
This is a repository copy of Dynamic Analysis of Algebraic Structure to Optimize Test
Generation and Test Case Selection.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/98338/

Version: Accepted Version

Proceedings Paper:
Simons, A.J.H. and Zhao, W.W. (2009) Dynamic Analysis of Algebraic Structure to
Optimize Test Generation and Test Case Selection. In: Testing: Academic and Industrial
Conference - Practice and Research Techniques 2009 . TAIC PART '09. TAIC PART 2009,
4 - 6th Sept 2009, Windsor, UK. IEEE , pp. 33-42. ISBN 978-0-7695-3820-4

https://doi.org/10.1109/TAICPART.2009.28

© 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Dynamic Analysis of Algebraic Structure to Optimize Test Generation and

Test Case Selection

Anthony J H Simons and Wenwen Zhao

Department of Computer Science, University of Sheffield

a.simons@dcs.shef.ac.uk, zhaoww18@hotmail.com

Abstract

Where no independent specification is available,

object-oriented unit testing is limited to exercising all

interleaved method paths, seeking unexpected failures.

A recent trend in unit testing, that interleaves dynamic

analysis between each test cycle, has brought useful

reductions in test-set sizes by pruning redundant prefix

paths. This paper describes a dynamic approach to

analyzing the algebraic structure of test objects, such

that prefix paths ending in observer or transformer

operations yielding unchanged, or derived states may

be detected and pruned on-the-fly during testing. The

fewer retained test cases are so close to the ideal

algebraic specification cases that a tester can afford to

confirm or reject these cases interactively, which are

then used as a test oracle to predict many further test

outcomes during automated testing. The algebra-

inspired algorithms are incorporated in the latest

version of the JWalk lazy systematic unit testing tool

suite, which discovers key test cases, while pruning

many thousands of redundant test cases.

1. Overview

Systematic software unit testing methods fall into

two categories. Code-based testing methods seek to

exercise all paths through the software, identifying

unexpected unit failures. Specification-based testing

methods seek to validate the software unit completely

against a formal specification, which serves as a test

oracle. Recently, these approaches have started to

converge, particularly in the lazy systematic unit

testing method [1, 2], which combines semi-automatic

inference of the test unit�s specification with

systematic conformance testing from the specification.

The power of this method depends critically on an

automated dynamic analysis to identify the most

important test cases, whose outcomes must be

confirmed by the tester. These key test cases then

constitute the test oracle, used as a benchmark in fully

automated testing.

This paper reports on a series of improvements to

the dynamic analysis algorithms used by the JWalk

lazy systematic unit testing tool suite [3]. These

algorithms are deployed between each test cycle, using

feedback from the previous test cycle to inform the test

engine about which paths to extend in the following

cycle. Starting from a baseline in which no test paths

are pruned, rules of increasing sophistication are

deployed to eliminate redundant test sequences. These

strategies include eliminating all prefix paths that:

• terminate in exceptions;

• terminate in observations;

• terminate in re-entrant states;

and require a fine-grained ability to judge the algebraic

properties of methods on a call-by-call basis, rather

than simply partition all methods into constructor,

transformer or observer categories. They also depend

on the ability to judge object state equivalence in a

flexible way, especially where their defining classes do

not provide any consistent measure of equality.

In the rest of this paper, section 2 describes the

increasing use of dynamic analysis during testing, to

profit from feedback about the testing process. Section

3 describes the JWalk tool suite [3], highlighting the

use of feedback-based code exploration to learn the

algebraic specification of a test class, with hints from

the programmer. Section 4 describes the algorithms

deployed to detect the algebraic structure of unseen test

classes in more detail. Section 5 demonstrates the

effectiveness of algebra-motivated pruning rules for

test-set reduction, comparing three different pruning

rules. Section 6 considers how the retained test cases

may constitute the �ideal� test set, to be confirmed by

the tester, and reused as an oracle to predict many

thousands of test outcomes in fully automated testing.

The paper concludes with some observations on the

properties of the algebraic analysis technique.

2. Dynamic analysis in unit testing

In systematic object-oriented unit testing, the focus

is on exercising all interleaved method combinations.

The testing assumption is that failures result mainly

from unexpected states, caused by invoking methods in

orders that ignore the expected protocols for the class

in question. Since this is a laborious task to perform

manually, automated approaches have been preferred.

One of the earliest tools that generated all interleaved

method paths was JCrasher [4]. This benefited from

the Java programming language�s facility for meta-

analysis via the reflection API, a mechanism whereby

compiled classes may be interrogated at run time to

discover their public method interface. This was used

to generate a breadth-first exploration of the test class�s

method invocation tree, using random techniques to

populate each method-call with actual argument

values. The focus of JCrasher was on forcing the test

class to raise exceptions, expecting to identify code

faults. However, the failures discovered were as much

due to violated method preconditions, as they were to

faulty or non-robust code. Later tools DSD-Crasher

[5] and Jov [6] tended to confirm this finding. By

contrast, JWalk does not assume that exceptions are

faults; the tester has the chance to accept or reject such

outcomes [1].

