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ABSTRACT 

Exploratory test results are presented for a series of mixtures of unexcited electro-

rheological (ER) fluids under elastohydrodynamic lubrication (ehl) conditions. These 

were obtained from direct observation of film formation in an optical interferometric 

apparatus. Results are presented as photographs of the fluid film and plots of film 

thickness versus speed for a range of ER fluid solid fractions. Adequate film formation 

is limited by the tendency of the solid particles to evade the contact region. At very 

low contact speeds particles enter the ehl contact and generate a fluid film. At higher 

speeds the particulates do not become entrained in the contact; the film formation is 

then determined by the viscosity of the base fluid. 

1. Introduction 

ER fluids promise their greatest potential in fast, flexibly operated machines where 

inertial loading is high. In such operating regimes the fluid must fulfil a number of 

functions. It must minimise friction at the contact points to reduce heat generation and 

power loss. It must prevent excess wear to achieve an extended machine service life. And 

it should carry away any generated heat from the interface sites. The fluid must therefore 

perform adequately as a lubricant. Depending on the nature of the machinery this 

lubricity may be required over the boundary, hydrodynamic, and elastohydrodynamic 

lubricating regimes. 

In earlier work
1
 a pin-on-disk machine was used to study the lubricating properties of 

unexcited ER fluids in the boundary regime. The chemical reactivity of the base fluid was 

considered to be most important in the reduction of friction and wear. The chemically 

active base fluid (polychlorinated biphenyl) showed lower wear rates than the relatively 

non-polar base fluid (silicone oil). The active components in the former are believed to be 

physically or chemically absorbed onto the component surfaces providing a thin 

‘boundary’ film. The wear behaviour in the presence of a suspended solid phase showed 

anomalous behaviour. The chemically active base with suspended particles showed a 

higher wear rate than the base fluid alone. The non-polar fluid showed similar wear rates 

both with and without particulates (although the particulates were noted to reduce friction 

coefficients). The particles appear therefore to be able to act as either suspended abrasives 

or solid lubricants. In all cases wear rates were found to be significantly higher than those 

for a mineral oil (of comparable viscosity). 



The film formation in the hydrodynamic regime has also been investigated
2
. The test 

procedure involved pressure measurements in a Rayleigh step bearing at constant film 

thickness (higher viscosity fluids generate greater pressures and therefore have the best 

load carrying capacity). The behaviour of an ER fluid, and ER base fluid was compared 

to a mineral oil (the viscosity of which was chosen to be in between that of the base fluid 

and the mixture). The pressures developed were found to be in proportion to their 

viscosities. It was the viscosity of the particle/fluid mixture that was found to be 

significant in determining the pressure generation (and hence lubricity) of an ER fluid. 

These findings were then used in later work
3,4

 to predict film formation in unexcited and 

excited hydrodynamic applications. 

The purpose of the present work programme was to examine the performance of an ER 

fluid in the elastohydrodynamic lubricating regime. The study is limited to an 

investigation of the basic parameters controlling film formation. 

2. Test Method 

2.1 Apparatus 

In order to study the generation of an elastohydrodynamic lubricant film, it is instructive 

to replace one of the contacting elements by glass. The motion of the suspended particles 

and the generation of a separating film can then be directly observed. The apparatus used 

for these tests is shown in figure 1(a). 
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Figure 1. Schematic diagram of (a) the optical interferometric apparatus, (b) interference of an incident and 

reflected light. 

A steel ball is sprung loaded onto the underside of a glass disk. The spring force is 

maintained constant throughout the test. The load is such that a peak contact pressure is 

0.5 GPa and the radius of the contact area is 180 µm. The disk is rotated at constant speed 

driving the ball. White light is shone through a beam splitter onto the contact. Figure 1(b) 

shows the mechanism whereby the light rays reflected back at the disk underside and the 

ball surface interfere to generate a fringe pattern (similar to Newton’s rings). This fringe 

pattern is observed from above through a microscope. The quality of the image is 

improved by the addition of a thin chromium coating as shown in figure 1(b). The colour 

of the fringe may then be related to the thickness of the lubricant film. Figure 2 

diagramatically shows a typical fringe pattern generated by a mineral oil. The central 

region is at a greater separation compared to the surrounding ‘horseshoe’. 



