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Bounded Integral Control of Input-to-State

Practically Stable Non-linear Systems to Guarantee

Closed-loop Stability
G. C. Konstantopoulos, Member, IEEE, Q.-C. Zhong, Senior Member, IEEE, B. Ren, Member, IEEE

and M. Krstic, Fellow, IEEE

Abstract—A fundamental problem in control systems theory is
that stability is not always guaranteed for a closed-loop system
even if the plant is open-loop stable. With the only knowledge
of the input-to-state (practical) stability (ISpS) of the plant, in
this note, a bounded integral controller (BIC) is proposed which
generates a bounded control output independently from the plant
parameters and states and guarantees closed-loop system stability
in the sense of boundedness. When a given bound is required for
the control output, an analytic selection of the BIC parameters
is proposed and its performance is investigated using Lyapunov
methods, extending the result for locally ISpS plant systems.
Additionally, it is shown that the BIC can replace the traditional
integral controller (IC) and guarantee asymptotic stability of
the desired equilibrium point under certain conditions, with a
guaranteed bound for the solution of the closed-loop system.
Simulation results of a dc/dc buck-boost power converter system
are provided to compare the BIC with the IC operation.

Index Terms—Integral control, non-linear systems, input-to-
state stability, bounded input, small-gain theorem.

I. INTRODUCTION

M
OST engineering systems are bounded input-bounded

output stable (BIBO). For this type of systems, an

open-loop controller can easily bring the system in a desirable

and stable operation. However, it is widely known that, when

external disturbances or parameter variations occur, feedback

is essential to achieve a desired performance [1], [2]. By

closing the loop, stability is no longer guaranteed even for

BIBO plants. Many researchers have focused on solving the

stability problem of a closed-loop system, especially for the

most common scenario, i.e. regulation.

During the last 40 years, integral control (IC) has been

extensively used in control systems for achieving asymptotic

regulation and disturbance rejection for systems with inherent

parameter variations. The addition of the integrator dynamics
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results in an augmented system, where traditional state feed-

back techniques can be applied [1], [3], [4]. However, even

for linear systems, closed-loop system stability with an integ-

ral control action is only guaranteed with sufficiently small

integral gain and under necessary and sufficient conditions on

the plant [5], [6]. Particularly, an analytic calculation of the

maximum integral gain for guaranteeing closed-loop system

stability of finite-dimensional linear systems can be found in

[7].

The application of IC was extended to non-linear systems

[1], [8], [9] with local closed-loop stability results. Semi-global

results were provided in [10]–[12] for minimum-phase systems

using output feedback control and high-gain observers. The

idea was to transform the system into the normal form [13]

and apply a saturating controller outside a compact set of

interest. These results were further extended in [14] where

a robust integral controller was designed according to the

relative degree of the non-linear plant. Recently, conditional

integrators were proposed in [15], [16], which provide the

integral action inside a boundary layer and act as a stable

system outside of it. In many of these works, some of the

assumptions mentioned for the plant are directly related to

the input-to-state stability (ISS) property [17], [18], while

in [14], the generalised small-gain theorem was used [19]–

[21], which represents a fundamental tool for robust stability.

A different approach of IC in port-Hamiltonian systems for

disturbance rejection can be also found in recent works [22],

[23], where the port-Hamiltonian form is maintained and

closed-loop system stability can be proven for systems with

relative degree higher than one.

As demonstrated in the previous works [1], [8]–[14], the

IC design for non-linear systems depends on the structure

of the system (relative-degree etc.) and often results in a

very complicated control scheme that requires a saturation

unit to guarantee a bounded area for the controller output.

The saturation unit is often applied to the traditional IC

leading to a simple structure and easy implementation, but

it is difficult to rigorously prove the stability, since it often

leads to integrator windup and undesired oscillations. Anti-

windup techniques can be used to cope with this problem,

but the knowledge of the plant is often required to guarantee

closed-loop system stability [24]–[28]. The proof of stability

becomes even more difficult if the plant is locally ISS with the

plant input considered in general as unconstrained. Therefore,

the existence of a generic controller without saturation units
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that operates similar to the traditional IC independently from

the non-linear plant structure and parameters, and guarantees

closed-loop system stability is of significance.

