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Abstract

As a summary, this work attempts to explore and uncovered design principles
of certain dynamics of cellular networks by combining evolution in silico with rule-
based modelling approach.

Biological systems exhibit complex dynamics, due to the complex interac-
tions in the intra- and inter- cellular biochemical reaction networks. For instance,
signalling networks are composed of many enzymes and scaffolding proteins which
have combinatorial interactions. These complex systems often generate response
dynamics that are essential for correct decision-makings in cells. Especially, these
complex interactions are results of long term of evolutionary process. With such evo-
lutionary complexity, systems biologists aim to decipher the structure and dynamics
of signalling and regulatory networks underpinning cellular responses; synthetic bi-
ologists can use this insight to alter existing networks or engineer de novo ones. Both
tasks will benefit from an understanding of which structural and dynamic features
of networks can emerge from evolutionary processes, through which intermediary
steps these arise, and whether they embody general design principles. As natural
evolution at the level of network dynamics is difficult to study, in silico evolution of
network models can provide important insights.

However, current tools used for in silico evolution of network dynamics are
limited to ad hoc computer simulations and models. In my PhD study, with collab-
orators I construct the BioJazz, an extendable, user-friendly tool for simulating the
evolution of dynamic biochemical networks. Unlike previous tools for in silico evolu-
tion, BioJazz allows for evolution of cellular networks with theoretically unbounded
complexity by combining rule-based modelling with an encoding of networks that is
akin to a genome. BioJazz can be used to implement biologically realistic selective
pressures, and allows exploration of the space of network architectures and dynamics
that implement prescribed physiological functions. It is provided as an open-source
tool to facilitate its further development and use. I use this tool to explore the
possible biochemical designs for signalling networks displaying ultrasensitive and
adaptive response dynamics. By running evolutionary simulations mimicking dif-
ferent biochemical scenarios, we find that enzyme sequestration emerges as a key
biochemical mechanism for both dynamics. Detailed analysis of these evolved net-
works revealed that enzyme sequestration enables both ultrasensitive and adaptive
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response dynamics. I verified this proposition by designing a generic model of a
signalling cycle, featuring two enzymes and a sequestering (scaffold) protein. This
simple system is capable of displaying both ultrasensitive and adaptive response
dynamics, even more interestingly modulating the system switching between two
response dynamics through perturbing the scaffold protein. These results show that
enzyme sequestration can be exploited by evolution so to generate diverse response
dynamics in signalling networks.

From evolutionary simulations towards ultrasensitivity, bistable dynamics
emerged as an alternative solution. On one hand, inspired by such results I used
the fitness function as an objective function combined with different constraints
to design and optimise bistable signalling networks with completely new structure
and mechanism. Studying designed bistable signalling network explicates how such
bistable network can be experimentally implemented. On the other hand, from
studying the evolved bistable networks allosteric enzymes catalysing futile cycles
appear to be a new mechanism of bistability in signalling networks. Furthermore,
one of the smallest bistable signalling motifs is derived. This motif is composed of
one kinase protein with two distinct conformational states and one substrate sub-
ject to phosphorylation by the kinase and auto-dephosphorylation reactions. The
sufficient and necessary condition on parameters, with which the signalling motif dis-
plays bistable response dynamics, is analytically defined. By expanding the systems
with more kinases, unlimited multistability emerges with potentials of implementing
complex logic gates and cell state transitions. Further exploring the discovered and
natural signalling networks implies shared design patterns. Motivated by search-
ing structural boundaries between monostationary and multistationary networks, I
performed algorithmic searching of multistationary signalling networks intending to
find the sufficient structural conditions for multistationarity in signalling networks.

Key words: design principles, information processing, signalling networks,
ultrasensitivity, adaptation, bistability, synthetic biology, in silico evolution, re-
sponse plasticity.
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Glossary

Bipartite graph a graph whose vertices can be divided into two disjoint sets.

Bistability a dynamical system has two stable equilibrium states.

Cross-talk one or more components from one signalling pathway affects oth-

ers.

CRNT chemical reaction network theory which models and studies the

dynamical behaviour of chemical systems.

DSR graph directed species-reaction graph, a signed, labelled, directed bipar-

tite graph derived from chemical reaction networks.

Futile cycle also known as substrate cycle, where two metabolic pathways run

simultaneously in opposite directions and have no overall effect

other than to dissipate energy in the form of heat.

Multistability a property of having multiple stable equilibrium points in the vec-

tor space spanned by the states in a dynamical system.

Multistationarity the attribute of numerous systems to possess more than one stable

states.

Ultrasensitivity an output response that is more sensitive to stimulus change than

the hyperbolic Michaelis-Menten response.

Retroactivity a phenomenon that the behavior of an upstream component is

affected by the connection to a downstream component.
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Chapter 1

Introduction and background

1.1 Evolutionary Systems and Synthetic Biology

Biological systems are complex. The complexity derives from combinatorial interac-

tions between the components, the building blocks of biological systems, in multiple

scales [1–5]. For instance, complex interactions between amino acids give rise to

complex energy landscapes which result diverse protein functions such as allosteric

regulation and catalytic activities [2, 6–9]; interactions between multi-domain pro-

teins compute signals from fluctuating environments into reliable cellular decisions

[10, 11]; gene regulatory networks of protein-DNA interactions determine the pro-

gression of cell fates [12–14]; and metabolic interactions at inter-cellular scale define

the structure and dynamics of microbial communities [15–17]. All these complex in-

teractions can not be understood without systematically investigating the dynamics

of corresponding systems[11, 17–19].

Systems biology emerged as cutting edge area to deal with not only large

amount of biological data but more importantly the complexity of biological sys-

tems discovered from accumulated data and knowledge [20–22]. At the centre of

it, computational modelling of the biological systems is more than an aid to inter-

pret and integrate biological data, but rather a necessity to discover and formalise

1



the principles governing the complex dynamics of biological systems at different

scales [23–26]. In parallel, following the idea of “What I cannot create, I do not

understand.”, synthetic biologists dedicate to building de novo biological systems

in hope of understanding them [15, 27–29]. In building large scale biosystems, com-

putational predictions or theoretical guidance are tremendously helpful by reducing

the searching space and directing the design [30–32]. Therefore, a computational

approach is indispensable in understanding and mastering the design principles of

biological systems.

Furthermore, the complexity of biological systems results from evolution [33].

The evolutionary innovations are embedded in genotype-phenotype mapping in bio-

logical systems and they emerged by long time of tinkering and optimisation under

fluctuating environments [34–37]. It is reasonable to investigate the design princi-

ples in biological systems from an evolutionary perspective, not only because the

studies makes no sense without evolutionary insights but also because that evolu-

tionary studies enable us discover design principles that have not been found in

natural systems yet. Even from a practical point of view, it is necessary to make

accurate predictions about functional rules of proteins and the effects of modifying

interactions between them so that they can improve control of natural biosystems

and enable rational design of de novo biosystems.

In this study, I combine computational modelling and an evolutionary ap-

proach to explore design principles in one of the most important yet complicated

phenomenon — the information processing in cells.

1.2 Information processing in cells

Biological cells employ complex regulatory systems to detect the states of envi-

ronments they sit in, process such information into cellular decision and response

accordingly in order to survive. In this regulatory systems, the signalling network is

2



specific for information processing so that cells utilise it to transform extracellular

signals into cellular output. Many interesting and essential physiological behaviours

and responses are determined by the proper functioning of signalling system in cells

[38].

An astonishing fact is that the signal transduction system does not simply

transmit signals rather it integrates, process and encode different external signals

so that it give rise to appropriate cellular responses that guarantee the cell adapt

to fluctuating environments. These cellular responses are pivotal cellular decisions

determined by the temporal and spatial dynamics of signal transduction system

[11]. Therefore, in order to understand the complex regulations, understanding the

underlying principles and biochemical mechanisms is a necessity.

1.2.1 The structure: interconnected networks

As naturally designed, signalling networks are composed of signalling proteins such

as receptors, adaptor proteins, kinases, transcription factors and second messen-

ger like calcium and nitric oxide. Signalling proteins usually adopt conformational

changes to carry out binding interactions or enzymatic reactions and consequently

affect the conformation and dynamics of proteins. These signals are detected, en-

coded, integrated and transformed as perturbation at activity of transcription fac-

tors, through which cell responses in form of altering gene expression or as modi-

fication of molecular machines so that cell responses as, for instance, movements,

neural action potential [10, 11, 38].

The conventional concept of linear signalling pathways has been replaced by

the emerging viewpoint of combinatorial networks formed with interconnecting pro-

teins with multi-domain and multi-site structure. Many signalling molecules share

similar downstream or upstream signalling pathways, which brings the cross-talks

between different signalling “pathways” [39]. As a result, the signal transduction

systems appear as complex interacting networks between many signalling proteins
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with various structures and domains.

1.2.2 The dynamics: diverse information processing functions

Different structures of biochemical reaction networks give rise to diverse functions

that compute the input signals into different response dynamics [11]. There are

many signalling dynamics discovered to be important and ubiquitous in biological

systems, such as ultrasensitivity [40–45], adaptation [46–49], multistability [50–54],

oscillation [55–58], pulsatile [59–61]. Among these signalling dynamics, ultrasensi-

tivity, bistability and adaptation are the most fundamental dynamics in building

more complex dynamical behaviour in cells [40, 62, 63].

Ultrasensitivity

The ultrasensitive or switch-like dynamics in biological systems was firstly charac-

terised in the hemoglobin oxygen binding. The curve of oxygen-bound hemoglobin

(response) to the oxygen concentration level at steady states is sigmoidal rather

than proportional. Specifically, ultrasensitivity is a nonlinear information process-

ing function where a small fraction change in the input is amplified into a large

fraction of output response and form a distinct threshold. When the signal changes

is at region much lower or higher than the threshold, the response has little change,

while the signal changes is near threshold, the output response changes dramatically

(Figure 1.1A). The ultrasensitive response curves were later found in various biolog-

ical processes and playing significant roles. For instance, hemoglobin can transport

more proportion of oxygen with sigmoidal binding curve than with hyperbolic ones;

mating decision in yeast allows cells to filter signals to avoid inappropriate commit-

ments with switch-like response to critical signal threshold, it makes the signalling

systems robust to variations in concentrations of pheromone [43]; the switch-like

dynamics in phosphorylation of isocitrate dehydrogenase can amplify the signals in

metabolic regulation [64]. Such amplification of signals can be quantified by the
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response coefficient (R) calculated with the input level (I) and output level (O) as

well as their changes respectively (∆I and ∆O):

R = lim
∆I→0

∆O/O

∆I/I
=

dO/O

dI/I
=

d lnO

d ln I
(1.1)

The higher the value of R, the higher the sensitivity.

Adaptation

Biological systems respond to input signals and regulate cellular states not just by

amplifying signals but also by adapting to them [47]. Biochemical adaptation refers

to the function that many signalling systems return to their pre-stimulated state

after responding to a sustained stimulus (Figure 1.1B). A mathematical description

for adaptation can be quantified with two characteristic terms: adaptive sensitivity

(Asens) to the input perturbation and adaptive precision (Aprec) [65, 66], where the

sensitivity is defined as the maximum of response to the sustained input stimulus

and can be calculated by (Figure 1.1B):

Asens =

∣∣∣∣
(O∗ −O0)/O0

(I1 − I0)/I0

∣∣∣∣ , (1.2)

and the precision can be calculated by:

Aprec =

∣∣∣∣
(O1 −O0)/O0

(I1 − I0)/I0

∣∣∣∣
−1

. (1.3)

A so called “perfect adaptation” emerges if the output response returns exactly

to the pre-stimulated state (O1 = O0). Adaptation is commonly found in sensory

systems and other signalling systems to either accurately detect changes in input

[46, 67, 68] or maintain homeostatic condition when presented with perturbations

[69, 70].
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(B) Adaptation
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(C) Bistability

Figure 1.1: Three example response dynamics in signalling systems. Axes labelled
with I represent level of input signal, the ones with O represent level of output
response. (a) and (c) are showing the steady state plot of input signal and output
response at steady states. (b) is showing the temporal dynamics with x-axis labelled
with t representing time, I0 and O0 represent pre-stimulus level of input signal and
output response, I1 and O1 represent respective levels after stimulus, O∗ represents
the level of output response with largest deviation from its pre-stimulus level.

Bistability

Some biological systems exhibit “all-or-none” dynamics [42, 71] and on top of it

some systems also display irreversible fate induction process [72]. This particular

response dynamics is due to bistability, which is very much similar to ultrasensi-

tivity that the fast switching from one state, for example low level of response, to

another state (high level of response) creates threshold at certain input signal levels.

However, there are some distinctive features in bistable dynamics. The threshold is

not continuous rather discrete and the switching between different levels of response

is hysteretic (Figure 1.1C). This discrete threshold enable biological systems imple-

ment boolean logic [50] while the hysteresis implements biochemical memory [73,

74]. The hysteresis in bistable systems can potentially facilitates irreversible com-

mitments in cell fate determination [75]. Also, it is implied that the bistability is

the key mechanism to enable heterogeneity and bet-hedging strategy in population

of cells [76–78].

6



Other response dynamics

Beside the response dynamics discussed above, many other response dynamics are

crucial for biological systems to make appropriate decisions under certain environ-

ments. For instance, cells change their states according to the genetic program

and environment in development, which requires complex transitions among many

different states. Multistability, the ability of having multiple stable steady states

in system dynamics, is the key player in such fate determinations. In addition,

Biochemical oscillation is one the most important functions in many contexts like

metabolism, signalling and development. Oscillations allow cells behaving periodi-

cally, especially when exposed periodic signals, cells use oscillators to regulate their

behaviours and better adapt the environments [79–82]. Besides circadian clocks,

oscillation in signalling networks can also facilitate digital activation and dynam-

ical control of cellular behaviour [83, 84]. With more interactions involved in the

network, the system can potentially generate chaotic behaviour. Such chaotic be-

haviours has been observed in many different cellular systems [11, 24, 85, 86].

1.2.3 Design principles: the biochemical mechanisms

By quantitative study on biological systems, some biochemical mechanisms were

proposed to explain the interesting response dynamics in these systems. Such bio-

chemical mechanisms were further formalised into design principles of corresponding

response dynamics.

By studying the hemoglobin oxygen binding system, cooperative binding was

uncovered as molecular mechanism for sigmoidal response curve. Several theoretical

models were proposed to understand ultrasensitivity in allosteric regulated systems

[87–90]. One of the most well-known is Monod-Wyman-Changeux model (MWC

model, also known as the concerted model or symmetry model). The main idea

of MWC model is that proteins exhibit different interconvertable states which can

be regulated via interaction of protein’s subunits (or domains) with other molecules
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[87, 88, 91]. The ratio of different conformational states is determined by thermody-

namic equilibrium. This model is a formalisation of allosteric regulation which was

later found widely existing in biochemical systems and provide complex interactions

between macro-molecules [88]. Comparably, another model was proposed to explain

the allosteric regulation when subunits in the protein are not connected in such a

way that conformational change of one induces similar change in the others [90]. In

this model, all subunits are not necessarily displaying the same conformational state

where substrate-binding at one subunit only slightly changes conformation of other

subunits rather than propagates the conformational change to adjacent subunits.

This model is called sequential model. Most allosteric effects can be explained by

these two models. Both models postulate that allosteric protein exhibits in one

of two distinct conformational states, tensed (T) or relaxed (R), and that these

two states has different affinities and activities towards their substrates. However,

the MWC model is more appropriate to explain the allosteric regulations in multi-

domain proteins, since as a tightly connected entity, conformational propagation

is inevitable in a folded protein. Meanwhile, treatment on the sequential model

in large scale signalling networks is more complex by potentially introducing more

parameters comparing to MWC model. Therefore, in this study I primarily use the

MWC model to describe the allosteric regulation in signalling networks.

Besides allosteric regulation, Goldbeter and Koshland found that within an

enzymatic reaction cycle, for example a phosphorylation-dephosphorylation cycle,

when enzymes are saturated by the substrate, the system displays ultrasensitivity

[92]. This particular mechanism is termed as zero-order sensitivity (or Goldbeter-

Koshland kinetics). This mechanism is limited in the condition that enzymes has

much lower concentration than the substrate so that the enzymes is near saturated.
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In the following reactions:

S + K
k1−⇀↽−
k2

KS
k3−→ Sp +K

Sp + P
k4−⇀↽−
k5

PSp
k6−→ S + P

(1.4)

there are two parameters determining the saturation level of enzymes: K1 =
k2+k3
k1[Stot]

and K2 = k5+k6
k4[Stot]

, where Stot is the total concentration of substrate. When K1 and

K2 become smaller, the enzymes (K and P) becomes more saturated by substrate

(S) and the system is consequently more ultrasensitive.

Build on the work of MWC model and zero-order sensitivity, more biochem-

ical mechanisms for ultrasensitivity were discovered and studied, like signalling cas-

cade (i.e. multiple steps of signalling cycles) [62], substrate competition[93, 94],

sequestration[95–97], positive feedback[98–101]. In particular, studies showed that

positive feedback either in signalling cycles or combined with signalling cascades

can induce bistable response dynamics [62, 71, 72, 102, 103]. Also, mathematical

proofs identified that positive feedback loops is necessary condition for generating

bistability in chemical reaction networks [104, 105]. However, the positive feedback

is not always manifest from the reactions displayed. As an example, double phos-

phorylation in mitogen-activated protein kinase (MAPK) cascade endow the system

capacity to generate bistability [53, 106]. Further studies on multisite phosphoryla-

tion systems showed the complex structural conditions for multistationarity.

Adaptive response dynamics widely exists in biological systems functioning

as gradient detection and homeostasis controller. The most prominent mechanism

for adpative dynamics is negative feedback. Negative feedback has been well char-

acterised and widely applied to control engineering as one of the most important

engineering principles. One of the most commonly studied signalling system with

adaptive response dynamics is chemotaxis in bacteria. In chemotaxis, the systems

utilise negative feedback loop to achieve adaptive response. Furthermore, elabo-
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rative searching all possible networks at small scale uncovered only two solutions:

negative feedback loop with a buffering node and incoherent feedforward loop with

a proportioner node [66].

Design principles for other more complex dynamics are also derived by study-

ing interlinked positive and negative feedback loops as well as other complex interac-

tions. The oscillatory response dynamics can be designed by implementing feedback

loops with time delay [86]; multistability exists in the interlinked positive feedback

loops and multi-domain histidine kinase systems [40, 50, 107, 108].

These mechanisms and principles are discovered by investigating recurring

reaction patterns in cellular networks. The design principles requiring positive and

negative feedback loops receive much appreciation with aid from computational and

mathematical analysis. Especially, mathematical modelling played crucial roles in

quantifying, deducing and formalising those mechanisms with verbally elaborating

biochemical details. Therefore, I also take advantage of mathematical and compu-

tational modelling as the tool to study the information processing in cells.

1.3 Solutions in evolutionary landscapes

To capture the complex dynamics and uncover corresponding design principles, it

is necessary to develop powerful tools such as realistic yet still executable mod-

els of large scale biological systems, and learn the lessons not only from engineered

biological systems but also from those designed by evolution. Previously, various ap-

proaches, such as experimental characterisation, bioinformatic analysis, and mathe-

matical modelling of recurring motifs in natural systems, provided many insights on

the design principles [80, 86, 109–115], however the complexity of signalling systems

is derived from evolutionary processes, understanding how such complex dynam-

ics emerge from different structures and exploring potentially undiscovered design

principles are not trivial [24, 116]. It is a notoriously difficult inverse problem to
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characterise what design principles determine emergence of complex dynamics from

evolution of signalling systems [117].

One approach would be systematic characterisation and comparison of com-

ponents and their interactions in different species. This approach provides sub-

stantial information of various large scale signalling networks, it provides important

clues of differences in topology and dynamics as well. For instance, comparative

analysis of different prokaryotic genomics showed that network structures and re-

sponse dynamics are diversified in chemotactic systems of various species [118]. The

conservation and variations discovered shed light on the origin and evolution of

chemotactic system. It suggests that evolutionary study of networks with defined

response dynamics could be substantially helpful. The conserved features in evolved

networks are much prone to be design principles for the selected response dynamics.

With such knowledge and information, an alternative approach could be apply-

ing computational modelling and in silico evolution to forwardly understand the

emergence properties of signalling networks and, more importantly, explore various

design principles emerged from evolutionary processes. Previously, evolutionary in

silico approaches has been applied to metabolic networks, gene regulatory networks

and signalling networks [36, 119–121][122]. These studies provide many insights

about network evolution, like robustness, evolvability, complexity and modularity,

however how those specific systems dynamics emerge from evolutionary processes is

much unknown. Some attempts are made by evolutionary design of gene regulatory

networks with oscillatory and bistable dynamics, both known and novel design pat-

terns for bistable gene networks emerged [123], in which the novel design was later

implemented experimentally [95].

Following this line, evolution in silico is not limited to studying the evolution

of signalling networks but also can be used to design and optimise cellular networks

to achieve specific dynamics [123, 124]. Such promising applications in computer-

aided design of biological systems is also one of the main objectives in synthetic
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biology [32, 125, 126]. Previous studies on complex response dynamics show that

some of those information processing functions such as ultrasensitivity, adaptive

response and bistability are important in achieving complex functions like oscillation,

homeostasis, multistability [40, 62, 127–132]. In this thesis, I primarily focus on

exploring design principles of those simple response dynamics in signalling networks,

namely ultrasensitivity, adaptation, bistability.

1.4 The challenges

The information processing in cells integrates multiple inputs and produce multiple

outputs. In between is the networks of interacting molecules, most of the molecules

are proteins which consist of multiple domains and exhibit different conformational

states. The complexity of information processing emerged from such combinatorial

interactions in the networks.

One of the main obstacles is combinatorial complexity due to the exceedingly

high number of micro-states that grows exponentially when increasing the number

of molecules and interactions in the network [116]. Such combinatorial variety was

normally ignored in previous evolution in silico studies. Another challenge is how

to encode signalling network such that in silico evolution of the network is close

to open-ended fashion, which means expansion of signalling networks in the evo-

lutionary processes is, at least in theory, unbounded. In order to overcome both

challenges, new approaches and methods need to be adopted and/or invented.

1.5 Summary of contributions

In my PhD study, I combined the evolutionary in silico with rule-based modelling of

cellular networks and applied this computational platform to explore evolutionary

design principles of signalling networks.

• I developed a computational platform to evolve rule-based models of cellu-
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lar networks. The computational platform is the first computational program

that addresses both the multiple domain structure of proteins and theoreti-

cally unbounded complexity of cellular networks in evolutionary process. The

encoding of rule-based models into binary string is analogous to genome se-

quences so that mutations are less ad hoc. I also implemented different fitness

functions to evolve signalling networks toward desired response dynamics. Al-

though the platform is still limited by the computational power when the

networks become arbitrarily large and not completely abstraction of realistic

biomolecular interactions such as spatial and geometric constraints, this is a

step in the right direction towards the goal.

• By evolving signalling networks under selection pressures of ultrasensitive re-

sponse and adaptive response, I discovered the protein sequestration is evo-

lutionarily conserved in both evolved ultrasensitive and adaptive networks.

Based on the discovered mechanisms, I successfully designed a single signalling

cycle with sequestrating proteins that could modulate the system dynamics

between ultrasensitive response and adaptive response.

• From evolved ultrasensitive networks, bistability emerged as alternative so-

lution for thresholds that are selected for. By analysing evolved bistable

networks, I discovered a genre of novel biochemical networks that displaying

bistability. Following the discovery, I devised algorithmic searching proce-

dures to search the boundary between monostationarity and multistationarity

in signalling networks.

• I further studied one of the discovered bistable motif with a single allosteric

regulated kinase catalysing a substrate with ability of auto-dephosphorylation.

Collaborating with E. Feliu, I secured the necessary and sufficient condition on

kinetic parameters that the motif display bistability. We further proved that

with multiple allosteric enzymes, the system can achieve unlimited multistabil-
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ity. This work expanded our current knowledge on multistability in signalling

networks. Based on the necessary and sufficient condition, I did numerical

study on the motif under thermodynamic constraint (i.e. detailed balancing).

This work also provide insights on the constraints of detailed balancing on

biochemical reaction networks.
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Chapter 2

In silico evolution with

unbounded complexity

2.1 Introduction

Cellular networks allow organisms to sense and process environmental information

and thereby implement phenotypic behaviours that enable survival. Hence, it is of

fundamental interest to understand their structure and dynamics either by experi-

mental and modelling studies on specific examples [27, 133, 134] or by searching for

recurring structural motifs in large classes of systems [66, 135–137]. Collectively,

these approaches have identified key dynamical features, such as ultrasensitivity

and bistability [40], and elucidated biochemical elements used for their implemen-

tation, such as feedback loops, scaffold proteins and phosphorylation cycles [43, 97,

138–141]. Despite these insights, however, we still lack an understanding of the

evolutionary origins of the features of dynamical and structural networks, limiting

our ability to make functional predictions based solely on the presence or absence

of these features [33]. Furthermore, network elements identified from current day

organisms might not constitute the only feasible solutions for achieving a specific

physiological task or implementation of a specific dynamical feature. The under-
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standing of the possible solution space is thus mostly lacking, but could be essential

from the perspective of engineering biological systems through synthetic biology

[123]. One approach for understanding the evolutionary processes leading to cur-

rent day network elements and for exploring the space of possible solutions is to

re-create the evolutionary dynamics of cellular networks in silico. This task requires

computational tools that are intuitive to use, yet are sufficiently complex to capture

the system dynamics of known cellular networks. Modelling of the evolution of cellu-

lar networks has so far been attempted for exploiting evolution as a design tool (e.g.

[65, 123]) or for interrogating evolutionary pressures leading to particular network

properties (e.g. [142–144]). It is desirable to develop further general computational

tools that can achieve both aims, and that can allow unconstrained modelling of

evolution, while maintaining a realistic representation of biochemistry and system

dynamics. Most previous studies either focused on modelling of evolution of large

networks without incorporating dynamics [36, 122, 145–147], or explicitly consid-

ered temporal dynamics of the systems that are being evolved (using for example

ordinary differential equations) (e.g. [148–152]) while enforcing bounds in the size

and complexity of reaction networks that they can evolve. When the modelling of

dynamics is combined with unbounded system size as done in the study of evolution

of gene networks through duplication [153], it was possible to better understand

the evolutionary solution space for networks implementing certain dynamics. In

addition, each of the different models of cellular network evolution considers spe-

cific aspects of biology that they are aimed at addressing (e.g. role of duplication

in evolution of robustness), but there are still some biomolecular aspects that are

yet to be incorporated in evolutionary models of cellular networks. A particular

example is the allosteric and domain-based nature of proteins, which are shown to

be relevant for the system dynamics in the context of signalling networks [154, 155].

In this chapter, I introduce an extendable, general tool that provides biolog-

ically realistic simulation of the evolution of dynamic biochemical networks. The
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tool, called BioJazz, combines a rule-based modelling approach [156–158] with evo-

lutionary simulation, allowing for evolution of cellular systems without any need for

a priori limitations on the systems that can evolve. Thus, what is meant here by

without limitations is that the structure, size and complexity of the system that

is taken as an evolving entity (i.e. the modeled cellular system) is not bounded

in any way (other than computational limitations). Rule-based modelling is per-

fectly suited for this evolutionary approach, as it is developed in the first place to

overcome the combinatorial complexity arising from accounting for all possible inter-

actions in a given biological system [158, 159]. The rule-based modelling approach

and the genome-like encoding of the network also allow biologically realistic muta-

tional events to be modeled naturally. BioJazz has the ability to change and evolve

networks with respect to both topology and biochemical parameters, by starting

either from a designed network de novo or from a partially or completely functional

seed network.

I demonstrate the use of Biojazz by examining the evolution of network dy-

namics for two sample cases, demonstrating evolution of network architectures for

ultrasensitive and adaptive response dynamics. I also use these examples to demon-

strate the effects of the parameters of the simulation algorithm on the performance

and evolutionary space of such signalling networks.

2.2 Materials and methods

2.2.1 Representing network interactions: rule-based model

Previous attempts to model the evolution of cellular networks relied on ad hoc ap-

proaches to encode network architecture and dynamics (e.g. see [65, 123, 142, 143,

160]). In this project, I make use of recently developed rule-based approaches to

enable a flexible encoding of cellular networks, allowing for both realistic represen-

tation of their biochemistry and for in silico evolution with unbounded complexity.
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Rule-based approaches are developed for addressing the combinatorial complexity

arising in modelling even the biological simplest reaction systems [158, 159] and,

hence, are well suited to be combined with an evolutionary approach. Although

several rule-based models are now available [156, 157, 161, 162], I choose to use the

Allosteric Network Compiler (ANC) [156], because it systematically incorporates the

allosteric and modular nature of proteins (note that the software structure of Bio-

Jazz allows other rule-based models to be incorporated in subsequent developments).

ANC is a stand-alone, rule-based compiler, which turns a high-level description of

allosteric proteins into the corresponding set of biochemical equations by following

mass-action kinetics.

ANC has been described previously [156]. In brief, it models proteins as

multi-domain entities, where each domain is an allosteric unit that can adopt two

general conformational states following the Monod-Wyman-Changeux (MWC) al-

losteric model [87]. The two conformational states of each domain can be described

as relaxed, “R”, and tense, “T”, and are assumed to have distinct free energies

of folding as well as different binding and enzymatic characteristics. Indeed, the

binding and catalytic activity of reactive sites within a domain are dependent on,

and only on, the conformational state of that domain. Biochemically, domains are

independent sub-units of a protein, comprising reactive sites such as catalytic or

post-translational modification sites (as explained below). This choice is inspired

by the structure and function of multi-domain proteins in nature. In most cases,

signalling proteins are functionally modular and make use of distributed surface

docking sites for recognition [163], which has been demonstrated for both natural

[164, 165] and synthetic protein circuits [155, 166–169].

ANC implements allosteric regulation by modelling the effect of any binding

event or post-translational modification on a given domain through modifying the

R-T transition dynamics of that domain. Thus, other molecules binding to a given

protein can be seen as “modifiers”, which alter the distribution of the R and T
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states of the domain that they bind. The transition between the R and T states

is governed by the free energies of these states as well as any intermediate state

between them (see Appendix B). ANC can thereby model a cellular network as a

given set of proteins that comprise domains and that interact through binding and

covalent modifications of reactive sites on those domains. Any of the domains can

be allosteric, in which case, it would have distinct R and T states with associated

allosteric rate constants, and modifications would result in altering the dynamics of

the R-T transitions in the following manner:

k′RT = kRT

N∏

i=1

(Γi)
Φi (2.1)

k′TR = kTR

N∏

i=1

(Γi)
Φi (2.2)

where kRT and kTR are the rate constant of switching between R state and T state

without any allosteric modifier, k′RT and k′TR are switching rate constants with

modifiers accordingly, Γi denotes the effect of the ith modifier on the equilibrium

distribution between the R and T states, and the parameter Φi describing the pro-

portional effects of the ith modifier on the R-T transitions. Detailed mathematical

derivation can be found in Appendix B. As explained further below, in the Bio-

Jazz implementation of ANC, the kRT , kTR, and Φ values for each domain and the

Γi values for different reactive sites on a given domain are free to evolve. Note

that this freedom allows us to implement easily and naturally the evolution of both

individual proteins with domains that have specific internal dynamics and protein

interaction networks, via the definition of binding specificities among reactive sites

and Γ parameters.
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Figure 2.1: The “Genome” structure and scaling method used to encode cellular net-
works. (A) A cartoon representation of the binary string encoding the information
needed to build an ANC model. The string has a hierarchical structure explained in
the main text. (B) A cartoon representation and the resulting biochemical reactions
of a sample reaction network that can be derived from a binary string (as shown in
panel A). (Caption next page...)
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Figure 2.1: (Previous page continue) (C) Determination of binding between two
reactive sites from a binary string segment (Methods). The y-axis shows the binding
effect; the x-axis shows complementary matches between two binding profiles. The
threshold for binding, determining protein promiscuity, is user-defined. (D, E)
Scaling of the binary string encoding of parameters into real values. The y-axis
corresponds to parameter values; the x-axis shows decimal values of the binary
string. For different parameters (i.e. Φ, protein concentrations, and rate constants
of the conformational transition), a linear (D) or logarithmic (E) scaling is used
(Methods). (F) The scaling of the binary string encoding of parameters relating
to binding-mediated reactions. The y-axis corresponds to a kinetic rate value; the,
x-axis shows a comparison between strings encoding for binding parameters of two
reactive sites as explained in Methods.

2.2.2 Encoding network information: a binary string as a synthetic

genome

By describing the interaction rules as well as their allosteric effects, ANC allows

modelling of a reaction network of arbitrary size and complexity. To evolve cellular

networks in silico, one needs a method to store and mutate the corresponding protein

interaction rules and parameters. In BioJazz, I encode the information in an ANC

model as a binary string (Figure 2.1A). Using a set of translation rules, all the

information required to build an ANC model can then be extracted from a given

string (Figure 2.1C-F).

The structure of the binary string is similar to a natural genome, where

“non-coding” sections separate sections encoding information. This division is im-

plemented by using “start” and “stop” strings, and allows an increase in evolutionary

innovations through mutations (see below). It is also possible to start evolutionary

simulations from entirely random initial points (i.e. a randomly generated binary

string). The coding sections of the binary string encode the structure, dynamics

and interactions of proteins as explained in detail below and in Table 1. Thus, I can

parse a given binary string and translate into an ANC model (Figure 2.1B).