 

Figure 2. Diagrammatic map of a typical elastohydrodynamic fluid film generated by a mineral oil. 

2.2 Test Fluids 

The following fluids were used in the experiments. Table 1 summarises the properties of 

these test fluids relevant to this study. 

(i) Electrorheological fluid consisting of a polydimethyl siloxane base oil (silicone oil) 

with a water free suspension of 6 µm mean sized polyurethane particles. Used in 

solid particle fractions of 30, 50, and 60%. 

(ii) Electrorheological fluid consisting of 5 µm mean sized lithium polymethacrylate 

(lipol) particles in a dielectric base fluid. 

(iii) The silicone and dielectric base fluids alone. 

(iv) A standard mineral oil (Shell Tellus 68), with a similar viscosity to the ER fluid 

mixtures, for comparative purposes. 

Base test fluid Solid particle 

content 

Viscosity, mPas 

at 22.5°C 

Pressure viscosity 

coefficient, GPa-1 

Silicone oil 30% - - 

Silicone oil 50% 54 - 

Silicone oil 60% 188 - 

Silicone oil 0% 5 12 

Dielectric fluid 30% 187 - 

Dielectric fluid 0% 40 58 

Shell Tellus 68 - 160 22 

Table 1. Properties of the test fluids used in experimentation. 

2.3 Test Details 

The test fluid was fed onto the glass disk using a constant flow syringe so as to become 

entrained into the ball on disk contact. The temperature was maintained constant 

throughout the test (at 22.5°C). A video camera, with a shuttering speed of 1/4000th of a 

second, and recording at 25 frames per second, was used to record and freeze the moving 

images. 

The fringe order is converted to an optical path difference and then to a fluid film 

thickness (by dividing by the refractive index). The lowest film thickness measurable by 



this method is 0.13 µm (corresponding to first order yellow fringe). Measurements are 

then limited to thicknesses corresponding to successive fringes (first order red, blue, 

green, then second order yellow and so on). In practice it is convenient to gradually 

increase the speed and record the point at which the central fringe changes colour. In this 

way the variation of fluid film thickness with speed can be investigated. Further details of 

this optical technique for measuring film thickness can be found in the text by Gohar5. 

For the test fluids two sets of tests were performed; 

(i) Film generation with speed of rotation. The film thickness was monitored as rolling 

speeds were increased from zero to 50 mm/s. 

(ii) Film generation with time. It was noted that fluid films were not generated 

immediately on start-up. For each fluid, therefore, film build at low speed up was 

monitored with time. 

All tests were carried out at room temperature. ER fluid film measurements (because of 

the irrepeatability of the particle entry process) were carried out four times. 

3. Results 

3.1 ER Fluid Base Oils and Mineral Oil Film Generation 

The silicone base oil produced no measurable fluid film in the speed range used
†
. The 

more viscous dielectric base oil generated a measurable film at around 150 mm/s. The 

mineral oil produced a measurable film at a speed of 70 mm/s. Both fluid films were 

stable with time, responded immediately to speed alteration and showed a thickness 

increase with speed increase. Figure 3(f) and (h) shows the test measurements. 

Hamrock and Dowson
6
 give a relation for the thickness

‡
 of an elastohydrodynamic 

lubricant film, hc generated by a Newtonian fluid; 
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Where R is the ball radius, W the applied load, U is the mean speed of the surfaces, k is 

the ellipticity parameter (in this case k=1.03), α the pressure viscosity coefficient, η is the 

viscosity of the fluid at the inlet temperature, and E* is the reduced modulus, given by; 
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Where E1 and ν1 are the modulus and Poisson’s ratio of surface 1. Figures 3(i), (g), and (j) 

show the fluid film thickness predictions for the mineral oil and the two base fluids using 

this relation. Agreement between test data and prediction for the mineral and dielectric 

base fluid is good. The prediction for the silicone base fluid shows film thickness below 

the measurable limit. 

                                                
†
 It is possible that at higher speed a film would have been generated. However operating the apparatus at low film 

thickness and high speed tends to result in costly wear damage to the disk. 
‡
  This value corresponds to the film thickness in the central plateau region (see figure 2) and is usually 

taken as being representative of the average thickness of lubricant film. 