In this note, a bounded integral controller (BIC) is proposed

to guarantee the non-linear closed-loop stability for globally

or locally input-to-state (practically) stable (ISpS) plant sys-

tems. With the only knowledge of the input-to-state practical

stability (ISpS) property of the plant [17], [18], it is proven

that the proposed BIC guarantees closed-loop system stability

in the sense of boundedness using the generalised small-gain

theorem [19], [20]. It should be noted that the system dynamics

and/or parameters can be completely unknown. Although the

plant input is considered unconstrained, often a given bound

is introduced for stability reasons, such as for locally ISS

systems. Therefore, an analytic selection of the controller

parameters is presented to achieve a bounded controller output

within a given range, thus extending the stability analysis

to locally ISpS plant systems. Additionally, it is proven that

the BIC maintains the performance of the traditional IC near

the equilibrium point under some conditions. Particularly, if

linearisation around an equilibrium point of an ISpS plant

operating with the traditional IC results in asymptotic stability,

then asymptotic stability is still maintained if the IC is

replaced by the BIC. Moreover, the BIC guarantees that the

solution will remain bounded, i.e. instability is avoided, even

if the equilibrium point or the system parameters change. The

boundedness of the solution is guaranteed in some systems

even when the equilibrium point is shifted outside of the

bounded range or the equilibrium point is unstable. This

approach does not obsolete the IC methods proposed in the

literature; in contrary, it can be easily combined with many of

them to simplify the stability analysis and guarantee a given

bound for the control output. Note that the proposed BIC does

not use a saturation unit and as it is proven, it does not suffer

from integrator windup problems. In fact, it is shown that

the integration slows down near the limits without requiring

any switches or knowledge of the plant parameters. Thus,

the proposed BIC is expected to solve many practical and

industrial problems where the traditional IC is used without

any rigorous stability proof. Such an example is a dc/dc buck-

boost converter system, which is simulated to verify the BIC

method compared to the traditionally used IC and provide the

theory that is currently missing.

II. PROBLEM FORMULATION

Many engineering systems are BIBO stable due to their

inherent dissipative structure. In the ideal case, simple open-

loop control strategies that generate a bounded control output

can regulate the system output to its desired value without

affecting the system stability. However, in a real environment,

there are external disturbances and parameter variations that

could considerably degrade the system performance. As a

result, it is essential to close the loop by using feedback

control, as shown in Fig. 1, in order to achieve desired

performance, e.g. zero steady-state error, even when there

are disturbances, parameter variations and uncertainties. The

problem is that a feedback controller no longer guarantees

a bounded control output, which may cause instability. In

other words, the stability of the system is no longer preserved.

Developing feedback control strategies that preserve the BIBO

stability of the system is of significance.

PlantController

Sensor

BIBO
plant 

output

controller 

output
errorreference

+

-

bounded?

Figure 1. Closing the loop

Particularly, when a regulation problem is considered, which

is the most common control objective, an IC is used to achieve

zero steady-state error. Consider a general non-linear system

ẋ = f (x, u) , (1)

where f : D × Du → Rn is locally Lipschitz in x and

u and D, Du are open neighbourhoods of the origin for x

and u, respectively. For simplicity, consider a single-input

system in the form of (1) and assume that the control task

is the regulation of a scalar function g(x) to zero. This

assumption also includes the common regulation scenario of a

state variable xi to a desired level x
ref
i , i.e. g(x) = x

ref
i −xi.

The traditional IC that achieves this task is given as

u(t) =

∫ t

0

kIg (x(τ)) dτ, (2)

where kI > 0 represents the integral gain. Then, the IC

introduces a dynamic controller that can be written as

u = w (3)

ẇ = kIg(x). (4)

However, closed-loop system stability is not always guaranteed

even if the plant (1) is BIBO. Note that for a non-linear

system, the BIBO or input-to-output stability is guaranteed if

the plant is input-to-state stable (ISS) and the output function

is K−bounded [17]. A generic controller that guarantees the

stability of the closed-loop system will be developed in this

paper.

