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Abstract 
 

Where no independent specification is available, 

object-oriented unit testing is limited to exercising all 

interleaved method paths, seeking unexpected failures.  

A recent trend in unit testing, that interleaves dynamic 

analysis between each test cycle, has brought useful 

reductions in test-set sizes by pruning redundant prefix 

paths.  This paper describes a dynamic approach to 

analyzing the algebraic structure of test objects, such 

that prefix paths ending in observer or transformer 

operations yielding unchanged, or derived states may 

be detected and pruned on-the-fly during testing.  The 

fewer retained test cases are so close to the ideal 

algebraic specification cases that a tester can afford to 

confirm or reject these cases interactively, which are 

then used as a test oracle to predict many further test 

outcomes during automated testing.  The algebra-

inspired algorithms are incorporated in the latest 

version of the JWalk lazy systematic unit testing tool 

suite, which discovers key test cases, while pruning 

many thousands of redundant test cases. 

 

1. Overview 
 

Systematic software unit testing methods fall into 

two categories.  Code-based testing methods seek to 

exercise all paths through the software, identifying 

unexpected unit failures.  Specification-based testing 

methods seek to validate the software unit completely 

against a formal specification, which serves as a test 

oracle.  Recently, these approaches have started to 

converge, particularly in the lazy systematic unit 

testing method [1, 2], which combines semi-automatic 

inference of the test unit�s specification with 

systematic conformance testing from the specification.  

The power of this method depends critically on an 

automated dynamic analysis to identify the most 

important test cases, whose outcomes must be 

confirmed by the tester.  These key test cases then 

constitute the test oracle, used as a benchmark in fully 

automated testing. 

This paper reports on a series of improvements to 

the dynamic analysis algorithms used by the JWalk 

lazy systematic unit testing tool suite [3].  These 

algorithms are deployed between each test cycle, using 

feedback from the previous test cycle to inform the test 

engine about which paths to extend in the following 

cycle.  Starting from a baseline in which no test paths 

are pruned, rules of increasing sophistication are 

deployed to eliminate redundant test sequences.  These 

strategies include eliminating all prefix paths that: 

• terminate in exceptions; 

• terminate in observations; 

• terminate in re-entrant states; 

and require a fine-grained ability to judge the algebraic 

properties of methods on a call-by-call basis, rather 

than simply partition all methods into constructor, 

transformer or observer categories.  They also depend 

on the ability to judge object state equivalence in a 

flexible way, especially where their defining classes do 

not provide any consistent measure of equality. 

In the rest of this paper, section 2 describes the 

increasing use of dynamic analysis during testing, to 

profit from feedback about the testing process.  Section 

3 describes the JWalk tool suite [3], highlighting the 

use of feedback-based code exploration to learn the 

algebraic specification of a test class, with hints from 

the programmer.  Section 4 describes the algorithms 

deployed to detect the algebraic structure of unseen test 

classes in more detail.  Section 5 demonstrates the 

effectiveness of algebra-motivated pruning rules for 

test-set reduction, comparing three different pruning 

rules.  Section 6 considers how the retained test cases 

may constitute the �ideal� test set, to be confirmed by 

the tester, and reused as an oracle to predict many 

thousands of test outcomes in fully automated testing.  

The paper concludes with some observations on the 

properties of the algebraic analysis technique. 



2. Dynamic analysis in unit testing 
 

In systematic object-oriented unit testing, the focus 

is on exercising all interleaved method combinations.  

The testing assumption is that failures result mainly 

from unexpected states, caused by invoking methods in 

orders that ignore the expected protocols for the class 

in question.  Since this is a laborious task to perform 

manually, automated approaches have been preferred.  

One of the earliest tools that generated all interleaved 

method paths was JCrasher [4].  This benefited from 

the Java programming language�s facility for meta-

analysis via the reflection API, a mechanism whereby 

compiled classes may be interrogated at run time to 

discover their public method interface.  This was used 

to generate a breadth-first exploration of the test class�s 

method invocation tree, using random techniques to 

populate each method-call with actual argument 

values.  The focus of JCrasher was on forcing the test 

class to raise exceptions, expecting to identify code 

faults.  However, the failures discovered were as much 

due to violated method preconditions, as they were to 

faulty or non-robust code.  Later tools DSD-Crasher 

[5] and Jov [6] tended to confirm this finding.  By 

contrast, JWalk does not assume that exceptions are 

faults; the tester has the chance to accept or reject such 

outcomes [1]. 

