The

University
o Of
» Sheffield.

This is a repository copy of A Development Framework Enabling the Design of
Service-Based Cloud Applications.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/98327/

Version: Accepted Version

Proceedings Paper:

Gonidis, F., Paraskakis, I. and Simons, A.J.H. (2015) A Development Framework Enabling
the Design of Service-Based Cloud Applications. In: Ortiz, G. and Tran, C., (eds.)
Advances in Service-Oriented and Cloud Computing. Workshops of ESOCC 2014,
September 2-4, 2014, Manchester, UK. Communications in Computer and Information
Science , 508 . Springer , pp. 139-152. ISBN 978-3-319-14885-4

https://doi.org/10.1007/978-3-319-14886-1_14

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
university consortium eprints@whiterose.ac.uk
/,:-‘ Uriversities of Leecs: Shetfiekd & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

A Development Framework Enabling the Design of
Service-Based Cloud Applications

Fotis Gonidi$, Iraklis Paraskakis AnthonyJ. H. Simons?

1 South-East European Research Centre (SEERC),
International Facultpf the Universityof Sheffield, City College
24 Proxenou Koromila Street, 54622 Thessaloniki, Greece
{fgonidis, iparaskakis}@seerc.org

2 Departmenbf Computer Science, The Universii§Sheffield,
Regent Court, 211 Portobello Street,
SheffieldS14DP, United Kingdom

|{A.Simons}@dcs.shef.ac.uk]

Abstract. Cloud application platforms gain poputgrand have the potentitd
change the way applications are developed, involving compositiplatform
basic servicesin orderto enhance the developsrexperience and reduce the
barriersin the software development, a new paradighcloud application
creation shoulde adopted. Accordingp that developers are enableddesign
their applicatims leveraging multiple platform basic services, independently
from the target application platform3o this end, this paper proposes a
development framework for the desigri service-based cloud applications
comprising two main components: the meta-model and the PlatforvitSe
Manager. The meta-model describes the building blocks waicble the
constructionof Platform Senge Connectorsin a uniform way while he
Platform Service Manager coordinates the interaabibthe application with
the concrete service providers and further facilitates the administiatitre
deployed platform basic services.

Keywords: platform basic services, abstract service models, multi-cloud

1. Introduction

The emergenceof the cloud application platforms has been accompabigdc
growing numbenpf platform basic services being provisioned via thémadditionto

the traditional platform resources suafiprogramming environment and data stores
[1], a cloud application platform provisions a ramgfeplatform basic services that
developerscan leverageto accelerate the software development prod@}s A
platform basic serviceén the Platformasa Service level [1l]canbe consideredcasa
piece of software which offers certain functionality and damreusedby multiple
users.t is typically provisioned via a web Application Programming Interfaiiel)

mailto:%257BA.Simons%257D@dcs.shef.ac.uk

either REST[3] or SOAP[4]. Examplesof such services are the message queue, the
e-mail, the authentication and the payment service.

The riseof the platform basic services has the potemtideadto a paradignof
software development where the servicesaathe building blocks for the creatiaf
service-based cloud applications. Applicatialts not needto be developed from
groundup but can rather be synthesised from various platform basic services
increasing rapidly this way the productivity. This paradigitsoftware development
can be consideredas an evolution of the Service Oriented Architecture (SOA) [5]
approach, where the applications are compadedrious web service$n that case,
established frameworks, suels the Business Process Execution Language (BPEL)
[6] and the Web Service Resource Framework (WSRF) [7] assist deseliyréng
the integration processf the web services. However, tralent of the cloud
application platforms and the platform basic services has resuliedltiple software
vendors offering the same typd service suchas authentication service, mailj
service and payment service. Therefore, developers should not empabledto
effortlessly integrate the platform basic services but #sohoose seamlessly the
concrete service providgrovercoming the heterogeneity among them.

Towards this direction, a new approach for the desifysevice-based cloud
applications mugbe adopted. The key conceiptfor usersnotto develop applications
directly against proprietary cloud providerenvironment. Rather, they should use
either standard and widely adopted technologregbstraction layers which decouple
application development from specific target technologies and Application
Programming Interfaces (APIS).