III. MAIN RESULT

In this section, the main task is to design a controller that
operates similarly to the traditional IC (3)-(4) and generates
a bounded output. This controller is called Bounded Integral
Controller (BIC) and introduces a second controller state as
shown below:

u = w (5)

[

ẇ
ẇq

]

=









−k

(

w2

u2
max

+
(wq−b)2

ϵ2
−1

)

kIg(x)c

−

ϵ2

u2
max

kIg(x)c −kq

(

w2

u2
max

+
(wq−b)2

ϵ2
−1

)









[

w
wq

]

(6)
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where w and wq are the controller state variables, b is a non-

negative constant and umax, k, kq , ϵ, c are positive constants.

Consider, now, the plant system dynamics

ẋ = f(x, u, u1) (7)

where u describes the control input and u1 is a vector of

external uncontrolled inputs.

After applying the BIC into the general plant, the closed-

loop system is described in Fig. 2, which is a composite

feedback interconnection form. Here, it is assumed that the

function g(x) is locally Lipschitz, which is true in most

control applications. Additionally, the plant system is assumed

to possess the ISpS (or ISS) property which holds for most

engineering systems. Then, the following theorem guarantees

the ISpS property of the closed-loop system.

x

w

1
u

plant  

kI g(x)BIC

Figure 2. Closed-loop system with BIC

Theorem 1. The feedback interconnection of plant system (7)

with the proposed BIC (5)-(6) is ISpS with respect to input u1,

when the plant system (7) is ISpS with respect to both inputs

u and u1.

Proof: For the controller dynamics (6), consider the

following Lyapunov function candidate

V =
w2

u2
max

+
w2

q

ϵ2
. (8)

Taking the time derivative of V , it yields

V̇ =
2wẇ

u2
max

+
2wqẇq

ϵ2

= −2

(

w2

u2
max

+
(wq − b)

2

ϵ2
− 1

)(

k
w2

u2
max

+ kq
w2

q

ϵ2

)

.

(9)

Its sign is related to an ellipse at the point (0, b) defined by

C =

{

w,wq ∈ R :
w2

u2
max

+
(wq − b)

2

ϵ2
= 1

}

. (10)

The derivative of the Lyapunov function V̇ is negative outside

of the ellipse C and positive inside of the ellipse except

from the origin where it is zero. Note that the Lyapunov

function is defined as an ellipsoid structure around the origin,

while C represents a given ellipse around (0, b). Defining

Bc =
{

w2

u2
max

+
(wq−b)2

ϵ2
≤ (1 + δ)

2
}

, where δ is an arbitrary

positive constant, from (9) it is holds that V̇ < 0 outside and

on the boundary of Bc except from the origin. Consider now a

closed set Ωs = {V (w,wq) ≤ s}. One can find the value of s

such that Bc ⊆ Ωs and the boundaries of Bc and Ωs intersect

at point (0, b+ ϵ(1 + δ)), as shown in Fig. 3, i.e. this point

should satisfy
w2

u2
max

+
w2

q

ϵ2
= s. (11)

Therefore s = (b+ϵ(1+δ))2

ϵ2
and

S=











w,wq∈R :
w2

(

(b+ϵ(1+δ))umax

ϵ

)2 +
w2

q

(b+ ϵ (1 + δ))
2 =1











(12)

describes the boundary of Ωs. Hence, V̇ < 0 outside and on

the boundary of Ωs, which guarantees that the controller states

w and wq introduce an ultimate bound. As a result, it is proven

that for any initial conditions w(0) and wq(0), there exists a

class KL function β and a future time instant T ≥ 0 such that

[1]
∥

∥

∥

∥

w

wq

∥

∥

∥

∥

≤ β

(
∥

∥

∥

∥

w(0)
wq(0)

∥

∥

∥

∥

, t

)

, t ≤ T (13)

and
∥

∥

∥

∥

w

wq

∥

∥

∥

∥

≤ (umax + ϵ) (b+ ϵ (1 + δ))

ϵ
, t ≥ T. (14)

Inequality (14) results from the norm properties
(

∥x∥p ≤ ∥x∥1 , ∀p ≥ 1
)

and taking into account from

(12) that for all t ≥ T , i.e. after the time instant

that w and wq enter ellipse S, it holds true that

|w| ≤ (b+ϵ(1+δ))umax

ϵ
and |wq| ≤ b + ϵ (1 + δ) which

yield that

∥

∥

∥

∥

w

wq

∥

∥

∥

∥

1

≤ (umax+ϵ)(b+ϵ(1+δ))
ϵ

.