Other approaches concentrated on reducing the size 

of the breadth-first test-set.  The Rostra tool [7] filtered 

the brute-force �whole method sequences� to yield 

�modifying method sequences�, more selective paths 

consisting solely of state-modifying methods.  These 

could be identified approximately from type signatures 

(typically, observer methods returned a result and state 

modifying methods returned void).  In principle, this 

yielded smaller test sets that covered the state space of 

the test object, by eliminating sequences with 

observers in their prefix.  To be more accurate in 

judging the equivalence of object states, Rostra 

required the user to supply explicit state-equality 

testing predicates.  By contrast, JWalk does not require 

intrusive predicates or any kind of code 

instrumentation [1]. 

Another approach merged test paths by identifying 

common concrete states.  The Java Pathfinder tool [8, 

9] operated at a lower level, performing a partial order 

reduction analysis on sets of execution traces obtained 

directly from the Java bytecode interpreter.  The testing 

strategy was to generate all interleaved method 

sequences, then identify equivalence-classes into 

which test sequences fell, so that the tester (or testing 

tool) could preserve single exemplars from each 

equivalence class for future testing.  This generate-and-

filter approach was expensive.  By contrast, the first 

tools to deploy dynamic analysis and test-path pruning 

during the actual test-generation process were JWalk 

[1] and Randoop [10], which interleaved test 

generation and execution cycles.  The advantage of this 

was that redundant prefix paths could be detected 

earlier, and pruned from the active test set before these 

were extended in the next cycle.  Prefix sequences 

ending in an exception were pruned, based on the 

intuition that any path extending the prefix would 

always fail at exactly the same point, so not execute to 

completion.  For example, the following pair of test 

sequences for a bounded Stack always fail at the same 

call to pop(), raising an EmptyStackException, making 

the longer test sequence redundant: 

new().pop() 

new().pop().push(Object#1) 

JWalk also pruned prefix paths ending in an 

observer-method, on the basis that this would not 

modify the state of the test object.  For example, JWalk 

treated the following pair of sequences as equivalent, 

by determining empirically that neither size() nor 

isEmpty() modified the Stack object in question: 

new().push(Object#1) 

new().size().isEmpty().push(Object#1) 

JWalk used Java�s reflection API to compare the 

shallow states of the test-object before and after each 

method execution, to detect side-effects.  This was a 

more accurate way of determining observer-methods 

than a static analysis of signatures and worked whether 

or not the test class defined an equals() method.   

The ability to map longer test sequences onto 

shorter sequences was used in JWalk to predict test 

outcomes dynamically for the longer sequences from 

known outcomes for the shorter sequences [1].  This 

was the first time that test prediction had been 

deployed during testing.  At the time, it was foreseen 

that a more thorough algebraic classification of all 

methods (see below) might yield an even greater test 

set reduction and much greater predictive power.  For 

example, if it could be determined that pop() were a 

transformer-method, undoing the effect of an earlier 

push(), returning the Stack object to a prior visited 

state, then the following sequences could be predicted 

to yield identical results: 

new().push(Object#1).size() 

new().push(Object#1).push(Object#2).pop().size() 

Overall, if prefixes containing both observer and 

transformer methods could be mapped onto shorter 

prefixes, many more cyclic paths could be pruned 

during test generation; and outcomes for the longer 

sequences could also be predicted with certainty. 



An algebraic data type is a structure consisting of 

operation signatures, typed in basic sorts (sets), whose 

semantics are defined using axioms (equations).  The 

axioms are constructed after identifying all operations 

as belonging to one of the categories:  constructor, 

transformer or observer.  Constructors are primitive, 

returning all unique instances of the given data type.  

Transformers and observers are derived, defined by the 

axioms in terms of the constructors.  Below, the term 

primitive is used instead of constructor, since the latter 

has a restricted sense in object-oriented programming:  

the primitives of a Stack include the push method as 

well as the new Stack constructor. 

Our approach was partly inspired by the work of 

Henkel and Diwan, who induced the algebraic 

structure of Java classes semi-automatically by probing 

the behavior of test instances [11].  They derived an 

abstract data type signature from a concrete Java class 

through reflection, then generated and evaluated many 

ground terms, which were grouped into equivalence 

classes.  Thereafter, an important generalization step 

induced quantified axioms, which succinctly captured 

many ground term equations.  They also embedded this 

approach in a tool to help programmers write and 

debug algebraic specifications [12].  Our interest was 

mainly in the technique used to determine when 

objects had re-entered previously visited concrete 

states.  This involved converting objects into their 

serialized format (a binary encoding used to transfer 

objects to persistent storage or across distributed 

systems) and then hashing to yield a single code 

representing the object�s state.  We found this approach 

unsuitable, for two reasons.  Firstly, not every Java 

class declares that it supports serialization; and 

secondly, serialization offers no control over the depth 

to which object states are compared.  Our alternative 

solution is presented in section 4, below. 