Development Framework

Platform Service Connectors

Platform Service {
Connector 1
Platform Service {
Cloud Application Connector N

Developer Provider Connector D Service Provider D

Provider Connector A Service Provider A

Provider Connector B Service Provider B
Platform

Service
Manager

Provider Connector C Service Provider C

i

Fig. 1. Cloud Application Development Framework

To this end the paper proposes a development framework which f@®mo
uniform accesso platform basic services via the usk abstract Platform Service
ConnectorgFigure 1). It is composedf three main parts: (i) the Platform Service
Manager (PSM), which handles the executibthe services, (ii) the Platform Service
Connectors (PSC), which conta@m abstract descriptioof the functionalityof the
services and (iii) the Provider Connectors (PC), which include dbtailed
implementation requireldy each provider.

The key objectiveof the proposed solutiois two-fold. First, it introduces a
reference meta-model which enables the integraifoplatform basic servicem a
consistent way through the constructifithe PSCsSecond,it decouples application

development from vendor specific implemerdgagby encapsulating the lattém the
PCs componentsin additionto the reference meta-model, the proposed framework
automates the workflow executiofithe platform service operations.

The remaindemf the paperlis structuredas follows. The next Section reviews
established workn the field. Section 3 describes the way platform basic services may
be consumed and motivates the need for a meta-model for constrthetiRSCsn a
uniform manner. Subsequently, Section 4 states the high-level centsaf the
meta-model and the framework which manages the exeaftitre PSCIn orderto
illustrate how the proposed solutiaran be utilised to enable uniform acces®
platform basic services, Section 5 illustrates the ofsige cloud payment service.

2. Related Work

The constant increase the offeringof platform basic services has resulieda
growing interestin the field of cross platform development and deploymeht
service-based cloud applications. Significant work has been carried the field
which canbe grouped into three high-level categories: library based solutiong,[8, 9
middleware platforms 1J0] and Model-Driven Engineering (MDE)1{] based
initiatives [12-15]. Representative wortn eachof the three categoriés presented.

Library-based solutions suchs jclouds [8] and LibCloud [9] providean
abstraction layer for accessing specific cloud resourcesasmmpute, storage and
message queue. While, library-based approaches efficiently abstracting those
resources, they have a limited application scope which nilaétggcult to reuse them
for accommodating additional services.

Middleware platforms constitute middle layers which decouple application
development from directly being developed against specific platform tedies
and deployedon specific platforms. Rather, cloud applications are deployed and
managedy the middleware platform which has the capatodtgxploit multiple cloud
platform environments. mOSAIQ()] is such a PaaSdution whose main targés to
facilitate the design and executiafi scalable component-based applications. The
main application building block the mOSAIC platforms the cloudlet. A platform
container manages the cloudlets and has the atailggawnor destroy instances with
respectto the load. Additionally mOSAIC offeran open source APIn orderto
enable the applicationso use common cloud resources offerbg the target
environment suchas virtual machines, key/value stores and message queues.
mOSAIC adopts a particular programming style basethe cloudlets which impose
that applications abidey this style. Thus, although the mOSAIC platfoisrableto
exploit multiple cloud environments, the applications which leverage mOSAIC
benefits, ae tightly connected with the specific technology. Furthermore, middewar
solutions often are complex environments which may impaseunnecessary
overhead, should the applications not exploibatheir features.

Initiatives that utilise MDE techniques present meta-models wd@obhe used for
the creatiorof cloud platform independent applications. The notiothis cases that
cloud applications are designed a platform independent manner and specific

technologies are only infuseéd the models at the last stagé the development.
MODACIouds [l2] and PaaSagelB] are both FP7 initiatives aimingt cross-
deploymentof cloud applications. Additionally, they offer monitoring and quality
assurance capabilities. They are base@loudML [16], a modelling language which
provides the building blocks for creating applications deployabieultiple laaS and
PaaS environments. Hamdagé al. [14] have proposed a reference model for
developing applications which make usé the elasticity capabilityof the cloud
infrastructure. Cloud applications are composgd CloudTasks which provide
compute, storage, communication and management capabilities. MULTIC[1&PP
is a framework employing MDE techniques during the softwaneskbpment process.
Cloud artefacts are the main components that the application consists of. A
transformation mechanisim usedto generate the platform specific project structure
and map the cloud artefacts onto the target platform. Additional adapter
generated each timeo map the applicatios API to the respective platforta
resources.