Hence, the control states solution can be written in the form:
∥

∥

∥

∥

w

wq

∥

∥

∥

∥

≤ β

(∥

∥

∥

∥

w(0)
wq(0)

∥

∥

∥

∥

, t

)

+ d (15)

where d = (umax+ϵ)(b+ϵ(1+δ))
ϵ

is a positive constant. Since

inequality (15) is satisfied independently from any bounded

input g(x) of the controller, the controller states can be written

in the general ISpS form
∥

∥

∥

∥

w

wq

∥

∥

∥

∥

≤ β (∥x (0)∥ , t)+γcontrol

(

sup
0≤τ≤t

∥kIg (x (τ))∥
)

+d

(16)

with zero gain, i.e. γcontrol = 0, regardless of the selection of

the initial conditions w0, wq0 and the parameters k, kq , umax,

b and ϵ.

Since the closed-loop system, as shown in Fig. 2, is given in

the composite feedback interconnection form, the small-gain

theorem given in [19], [20] can be applied. Particularly, given

that the controller gain is zero, then the small-gain condition is

obviously satisfied. Therefore, the closed-loop system is ISpS

with respect to the external input vector u1.

The special structure of the BIC provides the opportunity

of proving the ISpS property for a wide class of non-linear

systems. It is obvious that if the external input u1 of the

plant is zero, the closed-loop system solution is bounded.

It is also worth noting that Theorem 1 holds independently

from the plant structure, the controller parameters b ≥ 0 and

umax, k, kq, ϵ > 0 or the initial conditions of the BIC states.
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Ο

wq

w

S

umax(1+δ)

(0,b+ε(1+δ))

Bc

Ωs

Figure 3. Boundedness of states w and wq

Hence, BIC provides a generic controller for non-linear ISpS

systems where the plant dynamics and parameters may be

unknown or change during the operation.

IV. BIC WITH A GIVEN OUTPUT BOUND

A. Controller design

Although the BIC output is proven to remain bounded, a

given bound is not guaranteed in general. In order for the con-

trol signal to remain inside a given bound u ∈ [−umax, umax],
where umax denotes the maximum absolute value of the

controller output, the BIC parameters can be selected as

b = 0, ϵ = 1, c =
wqu

2
max

u2
max − u2

c

, k = 0, kq > 0, (17)

where uc ∈ (−umax, umax) is constant. According to this

selection, the BIC dynamics (6) become

[

ẇ

ẇq

]

=





0 kIg(x)
wqu

2

max

u2
max−u2

c

−kIg(x)
wq

u2
max−u2

c
−kq

(

w2

u2
max

+ w2
q − 1

)





[

w

wq

]

(18)

where the initial conditions are chosen w0 = 0 (initial condi-

tion of the IC, usually zero) and wq0 = 1. Now, considering

the Lyapunov function candidate

W =
w2

u2
max

+ wq
2, (19)

its derivative yields

Ẇ = −2

(

w2

u2
max

+ w2
q − 1

)

kqw
2
q (20)

which implies that the BIC states are on the ellipse

W0 =

{

w,wq ∈ R :
w2

u2
max

+ wq
2 = 1

}

(21)

as shown in Fig. 4. This is due to the fact that the initial

conditions are defined on W0, where obviously

Ẇ = 0 ⇒ W (t) = W (0) = 1, ∀t ≥ 0 (22)

proving that the BIC states will start and remain at all times on

the ellipse W0, i.e. the diagonal term −kq

(

w2

u2
max

+ w2
q − 1

)

will be zero. This term is only used to increase the robustness

with respect to external disturbances or calculation errors in

the dynamics of wq during a practical implementation. Note

that the same analysis holds for any initial conditions with

wq0 > 0 and w0 defined on W0.