 

3. The JWalk family of testing tools 
 

The current work relates to the latest version of the 

JWalk tool suite, which comprises a number of tools, 

including JWalkTester, a GUI-based testing tool in the 

spirit of JUnit [13], JWalkUtility, a command-line 

version that prints all results to standard output, and 

JWalkEditor [2], an integrated Java editor, compiler 

 

Figure 1:  JWalkTester performing an algebraic exploration of a Stack class to depth 3 



and testing tool, with Java-sensitive syntax 

highlighting in the style of jEdit [14].  All of these 

incorporate the common JWalker test engine, which is 

also offered as a component toolkit API for integration 

with other editors or testing tools.  For this paper, 

JWalkTester was used to generate all the examples and 

statistics below (see figure 1 for an example). 

All of the JWalk tools were conceived with a vision 

to support agile software development methods, such 

as XP [15], in which test-driven development is the 

cornerstone.  The goal was to bring together the rigor 

of formal specification-based testing methods and the 

flexibility of constant code refactoring.  Earlier work 

from our research group had highlighted how even 

simple finite-state specifications could greatly improve 

the selection of tests written for XP [16]; and also how 

re-using saved tests in regression testing was not as 

secure as previously assumed [17, 18].  Nonetheless, 

XP and similar methods remained wary of lightweight 

specifications, requiring a different approach. 

The lazy systematic unit testing method was 

devised, based on the two notions of lazy specification, 

the ability to infer the evolving specification of a unit 

on-the-fly by dynamic analysis, and systematic testing, 

the ability to explore and test the unit�s state space 

exhaustively to bounded depths [1].  Lazy specification 

refers to a delayed approach to software specification, 

in which the specification evolves rapidly in parallel 

with frequently modified code [2].  The specification is 

inferred by a semi-automatic analysis of a prototype 

software unit, with some user-interaction.  Systematic 

testing refers to a complete, conformance testing 

approach, in which the tested unit is shown to conform 

exhaustively to a specification, up to the testing 

assumptions, so providing guarantees of correctness 

once testing is over [18]. 

The featured JWalkTester tool supports three test 

strategies, which are protocol-, algebra-, and state-

based.  In the protocol strategy, all interleaved methods 

are executed on test instances in a breadth-first manner.  

In the algebraic strategy, all algebraic constructions 

are explored, driving test instances into all their distinct 

concrete states.  In the state-based strategy, the high-

level (or abstract) states of the test class are discovered 

by exploration, and test instances are driven through all 

their high-level states and transitions.  Dynamic 

analysis is critical in detecting actual state changes 

empirically, rather than relying on a static analysis of 

variable assignments, or method signatures, since some 

updates are conditional on particular argument values.  

The algebraic exploration technique uses only 

primitive algebraic constructions to extend test 

sequences.  This also reduces the search space when 

seeking high-level states, found by evaluating the 

reached concrete states using the natural state 

predicates of the test class.  In this way, the dynamic 

analysis techniques reported here optimize both low- 

and high-level state exploration. 

The JWalkTester tool may be executed in three 

modalities, to inspect, explore and validate the test 

class.  In the inspect-modality, it extracts the public 

constructor and method interface of the test class, 

including public methods inherited from superclasses.  

It may also probe the test class by dynamic analysis, to 

discover its algebraic structure (a new feature, from 

JWalk v1.0), or its high-level state-space [1].  In the 

explore-modality, the tool constructs and executes test 

sequences according to the chosen test strategy and 

displays the results, sorted by test path length, in a 

tabbed output pane for the tester to examine.  Figure 1 

illustrates exploring all algebraic constructions of a 

Stack class, to depth 3.  In the validate-modality, the 

tool also interacts in a limited way with the tester, who 

must confirm or reject certain key test outcomes, which 

are compiled in an oracle and used to predict further 

test outcomes.  Eventually, over 90% of testing is fully 

automated using saved, or predicted outcomes [1, 2]. 

Dynamic analysis has a role to play in determining 

when a particular test outcome should be identified as 

significant and presented to the tester for confirmation; 

and also when that same test result could be used to 

predict further test outcomes.  The whole benefit of 

lazy systematic unit testing is to minimize the user 

interaction required to create a complete test oracle.  