Other approaches concentrated on reducing the size

of the breadth-first test-set. The Rostra tool [7] filtered

the brute-force �whole method sequences� to yield

�modifying method sequences�, more selective paths

consisting solely of state-modifying methods. These

could be identified approximately from type signatures

(typically, observer methods returned a result and state

modifying methods returned void). In principle, this

yielded smaller test sets that covered the state space of

the test object, by eliminating sequences with

observers in their prefix. To be more accurate in

judging the equivalence of object states, Rostra

required the user to supply explicit state-equality

testing predicates. By contrast, JWalk does not require

intrusive predicates or any kind of code

instrumentation [1].

Another approach merged test paths by identifying

common concrete states. The Java Pathfinder tool [8,

9] operated at a lower level, performing a partial order

reduction analysis on sets of execution traces obtained

directly from the Java bytecode interpreter. The testing

strategy was to generate all interleaved method

sequences, then identify equivalence-classes into

which test sequences fell, so that the tester (or testing

tool) could preserve single exemplars from each

equivalence class for future testing. This generate-and-

filter approach was expensive. By contrast, the first

tools to deploy dynamic analysis and test-path pruning

during the actual test-generation process were JWalk

[1] and Randoop [10], which interleaved test

generation and execution cycles. The advantage of this

was that redundant prefix paths could be detected

earlier, and pruned from the active test set before these

were extended in the next cycle. Prefix sequences

ending in an exception were pruned, based on the

intuition that any path extending the prefix would

always fail at exactly the same point, so not execute to

completion. For example, the following pair of test

sequences for a bounded Stack always fail at the same

call to pop(), raising an EmptyStackException, making

the longer test sequence redundant:

new().pop()

new().pop().push(Object#1)

JWalk also pruned prefix paths ending in an

observer-method, on the basis that this would not

modify the state of the test object. For example, JWalk

treated the following pair of sequences as equivalent,

by determining empirically that neither size() nor

isEmpty() modified the Stack object in question:

new().push(Object#1)

new().size().isEmpty().push(Object#1)

JWalk used Java�s reflection API to compare the

shallow states of the test-object before and after each

method execution, to detect side-effects. This was a

more accurate way of determining observer-methods

than a static analysis of signatures and worked whether

or not the test class defined an equals() method.

The ability to map longer test sequences onto

shorter sequences was used in JWalk to predict test

outcomes dynamically for the longer sequences from

known outcomes for the shorter sequences [1]. This

was the first time that test prediction had been

deployed during testing. At the time, it was foreseen

that a more thorough algebraic classification of all

methods (see below) might yield an even greater test

set reduction and much greater predictive power. For

example, if it could be determined that pop() were a

transformer-method, undoing the effect of an earlier

push(), returning the Stack object to a prior visited

state, then the following sequences could be predicted

to yield identical results:

new().push(Object#1).size()

new().push(Object#1).push(Object#2).pop().size()

Overall, if prefixes containing both observer and

transformer methods could be mapped onto shorter

prefixes, many more cyclic paths could be pruned

during test generation; and outcomes for the longer

sequences could also be predicted with certainty.

An algebraic data type is a structure consisting of

operation signatures, typed in basic sorts (sets), whose

semantics are defined using axioms (equations). The

axioms are constructed after identifying all operations

as belonging to one of the categories: constructor,

transformer or observer. Constructors are primitive,

returning all unique instances of the given data type.

Transformers and observers are derived, defined by the

axioms in terms of the constructors. Below, the term

primitive is used instead of constructor, since the latter

has a restricted sense in object-oriented programming:

the primitives of a Stack include the push method as

well as the new Stack constructor.

Our approach was partly inspired by the work of

Henkel and Diwan, who induced the algebraic

structure of Java classes semi-automatically by probing

the behavior of test instances [11]. They derived an

abstract data type signature from a concrete Java class

through reflection, then generated and evaluated many

ground terms, which were grouped into equivalence

classes. Thereafter, an important generalization step

induced quantified axioms, which succinctly captured

many ground term equations. They also embedded this

approach in a tool to help programmers write and

debug algebraic specifications [12]. Our interest was

mainly in the technique used to determine when

objects had re-entered previously visited concrete

states. This involved converting objects into their

serialized format (a binary encoding used to transfer

objects to persistent storage or across distributed

systems) and then hashing to yield a single code

representing the object�s state. We found this approach

unsuitable, for two reasons. Firstly, not every Java

class declares that it supports serialization; and

secondly, serialization offers no control over the depth

to which object states are compared. Our alternative

solution is presented in section 4, below.

