychological perspective. New York: Cambridge University Press.
- Kaplan, S. (1995). The restorative benefits of nature: Toward an integrative framework. *Journal of Environmental Psychology*, *15*(3), 169-182. doi: 10.1016/0272-4944(95)90001-2
- Karmanov, D., & Hamel, R. (2008). Assessing the restorative potential of contemporary urban environment(s): Beyond the nature versus urban dichotomy. *Landscape and Urban Planning*, 86(2), 115-125. doi: 10.1016/j.landurbplan.2008.01.004
- Koole, S. L. (2009). The psychology of emotion regulation: An integrative review. *Cognition & Emotion*, 23(1), 4-41. doi: 10.1080/02699930802619031
- Koole, S. L., & Van den Berg, A. E. (2005). Lost in the wilderness: Terror management, action orientation, and nature evaluation. *Journal of Personality and Social Psychology*, 88(6), 1014-1028. doi: 10.1037/0022-3514.88.6.1014
- Laumann, K., Garling, T., & Stormark, K. (2003). Selective attention and heart rate responses to natural and urban environments. *Journal of Environmental Psychology*, 23(2), 125 134. doi: 10.1016/S0272-4944(02)00110-X

- Laumann, K., Gärling, T., & Stormark, K. M. (2001). Rating scale measures of restorative components of environments. *Journal of Environmental Psychology*, 21(1), 31-44. doi: 10.1006/jevp.2000.0179
- Lederbogen, F., Kirsch, P., Haddad, L., Streit, F., Tost, H., Schuch, P., . . . Meyer-Lindenberg,
 A. (2011). City living and urban upbringing affect neural social stress processing in
 humans. *Nature*, 474(7352), 498-501. doi: 10.1038/nature10190
- Martens, D., Gutscher, H., & Bauer, N. (2011). Walking in "wild" and "tended" urban forests:
 The impact on psychological well-being. *Journal of Environmental Psychology*, *31*(1), 36-44. doi: 10.1016/j.jenvp.2010.11.001
- Nordh, H., Hartig, T., Hagerhall, C. M., & Fry, G. (2009). Components of small urban parks that predict the possibility for restoration. *Urban Forestry & Urban Greening*, 8(4), 225-235. doi: 10.1016/j.ufug.2009.06.003
- Ode, Å., Fry, G., Tveit, M. S., Messager, P., & Miller, D. (2009). Indicators of perceived naturalness as drivers of landscape preference. *Journal of Environmental Management*, 90(1), 375-383. doi: 10.1016/j.jenvman.2007.10.013
- Peen, J., Dekker, J., Schoevers, R., Have, M., Graaf, R., & Beekman, A. (2007). Is the prevalence of psychiatric disorders associated with urbanization? *Social Psychiatry and Psychiatric Epidemiology*, 42(12), 984-989. doi: 10.1007/s00127-007-0256-2
- Peschardt, K. K., & Stigsdotter, U. K. (2013). Associations between park characteristics and perceived restorativeness of small public urban green spaces. *Landscape and Urban Planning*, *112*, 26-39. doi: 10.1016/j.landurbplan.2012.12.013
- Purcell, T., Peron, E., & Berto, R. (2001). Why do preferences differ between scene types? *Environment and Behavior*, *33*(1), 93-106. doi: 10.1177/00139160121972882