3.2 Preliminary Observations on ER Fluid Film Generation 

Fluid films were only produced by the silicone based mixtures at low speeds. Video of 

the contact showed the bulk of the suspended particles being swept around the contact 

sides. A mass of particles appeared trapped in the inlet region from which some passed 

into the contact (the particle entry being dominated by contact speed). These became 

plastically flattened out and produced regions of separating film. The film formation was 

apparently controlled by this particle entry process. Ball motion appeared slightly jerky as 

discrete masses of particles entered the contact. 

The photograph included as figure 4(a) shows the fluid film. The film is typically patchy, 

with thicker regions corresponding to a mass of particles. Frequently a central strip of 

greater separation is observed (corresponding to the region where most entrained particles 

pass). 

Some of the glass disks had some fine surface scratches present after testing with ER 

fluids. It is not clear whether this surface damage was caused by the particles themselves, 

some foreign contaminant, or from direct contact between the ball and disk when no film 

is present. 

3.3 Film Generation with Speed 

As the speed was increased fewer particles become entrained into the contact and the film 

thickness falls. At speeds of around 30 - 50 mm/s particles were unable to enter the 

contact and no measurable film was formed. Figure 3 (a), (b), and (c) show the plot of 

film variation with speed for three particle concentrations. 
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Figure 3. Plot of film thickness against rolling speed. Test data for: three silicone based ER fluid mixtures, 

a dielctric base fluid, and Shell Tellus mineral oil. Hamrock and Dowson theoretical predictions for: 

mineral oil, dielectric base fluid alone, silicone base oil, and a 60% mixture ER fluid. 

Each data point is the average of four measurements, the scatter is demonstrated by the 

error bars. The horizontal line represents the lower limit of the measuring technique (the 



thickness corresponding to the formation of the first light interference fringe). In figure 3 

the theoretical predictions of the Hamrock and Dowson equation are also displayed. The 

mineral oil and dielectric fluid alone shows good agreement with test data. The 

predictions for the silicone based ER fluid, shown as curve (e), are calculated assuming 

the fluid is Newtonian with a viscosity equivalent to that of the fluid mixture. Clearly for 

ER fluids this assumption is not appropriate. Figure 4 shows a sequence of photographs 

of the film formation behaviour at increasing rolling speed. 

 

 (a) (b) (c) 

Figure 4 - Photographs of the fluid film generated by 60% silicone based ER fluid mixture. The sequence 

shows the effect of the increase in speed (a) 1.7 mm/s,  (b) 15 mm/s, and (c) 27 mm/s. 

After testing, the glass disk was careful removed (without disturbing the adhered fluid) 

and examined under an optical microscope. Figure 5 shows the tracks where the ball has 

passed at (a) high and (b) low rolling speed. 

 

 (a) (b) 

Figure 5. Tracks on the disk left by the passage of the ball rolling at; (a) high speed - 50 mm/s; and (b) low 

speed - 3 mm/s. 

At low speed the contact has a concentrating effect. Particles are entrained into the 

contact and assist in the generation of a film. A track of fluid with a higher particle 

concentration than the bulk is left on the surface. At higher speeds these particles are 

swept to the sides of the contact. This leaves a depleted region of fluid on the rolling track 

surface. 

It is likely that at still higher speeds the ER silicone base fluid alone will start to generate 

a measurable film; and the curves 3(a), (b), and (c) will tend to curve 3(j). However, this 



could not be verified since operating the apparatus at high speed with low film thickness 

causes costly surface damage to the coated glass disk. 

3.4 The Effect of Particle Concentration 

Fluids of 30%, 50%, and 60% solid content were tested in the above manner. For these 

fluids, particle concentration seems to have no substantial effect on film formation within 

the scatter in the results (see curves a, b and c on figure 3). These three fluid mixtures are 

of greatly differing viscosity (60% is some three times more viscous than 50%). This has 

little effect on the film thickness; again we see that it is the entry behaviour of the 

particles, and not the mixture viscosity, that dominates film behaviour. 

Video photography shows a build up of particles in the inlet region which then pass into 

the contact. The concentration in this area would therefore be of most relevance to the 

entry process. This ‘inlet region concentration’ may not be particularly dependent on the 

‘bulk particle concentration’. However, it is likely that at lower bulk concentrations, the 

entry of particles (and film formation) will show a greater dependency on concentration. 