Protein domain structure and allosteric flag: The coding sections of

the binary string contain information about the domain structure of proteins (Figure

21



2.1A). Each protein must contain at least one domain that contains at least one re-

active site. There is no maximum limit to the number of domains and reactive sites

a protein can have. As explained above, domains may be allosteric units, and hence,

each domain is preceded with an allosteric flag sequence. When the allostery flag

is set, the domain will undergo conformational changes and these dynamics may be

affected by biochemical reactions happening at its reactive sites (note that reactions

happening on other domains would not have an allosteric effect on this domain, i.e.

domains are distinct and independent entities). To distinguish between domains

and reactive sites on the binary string, I use soft and hard linker sequences that are

inserted between domains and reactive sites respectively (Figure 2.1A). Thus, the

soft linker sequences indicate start of a new domain within a protein; hard linkers

indicate the different reactive sites on a given domain whose conformational dynam-

ics is potentially modulated (provided the domain is allosteric). This structure has

the additional benefit that mutations that result in joining or separating of domains

can be naturally implemented (see Mutations section below). Reactive sites within

a domain can be either a binding or catalytic site, and their nature is encoded on

the binary string as shown in Table 2.1.

Table 2.1: Details of structural and encodings implemented in the binary string

Field Name Length

(L)

RegExp Description

Binary String

PRE JUNK Any [01]∗ Zero or more bits representing untranslated sequence pre-

ceding first protein

genes L{proteins} [protein]+ One or more genes separated by untranslated sub-sequences

POST JUNK Any [01]∗ Zero or more bits representing untranslated sequence fol-

lowing last protein

Protein

START CODE 8 01111110 Fixed pattern before the string of protein indicating the

starting point of a protein

Concentration 10 [01]L Loglinear scaled, encodes inital concentration of protein

UNUSED 4 [01]L Reserved field

Continued on next page
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Table 2.1 – continued from previous page

Field Name Length RegExp Description

Domains L{domains} [domain]+ One or more domains separated by a soft linker pattern

’001’

STOP CODE 3 111 Terminates the protein

Domain

Allosteric flag 1 [01]L Determines the domain is allosteric regulated or not

R ↔ T transition rate 10 [01]L Loglinear scaled, kinetic parameter of conformation transi-

tions in basal level

Φ 10 [01]L Linear scaled into [0, 1], determines changes in allosteric

equilibrium under interactions

UNUSED 4 [01]L Reserved field

Reactive sites L{sites} [site]+ One or more protodomains separated by a hard linker pat-

tern ’000’

Reactive site

Type 2 [01]L Reactive site type, 00 ≡ bsite, 01 ≡ msite, 10 ≡ csite,

11 ≡ csite

Substrate polarity 1 [01] A csite to modifies (0) or unmodifies (1) the substrate

Binding profile 10 [01]L Determines ligands pairs with sufficiently complementary

string

kf profile 20 [01]L Loglinear scaled, determines association kinetics with Ham-

ming distance from pairing reactive sites

kb profile 20 [01]L Loglinear scaled, determing disassociation kinetics with

hamming distance from pairing reactive sites

kp profile 10 [01]L Loglinear scaled, for csite only, determines rate of post-

translational modification

keq ratio 10 [01]L Loglinear scaled, determines allosteric effect of msite mod-

ification, see Γ in Appendix B

kf polarity mask 20 [01]L XOR with kf profile to determine profile of modified reac-

tive site (msite = 1)

kb polarity mask 20 [01]L XOR with kb profile to determine profile of modified reac-

tive site (msite = 1)

kf conformation mask 20 [01]L XOR with kf profile to determine new profile of T confor-

mation

kb conformation mask 20 [01]L XOR with kb profile to determine new profile of T confor-

mation

kp conformation mask 20 [01]L XOR with kp profile to determine new profile of T confor-

mation

UNUSED 4 [01]L Reserved field

Continued on next page
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Table 2.1 – continued from previous page

Field Name Length RegExp Description

In regular expression, the ’∗’ means ’zero or more’ and ’+’ means ’one or more’.

ANC intra-action fields: Intra-action fields are binary strings located at

the beginning of each domain. They encode the parameters controlling the internal

allosteric properties of the domain, namely the basal kinetic rates for the transitions

between the R and T states (kRT and kTR from Equation B.3 and B.4) and the

parameter Φ (which is assumed to be the same for each of the different reactive sites

of the domain and, as such, encoded once per domain). The switching rates are log

linearly scaled into a real value (Figure 2.1F, Table 2.1); parameter Φ is linearly

scaled into the interval [0,1] (Figure 2.1D, Table 2.1).

ANC interaction fields: Interaction fields are binary strings associated

with the reaction sites in each domain. They encode how a change in the state of

reaction site (binding or modification) will affect the R-T transition of that domain,

i.e. they encode the parameters Γi described above. In addition, the binary string

encodes binding and rate profiles (described in the next section), as well as a site

type for each reactive site. The available types are binding, catalytic or modification

sites (Table 2.1).

Binding and rate profiles: : When the binary string is converted to an

ANC model, BioJazz iterates over all pairs of reactive sites and compares their bind-

ing profiles to determine the site-specific interactions among protein domains. In

each iteration, BioJazz performs an exclusive-OR (XOR) operation on the binding

profiles of two given sites. The number of “1”s in the resulting string from this op-

eration determines whether or not binding occurs based on a user-defined threshold

(Figure 2.1C). Besides the binding profile, each site has also a forward and backward

reaction rate profile. When two sites are found to be binding (based on their binding

profiles), the XOR operation is repeated, this time using the forward and backward
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rate profiles, to determine the binding coefficients (Figure 2.1E, Table 2.1). Finally,

reactive sites that are catalytic encode an additional catalytic rate profile. If one of

the sites is a catalytic site and the other a modification site, the catalytic rate profile

of the former is scaled log linearly into real value and is applied as the catalytic rate

constant of the corresponding Michaelis-Menten kinetics. All the translated reaction

rate constants are evolvable in biologically plausible parameter ranges (Table 2.2).

Table 2.2: Parameter ranges used for the in silico evolution of signalling networks

Parameters In silico Measure Reference
Concentration (µM) [10−3, 103] [0.002, 1.8] [139, 170–175]
Phosphorylation (s−1) [10−3, 103] [0.17, 8.87] [170–173]
Dephosphorylation (s−1) [10−3, 103] [0.06, 5.31] [170–173]
Auto-dephosphorylation (s−1) N/A [0.00097, 0.0025] [170–173]
Binding membrane protein (s−1) [10−3, 103] [0.0036, 0.70] [170–173]
Unbinding membrane protein (s−1) [10−3, 103] [0.00016, 0.060] [170–173]
Protein association (µM−1 · s−1) [10−3, 103] [0.10, 7.53] [170–173]
Protein disassociation (s−1) [10−2, 102] [0.015, 2.86] [170–173]
Basal conformational switching (s−1) [10−2, 102] N/A N/A
Γ [10−2, 102] N/A [156]
Φ [0, 1] N/A [156]

Profile masks: In real proteins, the kinetic rates associated with each reac-

tion (e.g. binding rate, catalytic rate, etc.) can be altered by the structural changes

that the protein undergoes. To include such changes, the model should incorporate

the possibility of alterations in the kinetic rates of each reactive site with the R-T

state transition of the domain. I do so by implementing a conformational mask pro-

file, which is applied to all rate profiles of the reactive sites and alters the outcome of

the XOR operation (Table 2.1). There are therefore distinct binding rates between

the R and T states. For the modification sites only, there is also a modification

mask profile that is applied to the binding rate profiles to alter the binding rates

for modified states (Table 2.1). Note that both mask profiles can evolve to have no

effect on kinetic rates, i.e. a given reaction site in a given domain can have the same

reaction kinetic rates under each of the R and T states by appropriate setting of the

mask profiles.
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2.2.3 Modelling mutations

The use of rule-based modelling and encoding of such a model in a genome-like

binary string allows us to implement most biologically feasible mutations easily.

Currently, the possible mutations included in BioJazz are point mutations, protein

duplication, protein deletion, domain duplication, domain deletion, domain joining,

domain splitting and domain shuffling. Of these, mutations involving domains were

to our knowledge not considered before [65, 120, 150], but are straightforward to

include in the rule-based approach. The rate of occurrence of the different mutations

is controlled by user-defined parameters. Users can also restrict BioJazz to mutate

a subset of the network’s attributes including junk bits, linkers, binding profiles,

allosteric flags, types of reactive site, etc. This flexibility is useful for example to

“freeze” all or parts of a network and use BioJazz as a design tool rather than

mimicking biological evolution.

Point mutation: Point mutations are implemented as flipping of specific

bits in the binary string. A point mutation can alter any of the qualitative flags

(explained above) or reaction parameters. Of particular note are mutations on hard

and soft linkers, which can result in domain splitting and fusion respectively. The

mutation algorithm parses the binary string and attempts a point mutation at each

location: a bit is flipped if a randomly generated number in the interval [0, 1] is

smaller than a user-set probability (corresponding to a genome-wide point mutation

rate).

Protein duplication/deletion: In nature, the rate of gene duplication is

suggested to be a function of the size of genome [176]. Based on this observation,

BioJazz implements duplication and deletion rates defined per protein. The muta-

tion algorithm parses the binary string and attempts a duplication or deletion at

each protein coding section; an entire section is duplicated or deleted if a randomly

generated number in the interval [0, 1] is smaller than a user-set probability. The

protein duplication and deletion rates can be set independently. When a protein
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coding section is duplicated, it is added to the end of the binary string. When a

protein coding section is deleted, the binary string is shortened correspondingly. It

is also possible that a protein is silenced by a point mutation at its “start” sequence.

Domain duplication/deletion: Bioinformatics analysis of genomes of ex-

isting organisms reveals duplication patterns of domains in proteins, where the du-

plication patterns show no dependence on the size of the domains involved [177].

Thus, BioJazz implements the domain duplication/deletion rate per protein. At

each replication step, a randomly generated number in the interval [0, 1] is gener-

ated for each protein. If this number is smaller than a user-defined probability, a

random fragment of the binary string is picked. This fragment is then either deleted

or copied and the new copy is inserted at the end of the originally chosen one. Note

that the randomly picked segment can contain many reactive sites or none.

Domain shuffling: BioJazz implements rearrangements between two protein-

encoding sections of the binary string. The mutation rate leading to rearrangements

is defined per protein. For each protein coding section of the binary string, a ran-

dom number drawn from uniform distribution in the interval [0, 1] is compared to

a user-defined probability. If the random number is smaller, a fragment containing

a certain number of reactive sites is randomly chosen. Then, another subsection

of a protein coding section of the binary string is randomly selected, copied and

fused with the first selected fragment. Note that this approach combines sets of

intact reactive sites, which can correspond to an entire domain, part of a domain,

or a sequence that covers multiple domains. Besides mimicking biological domain

shuffling, shuffling is expected to create novel material for subsequent evolution.

Genome Rearrangement: In biological systems, rearrangement of large

genome chunks containing multiple genes also happens with certain probability. I

also implemented this mutation operator in BioJazz. At each step of mutation,

comparison between a random number and the rearrangement rate will determine

occurrence of genome rearrangement. With rearrangement occurring, a continu-
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ous segment containing multiple reactive sites that possibly cross several genes is

randomly selected. Then either deletion of segment or duplication of segment is

randomly chosen and executed.

Horizontal gene transfer: BioJazz also has implementation of horizontal

gene transfer (HGT). Since HGT occurs between different genomes in nature, this

mutational operator is only implemented when using population based selection

(see below). At the mutation step of each individual, the occurrence of HGT is

determined by comparing a random number to a pre-defined probability (set by the

user). If the random number is smaller than this probability, a continuous segment

of string containing multiple reactive sites is randomly chosen and copied from the

mutating individual. Then, another genome/individual is randomly selected and

the copied segment is inserted into its genome at a randomly chosen site that is

between any two reactive sites.

2.2.4 Modelling evolutionary selective pressures

To simulate evolution in silico, I need to model selective pressures experienced by

the evolving cellular networks and so link the contribution of a networks function to

the overall fitness of the organism. Fitness is an abstract concept, representing the

reproductive success of an organism and might be most tractable for microbes where

it could be approximated by growth rate [178]. In BioJazz, the fitness of networks

can be defined by the user, such that networks can be evolved under biologically

motivated or artificial selective pressures.

The user-defined fitness function is used to evaluate the performance of a

given network, encoded by a particular binary string, and to calculate a fitness score.

In previous studies on the evolution of signalling and regulatory networks, the fitness

function usually involved applying a stimulus to the network and evaluating its

temporal or steady state response [36, 65, 123, 143, 179]. Different fitness functions

relating to dynamical or structural features of the network can be easily constructed
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as illustrated in the results section for ultrasensitive dynamics (additional sample

files are included in the BioJazz web site) and adaptive dynamics (Figure 2.2).

Ultrasensitivity fitness function: Currently the fitness function used

to score the ability of a given signalling network to generate an ad hoc switch-

like function to mimic the ultrasensitive signal-response relationship evaluated the

response to a three-step ramp-up and three-step ramp-down signal profile as shown

in Figure 2.2A. For each ramp-up in the signal, the system is simulated to steady

state before the next ramp is applied. The scoring function considered both the

amplitude of the response to middle steps in ramp-ups and ramp-downs (amplitude

score Samp) and the difference of the response amplitudes between the middle steps

and the other two steps (ultrasensitivity score Sult). If ymin and ymax are defined

as the minimum and maximum values of the response during the interval from a

change in the signal to steady-state, then the response amplitude for each of the

signal ramp-ups (indicated with a ’+’ sign) and ramp-downs (indicated with a ’−’

sign) is calculated as:

∆yi+ = yi+max − yi+min (2.3)

∆yi− = yi−max − yi−min (2.4)

where the subscripts denote the corresponding ramps in the input signal. With these

measurements, the amplitude score (Samp) is given as the normalized amplitude of

the change in response to the second ramp-up and ramp-down signals:

Samp =
(∆y2+ +∆y2−)/2

ytotal
(2.5)

with ytotal being the maximum possible response (i.e. the concentration difference

between a fully active and fully inactive output protein), and acts as a normalisation

factor ensuring Samp to be between 0 and 1. In order to quantify the ultrasensitivity

of the system, I use the difference between the amplitudes of the responses to the
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second ramp-up/ramp-down signals, and the first choice/third choice. I first define

the difference in the response to the different ramp-up and ramp-down signals as

Su1 = (∆y2+ +∆y2−)/(∆y1+ +∆y1−) and Su3 = (∆y2+ +∆y2−)/(∆y3+ +∆y3−).

Then I can derive the ultrasensitivity score (Sult) as:

Sult =

√
(

Su1

ru + Su1
· ( Su3

ru + Su3
)) (2.6)

where, ru is a user-defined scaling parameter that ensures the two ratios Su1 and

Su3 (and thus the ultrasensitivity score) is between 0 and 1. Besides the amplitude

and ultrasensitivity scores, I also define a complexity score (Scom). It is plausible to

assume that networks are under selection to minimize their energetic burden to the

cell, and this score allows us to capture network complexity. The complexity score

is given by:

Scom =
rc

rc + C
(2.7)

where C is the sum of the total number of rules, proteins, domains, and reactive

sites in the ANC model and rc is a user-defined scaling parameter for scaling the

complexity score Scom between 0 and 1. Finally, the fitness function combines the

three scoring functions:

F = (Sωa
amp · Sωu

ult · S
ωc
com)

1
ωa+ωu+ωc (2.8)

with the ω∗ being user-defined parameters that control the weightings of the different

scores.

Simple adaptation fitness function (Figure 2.2B): The key aspects

of adaptive response dynamics are that the system shows an initial response to the

input (∆O+/−
max ̸= 0) that the steady state value of the output returns to its pre-input

level, irrespective of the level of the input. In other words, after a sustained change

in input (e.g. a step change), the output should initially respond but ultimately
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Figure 2.2: Sample fitness functions for selection for networks with ultrasensitive
or adaptive response dynamics. (A) The input signal (blue) used in the temporal
simulations of the system for ultrasensitivity. Each ramp-up and ramp-down of the
signal is introduced after the system reaches steady state. The corresponding system
output over time is shown in green. The differences in steady state output between
different signal levels, indicated as ∆y values on the plot, are used to calculate the
amplitude and ultrasensitivity scores. (B) Illustration of the dynamics of input
signal (blue) the output response (green) in simulations of the system for adaptive

dynamics. The parameters in adaptive fitness function, ∆O+/
max and ∆O+/

ss , are
labelled.

settle back to its original steady state: ∆O+/−
ss ≈ 0. Therefore, the adaptation

fitness w can be configured as:

w =

√
∆O+

max

C
· K

K +∆O−
ss

·

√
∆O−

max

C
· K

K +∆O−
ss

(2.9)

where C is a normalization factor to scale ∆O+/−
max and ∆O+/−

ss in to [0, 1], and K is a

threshold parameter. By imposing such a selective pressure, it is possible to evolve

an increased response sensitivity (∆O+/−
max ) and reduced adaptive error (∆O+/−

ss ),

and so achieve networks with an adaptive response.

When the fitness function requires evaluation of the system dynamics, a

temporal simulation of the network is executed by numerically integrating the set

of ODEs arising from the interaction reactions in the network. To perform these

simulations, BioJazz uses MATLAB
R⃝
with files automatically generated from ANCs
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output via the Facile tool [180]. Stochastic simulation of the ANC model is also

possible by customising the fitness scoring function.

2.2.5 Modelling evolutionary dynamics

Evolutionary dynamics arising from the emergence of mutant genotypes in a popu-

lation and their subsequent change in frequency can be modeled in different ways.

In particular, evolution could be approximated either by a random walk in which

a single beneficial (or neutral) mutant can be fixed in the population before any

other mutants can arise or as occurring in a population where multiple mutants

can co-exist. The former is an appropriate model for evolutionary dynamics at low

mutation rate and large population size limit [181]; the latter approach can give rise

to evolutionary dynamics similar to that described by the concept of quasi-species

[182].Both approaches are implemented in BioJazz.

Evolution as a random walk: Under very low mutation rates and in

large populations, evolutionary dynamics can be approximated by a random walk

in the genotype space. Then, a single genotype dominates the population and new

mutants either get fixed or are lost rapidly under natural selection and/or genetic

drift [183]. The probability of fixation for such rare mutants with a given fitness

effect has been approximated by Kimura [181]. This approximation can be used to

model evolution under a large population and low mutation rate scenario, where the

calculated probability of fixation for a mutant generated from the wildtype genotype

is used to replace the wildtype or not [184]. Biojazz implements this approach by

starting simulations from a given genotype and using this genotype to generate a

mutant genotype. The mutation is then accepted with probability αPfix, where Pfix

(fixation probability) is calculated from the fitness of the original (w) and mutant

(w′) genotypes by the following equation:

Pfix =
1− e−2s

1− e−4Nes′
(2.10)
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with s being the selection coefficient and equal to s = w′−w
w , and Ne is the effective

population size (set in the range 105 ∼ 108, based on measurements for prokaryotes

[185]). The coefficient α is used to tune (usually increase) the speed of simulation

and is always chosen to make αPfix < 1 for all mutations [184]. A newly gener-

ated mutant will be accepted if a random number (uniformly drawn from interval

[0, 1]) is smaller than αPfix. Otherwise it is rejected. After acceptance of a given

mutant, that mutant replaces the original genotype and the simulation continues.

If the mutant is rejected, a new mutant is generated from the original genotype.

The evolutionary simulation is continued until a user defined fitness criterion or a

specified number of mutations is reached.

Population based approach: Here I consider evolution dynamics in dis-

crete generations of an asexual population of a fixed-size [181, 183]. In a fixed-size

population, selection for the next generation is implemented by sampling genotypes

according to their fitness scores. Assume that there are genotypes A1, A2, A3, . . .

with fitness w1, w2, w3, . . . and frequencies p1, p2, p3, . . . in the current population.

Then the expected proportion or frequency of Ai genotypes in the next generation

will be

p′i =
piwi

p1w1 + p2w2 + · · · =
piwi

w̄
(2.11)

The p′i is the propensity that genotype Ai is chosen for reproduction (with one

progeny) in each sampling. To implement these dynamics, I start with a homogenous

population. At the beginning of each generation, individuals reproduce and mutate

based on mutation rates by sequentially drawing and duplicating an individual and

comparing the mutation rate with a random number r1 from [0, 1]. If r1 is less

than mutation rate, the reproduced individual is mutated. After reproduction the

fitness scores for all mutants are recalculated. Then at the end of each generation, I

apply selection. More specifically, I include all of the p′i values in a vector and then

generate another random number r2 uniformly drawn between 0 and the length of
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this vector. The individual that is selected for the next generation is determined by

the index of the vector into which the random number falls. The sampling process

continues until the number of individuals in the new generation reaches the defined

population size.

Parallelization and choice of algorithms: Evolutionary simulations in

BioJazz can be performed either on a single computer node, i.e. desktop workstation

or laptop computer, or parallelly on several computer nodes in a computer cluster.

If running parallelly on a cluster, the evolutionary algorithm of random walk style

is implemented as setting each node running a single evolutionary program and

several different simulations can be parallelly performed, while the population based

approach is implemented by scoring several individuals parallelly on different nodes

in a single simulation. Both approaches generate converged results from evolutionary

simulations, however random walk style approach is much faster and requires less

storage space, which might become a bottle neck when population based approach

simulates too many generations before it converges.

2.2.6 BioJazz configuration file

BioJazz contains three key parts that are interlinked to each other: an encoding

of an ANC model in the form of a binary string, evolutionary simulation of that

binary string through mutations, and dynamic simulation of the ANC model and

derivation of a fitness score. Many of the parameters governing the structure of

these three parts and their inter linkage can be defined by the user, allowing for

high customizability. These parameters are stored in a single configuration file.

Besides the parameters already mentioned above, the configuration file also

allows setting of parameters relating to computational performance (e.g. number

of nodes allocated for parallel computing, memory allocated for scoring), string en-

coding (e.g. fields’ width and binding profiles of input and output), the evolution-

ary algorithm (e.g. mutation rates, population size, seed network), the dynamical
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simulation of the ANC model (e.g. simulation time, numerical simulation error

threshold), the scoring function (discussed below), and the output structure (e.g.

frequency of output generation).

2.2.7 Post-evolutionary pruning of evolved networks and muta-

tional analysis

It is possible that not all reactions in evolved networks are needed to achieve required

function (as seen for example in previous in silico evolution studies [143, 186]). Thus,

I incorporated ways to prune evolved final networks or apply mutations on them

for further functional analyses. This can be done readily by altering the string

representation of evolved networks. BioJazz stores each of the evolving networks

(in the case of population based approach to modelling evolution) and the primary

evolving network (in the case of random walk approach to modelling evolution) at

each generation of the simulation in two separate files. The user can choose to

generate these files only in a BioJazz-compatible format or in additional formats

readable in ANC, Facile, and MATLAB
R⃝
. Pruning and mutations can be done on

these files and the resulting modified networks can be reanalysed. In the case of using

BioJazz compatible files for such post-analysis, the user can make modifications on

the string representation of the network and can also use existing subfunctions in

the BioJazz source code. A detailed description and example of this approach is

provided in BioJazz manual.

2.3 Results

To illustrate the workings of BioJazz and how it can be used to address biological

questions, I consider here the evolution of signalling networks under an example

selective pressure (additional selective pressures can easily be constructed by encod-

ing an appropriate fitness function in the configuration file, as shown in Methods).
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This demonstrates selection for ultrasensitive response dynamics as described below.

Note that the fitness function used and the associated analyses are provided as an

example to illustrate the applicability of BioJazz. The user has complete flexibility

over the choice of fitness functions and of the parameters in a given evolutionary

simulation.

Figure 2.3: Schematic, showing the network structure used as the starting point
for evolution for ultrasensitivity. The ligand (L) and the output protein (e.g. a
transcription factor, T) are shaped as oval, while all other signalling proteins (e.g.
a receptor/adaptor (A) protein, a kinase (K), or a phosphatase (P)) are shaped as
rectangle. Black line represents binding reaction between two sites. Red arrows
represent phosphorylation reactions between a kinase site (red) and a phosphory-
lation site (purple). Blue arrows represent dephosphorylation reactions between a
phosphatase site (blue) and a phosphorylation site. The green Coloured rectangle in-
dicates a protein domain, whose conformational switching is allosterically regulated
(also indicated by a self-pointing green line with arrows at both ends).

Ultrasensitivity is observed in many biological networks, and in particular

in signalling networks implementing phosphorylation cycles [40, 43, 92, 139]. An

ultrasensitive response is one where a change in the input generates a non-linear

change in output, specifically signal levels and response levels at steady states gen-

erate a sigmoidal curve [40, 92]. To evolve signalling networks capable of displaying

ultrasensitive dynamics, I run simulations with selection under a particular fitness

function.

With this fitness function, I used BioJazz to evolve ultrasensitive signalling

networks. I started evolutionary simulations from a minimal seed network composed
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of a receptor, a kinase, a phosphatase, and an output protein (Figure 2.3). The

output protein was not allowed to duplicate or be deleted, but the rest of the network

was free to evolve via all the mutations implemented in BioJazz (see Methods). Note

that the constrained structure of the model in this case reflects a user choice rather

than a limitation and allows us to demonstrate the application of BioJazz to evolve

signalling networks with ultrasensitive dynamics by fixing the input and output of

the evolving system. It is also possible to include the ligand as part of the evolving

entity, in which case I would be able to evolve new ligands and ligand-receptor

interactions, provided that an appropriate fitness function is devised. For example,

to study the coevolution between ligands and the response, one can easily cluster

different proteins based on the tags and prefixes of protein names implemented in

the source code.

Selecting for ultrasensitivity in the signalling network using the random-

walk approach (see Methods), I ran evolutionary simulations by assuming a high

population size and low mutation rate regime (see Methods) and by using different

complexity weightings ωc. In particular, I ran 5 simulations in parallel each for 4

different complexity weights: ωc = 0, 0.1, 1, 10. Each simulation is assigned to

a node in a computer cluster. I set a target fitness score of 0.8 and a maximal

computation time of 120 hours per simulation. The simulations were terminated

when either the target fitness score or simulation time was reached.

In all simulations, the fitness score increases over generations (Figure 2.4A)

and I evolve an ultrasensitive network reaching at least a fitness score of 0.8.

Analysing the evolutionary dynamics in these simulations, I find that fewer mu-

tations were needed for simulations with ωc set to lower values (Figure 2.4B), i.e.

when the fitness penalty for complexity was low. The time required for evaluating

the fitness of each mutant, however, was significantly larger with lower ωc. These

findings suggest that a weaker constraint on network complexity (i.e. smaller val-

ues of ωc) allows the evolutionary simulations to sample a larger space of networks
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Figure 2.4: Results from sample evolutionary simulations. (A) The fitness score
plotted against the total number of mutations sampled. Each curve depicts the
results of a single evolutionary simulation, which is a biased random walk over the
network space (Equation 2.10 in Methods). Each dot on each curve represents an
accepted mutation (lines are to guide the eye). Distances along the x-axis between
two dots indicate the number of mutations sampled between two accepted mutations.
In all simulations, fitness increases with the number of mutations accepted, but in
two simulations (one with ωc = 0 and one with ωc = 0.1) fitness fails to reach
the target level of 0.8 before the maximal simulation time of 120 hours is reached.
(Caption next page...)

38



Figure 2.4: (Previous page continue) (B) The average number of mutants sam-
pled before a mutation is accepted increases with ωc; the average time for evaluating
the fitness of each mutant in simulations decreases with ωc. A higher weighting of
complexity score (ωc) in the total score gives a higher penalty to mutations that
generate complexity in the network structure. (C) The evolutionary space showing
the numbers of reactive sites and of interactions for all simulations with ωc = 0.1 and
10. Each data point represents an accepted mutant network from different stages of
the simulation, with the shape and colour indicating the ωc of the simulation and
the size indicating the generation number (i.e. number of mutations). Note that
many of the data points from the simulations with ωc = 10 are overlapping. The
initial network is at the centre of the grey area. (D) The distributions of mutational
effects on fitness and ultrasensitivity from accepted mutations during all simulations
with ωc = 0.1 and 10. Sub-graphs at the top and right are density estimates for the
ultrasensitivity changes ∆Sult and fitness changes ∆F of all fixation events.

and more easily find beneficial mutants. Correspondingly, the number of reactive

sites and interactions in networks diverges more widely in such simulations, while

network complexity is highly constrained for large ωc (Figure 2.4C). On the other

hand, a higher weighting for the complexity measure (high ωc) can result in this

measure dominating the total fitness calculation (Equation 2.8). Consequently, a

larger number of mutations with detrimental or neutral effects on the ultrasensitiv-

ity and amplitude of the response may be accepted because their low scores could

be absorbed by stronger effects from the complexity measure. I find that indeed this

possibility is realised: the distribution of the ultrasensitivity scores of fixed mutants

is slightly shifted to larger negative values in simulations with ωc = 0.1 compared

to data from simulations with ωc = 10 (Figure 2.4D). A similar pattern also occurs

with amplitude score.

Our implementation of evolution under a low mutation rate and high popula-

tion size regime through Equation 2.10 still allows for a degree of neutral evolution.

Thus, I find significant diversity in the set of ultrasensitive networks emerging at

the end points of different evolutionary simulations (Figure 2.5B). This diversity

confirms that different network architectures and biochemical mechanisms can gen-

erate ultrasensitivity. The evolved ultrasensitive networks I find recover known bio-
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chemical mechanisms that generate ultrasensitivity. One such mechanism is enzyme

saturation in a covalent modification cycle (or zero-order sensitivity, or Goldbeter-

Koshland kinetics) [92]. In this mechanism, saturation of enzymes that mediate

the covalent modification of a substrate generates ultrasensitivity in the modified

substrate levels. In our simulations, the initial starting networks display high con-

centrations of kinase and phosphatase and low levels of target protein, and I analyzed

the evolutionary trajectory of key kinetic parameters in a few sample simulations.

In particular, I consider composite parameters K1 and K2, which determine the

binding kinetics of the kinase and phosphatase to the output protein and should

decrease with increased enzyme saturation (see the legend of Figure 2.6 for a full

definition of K1 and K2). I find that the initial evolution of these parameters is

quite erratic (Figure 2.6) until the system reaches a high level of K2 where phospho-

rylation can result in low output at any signal level (network 30). Once this point

is reached, evolution progresses with both K1 and K2 being decreased, indicating

that the system spends less time in complexes of the kinase and output protein and

of the phosphatase and output protein: the enzymes increasingly become saturated.

Consequently, both the ultrasensitivity and the amplitude of the system response

increase and reach the target fitness score in network 70. I find a similar trend in

some other simulations, where decreasing K1 and K2 is accompanied by increasing

ultrasensitivity, suggesting that these trajectories may be common in the evolution

of ultrasensitive responses, at least from an initial regime of high substrate and low

enzyme concentration. Nevertheless, evolved networks that are not in the regime

suggest that unusual mechanisms other than zero-order sensitivity might play im-

portant roles in orchestrating the ultrasensitivie response dynamics, Chapter 3 will

discuss some further studies and results on novel mechanisms of ultrasensivity from

additional evolutionary simulations.

To provide a second example for the application of BioJazz, I developed a

different fitness function that is designed to select for networks with adaptive re-
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Figure 2.5: Sample evolved network structures and dynamics. (A) Sample network
structures evolved to achieve ultrasensitivity in simulations with different weighting
of the complexity score ωc . In each network, the nodes stand for proteins and edges
stand for interactions. The isolated (i.e. unconnected) nodes seen on some evolved
networks represent proteins that do not interact with any other proteins (hence they
can be removed without affecting the response dynamics). For explanation of labels
and edge colours see legend of Figure 2.3. (B) An evolved network structure and
its dynamics using selection for an adaptive response.
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sponse dynamics (Figure 2.2B, also see Methods). This type of response dynamics

is observed in many cellular systems and is characterised by an initial response to

a persistent external stimulus that eventually returns to its pre-stimulus level. In

the context of signalling networks, adaptive response dynamics are observed and

studied in bacterial chemotaxis [69, 70] and the response of yeast to osmotic shock

[187]. General signalling network models capable of adaptation have been presented

[48] and in silico evolution has been successfully used to understand gene network

architectures that can achieve adaptive responses [65]. Here, I have adopted the

fitness function used in the latter study (Figure 2.2B) and used BioJazz to evolve

signalling networks with adaptive dynamics (Figure 2.5B). I found that 9 out of 10

from the initiated simulations resulted in networks achieving high fitness solutions

and adaptive response dynamics. Different from previous work on adaptive gene

networks, the structures of evolved adaptive protein interaction networks do not

show any obvious negative feedback [66]. Instead, I find the evolved networks com-

monly exploiting a buffering mechanism that could be equivalent to a feedforward

mechanism [66]. In the example adaptive network shown in Figure 2.5B, the input

protein can bind four binding sites in three different proteins, two of which are the

kinase and phosphatase for the output protein. When a perturbation happens at

the input protein concentration level, different affinities of kinase and phosphatase

for binding to the input protein result in breaking the balance of phosphorylation

and dephosphorylation of the output protein, inducing an initial response. Later,

the binding protein in the middle (which has slower binding reaction rate constants)

sequesters the input protein to re-balance the phosphorylation and dephosphoryla-

tion of the output protein. The end effect of this buffering mechanism is a response

dynamics similar to that resulting from a feedforward interaction loop [66]. All other

evolved adaptive networks utilised similar solutions to this example to achieve adap-

tive responses. However, there are two most fundamental mechanisms in achieving

adaptive dynamics: negative feedback loop and incoherent feedforward loop [66].

42



And negative feedback loop exist widely in control engineering applications and

natural biological systems to maintain stability or implement adaptive dynamics.

The reason that no adaptive networks with negative feedback loops emerge is be-

cause such motif requires the network to invent additional backward inhibition (e.g.

dephosphorylation of one’s upstream signalling protein). This requirement installs

a barrier in the evolutionary landscape which is difficult for an evolving network to

overcome given a basin (i.e. where the incoherent feedforward loop mechanism is)

in the evolutionary landscape. Analysing the dynamics of sample evolved networks

under different levels of input perturbation I found their fitness to be sensitive to

the level of the perturbation used in the fitness function. In particular, the adapta-

tion precision (i.e. the ability to return exactly to pre-stimulus activity level after

a signal) is dependent on signal level. This highlights the importance of the design

of the fitness function on the types of networks that can evolve in the simulations.