The solutions listedn this Section focus mainlpn eliminating the technical
restrictions that each platform imposes, enabling this way cross-degitgfrcloud
applications. Additionally, thegffer monitoring and quality assurance capabiliies
well asthe creatiorof elastic application€On the contrary, the visioof the authors
is to facilitate the useof platform basic services and concrete providers from the
various cloud application platforrmia a seamless and transparent manferthis
end, rather than focusingn the obstacles imposed during the deploynwntloud
applicationswe focuson the commonalities and differences expobgdhe various
platform service providers during tkensumptionof thoseby the cloud applications.
The proposed solution mdye positionedin the intersectiomf the work presenteith
this Section. A reference meta-modeintroducedto enable the consistent modelling
and integrationof the various platform basic services sumhthe authentication,
payment, e-mail service. Additionally, a middleware framework lsndhe
executionof the workflow and accommodates the abstractibthe various concrete
providers so that application developers are not boutm specific vendor
implementations.

3. The Need for a Platform Service Meta-Model

Before describing the proposed framework and the meta-modebfatructing the
Platform Service Connectors (PSGsg motivate the need for such a solutitve do
so by examining various implementatiortd platform service clients. Preliminary
work of the authorson several platform service providers?7] offered by Heroku
[18], Google App enginelld], AWS marketplace J0] have shown that platform
services maye distinguished into two categories: stateless and stat2fijl. [
Stateless services offer operations which are completede step. This means
that the useof the service initiates a request and the latter responds with tliteafesu
the operation. The requests are performed using the web API expo#es service
providers and usually arie the formof a RESTor SOAP call. Examplesf such

services include the message queue and the e-mail services. Fptegkacase that
the user wantt sendan e-mail usingan e-mail service providehe merely needso
submit a web request with a minimum eétequired fields: recipient, sender, subject
and body. Upon the successful padtthe e-mail, lhe provider responds with a
confirmation message.

Onthe other hand, stateful services require twmore step orderto complete
an operation. Therefore, contraty the first category, a coordination mechanism
requiredto handle the operation flow. Additionally, the process involves ifiegm
requests originated eithey the clientof the applicatioror the service provider and
which needso be handledby the application.

Such an exampleis the payment service that enables develogersaccept
payments through their applicatidn. this case the client initiates the purchase flow
by sending a requesb the application via the user interface. The latter receives the
request and subsequently notifies the payment provider aboutiritfeape operation.
The provider respond® the application with information regarding the purchase
transaction. Afterwards the client filla the payment card details and transmits the
datato the payment provider. Once the validatioh the cardis completed the
provider respondw the application with the resuf the payment transaction.

In this process two typesf requests are implied. The first one includes the
requests performely the application towards the payment providers and which are
executed using the web API offeregt the providers. They are the similar those
describedin the stateless services. The second typ®lves incoming requests
submittedto the cloud application eithdyy the clientor the payment provider and
which needo bereceived and handlda the cloud application.

In additionto the varietyof the requests described above, platform basic services
in both categories share some common characteristics. Certain configuestiiogss
and credentials are required when a cloud application interacts with a platform
service. For examplen the caseof the payment service, among othersiredirect
URL” needso be specifiedto inform the service provider hote perform a request
to the application. Regarding the requests performed using the wetif &l service
provider, authorization information and knowledgfethe endpoints are required
execute the web call.

As it became clear a cloud application may interact with several platform basic
servicesin various ways.If we countin the large numbepof services thatan
application maype composed of, one can realize that the integration and management
of the services mahpecome a time consuming and strenuous procéssorderto
enable the consistent modelling and integratibservicesaswell asthe decoupling
from vendor specific implementations, a reference meta-nedajjuired.