3. The JWalk family of testing tools

The current work relates to the latest version of the

JWalk tool suite, which comprises a number of tools,

including JWalkTester, a GUI-based testing tool in the

spirit of JUnit [13], JWalkUtility, a command-line

version that prints all results to standard output, and

JWalkEditor [2], an integrated Java editor, compiler

Figure 1: JWalkTester performing an algebraic exploration of a Stack class to depth 3

and testing tool, with Java-sensitive syntax

highlighting in the style of jEdit [14]. All of these

incorporate the common JWalker test engine, which is

also offered as a component toolkit API for integration

with other editors or testing tools. For this paper,

JWalkTester was used to generate all the examples and

statistics below (see figure 1 for an example).

All of the JWalk tools were conceived with a vision

to support agile software development methods, such

as XP [15], in which test-driven development is the

cornerstone. The goal was to bring together the rigor

of formal specification-based testing methods and the

flexibility of constant code refactoring. Earlier work

from our research group had highlighted how even

simple finite-state specifications could greatly improve

the selection of tests written for XP [16]; and also how

re-using saved tests in regression testing was not as

secure as previously assumed [17, 18]. Nonetheless,

XP and similar methods remained wary of lightweight

specifications, requiring a different approach.

The lazy systematic unit testing method was

devised, based on the two notions of lazy specification,

the ability to infer the evolving specification of a unit

on-the-fly by dynamic analysis, and systematic testing,

the ability to explore and test the unit�s state space

exhaustively to bounded depths [1]. Lazy specification

refers to a delayed approach to software specification,

in which the specification evolves rapidly in parallel

with frequently modified code [2]. The specification is

inferred by a semi-automatic analysis of a prototype

software unit, with some user-interaction. Systematic

testing refers to a complete, conformance testing

approach, in which the tested unit is shown to conform

exhaustively to a specification, up to the testing

assumptions, so providing guarantees of correctness

once testing is over [18].

The featured JWalkTester tool supports three test

strategies, which are protocol-, algebra-, and state-

based. In the protocol strategy, all interleaved methods

are executed on test instances in a breadth-first manner.

In the algebraic strategy, all algebraic constructions

are explored, driving test instances into all their distinct

concrete states. In the state-based strategy, the high-

level (or abstract) states of the test class are discovered

by exploration, and test instances are driven through all

their high-level states and transitions. Dynamic

analysis is critical in detecting actual state changes

empirically, rather than relying on a static analysis of

variable assignments, or method signatures, since some

updates are conditional on particular argument values.

The algebraic exploration technique uses only

primitive algebraic constructions to extend test

sequences. This also reduces the search space when

seeking high-level states, found by evaluating the

reached concrete states using the natural state

predicates of the test class. In this way, the dynamic

analysis techniques reported here optimize both low-

and high-level state exploration.

The JWalkTester tool may be executed in three

modalities, to inspect, explore and validate the test

class. In the inspect-modality, it extracts the public

constructor and method interface of the test class,

including public methods inherited from superclasses.

It may also probe the test class by dynamic analysis, to

discover its algebraic structure (a new feature, from

JWalk v1.0), or its high-level state-space [1]. In the

explore-modality, the tool constructs and executes test

sequences according to the chosen test strategy and

displays the results, sorted by test path length, in a

tabbed output pane for the tester to examine. Figure 1

illustrates exploring all algebraic constructions of a

Stack class, to depth 3. In the validate-modality, the

tool also interacts in a limited way with the tester, who

must confirm or reject certain key test outcomes, which

are compiled in an oracle and used to predict further

test outcomes. Eventually, over 90% of testing is fully

automated using saved, or predicted outcomes [1, 2].

Dynamic analysis has a role to play in determining

when a particular test outcome should be identified as

significant and presented to the tester for confirmation;

and also when that same test result could be used to

predict further test outcomes. The whole benefit of

lazy systematic unit testing is to minimize the user

interaction required to create a complete test oracle.

The goal of dynamic analysis is therefore to identify, in

some sense, the �ideal� test cases for presentation to

the tester. In the context of this paper, this is

interpreted as all observations on the leaves of the tree

of all novel primitive algebraic constructions.

4. Dynamic analysis of algebraic structure

Previously, the old version 0.8 of the JWalk toolset

had a rudimentary ability to classify observer methods

(see section 2) and so prune redundant paths whose

prefix contained observers. The current work

improves on this in two ways: by pruning redundant

paths containing both observers and transformers in

the prefix; and by applying the dynamic state analysis

and test prediction rules per method invocation, which

allows further predictions to be made when states are

not modified by methods that might, at other times and

for other arguments, update state.

The old algorithm compared shallow state vectors

taken from the test object, before and after each

method invocation, to identify and classify observer-

methods. In the improved algorithm, we wanted to

compare the concrete state after each method

invocation with every earlier state in the same test

sequence, to identify re-entrant methods that returned

the test object to some prior visited state. For this, a

more compact encoding of state was desirable.

When discussing the algebraic nature of object

states, the semantic issue of equality arises.