In Chapter 3, a new fitness function with more stringent conditions is devised for

selecting networks with adaptive response dynamics in order to better understand

design principles of adaptation in signalling networks.

2.4 Discussion

Here I have presented BioJazz, a tool that combines rule-based approaches and

evolutionary simulation. Its key features are the implementation of biochemical in-

teractions found in cellular networks, the simulation of dynamics arising from these

interactions and their evolution with unbounded complexity through biologically

plausible mutations. Previous approaches to evolutionary simulation of cellular net-

works have only considered a subset of these abilities. As such, I expect BioJazz to

be useful both as an exploratory tool for the evolutionary systems biology commu-

nity to understand evolutionary pressures leading to specific biochemical features

of biological networks and as a design tool for the synthetic biology community to
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Figure 2.6: Evolution of model parameters for a sample evolutionary simulation
with ωc = 0 and selecting for ultrasensitivity. Each dot represents a model from dif-
ferent points in the evolutionary simulation (as indicated by the generation number
on each dot), while the x- and y-axis show the composite parameters, K1 and K2,
that give the average catalytic binding efficiency of the kinases and phosphatases
to the target protein respectively. The catalytic binding efficiency is defined as
the Michealis-Menten constant of the enzyme (kinase or phosphatase) over the to-
tal substrate concentration, and the average is calculated as the geometric mean
of individual binding efficiency of the different kinases and phosphatases and their

allosteric states: K1 =
∏m

i=1
m

√
(KRi

1 ·KTi
1 )1/2 and K2 =

∏n
j=1

n

√
(K

Rj

2 ·KTj

2 )1/2.
The dot size and colour indicate the response amplitude and ultrasensitivity. For
selected networks the input-output response curve and the network architecture is
also shown. Dashed lines with arrow heads show the trend of how ultrasensitivity
increases with the evolution of decreasing values of K1 and K2. The initial net-
work starts in the bottom left corner (network 0) moves to the bottom right corner
(network 29) and then to the top right corner (network 32)
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explore biochemically plausible implementations of different network dynamics.

As I demonstrate, BioJazz is developed in a way that allows high flexibility

and user-friendliness. All parameters relating to the evolutionary simulations, as

well as the fitness functions used to select networks can be specified by the user,

allowing testing of different hypotheses. As a demonstration, I showed how to use

BioJazz to evolve networks under different complexity constraints and to generate

ultrasensitive dynamics. I found that complexity constraints can alter the efficiency

of the evolutionary simulations, mainly because of their effects on the distribution

of mutational effects on fitness.

Under all complexity constraints considered, I found evolutionary simula-

tions to result in ultrasensitive networks under the appropriate fitness function. In

addition, adoption of a different fitness function allowed the evolution of networks

displaying adaptive dynamics. These results show that BioJazz can be used to study

a range of system dynamics (i.e. ultrasensitivity, adaptation, oscillation). Networks

resulting from specific simulations that implemented different selective pressures

displayed specific architectures, suggesting that BioJazz can be used to study the

possible repertoire of functional networks. In the case of ultrasensitivity, I found

that these networks and their evolutionary dynamics highlighted known biochemical

mechanisms and implied existence of unusual mechanisms as well. In particular, I

found that kinetic parameters controlling binding of the enzymes and output pro-

tein evolve to favour low saturation initially for increased response amplitude and

then high saturation later on for increased ultrasensitivity. BioJazz can be used to

further elucidate such trends under different evolutionary scenarios. For example,

the simulations I used started from high substrate and low enzyme concentrations.

In the subsequent chapter, I reverse this situation and explore how ultrasensitiv-

ity can emerge under regimes where high enzyme saturation would not be possible

Chapter 3. Similarly, one can use higher level selection functions, rather than ad

hoc functions selecting for ultrasensitivity (as I have done here), to elucidate the bi-
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ological origins of ultrasensitivity, for instance by imposing fluctuating signals and

selecting on responses with defined thresholds and penalties. Alternatively, one can

implement selection for different dynamics such as pulsatile response dynamics or

oscillatory dynamics. The evolved network structures could then provide insights

into which biochemical networks can implement the required dynamics and inform

both systems and synthetic biology studies (as has been done before, e.g. see [36,

146, 150]). In the following chapters, it is again illustrated investigations of ultra-

sensitive and adaptive networks in Chapter 3 and bistable signalling networks in

Chapter 4, 5 and 6.

There are notable previous works on evolutionary simulation of the structure

and dynamics in cellular networks. In particular, previous studies analysed the in

silico evolution of gene regulatory networks to understand the emergence of different

dynamics [65, 123, 153, 186, 188], and their modularity and robustness [189]. The

latter features were also studied in evolutionary simulations using metabolic [121]

and signalling network models [120, 143], or general network models [122, 147]. As

an open-source platform, BioJazz aims to further enable such studies by providing

an in silico evolution model that explicitly considers systems dynamics and protein

allostery and domain structure. The incorporation of protein allostery and domain

structure is a particularly unique addition in evolutionary modelling of networks,

that was not considered in any of the previous works, but whose effects on system

dynamics have been studied in many previous experiments [154, 155]. In addition,

the combination of rule-based modelling with in silico evolution is a novel attempt

in modelling evolution and allows for a natural way to deal with emerging system

complexity in evolutionary simulations. In particular, the rule-based modelling ap-

proach theoretically allows for simulation of arbitrarily large reaction networks as

well as protein complexes. Most previous models of network evolution that con-

sidered system dynamics have used bounds on both of these features, either by

imposing limitations on the number of species in evolving networks [143, 179, 190],
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or by imposing limits on the protein complexes that can emerge in the evolving

networks [65, 153, 188].

Although by using rule-based modelling BioJazz theoretically allows the evo-

lution of cellular networks without restricting their complexity, there are still compu-

tational challenges with simulating large reaction networks and multi-protein com-

plexes that give rise to the ’curse of dimensionality’ [156, 158]. In particular, the

ANC framework I used here generates a full set of differential equations possible

in the network, prior to simulation, which creates a significant computational bur-

den. Such technical challenges are increasingly being addressed with developing

rule-based modelling frameworks. For example, the Kappa simulator KaSim [157]

and BioNetGen simulator NFsim [191] allow faster simulation of reaction systems

of arbitrary size. These methods are currently based on using stochastic simula-

tions and do not consider allosteric nature of proteins as done in ANC. It should

be possible to combine the best features of the developing approaches and create

new rule based modelling frameworks that combine modelling of protein allostery

with computationally feasible simulation routes that allow arbitrarily large networks

to be simulated. Future development of BioJazz would thus explore this route of

expanding the rule-based modelling aspect of its evolutionary framework towards

combining best features of different methods.

Such development of the rule-based modelling component of BioJazz could

allow extending its focus from encoding signalling networks to metabolic and tran-

scriptional networks. In particular, rule-based models like Kappa and BioNetGen

are able to allow modelling of degradation and synthesis reactions. This can be com-

bined with extending the binary string patterns of BioJazz model representation to

encode binding between proteins and genes, and thereby mimicking transcription

factors binding on DNA. For metabolic networks, the extension would require en-

coding of metabolites in a form that captures basics of chemical conversion with

inspirations from previous studies [121]. This would require significant further de-
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velopment and interfacing rule-based models and metabolites through their corre-

sponding representations. It is hoped that these developments will be facilitated by

the open-source nature of BioJazz.
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Chapter 3

Protein sequestration emerges

as a tuning point

3.1 Introduction

Molecular signalling networks enable cells to generate appropriate dynamical re-

sponses to external signals including pulsed, oscillatory, ultrasensitive, and adaptive

dynamics [192, 193]. Such response dynamics are also implemented in human-

engineered systems, motivating the use engineering principles to understand and

engineer cellular networks [194, 195]. This approach has been particularly useful in

the context of gene regulatory networks, where feedback and feedforward control are

successfully used to understand and even engineer specific response dynamics, such

as adaptation [48, 196, 197], bistability [198–202]. While these studies demonstrate

the usefulness of engineering principles, and in particular feedback control, in under-

standing and modulating biological systems, there is also great interest to discover

and understand potential design principles that are specific to cellular networks and

that are exploited by evolution to generate specific system dynamics [110, 123].

One way to identify potential evolutionary design principles is to look for fea-

tures conserved across different cellular systems. For example, the high prevalence
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of phosphorylation-dephosphorylation cycles in signalling networks and branching

points in metabolic networks led to their identification as potential mediators of

ultrasensitive dynamics [92]. Similarly, several common biochemical features of sig-

nalling networks were identified as mediators of specific response dynamics; bifunc-

tional enyzmes mediating adaptive and pulse dynamics [113, 203], multi-site phos-

phorylation mediating multistability [52, 54, 106, 204], and phosphorelays mediating

ultrasensitivity and multistability [50, 114, 205–207].

An alternative approach for identification of potential design principles in

cellular networks is to use in silico evolution [65, 153]. Through the mimicking of

biological evolution of cellular networks in the computer, in silico evolution can gen-

erate many systems with a desired response. These systems can then be analyzed

to identify their key features mediating specific response dynamics. The application

of this approach led to the identification and subsequent experimental implemen-

tation of sequestration as a mechanism for generating bistability and oscillation in

gene regulatory networks [95, 123, 208] and also to uncovering the principle of adap-

tive sorting in ligand-receptor interactions, which is analogously featured in immune

recognition [190]. These examples illustrate the potential utility of in silico evolu-

tion to allow the discovery of subtle biochemical processes, that could not be readily

deduced from observations on network connectivity. In addition, the evolutionary

approach allows exploring the impact of specific environmental and cellular condi-

tions on the evolution of different design principles [121, 145, 189, 209–211]. Given

that many different potential design principles can give rise to a certain dynamical

response, such insights could be useful for increasing our ability to predict which

designs are more likely to be found under which ecological and evolutionary setting.

Motivated by this potential, I use BioJazz (see [212] and Chapter 2) to ex-

plore the design principles of ultrasensitive and adaptive dynamics (Figure 3.1A,B)

in signalling networks. I show that when possible, enzyme saturation by substrates

readily evolve as a key enabling feature for ultrasensitivity. For simulations where
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enzyme saturation was made difficult to evolve, I find that enzyme sequestration

emerges as a key mechanism for enabling ultrasensitivity. Interestingly, this same

mechanism also emerged in networks selected for adaptive dynamics, and mediated

a contrasting effect on kinases and phosphatase activities. Based on these findings

I design a generic model of a signalling cycle motif, featuring a scaffolding pro-

tein. I show that resulting enzyme sequestration in this motif enables it to generate

both ultrasensitive and adaptive dynamics and under biologically relevant parame-

ter regimes. Furthermore, I show that for a given set of parameters, the dynamics

of such a motif can be tuned between adaptive and ultrasensitive responses through

modulation of sequestrating protein concentration or affinities. These findings indi-

cate that enzyme sequestration through scaffolding proteins provides evolution with

a design principle to generate systems with plastic response dynamics and could be

equally exploited in synthetic biology.

3.2 Methods

3.2.1 Evolutionary simulations

I started evolutionary simulations with three “seed” networks with different struc-

ture (Figure 3.1C). For each “seed” network, I run two groups of simulations with

different total concentrations of output protein, mimicking initial conditions of en-

zyme saturation with substrate or not. Under each condition (and “seed” structure)

I have run 10 independent evolutionary simulations.

An evolutionary algorithm implements the iterative process of mutation and

selection with a predefined fitness function of ultrasensitivity. With the linear en-

coding of signalling networks [212], the networks, in each iterative round, undergo

mutation then selection based on their new fitness scores (see next section). For

simulating evolutionary dynamics, I assumed a low mutation rate high popula-

tion size regime as explained in [212]. In such a regime, evolution is expected to
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Figure 3.1: Evolutionary simulation setup. (A) Fitness function to score ultrasen-
sitive networks. The input signal (blue) is used in the temporal simulations of the
system for scoring ultrasensitivity. Each ramp-up and ramp-down of the signal is
introduced after the system reaches steady state. The corresponding system output
over time is shown in green. The differences in steady state output between different
signal levels, indicated as ∆y values on the plot, are used to calculate the ampli-
tude and ultrasensitivity scores. (B) Fitness function to score adaptive networks.
Illustration of the dynamics of input signal (blue) the output response (green) in
simulations of the system for adaptive dynamics. The parameters in adaptive fitness

function, ∆O(max+/−)
i and ∆O(ss+/−)

i , are labeled. (C) Structure of three different
starting networks. The ligand and the output protein (e.g. a transcription factor)
are shaped as oval, while all other signalling proteins (e.g. receptor/adaptor proteins,
kinases, or phosphatases) are shaped as rectangle. Black line represents binding re-
action between two sites. Red arrows represent phosphorylation reactions between
a kinase site (red) and a phosphorylation site (purple). Blue arrows represent de-
phosphorylation reactions between a phosphatase site (blue) and a phosphorylation
site. The green colour rectangle indicates a protein domain (not shown in starting
networks), whose conformational switching is allosterically regulated (also indicated
by a self-pointing green line with arrows at both ends).
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proceed akin to a random walk, where only fitter mutants are expected to fix and

form the basis for next mutants [212]. Thus, I simulate only a single network, from

which I generate mutants and replace the resident network based on the probability

of fixation calculated from the fitness difference between mutants and the resident

genotype as derived by Kimura [181] The additional parameters controlling evolu-

tionary simulations, such as mutation rates and allowed size of protein complexes

are summarised in a configuration file (Appendix A). All presented simulations are

run with the same parameters as listed in this file.

3.2.2 Selection criteria for adaptive and ultrasensitive dynamics

For selection function of ultrasensitive dynamics, I use the same fitness function

in Chapter 2 that favours large responses when presented with intermediate input

signal and little responses when presented with either low or high input signals

(Figure 3.1A, also see Methods in Chapter 2). For selection of adaptive response

dynamics, I adopted the fitness function in Chapter 2 and further extended this to

achieve more stringent conditions for adaptive responses. In particular, networks

were evaluated for their ability to respond in transient manner to three distinct

step-signals with different magnitudes (i.e. 1, 10, 100) (Figure 3.1B). Especially, the

function calculates both maximum response to input perturbations, ∆O(max+/−)
i ,

and adaptive precision (i.e. different between pre- and post- input perturbations,

∆O(ss+/−)
i . For each square pulse signal perturbation, the score is calculated as

wi =

√√√√∆O(max+)
i

C
· K

K +∆O(ss+)
i

·

√√√√∆O(max−)
i

C
· K

K +∆O(ss−)
i

(3.1)

where C is a normalization factor to scale∆O(max+/−)
i and∆O(ss+/−)

i into [0, 1], and

K is a threshold parameter (Figure 3.1B). Then the adaptive fitness is calculated

as geometric mean of scores of all perturbation steps w = n+1
√∏n

i=0wi.
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3.2.3 Model for signalling cycle motif featuring enzyme sequestra-

tion

In this motif, a sequestrating protein (T ) can bind both the kinase (K) and the

phosphatase (P ), thus making these enzymes inaccessible to the substrate (S and

Sp). This system gives us a generic model that can be described as a set of ordi-

nary differential equations with 10 reaction rate constants and 9 chemical species

(Appendix C). In order to explore the different response dynamics of the generic

model, I sampled 11 parameter sets from a biologically feasible range (see Table 2.2

in Chapter 2, however the concentration range is further constrained into [10−4, 10]).

I used the same fitness functions as in the evolutionary simulations to characterise

the response of this signalling motif to an incoming signal. The signal presence is

simulated as changes in the kinase concentration level. To explore effects of en-

zyme saturation, I sampled the generic model at two conditions: enzyme saturated

condition ([Ptot] = 0.1, [Stot] = 1) and enzyme unsaturated condition ([Ptot] = 0.1,

[Stot] = 0.1).

3.3 Results

To explore design principles for generating ultrasensitive and adaptive response dy-

namics in signalling networks, I have evolved signalling networks under different

cellular conditions and from three different starting networks composed of an input-

receiving protein (L), an output protein (S), and proteins with binding, kinase and

phosphatase activities and labelled as adaptor proteins (A), kinases (K) or phos-

phatases (P) (Figure 3.1). The initial structures were selected based on common

observations from natural signalling networks. In particular, the cascade topology

is based on the signalling cascades such as the Mitogen Activated Protein Kinase

(MAPK) signalling networks [41, 213]; the bipath topology is based on the obser-

vations that cells utilise different signalling pathways that share specific elements
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Figure 3.2: Analysis of evolved ultrasensitive networks. (A) Saturation parameter
of all evolved ultrasensitive networks. The parameters are defined as Michealis-
Menten constant of the enzyme (kinase or phosphatase) over the total substrate
concentration, and the average is calculated as the geometric mean of individual
binding efficiency of the different kinases and phosphatases and their allosteric

states: K̄1 =
∏m

i=1
m

√
(KRi

1 ·KTi
1 )

1
2 and K̄2 =

∏n
i=1

n

√
(KRi

2 ·KTi
2 )

1
2 (see [212] and

also Chapter 2). The shapes represents different starting structures in the evolu-
tionary processes, while the colours represent two different starting conditions (i.e.
blue: output protein [Stotal] = 1000 and starting with all other signalling proteins,
denoted as A∗, concentrations [A∗

total] = 1; red: output protein [Stotal] = 10 and
starting with all other signalling proteins concentrations [A∗

total] = 10). The number
labelled on each data point is the unique ID used for each evolutionary simulation.
The two star shaped points indicate the value of the saturation parameters at the
start of evolutionary simulations. (Caption next page...)
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Figure 3.2: (Previous page continue)(B) The different forms of enzymes,
substrate-accessible (green), substrate-inaccessible (orange), and substrate-bounded
(blue), overlaid with the dose-response dynamics for two different evolved networks
(network 20 and 18 in Figure 3.3). The solid and dashed lines show the concentra-
tion of phosphorylated (i.e. response) and unphosphorylated substrate respectively.
(C) Ratio between KM values of different conformational states for kinase (x-axis)
and phosphatase (y-axis). The colours, shapes and numbers on the dots are the
same as in (A). For enzymes without allosteric regulation the ratio are set to one,
so that there are no distinctive conformational differences. (D) The percentage of
enzymes in different conformational states, relaxed “R” state (green) and tensioned
“T” state (orange), overlaid with dose-response dynamics for two different evolved
networks (network 18 and 23 in Figure 3.3). The solid and dashed lines show the
concentration of phosphorylated (i.e. response) and unphosphorylated substrate
respectively.

leading to cross-talk, as seen for example in the signalling pathways controlling yeast

mating and filamentous growth responses [214–216]; the bifunctional topology is in-

spired by observations that many kinases can also display significant phosphatase

activity, or can readily attain such activity via few mutations [217–221] Further-

more, this motif is selected as it provides a particularly minimal starting point for

evolution, where I assume a generalist enzyme that contains both kinase and phos-

phatase activities initially and that can evolve these activities further via mutations

and protein duplication. The cellular conditions were selected to mimic the presence

or absence of enzyme saturation, which can mediate ultrasensitivity in signalling cy-

cles [92] but might be lacking in natural systems [97, 222]. Thus, the evolutionary

simulations allowed us to explore the role of these different features. I used specific

selection criteria that operate on the response dynamics resulting from the network

in presence of a signal profile (see Methods and Figure 3.1). I run 10 simulations

for each of the conditions and for selecting ultrasensitive and adaptive dynamics,

resulting in a total of 60 simulations for each dynamics.
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Figure 3.3: Structure of all evolved ultrasensitive networks. The categories are based
on the starting concentration conditions and starting network structures. Schematic
information is the same as in Figure 3.1, in these evolved networks there are several
networks contain isolated proteins that evolved from duplications and mutations.

3.3.1 In silico evolved ultrasensitive networks display enzyme sat-

uration, enzyme sequestration, and allosteric regulation.

It has been shown theoretically that a simple signalling motif comprising a kinase,

phosphatase and their substrate can lead to an ultrasensitive input-response relation

when the enzymes are fully saturated by their substrate [92]. This mechanism is

termed zero-order sensitivity and can be achieved by having kinetic parameters that

favour complex formation among enzymes and the substrates, and by having a large

ratio of the total concentration of substrate to that of enzymes [92]. I found that

when conditions allow, zero-order sensitivity readily evolves in silico. Of the 30

simulations, which were started with a high ratio of output protein to signalling

protein concentrations, 11 have resulted in the emergence of ultrasensitivity and 8

of these successful simulations resulted in kinetic parameters where either or both

kinases and phosphatases were saturated (Figure 3.2A, blue points). These results

confirm that the in silico simulation framework can recover a known biochemical
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mechanism - enzyme saturation by substrate - for achieving ultrasensitivity.
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Figure 3.4: Average level of enzymes sequestrated by other proteins and average
level of enzymes saturated by substrate (output protein) in all evolved ultrasensitive
networks. The orange coloured dots represents kinases and the blue dots represents
phosphatases. The numbers on the dots denote the network number.

While enzyme saturation mediated zero-order sensitivity is well understood

theoretically, this biochemical mechanism might not be relevant for many biological

systems where the ratio of substrate to enzyme concentrations is found to be low

[97, 222]. To explore whether ultrasensitivity can still emerge under such conditions,

I ran evolutionary simulations with equal starting concentrations for the substrate
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and signalling proteins. Although concentration of signalling proteins could freely

evolve in these simulations, enzyme saturation was expected to be difficult to evolve,

which could lead to evolution of alternative mechanisms for ultrasensitivity. Indeed,

the emerging ultrasensitive networks from these simulations (10 out of 30 simula-

tions) did not display the kinetic parameters required for enzyme saturation (Figure

3.2A, red points). Together with three ultrasensitive networks that started with

high concentrations of the substrate, but did not evolve enzyme saturation, these

ultrasensitive networks clearly utilize mechanisms other than enzyme saturation.

Analysing the structure of these networks (Figure 3.3), I did not find any

distinct structural features. However, I found that in many evolved networks with

parameters in the non-saturating regime, there is a high prevalence of enzyme se-

questration (Figure 3.2B) and also allosteric regulation of enzyme activity (Figure

3.2C) by other signalling proteins. In theory, allosteric regulation of enzyme ac-

tivity by upstream proteins that are activated by signals could implement a form

of ultrasensitivity [87, 88, 223] that could relax the need for enzyme saturation. I

found that for at least some networks, the ratio of allosteric forms of the enzymes

barely changes across the input range (Figure 3.2D), showing that allosteric reg-

ulation is not the main or sole process enabling ultrasensitivity. This suggests a

more general role for enzyme sequestration, which prompted us to analyse all of the

evolved networks with regard to the prevalence of the different enzyme complexes.

In particular, I calculated the average proportions of ES complexes, formed by en-

zyme binding to substrate, and ET complexes, formed by enzyme binding to other

proteins (Figure 3.4). Note that these proportions can be seen as the average level

of enzyme saturation by the substrate and sequestration by other proteins in the

signalling network. This analysis revealed that most of the ultrasensitive networks

evolved parameters that resulted in enzymes being bound in complexes (i.e. they

lie close to the line given by [ET ] = 1− [ES]). Moreover, contrasting the results of

evolutionary simulations where enzyme saturation was made difficult to evolve vs.
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Figure 3.5: Analysis of evolved adaptive networks. (A) Structure and dynamics
of the evolved adaptive network 1. The upper panel shows a cartoon of the net-
work. The oval shapes represent ligand (top) and the output protein (bottom) (e.g.
substrate with a phosphorylation site, S), while all other signalling proteins (e.g.
receptor/adaptor proteins, kinases, or phosphatases) are shaped as rectangle. Black
line represents binding reaction between two sites. Red arrows represent phosphory-
lation reactions between a kinase site (red) and a phosphorylation site (purple). Blue
arrows represent dephosphorylation reactions between a phosphatase site (blue) and
a phosphorylation site. The green coloured rectangle indicates a protein domain,
whose conformational switching is allosterically regulated (also indicated by a self-
pointing green line with arrows at both ends) [212]. The lower panel shows the
dynamics of input signal and output response. The stacked colours represents the
compositions of enzyme complexes: blue for proportion of enzyme-substrate com-
plexes, green for free form enzymes that are accessible by the substrate, and red for
complexes where enzymes are not accessible by the substrate (i.e. titrated enzymes).
(B) Structure and dynamics of the evolved adaptive network 2. Panels are as in
(A).
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not, showed that the former scenario resulted in enzymes that were mostly titrated

by other signalling proteins (see Figure 3.2A and Figure 3.4). These results suggest

that when enzyme saturation is not readily achievable, evolution of ultrasensitivity

was made possible mostly through enzyme sequestration. I analysed this proposition

further with a simpler model (Figure 3.6).

Figure 3.6: Designed signalling cycle motif and parameter space for adaptation and
ultrasensitivity. (A) Cartoon showing the designed signalling cycle motif with a se-
questering protein. The sequestrating protein T binds both the kinase K and phos-
phatase P , which catalyse the phosphorylation and dephosphorylation of substrate
S and Sp respectively. (B) The values of key parameters for achieving ultrasensi-
tive (> 0.8) and adaptive response (> 0.3), when assuming an enzyme-saturated
regime ([Stotal] = 1, [Ptotal] = 0.1). The upper and lower two panels are distribu-
tion of parameters that generate ultrasensitive and adaptive responses respectively.
Panels on the left show the distribution of Michaelis-Menten constants, for kinase:
KM,K = k2+k3

k1
(x-axis) and phosphatase KM,P = k5+k6

k4
(y-axis). Panels on the

right show the distribution of affinities of sequestrating protein T with kinase and
phosphatase: KD,K = k8

k7
and KD,P = k10

k9
. Note that all four panels are plotted

on the same logarithmic range. Each black dot represents a parameter set and the
colours shows density of parameters. (C) Values of key parameters for achieving
ultrasensitive (> 0.8) and adaptive response (> 0.3), when assuming an enzyme-
non-saturated regime ([Stotal] = 0.1 and [Ptot] = 0.1).

3.3.2 Selection for adaptive dynamics leads to networks employing

differential enzyme sequestration

In order to select networks with adaptive response dynamics, I improved the adap-

tive fitness function by forcing the system to displaying adaptive response dynamics

under input signals of several different magnitudes (Methods). This fitness is moti-
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vated by the fact that fitness function imposing under a single input signal level will

results in a pseudo-adaptation (Figure 2.5B). I found only few of the evolutionary

simulations resulting in networks with adaptive dynamics (2 out of 60 simulations),

potentially due to the strictness of this fitness function. Interestingly, in both of

these simulations, the final evolved networks contained a protein, the role of which

implements a differential sequestration of the enzymes, e.g. by sequestrating them

through different number of binding sites (Figure 3.5A). The imbalanced sequestra-

tion affinity of the scaffold protein towards kinases and phosphatases enables the

system to provide an initial response to a change in signal but then move back to

same equilibrium points (Figure 3.5B). With every signal step, the kinase is titrated

much faster compared to the phosphatase leading to an initial response that then

settles back to previous levels when sequestration levels of the kinase and phos-

phatase equilibrate (Figure 3.5). When the scaffolding protein is fully bound, and

the sequestration effect cannot operate anymore, the level of adaptation to signal is

hampered (see Figure 3.5B).

3.3.3 Scaffolding protein enables ultrasensitivity and adaptive dy-

namics in a single signalling cycle

Interestingly, I find that scaffold proteins acting on both kinases and phosphatases

as seen in evolved adaptive networks are also featured in evolved ultrasensitivity

networks (see network 4 and network 13 in Figure 3.3). This suggests that such

proteins could allow implementation of both adaptive and ultrasensitive dynamics.

To test this idea, I developed a model of the simplest possible signalling cycle motif

that features enzyme sequestration, and where incoming signals are implemented as

changes in kinase concentration Figure 3.6A (also see Methods and Appendix C). I

analysed the capacity of this model to generate ultrasensitive and adaptive responses

by sampling 100,000 independent sets of kinetic parameters in a biologically feasible

regime (Methods). I find that this generic model can achieve both adaptive and
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Figure 3.7: Parameters sampling of the signalling cycle in the phenotype space of
ultrasensitivity and adaptation. (A) Sampled network parameters under substrate-
saturating condition ([Stot] = 1 and [Ptot] = 0.1). The x-axe shows the adaptive
score of those sampled parameter sets, the y-axe shows the ultrasensitive score.
Also both the most adaptive network (top-left corner) and the most ultrasensitive
network (bottom-right corner) are shown. (B) Sampled network parameters under
non-saturating condition ([Stot] = 0.1 and [Ptot] = 0.1).
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ultrasensitive dynamics, irrespective of imposing enzyme-saturating conditions or

not (Figure 3.7).
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Figure 3.8: Two different parameter regimes for ultrasensitivity. (A) Dynamics
of phosphatase in the first parameter regimes (low KM,P and high KD,P ). (B)
Dynamics of phosphatase in the second parameter regimes (high KM,P and low
KD,P ). (C) Separation of two different parameter regimes in parameter space of
KD,K and KD,P .

For the case of ultrasensitive dynamics, analysis of all “successful” parame-

ter sets showed two distinct parameter regimes leading to ultrasensitive dynamics

(Figure 3.6B). These regimes relate to enzyme saturation (i.e. large or small KM
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values); in one regime, the phosphatase has high affinity for the substrate and is fully

saturated by it (small KM,P ), while the kinase has high affinity for the sequestrat-

ing protein (Figure 3.8A, C). In the second parameter regime, both the kinase and

the phosphatase have large KM values indicating a lower affinity for the substrate.

Thus, the enzymes are mainly bound to the sequestrating protein (small KD values)

and are in competition for that protein (Figure 3.8B, C). In both parameter regimes,

small increase of incoming signals (i.e. small increase in kinase concentration) can

be “absorbed” by increased sequestration of the kinase, while higher signal levels

saturate this sequestration-mediated effect, resulting in significant amounts of free

kinase and resulting in a switch to high phosphorylation rates. The difference be-

tween the two parameter regimes is that in the second regime, competition among

kinase and phosphatase for the sequestrating protein results in an additional feed-

back, where increased kinase levels enhance free phosphatase levels (through release

from the sequestering protein)Figure 3.8A, B. As expected from this analysis, I find

that ultrasensitivity can only be generated in the second parameter regime (i.e.

large KM values and small KD values) when I sample parameters by forcing either

enzyme to be unsaturated by the substrate (Figure 3.6C).

In the case of adaptive dynamics, I find that the parameter regime leading

to highly adaptive networks corresponds to competition among kinase and phos-

phatase for the sequestering protein (i.e. small KD values) (Figure 3.6B, C). In

this case, incoming signals temporarily shift this competition towards the free ki-

nase, but subsequently, the kinase binds the sequestrating protein in expense of the

phosphatase. The resulting release of the phosphatase results in the balancing of

the phosphorylation and desphosphorylation rates, leading to adaptive dynamics

(Figure 3.6B, C).
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Figure 3.9: Modulation of response dynamics through tuning of scaffold protein con-
centration. The four panels show sampling the total concentration of sequestrating
protein, [Ttotal], when fixing all other parameters and with the total concentration
of substrate [Stotal] as shown on the panels. The colour of each data point repre-
sents sequestrating protein concentration. In each panel, the best ultrasensitive or
adaptive response dynamics that are achieved at a specific [Ttotal] level are shown.
Best adaptive response is shown with blue dashed line as input [K] and green line
as output [Sp], while the best ultrasensitive response is shown with dots as steady
state response level when presented with input [K].
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3.3.4 Scaffolding protein can act as a tuning point to generate plas-

tic response dynamics

The intriguing similarity of the mechanisms for adaptive and ultrasensitive dynam-

ics suggests that a single system could implement both dynamics. In particular, I

note that there are parameter sets at the edges of the distinct parameter regimes

leading to ultrasensitive and adaptive dynamics (Figure 3.6B). Is it possible that

such parameter sets result in system where response dynamics can be modulated

by the dynamics of the sequestrating protein? In order to answer the question, I

sampled the concentration of sequestrating protein ([Ttotal]), while fixing all other

parameters to check if simply varying the level of T could modulate the response

dynamics. A few systems showed such modulation, where systems behave with adap-

tive and ultrasensitive dynamics at two distinct total concentrations of T (Figure

3.9). Interestingly, this modulation is influenced directly by the total concentra-

tion of substrate [Stotal]; at high (low) substrate concentration [Stotal] modulation

by [Ttotal] allows an extended shift towards ultrasensitivity (adaptive) rather than

adaptive (ultrasensitive) dynamics (Figure 3.9). I found that altering the affinities

between the sequestrating protein T and the enzymes can also implement a similar

modulation (Figure 3.10). These results show that varying concentration and/or

affinities of sequestrating protein can modulate the plastic response dynamics. Fur-

thermore, it is possible that in more complex networks (like those resulting from

the evolution simulations) such response modulation is embedded within the net-

work dynamics (i.e. scaffolding protein dynamics is allosterically regulated by other

proteins or directly by the signal).

3.4 Discussion

Here, I used in silico evolution implementing a biologically realistic rule-based model

of proteins to evolve signalling networks displaying ultrasensitive and adaptive re-
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Figure 3.10: Modulation of response dynamics through altering affinity between
scaffold protein and enzymes. Sampling only affinity parameters (k7, k8, k9, k10)
while fixing all other parameters, x-axe represents adaptive score and y-axe repre-
sents ultrasensitive score.
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sponse dynamics. Running evolutionary simulations from different starting struc-

tures and under conditions of enzyme saturation or not, I found that enzyme se-

questration by scaffolding proteins is a key network feature enabling these dynamics.

These results from the in silico evolution allowed us to design a simple network mo-

tif that can implement both adaptation and ultrasensitivity with different kinetic

parameters and concentrations of the scaffolding protein. These findings highlight

the role of scaffolding proteins can play in natural systems and synthetic biology ap-

plications as control point of response dynamics. However, the starting structures in

this study are inspired from conserved signalling network motifs, it is possible that

some of these evolved networks stay in a local optimum. A possible alternative ap-

proach is to evolve random starting networks structures by using random generated

binary strings as starting network models.