- Russell, J. A. (1980). A circumplex model of affect. *Journal of Personality and Social Psychology*, *39*(6), 1161. doi: 10.1037/h0077714
- Sonntag-Öström, E., Nordin, M., Järvholm, L. S., Lundell, Y., Brännström, R., & Dolling, A.
 (2011). Can the boreal forest be used for rehabilitation and recovery from stress-related exhaustion? A pilot study. *Scandinavian Journal of Forest Research*, 26(3), 245-256. doi: 10.1080/02827581.2011.558521
- Tenngart Ivarsson, C., & Hagerhall, C. M. (2008). The perceived restorativeness of gardens -Assessing the restorativeness of a mixed built and natural scene type. Urban Forestry & Urban Greening, 7(2), 107-118. doi: 10.1016/j.ufug.2008.01.001
- Tsunetsugu, Y., Lee, J., Park, B.-J., Tyrväinen, L., Kagawa, T., & Miyazaki, Y. (2013).
 Physiological and psychological effects of viewing urban forest landscapes assessed by multiple measurements. *Landscape and Urban Planning*, *113*, 90-93. doi: 10.1016/j.landurbplan.2013.01.014
- Tyrväinen, L., Ojala, A., Korpela, K., Lanki, T., Tsunetsugu, Y., & Kagawa, T. (2014). The influence of urban green environments on stress relief measures: A field experiment. *Journal of Environmental Psychology*, 38(0), 1-9. doi: dx.doi.org/10.1016/j.jenvp.2013.12.005
- Ulrich, R. S. (1983). Aesthetic and affective response to natural environment. In I. Altman & J.F. Wohlwill (Eds.), *Human behavior and environment: Advances in theory and research* (Vol. 6, pp. 85-125). New York, NY: Plenum Press.
- Ulrich, R. S., Simons, R. F., Losito, B. D., Fiorito, E., Miles, M. A., & Zelson, M. (1991). Stress recovery during exposure to natural and urban environments. *Journal of Environmental Psychology*, *11*(3), 201-230. doi: 10.1016/S0272-4944(05)80184-7

- Van den Berg, A. E., Hartig, T., & Staats, H. (2007). Preference for nature in urbanized societies:
 Stress, restoration, and the pursuit of sustainability. *Journal of Social Issues*, 63(1), 79-96. doi: 10.1111/j.1540-4560.2007.00497.x
- Van den Berg, A. E., Koole, S. L., & Van der Wulp, N. Y. (2003). Environmental preference and restoration: (How) are they related? *Journal of Environmental Psychology*, 23(2), 135-146. doi: 10.1016/s0272-4944(02)00111-1
- Van den Berg, A. E., & Van Winsum-Westra, M. (2010). Manicured, romantic, or wild? The relation between need for structure and preferences for garden styles. *Urban Forestry Urban Greening*, 9(3), 179-186. doi: 10.1016/j.ufug.2010.01.006
- Van Dillen, S. M. E., De Vries, S., Groenewegen, P. P., & Spreeuwenberg, P. (2011).
 Greenspace in urban neighbourhoods and residents' health: adding quality to quantity.
 Journal of Epidemiology and Community Health. doi: 10.1136/jech.2009.104695
- Velarde, M. D., Fry, G., & Tveit, M. (2007). Health effects of viewing landscapes Landscape types in environmental psychology. *Urban Forestry & Urban Greening*, 6(4), 199-212. doi: 10.1016/j.ufug.2007.07.001
- Ward Thompson, C. (2011). Linking landscape and health: The recurring theme. *Landscape and Urban Planning*, *99*(3–4), 187-195. doi: 10.1016/j.landurbplan.2010.10.006
- White, M. P., Pahl, S., Ashbullby, K., Herbert, S., & Depledge, M. H. (2013). Feelings of restoration from recent nature visits. *Journal of Environmental Psychology*, *35*(0), 40-51. doi: 10.1016/j.jenvp.2013.04.002
- Wilkie, S., & Stavridou, A. (2013). Influence of environmental preference and environment type congruence on judgments of restoration potential. *Urban Forestry & Urban Greening*.
 doi: 10.1016/j.ufug.2013.01.004

List of tables

Table 1 Items in the Restorative State Scale.

Table 2 Unadjusted means and standard deviations for outcome measures by condition and time of measurement.

Table 3 Distribution of keywords in the four environmental conditions across valence and arousal categories, with examples of frequently used words

Tables with captions (one per page)

Table 1.

Items in the Restorative State Scale.

Restorative state Scale

- 1. My mind is not invaded by stressful thoughts
- 2. I can take time out from a busy life
- 3. I can lose all sense of time
- 4. I am thinking about everything and nothing at the same time
- 5. I can make space to think about my problems
- 6. I can leave all my problems behind me
- 7. My mind just wanders in infinity
- 8. I can imagine myself as part of the larger cyclical process of living
- 9. I feel connected to the natural world

Table 2.