Comparing two objects might make use of an equals()

method naturally provided by their class; but then,

some classes might not define such a method (in Java,

they would inherit Object�s method by default, which

compares object references for identity). Supporting

mixed notions of reference, shallow and deep equality

might be considered inconsistent. Furthermore, the

behavior of any user-defined equals() method might be

faulty, or might conflict with the proper algebraic

notion of equality [19], which is defined as all

observations on the data type yielding (recursively)

equivalent results. For this reason, we wanted to find a

more consistent and repeatable means of determining

state equality, which could nonetheless be controlled

by the tester.

The approach we eventually adopted replaced the

old strategy of extracting object state vectors, which

might consume memory resources, by the computation

of a single hash code to represent the whole state of the

object. This is similar to Henkel and Diwan [11],

except that the hash value is not based on Java�s

serialized format, which is not always available. An

internal release 0.9 of the JWalk toolset [20] computed

hash codes from the persistent oracle value string

representation [1] of each object, which the JWalk

tools compute for all types. However, the processing

time and storage required to generate the oracle strings

repeatedly were unacceptably high. Also, the benefits

we were seeking did not actually require persistent

states to be compared across different test runs. So it

was feasible to compute hash codes directly from

objects and values in memory.

Primitive types, such as int, and �boxed� Java types,

such as Integer, and types with a natural hash code

based on their value, such as String, use their natural

hashCode() method. The hash code for any other kind

of object is obtained by combining the hash codes for

its fields, where the combined code reflects both the

order and value of each field (using a prime multiplier

for the position). Fields are extracted by reflection,

bypassing the usual visibility restrictions. Where a

Figure 2: JWalkTester analyzing the algebraic properties of a ReservableBook class

field is an object reference, a choice exists to apply the

hashing algorithm recursively, or simply return a code

based on the memory address. This is controlled by a

depth parameter supplied by the tester, denoting the

object tree-depth to which state comparisons should be

conducted (specifying shallow, or deeper equality).

Given this compact encoding of object state, it was

relatively easy to incorporate the extra information into

the core test engine. This constructs TestSequence

objects, consisting of many TestCase objects, each of

which exercises a single constructor or method. The

state of the target object is encoded immediately after

executing each TestCase, and cached locally. Once a

TestSequence has fully executed, it is possible to query

the sequence to find if the final state was unchanged,

or re-entrant (see figure 1, where these indicators are

appended to certain test outcomes). This is a fast

algorithm, which compares the final state code with the

penultimate one; or with all earlier state codes in the

sequence. The chances of accidental hash collisions

are remote, especially since sequences are short (up to

low tens of TestCases), and all injected test input

values are already quasi-unique, thanks to the

monotonic test input generation strategy [1, 3].

The latest version 1.0 of the JWalk toolset infers the

algebraic structure of the test class by successive

conservative approximations, probing the dynamic

behavior of the class. Figure 2 shows JWalkTester

discovering automatically the algebraic structure of a

ReservableBook. The operations of the class are

classified into the categories: {primitive, transformer,

observer}. All object constructors are assumed to be

primitive, unless it can be proven that they are derived,

creating the identical object from fewer supplied initial

parameters, in which case they are reclassified as

transformers. All methods are initially assumed to be

observers, until they are found to modify state, in

which case they are first classified as primitive; but if

later they are found to drive the target object into

previously visited states, their category is revised to

transformer.

5. The role of algebra in test pruning

Algebra-inspired analysis adds to the growing set of

sophisticated measures that allow a testing tool, with

interleaved test generation, execution and analysis

phases, to prune redundant test sequences. The size of

the baseline test set (constructors and all interleaved

methods) may be calculated algorithmically from the

size of the test class�s public API. A class with c

constructors and m methods has cm
k
 test sequences of

length k, therefore Σ cm
k
 sequences altogether, for any

bounded depth 0 ≤ k ≤ n. For example, a bounded

Stack with just one public constructor and the six

methods {push, pop, top, size, isEmpty, isFull} has 1 +

6 + 36 + 216 +� sequences. For bounded depth n = 3,

we would expect a maximum of 259 sequences.

The first pruning rule drops prefix paths ending in

raised exceptions. The effect of this can be observed

by running any JWalk tool in protocol exploration

mode. Test cycle 0 creates the Stack instance. Out of

the six sequences exercised in test cycle 1, two raise

exceptions (pop() and top() called on an empty Stack).

This causes 12 paths to be pruned in test cycle 2 (all 6

extensions of each failed path). The remaining 4 paths

from test cycle 1 are extended to yield 24 paths in test

cycle 2. Of these, another 6 paths terminate with

exceptions (mostly consisting of an observer, followed

by pop() or top()), causing 108 sequences to be pruned

from test cycle 3. Cumulatively, 120 test sequences

are pruned during 3 test cycles, leaving 139 test

sequences that were actually constructed and executed.

This is a useful saving, compared to the 259 sequences

that could have been attempted (see table 1).