In natural systems, the scaffold proteins are usually controlled by transcrip-

tional regulation [224] that changes the concentration of scaffold proteins and/or

by post-translational modifications and allosteric regulations [43] (e.g. phospho-

rylation, ubiquitination) that alter the affinities to their binding substrates. This

suggests that evolved natural signalling systems exploit scaffolding proteins to enable

diverse and/or plastic response dynamics. In particular, scaffold proteins are ubiq-

uitously distributed in cellular signalling networks [115] and several experimental

studies have shown their involvement in regulating response dynamics [43, 163, 224,

225]. Additionally, I note that the kinase and phosphatase sequestration described

here is similar to bifunctional enzymes mediating robust homeostatic dynamics as

identified in several biological systems [203, 226]. A possible explanation on why

natural biosystems need such plastic response dynamics would be that such plastic

response dynamics enable biological systems to adapt different environments. When

fluctuating environment changes from one to another, the system can change their

response accordingly. One related interesting questions would be under what kind

of fluctuating environments are the plastic response dynamics beneficial.
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From a synthetic biology perspective, our findings provide key insights on

how altering scaffolding proteins can directly alter response dynamics. Synthetic

manipulation of allosteric properties and/or concentrations of scaffolding proteins

in the MAPK signalling pathways is already shown to result in diverse response

dynamics [227–229]. It is also increasingly possible to induce or change interaction of

enzymes with scaffolding proteins through alteration of common interaction domains

[155], which could allow introduction of new scaffolding protein in specific systems.

These experimental methods, when combined with the theoretical insights presented

here can lead to scaffold proteins becoming a key engineering point for directing and

manipulating signalling dynamics as noted before [168, 230, 231].

The presented study, as well as similar studies [123, 145], show that in silico

evolution can be utilized as a useful approach to discover additional biochemical

principles that are not readily discovered in experimental model systems or through

analysis of conserved structural features. The ability of evolutionary simulations

to provide sample systems implementing a specific functionality allows generation

of hypotheses that can be subsequently tested in experiments (e.g. [95, 123]) or

verified using minimalistic models, as I have done here. Thus, evolution in silico

can provide us with insights on biochemical features that natural evolution has so

successfully exploited. These features can act as evolutionary design principles that

can further our ability to engineer de novo biological systems and understand the

natural ones.
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Chapter 4

Emergence and Design of

Networks with Bistable

Dynamics

4.1 Introduction

Ultrasensitivity itself is a potentially important biochemical function that allows

systems respond sensitively to the modest signal changes and ignore signals that are

either too low or too high. The threshold is formed by the discriminative sensitivities

to different signal levels. In many biological processes, the ultrasensitivity functions

as either a filter that removes the background noise or a decisive controller that

switches cellular states [62]. In terms of cell state transition, bistable dynamics

where the system has two distinct stable steady state can also control cell state

transitions [75, 76]. When the system switches between different states, bistable

response dynamics typically has hysteretic transitions which distinguish bistable

dynamics from ultrasensitive but monostable systems (Figure 1.1A & 1.1C). Such

hysteresis forms biochemical memory that is of great interests for synthetic biology

applications. Interestingly, one more important role of ultrasensitivity is its capacity
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to enable more complex dynamics such as bistability and oscillation [40][62]. In

this chapter, I will discuss the emergence of bistability from previous evolutionary

simulations. By dissecting the evolved bistable networks, I find the bistable units in

evolved networks featuring allosteric regulation on enzymes of futile cycles, which

shed light on potential design principles for bistability in signalling networks. Also

inspired by the emergence of bistable dynamics, I use the fitness function to design

more bistable networks where allosteric regulations are not permitted.

4.2 Methods

4.2.1 Evolutionary simulations

Previously 60 evolutionary simulations are carried in Chapter 3, where 10 indepen-

dent simulations each for two different starting concentration conditions and three

different starting structure conditions. Additional 60 evolutionary simulations are

carried with configurations where allosteric regulations are not allowed in evolv-

ing networks (see Methods in Chapter 2 for detail). The additional 60 simulations

started with the same conditions from previous 60 simulations, the fitness function

for selecting ultrasensitive response dynamics is also the same as of previous 60

simulations.

4.2.2 Chemical reaction network toolbox

For determining the existence of multistationarity of given signalling networks, I

utilised the Chemical Reaction Network Toolbox (CRNToolbox)∗. Given a chemical

reaction network described with mass action kinetics, CRNToolbox can determine

whether multiple equilibria exist with any positive kinetic parameters. I analysed

the existence of multistationarity in several different signalling networks given the

chemical reactions in the networks. An example of CRNToolbox report can be found

∗https://crnt.osu.edu/CRNTWin
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in Appendix D. The detail usage of CRNToolbox is described in its manual.

4.3 Results

4.3.1 Bistability emerges from previous evolutionary simulations

In Chapter 3, I discussed what type of structures and biochemical mechanisms

emerged under different selection pressure. One of the fitness function is ultrasensi-

tivity which imposes an ad hoc threshold. The evolved systems have large responses

(change of output response level) when perturbation of input signal happens near

the threshold and small responses when it happens far away from the threshold.

Interestingly, when I study the dose response curves of all evolved ultrasensitive

networks (Figure 3.3), there are 7 networks whose dose response curves show clear

hysteresis near the threshold (Figure 4.1). From low level of output to high level

of output or vice versa, the hysteretic transitions in these networks indicate there

are two distinct stable steady states in their dynamics. When input signal is in the

hysteretic area, the system has two distinct levels of output response (i.e. they are

bistable). However, which state the system stays in depends on the historical state

where the system comes from [107, 232–235].

Examining the fitness function for selecting ultrasensitive response dynam-

ics in Chapter 2, the fitness function actually selects for a wide threshold in the

response dynamics, where signals respond most (Figure 2.2A). The hysteresis in

evolved bistable networks provides sufficient threshold such that the system re-

sponse mostly in the hysteretic range of input signal. Therefore, evolved bistable

response dynamics is one of the possible solutions to such fitness function which

was intentionally designed to selects ultrasensitive response dynamics. However,

the bistable dynamics is different from ultrasensitive dynamics in the sense that the

latter is monostable and without hysteresis.

The evolved bistable networks are rather complex in terms of combinatorial
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Figure 4.1: The bistable networks emerged from evolutionary simulations and their
dose response curves.

interactions between signalling proteins with multiple domains (Figure 4.1). It is

difficult to map their structures with the underlying mechanisms where bistability

emerges. In previous studies, bistable dynamics in biological systems are commonly

linked to positive feedback loops which are immediately observed from schematics

of gene regulatory networks [236]. Mathematical proofs also showed that positive

feedback loops is a requirement for gene networks displaying multistationarity [105].

However, the positive feedback loops required for bistable dynamics are not directly

observable from all evolved bistable signalling networks. Such determinant feedback

loops ought to be hidden in the complex interactions. Furthermore, investigations

on MAPK signalling pathway showed that phosphorylation and desphorylation cy-

cles of proteins with multiple phosphorylation sites can result in multistationarity

even though no revealing positive feedback loops can be found in the structure of

signalling cycles [106]. Examining the evolved bistable networks, there is no protein

with multiple phosphorylation sites. Altogether these hint that evolved bistable

networks are installed with new bistable motifs to enable hysteresis and bistability.

4.3.2 Dissecting evolved bistable networks to obtain bistable units

In order to understand the underlying bistable motifs, I started to dissect the struc-

ture of evolved bistable networks. When reducing the size and complexity of net-
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works, I utilise the chemical reaction network toolbox (CRNToolbox) (see Methods)

to examine whether simplified networks allow bistable dynamics with any positive

real values of rate constants and concentrations. The CRNToolbox use chemical

reaction networks theory (CRNT) [237, 238][239][240] to check several qualitative

properties of chemical reaction networks with mass-action kinetics. One such prop-

erty is the existence of multistationarity with parameters in positive real domain.

Since all parameters are relaxed as any positive values, the toolbox checks the prop-

erties of reaction networks based on their structure only. This parameter-free ap-

proach can help us find the minimal structure basis of multistationarity in evolved

networks. In each step, I simplify the evolved networks by removing a signalling

protein or an interactions in the network, then use CRNToolbox to check if the

network is still bistable. The network is simplified until it becomes monostable.

Then the minimal network structures can be considered as candidate subnetworks

enabling multistationary property in evolved networks [241]. I started from a rel-

atively simple network (Network 15 in Figure 4.1) and continued simplifying the

network results in smaller and smaller network structures that still allow bistable

dynamics (Figure 4.2).

All evolved networks contain allosteric regulations that did not exist from

where the evolutionary simulations started (Figure 4.1). I firstly take a route

to reduce the size of network while keeping the allosteric regulation on the ki-

nase. The derived smallest bistable subnetwork is composed of one phosphorylation-

dephosporylation cycle with an allosteric enzyme where the kinase has two distinct

conformational states that switch between each other. Further simplifying this

bistable subnetwork by removing allosteric reactions results in the subnetwork of

phosphorylation-dephosphorylation cycle which is monostable. The monostable cy-

cle is exactly the same as the zero-order sensitivity model [92]. This supports the

hypothesis that allosteric enzymes are important for bistable dynamics in signalling

networks. This bistable subnetwork is thus one of the simplest motifs for generating
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Figure 4.2: Simplification of an example bistable network emerged from evolutionary
simulations (Network 15).

bistable dynamics in evolved networks.

Either the phosphorylation-dephosphorylation cycle or allosteric regulated

model (MWC model) alone can generate monostable but possible ultrasensitive re-

sponse dynamics [87, 92]. The uncovered bistable motif requires both present. In

order to examine the necessity of allosteric regulation in evolved bistable dynam-

ics, I took another route of simplifying the evolved network (Figure 4.2). The

resulted bistable subnetwork is a phosphorylation-dephosphorylation cycle with an-

other scaffold protein with capacity binding the kinase (Figure 4.2). Although this

subnetwork does not show explicit allosteric reactions (i.e. reactions of switching

between different conformational states), different catalytic capabilities in two dif-

ferent states of enzyme (i.e. bound and unbound with scaffold protein) again require

either allosteric effect or steric effect on the enzyme’s catalytic ability. These two

subnetworks show the important role of allosteric enzymes combining with futile

cycles in bistable signalling networks. Further analysis of allsoteric enzyme’s role as

a design principle of bistability appears in Chapter 5.
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4.3.3 Design of bistable networks without allosteric regulations

Figure 4.3: Designed bistable networks without allosteric regulations.

Since the evolutionary simulation with the discussed fitness function allows

bistable response dynamics to occur, the fitness function can be used as a objec-

tive function to design bistable signalling networks. More interesting questions are

whether there are other patterns for bistable dynamics in signalling networks and

whether this approach can be used to design such bistable signalling networks. To

prove this hypothesis, I ran another 60 simulations with the same starting condi-

tions and fitness function as before except that no allosteric regulation are allowed

to evolve or occur. In this setting, the bistable motifs with allosteric enzymes dis-

covered from previously evolved networks can not appear in the currently evolving

networks.

These evolutionary simulations have resulted in only 3 networks that become

“ultrasensitive” (fitness score > 0.8). However, from those 3 networks, two of them

have hysteresis in their dose response curve thus are bistable (Figure 4.3). This

clearly shows that there are mechanisms other than allostery that are endowing the
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evolved networks with bistable dynamics. Using the similar deducing approach, I

dissect one of the two bistable networks (Network B2) and derived a simple bistable

motif (Figure 4.4) featuring a futile cycle with both enzymes sequestrating each

other. This bistable motif is similar to the signalling cycle with both enzyme se-

questrated by a common scaffold protein (Chapter 3), however that motif is not

bistable for any parameters that are positive (Figure 4.4).

Figure 4.4: Simplification of designed bistable network (Network B2)

4.4 Discussion

For many different complex dynamics in biological systems, it is very difficult to de-

pict their genotype-phenotype mapping. One particular reason is that the mapping

between genotypes and phenotypes are rather complex than one to one mapping.

Study in excitable gene regulatory circuits, two different architectures of the cir-

cuits both emerged as solutions for pulse dynamics however with diffferent noise

dependency and tunability [201, 242, 243]. Such complex genotype-phenotype map-

ping also appears in previous studies on the evolution of bistable switches in gene

regulatory networks where three different mechanisms evolved as the solutions for
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bistable switches in gene networks, one of which is not reported in natural biolog-

ical systems [123] but latter implemented experimentally [95]. The emergence of

bistable dynamics in this study, where I evolved signalling networks with the ad

hoc fitness function with intention of selecting ultrasensitive response dynamics, is

another indication that solution to certain response dynamics in cellular networks

is not simplex, rather that many different solutions may emerge.

The bistable dynamics has its biological significance. From the perspective

of systems dynamics, the systems will rest in one state depending on their historical

position because of hysteretic transitions. In biological systems, bistable systems

generate heterogeneous responses in a population of cells. Especially, such hetero-

geneity in microbes is considered as a bet-hedging strategy that enable survival

of the species in fluctuating environments [244]. For multicellular organisms, the

bistable dynamics determines the cell fates in differentiation and development [75,

233, 245]. Therefore, it is possible to design and engineer bistable dynamics in bio-

logical systems. In particular, this Chapter showed that the ad hoc fitness function

can potentially be used as an objective function to design and optimise bistable

signalling networks through evolutionary simulation.

Furthermore, understanding the design principles of bistable dynamics can

be of great interest and benefit. Not only such design principles can help us un-

derstand natural biological systems, but also allow us to design and build novel

bistable biological systems. Those subnetworks derived from evolved bistable net-

works provide specific design pattern for bistable dynamics in signalling networks

(Chapter 5). Particularly, the futile cycle with allosteric enzymes is prevalent in

biological systems, and the detailed analysis of this systems reveals interesting de-

sign principles, which is provided in Chapter 5. However, the structural conditions

that distinguish multistationary signalling networks from monostationary ones are

rather subtle and unapparent. Comparison between monostationary signalling net-

works and multistationary ones can potentially uncover the definitive structural
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patterns of multistationary signalling networks. Such structural patterns are the

necessary and sufficient structural conditions on the capacity allowing multistation-

arity of a general mass-action chemical reaction network. This motivated me to

construct an algorithmic approach to enumerate reaction networks on the purpose

of searching the boundary between monostationarity and multistationarity in sig-

nalling networks. This work is introduced in Chapter 6.
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Chapter 5

Core signalling motif displaying

multistability through

multi-state enzymes

5.1 Introduction

Cells sense environmental stimuli and use these to initiate appropriate physiological

responses. Understanding such cellular information processing in healthy and dis-

eased states [246–248], and engineering it through synthetic biology [111, 249–251],

requires better insights into the relation between different interaction motifs found

in signalling networks and their potential roles in the ensuing system dynamics [77].

To this end, a key interaction motif found predominantly in eukaryotic signalling

systems is that of a futile signalling cycle, where a substrate protein is phosphory-

lated by a kinase and dephosphorylated by a phosphatase. When these enzymes are

saturated by their substrate, this motif can display ultrasensitive response dynam-

ics, enabling threshold responses to graded input signals [92]. It can also be shown

theoretically, that the futile cycle motif in its simple form cannot enable bistability

(see below). Experimental studies of cellular systems embedding the futile signalling
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cycle for several physiological responses, including cell fate determination and cell

division [23, 43, 72, 193], found ultrasensitive-responses and in some cases bistability

[75, 199, 236, 252–256]. While the presence of bistability has been indicated to be

functionally significant, for example in the generation of phenotypic variability [76,

257–259], its molecular implementations have not been fully elucidated.

To achieve bistability in a futile signalling cycle motif, the originally studied

structure of this motif needs to be extended with additional features. Theoretical

studies have shown that bistability can be achieved if there are feedback interactions

between the substrate and its acting enyzmes (i.e. the kinase or phosphatase) [11,

48, 241, 260, 261], or if the substrate has multiple phosphorylation sites [52, 54,

106, 262]. The latter proposition is particularly interesting as the presence of multi-

ple phosphorylation sites on signalling proteins is a common phenomenon [263, 264].

Kinases, phosphatases, as well as their substrates readily exhibit two or more confor-

mational states that are associated with different levels of phosphorylation and that

result in different catalytic activity levels [227, 265, 266]. In the signalling pathways

regulating the cell cycle for example, it has been hypothesised that signalling pro-

teins with multiple phosphorylation sites act as multi-state enzymes that can embed

complex signal-processing [265–268]. It is also shown that the different activity lev-

els of signalling proteins can be regulated through allosteric interactions with ligands

or other proteins, such as so-called scaffolding proteins [216, 224, 225, 227]. Scaf-

folding proteins, which are ubiquitous in signalling systems [224, 225], can also have

multiple phosphorylation and binding sites themselves and, as such, are key regula-

tors in signalling pathways [43, 163, 269–271]. Despite these experimental findings

and observations on specific signalling proteins and pathways, it has been difficult

to elucidate any particular features, or design principles, that can provide a clear

understanding between the nature of signal processing that a system implements

and the presence of multi-phosphorylation-site-featuring, multi-state enzymes. This

difficulty arises partially from the fact that modelling of signalling pathways with
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multi-state enzymes becomes increasingly complex, with a combinatorial explosion

of possible interactions in the system.

In Chapter 4, it has been demonstrated that only a futile cycle cannot display

bistability (also see ), however this result changes and bistability becomes possible

if we consider the allosteric nature of kinases and phosphatases (Figure 4.2). In

this chapter, I perform a systematic, mathematical analysis of the effects of having

multi-state kinases on the response dynamics and the number of steady states in

this simple and core futile signalling cycle motif. I first show that when this motif is

analysed with the assumption of single-state enzymes, the resulting system cannot

display bistability for any positive kinetic parameter values. This situation changes

and bistability becomes possible only with the introduction of a two-state kinase,

leading to one of the smallest signalling systems that is bistable. Using this mini-

malist system as a tractable core motif, I am able to derive mathematical conditions

on the kinetic parameters and/or the total concentrations of substrate and kinase

that are necessary and sufficient for the existence of three steady states. This allows

an intuitive insight that bistability in this minimalist system arises from the com-

petition between the different kinase states for the substrate. Extending from this

intuition, I show that increasing the number of kinase states in the system leads to a

linear increase in the number of steady states. I show that both multi-state enzymes

and the discussed core motif are prevalent in many signalling pathways and that the

identified parameter ranges for bistability are biologically plausible. These results

provide an intuitive view on multi-state enzymes leading to bistability and multi-

stability through competition for their substrates. As such, the multi-state nature

of enzymes can be exploited to better understand natural signalling pathways and

to engineer novel ones.
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5.2 Methods

5.2.1 Model for a futile signalling cycle with two-state kinase

The core futile signalling cycle I consider here has been considered before in sem-

inal works and consists of a covalent modification, i.e. de/phosphorylation, of a

substrate by a kinase and a phosphatase [47, 92]. In Chapter 4 I derived one of

the smallest signalling motif which is similar to the futile signalling cycle but with

an allosteric kinase. Here, I take the bistable signalling motif with an allosteric

kinase. For the case of the allosteric kinase, I consider two distinct states (Kr

and Kt) catalysing a substrate (S) into product (Sp). To simplify the system, I

do not model the phosphatase directly, but rather consider the reverse reaction as

an auto-dephosphorylation reaction. The corresponding reactions including kinase

transformations between different states and considering catalytic reaction cycle is

given by:

Kr + S
κ1−−⇀↽−−κ2

KrS
κ3−−→ Kr + Sp

Kt + S
κ4−−⇀↽−−κ5

KtS
κ6−−→ Kt + Sp

Sp
κ7−−→ S

Kr
κ8−−⇀↽−−κ9

Kt

KrS
κ10−−⇀↽−−κ11

KtS,

where, the parameters κ1, κ2, · · · , κ11 represent the kinetic reaction rates.

The system is composed of 6 species, of which two are complexes. Based on the

reaction network, I constructed a mathematical model containing a set of 6 ordinary
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differential equations:

d[Kr]

dt
= −κ1[Kr][S] + κ2[KrS] + κ3[KrS]− κ8[Kr] + κ9[Kt]

d[Kt]

dt
= −κ4[Kt][S] + κ5[KtS] + κ6[KtS] + κ8[Kr]− κ9[Kt]

d[KrS]

dt
= κ1[Kr][S]− κ2[KrS]− κ3[KrS]− κ10[KrS] + κ11[KtS] (5.1)

d[KtS]

dt
= κ4[Kt][S]− κ5[KtS]− κ6[KtS] + κ10[KrS]− κ11[KtS]

d[S]

dt
= −κ1[Kr][S] + κ2[KrS]− κ4[Kt][S] + κ5[KtS] + κ7[Sp]

d[Sp]

dt
= −κ7[Sp] + κ3[KrS] + κ6[KtS],

And the system need to follow these conservation equations:

[Stot] = [S] + [Sp] + [KrS] + [KtS]

[Ktot] = [Kr] + [Kt] + [KrS] + [KtS]

where I introduce two concentration invariants, namely [Ktot] and [Stot], represent-

ing the total concentration of the kinase and the substrate respectively. This equates

to the biological assumption that total concentration of these signalling proteins are

constant over the relevant time scales of signalling (i.e. the model does not consider

dynamics arising from gene regulation and expression).

5.2.2 Analytical solutions

The mathematical analysis on model of minimal bistable signalling motif results

in the necessary condition on parameters (i.e. 2 total concentration values and

11 kinetic rate constants) under which the motif exhibits bistable dynamics (see

Appendix E):

α1Ktot + α2 < Stot < α3Ktot + α4, (5.2)
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where,

α1 =
κ1κ4[(κ6 + κ7)κ10 + (κ3 + κ7)κ11]

κ1κ4κ7(κ10 + κ11)
,

α2 =
(κ2 + κ3)κ4κ7(κ8 + κ11) + (κ5 + κ6)κ1κ7(κ9 + κ10) + κ7(κ1κ9 + κ4κ8)(κ10 + κ11)

κ1κ4κ7(κ10 + κ11)

α3 =
[(κ1κ9 + κ4κ8)((κ6 + κ7)κ10 + (κ3 + κ7)κ11)(κ2 + κ3)κ4κ8(κ6 + κ7) + (κ5 + κ6)κ1κ9(κ3 + κ7)]

κ7[(κ1κ9 + κ4κ8)(κ10 + κ11) + (κ2 + κ3)κ4(κ8 + κ11) + (κ5 + κ6)κ1(κ9 + κ10)]

α4 =
[(κ2 + κ3)κ11 + (κ5 + κ6)κ10 + (κ2 + κ3)(κ5 + κ6)]κ7(κ8 + κ9)

κ7[(κ1κ9 + κ4κ8)(κ10 + κ11) + (κ2 + κ3)κ4(κ8 + κ11) + (κ5 + κ6)κ1(κ9 + κ10)]
.

For each fixed value of Ktot, the solution to the system of inequalities (5.2)

is either empty or an interval. Since αi > 0 for i = 1, 2, 3, 4, α1Ktot + α2 and

α3Ktot +α4 are increasing straight lines in Ktot with positive intercept. The region

is described by a sector intersected with the positive orthant of R2. If the two lines

are parallel, the valid region is the region between the two lines intersected with the

positive orthant.

The necessary and sufficient condition under which the system exhibits bistable

dynamics with parameters in positive real domain is as following (see Appendix E):

(κ3 − κ6) (ηrκ9κ10 − ηtκ8κ11) > ((κ6 + κ7)κ10 + (κ3 + κ7)κ11) (ηrκ10 + ηtκ11)

(5.3)

where,

ηr =
κ1

κ2 + κ3
ηt =

κ4
κ5 + κ6

are the inverses of the Michaelis-Menten constants of the kinases Kr and Kt respec-

tively.

5.2.3 Parameter sampling

The parameter sampling is performed by drawing random number r from uniform

distribution in interval [ln 10−3, ln 103], then scale the random number through κ =

er. In this approach, I confine the sampled parameters in biologically relevant
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ranges (Table 2.2). For sampling on interdependent parameters in detailed balancing

conditions (i.e. κ1 ·κ5 ·κ9 ·κ10 = κ2 ·κ4 ·κ8 ·κ11), I first draw a random number γ from

gamma distribution with probability density function as p(x) = xα−1 e−x/β

Γ(α)βα where

Γ is a gamma function, α = 2 and β = 7. Then draw two sets uniformly distributed

random numbers, each set has four random numbers (e.g. r1, r5, r9, r10 and r2, r4,

r8, r11) such that r1 + r5 + r9 + r10 = r2 + r4 + r8 + r11 = 1. Then accordingly, the

kinetic rate constants can be scaled by κi = e−ri·γ , where i = 1, 2, 4, 5, 8, 9, 10, 11.

5.3 Results

5.3.1 The futile signalling cycle with a two-state kinase is a bistable

motif

A key interaction motif found in eukaryotic signalling networks is the so-called futile

signalling cycle, where a protein substrate is covalently phosphorylated and despho-

sphorylated by a kinase and phosphatase (Figure 5.1A). In Chapter 4, I discovered a

novel bistable subnetwork by simplifying emerged bistable networks in evolutionary

simulations. This subnetwork is composed of a futile signalling cycle with a kinase

and a phosphatase where the kinase has two distinct conformational states switching

between each other. As shown before, the futile signalling cycle when considered

with a single phosphorylation site on the substrate and a single-state kinase and

phosphatase cannot display bistability for any parameters with positive values [262,

272] (Figure 4.2 and 5.1A) as can be proven by the deficiency one theorem [237,

238, 273, 274], but shows ultrasensitivity under saturating [92]. When I extended

this system with a two-state kinase, this key result changed and bistability was pos-

sible. I introduced the two-state kinase such that each state can bind the substrate

and catalyse its phosphorylation, and where transitions between the two states are

possible irrespective of substrate binding (Figure 5.1B). The two-state kinase, as I

introduced in this simple model, switches between two conformational states with a
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constant rate. The two states show differential catalytic activity towards the sub-

strate (see Figure 5.1B and Methods). While this is the simplest model to introduce

the idea of multi-state enzymes into the core futile cycle motif, it is readily pos-

sible to assume more complex models. In particular, the conformational change

between kinase states can be modelled as an allosteric regulation [87, 88, 90, 275,

276], whereby it is linked to binding of the kinases by a ligand or other proteins, or

as arising from covalent phosphorylation events as commonly observed in signalling

proteins [11, 264, 277]. I consider such models below, but note that they do not

alter the key conclusions of this study on bistability and multi-stability.

Figure 5.1: Different signalling futile cycles, corresponding chemical reactions and
their capacity for bistable dynamics.

I find that the core motif with two-state enzymes can be further simplified

without compromising bistability by removing the phosphatase and letting the de-

phosphorylation of the substrate happen through auto-hydrolysis at a constant rate

(see Figure 5.1C and Methods). In this way, I obtain a minimalist core signalling

system driven by a two-state kinase, which displays bistability. The system contains

88



only six species, making it one of the smallest signalling motifs that are bistable.

5.3.2 Conditions for bistability in the core motif are satisfied in a

biologically plausible range

The simplicity of this core motif allowed me to analytically study the solutions to

the steady state equations (see Appendix E). In particular, I was able to derive a set

of inequalities in the kinetic parameters and total concentrations of the substrate

and kinase that provide a set of necessary and sufficient conditions for the existence

of three steady states in the system (Equation 5.3, see also Appendix E for the

derivation of this equation). From these conditions I derive the following necessary

condition for bistability (the indexing of the rate constants is given in Equation 5.1

in Methods:

(κ3 − κ6) (ηrκ9κ10 − ηtκ8κ11) > 0 (5.4)

where,

ηr =
κ1

κ2 + κ3
ηt =

κ4
κ5 + κ6

are the inverses of the Michaelis constants of the kinases Kr (the kinase at the

relaxed state) and Kt (the kinase at the tense state) respectively. Analysis of this

equation reveals key features of the system that are necessary for bistability. I find

that the switching reactions between the two states of the kinase, as well as between

the kinase-substrate complexes are crucial for bistability. That is, both κ8 and κ9

cannot be zero, and both κ10 and κ11 cannot be zero. Thus, the structure of the

reaction system composing of a futile signalling cycle driven by a two-state kinase

is crucial for enabling bistability.

Equation 5.4 provides two key features for bistability. Firstly, the two in-

terconnected futile cycles between S and Sp, defined by the two kinase states,

need to operate at different catalytic rates (i.e. κ3 ̸= κ6). Secondly, the switch-

ing between these cycles through the four forms of the kinase (i.e. Kr, Kt, KrS,
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Figure 5.2: Expanded signalling networks without detailed balance. (A) Extended
network obtained by adding an enzyme catalysing one of the transitions between
the two states of the kinase K in the core motif. (B) Extended network obtained
by adding a protein to the core motif such that steric effects from the binding of
the added protein with the enzyme makes the transitions between different states
of the kinase K irreversible. Both extensions maintain the capacity for bistability.
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KtS) needs to occur at different rates, and in a way opposing the difference in

the catalytic rates. Specifically, if the futile cycle for the relaxed state of the ki-

nase (i.e. Kr and KrS) has the highest catalytic activity (i.e. κ3 > κ6), then

ηrκ9κ10 needs to be larger than ηtκ8κ11. As a consequence, the clockwise inter-

changing cycle, Kr → KrS → KtS → Kt → Kr, corresponding to the product of

the rate constants κ1κ10(κ5+κ6)κ9, needs to dominate over the anti-clockwise cycle,

Kr → Kt → KtS → KrS → Kr, corresponding to the product κ4κ11(κ2 + κ3)κ8.

Symmetrically, if Kt has higher catalytic activity than Kr (i.e. κ3 < κ6) then the

anti-clockwise cycle needs to dominate.

A further constraint on the rates governing the transitions among the four

forms of the kinase might arise from thermodynamics. Particularly, these transi-

tions form a local state cycle, which must follow the principle of detailed balance

if we assume no additional energy input into the system [278–281]. This results in

a thermodynamic constraint on the reaction kinetics such that the product of the

rate constants in the clockwise direction must equal the product of the reverse rate

constants (i.e. κ1κ5κ9κ10 = κ2κ4κ8κ11). It must also be noted, however, that this

constraint would be relaxed if the conformational switching between the enzyme

states were directed by energy input (e.g. phosphorylation-dephosphorylation re-

actions, (Figure 5.2A) or steric effects with enzyme binding with other proteins or

enzymes (Figure 5.2B).

Table 5.1: Number of bistable parameter sets found by sampling parameters of the
core motif. Sampling is performed under two conditions, relaxed form and under
the thermodynamic constraint. The total number of sampled parameter sets is 105.

With thermodynamic constraint Without thermodynamic constraint
2787(∼ 2.8%) 14492(∼ 14%)

To determine whether these conditions on kinetic rates can be simultaneously

satisfied in cellular signalling networks, I tabulated kinetic parameters from the

literature (see Table 2.2 and references therein). I then sampled 105 parameter
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Figure 5.3: Parameter sets that allow for bistability, sampled in a biologically feasible
range. (A) Sampled parameter sets plotted in the space of κ3

κ6
vs. ηrκ9κ10

ηtκ8κ11
. The blue

dots (resp. yellow triangles) correspond to the parameter sets sampled without (resp.
with) the thermodynamic constraint. In accordance with the sufficient and necessary
condition (see Methods), all sampled parameters that allow for bistability fall into
the two regions that meet at (1, 1). (B, C) Boxplots of the rate constants sampled
without (B) and with (C) the thermodynamic constraint, shown on log10-scale.
The conditioning on bistability changes the distribution of the rate constants. In the
inequality for bistability (Equation 5.3 in the main text) the groups of rate constants
κ1, κ2, κ3, κ9, κ10 and κ4, κ5, κ6, κ8, κ11 appear symmetrically in the inequality
in the sense that if the two groups of parameters are swapped, the inequality is
fulfilled if and only if it was so before swapping. Hence the rate constants κ1 and
κ4 follow the same distribution, κ2 and κ5 do as well, and so on. This symmetry
is visible in the boxplots. The range of each parameter generally shrinks under the
thermodynamic constraint compared to without the constraint.
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sets around these known kinetic parameters and checked whether the necessary

and sufficient conditions for bistability were satisfied (see Methods). This analysis

showed that the futile signalling cycle displays bistability in a biologically plausible

parameter regime, even when thermodynamic constraints are taken into account

(Figure 5.3 and Table 5.1).

Figure 5.4: Schematic of minimal signalling motif displaying bistability. Car-
toon representation of the two interconnected reaction cycles constituting the core
bistable system. The arrows represent reactions in the system and are labelled with
the kinetic parameters from Equation 5.1. Two rectangles (dashed line) with dif-
ferent background colour show the two futile cycles with Kr (green) and Kt (red)
competing for the substrate (in the intersected region of the two rectangles).

5.3.3 Bistability can be seen as arising from competition between

the kinase states for the substrate

It is interesting to note that the mathematical conditions derived in Equation 5.4

impose a specific structure onto the core motif, which can be seen as two connected

reaction cycles that are driven by the two states of the kinase competing for the same

substrate (Figure 5.4). Equation 5.4 shows that the flows of these two competing

reaction cycles need to have a specific relationship for bistability to emerge. To
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better understand these ensuing reaction fluxes, I have analysed the steady states

of the system for increasing total kinase concentration, as a proxy for an increasing

signal (Figure 5.5, see also Appendix E). For a fixed set of parameters in the bistable

regime such that κ3 > κ6, κ9 > κ8, κ10 > κ11, and ηrκ9κ10 > ηtκ8κ11 (see Table

5.2), I find that in the low signal regime, where the total level of kinase is low, there

is a large flux from KrS into KtS, resulting in the accumulation of KtS. Thus

in this low signal regime, the slow futile cycle driven by Kt (which has the lower

catalytic activity) dominates (i.e. [Kr] + [KrS] < [Kt] + [KtS]) and the system is

at low state (i.e. small [Sp]) (Figure 5.5, red dots). In the high signal regime, the

fast futile cycle driven by Kr dominates (i.e. [Kr] + [KrS] > [Kt] + [KtS]) and the

system is at the high state (i.e. large [Sp]). The substrate is largely converted to the

phosphorylated form, which results into the accumulation of Kr (Figure 5.5, green

dots). Whether the Kr mediated or Kt mediated cycle dominates is primarily

determined by the condition ηrκ9κ10 > ηtκ8κ11, which relates to the inverse of

Michealis-Menten constants associated with each kinase forms and the transition

rates between these forms in a free and substrate-bound state.