The goal of dynamic analysis is therefore to identify, in 

some sense, the �ideal� test cases for presentation to 

the tester.  In the context of this paper, this is 

interpreted as all observations on the leaves of the tree 

of all novel primitive algebraic constructions. 

 

4. Dynamic analysis of algebraic structure 
 

Previously, the old version 0.8 of the JWalk toolset 

had a rudimentary ability to classify observer methods 

(see section 2) and so prune redundant paths whose 

prefix contained observers.  The current work 

improves on this in two ways:  by pruning redundant 

paths containing both observers and transformers in 

the prefix; and by applying the dynamic state analysis 

and test prediction rules per method invocation, which 

allows further predictions to be made when states are 

not modified by methods that might, at other times and 

for other arguments, update state.   

The old algorithm compared shallow state vectors 

taken from the test object, before and after each 

method invocation, to identify and classify observer-

methods.   In the improved algorithm, we wanted to 

compare the concrete state after each method 

invocation with every earlier state in the same test 



sequence, to identify re-entrant methods that returned 

the test object to some prior visited state.  For this, a 

more compact encoding of state was desirable.   

When discussing the algebraic nature of object 

states, the semantic issue of equality arises.  

Comparing two objects might make use of an equals() 

method naturally provided by their class; but then, 

some classes might not define such a method (in Java, 

they would inherit Object�s method by default, which 

compares object references for identity).  Supporting 

mixed notions of reference, shallow and deep equality 

might be considered inconsistent.  Furthermore, the 

behavior of any user-defined equals() method might be 

faulty, or might conflict with the proper algebraic 

notion of equality [19], which is defined as all 

observations on the data type yielding (recursively) 

equivalent results.  For this reason, we wanted to find a 

more consistent and repeatable means of determining 

state equality, which could nonetheless be controlled 

by the tester. 

The approach we eventually adopted replaced the 

old strategy of extracting object state vectors, which 

might consume memory resources, by the computation 

of a single hash code to represent the whole state of the 

object.  This is similar to Henkel and Diwan [11], 

except that the hash value is not based on Java�s 

serialized format, which is not always available.  An 

internal release 0.9 of the JWalk toolset [20] computed 

hash codes from the persistent oracle value string 

representation [1] of each object, which the JWalk 

tools compute for all types.  However, the processing 

time and storage required to generate the oracle strings 

repeatedly were unacceptably high.  Also, the benefits 

we were seeking did not actually require persistent 

states to be compared across different test runs.  So it 

was feasible to compute hash codes directly from 

objects and values in memory. 

Primitive types, such as int, and �boxed� Java types, 

such as Integer, and types with a natural hash code 

based on their value, such as String, use their natural 

hashCode() method.  The hash code for any other kind 

of object is obtained by combining the hash codes for 

its fields, where the combined code reflects both the 

order and value of each field (using a prime multiplier 

for the position).  Fields are extracted by reflection, 

bypassing the usual visibility restrictions.  Where a 

 

Figure 2:  JWalkTester analyzing the algebraic properties of a ReservableBook class 



field is an object reference, a choice exists to apply the 

hashing algorithm recursively, or simply return a code 

based on the memory address.  This is controlled by a 

depth parameter supplied by the tester, denoting the 

object tree-depth to which state comparisons should be 

conducted (specifying shallow, or deeper equality). 

Given this compact encoding of object state, it was 

relatively easy to incorporate the extra information into 

the core test engine.  This constructs TestSequence 

objects, consisting of many TestCase objects, each of 

which exercises a single constructor or method.  The 

state of the target object is encoded immediately after 

executing each TestCase, and cached locally.  Once a 

TestSequence has fully executed, it is possible to query 

the sequence to find if the final state was unchanged, 

or re-entrant (see figure 1, where these indicators are 

appended to certain test outcomes).  This is a fast 

algorithm, which compares the final state code with the 

penultimate one; or with all earlier state codes in the 

sequence.  The chances of accidental hash collisions 

are remote, especially since sequences are short (up to 

low tens of TestCases), and all injected test input 

values are already quasi-unique, thanks to the 

monotonic test input generation strategy [1, 3]. 