The second pruning rule drops prefix paths ending

in algebraic observers, which do not modify the state

of the target object. In this case, for the same Stack, 30

paths were pruned in test cycle 2 and a further 204

paths in test cycle 3. Cumulatively, 234 test sequences

were pruned over 3 cycles, leaving only 25 tests that

were actually constructed and executed. This

compares even more favorably with the original 259

sequences!

When the third pruning rule is added to drop prefix

paths ending in algebraic transformers, which re-visit

earlier states, a similar picture is seen. As before, 30

paths are pruned in test cycle 2, but a further 210 paths

are pruned in cycle 3 (an increase of 6). Cumulatively,

240 test sequences were pruned over 3 cycles, leaving

only 19 tests that were actually constructed and

executed. This is a tiny fraction of the 259 sequences

that could have been attempted (see table 1). When

looking at the retained test sequences, these are almost

exclusively paths of the form:

new().size()

new().push(Object#1).size()

new().push(Object#1).push(Object#2).size()

that is, paths which force the test object through all

algebraic constructions, then make all observations (or

exercise all transformers) at the leaves of the algebraic

tree. In terms of state exploration alone, this is close to

the ideal test set that a programmer might have wished

to create manually, since it tests all fine-grained

properties of the class. Yet, since it was created by

algorithm, we can be confident that it is complete, up

to the chosen bounded depth.

Table 1. Pruning applied to Stack

Stack base exc obs alg

0 1 1 1 1

1 7 7 7 7

2 43 31 13 13

3 259 139 25 19

4 1555 667 43 25

5 9331 3391 79 31

Table 2. Pruning applied to Wallet

Wallet base exc obs alg

0 1 1 1 1

1 6 6 6 6

2 31 31 11 11

3 156 156 16 16

4 781 781 26 21

5 3906 3906 41 31

To evaluate the power of the new algebraic pruning

rules under known conditions, a series of experiments

were conducted using the standard set of test classes

used to develop the JWalk toolset. These include a

Stack (which exhibits obvious state-like behavior; and

has a well-known abstract data type algebra); a Wallet

(whose behavior depends more on the values supplied

as method arguments); and a basic LibraryBook and its

subclass, ReservableBook (both with re-entrant states

and abstract algebras to discover; these were included

to verify JWalk�s ability to detect all novel interleaved

method combinations to test, after extending a class by

inheritance). Stress testing was also carried out by

exercising the standard Java library classes Character

and String (both known to have very large APIs).

Tables 1-4 indicate the cumulative sizes of the

retained test sets, after pruning rules 1-3 are

successively applied, for test cycles of increasing

length. The numbers of pruned sequences may be

obtained by subtracting the size of the featured test set

from the size of the baseline set, in each case.

In the tables, the leftmost column gives the test

cycle index number (where cycle 0 is construction;

cycle 1 is method paths of length 1, etc). The column

base indicates the size of the baseline test set (all

interleaved methods). The column exc gives the test

set size after pruning rule 1 is applied (drop exception

prefixes). The column obs likewise gives the test set

size after pruning rule 2 is also applied (drop observer

prefixes). The final column alg gives the test set size

after pruning rule 3 is also applied (drop transformer

prefixes). This last column reflects the algebraic

filtering strategy used in the current version 1.0 of the

JWalk toolset.

The results indicate an impressive ability to rule out

redundant test sequences by automatic analysis. For

test classes whose methods have preconditions relating

to state, such as Stack, a useful reduction is achieved

by the first pruning rule. For test classes such as

Wallet, whose method preconditions are rarely

violated, no reduction may be seen until the observer-

prefix pruning rule is applied. Wallet�s state is affected

more by the choice of amounts credited and debited

than anything else, so rarely re-visits earlier states. On

the other hand, the LibraryBook cycles through two

states in response to the issue() and discharge()

methods. Here, not only does the complete algebraic

filtering strategy (dropping exceptional, observer and

transformer prefixes) prune more redundant cases, but

the test set reaches a stable state of 9 ideal test cases,

from test cycle 2 onward.

Similarly, the ReservableBook subclass (see figure

2 for its API) cycles through four states in response to

the issue(), discharge(), renew() and cancel() methods.

It eventually stabilizes on 41 ideal test cases after cycle

4. (Note that in cycle 5, protocol exploration

exhausted the available memory; but the more

aggressive pruning in algebraic exploration allowed

testing to continue).

Table 3. Pruning applied to LibraryBook

LibBook base exc obs alg

0 1 1 1 1

1 5 5 5 5

2 21 21 9 9

3 85 81 13 9

4 341 301 17 9

5 1365 1101 21 9

Table 4. Pruning applied to ReservableBook

ResBook base exc obs alg

0 1 1 1 1

1 9 9 9 9

2 73 73 25 25

3 585 561 49 33

4 4681 4185 97 41

5 37449 mx 169 41

The effectiveness of algebraic analysis can be seen

in the huge reductions in test-set sizes, focusing on the

most important test cases. Stack retained the best

0.33% paths (pruning 9,300 redundant paths), Wallet

retained the best 0.79% paths (pruning 3,875 paths),

LibraryBook retained the best 0.66% paths (pruning

1,356 paths) and finally ReservableBook retained the

best 0.12% paths (pruning 37,408 paths). When stress

testing using java.lang.Character (1 constructor and 78

methods), protocol exploration exhausted memory in

cycle 3 (a baseline of 480,715 paths), but algebraic

exploration stabilized on 79 test cases from cycle 1.