Table 5.2: Example parameter sets that enable bistable dynamics in the core sig-
nalling motif. The table shows the parameter sets used for the generation of the
bifurcation plot in Figure 5.5.

Parameter Unit Value Reaction
κ1 µM−1s−1 86.78 Kr + S → KrS
κ2 s−1 3.583 KrS → Kr + S
κ3 s−1 92.84 KrS → Kr + Sp

κ4 µM−1s−1 1.200 Kt + S → KtS
κ5 s−1 0.02626 KtS → Kt + S
κ6 s−1 0.2644 KtS → Kt + Sp

κ7 s−1 2.357 S → Sp

κ8 s−1 0.01310 Kr → Kt

κ9 s−1 0.7842 Kt → Kr

κ10 s−1 1.041 KrS → KtS
κ11 s−1 0.008057 KtS → KrS
[Stot] µM 9.994 —
[Ktot] µM 0 ∼ 3 —
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This analysis derived from the necessary parameter conditions leads to an

intuitive view, in which the bistability in the system is understood as a result of the

two futile cycles driven by the two forms of the kinase competing for the substrate.

Furthermore, the competing kinase forms need to have opposite dominance in terms

of being able to bind the substrate and their catalytic activity, such that the form

dominating catalytically (κ3 > κ6) needs to be weaker in terms of substrate binding

kinetics (i.e. assuming κ9 = κ10 = κ8 = κ11, we need to have ηr > ηt).

Figure 5.5: Bifurcation plot of core bistable signalling motif. The solid line corre-
sponds to the stable steady state levels of [Sp] with increasing signal given by the
total concentration of kinase [Ktot]. The dashed line corresponds to the unstable
steady states. The parameter values used to generate the bifurcation plot are listed
in Table 5.2. The four little cartoons, drawn as inset, are showing the allocation
of all species concentration and corresponding reaction fluxes at the different levels
of [Ktot], as indicated by the coloured dots. Within each cartoon, the size of each
blue box stands for the relative amount of species (logarithmically scaled), while
the thickness of the arrows stands for the relative levels of the reaction fluxes (loga-
rithmically scaled) calculated with mass-action kinetics, namely κ1[Kr][S], κ2[KrS],
κ3[KrS], κ4[Kt][S], κ5[KtS], κ6[KtS], κ7[Sp], κ8[Kr], κ9[Kt], κ10[KrS], κ11[KtS].

95



5.3.4 Increasing the number of kinase states in the signalling cycle

leads to unbounded multistationarity

Recognising that bistability in the core motif is linked to the competition between

the two futile cycles, it is intriguing to consider whether adding more competing

cycles increases the number of steady states. To expand from the simplest motif

towards more complicated systems, one way of increasing competing cycles is to

increase the number of two-state kinases, while the other is to increase the number

of states of a single kinase. I find that both expansions of the minimal system result

in an increase of the number of steady states.

Firstly, I considered the case of multiple kinases with two states (Figure

5.6A). In this case, multiple two-state kinases in a futile cycle lead to multistation-

arity (Figure 5.6A). With the number of kinases n increasing, the number of steady

states linearly scales with n. We prove that the system can admit at most 2n + 1

steady states and further that n of them are unstable (see Appendix E). The other

n+ 1 steady states are presumably stable. Secondly, multistability can be achieved

by one kinase with multiple states (Figure 5.6B). When the kinase has 3 distinct

states, the system can have 3 steady states at most, but a four-state kinase results in

the possibility of 5 steady states at most (Figure 5.6B, see Appendix E). The general

scenario with an n-state kinase is too complex mathematically, and does not admit

the approach used to analyse systems with multiple two-state kinases. However, we

conjecture that the number of positive steady states grows linearly with n as well,

such that the system admits at most n+ 1 positive steady states if n is even and n

positive steady states if n is odd.

5.3.5 Multistability enables complex state transitions

The above results confirm that a single futile signalling cycle with a two-state ki-

nase can generate bistable dynamics and that such a system can be expanded by

increasing the number of kinase states to achieve unlimited multistationarity. In this
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Figure 5.6: Implementation of multistability by expanding the minimal bistable
motif. (A) Multistability generated from signalling cycle with multiple two-state
kinases. Top-left: A schematic of multiple kinases. Middle-left: Bifurcation plot
for a system with two allosteric kinases, the x-axis shows the signal level [K2tot]
(total concentration of the second kinase K2), the y-axix shows the level of [S]
(unphosphorylated substrate S). Bottom-left: Bifurcation plot of a system with
three kinases. (B) Multistability generated from signalling cycle with multi-state
kinase. Top-right: schematic of a multi-state kinase catalysing a futile signalling
cycle. Middle-right: Bifurcation plot of system with a three-state kinase. Bottom
right: Bifurcation plot of a system with four-state kinase. The x- and y-axis are
as above. In all bifurcation plots, solid lines correspond to stable steady states,
while dashed lines correspond to unstable steady states. All axes use the unit of
concentration µM .
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scenario, each additional kinase state drives potentially the generation of a pair of

steady states, one stable and one unstable, due to the competition for the substrate.

Thus, it should be possible to use the total concentrations (or kinetic parameters) of

the different kinases to change the signal thresholds to switch between steady states

and implement logic gates in this way. More specifically, in the system with multiple

two-state kinases, varying the total concentration of a kinase can dictate the system

transitions among the different steady states resulting from multistability.
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Figure 5.7: Multistability installs complex state transitions. The steady state level
of the unphosphorylated substrate, [S], for different levels of the two kinases, [K1,tot]
and [K2,tot]. The colour-coding shows the level of unphosphorylated substrate, [S],
for each amount of kinase. The black and white dots represent specific states of the
system. The black and white arrows show the hypothetical trajectories described
when the kinase levels are perturbed in various combinatorial ways, as discussed in
the main text.

Here, I show that by combinatorial perturbations of different kinases, a sys-

tem with three two-state kinases can perform complex state transitions (Figure 5.7).

The varying parameters are the total concentrations of the first two kinases, namely

[K1tot] and [K2tot]. I assume that the system starts off at a given state (O1 in
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Figure 5.7) with low total concentration of both kinases. By increasing the total

concentration of either kinase (K1, K2) or both, the system can be made to switch

to three different end-states of [S] (Figure 5.7, points E3, E1 or E2). It is also pos-

sible to bring the system into different states by perturbing the total concentrations

of both kinases by a fixed amount each, but following different sequential moves

(Figure 5.7, from O2 to T1, T2, T3 and T4). In these examples, the final system

output is a function of the combinatorial activity patterns of both kinases. In con-

trast, different perturbations would result in the same output state in a monostable

system. Therefore, multistability can encode the specific order of changes in the

environmental signals (i.e. different kinase activities) into different system outputs

at steady state. The result is a potential increase in the systems capacity to store

information, e.g. relating to fluctuating or complex environments.

5.3.6 Real biological systems display complex interactions leading

to multi-state enzymes and potential for multistability

As discussed in the introduction, futile signalling cycles are ubiquitous motifs in

natural signalling networks, where they feature multi-state enzymes. To demon-

strate this point, I explore two example cases of natural signalling cycles. The first

example comprises the signalling networks controlling the cell cycle, in particular

networks involving cyclin-dependent kinases (Cdks). It is argued that the activity

of Cdks is a key mechanism for ensuring appropriate switching dynamics for the

cell cycle [265–267]. The activity level of Cdk1 is regulated by four different mech-

anisms: (1) activating phosphorylation by Cdk-activating kinases (CAKs), where

phosphorylation by a CAK of a threonine residue increases the kinase activity of

Cdk1 [282]; (2) inhibitory phosphorylation by Wee1, where phosphorylation of a

tyrosine residue by Wee1 reduces kinase activity of Cdk1 [283]; (3) cyclin binding,

where cyclins binding cooperatively to Cdk1 and their substrates promote Cdk1 ki-

nase activity [284]; and (4) Cdk-inhibitor (CKI) binding, where CKIs bind to Cdk1
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and block their active sites [283] (Figure 5.8A). Such combinatorial interactions (i.e.

regulations) thus correspond to different Cdk1s “states” (i.e. phosphorylated at dif-

ferent positions, bound/unbound, etc) that can display different activity levels and

that compete for the same downstream substrates. Moreover, several homologous

Cdks are shown to compete for the same substrates [268, 283], Similarly, Wee1 has

differentially phosphorylated forms that have different activity towards Cdk1 [285,

286], and ubiquitination of Wee1 leading to its degradation also affects the phos-

phorylation of Cdk1 by Wee1 [287]. The second example I focus on comprises the

MAPK signalling cascades [106]. For instance the MAPK signalling networks con-

trolling yeast mating response and filamentous growth response share the signalling

proteins Ste11 and Ste7, both of which have two phosphorylation sites and can bind

to a scaffolding protein Ste5 (Figure 5.8B) [216]. The possible combinatorial interac-

tions and the different phospho-states of these proteins, as well as their downstream

interaction partners such as Fus3 and Kss1 provide a system with multiple kinase

states

The picture emerging from the Cdk as well as the MAPK pathways is one

with multiple steady states and several enzymes in competition for the same sub-

strates. This picture fits in the simplified motifs as analysed above (and shown in

Figure 5.6 and 5.7), making it theoretically possible for these pathways to display

bistability and multistability. Towards experimental verification of such possibility,

it would be a good starting point to measure in vitro the catalytic and binding rates

of different enzyme forms found in these systems.

5.4 Discussion

The key finding of this study is that the presence of a multi-state kinase in the com-

mon futile signalling cycle motif allows this functional interaction system to display

bistability. Thus, a phosphorylable substrate with a two-state kinase forms one of
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Figure 5.8: The bistable signalling motif in biological systems. (A) Different forms
of regulation of Cdk1s catalytic activity give rise to different states of Cdk1. The
multiple states of Cdk1 are involved in catalysing many downstream substrates, in-
cluding Cdc and p53. Such catalytic reactions show precisely the structural pattern
in Figure 5.6B. (B) The two MAPK cascades in yeast mating response and filamen-
tous growth response. The two cascades share Ste11 and Ste7. Ste11, Ste7 and
Kss1 have two phosphorylation sites while Fus3 has three phosphorylation sites, one
of which is phosphorylated by Ste5. This schematic shows that in both cascades
all three layers of signalling enzymes, MAP3K (i.e. Ste11), MAP2K (i.e. Ste7)
and MAPKs (i.e. Fus3 and Kss1) exhibit different states that compete for their
substrates. Thus, the cross-talk between the two cascades and the presence of the
scaffold protein increases the number of states of the enzymes, resulting in a system
similar to that considered in Figure 5.6A.
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the smallest bistable signalling motifs. The emergence of bistability in this simple

system relates closely to the two states of the kinase forming two futile cycles that

are competing for the substrate. I define conditions on the kinetic parameters of

these two competing cycles that are necessary and sufficient for three steady states.

I show that these conditions are met under biologically feasible parameter regimes.

Finally, I find that increasing either the number of two-state kinases acting on the

same substrate or the number of distinct states that a single kinase can exhibit

increases the number of steady states in an unbounded manner. Particularly, the

unlimited multistability with by increasted enzyme states suggest that this theoret-

ical analysis can potentially help us design cellular signalling systems with various

biochemical memories for recording environmental information. The implementa-

tion of multistability experimentally requires tuning the kinetic parameters which

are potentially in very narrow spaces. The possible ways to overcome such constraint

are either using evolutionary experiments and direct evolution method to optimise

the kinetic parameters or designing larger networks to relax the constraints imposed

on it. For instance, it is possible to implement system with 5 steady states with 3

or more two-state enzymes and embed such motif into a larger signalling network

to expand the kinetic parameter space.

The core bistable signalling motif featuring multi-state enzymes is prevalent

in biological systems. Presence of multiple conformational states with differential

activity is a common feature of many enzymes [88], and particularly in signalling

networks, where many kinases and phosphatases display multiple states that display

different levels of activity and that are regulated through covalent modification or

interaction with scaffold proteins [224, 288]. As I have shown above, using Cdks and

MAPK pathways as examples, there are several natural cases where such interactions

create or embed the described core bistable motifs or extensions of it. Our findings

thus provide mathematical proof that these natural systems can theoretically allow

bistability and potentially unbounded multistability. Transitions between the steady
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states can underpin the capacity of cells to map environmental states to internal gene

expression and physiology, increasing their ability to adapt to different or fluctuating

environments. The validation and further interrogation of these possibilities must

come from experimental studies. In particular, synthetic biology approaches can

be used to implement the core bistable motif described here using existing multi-

state proteins and kinases from nature and analysing their dynamics in a controlled

manner. These approaches are already being employed to study MAPK and two-

component signalling systems [231, 288–290], and can be further extended using the

presented results as guiding principles for experiments.

An intuitive interpretation of our results is that competition of different fu-

tile cycles for the same substrate is a key prerequisite for bistability. This intuitive

view can also be applied to understand previously described bistable and multi-

stable signalling motifs. For instance, a substrate with multiple phosphorylation

sites that are acted upon by the same kinase is shown to implement bistability and

multistability [52–54, 106, 262]. This system is almost a symmetric version of the

system I consider here, as it features futile cycles involving differently phosphory-

lated substrates competing for the same enzyme. Another example of a bistable

system is where a futile cycle can take place in two different compartments, with

both substrates and enzymes shuttling between the two compartments. This again

fits our intuitive view, where the separation of enzymes and substrates in different

compartments creates a set of futile cycles that are competing for both substrates

and enzymes [51].

These examples indicate that competing futile cycles could provide a gen-

eral condition for determining bistability. In order to validate this idea, further

exploration of different motifs and the structural conditions on multistationarity is

required. One possible approach would be to enumerate a large set of small sig-

nalling networks and compare structural differences between monostationary and

multistationary networks. Specific structural patterns might emerge, which can be
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validated by further mathematical analyses. These mathematically derived condi-

tions can then be utilised to better understand natural signalling systems and de-

sign bistable signalling networks and biochemical memory through synthetic biology.

Motivated by this hypothesis, in Chapter 6 I constructed an algorithmic approach

to enumerate chemical reaction networks of given size. By comparing structural

differences of monostationary and multistationary networks, I expect to approach

such structural determination of multistationarity in these signalling networks.
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Chapter 6

Design Principles of

Multistability in Signalling

Networks

6.1 Introduction

From Chapter 4 and 5, I derived several network motifs that give rise to bistable

dynamics. One of these motifs can be expanded by introducing more multi-state

enzymes such that the system has capacity for unbounded multistability. While

the analysis of the found individual motifs provided us with important insights into

molecular basis of bistability, these were not enough to develop mathematically

sufficient conditions for bistability that can differentiate between mono- and multi-

stable systems. Achieving such mathematical conditions that are solely based on

network topology would provide highly valuable, as they would allow us to discern

biological networks capable of multistability from information on protein-protein

interactions without the need to measure kinetic rates.

Previously, mathematical analysis on the structures of general chemical re-

action networks produced fruitful results, particularly several important theorems
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related to several structural properties of reaction networks as included in chemical

reaction network theory [237, 238] which concentrates on reaction networks with

general mass action kinetics [291, 292]. Mathematical analysis of general networks

led to positive feedback loop being one of the topological requirements for multista-

tionarity [105]. Further study by linking the monostationarity of reaction network

with its structural properties revealed that two intersecting positive feedback loops

are the necessary condition such that the network has capacity for multistationarity

[239, 240]. Together, these theorems composed the compass for design of reaction

networks with multiple steady states. However, these conditions are only neces-

sary ones, I can only reject networks that can not give rise to multistationarity

based on them, but not directly construct networks guaranteed with capacity for

bistable dynamics. With sufficient conditions for multistationarity, one can design

bistable networks instantly with confidence by following the conditions. Such suffi-

cient conditions are exactly design principles required to both understand and design

multistable networks.

Based on the bistable motifs derived from previous chapters, the common

structural features of those bistable networks are two reaction cycles competing at

the substrate. I hypothesised that interconnecting loops in a graph and compe-

tition among such loops could be a sufficient condition for multistabilty. Is such

competition a sufficient condition for multistationary signalling network? If not,

what other conditions are there discriminating multistationary reaction networks

from monostationary ones? Motivated by the hypothesis and these questions, I con-

structed an algorithmic approach to enumerate reaction networks with limited sizes,

towards identifying certain topological features that can distinguish between mono-

and multi-stable networks, or even act as sufficiency conditions.
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6.2 Methods

6.2.1 Reaction networks

A general form of reaction network is composed of a set of species {X1, . . . , Xn}

with concentrations {x1, . . . , xn} respectively and a set of reactions:

rj :
n∑

i=1

αijXi →
n∑

i=1

βijXi, j = 1, . . . ,m (6.1)

where αij , βij are stoichiometric coefficients with nonnegative integer values. The

stoichiometric matrix of the network can be defined as A = (aij), where aij =

βij − αij . The rates vector of reactions in the network is v = (v1, . . . , vm) with

vj(x) = κjx
α1j

1 · . . . · xαnj
n , x ∈ Ωv. (6.2)

where Rn
>0 ⊆ Ωv ⊆ Rn

≥0. The general form of different equation describing such

reaction network is:

ẋ = Av(x), x ∈ Ωv. (6.3)

Since the structure properties of the networks is only determined by the

stoichiometric matrix A, I enumerate the reaction networks by constructing and

dealing with the stoichiometric matrices of all possible networks.

6.2.2 DSR graph

The DSR graph is defined as a labelled bipartite directed graph with node set

{X1, . . . , Xn, r1, . . . , rm} such that:

• There is an edge from Xi to rj with label zij if zij ̸= 0.

• There is an edge from Xi to rj with label zij if zij ̸= 0.
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where zij is defined as:

zij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if vj(x) increases xi,

−1 if vj(x) decreases xi,

0 if vj(x) is constant in xi.

In the DSR graph, a circuit in a graph G is a sequence of distinct nodes

i1, . . . , iq such that there is a directed edge from ik to ik+1 for all kq1 and one from

iq to i1. A circuit with positive label is a positive feedback loop.

6.2.3 Enumeration of small reaction networks

List all possible
reaction patterns

Mass conserved
reaction networks

Reduced set of all possible
reaction networks

List all possible
reaction networks

Mass
conservation

check

Injectivity
check

Injective Not injective

check
intersecting

loops

Not bistable Bistable

CRNT
toolbox

check
competition

Unique mass conserved
reaction networks

Isomorphism
check

Intersecting No intersection

With competition No competition

Construct
networks

Figure 6.1: The schematic chart illustrating enumeration procedures. In the box
are constructed or categorised sets of reaction networks.

Firstly the enumeration process constructs all possible reaction networks with

given size. I have then developed algorithmic approaches to select from this full set of

networks those that are biologically plausible; this involved eliminating isomorphic

networks, as well as networks that do not fit with mass conservation (Figure 6.1).
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In particular, elimination of isomorphic networks is implemented by comparing the

full of permutations of newly constructed reaction network with each member in

the set of unique reaction networks; if no member in the set of unique networks is

the same as any permutation of the new network, then add the new network into

the set of unique networks; if there are any member in the set of unique networks

is the same as any permutation of the new network, then reject the new network

as redundant. The process continues to comparing all constructed networks. This

ensures all enumerated networks are unique reaction networks.

With the set of biologically plausible networks, I use the injectivity theory to

determine whether a network is monostationary [293], then check whether there are

two positive loops in its DSR graph that intersects each other [294]. Competition

between loops is checked by searching the loop where two species both interact with

the another species. These steps classify the biologically plausible networks into 8

categories. Comparison between monostationary and multistationary networks can

be performed further from this point.

6.3 Results

6.3.1 Classifying reaction networks with 5 species and 5 reactions

Mathematical proofs provided insights of topological requirements [104, 105, 295][237,

238][239, 240, 293, 296, 297] for multistationarity of chemical reaction networks.

These results defined structural necessary condition for bistable dynamics in chem-

ical reaction networks. Although necessary conditions are powerful in preclusion of

monostationary networks, it is also appealing to find any general sufficient structural

conditions for multistationarity in signalling networks. Such sufficient conditions

then can be used as design principles for bistable networks. Nevertheless, the condi-

tions for stability in chemical reaction networks are potentially more subtle and odd.

Here, I devised an algorithmic approach to enumerate all possible reaction networks
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with fixed number of reactions and species (i.e. 5 species with 5 reactions, 6 species

with 6 reactions). The logic behind this approach is that enumerating all possi-

ble reaction networks in small scale and characterising their stability help us find

the sufficient condition for multistationarity in small chemical reaction networks.

Then comparing structural differences between monostationary and multistation-

ary networks can potentially provide certain clues of the topological conditions for

multistationarity.

Based on previous necessary conditions, I search the potential necessary con-

dition(s) for multistability in cell signalling network, a special case of chemical re-

action networks. By comparing the multistable networks and monostable networks

I observed, multiple futile cycles with proteins transiting among multiple states are

commonly found in multistable networks rather than monostable ones. The gaps

between this necessary condition and potential sufficient condition(s) are subtle and

somewhat odd. To reach the possible sufficient condition(s), I enumerated all pos-

sible reaction networks with relative low dimensions .

I am mostly interested in biochemical reactions, especially signalling networks

with protein interactions, therefore I mainly study reaction networks composed of

enzymatic catalysis (e.g. E+S ! C → E+P ), conformational change (e.g. S → P )

and binding/disassociation (e.g. A+ B → C, D → E + F ). In order to reduce the

complexity of enumeration, I excluded the reaction networks with homo-dimerisation

and corresponding disassociation reactions (i.e. 2M → N , P → 2Q).

In the first attempt of enumeration, all possible reaction networks with 5

species and 5 reactions are constructed and examined with several checks. Detail

algorithms are described in Methods. With 5 species and 5 reactions, I have in total

80 reaction patterns with allowed reactions among 5 species. And the number of all

combinatorial reaction networks with 5 reactions is
(80
5

)
= 24, 040, 016, after par-

tially exclude the isomorphic reaction networks, I reduced the number of reaction

networks for enumeration down to 43 ·
(80
3

)
= 3, 532, 880, which is computationally
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feasible. Then all reaction networks are constructed and only 8933 of these networks

are inline with mass conservation required from biologically plausible networks. In

those 8933 reaction networks, I further excluded isomorphic networks. This gives a

set of 6171 unique mass conserved reaction networks with 5 species and 5 reactions.

Among those 6171 unique mass conserved reaction networks, only 68 of them allow

multi-stationary dynamics with some positive rate constants and species concentra-

tions. The rest of reaction networks cannot have multiple equilibria, regardless of

rate constants and species concentrations (Figure 6.2).

No intersecting
loops

With intersecting
loops

No competition
loop

With competition
loop

No competition
loop

With competition
loop

Bistable Not bistable Bistable Not bistable Bistable Not bistable Bistable Not bistable

2600 42 911567 21912434

# = 6171Unique mass conserved
reaction networks

Figure 6.2: The schematic chart illustrating enumeration results. In the box are
different categorised sets of reaction networks through multistationarity check and
positive feedback loop checks. Detail of algorithmic checks can be found in Methods.

6.3.2 Comparison between different categories

From the enumeration and classification of reaction networks of give size, the cate-

gory of networks with intersecting loops and also competition loop has 26 bistable

networks and 911 monostable networks. This clearly shows that the condition in our

hypothesis that competing research cycles is not sufficient enough to guarantee the

bistability in reaction networks (Figure 6.2). The results also support that networks

without intersecting loops are all monostationary (Figure 6.2).
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6.4 Discussion

Understanding the design principles of bistable dynamics can be of great interest

and benefit. Not only such design principles can help us understand natural biolog-

ical systems, but also allow us to design and build novel bistable biological systems.

Particularly the two bistable motifs derived from evolved bistable networks pro-

vide specific design pattern for bistable dynamics in signalling networks (Chapter

5). Following the interest on multistationarity in signalling networks, algorithmic

approach of enumerating reaction networks is constructed on the purpose of search-

ing the potential sufficient conditions for multistationarity in small chemical reaction

networks. Although conditions in our hypothesis is not sufficient enough for guaran-

teeing the bistability in reaction networks, the enumerated networks can potentially

provide insights on the topological conditions of multistationarity in chemical reac-

tion networks, especially signalling networks. The comparisons between monostable

networks with competition loops bistable networks without competition loops can

be quite useful. Further comparisons of monostationary and multistationary net-

works resulted from enumeration is planned in future projects, thus not included in

this PhD study.

However, from the enumeration results, it is clear that my hypothesis about

competing loops is not sufficient for explaining the bistability emerged. However,

there are many bistable networks fulfil this conditions. This suggest that the suf-

ficient and necessary condition for bistability in signalling networks is very strange

and somehow subtle. It shows that such problem is a very challenging problem. Nev-

ertheless, from the enumerated networks, I might be able to derive further patterns

and hypothesis to complement our current (failed) hypothesis, eventually toward

the determining the sufficient and necessary condition(s).
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Chapter 7

Conclusion

7.1 Evolution in silico: as taught and as practiced

In my PhD study, I mainly took the approach of evolution in silico to explore the

potential design principles of signalling networks, the information processing sys-

tems in biology. The earliest computational simulations of evolutionary process can

be traced back to the time when computer was invented [298]. Later, evolution in

silico was widely recognised as a powerful optimisation method, subsequent algo-

rithms were devised and applied in areas like optimisation and artificial intelligence.

In parallel, evolution in silico is also utilised to study the evolution itself of biolog-

ical systems. This approach of studies about biological systems has been applied

in many scales. At molecular level, in silico evolution of proteins was adopted to

understand the landscape of protein structures and dynamics, which is crucial to un-

derstand the function and evolution of proteins [299][184]. At cellular level, in silico

evolution of regulatory networks provide insights about modularity and complexity

of network evolution [119, 122] as well as designing networks with desired functions

[123]. Evolutionary landscapes and genotype-phenotype maps were characterised in

morphogenesis and development of teeth through evolution in silico at cellular level

[209, 300]. The application of this approach to study evolution of biological systems
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can both potentially test the hypothesis about evolution itself such as evolvability,

robustness, plasticity and also provide insights on the evolutionary design princi-

ples of biological systems. Especially the later part can be used in engineering and

synthetic biology.

In order to study evolution of signalling systems in cells, I combined the

evolution in silico approach with rule-based modelling and devised a computational

tool — BioJazz [212]. Adopting the rule-based modelling is critical in this study, the

rule-based approach relaxed the constraints on complexity of networks in evolution

of signalling networks. Also, directly manipulating rules that are used to describe in-

teractions between proteins makes evolving the signalling network much easier than

conventional approach. More importantly, the rule-based approach encloses multi-

domain structure in the model of signalling networks. This is particularly useful for

uncovering design principles with more biochemical details so that such principles

are more applicable in designing signalling networks with desired functions.

Then I applied BioJazz to study the evolution of ultrasenstivity and adap-

tation with synthesised fitness function that can sufficiently evolve networks with

ultrasensitive and adaptive response dynamics. By analysing the evolved networks,

I discovered two interesting design principles, the first design principle is that pro-

tein sequestration (e.g. through scaffold proteins) can generate both ultrasensitive

and adaptive response, even more interestingly modulate the signalling network

switching between those two distinct response dynamics; the second principle is

that enzymatic futile cycles with allosteric enzymes can give rise to bistable dy-

namics. I also provided potential application in synthetic biology for both design

principles.

This PhD study of cellular information processing indicates that evolution

in silico can help to understand the genotype-phenotype mapping of cellular sys-

tems and also explore the potentially undiscovered design principles and solutions.

However, the return is possibly not always as expected. The detailedness of design
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principles discovered from evolution in silico is largely dependent on the level of

abstraction in its computational model of biological systems. For instance, spa-

tial diffusion is a important factor affecting the signalling dynamics and information

processing in cells, it is impossible for BioJazz to discover design principles with com-

partmentalisation or limit diffusion under homogeneity assumption. Therefore, bet-

ter computational modelling approach can potentially converge with and be adopted

into evolution in silico approach.

To sum up, in silico evolution approach enables actively searching design

principles, rather than studying the recurring biological systems case by case, as

such it provides a big leap from studying known to exploring unknown.

7.2 Design principles: the contexts and the applicabil-

ity

The two design principles discovered in this PhD study are embedded in certain

contexts and certain models. In the first design principles, protein sequestration has

been found promoting or diminishing the ultrasensitivity levels in different networks.

To sum up, the functions of protein sequestration in signalling cycles are based on

zero-order sensitivity, if the sequestration happens at the enzymes, the saturation of

enzyme by substrate will be enhanced thus sequestration promotes ultrasensitivity.

However, if sequestration happens at the substrate such that the enzymes are less

saturated, the sequestration diminishes ultrasensitivity [222]. The modulation of

signalling cycles between ultrasensitivity and adaptation also appears in other net-

work motifs [210]. This indicates that different mechanisms can potentially generate

similar dynamics and behaviours under different contexts.

In the design principle for bistable signalling networks, I discussed the con-

dition of detailed balance on the smallest bistable signalling motif (Chapter 5). The

detailed balancing casts thermodynamics constraint on state transitions of kinase
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in the smallest bistable motif (Chapter 5). As a result, detailed balancing [278,

280] reduced the parameter space for bistable dynamics because of its constraint on

reaction rate constants. Therefore, under such context bistable dynamics is more

difficult to be implemented than relaxed conditions. It is possible to make bistable

dynamics more easily implemented either by embedding the bistable motif into a

larger systems or relaxing the condition of detailed balancing, for instance, extend-

ing the allosteric switching induced by covalent modification (e.g. phosphorylation

and dephosphorylation reactions) will relieve the constraints on its rate constants.

This is a good example that the applicability of design principles depends on the

context of the network and physical properties of its reactions. Such applicability

can be extended by properly relaxing the conditions of network contexts.

The design principle for bistable signalling network derived from evolved net-

works can still be rather specific and in a narrow scope. In order to approach a more

general design principle, I took the chemical reaction network theory (CRNT) to

algorithmically search the possible boundaries between monostationarity and mul-

tistationarity. The CRNT is well grounded by mathematical proofs and only con-

strained by mass-action kinetics. Such perspective provide more general design

principles for us to understand what can possibly work and what cannot [112]. The

work towards a more defined necessary and sufficient condition may emerge from

the area of CRNT.

7.3 Evolutionary innovations: what can we learn for

engineering?

My PhD study not only generated interesting discoveries and insights about design

principles of signalling networks, but also these results stimulated some potential

new questions and clues about the evolution of signalling networks. Here I took a

specific point of view to discuss about the thinking that arose from analysing the
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evolved networks and their design principles. I will discuss the evolutionary innova-

tions of cellular networks from the perspective of engineering and synthetic biology.

Specifically, the retroactivity, cross-talks, futile cycles and noise are somehow detri-

mental in conventional engineering, however their functional roles under different

scenarios might provide insights on design principles and potential applications in

synthetic biology.

7.3.1 Retroactivity: functional roles in different contexts

Retroactivity was proposed in synthetic biology and under the background of engi-

neering biological systems by integrating modules which perform well-defined func-

tions (semi)independently into more complex cellular networks. However, biological

systems in nature only display certain degree of modularity. These modules are

interconnected with combinatorial interactions that may affect the dynamics and

functions of such “modules”, such effects are termed as “retroactivity”. One simple

example is the sequestration in gene regulatory networks, where translated proteins

are sequestrated by downstream transcriptional components. The dynamics of the

protein expression module is affected where sequestrated protein is the output [301].

Also, in a bifunctional enzyme catalysed signalling cycle, the sequestration of sub-

strate by downstream targets dramatically decreases the sensitivity [260]. Therefore,

following conventional engineering principles when multiple modules are integrated,

retroactivity is a repellent side effect being diminished. Such retroactivity can be

attenuated through implementing insulation and/or amplification [301] with certain

energy cost [302].

However, it is possible that in certain context network structures the retroac-

tivity has functional roles. The sequestration of signalling protein by both kinase

and phosphatase in evolved adaptive networks showed the necessity of retroactivity

on the sequestrated signalling protein (Figure 3.5) so that it can convert the linear in-

put signal into downstream signalling cycle that transforms the signal into adaptive
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response. Retroactivity between different signalling cycles where enzymes compet-

ing with the same substrate such retroactivity on contrary enhances the sensitivity

of both signalling cycles [303]. These evidences strongly suggest the retroactivity

has potential functional roles in implementing complex regulations and response

dynamics. Our understanding of both biological systems and engineering principles

may benefit from searching and studying from such evolutionary design.

7.3.2 Cross-talks: is multistability a potential rescuer?

The cross-talk is another nuisance in engineering that a signal transmitted in one

circuit creates undesired effects in another circuit. In engineering, such undesired

effects is likely to be avoided as much as possible so that the dynamics is predictable

and reliable. One of the conventional ways is to implementing an insulator between

circuits to keep the modules more independent. The cross-talks are pervasive in

biological systems especially in information processing systems. Most of the sig-

nalling pathways are interconnected due to cross-talks [11]. One example is the

three mitogen-activated protein kinase (MAPK) signalling cascades where several

signalling proteins are shared among these cascades [304].

The direct mystery is how such information processing systems maintain

specificity, given that different pathways detects different signals through various

receptors and functions differently in cell behaviours. Several principles or mecha-

nisms for specificity of MAPK signalling are proposed including scaffold protein as

insulator [305], temporal specificity through transcriptional control [214] and kinetic

insulation [306]. Here, the uncovered design principle for multistability in signalling

networks can potentially be used as a mechanism of specificity maintenance in sig-

nalling pathways with cross-talks. Previous study on two component systems (TCS)

in bacteria showed that TCS with multi-domain histidine kinase (HK) can give rise

to multistability. With additional HKs the system can perform logic gates through

cross-talks between different phosphorelays [50]. Similarly, in the phosphorylation-
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dephosphorylation cycles with allosteric enzymes, additional allosteric enzymes pro-

vide multistability. It is very appealing to examine whether such logic gates can be

implemented in the MAPK cascades, particularly whether an exclusive “OR” logic

gate can be implemented through the multistability. Future works on validating

such hypothesis might again extend our knowledge on functional roles of cross-talks

in signalling networks and engineering specificity with cross-talks.