The meta-model shoulde platform and service independest thatit facilitates
the design and implementatiafi a wide rangeof PSCs. Towards this direction the
abstract descriptioof the platform basic service functionalisymodelked Then, the
technical details and the specific implementatibeachservice providers are infused
in a transparento the cloud application mannehdditionally, the Platform Service
Manager (Figurel) keeps trackof the platform basic services consumeyl the
application and coordinates the interaction between the application and the services

4. The Development Framework

In this Section the high-level components of the developmentefsank are
described (Figur&). Thiscanbe further decomposed into (i) the meta-model used
create the Platform Service Connectors (PSCs) and (ii) the PlatforimeSktanager
(PSM) which handleshk interaction between the cloud application and the platform
service (Figure).

4.1 Meta-Model Components

This Section states the componeafsthe meta-modelln essence the meta-model
describes the building blockd which a PSGs composedAs depictedin the lower
componenbf the Figure 2 there are 5 main concepts:

1. CloudAction. Cloud Actions are useld model stateful platform basic servias
describedn Section 3, which define more than one dteprderto completean
operation. The whole process requiteccomplete the operatiazanbe modelled
asa state machine. Each stgnbe modeledasa concrete state that the platform
service can exist in. When the appropriate event ardwexctionis triggeredto
hande the event and subsequently causes the tranditidghe next state. The
eventsin this case are the incoming requests arriving eitlyethe application
useror the service provider. A separate Cloud Actisrefinedto handle each
incomingrequest and subsequently signals the transitidhe next state.

2. CloudMessage. CloudMessages cdre usedto model requests performéy the
cloud application towards the service providarthis case the web API exposed
by the provideris used, usually implemented with the RE®T the SOAP
protocol. CloudMessagesan be usedin platform services where the operation
can be completedin one step, namely one REST/SOAP requeghe service
provider. Examplef such a requesas mentionedn the previous sections the
e-mail service. A CloudMessagan be definedto send the web request along
with the required fields: recipient, sendetitle and body. In addition,
CloudMessages care used within Cloud Actions when the latter are requiced
submit a requedb the service provider.

3. PlatformServiceStates. The PlatformServiceStates description file holds
information about the states involved an operation and the corresponding
Cloud Actions which are initialisei execute the behavior requirgdeachstate.

A part of a state description file describing the states invoinethe payment
transactiorof a particular service providé shown here:

<StateMachine>
<State name="PaymentForm"
action="org.paymentservice.FillOutFormCloudAction"
nextState="SendTransaction" />
<State name="SendTransaction"
action="org.paymentservice.SendTransactionCloudAction"
nextState="Finish" />
</StateMachine>

Two states are described here. Faarch state the following informations
provided: a) The nameof the stateb) The CloudAction which needw® be
initialised in orderto handle the incoming requests ar)dthe next state which
follows when the action finishes the execution. The state n&Riagsh’ signals
the completiorof the operation.

4. ConfigurationData. Certain configuration settings are requii®deachplatform
service provider. That informatida capturedn the ConfigurationData. Example
of settings which need® be defined are the clientscredentials requiredio
perform web requests and the redirect URL parameter wvibioften requested
by the service providen orderto perform request® the cloud application.

5. API Service Description File. The API service description file describes the
functionality offeredby the service provider via the web interface. The concrete
operations, parameters and endpoints are stz file. It is consumedy the
framework in order generate the clienadapter which is used by the
CloudMessaget® communicate with the service provider.

The concepts listenh this Section enable the modellinfthe PSCs and contribute

the first objectiveof the proposed solution whids to facilitate the integratiorof

platform basic serviceis a consistent way. Additionally, the consistent modelbihg
the PSC enables the automatiminthe workflow executiorof the platform service
operations.

Front

Platf Servi Controller
a orm ervice API Client Generator
Registry ‘

ConfigurationData

{]
! |
{ |
!]
! |
!]
! |
!]
! |
!]
! |
!]
: Dispatcher :
I 1 |
!]
! |
!]
! |
| <<interface>>)
: ICloudAction :
! |
9 |
| Platform|Service|Connector :
! |
! I
! |
: CloudAction CloudMessage :
| |
! 1 J |
| 0.* . |
| 1 0. |
I 1 |
! |
I) |
I | PlatformServiceStates | 1 1 . API Service |
: PlatformService Description — :
1 1
I |
I 1 [3 |
| |
! |
! |
! |
! |
! |

Fig. 2. High level overnew of the development framework

4.2 Framework Components

In this Section the high level components comprising the PSM, hantén§SCs,
are describedAs seenin the upper parof the Figure2, it essentially consistsf the
following components:

1) Front Controller. The Front Controller J2] servesas the entry pointto the
framework. It receives the incoming requediy the application user and the
service provider.