The latest version 1.0 of the JWalk toolset infers the 

algebraic structure of the test class by successive 

conservative approximations, probing the dynamic 

behavior of the class.  Figure 2 shows JWalkTester 

discovering automatically the algebraic structure of a 

ReservableBook.  The operations of the class are 

classified into the categories: {primitive, transformer, 

observer}.  All object constructors are assumed to be 

primitive, unless it can be proven that they are derived, 

creating the identical object from fewer supplied initial 

parameters, in which case they are reclassified as 

transformers.  All methods are initially assumed to be 

observers, until they are found to modify state, in 

which case they are first classified as primitive; but if 

later they are found to drive the target object into 

previously visited states, their category is revised to 

transformer. 

 

5. The role of algebra in test pruning 
 

Algebra-inspired analysis adds to the growing set of 

sophisticated measures that allow a testing tool, with 

interleaved test generation, execution and analysis 

phases, to prune redundant test sequences.  The size of 

the baseline test set (constructors and all interleaved 

methods) may be calculated algorithmically from the 

size of the test class�s public API.  A class with c 

constructors and m methods has cm
k
 test sequences of 

length k, therefore Σ cm
k
 sequences altogether, for any 

bounded depth 0 ≤ k ≤ n.  For example, a bounded 

Stack with just one public constructor and the six 

methods {push, pop, top, size, isEmpty, isFull} has 1 + 

6 + 36 + 216 +� sequences.  For bounded depth n = 3, 

we would expect a maximum of 259 sequences. 

The first pruning rule drops prefix paths ending in 

raised exceptions.  The effect of this can be observed 

by running any JWalk tool in protocol exploration 

mode.  Test cycle 0 creates the Stack instance.  Out of 

the six sequences exercised in test cycle 1, two raise 

exceptions (pop() and top() called on an empty Stack).  

This causes 12 paths to be pruned in test cycle 2 (all 6 

extensions of each failed path).  The remaining 4 paths 

from test cycle 1 are extended to yield 24 paths in test 

cycle 2.  Of these, another 6 paths terminate with 

exceptions (mostly consisting of an observer, followed 

by pop() or top()), causing 108 sequences to be pruned 

from test cycle 3.  Cumulatively, 120 test sequences 

are pruned during 3 test cycles, leaving 139 test 

sequences that were actually constructed and executed.  

This is a useful saving, compared to the 259 sequences 

that could have been attempted (see table 1). 

The second pruning rule drops prefix paths ending 

in algebraic observers, which do not modify the state 

of the target object.  In this case, for the same Stack, 30 

paths were pruned in test cycle 2 and a further 204 

paths in test cycle 3.  Cumulatively, 234 test sequences 

were pruned over 3 cycles, leaving only 25 tests that 

were actually constructed and executed.  This 

compares even more favorably with the original 259 

sequences! 

When the third pruning rule is added to drop prefix 

paths ending in algebraic transformers, which re-visit 

earlier states, a similar picture is seen.  As before, 30 

paths are pruned in test cycle 2, but a further 210 paths 

are pruned in cycle 3 (an increase of 6).  Cumulatively, 

240 test sequences were pruned over 3 cycles, leaving 

only 19 tests that were actually constructed and 

executed.  This is a tiny fraction of the 259 sequences 

that could have been attempted (see table 1).  When 

looking at the retained test sequences, these are almost 

exclusively paths of the form: 

new().size() 

new().push(Object#1).size() 

new().push(Object#1).push(Object#2).size() 

that is, paths which force the test object through all 

algebraic constructions, then make all observations (or 

exercise all transformers) at the leaves of the algebraic 

tree.  In terms of state exploration alone, this is close to 

the ideal test set that a programmer might have wished 

to create manually, since it tests all fine-grained 

properties of the class.  Yet, since it was created by 

algorithm, we can be confident that it is complete, up 

to the chosen bounded depth. 

 



Table 1.  Pruning applied to Stack 
 

Stack base  exc obs alg 

0 1 1 1 1 

1 7 7 7 7 

2 43 31 13 13 

3 259 139 25 19 

4 1555 667 43 25 

5 9331 3391 79 31 

 

 

Table 2.  Pruning applied to Wallet 
 

Wallet base  exc obs alg 

0 1 1 1 1 

1 6 6 6 6 

2 31 31 11 11 

3 156 156 16 16 

4 781 781 26 21 

5 3906 3906 41 31 

 

To evaluate the power of the new algebraic pruning 

rules under known conditions, a series of experiments 

were conducted using the standard set of test classes 

used to develop the JWalk toolset.  These include a 

Stack (which exhibits obvious state-like behavior; and 

has a well-known abstract data type algebra); a Wallet 

(whose behavior depends more on the values supplied 

as method arguments); and a basic LibraryBook and its 

subclass, ReservableBook (both with re-entrant states 

and abstract algebras to discover; these were included 

to verify JWalk�s ability to detect all novel interleaved 

method combinations to test, after extending a class by 

inheritance).  Stress testing was also carried out by 

exercising the standard Java library classes Character 

and String (both known to have very large APIs). 