7.3.3 Modularity or complexity: plasticity in response dynamics

As discussed above, both retroactivity and cross-talks are prevalent in biological

systems, while they act as nuisance in conventional engineering principles. Such

contradictions suggest that the evolutionary designed biological systems can poten-

tially provide new perspectives and principles for engineering such perspectives and

principles may be applicable to other engineering areas. For biological systems, the

contradictions indicate the gaps between modular biology and “systems” biology.

Again, it encourages us to study the biological systems under the light of evolution.

As the biological systems are results from evolution in fluctuating environments,

their regulation systems were never selected by a single function rather by multiple

objectives. Evolution under such multiple objectives inevitably brings retroactivity

and cross-talks between modules. The hypothetical solutions provided by evolution

is probably the plasticity in cellular networks that networks can perform multi-

ple functions through minimal regulations and costs [35, 167, 206, 246, 307–311].

Validation and formalisation of such hypothesis requires further research inputs.
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Appendix A

Manual of BioJazz

A.1 Introduction

Biological systems employ sophisticated mechanisms to sense and process informa-

tion then achieve proper phenotypic behaviours so that it enables their survival in

environments. The essential part of the regulation involves large-scale biochem-

ical reaction networks that accurately compute the input signal into output re-

sponse, though the computational capabilities results from interactions between

proteins with merely two types of reactions: non-covalent binding reaction and

post-translational modification. Observations from experiments reveal evolutionary

innovations from complex signalling networks, such as allosteric regulation, cross-

talk, regulatory motifs, facilitating computability of the cell [Rowland:2014bk, 88,

122, 193, 312, 313].

To fully understand the complexity of signalling network and its evolution,

one need to utilize computational models rather than intuitively trying to capture

its dynamics. Besides, it is necessary to study the evolution of complex signalling

networks in order to uncover principles of nature design as well as to reverse engi-

neer it or design novel functions beyond nature. Many researches have been carried

out about evolutionary simulation of metabolic networks, or gene regulatory net-
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works [121, 123]. Here, we introduce a tool for evolutionary simulating dynamic

biochemical networks, aiming to explore the design principles of signalling network

in cells.

BioJazz is a tool for evolving and designing biochemical reaction networks

using genetic algorithm (GA). Typically, a BioJazz user wishes to evolve or design

a small network or motif that accomplishes a specific function, such as a switch or

an oscillator module. The network comprises a set of proteins whose attributes are

encoded in a network’s “genome”. The “genome” is a binary string which contains

all the information necessary to determine how many proteins are present in the

network, their structure, which proteins interact and the biochemical parameters of

their interaction.

BioJazz implements a genetic algorithm through a process of replication, mu-

tation, and selection, attempts to incrementally improve how well those ”genomes”

perform a user-specified function. By encoding the network in a fashion that mimics

the way nature does, BioJazz can use a larger variety of mutational operators than

do traditional GAs (which use point mutations and crossover), such as gene duplica-

tions, gene deletions, and domain shuffling. Thus, BioJazz has the ability to change

and evolve networks with respect to both topology and biochemical parameters, by

starting from a designed network “de novo”, or a partially or completely functional

seed network. While the genetic algorithm itself is not very tasking, scoring each

individual of a population of genomes may require a lot of processing power. There-

fore, BioJazz has an integrated capability to use workstation clusters to speed the

computation.

Much of BioJazz’s ability to design realistic networks comes from the accom-

panying Allosteric Network Compiler (ANC) [156]. ANC is a stand-alone, rule-based

compiler which has the ability to turn a high-level description of allosteric proteins

into the corresponding set of biochemical equations. The proteins can exhibit many

of the behaviours observed in nature, such as co-localization, allosteric transitions,
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binding and catalytic reactions. The rule-based approach implemented in ANC fits

in with allosteric biochemical networks. It utilizes thermodynamically grounded

methodology to abstract protein structures and allosteric regulation.

Rule-based model not only solve the combinatorial explosion occurred in

modelling signaling networks, but more importantly, it also makes network restruc-

turing possible due to clustering reaction patterns by interaction rules and parame-

terisation of allosteric regulation with two key parameters, “Γ” and “Φ” [156], based

on thermodynamic changes of protein conformation when under binding and post-

translational modifications. BioJazz is likely the first tool to couple a rule-based

compiler with an evolutionary algorithm.

To evolve the protein-protein interaction networks, one need to store and

mutate the network of which protein structures, reaction rules and corresponding

parameters are the most important. BioJazz encodes all information with binary

string, that can be ”transcribed” into interaction networks without losing any infor-

mation. Moreover, in order to study the evolution of complex interaction networks,

we need to embed the mutations of networks, both structure and kinetic parame-

ters, into a realistic matter rather than choosing arbitrarily alter network structure

and kinetic parameters. Therefore, binary string encoding provides an advantage

on storing and mutating biochemical networks as an analogue of the real biological

systems.

BioJazz is also highly configurable. For example, the user can specify evolu-

tionary parameters such as mutation rates. Also, the user may restrict BioJazz to

changing a subset of the network’s attributes. This is useful to ”freeze” the network

topology, with the effect that only the network’s biochemical parameters and not

its structure are allowed to evolve.

The main features of BioJazz are:

• evolves both network topology and connection weights
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• designs a network “de novo”, or starting from user-specified seed network

• uses workstation clusters to speed up the design

• produces a human-readable model of network

• highly configurable

A.2 Installation and usage

A.2.1 Download

The code is hosted in Github.com and distributed with GPLv3 licence. The BioJazz

code can be downloaded from http://oss-lab.github.io/biojazz/, http://osslab.lifesci.warwick.ac.uk

or cloned with git clone https://github.com/OSS-Lab/biojazz.git.

A.2.2 Installation

BioJazz requires the ANC and Facile tools. You can tell BioJazz where to get them

by setting the ANC HOME and FACILE HOME environment variables to point to

the appropriate directories. It is recommended to add the following lines to your

“ /.bashrc” file:

1 export ANCHOME = ˜/workspace/anc

2 export FACILE HOME = ˜/workspace/ f a c i l e

3 a l i a s anc=’$ANCHOME/anc . pl ’

4 a l i a s f a c i l e =’$FACILE HOME/ f a c i l e . pl ’

5

6 export BIOJAZZ HOME = ˜/workspace/ b i o j a z z

7 a l i a s b i o j a z z =’$BIOJAZZ HOME/ b i o j a z z . pl ’

BioJazz requires Matlab to be installed on all nodes used for computation,

and assumes Matlab can be started with the command “matlab”. Here is an example

of configuration in “ /.bashrc” file (on Mac OS X):
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1 export MATLABHOME = /App l i ca t i on s /MATLAB R2011b . app/bin

2 a l i a s matlab=’$MATLABHOME/matlab ’

3 export PATH = $MATLABHOME:\$PATH

4

5 DYLD LIBRARY PATH = /App l i ca t i on s /MATLAB R2011b . app/bin /maci64 : /

App l i ca t i on s /MATLAB R2011b . app/ sys / os /maci64 : / App l i ca t i on s /

MATLAB R2011b . app/ runtime/maci64 :$DYLD LIBRARY PATH

6 export DYLD LIBRARY PATH

Note that if you decide to use a cluster of workstations, these installation

instructions apply to all workstations used.

CPAN modules

CPAN is an internet database of Perl modules. BioJazz/ANC/Facile uses several of

them and they must be installed prior to use. You will need system administrator

priviledge to install these modules (or see for instructions on how to install them in

your home directory). You or your system administrator will typically need to run

the following commands on each system used:

1 cpan − i C lass : : Std

2 cpan − i C lass : : Std : : S to rab l e

3 cpan − i S t r ing : : CRC32

4 cpan − i Expect

5 cpan − i Carp

6 cpan − i WeakRef

7 cpan − i IPC : : Shareable

8 cpan − i Linux : : Pid

9 cpan − i Text : : CSV

You should use sudo as prefix if available, if you don’t have an admin privilege

here is a solution∗ that lets you install perl modules in your user directory. Then

you can test your installation by running Facile, ANC and BioJazz without any

arguments:
∗http://twiki.org/cgi-bin/view/TWiki/HowToInstallCpanModules#Install CPAN modules into your l
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1 $FACILE HOME/ f a c i l e . p l

2 $ANCHOME/anc . p l

3 $BIOJAZZ HOME/ b i o j a z z . p l

An error will be reported if any of the required modules are still missing.

Simply run CPAN again to install the missing module. If you would like ANC to

generate diagrams of the reaction network and species, you will also need the “dot”

application and the following CPAN module:

1 cpan − i GraphViz

A.2.3 Usage

Workspace creation

Depending on your specific application, BioJazz will require some customized con-

figuration and scoring functions. Also, during a single design runs, BioJazz will

generate large number of files. For this reason, the user must create a properly

configured workspace which will contain the appropriate configuration files, scoring

functions, and design files. To facilitate this, BioJazz can create the workspace for

you and populate it with the required directories and with template files to get you

started. To do this, run the following command:

1 b i o j a z z −−command=’ create workspace ( ” b jazz ” ) ’

This will create the directory bjazz and various sub-directories including

config and custom. Your configuration files go in the config directory, while your

custom scoring functions go in the custom directory. At this point, the user should

familiarize him/herself with some the template files that are provided, and try to

run BioJazz.

The example file will try to design a network which contains a signalling

cascades, and demonstrates how to use some functions available to the user.

1 cd b jazz
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2 l e s s c on f i g / u l t r a s e n s i t i v e . c f g # u l t r a s e n s i t i v e c on f i g u r a t i o n f i l e

3 l e s s c on f i g / U l t r a s e n s i t i v e .pm # u l t r a s e n s i t i v e app l i c a t i on−s p e c i f i c

s c o r i n g func t i on

Running BioJazz

After installing the required Perl modules, it is time to run BioJazz. The cluster type

and cluster size arguments override the specification contained in the configuration

file, and will launch both slave nodes of the cluster on your machine.

1 b i o j a z z −−c on f i g=con f i g / template . c f g −−tag=f i r s t t r y −−c l u s t e r t y p e=”

LOCAL” −−c l u s t e r s i z e=2

This will evolve the network for only a couple generations. The tag argument

is very important. In BioJazz, each design attempt is associated with a specific, user-

specified tag. BioJazz will create a directory in your workspace containing all the

results and other files generated during the optimization. This allows the user to

attempt several optimizations simultaneously without fear of accidental loss of files.

The name of the design’s working directory is work dir/tag. The work dir parameter

is specified in your configuration file (and has a value of template in this example).

The results of the above run are contained in the directory ultrasensitive/first try.

1 [ user@host b jazz ]\ $ l s −l a u l t r a s e n s i t i v e / f i r s t t r y /

2 t o t a l 168

3 drwx−−−−−− 5 user group 4096 2013−06−03 14 :53 .

4 drwx−−−−−− 3 user group 4096 2013−06−03 14 :51 . .

5 drwx−−−−−− 2 user group 4096 2013−06−03 14 :53 matlab

6 drwx−−−−−− 2 user group 4096 2013−06−03 14 :53 obj

7 drwx−−−−−− 1 user group 4096 2013−06−03 14 :53 r epo r t

8 drwx−−−−−− 1 user group 4096 2013−06−03 14 :53 s t a t

9 drwx−−−−−− 2 user group 4096 2013−06−03 14 :51 source 2013

−06−03−14:51:58

The obj directory contains all the genomes generated in a machine-readable

form. The matlab contains the models generated by ANC, and the Matlab scripts
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generated by Facile. The stat contains the output information of each genome in

each generation in .csv files. The source* directory is a snapshot of the source code

used for that run such as your configuration and custom scoring files. Now you

can try modifying the configuration file to use other available workstations and run

BioJazz again.

Workspace directory structure

1 bjazz # workspace home

2 c on f i g # con f i gu r a t i o n f i l e s

3 custom # app l i c a t i on−s p e c i f i c modules and

func t i on s ( i n c l . s c o r i n g func t i on )

4 t e s t /custom # recommended l o c a t i o n f o r t e s t

r e s u l t s o f custom modules

5 t e s t /modules # BioJazz module t e s t r e s u l t s

6 u l t r a s e n s i t i v e # app l i c a t i on−s p e c i f i c d i r e c t o r y

7 f i r s t t r y # r e s u l t s d i r e c t o r y f o r run with

TAG=08jun01

8 matlab # ANC genome models , eqn f i l e s ,

and matlab f i l e s

9 obj # genome ob j e c t s in binary form

10 r epo r t # post evo lu t i on ana l y s i s

11 s t a t # in fo rmat ion about i nd i v i dua l

genome in each genera t i on

Initial Generation

The initial generation can be either generated randomly or loaded from disk, as

specified by the initial generation parameter of the configuration file. In the ran-

dom case, the user can also specify the number of individuals to create (parameter

inum genomes) and the genome length (parameter – currently fixed at 5000). Load-

ing from disk is useful to resume work on a partially completed design starting from

the last generation created, or to load hand-crafted seed designs. The following
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shows some examples for each case:

1 i n i t i a l g enome = random # random

genera t i on

2 i n i t i a l g enome = load t e s t /modules/ U l t r a s e n s i t i v e . obj # load a

hand−c r a f t e d network

3 i n i t i a l g enome = load u l t r a s e n s i t i v e / t e s t / obj /G427 I ∗ . obj # load

a l l i n d i v i d u a l s o f gene ra t i on 427 o f prev ious run

Regardless of how the initial generation is created, each network is stored

under the following name in the working directory of the design:

1 $DESIGNWORK/obj /G∗∗∗ I%%.obj

Where *** is the generation number and %% is the individual number.

A.2.4 Scoring

The principal user input consists of a scoring function, which evaluates a partic-

ular genome against the desired functionality, and returns a score reflecting the

network’s performance. This score is compared against the score of other networks

to determine whether the network survives to the next generation and replicates.

Generally speaking, this involves applying a stimulus to the network and evaluating

it’s response. Simulation of the network is accomplished by integrating a set of

ordinary differential equations (ODEs) in ”Matlab”. The required Matlab files are

automatically generated from ANC’s output using a tool called Facile.[180]

Scoring part is composed of three main parts: stimulus class, scoring class

and specific scoring subclass. The stimulus class is used to generate a stimulus

waveform to apply on a specific node/species (usually the ligand) in the reaction

network. ANC constructs biochemical equations for stimuli consisting of either a

time-varing source or sink or both, which expressed as:
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null −→ X; source = f(t)

X −→ null; sink = g(t)

The scoring class uses MATLAB
R⃝

to simulate the network and return the

simulation results. The customized subclass constructs the network input and out-

put and uses the simulated results to scoring the network based on certain input-

output response pattern, such as ultransensitivity, oscillation, linear, hyperbolic etc.

A.3 Example config file

Here is an example of configuration file:

1 ###################################################

2 # BioJazz c on f i g u r a t i o n

3 ###################################################

4

5 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6 # CPU AND CLUSTER SETTINGS

7 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

8 c l u s t e r t y p e = LOCAL

9 c l u s t e r s i z e = 1

10 n i c e = 15

11 vmem = 200000000

12

13 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

14 # WORKSPACE AND CUSTOM SCORING MODULES

15 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

16 s c o r i n g c l a s s = U l t r a s e n s i t i v e

17 work di r = u l t r a s e n s i t i v e

18 l o c a l d i r = u l t r a s e n s i t i v e / l o c a l d i r
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19

20 i n i t i a l g enome = random

21 #in i t i a l g enome = load t e s t /custom/ U l t r a s e n s i t i v e . obj

22

23

24 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

25 # GENOME PARAMS

26 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

27

28 # Sca l i ng : a l l c onc en t ra t i on s in uM, a l l 2nd−order r a t e s in uMˆ−1 sˆ−1

29

30 # Genome c l a s s

31 rad iu s = 3 # should be rea sonab l e . Binomial [Width , rad iu s . . 0 ] / 2 ˆ

width

32 kf max = 1e3 # uMˆ−1 sˆ−1

33 kf min = 1e−3

34 kb max = 1e3

35 kb min = 1e−3

36 kp max = 1e3

37 kp min = 1e−3

38

39 # Gene c l a s s

40 r e gu l a t ed conc en t r a t i on w id th = 10

41 gene unused width = 4

42 r egu la t ed concent ra t i on max = 1e3 # 1mM

43 r egu l a t ed concen t ra t i on min = 1e−3 # 1nM ˜ 1 molecule in prokaryote

44

45 # Domain c l a s s

46 RT trans i t i on ra t e w id th = 10

47 TR trans i t i on ra t e w id th = 10

48 RT phi width = 10

49 domain unused width = 4

50 RT trans i t i on rate max = 1e2

51 RT trans i t i on ra t e min = 1e−2
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52 TR trans i t i on rate max = 1e2

53 TR trans i t i on ra t e min = 1e−2

54 RT phi max = 1 .0

55 RT phi min = 0 .0

56

57 # ProtoDomain c l a s s

58 b i nd i n g p r o f i l e w i d t h = 10

59 k f p r o f i l e w i d t h = 20

60 kb p r o f i l e w i d t h = 20

61 kp p r o f i l e w i d t h = 10

62 s t e r i c f a c t o r p r o f i l e w i d t h = 20

63 Keq pro f i l e w id th = 10

64 protodomain unused width = 4

65 Keq ratio max = 1e2

66 Keq rat io min = 1e−2

67

68 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

69 # EVOLUTION PARAMS

70 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

71 num generat ions = 10000

72 t a r g e t s c o r e = 0 .8

73 f i r s t g e n e r a t i o n = 0 # de f i n e the number o f the f i r s t generat ion ,

e i t h e r 0 or 1

74 cont inue s im = 0

75 c o n t i n u e i n i t = 0

76 r emov e o l d f i l e s = 1

77 s c o r e i n i t i a l g e n e r a t i o n = 1

78 r e s c o r e e l i t e = 0

79 r e p o r t o n f l y = 1

80 r e p o r t s e l e c t i o n = 0 # because o f f o s s i l e p o c h you may l o s e

in fo rmat ion i f c o l l e c t in fo rmat ion l a t e r ! !

81

82 # s e l e c t i o n method : kimura s e l e c t i o n

83 s e l e c t i on method = k imura s e l e c t i on
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84 e f f e c t i v e p o p u l a t i o n s i z e = 1e8 # f o r k imura s e l e c t i on only

85 amp l i f i e r a l pha = 1e3 # f o r k imura s e l e c t i on only , speed up the

evo lut ion , range : The lowe bound i s 1 .16 the upper bound i s 2∗

e f f e c t i v e p o p u l a t i o n s i z e

86 max mutate attempts = 100000 # de f au l t −1 or not de f i ned as unl imited ,

should be an i n t e g e r ;

87

88 # s e l e c t i o n method : populat ion−based s e l e c t i o n

89 #se l e c t i on method = popu l a t i o n ba s ed s e l e c t i o n

90 #f o s s i l e p o c h = 10 # f o r genome s to rage and reco rd s o f genomes in

c e r t a i n generat ions , comment i f us ing kimura s e l e c t i o method (must )

or record every genera t i on

91 #inum genomes = 50 # f o r kimura s e l e c t i o n method , doesn ’ t matter

because i t ’ s s e t 1 as d e f au l t .

92 #evo lve popu l a t i on = 1000 # f o r populat ion−based s e l e c t i o n method

only

93 #mutat ion rate = 0.05 # For populat ion−based model

94

95 # mutation s e t t i n g s

96 mutat ion rate params = 0 .0

97 muta t i on ra t e g l oba l = 0 .01

98 g en e dup l i c a t i o n r a t e = 0.005

99 g e n e d e l e t i o n r a t e = 0.005

100 doma in dup l i c a t i on ra t e = 0.005

101 doma in de l e t i on ra t e = 0.005

102 r e comb inat i on ra t e = 0 .01

103 hg t r a t e = 0 .01 # cu r r en t l y not implemented yet

104

105 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

106 # ANALYSIS PARAMS (POST−EVOLUTION)

107 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

108 #r e p o r t o n c o l l e c t i o n = 1 # f o r populat ion based method usua l l y s e t

as 1 ! ! ( Current ly not implemented )

109 res tore genome = 0
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110 a n a l y s i s d i r = ana l y s i s

111

112 ###################################################

113 # User−def ined , app l i c a t i on−s p e c i f i c c on f i g u r a t i on

114 ###################################################

115

116 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

117 # ANC PARAMS

118 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

119 max ex t e r n a l i t e r a t i o n s = −1

120 max i n t e r n a l i t e r a t i o n s = −1

121 max complex s ize = 3 #MATLAB has maximal l ength o f names , i f us ing

MATLAB as s imulator , t h i s va lue should always be l e s s than 9 . E i ther

−1( un l imi ted ) or 6 should be resonab le , p l e a s e r e f the Plos ONE

paper from Vincent Danos group .

122 max spec ies = 512

123 max cs i te bound to msite number = 1 # o r i g i n a l l y s e t as 1 , but i f

c on s i d e r more complex s i t ua t i on , we should put t h i s unl imited , which

means in complex mu l t ip l e c s i t e−msite b ind ings could happen .

124 defau l t max count = 2 # th i s prevents po lymer i za t i on ( s ee ANC

manual )

125 d e f a u l t s t e r i c f a c t o r = 1000 # in micro−mol/L

126 expor t g raphv i z = nothing

127 #expor t g raphv i z = network , c o l l a p s e s t a t e s , c o l l ap s e comp l exe s

128 #expor t g raphv i z = network , c o l l a p s e s t a t e s , co l l ap se comp lexe s , primary ,

s ca l a r , ungrouped , canon i ca l # po s s i b l y the re are more in fo rmat ion

could be output

129

130 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

131 # FACILE/MATLAB SETTINGS

132 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

133 s o l v e r = ode23s

134 #so l v e r = stoch

135
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136 s amp l i n g i n t e r va l = 1 .0

137 SS t imesca l e = 500 .0

138

139 # MATLAB odeset params

140 I n i t i a l S t e p = 1e−8

141 AbsTol = 1e−9

142 RelTol = 1e−3

143 MaxStep = 500 .0

144

145 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

146 # SIMULATION/SCORING PARAMS

147 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

148 p l o t i npu t = 1

149 p lo t output = 1

150 p l o t s p e c i e s = 0

151 p lo t phase = 1

152 plot min = −1

153

154 r ound va l u e s f l a g = 0

155

156 s t e a dy s t a t e t h r e s h o l d = 1000 # IC s e t t l i n g time

157 s t e a d y s t a t e s c o r e t h r e s h o l d = 0 .5

158

159 d e l t a t h r e s h o l d = 0.01 # r e l a t i v e measure o f amplitude used to

f i l t e r out i n t e g r a t i o n no i s e

160 ampl i tude thre sho ld = 0.01 # abso lu t e measure o f amplitude

161 u l t r a s e n s i t i v i t y t h r e s h o l d = 5 # ra t i o o f 2nd step over 1 s t s tep

162 comp l ex i ty th r e sho ld = 250

163 e xp r e s s i o n th r e s ho l d = 500

164

165 w n = 0 .0

166 w c = 0 .0 # complexity s co r e weight

167 w e = 0 .0

168 w s = 1 .0
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169 w a = 1 .0

170 w u = 1 .0

171 w u1 = 1 .0

172 w u3 = 1 .0

173

174 LG range = 10 # uM ( about 6 molecu le s in 1e−18L vo l ???)

175 LG delay = ˜

176 LG strength = 4 .0 # in Hz

177 LG ramp time = 3000

178 LG steps = 3

179

180 LG timeout = 20000

181

182 #st imulus = s t a i r c a s e e q u a t i o n

183 #st imulus = ramp equation

184 s t imulus = ss ramp equat ion

185

186 #h i l l n = 8

187 h i l l n = 40

188 h i l l k = 5

189

190 TG init = 1000 # uM

191 c e l l v o lume = 1e−18 # 1e−18L −−> sub−c e l l u l a r volume

192

193 # to make sure the input and output have r e l a t i v e l y l a r g e d i s t anc e and

a l s o have r e l a t i v e l a r g e d i s t anc e from themse lves

194 # and a l s o make sure t h e i r b inding partner to have r e l a t i v e l y l a r g e

d i s t anc e in t h i s case the in t e rmed ia t e b inding p r o f i l e could be

0010110100 have both 5 d i s t an c t to a l l f our b inding p r o f i l e s

195 # i t depends the problem , whether want f a r d i s t an c e s between i n i t i a l

p r o f i l e s or sho r t e r d i s t an c e s

196 l g b i n d i n g p r o f i l e = 0100111010

197 t g b i n d i n g p r o f i l e = 0111000110

198
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199 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

200 # SPREADSHEET EXPORT/ANALYSIS

201 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

202 genome attr ibute names = \

203 score , \

204 u l t r a s e n s i t i v i t y s c o r e , \

205 exp r e s s i on s c o r e , \

206 ampl i tude score , \

207 complex i ty sco re , \

208 s t e ady s t a t e s c o r e , \

209 complexity ,\

210 num anc spec ies ,\

211 num rules ,\

212 num genes ,\

213 num pruned genes ,\

214 num domains ,\

215 num protodomains ,\

216 num al lo s te r i c domains ,\

217 num al lo s t e r i c pro todomains ,\

218 num binding protodomains ,\

219 num phosphorylat ion protodomains ,\

220 num cata lyt ic protodomains ,\

221 num kinase protodomains ,\

222 num phosphatase protodomains ,\

223 num adjacent k inases ,\

224 num adjacent phosphatases ,\

225 num recept ive protodomains ,\

226 tg K1 ,\

227 tg K2 ,\

228 tg K1 concentrat ion ,\

229 tg K2 concentrat ion ,\
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Appendix B

Thermodynamic framework in

ANC and BioJazz

B.1 Thermodynamic framework for modelling allosteric

regulation

The Arrhenius equation gives the kinetic rate of the R-T transition as: kRT =

kR† = Ae−∆GR†/kT , with “†” denoting the transition state, A denoting the Arrhenius

constant, and kT being the product of Boltzmanns constant and temperature [314].

Similarly, kTR = kT † = Ae−∆GT†/kT . The equilibrium distribution of the R and T

states will be governed by the equilibrium constantKRT , which is given by kRT /kTR,

where KRT = Ae(−∆GR†+∆GT†/kT ) = Ae−∆GRT /kT .

In ANC, modifiers are assumed to contribute independently to the free energy

of each conformational state, R and T , allowing us to formulate the free energy

difference between these two states (∆G′
RT ) in a given domain with N modifiers as:

∆G′
RT = ∆GRT +

N∑

i=1

(∆G(i)
T −∆G(i)

R ) (B.1)

where ∆G(i)
T and ∆G(i)

R give the effect of the ith modifier free energies of the R and T
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states. While ∆G′
RT could be evaluated via Equation B.1, this requires assignment

of the ∆G(i)
T and ∆G(i)

R values. Instead of doing this, we can exponentiate Equation

B.1 and thus equivalently define the effect of each modifier on the overall equilibrium

distribution between the R and T states. To do so, we defined the relation of

the equilibrium constant of the domain without any modifiers (KRT ) to that with

modifiers (K ′
RT ) as:

k′RT

k′TR

= K ′
RT = KRT

N∏

i=1

Γi (B.2)

where Γi = e−(∆G
(i)
T −∆G

(i)
R )/kT denotes the effect of the ith modifier on the equilib-

rium distribution between the R and T states. The Γi relate to the altered kinetic

rate constants in the presence of the ith modifier in the following manner:

k′RT = kRT

N∏

i=1

(Γi)
Φi (B.3)

k′TR = kTR

N∏

i=1

(Γi)
Φi (B.4)

with the parameter Φi describing the proportional effects of the ith modifier on the

R-T transitions. To simplify the implementation of this approach, all modifiers

acting on different reactive sites of a domain are assumed to employ the same Φ

value (i.e. Φi = Φj(i ̸= j) for all reactive sites in one domain) [156].

138



Appendix C

Mathematical model of

sequestration motif

C.1 Mathematical model of sequestration motif

This particular motif describes one phosphorylation-dephosphorylation cycle of sub-

strate protein (S and Sp), which can potentially be generalised into any futile cycles,

with both kinase (K) and phosphatase (P ) that are sequestrated by a scaffold pro-

tein (T ). The corresponding chemical reactions are:

K + S !KS → K + Sp

P + Sp !PSp → P + S

T +K !TK

T + P !TP

The above reactions show a simple system that composed of one scaffold protein,

one kinase, one phosphatase and one substrate. Here we try to describe this simple
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system with differential equation following the mass action kinetics:

d[K]

dt
= −κ1[K][S] + κ2[KS] + κ3[KS]− κ7[T ][K] + κ8[TK]

d[K]

dt
= −κ4[K][S] + κ5[PSp] + κ6[PSp]− κ9[T ][P ] + κ10[TP ]

d[S]

dt
= −κ1[K][S] + κ2[KS] + κ6[PSp]

d[Sp]

dt
= −κ4[P ][Sp] + κ3[KS] + κ5[PSp]

d[KS]

dt
= κ1[K][S]− κ2[KS]− κ3[KS]

d[PSp]

dt
= κ4[P ][Sp]− κ5[PSp]− κ6[PSp]

d[T ]

dt
= −κ7[T ][K] + κ8[TK]− κ9[T ][P ] + κ10[TP ]

d[TK]

dt
= κ7[T ][K]− κ8[TK]

d[TP ]

dt
= κ9[T ][P ]− κ10[TP ].

And the system need to follow these conservation equations:

[Stot] = [S] + [Sp] + [KS] + [PSp]

[Ktot] = [K] + [KS] + [TK]

[Ptot] = [P ] + [PSp] + [TP ]

[Ttot] = [T ] + [TK] + [TP ].
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Appendix D

CRNToolbox analysis

D.1 CRNToolbox analysis of the simplest bistable motif

CRNToolbox is a powerful tool to analyse the dynamical behaviours of chemical re-

action networks based on their structural properties, including deficiency and injec-

tivity [237–240]. The program can be downloaded from (https://crnt.osu.edu/CRNTWin).

Here, I take the simplest bistable motif discovered in Chapter 4 and 5 to

illustrate how to use CRNToolbox to analysis (bio)chemical reaction networks. The

reaction network of bistable motif is as follows:

Kr + S ! KrS → Kr + Sp

Kt + S ! KtS → Kt + Sp

Sp → S

Kr ! Kt

KrS ! KtS.

The reaction network is composed of 11 reactions and 6 species. First, we need

to type the reaction networks into CRNToolbox, then get the basic analysis about

deficiency of the reaction network:
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1 =====================================

2 BASIC REPORT: s imp l e s t b i s t a b l e mot i f

3 =====================================

4 Reaction network :

5

6 Kr + S <−> KrS

7 KrS <−> KtS

8 KrS −> Kr + Sp

9 Kt + S <−> KtS

10 KtS −> Kt + Sp

11 Sp −> S

12 Kr <−> Kt

13

14 Graphica l P rope r t i e s

15 ====================

16 Number o f complexes = 10

17 Number o f l i nkage c l a s s e s = 3 :

18

19 Linkage c l a s s no . 1 : {Kr + S , KrS , Kt + S , KtS , Kr + Sp , Kt + Sp}

20 Linkage c l a s s no . 2 : {Sp , S}

21 Linkage c l a s s no . 3 : {Kr , Kt}

22

23 Number o f TERMINAL strong l i nkage c l a s s e s = 4 :

24

25 Strong l i nkag e c l a s s no . 1 : {Kr , Kt}

26 Strong l i nkag e c l a s s no . 2 : {Kr + Sp}

27 Strong l i nkag e c l a s s no . 3 : {Kt + Sp}

28 Strong l i nkag e c l a s s no . 4 : {S}

29

30 Number o f NON−TERMINAL strong l i nkage c l a s s e s = 2 :

31

32 Strong l i nkag e c l a s s no . 5 : {Kr + S , KrS , Kt + S , KtS}

33 Strong l i nkag e c l a s s no . 6 : {Sp}

34
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35 The network i s n e i t h e r r e v e r s i b l e nor weakly r e v e r s i b l e .

36

37 The network i s c on s e rva t i v e . ( There e x i s t s a p o s i t i v e vec to r

orthogona l to a l l r e a c t i on ve c t o r s . )

38

39 Rank Informat ion

40 ================

41 Rank o f e n t i r e network = 4

42

43 De f i c i en cy In format ion

44 ======================

45

46 De f i c i en cy o f e n t i r e network = 3

47

48 De f i c i en cy o f l i nkag e c l a s s no . 1 = 1

49 De f i c i en cy o f l i nkag e c l a s s no . 2 = 0

50 De f i c i en cy o f l i nkag e c l a s s no . 3 = 0

51

52 Analys i s

53 ========

54 This i s a d e f i c i e n c y three network . I t i s an e x c e l l e n t candidate

f o r app l i c a t i o n o f HIGHER DEFICIENCY THEORY ( t a i l o r e d mostly to

networks with d e f i c i e n c i e s g r e a t e r than one ) .

55

56 Whether r e s u l t s w i l l be obtained , w i l l depend on whether or not

the r e a c t i on network has c e r t a i n add i t i o na l s t r u c t u r a l a t t r i b u t e s

that he lp reduce the problem to a study o f systems o f l i n e a r

i n e q u a l i t i e s .

57

58 I f a network i s ”good ” , h igher d e f i c i e n c y theory w i l l determine ,

e i t h e r a f f i rma t i v e l y or negat ive ly , whether the re are p o s i t i v e ra t e

constant va lue s such that the cor respond ing mass ac t i on d i f f e r e n t i a l

equat ions admit mu l t ip l e ( p o s i t i v e ) steady s t a t e s . I f the answer i s

a f f i rma t i v e , h igher d e f i c i e n c y theory w i l l generate a sample s e t o f
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r a t e cons tant s and a pa i r o f d i s t i n c t steady s t a t e s that are

c on s i s t e n t with those ra t e cons tant s .