2) Dispatcher. The dispatcher 23] follows the well-known request-dispatcher
designpatern. It is responsible for receiving the incoming requests from the
Front Controller and forwarding theto the approprige handler, through the
ICloudAction whichis explained belowAs mentionedin 3.1, the requests are
handledby the CloudActions. Therefore the dispatcher forwards the request
the proper CloudActionin orderto do so,he gains acces® the platform service
states description file and basedthe current state triggers the corresponding
action.

3) ICloudAction. ICloudAction is the interface whids presenatthe frameworlat
design time and which the Dispatcher has knowledge about. El@ngAZtion
implements the ICloudAction. That facilitates the initialisatioh the new
CloudActions during run-time.

4) Communication patterns. Two typesof communication pattern are supported
by the framework: The first onis the Servlets and particularly the Http Servlet
Request andResponse object2B] which are usedby the CloudActionsn order
to handle incoming requests and respond hadke caller. The second tyué
communicationis via the useof the REST/SOAP protocol which enableet
CloudMessaget perform external requestis the service providers.

5) Cloud Service Registry. The Cloud Service Registrgsthe name implies, keeps
track of the services that the cloud application consumes.

6) API Client Generator. Basedon the AP| Service Description file, the API client
generator maps the providespecific APlto the abstract one defindéalthe PSC.

In case the provider offers additional functionality, the respective cigent
updated. The updated clieistusedby the CloudMessages communicate with
the service provider.

The componentof the framework listedn this Section facilitate the workflow

executionof the platform service operations and further automate the geneadtion

the Web API clients requiretb interact with the platform services. Along with the

PSCs, they contributto the second objectivef the proposeddution whichis to

decouple the cloud application from directly interacting with the verspecific

implementations and thus enabling developerchoose seamlessly the concrete
service providers.

5. The Case of the Cloud Payment Service

In orderto illustrate how the meta-model and the Platform Service Manager (PSM)
can be utilised to facilitate the consumptioof platform basic servis by the

applications, the cas# the cloud payment serviée presented. The payment service
enables a websiter an applicationto accept online payments via electronic cards
suchas credit or debit cards. The added value that such a service dffahmt it
relieves the developers from handling electronic payments and keepingtremk
transactions. The payment provider undertakes the ttasterify the payment and
subsequently informs the application about the outcaih¢he transaction. The
payment service has been chosen becafséis inherent relative complexity
comparedo other services suchs e-mailor message queue service. The complexity
lies in the fact that the purchase transaction requires more than onetostate
completed and theres a significant heterogeneity among the available payment
providers with respedb the involved states.

In order to enable the cloud application develoger choose seamlessly the
optimal payment provider, the various provider implementationd teelge modelled
and addedo the frameworkso that the latter can handle the flaf the operations.
This way he application developers are relieved from implementing explicitly the
interactions witreachpayment provider.

The processanbedivided into three steps:

1) Modelling of the statesof the cloud payment service. Several payment
service providers nedd be studiedin orderto extract a common state chart
capturing the operation flow.

2) Basedon the state chart constructadthe previous step, a modslcreated
utilising the meta-model describ&u Section 4.

3) Capturingof the provider specific data and mapping the abstract model
built in step2.

5.1 State Modelling of the Platform Service

The first step towards modelling the stadéshe cloud payment serviégto explore
the concrete payment providers and extrapolate the commonistateish they may
co-exist. For that reason 9 major payment service providers haveshetied 24-
32], provisioned either via a major cloud platform sushGoogle App Engine and
Amazon AWSor via platform service marketplaces suak Heroku add-ons and
Engineyard add-ons. These provideasbe grouped into three main categoriés
exhaustive listingf the characteristicsf each payment providés out of the scope
of this paper. Rathenyve focus on demonstrating how concrete provideran be
mappedon the abstract model. Thereforan this paperwe present the casef one
category, the‘transparent redirettand useas the concrete payment provider, the
Spreedly [30], a payment provider offered via Heroku platform.