Tables 1-4 indicate the cumulative sizes of the 

retained test sets, after pruning rules 1-3 are 

successively applied, for test cycles of increasing 

length.  The numbers of pruned sequences may be 

obtained by subtracting the size of the featured test set 

from the size of the baseline set, in each case. 

In the tables, the leftmost column gives the test 

cycle index number (where cycle 0 is construction; 

cycle 1 is method paths of length 1, etc).  The column 

base indicates the size of the baseline test set (all 

interleaved methods).  The column exc gives the test 

set size after pruning rule 1 is applied (drop exception 

prefixes).  The column obs likewise gives the test set 

size after pruning rule 2 is also applied (drop observer 

prefixes).  The final column alg gives the test set size 

after pruning rule 3 is also applied (drop transformer 

prefixes).  This last column reflects the algebraic 

filtering strategy used in the current version 1.0 of the 

JWalk toolset. 

The results indicate an impressive ability to rule out 

redundant test sequences by automatic analysis.  For 

test classes whose methods have preconditions relating 

to state, such as Stack, a useful reduction is achieved 

by the first pruning rule.  For test classes such as 

Wallet, whose method preconditions are rarely 

violated, no reduction may be seen until the observer-

prefix pruning rule is applied.  Wallet�s state is affected 

more by the choice of amounts credited and debited 

than anything else, so rarely re-visits earlier states.  On 

the other hand, the LibraryBook cycles through two 

states in response to the issue() and discharge() 

methods.  Here, not only does the complete algebraic 

filtering strategy (dropping exceptional, observer and 

transformer prefixes) prune more redundant cases, but 

the test set reaches a stable state of 9 ideal test cases, 

from test cycle 2 onward. 

Similarly, the ReservableBook subclass (see figure 

2 for its API) cycles through four states in response to 

the issue(), discharge(), renew() and cancel() methods.  

It eventually stabilizes on 41 ideal test cases after cycle 

4.  (Note that in cycle 5, protocol exploration 

exhausted the available memory; but the more 

aggressive pruning in algebraic exploration allowed 

testing to continue). 

 

Table 3.  Pruning applied to LibraryBook 
 

LibBook base  exc obs alg 

0 1 1 1 1 

1 5 5 5 5 

2 21 21 9 9 

3 85 81 13 9 

4 341 301 17 9 

5 1365 1101 21 9 

 

 

Table 4.  Pruning applied to ReservableBook 
 

ResBook base  exc obs alg 

0 1 1 1 1 

1 9 9 9 9 

2 73 73 25 25 

3 585 561 49 33 

4 4681 4185 97 41 

5 37449 mx 169 41 

 

The effectiveness of algebraic analysis can be seen 

in the huge reductions in test-set sizes, focusing on the 

most important test cases.  Stack retained the best 

0.33% paths (pruning 9,300 redundant paths), Wallet 

retained the best 0.79% paths (pruning 3,875 paths), 

LibraryBook retained the best 0.66% paths (pruning 



1,356 paths) and finally ReservableBook retained the 

best 0.12% paths (pruning 37,408 paths).  When stress 

testing using java.lang.Character (1 constructor and 78 

methods), protocol exploration exhausted memory in 

cycle 3 (a baseline of 480,715 paths), but algebraic 

exploration stabilized on 79 test cases from cycle 1.  

Similarly, for java.lang.String (13 constructors and 64 

methods) protocol exploration exhausted memory in 

cycle 3 (a baseline of 54,093 paths), but algebraic 

exploration stabilized on 845 test cases from cycle 1 

(using a custom index generator [3] to avoid out-of-

bounds char array access during String construction).  

 

6. The role of algebra in test prediction 
 

The utility of algebraic analysis can be measured in 

another way, while interacting with the JWalk tools in 

the algebraic validation mode, when inferring the test 

oracle for a given class.  The first benefit of the new 

algorithms is that fewer test cases are presented to the 

tester for manual confirmation or rejection than before.  

This is partly due to the extra pruning rule (see section 

5) and partly due to the improved capability for test 

prediction, which is still not quite complete, an 

interesting finding that we explain below. 