Unadjusted means and standard deviations for outcome measures by condition and time of

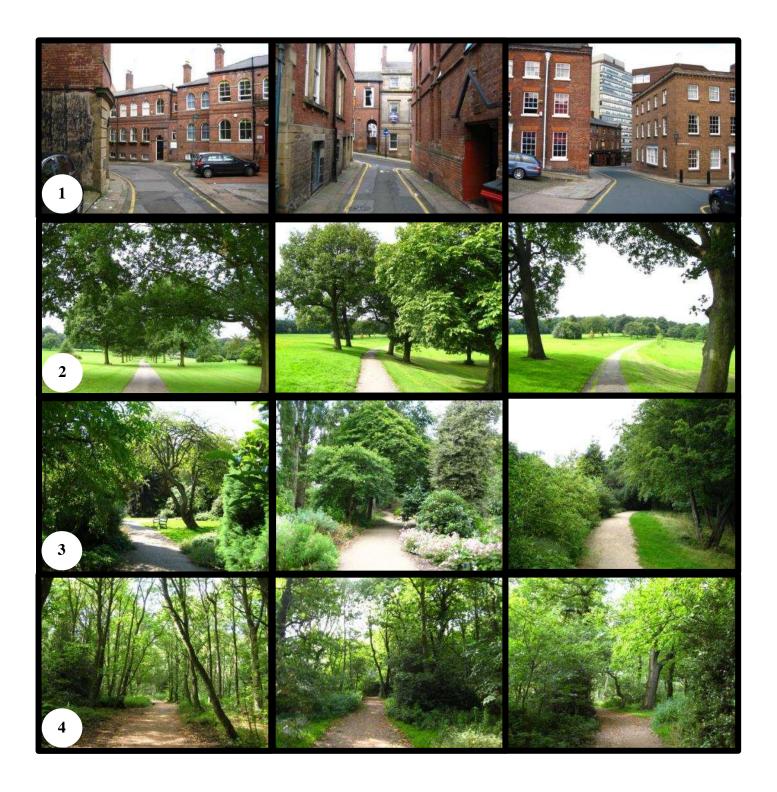
measurement

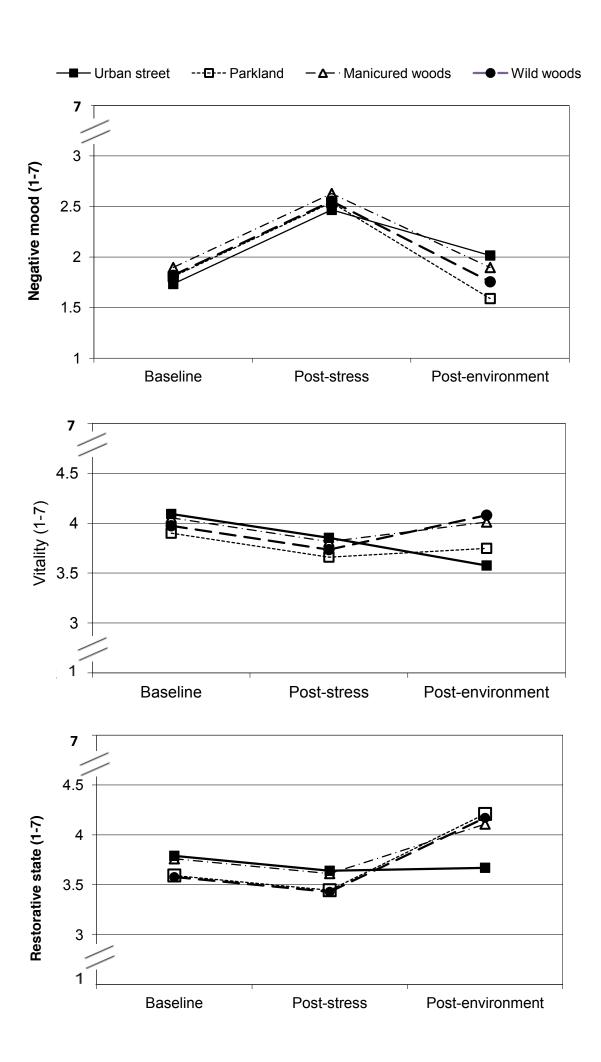
	T1	T2	Т3		
	Baseline	Post-stress	Post-environment		
Negative mood (1-7)					
Street	1.71 (0.55)	2.66 (1.03)	2.09 (0.84)		
Parkland	1.84 (0.47)	2.33 (0.79)	1.51 (0.52)		
Tended Woodland	1.89 (0.54)	2.68 (1.03)	1.92 (0.94)		
Wild woods	1.82 (0.59)	2.55 (1.05)	1.75 (0.75)		
Vitality (1-7)					
Street	4.02 (1.04)	3.89 (1.01)	3.56 (1.06)		
Parkland	3.92 (0.99)	3.65 (0.64)	3.75 (1.03)		
Tended Woodland	4.08 (1.08)	3.8 (0.92)	4.02 (0.94)		
Wild woods	3.99 (1.06)	3.73 (0.98)	4.08 (1.0)		
Restorative State (1-7)					
Street	3.84 (0.84)	3.57 (0.91)	3.66 (1.0)		
Parkland	3.58 (0.82)	3.47 (0.76)	4.21 (0.94)		
Tended Woodland	3.75 (0.88)	3.63 (0.85)	4.11 (0.7)		
Wild woods	3.56 (0.97)	3.45 (1.12)	4.18 (1.28)		