Transparent redireds a technique deployelly certain payment provideris
which, during a purchase transaction, the cleard details are redirectéal the
provider who consequently notifies the cloud application about the outobrine
transaction.

Cloud Application
&

. Sl
\& o
’Lg\eQ 7. Transaction Outcome @
§ A
& S
3. Redirect to Payment Provider 6. Execute Transaction
Client Payment service provider

Fig. 3. Cloud Payment Service

Figure 3 describes the steps involieccompleting a payment transaction, while
Figure 4 shows the state chaftthe cloud application throughout the transaction.
Two states are observed. While the cloud application rerirathe first stateit waits
for a payment request. Once the client requests a new payneecipuld application
should display the fill out form where the user enters tlyenpat details.

Token received / Submit
User requests payment / purchase request and display
Display flllout form the outcome

(Waiting for user's payment requeusaiting for transaction toker) >©

Fig. 4. State chardf the cloud payment service

Subsequently, the cloud application mot@she next state wheiie waits for the
transaction token issuddly the payment provider. The transaction token uniquely
identifies the current transaction and terusedby the cloud applicatioto complete
the purchase. Once the user submits the fohm,is redirectedto the payment
provider who validates the card details. Then a requetite cloud applicatioris
submitted including the transaction token. Once the tikeeceived the application
submits a requesbd the provider with the specific amouotbe charged. The provider
completes the transaction and responds with the outcome. Dependhggoutcome,
the cloud application displays a succesfailure pagdo the client.

5.2 Mapping of the State Model on the Meta-Model

Basedon the state chart mentioneéd the previous Section a provider independent

modelis constructed usingsbuilding blocks the meta-model describedectiord.

The models constructedisfollows:

1) Foreachstate where the application waits forexternal request, a CloudAction
is definedto handle the request.

2) Foreachrequest initiatedy the cloud application targeting the service provider a
CloudMessagés defined.

Platform Service Manager

Front

Controller !

Platform Service
Registry 1
1
API Client generator
Dispatcher
1

1 L et q
1 Communication

<<interface>>
ICloudAction

|
I
|
|
: Servlets REST/SOAP
I

|

Cloud [Payment|Service Connector
1

API Service
<<KXML>> Description
PaymentServiceStates

[8 1

[)

1 \i’ <<Elatfornr§erw'ce>> o <<CloudMessage>>
ConfigurationData aymentservice 1 1 | SubmitPurchaseRequest

) yay

1 1 1

<<CloudAction>> <<CloudAction>>
FilloutForm HandlePurchaseTransaction

(

|

l

|

|

| Spreedly <<CloudAction>>
: ConfigurationData SpreedlyHandlePurchaseTransaction
|

|

l

|

l

l

L

<<CloudAction>> <<CloudMessage>>
SpreedlyFilloutForm SpreedlySubmitPurchaseRequest

Fig. 5. Cloud Payment Service Model

As seernin Figure 5, the following blocks are defined:

a. FilloutForm. The FilloutForm receives the request for a new purchase transaction
and respondto the client with the fill out formn order for the latteto enter the
card details. The communicatigrealised using the servlet technology.

b. HandlePurchaseTransaction. The HandlePurchaseTransaction receives the
reguest from the service provider containing the transaction token, ahrequest
is submittedto the provider including the transaction token and the anmtoume
charged.The provider replies with the outconoé the purchase and subsequently
the action responds the client with a success fail message accordingly.

¢. SubmitPurchaseRequest. The SubmitPurchaseRequésta CloudMessage used
internally by the HandlePurchaseTransaction action. Its purpose model the
requestto the service provider, using the exposed web A®Icomplete the

purchase transactioft receives the providé&s respond stating the outcome and
forwardsit to the action.

d. ConfigurationData. The ConfigurationData contains the service settings required
to complete the purchase operation. Particularly, the following pietce
informationis listed: the“redirectUr!’, the username and the password.

e. PaymentSerivceStates. In the PaymentServiceStates file the states and the
corresponding actions involved the transaction are defined. The fgeusedby
the frameworko guide the executioof the actions.