 

Table 5.  Algebraic confirmations per cycle 
 

Class :  cycle 0  1 2 3 4 5 

Stack 0.8 1 5 4 9 12 26 

Stack 1.0 1 5 4 4 4 4 

Wallet 0.8 1 4 4 4 8 12 

Wallet 1.0 1 4 4 4 4 8 

LibBook 0.8 1 2 3 2 3 2 

LibBook 1.0 1 2 3 - - - 

ResBook 0.8 1 2 8 12 30 40 

ResBook 1.0 1 2 8 6 6 - 

 

The power of the JWalk test engine comes from its 

predictive rules, especially predictions about sequence 

equivalence-classes.  Whereas version 0.8 only 

mapped sequences containing observers in the prefix 

onto shorter sequences, version 1.0 also maps 

sequences, whose prefix contains transformers, onto 

equivalent shorter sequences.  Table 5 shows the 

improvement gained, which starts to become 

noticeable from test cycle 3, where sequences with 

prefixes ending in transformers start to be pruned.  

Note that the tally of confirmations for ReservableBook 

is reduced even further, because this class inherits a 

partial oracle from its parent LibraryBook and only 

asks the tester to confirm novel interleaved 

combinations of methods. 

Summing the counts of confirmations across a row 

in table 5 gives the cumulative confirmations to depth 

5.  By test cycle 5, the tool is presenting significantly 

fewer cases to the tester for validation than before.  For 

example, in the current algebraic validation mode, the 

tester confirmed 22 cases over 5 cycles for the Stack, 

whereas in the old version of the same mode, the tester 

had to confirm 57 cases (35 more confirmations). 

 

Table 6.  Residual protocol confirmations 
 

Class :  cycle 0  1 2 3 4 5 

Stack 0.8 - - - - - - 

Stack 1.0 - - - - 4 8 

Wallet 0.8 - - 1 12 99 691 

Wallet 1.0 - - 1 12 100 704 

LibBook 0.8 - - - - - - 

LibBook 1.0 - - - - 3 - 

ResBook 0.8 - - - - - mx

ResBook 1.0 - - - - 20 mx 

 

Note also that the total number of confirmations is 

strictly less than the number of paths actually explored.  

For example, whereas the tester confirmed 22 cases 

(over 5 cycles) for the Stack, the tool explored 31 cases 

altogether (see table 1), making 9 further automatic 

validations, based on predictions about test outcomes.  

On examining these cases, they are all found to be 

opportunistic predictions that methods with a void-

result type are expected to yield no result (see the 

discussion in section 7).  All the other cases presented 

to the tester were of observations made on the leaves of 

the tree of all algebraic constructions.  We may 

conclude with some confidence that the algebraic 

validation mode is the most economical way to present 

the tester with significant test cases that define (most 

of) the behavior of the test class. 

This is borne out in table 6, where the majority of 

the remaining test outcomes in the brute-force protocol 

validation mode are predictable from the oracles that 

were trained in algebra validation mode.  Recall from 

tables 1-4 how protocol exploration had many 

thousands of test cases.  To be able to validate most of 

these automatically, having confirmed only a few tens 

of cases by hand, is an outstanding success and the 

hallmark of the lazy systematic unit testing method. 

However, the benefits gained by pruning the extra 

transformer-prefixes in the newer version of the JWalk 

toolset are not completely carried forward when using 

the smaller trained oracles to predict all test outcomes 

in protocol validation mode.  Some of the extra cases 

that were pruned by the more aggressive algebraic rule 

had to be confirmed in protocol mode, indicating that 

the revised prediction rule, while more powerful than 



the old version, is not quite as effective as hoped.  For 

example, in the current protocol validation mode, the 

tester had to confirm 12 residual cases over 5 cycles 

for the Stack, compared to no residual cases in the old 

version of the same testing mode. 

Nonetheless, this is still a net gain, since in the old 

version, the tester had previously confirmed 35 extra 

cases (see table 5), so in fact the new version still 

saved the tester 35 � 12 = 23 confirmations for this 

example.  Likewise, for the LibraryBook example, the 

new version saved 7 � 3 = 4 cases and the 

ReservableBook saved 70 � 20 = 50 cases.  The Wallet 

example proved somewhat resistant to re-entrant state 

prediction in both tool versions.  The states of this 

object were influenced more by argument values 

(which were quasi-unique on each call) and states 

tended not to be re-entered. 