59

60 I f a network i s ”bad” , some add i t i o n a l non l i n ea r a n a l y s i s might be

requ i red , and the program might not be ab le to a s c e r t a i n the

network ’ s capac i ty f o r mu l t ip l e p o s i t i v e steady s t a t e s . I f d e f i n i t e

c onc l u s i on s can be reached they they w i l l be repor ted . Otherwise

the program w i l l t e l l you that i t cannot reach a conc lu s i on .

61

62 Higher d e f i c i e n c y theory w i l l a l s o determine , e i t h e r a f f i rma t i v e l y

or negat ive ly , whether the re can e x i s t a s e t o f r a t e cons tant s such

that the corre spond ing mass ac t i on d i f f e r e n t i a l equat ions admit a

p o s i t i v e steady s t a t e having a zero e i g enva lue ( cor re spond ing to an

e i g enve c t o r in the s t o i c h i ome t r i c subspace ) . When the answer i s

a f f i rma t i v e , the theory w i l l produce such a s e t o f r a t e constants , a

p o s i t i v e steady state , and an e i g enve c t o r ( in the s t o i c h i ome t r i c

subspace ) cor re spond ing to an e i g enva lue o f ze ro . Resu l t s o f t h i s

kind are conta ined a f t e r running the Zero Eigenvalue Report .

63

64 For in fo rmat ion about s t i l l o ther r epo r t s ( i n c l ud ing those that

prov ide in fo rmat ion when the k i n e t i c s i s not mass ac t i on ) s ee the

CRNToolbox Guide pdf f i l e that accompanied t h i s program .

65

66 Int roductory Re fe rences f o r Chemical React ion Network Theory

67

68 The f o l l ow i n g prov ide s a gene ra l i n t r oduc t i on to par t s o f Chemical

Reaction Network Theory that are cente red on the network ’ s

d e f i c i e n c y :

69

70 Feinberg , M. , Chemical r e a c t i on network s t r u c tu r e and the s t a b i l i t y o f

complex i so the rma l r e a c t o r s . I . The d e f i c i e n c y zero and d e f i c i e n c y

one theorems , Chem. Eng . Sc ience , 42 , 2229−2268 (1987) .

71

72 The f o l l ow i n g i s a typewr i t t en s e t o f l e c t u r e s on r e a c t i on
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networks that are aimed at mathematicians :

73

74 Feinberg , M. Lectures on Chemical React ion Networks , Written v e r s i o n s

o f l e c t u r e s g iven at the Mathematics Research Center , Un ive r s i t y o f

Wisconsin , Autumn , 1979 , a v a i l a b l e at : http ://www. crnt . osu . edu/

LecturesOnReactionNetworks

75

76 An in t r oduc t i on to more r e c en t work can be found here :

77

78 Craciun , G. , Y. Z . Tang , and M. Feinberg . 2006 . Understanding

b i s t a b i l i t y in complex enzyme−dr iven r e a c t i on networks . Proc . Natl

Acad Sc i USA 103:8697−8702 (2006) .

The reaction network of bistable motif has deficiency higher than 1. As

suggested, I did the higher deficiency analysis to determine whether the network

allows multistationarity with some positive parameters.

1 =================================================

2 HIGHER DEFICIENCY REPORT: s imp l e s t b i s t a b l e mot i f

3 =================================================

4 Analys i s

5 ========

6 Taken with mass ac t i on k i n e t i c s , the network DOES have the

capac i ty f o r mu l t ip l e steady s t a t e s . That i s , the re are ra t e

cons tant s that g ive r i s e to two or more p o s i t i v e ( s t o i c h i om e t r i c a l l y

compatib le ) steady s t a t e s −− you ’ l l s e e an example below . There

MIGHT a l s o e x i s t r a t e cons tant s f o r which there i s a steady s t a t e

having an e i g enve c t o r ( in the s t o i c h i ome t r i c subspace ) cor re spond ing

to an e i g enva lue o f ze ro . (To try to cons t ruc t ra t e cons tant s that

g ive a degenerate steady sta te , use the Zero Eigenvalue Report . )

7

8 A mass ac t i on system example i s a l s o g iven below :

9

10 Example No . 1 : Mul t ip l e Steady Sta t e s

11
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12 The f o l l ow i n g mass ac t i on system g i v e s r i s e to mu l t ip l e steady

s t a t e s :

13

14 Kr + S −−−22161.264−> KrS

15 KrS −−−6.979721−−> Kr + S

16 KrS −−−39.54158−−> KtS

17 KrS −−−12.030025−> Kr + Sp

18 Kt + S −−−31729.032−> KtS

19 KtS −−−2.4214323−> KrS

20 KtS −−−23.071536−> Kt + S

21 KtS −−−−−−−1−−−−−> Kt + Sp

22 Sp −−−3.0100083−> S

23 Kr −−−63.181325−> Kt

24 Kt −−−109.9872−−> Kr

25

26 The steady s t a t e s shown below are both c on s i s t e n t with the mass

ac t i on system ind i c a t ed .

27

28 Steady State No . 1 Spec i e s Steady State No . 2

29

30 4 .6744 E−3 Kr 1.4042 E−2

31 1 .7012 E−2 S 7.6443 E−3

32 4 .2314 E−2 KrS 5.1682 E−2

33 0.26723489 Sp 0.29534023

34 1 .1395 E−2 Kt 2 .0763 E−2

35 0.29534023 KtS 0.26723489

36

37 Eigenva lues f o r Steady State No . 1

38

39 −3484.6708

40 2.1929672

41 −179.33244

42 −1901.9663

43
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44 Steady State No . 1 i s unstab l e .

45

46 Eigenva lues f o r Steady State No . 2

47

48 −4111.8342

49 −3.6463844

50 −192.90991

51 −1255.3861

52

53 Steady State No . 2 i s a sympto t i c a l l y s t ab l e .

54

55 Refe rence s

56

57 1 . Feinberg , M. , Chemical r e a c t i on network s t r u c tu r e and the s t a b i l i t y

o f complex i so the rma l r e a c t o r s . I . The d e f i c i e n c y zero and

d e f i c i e n c y one theorems , Chem. Eng . Sc ience , 42 , 2229−2268 (1987) .

58

59 2 . E l l i s on , P. and Feinberg , M. How c a t a l y t i c mechanisms r ev e a l

themse lves in mu l t ip l e steady s t a t e data . I . Bas ic p r i n c i p l e s , The

Journal o f Molecular Ca ta l y s i s A: Chemical , 154 , 155 − 167 , 2000 .

60

61 3 . E l l i s on , P. PhD. Thes i s . Rochester , NY: Department o f Chemical

Engineer ing , Un ive r s i ty o f Rochester ; 1998 . The advanced d e f i c i e n c y

a lgor i thm and i t s a pp l i c a t i o n s to mechanism d i s c r im ina t i on .

62

63 4 . Ji , H. PhD. Thes i s . Columbus , OH: Department o f Mathematics , The

Ohio

64 State Un ive r s i t y ; 2011 . Uniqueness o f e q u i l i b r i a f o r complex chemica l

r e a c t i on

65 networks .

The analysis shows that the reaction network indeed admits multiple steady

states. The toolbox also provides an instance of parameter set that enables multi-

stationarity.
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Appendix E

Proof of Multistability in

Allosteric Motif

E.1 A model for an allosteric kinase

E.1.1 Model description

We consider a reaction network consisting of an allosteric kinase for one substrate.

We let K be the kinase that exists in two conformations: Kr (relaxed state) and Kt

(tensed state). Each of the conformations acts as a kinase for a common substrate S.

We let Sp denote the phosphorylated form of the substrate. We assume that the in-

termediate kinase-substrate complexes, KrS and KtS, also undergo conformational

change.

These considerations give rise to a reaction network with the following reac-

tions:

• Phosphorylation of S:

Kr + S
κ1−−⇀↽−−κ2

KrS
κ3−−→ Kr + Sp Kt + S

κ4−−⇀↽−−κ5
KtS

κ6−−→ Kt + Sp
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• Dephosphorylation of Sp:

Sp
κ7−−→ S

• Conformational change:

Kr
κ8−−⇀↽−−κ9

Kt KrS
κ10−−⇀↽−−κ11

KtS.

We denote the concentration of the 6 species of the network as follows:

x1 := [Kr] x2 := [Kt] x3 := [KrS] x4 := [KtS] x5 := [S] x6 := [Sp].

Under the law of mass action, the dynamics of the concentrations is modeled over

time by the following system of ordinary differential equations:

ẋ1 = −κ1x1x5 + (κ2 + κ3)x3 − κ8x1 + κ9x2

ẋ2 = −κ4x2x5 + (κ5 + κ6)x4 + κ8x1 − κ9x2

ẋ3 = κ1x1x5 − (κ2 + κ3)x3 − κ10x3 + κ11x4

ẋ4 = κ4x2x5 − (κ5 + κ6)x4 + κ10x3 − κ11x4

ẋ5 = −κ1x1x5 − κ4x2x5 + κ2x3 + κ5x4 + κ7x6

ẋ6 = κ3x3 + κ6x4 − κ7x6,

where ẋ denotes the derivative of x with respect to time t and reference to time t is

omitted, that is, x∗ = x∗(t) and ẋ∗ = ẋ∗(t).

Since

ẋ1 + ẋ2 + ẋ3 + ẋ4 = 0 and ẋ3 + ẋ4 + ẋ5 + ẋ6 = 0,

the sums x1+x2+x3+x4 and x3+x4+x5+x6 are constant over time. This leads
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to the following two conservation laws :

x1 + x2 + x3 + x4 = Ktot, x3 + x4 + x5 + x6 = Stot. (E.1)

Here Ktot, Stot > 0 are positive total amounts.

E.1.2 Summary of results

The results for the model with one allosteric kinase can be summarised in the fol-

lowing way. In subsection E.1.3 we show that the steady states of the system can

be given in terms of the concentration x5 of the substrate S only. That is, knowing

the value of x5 at steady state allows us to calculate the value of the remaining con-

centrations from x5 alone. Further, we show that the system can have up to three

positive steady states by choosing the reaction rate constants and total amounts

appropriately.

In subsections E.1.4-E.1.6 we study necessary and sufficient conditions for

multistationarity to occur. In subsection E.1.4 necessary conditions for multistation-

arity on the reaction rate constants and the total amounts are given. Specifically, a

necessary condition for multistationarity is

α1Ktot + α2 < Stot < α3Ktot + α4,

where α1, . . . ,α4 depend on the reaction rate constants.

In subsection E.1.5 we focus on conditions that are both necessary and suffi-

cient for multistationarity. We show that if the following inequality on the reaction

rate constants is fulfilled, then the system exhibits multistationarity by choosing

appropriate total amounts:

(κ3 − κ6) (ηrκ9κ10 − ηtκ8κ11) > ((κ6 + κ7)κ10 + (κ3 + κ7)κ11) (ηrκ10 + ηtκ11)
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where

ηr =
κ1

κ2 + κ3
, and ηt =

κ4
κ5 + κ6

.

If the inequality is not fulfilled, then there cannot be multistationarity for any choice

of total amounts. Moreover, by inspecting the inequality, necessary conditions for

multistationarity might be induced. For example, one of the following two con-

straints is necessary for multistationarity to occur:

(a) κ3 > κ6 and ηrκ9κ10 > ηtκ8κ11.

(b) κ3 < κ6 and ηrκ9κ10 < ηtκ8κ11.

If a set of rate constants fulfil the necessary and sufficient conditions for multi-

stationarity, then the next question is to find total amounts for which it occurs.

The linear inequalities in Stot and Ktot given above restrict the possible values con-

siderably. However, it is also possible to give necessary and sufficient conditions

involving all parameters, that is, the reaction rate constants and the total amounts.

These conditions are easy to check for a specific choice of parameters but are little

illuminating in themselves.

In subsection E.1.6 we discuss how to explicitly find parameter sets for which

multistationarity arises, using the conditions discussed above, and illustrate it with

one example.

In subsection E.1.7 we show the steady states of the system cannot be given

in terms of the concentration x6 of the modified substrate Sp only, since when

multistationarity occurs x5 cannot be expressed as a function of x6. (The substrates

S and Sp do not appear in a symmetric way in the reactions). Further, we describe

in detail the species concentrations at steady state as functions of x5.

In subsection E.1.8, we consider bifurcation plots in the multistationary set-

ting. We study the effect of changing the total amounts of the substrate and the

kinase on the number of steady states. We encounter here again the necessary and

sufficient conditions from subsection E.1.5.
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E.1.3 Positive steady states

Parameterization of steady states

The positive steady states of the system are the solutions to the equations ẋ1, . . . , ẋ6 =

0, constrained by the conservation laws (E.1). Due to the conservation laws, the

equations ẋ1 = 0 and ẋ5 = 0 can be disregarded.

Consider first the system of equations given by ẋ2 = ẋ3 = ẋ4 = ẋ6 = 0 and

the first conservation law in (E.1). That is, consider the system of equations:

0 = −κ4x2x5 + (κ5 + κ6)x4 + κ8x1 − κ9x2

0 = κ1x1x5 − (κ2 + κ3)x3 − κ10x3 + κ11x4

0 = κ4x2x5 − (κ5 + κ6)x4 + κ10x3 − κ11x4 (E.2)

0 = κ3x3 + κ6x4 − κ7x6, (E.3)

Ktot = x1 + x2 + x3 + x4.

This system is linear in x1, x2, x3, x4, x6 with coefficients involving the reaction rate

constants and x5. We obtain the following algebraic expressions for x1, x2, x3, x4, x6
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at steady state, which depend on the value of x5 at steady state:

x1 =
Ktot

q(x)

(
(κ2 + κ3)κ4κ11x5 + κ9((κ2 + κ3)(κ5 + κ6) + (κ2 + κ3)κ11 (E.4)

+ (κ5 + κ6)κ10)
)

x2 =
Ktot

q(x)

(
(κ5 + κ6)κ1κ10x5 + κ8((κ2 + κ3)(κ5 + κ6) + (κ2 + κ3)κ11 (E.5)

+ (κ5 + κ6)κ10)
)

x3 =
Ktotx5
q(x)

(
κ1κ4κ11x5 + κ1κ9(κ5 + κ6 + κ11) + κ4κ8κ11

)
(E.6)

x4 =
Ktotx5
q(x)

(
κ1κ4κ10x5 + κ4κ8(κ2 + κ3 + κ10) + κ1κ9κ10

)
(E.7)

x6 =
Ktotx5
κ7q(x)

(
κ1κ4 (κ3κ11 + κ6κ10)x5 + κ1κ3κ9(κ5 + κ11) (E.8)

+ κ4κ8(κ2κ6 + κ3κ11) + κ6(κ3 + κ10)(κ1κ9 + κ4κ8)
)

q(x) :=κ1κ4(κ10 + κ11)x
2
5

+ ((κ2 + κ3)κ4(κ8 + κ11) + (κ5 + κ6)κ1(κ9 + κ10) + (κ10 + κ11)(κ1κ9 + κ4κ8))x5

+ (κ8 + κ9)((κ2 + κ3)(κ5 + κ6 + κ11) + κ10(κ5 + κ6)).

The expressions for x1, x2, x3, x4, x6 are positive provided x5 is positive.

The steady state polynomial

All concentrations are expressed as functions of x5. After replacing x3, x4, x6 in the

second conservation law in (E.1) by their expressions in (E.6),(E.7),(E.8), we obtain

that the value of x5 at a positive steady state satisfies the equation:

0 = (x5 − Stot) +
Ktotx5
κ7q(x)

((
κ1κ4κ11x5 + κ1κ9(κ5 + κ6 + κ11) + κ4κ8κ11

)
κ7

+
(
κ1κ4κ10x5 + κ4κ8(κ2 + κ3 + κ10) + κ1κ9κ10

)
κ7

+
(
κ1κ3κ9(κ5 + κ11) + κ4κ8(κ2κ6 + κ3κ11) + κ6(κ3 + κ10)(κ1κ9 + κ4κ8)

))
.
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By clearing the denominator κ7q(x), the positive solutions to the above equation

agree with the positive solutions to the polynomial given by the numerator. This

polynomial is the following polynomial in x5:

p(x5) =κ1κ4κ7(κ10 + κ11)x
3
5 (E.9)

+
(
Ktotκ1κ4((κ6 + κ7)κ10 + (κ3 + κ7)κ11)− Stotκ1κ4κ7(κ10 + κ11)

+ (κ2 + κ3)κ4κ7(κ8 + κ11) + (κ5 + κ6)κ1κ7(κ9 + κ10)

+ κ7(κ1κ9 + κ4κ8)(κ10 + κ11)
)
x25

+
(
(κ1κ9 + κ4κ8)(Ktot((κ6 + κ7)κ10 + (κ3 + κ7)κ11)− Stotκ7(κ10 + κ11))

+ (κ2 + κ3)κ4(Ktotκ8(κ6 + κ7)− Stotκ7(κ8 + κ11))

+ (κ5 + κ6)κ1(Ktotκ9(κ3 + κ7)− Stotκ7(κ9 + κ10))

+ ((κ2 + κ3)κ11 + (κ5 + κ6)κ10 + (κ2 + κ3)(κ5 + κ6))κ7(κ8 + κ9)
)
x5

− Stotκ7(κ8 + κ9)((κ2 + κ3)(κ5 + κ6) + (κ2 + κ3)κ11 + (κ5 + κ6)κ10).

The polynomial p(x5) has degree 3. Any positive root of this polynomial gives rise

to a positive steady state using the expressions (E.4)-(E.8) and, similarly, the value

of x5 for any positive steady state of the system is a root of the polynomial. That

is, positive steady states of the network fulfilling the conservation laws (E.1) are in

one-to-one correspondence with the positive roots of this polynomial.

We note that this polynomial has at least one positive root since p(0) < 0

and p(+∞) > 0. In subsection E.2.4 we show that the reaction rate constants and

the total amounts can be chosen such that p(x5) has indeed three positive roots.

Therefore, there exist reaction rate constants and total amounts such that the system

has three positive steady states.

The result is first shown by setting the reaction rate constants κ2 = κ5 =

κ9 = κ10 to zero. This corresponds to making some reversible reactions irreversible.

Subsequently, we apply a result by Joshi and Shiu [315] to conclude that existence of
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three positive steady states can be lifted to the network with all rates being positive.

E.1.4 Necessary conditions for bistability

Following Descartes’ rule of signs, a necessary condition for p(x5) to have 3 positive

roots is that the coefficients of the polynomial have alternating signs. Since the

leading coefficient is positive and the independent term is negative, a necessary

condition is that the coefficient of degree 2 is negative and the coefficient of degree

1 is positive, that is:

Ktotκ1κ4[(κ6 + κ7)κ10 + (κ3 + κ7)κ11] + (κ2 + κ3)κ4κ7(κ8 + κ11)

+ (κ5 + κ6)κ1κ7(κ9 + κ10) + κ7(κ1κ9 + κ4κ8)(κ10 + κ11) < Stotκ1κ4κ7(κ10 + κ11)

and

Ktot[(κ1κ9 + κ4κ8)((κ6 + κ7)κ10 + (κ3 + κ7)κ11)(κ2 + κ3)κ4κ8(κ6 + κ7)

+ (κ5 + κ6)κ1κ9(κ3 + κ7)] + [(κ2 + κ3)κ11 + (κ5 + κ6)κ10 + (κ2 + κ3)(κ5 + κ6)]κ7(κ8 + κ9)

> Stotκ7[(κ1κ9 + κ4κ8)(κ10 + κ11) + (κ2 + κ3)κ4(κ8 + κ11) + (κ5 + κ6)κ1(κ9 + κ10)].

In contrast to the condition that will be derived in the next subsection, these

two conditions involve the total amounts. These conditions can be rewritten as

α1Ktot + α2 < Stot < α3Ktot + α4, (E.10)
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where:

α1 =
κ1κ4[(κ6 + κ7)κ10 + (κ3 + κ7)κ11]

κ1κ4κ7(κ10 + κ11)
,

α2 =
(κ2 + κ3)κ4κ7(κ8 + κ11) + (κ5 + κ6)κ1κ7(κ9 + κ10) + κ7(κ1κ9 + κ4κ8)(κ10 + κ11)

κ1κ4κ7(κ10 + κ11)

α3 =
[(κ1κ9 + κ4κ8)((κ6 + κ7)κ10 + (κ3 + κ7)κ11)(κ2 + κ3)κ4κ8(κ6 + κ7) + (κ5 + κ6)κ1κ9(κ3 + κ7)]

κ7[(κ1κ9 + κ4κ8)(κ10 + κ11) + (κ2 + κ3)κ4(κ8 + κ11) + (κ5 + κ6)κ1(κ9 + κ10)]

α4 =
[(κ2 + κ3)κ11 + (κ5 + κ6)κ10 + (κ2 + κ3)(κ5 + κ6)]κ7(κ8 + κ9)

κ7[(κ1κ9 + κ4κ8)(κ10 + κ11) + (κ2 + κ3)κ4(κ8 + κ11) + (κ5 + κ6)κ1(κ9 + κ10)]
.

For each fixed value of Ktot, the solution to the system of inequalities (E.10)

is either empty or an interval. Since αi > 0 for i = 1, 2, 3, 4, α1Ktot + α2 and

α3Ktot + α4 are increasing straight lines in Ktot with positive intercept. Therefore

the region is described by a sector intersected with the positive orthant of R2. If

the two lines are parallel then the valid region is the region between the two lines

intersected with the positive orthant.

An example of how such a sector might look like is given in Example 2 below.

E.1.5 Necessary and sufficient conditions for multistationarity

Conditions involving only reaction rate constants

In order to find sufficient conditions for multistationarity, we apply the strategy

introduced in [316]. In that paper, sufficient conditions for multistationarity, based

on the reaction rate constants only, were found for a two-site phosphorylation cycle

in which both the kinase and the phosphatase follow a sequential and distributive

mechanism. The strategy is based on Brouwer Degree Theory.

The steps of the procedure are as follows:

(1) Compute the determinant of the Jacobian matrix associated with the function
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given by the two conservation laws and the expressions for ẋ2, ẋ3, ẋ4 and ẋ6:

f(x) =(−κ4x2x5 + (κ5 + κ6)x4 + κ8x1 − κ9x2,κ1x1x5 − (κ2 + κ3)x3 − κ10x3 + κ11x4,

κ4x2x5 − (κ5 + κ6)x4 + κ10x3 − κ11x4,κ3x3 + κ6x4 − κ7x6,

x1 + x2 + x3 + x4, x3 + x4 + x5 + x6).

Let det(Jκ(x)) denote this determinant.

(2) Find a parameterisation of the positive steady states in terms of x1 and x5.

That is, consider the steady state equations ẋ2 = ẋ3 = ẋ4 = ẋ6 = 0 and solve

them for x2, x3, x4, x6 in terms of x1, x5.

(3) Substitute the values of x2, x3, x4, x6 found in the previous step into the deter-

minant of the Jacobian. The resulting expression is a quotient of polynomials in

x1, x5, where all coefficients of the polynomial in the denominator are positive.

Let bκ(x1, x5) be the numerator of det(Jκ(x)) after the substitution in step

(3). Brouwer Degree Theory gives us that multistationarity occurs if and only if the

polynomial bκ(x1, x5) is positive for some positive values of x1, x5 [316].

Viewed as a polynomial in x1, x5, all coefficients of bκ(x1, x5) are polynomials

in κ. All coefficients have negative sign, independently of the values of κi, except

for one coefficient which is:

α(κ) = (κ3 − κ6) (−κ4 (κ2 + κ3)κ8κ11 + κ1 (κ5 + κ6)κ9κ10) (E.11)

− ((κ6 + κ7)κ10 + (κ3 + κ7)κ11) (κ1 (κ5 + κ6)κ10 + κ4κ11 (κ2 + κ3)) .

Clearly, if this coefficient is negative, then all coefficients are negative and multi-

stationarity cannot occur. Assume now that α(κ) is positive. We want to show

that in this case the polynomial bκ(x1, x5) is positive for some values of x1, x5. The

coefficient α(κ) is the coefficient of the monomial x1x25. The other monomials of the
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polynomial are 1, x1, x5, x1x5, x25, x
3
5. If we can choose x1, x5 such that the mono-

mial x1x25 dominates the other monomials, then bκ(x1, x5) becomes positive. For

this, let x5 = T and x1 = T 2. Then bκ(T 2, T ) is a polynomial in T of degree 4

with leading positive coefficient α(κ). By letting T be arbitrarily large, bκ(T 2, T )

becomes eventually positive.

This shows that bκ(x1, x5) is positive for some values of x1, x5, if and only if

the coefficient α(κ) is positive and hence

multistationarity occurs if and only if α(κ) is positive.

After rearranging the terms of the coefficient α(κ), we obtain the following necessary

and sufficient condition for multistationarity:

(κ3 − κ6) (ηrκ9κ10 − ηtκ8κ11) > ((κ6 + κ7)κ10 + (κ3 + κ7)κ11) (ηrκ10 + ηtκ11)

(E.12)

where

ηr =
κ1

κ2 + κ3
ηt =

κ4
κ5 + κ6

are the inverses of the Michaelis-Menten constants of the kinases Kr and Kt respec-

tively.

By inspecting the inequality, we can find some necessary conditions for mul-

tistationarity. For example:

• Either κ9 and κ10 need to be nonzero or κ8 and κ11 need to be nonzero. That

is, allosteric changes must occur both for the kinase and the kinase-substrate

complexes.

• Since the left-hand side of the inequality must be positive for the inequal-

ity to hold, we deduce that one of the following conditions is necessary for

multistationarity:

(a) κ3 > κ6 and ηrκ9κ10 > ηtκ8κ11.
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(b) κ3 < κ6 and ηrκ9κ10 < ηtκ8κ11.

Conditions involving reaction rate constants and total amounts

Here we provide necessary and sufficient conditions on all parameters (reaction rate

constants and total amounts) of the system for multistationarity to occur. To obtain

the conditions, we apply Sturm’s Theorem:

Theorem 1 (Sturm). Let p(x) be a real polynomial. Define recursively the Sturm

sequence by

p0(x) = p(x), p1(x) = p′(x), and pi+1(x) = −rem(pi−1, pi),

for i ≥ 1, where rem(pi−1, pi) denotes the reminder of pi−1 divided by pi. The

sequence stops when pi+1 = 0. Let pm be the last nonzero polynomial.

For c ∈ R, let σ(c) be the number of sign changes in the sequence p0(c), . . . , pm(c).

Let a < b and assume that neither a nor b are multiple roots of p(x). Then σ(a)−σ(b)

is the number of distinct roots of p(x) in the interval (a, b].

We are interested in the positive roots of the polynomial p(x) = p(x5) in

(E.9). That is we should take a = 0 and b so large that all positive roots are in

(a, b] = (0, b]. If b is large then the signs of p0(b), . . . , pm(b) are determined by the

leading coefficients of the polynomials p0, . . . , pm. Because b is an arbitrarily large

number, we write b = +∞ and the sequence is written as p0(+∞), . . . , pm(+∞).

Observe that a = 0 is not a root of p(x) and hence the hypothesis of Sturm’s

theorem applies.

According to the theorem, σ(0)− σ(+∞) equals the number of distinct pos-

itive roots of p(x). In our case, we have m = 3, that is, p4(x) = 0 (see below), and

hence 0 ≤ σ(c) ≤ 3 for c ≥ 0. Therefore, the number of distinct roots will be 3, that

is, there will be three positive steady states, if and only if σ(0) = 3 and σ(+∞) = 0.
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We computed in Maple the Sturm sequence p0(x), . . . , p3(x) (p4(x) = 0). For

a generic polynomial of degree 3, p0(x) = a0x3 + a1x2 + a2x+ a3, the sequence is:

p0(x) = a0x
3 + a1x

2 + a2x+ a3

p1(x) = 3a0x
2 + 2a1x+ a2

p2(x) = −6a0a2x− 2a21x+ 9a0a3 − a1a2
9a0

p3(x) = −9a0(27a20a
2
3 − 18 a0a1a2a3 + 4a0a32 + 4a31a3 − a21a

2
2)

4(3a0a2 − a21)
2

.

In our case, the coefficients are:

a0 =κ1κ4κ7(κ10 + κ11)

a1 =
(
Ktotκ1κ4((κ6 + κ7)κ10 + (κ3 + κ7)κ11)− Stotκ1κ4κ7(κ10 + κ11)

+ (κ2 + κ3)κ4κ7(κ8 + κ11) + (κ5 + κ6)κ1κ7(κ9 + κ10) + κ7(κ1κ9 + κ4κ8)(κ10 + κ11)
)

a2 =
(
(κ1κ9 + κ4κ8)(Ktot((κ6 + κ7)κ10 + (κ3 + κ7)κ11)− Stotκ7(κ10 + κ11))

+ (κ2 + κ3)κ4(Ktotκ8(κ6 + κ7)− Stotκ7(κ8 + κ11)) (E.13)

+ (κ5 + κ6)κ1(Ktotκ9(κ3 + κ7)− Stotκ7(κ9 + κ10))

+ ((κ2 + κ3)κ11 + (κ5 + κ6)κ10 + (κ2 + κ3)(κ5 + κ6))κ7(κ8 + κ9)
)

a3 =− Stotκ7(κ8 + κ9)((κ2 + κ3)(κ5 + κ6) + (κ2 + κ3)κ11 + (κ5 + κ6)κ10).

Since p0(0) = a3 < 0, for σ(0) = 3 we need

p1(0) > 0, p2(0) < 0 and p3(0) > 0.

On the other hand,

p0(+∞) = a0 > 0 and p1(+∞) = 3a0 > 0.

Therefore, for σ(+∞) = 0 we require p2(+∞), p3(+∞) > 0.
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The polynomial p3(x) has degree zero, and hence p3(0) = p3(+∞). There-

fore, we are left with 4 conditions on the parameters that fully characterise the

region of the parameter space with three steady states, namely

p1(0) > 0, p3(0) > 0, p2(+∞) > 0 and p2(0) < 0.

Using that a0 > 0 and a3 < 0, these conditions simplify to the following conditions,

where a0, . . . , a3 need to be substituted by their respective expressions in (E.13):

a2 > 0 (p1(0) > 0)

−9a0a3 + a1a2 < 0 (p2(0) < 0)

27a20a
2
3 − 18a0a1a2a3 + 4a0a

3
2 + 4a31a3 − a21a

2
2 < 0 (p3(0) > 0) (E.14)

−6a0a2 + 2a21 > 0 (p2(+∞) > 0).

That is, the system has three positive steady states if and only if the 4 inequalities

above are satisfied using (E.13).

E.1.6 Necessary and sufficient conditions in practice

In order to find explicit values of the parameters such that the system exhibits

multistationarity, the procedure is the following:

1. First, use the necessary and sufficient condition given in (E.12) to find appro-

priate values for the reaction rate constants.

2. Second, substitute these values of the reaction rate constants into (E.14).

This yields a system of 4 inequalities in Ktot and Stot. The positive values of

(Ktot, Stot) fulfilling the inequalities correspond to parameter sets for which

there are three positive steady states. By the results above, there are always

values of (Ktot, Stot) for which this is the case.
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After the first step we might use the necessary conditions for multistation-

arity from subsection E.1.4, that is, using the inequalities in (E.10) instead of the

conditions in (E.14). This gives (simpler) regions of the parameter space of to-

tal amounts containing all pairs (Ktot, Stot) for which there is multistationarity.

Remember though that not all pairs (Ktot, Stot) satisfying the inequalities yield

multistationarity as the conditions are only necessary and not sufficient.

Example 2. Consider the set of parameters

κ1 = 5, κ2 = 0.1, κ3 = 1, κ4 = 2, κ5 = 0.1, κ6 = 2, (E.15)

κ7 = 0.01, κ8 = 0.8, κ9 = 0.1, κ10 = 0.01, κ11 = 0.1

for which (E.12) is satisfied.

The system of inequalities (E.10) is

110.1Ktot + 3.06 < Stot < 144.16Ktot + 0.65,

and the pairs (Ktot, Stot) fulfilling the inequalities are highlighted in light blue in

Figure 1(a,b).

Figure 1a. Figure 1b.

The plot in Figure 1b illustrates that for very small values of Ktot there
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is no value of Stot for which the inequalities are satisfied. The dot in Figure 1a

corresponds to Stot = 591 and Ktot = 5, for which there is multistationarity.

We use Sturm’s conditions (E.14) to find a precise characterization of the

pair of total amounts for which multistationarity occurs. The conditions translate

into the following set of inequalities:

0 <4.852Ktot − 0.03366Stot + 0.02197

0 >5.876K2
tot − 0.09414KtotStot + 0.0003703S2

tot

+ 0.0008003Stot + 0.1899Ktot + 0.0007395

0 >− 2.013 · 10−8S4
tot − 34.531K4

tot + 0.9503StotK
3
tot − 0.008961S2

totK
2
tot

+ 0.00003108KtotS
3
tot − 1.232 · 10−7S3

tot + 2.795K3
tot − 0.04015StotK

2
tot

+ 0.0001532KtotS
2
tot + 0.02351K2

tot + 1.786 · 10−4KtotStot − 2.689 · 10−7S2
tot

+ 2.823 · 10−5Ktot − 2.460 · 10−7Stot − 8.029 · 10−8

0 <2.933K2
tot − 0.05328KtotStot + 0.000242S2

tot − 0.1572Ktot

+ 0.0007405Stot + 0.0008160.

One set of total amounts fulfilling the above system of inequalities is Stot = 591 and

Ktot = 5 (the point plotted in the figure above).

In the following two plots (Figure 2(a,b)) the yellow region is the region of

common solutions to the first, second and fourth inequalities, and the blue region the

solution to the third inequality. The intersection of the two regions is the solution

set to the four inequalities. It is the small blue region inside the yellow region.