By considering the following transformation

w = umaxsinθ

wq = cosθ,
(23)

it yields from the BIC dynamics (18) that

θ̇ =
kIg(x)wqumax

u2
max − u2

c

(24)

which proves that w and wq will move on the ellipse W0

with angular velocity θ̇ (Fig. 4). Therefore, it is guaranteed

that u ∈ [−umax, umax] for all t ≥ 0 and as a result it

extends the BIC operation to guarantee stability for locally

ISpS systems. It should be noted that due to the selection of

the initial conditions, the desired operation of the controller

states on the ellipse is guaranteed even if k = 0 and c is

varying such as in the present case. If it is assumed that

there exists a desired equilibrium point x = xe for the plant

with u = ue ∈ (−umax, umax), for which g(xe) = 0, this

implies that w and wq can stop at the desired equilibrium,

corresponding to (ue, wqe) on w − wq plane, at which

θ̇ =
kIg(xe)wqeumax

u2
max − u2

c

= 0.

The conditions under which a possible convergence to the de-

sired equilibrium exists are investigated in the next subsection.

Ο

1

W0

wq

wumaxue

wqe

θɺ

Figure 4. BIC states on w − wq plane

B. Achieving boundedness while preserving the stability of the

system with the traditional IC

Consider the non-linear ISpS system of the form of (1) with

the proposed BIC with the given bound (18). Since no other

external inputs are present, the closed-loop system solution

xBIC(t) will be bounded, where xBIC =
[

xT w wq

]T

is the state vector of the closed-loop system. However, since in

this note the BIC is used to perform similarly to the traditional

IC for achieving a desired regulation scenario, it is important

to prove that the BIC does not change the behaviour of the IC

near the desired equilibrium point.

Consider an ISpS plant controlled by the traditional IC (1),

(3), (4). In this case assume that both f and g are continuously

differentiable functions. The closed-loop system can be written

in the form

ẋIC = fIC(xIC) (25)

where xIC =
[

xT w
]T

is the state vector. Assume that

xICe =
[

xT
e we

]T
is an equilibrium point where g(xe) =
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0. If linearisation around the equilibrium point results in a

Jacobian matrix AIC = ∂fIC(xIC)
∂xIC

∣

∣

∣

xIC=xICe

with Reλi < 0

for all eigenvalues of AIC , then the equilibrium point of (25)

will be asymptotically stable. However, it is not guaranteed

that the solution of the closed-loop system will not escape to

infinity, e.g. if initial conditions are defined away from the

equilibrium point.

As it is shown in the sequel, the BIC maintains the asymp-

totic stability of the equilibrium point and according to the

previous analysis, the proposed control method additionally

guarantees a maximum bound for the closed-loop solution and

a given bound for the controller output, leading to a superior

performance and more rigorous theoretical analysis compared

to the traditional IC.

In this framework, consider the following conditions:

1) xICe =
[

xT
e we

]T
is an equilibrium point of (25)

with we ∈ (−umax, umax).
2) Reλi < 0 for all eigenvalues of AIC and for any 0 <

kI < kImax.

3) The BIC parameter uc satisfies

− umax

√

1− kI

kImax

< uc < umax

√

1− kI

kImax

.

(26)

Then the following proposition can be formulated:

Proposition 2. If Conditions 1)-3) above are satisfied, then

the closed-loop system resulting from the feedback intercon-

nection of the ISpS plant (1) and the BIC (5), (18) has an

asymptotically stable equilibrium point
[

xT
e we wqe

]T

with wqe = ±
√

1− w2
e

u2
max

.

Proof: Based on the analysis of the previous subsection,

the equilibrium point xICe =
[

xT
e we

]T
of (25), where

we ∈ (−umax, umax), will correspond to an equilibrium point

xBICe =
[

xT
e we wqe

]T
of the feedback interconnection

of the ISpS plant (1) and the BIC (5), (18), where wqe =

±
√

1− w2
e

u2
max

for which 0 < w2
qe ≤ 1, since it is defined on

W0 with we ∈ (−umax, umax). According to Condition 2) all

eigenvalues of

AIC =







∂f
∂x

∣

∣

∣

(xe,we)

∂f
∂w

∣

∣

∣

(xe,we)

kI
∂g
∂x

∣

∣

∣

(xe,we)
0







have negative real parts for any 0 < kI < kImax.