How may we explain the mixed performance of test 

prediction rules associated with re-entrant states?  The 

reason for this has to do with the exact concrete states 

of the objects that are being compared.  For example, 

the tools can detect that the following two sequences 

leave the target Stack object in the same state: 

new() 

new().push(Object#1).pop() 

and from this fact, they can predict some test 

outcomes for the longer sequence, based on extending 

such pairs of sequences with simple observations: 

new().size() 

new().push(Object#1).pop().size() 

which map onto the same outcome.  However, the 

tools cannot always make use of re-entrant state 

information in other kinds of extension, which do not 

leave the target object in the same concrete state: 

new().push(Object#1) 

new().push(Object#1).pop().push(Object#2) 

That is, the two Stacks produced by these sequences 

are not equal, because their top elements are different, 

as a consequence of the value generator synthesizing a 

new, distinct instance of Object as the argument to the 

second push() in the longer sequence. 

In hindsight, this kind of situation will occur 

frequently in transformer-related cycles, because the 

JWalk toolset always synthesizes quasi-unique input 

values for each method argument, so that these values 

may be distinguished when later observed (note that it 

is significant, in figure 1, that the result of the top() 

method is Object#2, rather than Object#1).  The only 

way to improve the tools� reasoning ability further 

would be to add some kind of symbolic generalization 

over concrete argument values, perhaps in the spirit of 

axiom induction [11, 12].  

 

7. Conclusions 
 

Algebra-inspired analysis has been shown to have a 

hugely beneficial influence on the reduced generation 

of test sequences and the selection of �ideal� test cases.  

Determining the space of all algebraic constructions 

for a class-under-test is the best way to focus a test 

generator on the most relevant test cases that will 

exercise all the distinct, fine-grained behaviors of the 

class.  In the above examples, the test sets were 

eventually reduced to a few tens of key test cases, 

which could be confirmed manually and reused in 

predictive testing.  This was compared against the 

many thousands of test cases that might be generated in 

any baseline, or protocol exploration strategy. 

Perhaps the single most important aspect is having a 

tool, such as JWalkTester, to guide the tester through 

all the relevant cases.  Our previous experiments have 

shown that trying to achieve similar complete test 

coverage by manual test case selection will yield much 

poorer results [2, 21].  The JWalk tools take control of 

the selection of test cases, here guided by algebraic 

analysis, relieving the tester of this burden.  Another 

key feature of the JWalk tool suite is the ability to 

interleave cycles of test generation, execution and 

analysis.  That is, the generation of each new test cycle 

is informed by an analysis of the results from the 

previous cycle.  This allows the tool to select which 

paths to expand in the next cycle, rather than over-

generating all test paths and filtering these afterwards 

[4-9];  and is also quite different from prioritizing and 

re-ordering test suites [22, 23].  JWalk avoids 

generating any redundant paths in the first place, yet 

seeks to identify all the distinct test cases (not a subset) 

in the test class�s algebra, or high-level state space. 

Regarding the influence of algebraic analysis 

techniques on test outcome prediction, the results are 

still very good, but sometimes mixed.  Many thousands 

of test outcomes were predicted for the protocol 

validation mode, after training up an oracle in the 

algebra validation mode.  It is clear that mapping 

sequences with observers in the prefix onto shorter 

sequences (with known outcomes) has a strong 

predictive power.  However, mapping sequences with 

transformers in the prefix onto shorter sequences 

without cycles may not yield quite as many predicted 

gains.  This was found to be due to an interaction 

between the predicted cyclic behavior and the injection 

of different input values, resulting in objects whose 

states were not in fact equivalent. 



One aspect of the test prediction strategy worth 

highlighting is that the decision to map onto a known 

shorter sequence is made on a case-by-case basis, and 

is not based on any global classification of all methods 

into primitive, transformer or observer operations.  

This is because a given method may, on subsequent 

invocations, choose to modify the state of the target 

object, or leave it unchanged.  The Wallet test case 

demonstrated this behavior, in that sometimes the 

debiting-action was blocked (if the requested amount 

exceeded the balance) and sometimes it succeeded.  

However, whenever the state context for a predictive 

rule applies, the rule may always be applied safely, 

because states are always compared empirically. 

For this reason, we call this kind of prediction a 

strong, or conservative assumption, which is always 

guaranteed to hold, unlike the weak, or opportunistic 

assumption made when expecting a void-method to 

return no result.  The latter prediction is potentially 

vulnerable to false positives (viz. a void-method, which 

should raise an exception, but does not, and is passed 

by default).  In practice, such fault cases are identified 

in the following test cycle [1, 2], when the tester 

observes extra paths that should have failed. 
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