Table 3.

Distribution of keywords in the four environmental conditions across valence and arousal

	Positive		Negative		
	High arousal	Low arousal	High arousal	Low arousal	Total
Urban Street	12%	24%	21%	43%	100%
Example words	curious, lively,	calming, restful,	claustrophobic	boring, dull,	
	explorative	leisurely	angry, confusing	uninteresting	
Parkland	12%	68%	0%	20%	100%
Example words	bright, healthy,	calming, serene	-	boring, tired,	
	happy	peaceful		vulnerable	
Tended Woodland	15%	60%	5%	20%	100%
Example words	free, fresh,	calming,	nervous, scary,	boring, lonely,	
	breathtaking	peaceful,	unable to	isolated	
		relaxing	concentrate		
Wild Woods	23%	54%	12%	11%	100%
Example words	free, refreshing	calming,	anxious, tense,	alone, boring,	
	exciting	peaceful, quiet	disorienting	sleepy	


categories, with examples of frequently used words


List of figures

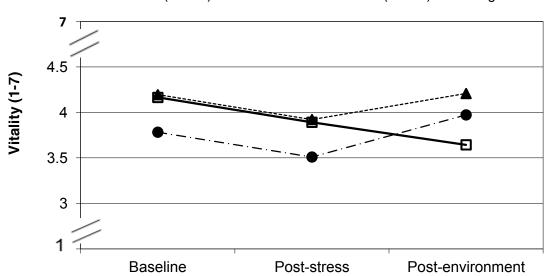

Figure 1 Sample photos of the four environments: 1. urban street; 2. parkland; 3. tended woodland; 4. wild woods.

Figure 2 Estimated means of negative mood (2a), vitality (2b) and restorative state (2c) in the four conditions at the three times of measurement.

Figure 3 Estimated means of vitality in the three natural conditions as a function of perceived naturalness and time of measurement.

-B- Low naturalness (n = 21) -- - Medium naturalness (n = 21) - - High naturalness (n = 36)

Acknowledgements

This research was supported by grants from the University of Sheffield, and from the Ministry of the Agriculture, Nature and Food Quality in the Netherlands, ref. nr. KB-04-05. The authors would like to thank all the people who gave up their time to help us including Irene Drago and Paul Buck.

Short Author Biographies

Prof. Dr Agnes E. van den Berg is an environmental psychologist specialized in research on interactions between humans and the natural environment. She holds a Special Professorship in the Perception and Evaluation of Nature and Landscape at the University of Groningen, the Netherlands. She is particularly interested in studying people's responses to nature as a key to promoting liveable environments that support health and well-being.

Dr Anna Jorgensen is a Senior Lecturer in the Department of Landscape at the University of Sheffield UK. She is the editor of the Routledge book Urban Wildscapes, and the Managing Editor designate. Her research deals with the human benefits and social significance of urban green space, with a particular interest in wilderness-like and biodiverse urban settings.

Edward (Ted) Wilson is a silviculturist and forest scientist with an interest in the sustainable management and conservation of forest resources. He has worked in both Europe and North America, and held a variety of academic and professional appointments, including Assistant Professor at the Faculty of Forestry, University of Toronto and Senior Lecturer at the National School of Forestry (England).