In the same framework, linearisation around xBICe =
[

xT
e we wqe

]T
for the closed-loop system with the BIC

results in the Jacobian

ABIC =













∂f
∂x

∣

∣

∣

(xe,we)

∂f
∂w

∣

∣

∣

(xe,we)
0n×1

kI
∂g
∂x

∣

∣

∣

(xe,we)

w2

qeu
2

max

u2
max−u2

c
0 0

−kI
∂g
∂x

∣

∣

∣

(xe,we)

wewqe

u2
max−u2

c
−2

kqwewqe

u2
max

−2kqw
2
qe













,

where wqe ̸= 0 since we ∈ (−umax, umax) and we and wqe

are defined on W0. Since −2kqw
2
qe < 0, then all eigenvalues

of ABIC will have negative real parts if matrix

ABIC1 =







∂f
∂x

∣

∣

∣

(xe,we)

∂f
∂w

∣

∣

∣

(xe,we)

kI
∂g
∂x

∣

∣

∣

(xe,we)

w2

qeu
2

max

u2
max−u2

c
0







is Hurwitz. Since 0 < w2
qe ≤ 1, then

0 < kI
w2

qeu
2
max

u2
max − u2

c

≤ kI
u2
max

u2
max − u2

c

,

⇒ 0 < kI
w2

qeu
2
max

u2
max − u2

c

< kImax

taking into account (26) from Condition 3). Therefore, all

eigenvalues of ABIC1 have negative real parts since the

eigenvalues of AIC are located at the left half plane for any

0 < kI < kImax. As a result, the equilibrium point of the

closed-loop system with the BIC is asymptotically stable. It

should be noted that if Condition 2) is satisfied for any kI > 0,

then the desired equilibrium of the closed-loop system with the

BIC is asymptotically stable for any uc ∈ (−umax, umax).

Furthermore, even if the control output tries to reach the

limits during transients, i.e. u → ±umax, then wq → 0 and the

first equation of (18) results in ẇ → 0 independently from the

function g(x). This means that the integration slows down near

the limits preventing an integration windup problem. Opposed

to the traditional anti-windup structures, the BIC does no stop

the integration but smoothly slows it down near the limits

without additional switches; hence the plant input remains a

continuous-time signal, which proves the closed-loop system

stability. Additionally, w and wq stay exclusively in the first 2

quadrants in Fig. 4 for initial conditions defined on the upper

semi-ellipse of W0, and therefore they cannot move around

W0, which excludes an oscillating behaviour of the controller

state dynamics around the ellipse.

The closed-loop system stability in the sense of bounded-

ness and the given bound for the controller output have been

proven in this note independently from the existence of an

equilibrium point or its stability properties (stable or unstable).

Therefore, if the equilibrium point changes from a stable

to an unstable mode (eg. change of gain kI ) or is shifted

outside the bounded range, closed-loop stability in the sense

of boundedness is still maintained, opposed to the traditional

IC or the IC with a saturation unit.

V. PRACTICAL EXAMPLE

In order to verify the proposed BIC in comparison to the

traditional IC, the dc/dc buck-boost converter, shown in Fig.

5, is simulated. This power converter system is widely used

in power applications (photovoltaic, energy storage systems,

etc.) since it can regulate the dc output voltage to a higher or

lower level than the dc input voltage by suitably controlling

the switching element of the device.

Using average analysis [29], it has been proven that the

continuous-time non-linear dynamics of the converter are
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Figure 5. The dc/dc buck-boost converter

given as

L
di

dt
= − (1− u) v + uE (27)

C
dv

dt
= (1− u)i− v

R
, (28)

where L and C are the converter inductance and capacitance,

respectively, R is the load resistor and E is the dc input

voltage. The system states are the inductor current i and the

capacitor voltage v, while the control input is the duty-ratio

u, which is a continuous-time signal in the range [0, 1] . It

should be noted that the system states are bounded for any

u ∈ [0, 1− γ] , where 0 < γ ≤1, while the upper limit of the

input u = 1 leads the inductor current to instability.

The main task is to regulate the output voltage v to a given

dc reference value vref . Although several control schemes

have been developed in the literature, such as traditional or

cascaded PI controllers [30], passivity-based controllers [29],

etc., in the industry, traditional or cascaded PI controllers are

commonly used due to their simple structure and implementa-

tion. This is also due to the fact that the system dynamics can

change (e.g. if a complicated load is added in the output) and

the system parameters can be unknown or change during the

operation. Even though, in these cases, stability may not be

guaranteed, traditional controllers are still used for simplicity

and are usually tuned in an empirical manner.