At this point the Platform Service Connector does not contain awder specific

information. Therefore, any payment service provider which adhernde specified

model carbe accommodatetly the abstract model.

5.3 Mapping the Provider Specific Implementation on the Abstract Model

After having defined the generic model for the payment service,ctimerete
implementation and settings for the providers netmisbe infused. Br each
CloudAction and CloudMessage defined the modelin Figure 5, the respective
provider specific blocks should aldm defined, namely the: SpreedlyFilloutForm,
SpreedlyHandlePurchaseTransaction and the SpreedlySubmitPurchaseRbeyuest.
addition, the ConifgurationData file and the API service descriptionsneetie
updated accordinglyo match the specific provider. The final stispto declare the
concrete actionw betriggeredin the Payment Service States file.

Should the providés implementation accurately matches the model, the provider
specific Actions and Messagean reuse the functionalitgpf the generic modeln
case the providés implementation diverts from the generic model the medel
functionalitycanbe overridden.

The process described this Section constitutes a method towards enabling the
platform basic serviceto be modelledin a consistent manner. Subsequently, the
proposed management framework hasdthe interaction between the cloud
application and the specific platform service providers. The frankewsr
continuously enriched with additional service Providers Connedtorsase certain
providers cannobe accommodatedby the existing PSC models, additional custom
CloudActions and CloudMessages dmdefined.

6. Conclusions

This paper proposed a development framework and a meta-rfadekesigning
service-based cloud applications. Platform basic services are becoming inéyeasing
popular and have the potentia act as building blocks for the developmeuatf
applications.As a result, developers shoulk enabledto integrate platform basic
servicedn a consistent way and choose seamlessly the concrete servickefgo
Towards this directio, the meta-model presented Section 4 expedites the
modelling of abstract Platform Service Connectors. The latter constitutes the

intermediate layer between the cloud application and the concrete service Provider
Connectors. The main componenfsthe meta-model are the CloudActions and the
CloudMessage The former facilitates the modellirgf the incoming requests which
needsto be handledby the application, while the latter are used for the requests
initiated by the application targeting the service providers. The cdshe cloud
payment service illustrated how the proposed solution can facilitateatielling of

the platform basic services and accommodate concrete service providers.

In addition, the Platform Service Manager descrilmethis work coordinates the
interaction between the application and the service providers. At the Sme it
paves the way fomn integrated solution which enables the application developers
efficiently managing the platform basic services they consume. Futukeinvolves
refining the componentsf the framework suchsthe API Client Generator and the
PlatformService Registry and applying the proposed soltti@nvarietyof platform
basic services.

Acknowledgment. The research leading these results has received funding from
the European Union Seventh Framework Programme (FP7/20@7-R0dler grant
agreement n°264840, the RELATE project (http://www.relate-itn.eu)

References

1. Mell, P., Grance, T.: The NIST Definitioof Cloud Computing. National Institutef
Standards and Technology, vol. 53, no.6, p.50 (2009)

2. Kourtesis,D., BratanisK., Bibikas, D., Paraskakis, |.: Softwa®-developmenin the Era
of Cloud Application Platforms and Ecosystems: The GH#s€AST. In Collaborative
Networksin the Internebf Servicespp. 196-204. Bournemouth, UK, (2012)

3. Fielding, RT., (2000). The REpresentational Stdteansfer (REST). PhD dissertation,
Irvine: Departmentof Information and Computer Science, University California.
[Online]. Available: http://www.ics.uci.edu/ fielding/pubs/dissertation/top.h

4. Box, D., EhnebuskeD., Kakivaya, G., Layman, A., Mendelsohn,N., Nielsen, H. F.,
Thatte, S, Winer, D., (2000). Simple Object Access Protocol (SOAP) 1[@nline].