Similarly, for java.lang.String (13 constructors and 64

methods) protocol exploration exhausted memory in

cycle 3 (a baseline of 54,093 paths), but algebraic

exploration stabilized on 845 test cases from cycle 1

(using a custom index generator [3] to avoid out-of-

bounds char array access during String construction).

6. The role of algebra in test prediction

The utility of algebraic analysis can be measured in

another way, while interacting with the JWalk tools in

the algebraic validation mode, when inferring the test

oracle for a given class. The first benefit of the new

algorithms is that fewer test cases are presented to the

tester for manual confirmation or rejection than before.

This is partly due to the extra pruning rule (see section

5) and partly due to the improved capability for test

prediction, which is still not quite complete, an

interesting finding that we explain below.

Table 5. Algebraic confirmations per cycle

Class : cycle 0 1 2 3 4 5

Stack 0.8 1 5 4 9 12 26

Stack 1.0 1 5 4 4 4 4

Wallet 0.8 1 4 4 4 8 12

Wallet 1.0 1 4 4 4 4 8

LibBook 0.8 1 2 3 2 3 2

LibBook 1.0 1 2 3 - - -

ResBook 0.8 1 2 8 12 30 40

ResBook 1.0 1 2 8 6 6 -

The power of the JWalk test engine comes from its

predictive rules, especially predictions about sequence

equivalence-classes. Whereas version 0.8 only

mapped sequences containing observers in the prefix

onto shorter sequences, version 1.0 also maps

sequences, whose prefix contains transformers, onto

equivalent shorter sequences. Table 5 shows the

improvement gained, which starts to become

noticeable from test cycle 3, where sequences with

prefixes ending in transformers start to be pruned.

Note that the tally of confirmations for ReservableBook

is reduced even further, because this class inherits a

partial oracle from its parent LibraryBook and only

asks the tester to confirm novel interleaved

combinations of methods.

Summing the counts of confirmations across a row

in table 5 gives the cumulative confirmations to depth

5. By test cycle 5, the tool is presenting significantly

fewer cases to the tester for validation than before. For

example, in the current algebraic validation mode, the

tester confirmed 22 cases over 5 cycles for the Stack,

whereas in the old version of the same mode, the tester

had to confirm 57 cases (35 more confirmations).

Table 6. Residual protocol confirmations

Class : cycle 0 1 2 3 4 5

Stack 0.8 - - - - - -

Stack 1.0 - - - - 4 8

Wallet 0.8 - - 1 12 99 691

Wallet 1.0 - - 1 12 100 704

LibBook 0.8 - - - - - -

LibBook 1.0 - - - - 3 -

ResBook 0.8 - - - - - mx

ResBook 1.0 - - - - 20 mx

Note also that the total number of confirmations is

strictly less than the number of paths actually explored.

For example, whereas the tester confirmed 22 cases

(over 5 cycles) for the Stack, the tool explored 31 cases

altogether (see table 1), making 9 further automatic

validations, based on predictions about test outcomes.

On examining these cases, they are all found to be

opportunistic predictions that methods with a void-

result type are expected to yield no result (see the

discussion in section 7). All the other cases presented

to the tester were of observations made on the leaves of

the tree of all algebraic constructions. We may

conclude with some confidence that the algebraic

validation mode is the most economical way to present

the tester with significant test cases that define (most

of) the behavior of the test class.

This is borne out in table 6, where the majority of

the remaining test outcomes in the brute-force protocol

validation mode are predictable from the oracles that

were trained in algebra validation mode. Recall from

tables 1-4 how protocol exploration had many

thousands of test cases. To be able to validate most of

these automatically, having confirmed only a few tens

of cases by hand, is an outstanding success and the

hallmark of the lazy systematic unit testing method.

However, the benefits gained by pruning the extra

transformer-prefixes in the newer version of the JWalk

toolset are not completely carried forward when using

the smaller trained oracles to predict all test outcomes

in protocol validation mode. Some of the extra cases

that were pruned by the more aggressive algebraic rule

had to be confirmed in protocol mode, indicating that

the revised prediction rule, while more powerful than

the old version, is not quite as effective as hoped. For

example, in the current protocol validation mode, the

tester had to confirm 12 residual cases over 5 cycles

for the Stack, compared to no residual cases in the old

version of the same testing mode.

Nonetheless, this is still a net gain, since in the old

version, the tester had previously confirmed 35 extra

cases (see table 5), so in fact the new version still

saved the tester 35 � 12 = 23 confirmations for this

example. Likewise, for the LibraryBook example, the

new version saved 7 � 3 = 4 cases and the

ReservableBook saved 70 � 20 = 50 cases. The Wallet

example proved somewhat resistant to re-entrant state

prediction in both tool versions. The states of this

object were influenced more by argument values

(which were quasi-unique on each call) and states

tended not to be re-entered.