3.5 Film Generation with Time 

The mineral oil and dielectric base oil immediately developed a fluid film on start-up 

which subsequently remained stable with time. The silicone base oil negligible film 

condition also did not alter with time. However the silicone based ER fluids did not 

generate fluid film immediately. Figure 6 shows the variation of film thickness with time 

for a 60% mixture ER fluid at a rolling speed of 3 mm/s. 
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Figure 6. Variation of film thickness with time for a silicone base 60% mixture ER fluid at a rolling speed 

of 3 mm/s. 

Some three minutes was required before a film was generated (this corresponds to several 

complete revolutions of the ball). It appeared that during this time solid particles were 

adhering to the ball and disk surface. A few revolutions were required before sufficient 

particles were adhered and/or entrained into the contact. The film formation therefore 

seems also to be partly governed by the ability of the solid particles to adhere to the 



rolling elements. Examination of the rolling tracks did not suggest firmly bonded 

particles; rather particles weakly adhered or electrostatically attracted to the surfaces. 

4. Discussion 

The limit of ER fluid machinery is frequently determined by thermal considerations (heat 

generation and removal) resulting in melt, expansion, or breakdown of continuum. The 

presence of increasingly rapid accelerations and high inertia has resulted in flow mode 

designs requiring high system pressures (fulfilling the need to keep the parasitic mass of 

hydraulic components low). Under these conditions of high temperature, load, and speed, 

the service life of the system is likely to be governed by failure of the lubricated 

conjunctions. 

Fluid film formation is dependent on the entry of solid particles into the loaded 

conjunction. In turn this entry process is dependent on fluid forces acting on particles in 

the contact inlet region. At higher speed these drag forces increase and particles are more 

likely to be swept around the contact sides. Thus slow speed operation allows particle 

entry whilst higher speed reduces it. Complimentary research
7
 into the entry process for 

other particle sizes and materials has also the importance of film thickness and particle 

size. The results presented in this paper represent the case relevant to ER lubricity. 

The continuum assumption, which appears to hold for hydrodynamic lubrication 

processes
2
, is clearly not appropriate in the elastohydrodynamic case. The separation of 

moving components is of the same order as the particle size (in contrast to that in 

hydrodynamic pad or journal bearings). 

These results show the difficulty in achieving adequate lubricating films at realistic 

contact speeds (typically a rolling bearing might operate at speeds of 0-5 m/s). 

Lubricating films should ideally be thicker than the combined surface roughness of the 

contacting elements (typically 0.1 -  1 µm for a ground surface) to minimise surface 

contact and hence friction and wear. Thus to achieve adequate elastohydrodynamic 

lubrication with an ER fluid a viscous base is required. This raises a dilemma. The 

contribution of this base viscosity to the overall ER fluid mixture viscosity would, at high 

speeds, result in excessive heating and power loss by viscous shearing. 

If such a condition cannot be tolerated then components which would usually operate 

under ehl (counterformal contacts such as bearings, gears, or cams) will experience a 

boundary lubrication regime. It is then the ‘surface activity’ of the base oil which will be 

important in the control of friction and wear
1
. 

5. Conclusion 

The generation of elastohydrodynamic films by the ER fluids tested is controlled by the 

viscosity of the base oil and the entry of particulates into the loaded conjunction. At 

realistic operating speeds particle entry is restricted and a viscous base oil is required to 

generate a sufficient separating film. 

With the present generation of fluids the average particle sizes are an order of magnitude 

greater than typical concentrated contact film thickness using good lubricants.  The 

continuum assumption for these ER fluid mixtures is therefore not valid under 

elastohydrodynamic conditions. However, at low speeds some particles do pass through 



the contact and assist in film formation. However, there is also evidence that compaction 

of these particles in the contact zone may cause surface damage.  

Based on the results of this study, the following are broad recommendations for machine 

operation and fluid design to optimise elastohydrodynamic lubricity: 

(i) Base oil viscosity should be maximised, within the constraints of fluid stability and 

viscous heating effects. 

(ii) Low operating speeds and periods of start-up under low load, would be beneficial in 

the formation of ‘particle assisted’ separating films. 

(iii) Where a high viscosity cannot be tolerated a surfactant base should be used to 

maximise boundary lubricating properties. 

(iv) Fluids with much lower particle sizes, may fulfil the continuum assumption, and 

perform improved elastohydrodynamic lubrication. 
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