Available: http://www.w3.0rg/TR/SOAP/

5. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and DeBigmtice Hall
PTR, Upper Saddle River, NJ, USA (2005)

6. Andrews, T., Curbera, F., Dholakia, H., Klein, J., Leymann, F., LiuRiller, D., Smith,
D., Thatte, S., Trickovic, |., Weerawarana, S.: Business ProcessitBxetanguage for
Web Services Version 1.1. Technical report (2003), xml.coverpages.@&ivikP-
20030505-20030331-Diffs.pdf

7. Web Services Resources Framework (WSRF 1.2). Technical Report, Q2S08),
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf

8. jclouds. (2014). [Online]. Available: http://www.jclouds.frg

9. Apache LibCloud. (2014). [Online]. Available: https://libclouchaepe.org/index.html

10. Petcu, D.: Consuming Resourcasd Services from Multiple Clouds. Journaf Grid
Computing, nr. 10723p 1-25. Jan (2014)

http://www.jclouds.org/

11.Kent, S.: Model Driven Engineering. In: Third International Conferemage Integrated
Formal Methods, pp.286-298. Turku, Finland (2002)

12. Ardagna, D., Di Nitto, E., Casale, G., Petcu, D., Mohagheghi P., MosseMda&thews,P.

, Gericke, A., Ballagny, CD’Andria, F., Nechifor,C. S., Sheridan, C.: MODACIouds: A
model-driven approach for the design and execudicepplicationson multiple Cloudsin
: Workshopon Modelingin Software Engineering, Zurich, Switzerland (2012)

13. Jeffery, K., Horn, G., Schubert, L.: A vision for better clouglaations. In: Proceedings
of the 2013 international worksham Multi-cloud applications and federated clougg, 7-
12.Prague, Czech Republic (2013)

14. Hamdaga,M., Livogiannis, T., Tahvildari, L.: A reference model for developing cloud
applications. In: 1st International ConfererareCloud Computing and Services Science,
pp-98-103, Noordwijkerhout, The Netherlands (2011)

15. Guillen, J., Miranda, J., Murillo.J. M., Cana, C.: Developing migratable multicloud
applications basedn MDE and adaptation techniques. In: 2red Nordic Symposiunon
Cloud Computing & Internet Technologies, 80-37. Oslo, Norway (2013)

16. Ferry, N, Chauvel, F, Rossini, A, Morin, B., Solberg, A: Managing multi-cloud systems
with CloudMF. In: the 2nd Nordic Symposiuran Cloud Computing & Internet
Technologies, pB8-45. Oslo, Norway (2013)

17. Gonidis, F.: Experimentation and Categorisation of Cloud Application Piat8ervices.
SEERC Technical Report. Thessaloniki, Greece: South East European ReSeate
(SEERC) (2013)

18. Heroku. (2014). [Online]. Available: http://heroku.com

19. Google App Engine. (2014). [Online]. Availaljle: https://developergigooom/appengirle

20. AWS Marketplace. (2014). [Online]. Available: https://aws.amazon/camketplace

21.Pautasso, S., Zimmermann O., Leym&nnRestful web services vs. "big" web services:
making the right architectural decision. " International Conferencen World Wide
Web, pp. 805-814. ACM, NewYork (2008)

22. Alur, D., Crupi J., Malks D.: Core J2EE Patterns. Sun Microsystems P2664) (

23.Hunter, J., Crawford, W.: Java Servlet Programming, O'Reilly & Associates, In
SebastopolCA (2001)

24. Amazon Flexible Payments. (2014). [Online]. Available
https://payments.amazon.com/developer

25. AuthorizeNET. (2014). [Online]. Available: http://developer.authorizapdsim/

26. Braintree. (2014). [Online]. Available: http://chargify.com/

27.Chargify. (2014). [Online]. Available: https://www.braintreepayments.com/

28.Google Wallet For Digital Goods. (2014). [Online]. Available:
https://developers.google.com/wallet/digital/

29. Paypal Express Checkout. (2014). [Online]. Available:
https://www.paypal.com/gr/webapps/mpp/express-checkout

30. Spreedly.(2014). [Online]. Available: https://spreedly.com/

31. Stripe. (2014). [Online]. Available: https://stripe.com/

32.Viva Payment Services. (2014Pnline]. Available: https://www.vivapayments.com/en/

https://developers.google.com/appengine