How may we explain the mixed performance of test

prediction rules associated with re-entrant states? The

reason for this has to do with the exact concrete states

of the objects that are being compared. For example,

the tools can detect that the following two sequences

leave the target Stack object in the same state:

new()

new().push(Object#1).pop()

and from this fact, they can predict some test

outcomes for the longer sequence, based on extending

such pairs of sequences with simple observations:

new().size()

new().push(Object#1).pop().size()

which map onto the same outcome. However, the

tools cannot always make use of re-entrant state

information in other kinds of extension, which do not

leave the target object in the same concrete state:

new().push(Object#1)

new().push(Object#1).pop().push(Object#2)

That is, the two Stacks produced by these sequences

are not equal, because their top elements are different,

as a consequence of the value generator synthesizing a

new, distinct instance of Object as the argument to the

second push() in the longer sequence.

In hindsight, this kind of situation will occur

frequently in transformer-related cycles, because the

JWalk toolset always synthesizes quasi-unique input

values for each method argument, so that these values

may be distinguished when later observed (note that it

is significant, in figure 1, that the result of the top()

method is Object#2, rather than Object#1). The only

way to improve the tools� reasoning ability further

would be to add some kind of symbolic generalization

over concrete argument values, perhaps in the spirit of

axiom induction [11, 12].

7. Conclusions

Algebra-inspired analysis has been shown to have a

hugely beneficial influence on the reduced generation

of test sequences and the selection of �ideal� test cases.

Determining the space of all algebraic constructions

for a class-under-test is the best way to focus a test

generator on the most relevant test cases that will

exercise all the distinct, fine-grained behaviors of the

class. In the above examples, the test sets were

eventually reduced to a few tens of key test cases,

which could be confirmed manually and reused in

predictive testing. This was compared against the

many thousands of test cases that might be generated in

any baseline, or protocol exploration strategy.

Perhaps the single most important aspect is having a

tool, such as JWalkTester, to guide the tester through

all the relevant cases. Our previous experiments have

shown that trying to achieve similar complete test

coverage by manual test case selection will yield much

poorer results [2, 21]. The JWalk tools take control of

the selection of test cases, here guided by algebraic

analysis, relieving the tester of this burden. Another

key feature of the JWalk tool suite is the ability to

interleave cycles of test generation, execution and

analysis. That is, the generation of each new test cycle

is informed by an analysis of the results from the

previous cycle. This allows the tool to select which

paths to expand in the next cycle, rather than over-

generating all test paths and filtering these afterwards

[4-9]; and is also quite different from prioritizing and

re-ordering test suites [22, 23]. JWalk avoids

generating any redundant paths in the first place, yet

seeks to identify all the distinct test cases (not a subset)

in the test class�s algebra, or high-level state space.

Regarding the influence of algebraic analysis

techniques on test outcome prediction, the results are

still very good, but sometimes mixed. Many thousands

of test outcomes were predicted for the protocol

validation mode, after training up an oracle in the

algebra validation mode. It is clear that mapping

sequences with observers in the prefix onto shorter

sequences (with known outcomes) has a strong

predictive power. However, mapping sequences with

transformers in the prefix onto shorter sequences

without cycles may not yield quite as many predicted

gains. This was found to be due to an interaction

between the predicted cyclic behavior and the injection

of different input values, resulting in objects whose

states were not in fact equivalent.

One aspect of the test prediction strategy worth

highlighting is that the decision to map onto a known

shorter sequence is made on a case-by-case basis, and

is not based on any global classification of all methods

into primitive, transformer or observer operations.

This is because a given method may, on subsequent

invocations, choose to modify the state of the target

object, or leave it unchanged. The Wallet test case

demonstrated this behavior, in that sometimes the

debiting-action was blocked (if the requested amount

exceeded the balance) and sometimes it succeeded.

However, whenever the state context for a predictive

rule applies, the rule may always be applied safely,

because states are always compared empirically.

For this reason, we call this kind of prediction a

strong, or conservative assumption, which is always

guaranteed to hold, unlike the weak, or opportunistic

assumption made when expecting a void-method to

return no result. The latter prediction is potentially

vulnerable to false positives (viz. a void-method, which

should raise an exception, but does not, and is passed

by default). In practice, such fault cases are identified

in the following test cycle [1, 2], when the tester

observes extra paths that should have failed.

Acknowledgment: Thanks are due to Arne-Michael

Toersel (at TaicPart �07) for the Wallet test case; and to

Mihai-Gabriel Glont, for inspiring the GUI design of

the JWalkTester tool.

8. References

[1] A. J. H. Simons, �JWalk: a tool for lazy systematic

testing of Java classes, by design introspection and user

interaction�, J. Auto. Softw. Eng., 14 (4), 2007, pp. 369-418.