In this example, a traditional voltage IC with g(x) =
vref − v is investigated and compared with the BIC with

a given bound. The system parameters are L = 10mH ,

C = 30µF , R = 15Ω and E = 15V . Initially the reference

output voltage is set to vref = 30V . For stability reasons,

in practice, it is often required the duty-ratio u to be limited

below 1, usually 0.8 (i.e., γ = 0.2) to avoid a high inductor

current. Since the BIC maintains the controller output in the

range [−umax, umax], one can set u = w2 and umax =
√
0.8.

In this way the required range [0, 0.8] for the control output can

be achieved with the BIC. If the closed-loop system with the

corresponding IC is linearised around the desired equilibrium

point, it can be obtained (e.g. using root locus) that the

equilibrium is asymptotically stable for all 0 < kI < kImax,

where kImax ≈ 1. Thus, the integral gain can be chosen

kI = 0.2 for both the IC and the BIC, where additionally

two different choices of uc are tested uc =
√
0.65 ≈ 0.8

and uc =
√
0.5 ≈ 0.7 that satisfy (26). Note that if the system

parameters are unknown in practice, kI and kImax are usually

chosen based on experience and observation.

The converter is simulated with the traditional IC and the IC

with a saturation unit in the output at [0, 0.8], and is compared

to the BIC with two different values of uc. Starting with zero

initial conditions for the system states and the control output,

the output voltage reference is set to vref = 30V at t = 0.5s.

At time instant t = 1s, vref suddenly increases to 70V and

drops back to 30V at t = 2s. Finally, at t = 3s, vref is set

to 50V . The time response of the system is shown in Fig.

6. Initially, both the IC with and without the saturation unit

and the BIC regulate the output voltage at the desired level.

However, when vref is set to 70V , the traditional IC leads

the inductor current to instability. The duty-ratio of the IC

with the saturation unit saturates at the upper limit 0.8, while

the BIC with either selection of uc smoothly converges to the

upper limit. In this case, the desired equilibrium is shifted

outside the bounded range and the IC with the saturation

suffers from integrator windup, opposed to the BIC which

automatically slows down the integration. This is observed

when vref changes back to 30V and the IC with saturation

results in a larger transient. Finally, when vref is set to 50V ,

the BIC converges to the desired equilibrium while the IC with

saturation suffers again from integrator windup and results in

an oscillatory response. Note that the different choice of uc

in the BIC design will result into slightly different transient

response, since this parameter affects the angular velocity (24)

of the BIC states on the desired ellipse W0. The operation on

the ellipse is illustrated in Fig. 7, where it is clear that the

controller states remain on the upper semi-ellipse of W0 as

required.

It should be underlined that if the system parameters are

completely unknown or change during the system operation,

neither the IC or the BIC can guarantee asymptotic stability of

the desired equilibrium. However, the BIC can still guarantee

an ultimate bound for the closed-loop system, a given bound

for the control output and the fact that it will not suffer from

integrator windup issues. This is the main result of the current

note which offers a replacement of the traditional IC with the

BIC and can be applied in many engineering systems where

the IC is used without a rigorous proof of stability.

VI. CONCLUSIONS

In this note, a bounded integral control (BIC) was proposed

to guarantee closed-loop stability for a wide class of open-

loop stable non-linear systems. Boundedness of the controller

output signal has been achieved using the generalised small-

gain theorem independently from the plant output and without

external saturation units or switches, thus solving the closed-

loop stability problem of many engineering systems without

requiring knowledge of the plant structure or parameters. By

suitably choosing the BIC parameters, a given bound for the

controller output can be obtained to guarantee stability of

locally ISpS plants. Therefore, for systems operating with the

traditional IC, the same regulation scenario can be achieved

by replacing the IC with the BIC and result in a guaranteed

bounded response. The boundedness of the closed-loop system

solution with the BIC is maintained even when the equilibrium

point changes or becomes unstable. Simulation results of

a dc/dc buck-boost converter system suitably verified the

proposed BIC in comparison to the traditional IC.
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Figure 6. Simulation results of the buck-boost converter with the IC and the
BIC
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