[2] A. J. H. Simons, N. Griffiths and C. D. Thomson,

�Feedback based specification, coding and testing�, Proc. 3rd

Test. in Acad. and Indust. Conf.: Pract. and Research Tech.,

eds. M. Roper, G. M. Kapfhammer and L. Bottaci, IEEE,

Windsor, UK, 2008, pp. 69-73.

[3] A. J. H. Simons, �JWalk: lazy systematic unit testing�,

http://www.dcs.shef.ac.uk/~ajhs/jwalk/, 2009.

[4] C. Csallner and Y. Smaragdakis, �JCrasher: an automatic

robustness checker for Java�, Software: Practice and

Experience, 34(11), 2004, pp. 1025-1050.

[5] C. Csallner and Y. Smaragdakis, �DSD-Crasher: a hybrid

analysis tool for bug finding�, Proc. 5th ACM Sigsoft Int.

Symp. on Softw. Testing and Analysis, ACM, Portland,

Maine, 2006, pp. 245-254.

[6] T. Xie and D. Notkin, �Tool-assisted unit test selection

based on operational violations�, Proc. 18th IEEE Int. Conf.

Automated Softw. Eng., IEEE, Montreal Canada, 2003, pp.

40-48.

[7] T. Xie, D. Marinov and D. Notkin, �Rostra: a framework

for detecting redundant object-oriented unit tests�, Proc. 19th

IEEE Conf. Automated Softw. Eng., IEEE, Washington DC,

2004, pp. 196-205.

[8] W. Visser, K. Havelund, G. Brat, S. Park and F. Lerda,

�Model checking programs�, Automated Softw. Eng. J.,

10(2), 2003, pp. 203-232.

[9] W.Visser, C. S. Pasareaunu and R. Pelánek, �Test input

generation for Java containers using state matching�, Proc.

5th ACM Sigsoft Int. Symp. Softw. Testing and Analysis,

ACM, Portland, Maine, 2006, pp. 37-48.

[10] C. Pacheco, S. K. Lahiri, M. D. Ernst and T. Ball,

�Feedback-directed random test generation�, Proc. 29th Int.

Conf. Softw. Eng., IEEE Computer Soc., Minneapolis, USA,

2007, pp. 75-84.

[11] J. Henkel and A. Diwan, �Discovering algebraic

specifications from Java classes�, Proc. 17th Europ. Conf.

Obj.-Oriented Progr., LNCS 2743, Springer, Darmstadt,

Germany, 2003, pp. 431-456.

[12] J. Henkel and A. Diwan, �A tool for writing and

debugging algebraic specifications�, Proc. 26th Int. Conf.

Softw. Eng., IEEE Computer Soc., 2004, pp. 449-458.

[13] K. Beck, The JUnit Pocket Guide, O�Reilly, Beijing,

2004.

[14] S. Pestov et al., �jEdit programmer�s text editor�,

http://www.jedit.org/, 2009.

[15] K. Beck, Extreme Programming Explained: Embrace

Change, 2nd edn. New York: Addison-Wesley, 2005.

[16] W. M. L. Holcombe, �Where do unit tests come from?�,

Proc. 4th Int. Conf. on Extreme Progr. and Flexible Proc. in

Softw. Eng., LNCS 2675, Springer, Genova, Italy, 2003, pp.

161-169.

[17] A. J. H. Simons, �Testing with guarantees and the

failure of regression testing in eXtreme Programming�, Proc.

6th Int. Conf. on Extreme Progr. and Flexible Proc. in Soft.

Eng., LNCS 3556, Springer, Sheffield, UK, 2005, pp. 118-

126.

[18] A. J. H. Simons, �A theory of regression testing for

behaviourally compatible object types�, Softw. Test., Verif.

Reliab., 8(2), 2006, pp. 133-156.

[19] H. Y. Chen, T. H. Tse and T. Y. Chen, �TACCLE: a

methodology for object-oriented software testing at the class

and cluster levels�, ACM Trans. Softw. Eng. Meth., 10(1),

2001, pp. 56-109.

[20] W. Zhao, �Test prediction in revisited states of JWalk�,

MSc dissertation, Department of Electronic and Electrical

Engineering, University of Sheffield, 2008.

[21] A. J. H. Simons and C. D. Thomson, �Benchmarking

effectiveness for object-oriented unit testing�, Proc. 1st

Software Testing Benchmark Workshop, IEEE 1st Int. Conf.

Softw. Testing, Lillehammer, 2008.

[22] A. Smith, J. Geiger, G. M. Kapfhammer and M. L.

Soffa, �Test suite reduction and prioritization with call trees�,

Autom. Softw. Test., 2007, pp. 539-540.

[23] Z. Li, M. Harman and R. M. Hierons, �Search

algorithms for regression test case prioritisation�, IEEE

Trans. Softw. Eng., 33, 2007, pp. 225-237.