Figure 2b is a magnification of Figure 2a, in which also the point (5, 591) is shown.
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Figure 2a. Figure 2b.

Note that the region for which multistationarity exists is much smaller than

the region given in Figure 1(a,b). In practice, it is not straightforward to solve the

Sturm’s inequalies for Stot and Ktot.

E.1.7 Describing the steady states

In this section we describe the intersection of the solution set to the steady state

equations, with the linear space defined by x1 + x2 + x3 + x4 = Ktot, using the

parametrization (E.4)-(E.8). To illustrate the results of this section we choose a set

of parameters for which multistationarity occurs:

κ1 = 5, κ2 = 0.1, κ3 = 1, κ4 = 2, κ5 = 0.1, κ6 = 2, (E.16)

κ7 = 0.01, κ8 = 0.8, κ9 = 0.1, κ10 = 0.01, κ11 = 0.1.

The concentration [Sp] as a function of [S]

First, we discuss how the concentration of Sp, x6, changes according to the concen-

tration of S, x5, at steady state using the parametrization (E.8).

Consider the expression (E.8) as a function of x5:

x6 = ϕ6(x5).
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We are interested in the steady states for a fixed value of Stot = x3 + x4 + x5 + x6.

Therefore, we also consider the rational function of x6 obtained by substitution of

(E.6) (x3 = ϕ3(x5)) and (E.7) (x4 = ϕ4(x5)) into the conservation law for Stot:

x6 = Stot − ϕ3(x5) − ϕ4(x5) − ϕ6(x5). This expression is a rational function in x5

whose numerator has degree three and the denominator has degree two. We plot

the two functions using the parameters in (E.16), Ktot = 5 and Stot = 591.

Figure 3a. Figure 3b.

Figure 3a shows the graph of the function ϕ6(x5). Figure 3b shows the graph

of the function ϕ6(x5) together with the function x6 = Stot−ϕ3(x5)−ϕ4(x5)−ϕ6(x5).

The intersection points of the two graphs in Figure 3b are the pairs (x5, x6) for the

three steady states in this stoichiometric compatibility class.

We observe that ϕ6(x5) increases for small values of x5, until it reaches a

maximum and then decreases towards a limit value for large x5,

lim
x5→+∞

ϕ6(x5) =
Ktot (κ3κ11 + κ6κ10)

κ7 (κ10 + κ11)
. (E.17)

Next we show that this shape is necessary for multistationarity. The deriva-
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tive of ϕ6(x5) with respect to x5 is:

ϕ′
6(x5) =

Ktot
(
λ1(κ)x25 + λ2(κ)x5 + λ3(κ)

)

κ27q(x5)
2

,

where λ2(κ),λ3(κ) are positive polynomials in the reaction rate constants, and

λ1(κ) = −α(κ)− λ1(κ),

with α(κ) as in (E.11) and λ1(κ) a positive polynomial in the reaction rate constants.

By the results of subsection E.1.5, multistationarity occurs if and only if

α(κ) > 0. In this case λ1(κ) is negative. Therefore the numerator of ϕ′
6(x5) is

a second degree polynomial with negative leading coefficient and the rest of the

coefficients are positive. Since λ1(κ) is the leading coefficient of this polynomial,

this implies that the polynomial is negative for large values of x5. For small values

of x5, the polynomial is positive. It follows that there exists a unique positive value

of x5, x̂5 for which ϕ′
6(x̂5) = 0. The derivative is positive for x5 < x̂5 and negative

for x5 > x̂5.

As a consequence, the function ϕ6(x5) has the shape as Figure 3a. That is,

ϕ6(x5) increases up to a value x̂5 and decreases towards (E.17) for large x5.

If λ1(κ) is positive, then α(κ) is negative and hence multistationarity cannot

occur. In that case, ϕ′
6(x5) > 0 for all x5 > 0 and hence ϕ6(x5) is an increasing

function that approaches the limit (E.17) from below. Note that we cannot express

x5 as a function of x6 because the function is not injective when multistationarity

occurs. Therefore, we cannot use x6 to parameterize the set of steady states.

The concentrations [Kr] and [Kt] as functions of [S]

We consider the rational functions x1 = ϕ1(x5) in (E.4) and x2 = ϕ2(x5) in (E.5)

using the parameters in (E.16) and Ktot = 5. The plot of these functions are shown

in Figure 4(a,b).
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Figure 4a. Figure 4b.

From (E.4) and (E.5), it follows that the numerator of both ϕ1(x5) and

ϕ2(x5) has degree one and the denominator degree 2. Hence, ϕ1(x5) and ϕ2(x5)

tend to zero as x5 tends to infinity. The derivatives of ϕ1(x5) and ϕ2(x5) are of the

form

ϕ′
1(x5) =

Ktot
(
a1(κ)x25 + a2(κ)x5 + a3(κ)

)

q(x5)2

ϕ′
2(x5) =

Ktot
(
b1(κ)x25 + b2(κ)x5 + b3(κ)

)

q(x5)2

where a1(κ), a2(κ), b1(κ), b2(κ) are negative polynomials in the reaction rate con-

stants, and

a3(κ) = −a3(κ)κ4κ8(κ3 + κ2)(κ9 − κ11) + κ9((κ1κ9 + κ4κ8)(κ10 + κ11)

+ κ1(κ5 + κ6)(κ10 + κ9)),

b3(κ) = −b3(κ)(κ1κ9(κ8 − κ10)(κ5 + κ6) + κ8(κ4 (κ8 + κ11) (κ2 + κ3)

+ (κ10 + κ11) (κ1κ9 + κ4κ8))),

with a3(κ) and b3(κ) being positive polynomials in the reaction rate constants.

For small values of x5, the functions ϕ1(x5) and ϕ2(x5) can be increasing or
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decreasing depending on the values of the reaction rate constants (that is, the sign

of a3(κ) and b3(κ), respectively). Since a1(κ), b1(κ) < 0, for large values of x5, the

two functions decrease and tend to zero as x5 tends to infinity.

The concentrations [KrS] and [KtS] as functions of [S]

We consider the rational functions x3 = ϕ3(x5) in (E.6) and x4 = ϕ4(x5) in (E.7)

using the parameters in (E.16) and Ktot = 5. The plot of these functions are in

Figure 5(a,b).

Figure 5a. Figure 5b.

From (E.6) and (E.7), it follows that the numerator and the denominator of

both ϕ3(x5) and ϕ4(x5) have degree two. Hence:

lim
x5→+∞

ϕ3(x5) =
Ktotκ11
κ10 + κ11

, lim
x5→+∞

ϕ4(x5) =
Ktotκ10
κ10 + κ11

. (E.18)

The derivatives of ϕ3(x5) and ϕ4(x5) are

ϕ′
3(x5) =

Ktot
(
c1(κ)x25 + c2(κ)x5 + c3(κ)

)

q(x5)2

ϕ′
4(x5) =

Ktot
(
d1(κ)x25 + d2(κ)x5 + d3(κ)

)

q(x5)2
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where c2(κ), c3(κ) are positive polynomials in the reaction rate constants, and

c1(κ) = c1(κ)(κ1κ10 (κ11 − κ9) (κ5 + κ6) + κ4κ11 (κ8 + κ11) (κ2 + κ3)),

d1(κ) = d1(κ)(κ4κ11 (κ10 − κ8) (κ2 + κ3) + κ1κ10 (κ10 + κ9) (κ5 + κ6)),

with c1(κ) and d1(κ) positive polynomials in the reaction rate constants. The only

coefficients in the numerators of ϕ3(x5) and ϕ4(x5) that have undetermined sign are

thus c1(κ) and d1(κ). It follows that for small values of x5, both derivatives take

positive values and the functions are increasing. For large x5, the derivatives are

positive or negative, depending on the signs of c1(κ) and d1(κ). Thus each of the

functions ϕ3(x5) and ϕ4(x5) can either be increasing towards the limit (E.18) (as

in Figure 5a) or be increasing towards a maximum value and then be decreasing

towards the limit in (E.18) (as in Figure 5b).

These results show that for a steady state with a large concentration of S, the

concentrations of KrS and KtS are close to a limit value, and the concentrations of

Kr and Kt are close to zero. This confirms mathematically that saturation occurs:

large amounts of substrate imply that the kinase is essentially only in bound form.

E.1.8 Bifurcation plots with Ktot and Stot

In this subsection we investigate how the number of steady states depends on the

total amounts of kinase and substrate.

At steady state, p(x5) = 0. The polynomial p(x5) is linear in Ktot and in

Stot. Hence, we can use the equation p(x5) = 0 to isolate Ktot (resp.Stot) and get

an expression of Ktot (resp.Stot) as a function of x5, the reaction rate constants and

Stot (resp.Ktot).

In this way we get two functions

Stot = ψS(x5), Ktot = ψK(x5),
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which hold at steady state and which we analyse below.

Changing Stot

We fix first the total amount of kinaseKtot and analyse ψS(x5). The function ψS(x5)

is a rational function whose numerator has degree three and the denominator has

degree two. The coefficients of these polynomials are positive polynomials in the

reaction rate constants and Ktot. Hence, ψS(x5) tends to infinity as x5 goes to

infinity.

Fixing Ktot = 5 and the values of the parameters as in (E.16), we plot the

value of Stot against x5 at steady state. Figure 6b is the graph of ψS(x5), while

Figure 6a is obtained by interchanging the axes of the plot in Figure 6b.

Figure 6a. Figure 6b.

From Figure 6a, we conclude that there is a range of Stot values for which

multistationarity occurs: each value of Stot corresponds to 3 values of x5, which in

turn give rise to three positive steady states. For low values of Stot the concentration

of x5 is low and for higher values of Stot the concentration of x5 is high.

To understand Figure 6a, we study the function ψS(x5) in Figure 6b, since

the bifurcation plot is simply obtained by interchanging the axes. We do this because

we do not have an analytical expression of the type x5 = Φ(Stot).

We do a similar plot of Stot against x6 (both are functions of x5).
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Figure 7a. Figure 7b.
In Figure 7a, the values of Stot for which multistationarity occurs can be identified.

In Figure 7b, we used a larger range of x5 values in the plot. We find that x6

increases with Stot towards a maximum value. Then, there is a transition phase

where multistationarity occurs and finally x6 decreases and there is one steady

state.

When multistationarity occurs, the shape of Stot as a function of x5 is always

as illustrated above in Figure 6b. We show this below. The same cannot be done

for Stot as a function of x6, because we cannot get an expression of x5 as a function

of x6.

The derivative of ψS(x5) with respect to x5 is the rational function

ψ′
S(x5) =

µ1(κ)x45 + µ2(κ)x35 + µ3(κ,Ktot)x25 + µ4(κ,Ktot)x5 + µ5(κ,Ktot)

q2(κ, x5)
,

where µ1(κ), µ2(κ) are positive polynomials in the reaction rate constants, µ4(κ,Ktot),

µ5(κ,Ktot) are positive polynomials in the reaction rate constants and Ktot (depend-

ing linearly on Ktot), q2(κ, x5) is a degree 4 polynomial in x5 whose coefficients are

positive polynomials in the reaction rate constants and

µ3(κ,Ktot) = µ′
3(κ)−Ktotα(κ),
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with µ′
3(κ) a positive polynomial in the reaction rate constants and α(κ) as in (E.11).

It follows that ψ′
S(x5) is positive for small and large values of x5, and hence

for these two cases, the function ψS(x5) is increasing. If multistationarity occurs,

then there must be values of x5 for which the corresponding values of Stot = ψS(x5)

agree. As a consequence ψS(x5) must decrease in some interval (it cannot be an

increasing function). This can only occur if µ3(κ,Ktot) is negative.

Note that the sequence of coefficients of the polynomial in the numerator

of ψ′
S(x5) has at most two changes of sign (which occur when µ3(κ,Ktot) < 0).

Descartes rule of signs tells us that ψ′
S(x5) = 0 has at most two solutions. Combined

with the discussion on the increasing/decreasing behavior of ψS(x5), we deduce that

there is exactly one local maximum and one local minimum when the system has

three steady states. We conclude that the graph of ψS(x5) must be as in Figure 6b

when multistationarity occurs, that is, it has an S-shape.

In fact, since µ1(κ), µ2(κ) do not depend on Ktot and µ3(κ,Ktot), µ4(κ,Ktot),

µ5(κ,Ktot) depend linearly on Ktot, we deduce that if α(κ) > 0 there are always

values of Ktot such that ψ′
S(x5) is negative for some values of x5 (for Ktot large

enough such that −Ktotα(κ)x25 dominates). Therefore, we see again that α(κ) > 0

is a necessary and sufficient condition for multistationarity.

Changing Ktot

We consider the value of Stot fixed and analyse Ktot = ψK(x5). The function ψK(x5)

is a rational function whose numerator has degree three and the denominator has

degree two. Note that x5 cannot increase beyond the bound given by the fixed total

amount Stot.

Figure 8 shows the function ψK(x5) with Stot = 591 and the reaction rate

constants as in (E.16), with the axes interchanged:
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Figure 8.

To investigate the behavior of ψK(x5), we plot the function ψK(x5) for two

different domains of x5, see Figure 9(a,b).

Figure 9a. Figure 9b.

We also plot the value of Ktot against the value of x6 (both are functions of

x5), see Figure 10(a,b).
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Figure 10a. Figure 10b.

For low values of Ktot, the concentration of x6 increases, until it reaches a

transitional phase, after which it tends towards an upper bound, the total amount

of substrate Stot.

The derivative of ψK(x5) with respect to x5 is a rational function

ψ′
K(x5) =

γ1(κ)x45 + γ2(κ)x35 + γ3(κ, Stot)x25 + γ4(κ, Stot)x5 + γ5(κ, Stot)

q3(κ, x5)
,

where γ1(κ), γ2(κ) are negative polynomials in the reaction rate constants, γ4(κ, Stot),

γ5(κ, Stot) are negative polynomials in the reaction rate constants and Stot (they are

linear in Stot), q3(κ, x5) is a degree 4 polynomial in x5 whose coefficients are positive

polynomials in the reaction rate constants, and

γ3(κ, Stot) = Stotκ7α(κ) + γ′3(κ),

where γ′3(κ) is a polynomial in the reaction rate constants with positive and negative

terms, and α(κ) is as in (E.11).

For small and large values of x5, ψ′
K(x5) is negative and thus ψK(x5) de-

creases (because γ1(κ), γ5(κ, Stot) < 0). If multistationarity occurs for some values

of Ktot, ψK(x5) must increase in some interval, where necessarily γ3(κ, Stot) > 0.

When multistationarity occurs, we argue as above for ψS(x5) to conclude that the
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function has exactly one local maximum and one local minimum. In this case the

graph of ψK(x5) has the same S-shape as in the example graph in Figure 9a.

Since γ1(κ), γ2(κ) do not depend on Stot and γ3(κ, Stot), γ4(κ, Stot), γ5(κ, Stot)

depend linearly on Stot, we deduce that if α(κ) > 0, then there are always values

of Stot that make ψ′
K(x5) negative for certain values of x5 (for Stot large enough

such that Stotκ7α(κ)x25 dominates). Therefore, we see once again that α(κ) > 0 is

a necessary and sufficient condition for multistationarity.

E.2 The core model for n allosteric kinase competing

for the same substrate

In this section we consider a simplified model of the model in subsection E.1.1, in

which κ2 = κ5 = 0 and κ9 = κ10 = 0. Furthermore, we consider the case where

there are n allosteric kinases for the same substrate.

This simplified model is still multistationary as we will show below. Further-

more, the result of Joshi and Shiu [315] on multistationarity of reaction networks

applies: If a reduced model has the same stoichiometric subspace as the full model,

and the reduced model has N (non-degenerate) steady states, then this is also the

case for the full model. We will apply this to the full model in subsection E.1.1.

E.2.1 Model description

We study the reduced system consisting of n allosteric kinases competing for the

same substrate.

Let Ki, for i = 1, . . . , n, denote the n allosteric kinases. We use subindices

r, t to denote the relaxed or tensed state (respectively) of each of them. The set of

reactions given in the previous subsection are reproduced for the n allosteric kinases,

after making some reversible reactions irreversible and renaming the reaction rate

constants accordingly. That is, for i = 1, . . . , n, the reactions under consideration
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are as follows:

Ki
r + S

κi,1−−→ Ki
rS

κi,2−−→ Ki
r + Sp Ki

r
κi,5−−→ Ki

t

Ki
t + S

κi,3−−→ Ki
tS

κi,4−−→ Ki
t + Sp Ki

tS
κi,6−−→ Ki

rS.

In addition, there is a dephosphorylation reaction

Sp
κ7−−→ S.

We denote the concentration of the species as follows:

xi,1 := [Ki
r] xi,2 := [Ki

t ] xi,3 := [Ki
rS] xi,4 := [Ki

tS] x5 := [S] x6 := [Sp],

for i = 1, . . . , n. We proceed as in the previous section and model the dynamics of

the concentrations over time under the law of mass action by the following system

of ordinary differential equations:

ẋi,1 = −κi,1xi,1x5 + κi,2xi,3 − κi,5xi,1

ẋi,2 = −κi,3xi,2x5 + κi,4xi,4 + κi,5xi,1

ẋi,3 = κi,1xi,1x5 − κi,2xi,3 + κi,6xi,4

ẋi,4 = κi,3xi,2x5 − κi,4xi,4 − κi,6xi,4

ẋ5 = −
n∑

j=1

(κj,1xj,1x5 + κj,3xj,2x5) + κ7x6

ẋ6 =
n∑

j=1

(κj,2xj,3 + κj,4xj,4)− κ7x6

for i = 1, . . . , n. The system has n+ 1 conservation laws. Namely, for i = 1, . . . , n,

we have

xi,1 + xi,2 + xi,3 + xi,4 = Ki
tot (E.19)
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for some Ki
tot > 0, and for Stot > 0,

x5 + x6 +
n∑

i=1

(xi,3 + xi,4) = Stot. (E.20)

E.2.2 Summary of results

The results for the model with n allosteric kinases competing for the same substrate

can be summarised in the following way. In subsection E.2.3 we show that the steady

states of the system can be given in terms of the concentration x5 of the substrate

S only. That is, knowing the value of x5 at steady state allows us to calculate the

value of the remaining concentrations from x5 alone.

Further, we show that there are reaction rate constants such that the system

has exactly 2m + 1, m = 0, . . . , n, positive steady states. In particular this is true

for m = n in which case there are 2n+1 positive steady state. In fact, we show that

2n + 1 is the maximal possible number of steady states, positive as well as steady

states for which at least one concentration is zero. In subsection E.2.5 we consider

the stability of the steady states and show that if there are 2n + 1 positive steady

states then at least n of them are unstable.

E.2.3 Positive steady states

The positive steady states of the system are the solutions to the equations ẋi,1 =

ẋi,2 = ẋi,3 = ẋi,4 = 0, for i = 1, . . . , n, together with ẋ5 = ẋ6 = 0, constrained by

the conservation laws (E.19) and (E.20). We reason as in the previous section and

disregard the steady state equations ẋ5 = 0 and ẋi,1 = 0, for i = 1, . . . , n. Using

the equations ẋi,2 = ẋi,3 = ẋi,4 = 0 and (E.19), we obtain algebraic expressions

for xi,1, xi,2, xi,3, xi,4 at steady state, depending on the value of x5 at steady state,
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analogous to the expressions (E.4)-(E.7):

xi,1 =
Ki

totκi,2κi,3κi,6x5
qi(x)

(E.21)

xi,2 =
Ki

tot(κi,4 + κi,6)κi,2κi,5
qi(x)

(E.22)

xi,3 =
Ki

totκi,3κi,6(κi,1x5 + κi,5)x5
qi(x)

(E.23)

xi,4 =
Ki

totκi,2κi,3κi,5x5
qi(x)

(E.24)

qi(x) = κi,1κi,3κi,6x
2
5 + κi,3(κi,2κi,5 + κi,2κi,6 + κi,5κi,6)x5 + κi,2κi,5(κi,4 + κi,6).

These expressions are positive provided x5 is positive. From the equation ẋ6 = 0 we

obtain

x6 =

∑n
j=1(kj,2xj,3 + kj,4xj,4)

k7
(E.25)

which, using expressions (E.23) and (E.24), is positive provided x5 > 0.

All concentrations are expressed as functions of x5. We replace x6 and sub-

sequently x3, x4 in (E.20) by their expressions in (E.23)-(E.25) to obtain

(x5 − Stot)+
n∑

i=1

Ki
totx5κi,3((1 + κi,2/κ7)κi,6(κi,1x5 + κi,5) + (1 + κi,4/κ7)κi,2κi,5)

qi(x)
= 0.

(E.26)

By clearing denominators, that is, by multiplying this equation by
∏n

i=1 qi(x), we

obtain a polynomial p(x5) of degree 2n+1 in x5. As argued in the previous section,

any positive root of the polynomial corresponds to a positive steady state. We note

again that p(x5) has at least one positive root since p(0) < 0 and p(+∞) > 0.

E.2.4 Existence of 2n+ 1 positive steady states.

We have shown that the positive steady states of the system with n allosteric kinases

competing for the same substrate are determined by the positive solutions to a

polynomial p(x5) of degree 2n + 1. By the fundamental theorem of algebra, a
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polynomial of degree 2n + 1 has 2n + 1 complex roots counted with multiplicity.

Therefore, such a polynomial can at most have 2n+ 1 distinct positive real roots.

We show in this section that there exist choices of reaction rate constants κi

and total amounts Ki
tot, Stot such that the polynomial has exactly 2n + 1 distinct

positive real roots. As a consequence, this proves that the system with n allosteric

kinases competing for the same substrate admits 2n + 1 positive steady states for

some choice of reaction rate constants and total amounts. As argued at the beginning

of the section, this result holds for the general system where some reactions are made

reversible.

The proof of this statement consists of a series of simplifications and con-

structions analogous to those in [50].

First of all observe that the steady states of the system are invariant by

multiplication of all reaction rate constants by some scalar λ > 0. Therefore, we

can assume that κ7 = 1. For simplicity we write x for x5. We let

αi,1 = (κi,2 + 1)Ki
totκi,1κi,3κi,6 (E.27)

αi,2 = Ki
totκi,3κi,5((κi,2 + 1)κi,6 + (κi,4 + 1)κi,2) (E.28)

αi,3 = κi,1κi,3κi,6 (E.29)

αi,4 = κi,3 (κi,2κi,5 + κi,2κi,6 + κi,5κi,6) (E.30)

αi,5 = κi,2κi,5 (κi,4 + κi,6) , (E.31)

such that we write

Ki
totx5κi,3((1 + κi,2/κ7)κi,6(κi,1x5 + κi,5) + (1 + κi,4/κ7)κi,2κi,5)

qi(x)
=

αi,1x2 + αi,2x

αi,3x2 + αi,4x+ αi,5
.

Lemma 1. For any positive values αi,1, . . . ,αi,5 > 0, there exist κi,1, . . . ,κi,6 > 0

and Ki
tot > 0 such that (E.27)-(E.31) are fulfilled.

Proof. To simplify the notation, we prove that for all α1, . . . ,α5 > 0 there exist
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κ1, . . . ,κ6,Ktot > 0 such that

α1 = (κ2 + 1)Ktotκ1κ3κ6 (E.32)

α2 = Ktotκ3κ5((κ2 + 1)κ6 + (κ4 + 1)κ2) (E.33)

α3 = κ1κ3κ6 (E.34)

α4 = κ3 (κ2κ5 + κ2κ6 + κ5κ6) (E.35)

α5 = κ2κ5 (κ4 + κ6) . (E.36)

Using the expressions for α1, α3, α4 and α5 we solve for κ1,κ3,κ5,Ktot and obtain

Ktot =
α1

(κ2 + 1)α3
κ3 =

α4κ2 (κ4 + κ6)

κ22κ4κ6 + κ22κ
2
6 + κ2α5 + κ6α5

κ1 =
α3

(
κ22κ4κ6 + κ22κ

2
6 + κ2α5 + κ6α5

)

α4κ2κ6 (κ4 + κ6)
κ5 =

α5

κ2 (κ4 + κ6)
.

Finally, using the equation for α2 after plugging the previous expressions, we obtain

α2 =
α1α4α5κ6

α3
(
κ22κ4κ6 + κ22κ

2
6 + κ2α5 + κ6α5

)+ (κ4 + 1)α1κ2α4α5

(κ2 + 1)α3
(
κ22κ4κ6 + κ22κ

2
6 + κ2α5 + κ6α5

) ,

which is equivalent to the polynomial equation

0 =
(
−κ32α2α3 − κ22α2α3

)
κ26+

(
−κ32κ4α2α3 − κ22κ4α2α3 + κ2α1α4α5 − κ2α2α3α5 + α1α4α5 − α2α3α5

)
κ6

− κ22α2α3α5 + κ2κ4α1α4α5 + κ2α1α4α5 − κ2α2α3α5.

We obtained a polynomial of degree 2 in κ6 with negative leader term. If the

independent term is positive, then the polynomial has one positive root. Hence, we

want to show that there exist values of κ2,κ4 such that

−κ2α5 (κ2α2α3 − κ4α1α4 − α1α4 + α2α3) > 0
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or equivalently, that

κ2α2α3 − κ4α1α4 − α1α4 + α2α3 < 0.

For a fixed value of κ2, this expression is a decreasing linear function on κ4. There-

fore, we can find a positive value of κ4 such that it is negative.

We conclude that for any κ2 > 0, we can find values of κ1,κ3,κ4,κ5,κ6 > 0

and Ktot > 0 satisfying (E.32)-(E.36).

As a consequence of Lemma 1, there exist values of the reaction rate constants

and total amounts such that (E.26) holds if we can find αi,1, . . . ,αi,5 > 0 such that

0 = x− Stot +
n∑

i=1

αi,1x2 + αi,2x

αi,3x2 + αi,4x+ αi,5
. (E.37)

With this notation, we want to determine the positive real roots of the poly-

nomial obtained by clearing denominators in (E.37):

p(x) = (x−Stot)
n∏

i=1

(αi,3x
2+αi,4x+αi,5)+

n∑

i=1

(
(αi,1x

2+αi,2x)
∏

j ̸=i

(αj,3x
2+αj,4x+αj,5)

)
.

(E.38)

The coefficient of degree 2n + 1 of p(x) is
∏n

i=1 αi,3 and the independent term of

p(x) is −Stot
∏n

i=1 αi,5. We set αi,4 = 0 and αi,1 = 0. Setting these two constants

to zero, for i = 1, . . . , n, does not change the degree of the polynomial. By the

continuity of the isolated roots of a polynomial as functions of the coefficients of

the polynomial, if we can find αi,2,αi,3,αi,5 > 0 such that with αi,4 = αi,1 = 0,

the polynomial p(x) has 2n + 1 distinct positive real roots, then for αi,4,αi,1 small

enough, the polynomial p(x) still has 2n+ 1 distinct positive real roots.

We further let αi,3 = 1 for all i = 1, . . . , n, and Stot = 1. To ease the notation,
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we write ai = αi,2 and bi = αi,5, such that the polynomial of interest becomes

p(x) = (x− 1)
n∏

i=1

(x2 + bi) +
n∑

i=1

(
aix

∏

j ̸=i

(x2 + bj)
)
. (E.39)

Lemma 2. There exist ai, bi > 0, for i = 1, . . . , n, such that p(x) has 2n+1 positive

roots.

Proof. The statement is a consequence of Lemmas 2, 3 and 4 in the Supplementary

Information of [50].

We are ready to prove the main result on the number of positive steady

states.

Theorem 3. For any n ≥ 1, there exists a choice of reaction rate constants κ6 > 0,

κi,1,κi,2,κi,3,κi,4 > 0 and total amounts Stot,Ki
tot > 0, for i = 1, . . . , n, such that

the system with n allosteric kinases competing for the same substrate has 2n + 1

distinct positive steady states.

Proof. Let bi, ai > 0, for i = 1, . . . , n, as in Lemma 2, such that p(x) in (E.39)

has 2n + 1 distinct positive real roots. We set αi,2 = ai,αi,5 = bi,αi,3 = 1, for

i = 1, . . . , n, Stot = 1 and let αi,1,αi,4 > 0 be small enough such that the polynomial

p(x) in (E.38) has 2n+1 distinct positive real roots. We set k6 = 1. By construction,

any choice κi,1,κi,2,κi,3,κi,4 > 0 and Ki
tot > 0 such that (E.27)-(E.31) are fulfilled

provides a set of parameters with 2n + 1 distinct positive steady states. Such a

choice exists by Lemma 1.

Remark 4. Consider the polynomial p(x) in (E.39) and assume that ak = 0 for a

certain k. We get the polynomial

p̃(x) = (x− 1)
n∏

i=1

(x2 + bi) +
n∑

i=1,i ̸=k

(
aix

∏

j ̸=i

(x2 + bj)
)

= (x2 + bk) ·
(
(x− 1)

n∏

i=1,i ̸=k

(x2 + bi) +
n∑

i=1,i ̸=k

(
aix

∏

j ̸=i,k

(x2 + bj)
))

.
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Assuming bk > 0, the polynomial p̃(x) has a factor of degree two with non-real roots

and a factor with the same form of the original p with degree 2(n− 1)+ 1 = 2n− 1.

We will show below that the later factor admits 2n−1 positive roots for some choice

of ai, bi. Therefore, we conclude that p̃(x) admits 2n − 1 positive roots for some

choice of parameters as well. By the continuity of the roots of a polynomial (to have

ak > 0), this implies that we can find reaction rate constants and total amounts

such that the system has 2n− 1 positive steady states.

We can repeat the argument by letting m of the parameters among a1, . . . , an

be equal to zero, and conclude that we can find reaction rate constants and total

amounts such that the system has 2(n−m) + 1 positive steady states.

E.2.5 n unstable steady states

In this subsection we show that, considering the 2n+1 steady states ordered increas-

ingly by their value x = x5, then the steady states number 2, 4, . . . , 2n are unstable

relative to the stoichiometric compatibility class they belong to, that is, relative to

the invariant subspaces described by the conservation laws (E.19) and (E.20).

Since the system with n allosteric kinases competing for the same substrate

has 4n+2 variables and n+1 conservation laws, the Jacobian of f in ẋ = f(x) always

has n+ 1 zero eigenvalues. The remaining 3n+ 1 eigenvalues (which could include

zero) have corresponding eigenvectors in the stoichiometric subspace and dictate the

dynamics around the steady state and within the stoichiometric compatibility class.

If the steady state is locally stable relative to the stoichiometric compatibility class,

then the product of these 3n+1 eigenvalues has sign (−1)3n+1. Therefore, if the sign

of the product of these eigenvalues is (−1)3n, then the steady state is necessarily

locally unstable relative to the stoichiometric compatibility class. We argue in the

proof of the next theorem that this is the case for the steady states in even position

2, 4, . . . , 2n.

Theorem 5. The 2, 4, . . . , 2n-th steady states are unstable relative to the stoichio-
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metric compatibility class.

Proof. We order the variables of the system as x1,1, x1,2, x1,3, x1,4, . . . , xn,1, xn,2,

xn,3, xn,4, x5, x6. It follows from [296, Prop. 5.3] that the product of the 3n + 1

eigenvalues of the Jacobian with eigenvectors in the stoichiometric space agrees with

the determinant of the Jacobian of the function g : R4n+2 → R4n+2 where

g4(i−1)+1(x) = xi,1 + xi,2 + xi,3 + xi,4 −Ki
tot

g4(i−1)+2(x) = −κi,3xi,2x5 + κi,4xi,4 + κi,5xi,1

g4(i−1)+3(x) = κi,1x5xi,1 − κi,2xi,3 + κi,6xi,4

g4(i−1)+4(x) = κi,3xi,2x5 − κi,4xi,4 − κi,6xi,4

for i = 1, . . . , n and

g4n+1(x) = x5 + x6 +
n∑

j=1

(xj,3 + xj,4)− Stot,

g4n+2(x) =
n∑

j=1

(κj,2xj,3 + κj,4xj,4)− κ7x6.

We now apply the method described in [54] (see the Electronic Supplemen-

tary Material of the paper), to determine the sign of the determinant of the Ja-

cobian of g from iterative eliminations. One can check that the expressions in

(E.21)-(E.24) are obtained from iteratively eliminating xi,1, . . . , xi,4 from the equa-

tions g4(i−1)+1(x) = · · · = g4(i−1)+4(x) = 0 respectively, which correspond to the

conservation law with total amount Ki
tot together with ẋi,2 = ẋi,3 = ẋi,4 = 0. Note

that in each step we eliminate the first variable from the first function and for each

group the first one is increasing and the other three are decreasing in the eliminated

variable. Finally, we eliminate x6 from g4n+2(x). Note that in that step we are elim-

inating the second variable from the second (remaining) function and that function

is decreasing in x6.
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Let p(x5) be the polynomial obtained after clearing denominators in (E.26).

Then, by [54], the sign of the determinant of the Jacobian of g at a steady state

agrees with the sign of the derivative of p(x5), p′(x5), times (−1)3n+1. Therefore, if

p′(x5) is negative, then the corresponding steady state is locally unstable. Since p(0)

is negative, the first real root of p(x5) has positive derivative, and then the signs

alternate. Therefore, the steady states corresponding to the 2, 4, . . . , 2n-th roots are

locally unstable relatively to the stoichiometric compatibility class.

E.3 Allosteric kinases with several states

In this section we consider the case in which the allosteric kinase is specific to one

substrate, but the kinase might have more than 2 states. Let Ki, i = 1, . . . , n denote

the n states of the kinase. The general model is in this case:

Ki + S −−⇀↽−− KiS −−→ Ki + Sp Sp −−→ S Ki −−⇀↽−− Kj KiS −−⇀↽−− KjS

for all i, j = 1, . . . , n, i ̸= j.

In addition we will consider a simplified model. The simplified model is

easier to analyse mathematically and we will demonstrate that for n = 3, 4 there

exist reaction rate constants such that multistationarity occurs. A result by Joshi

and Shiu [315] and Feliu and Wiuf [317] then allows us to conclude that there exist

reaction rate constants for the original full model such that multistationarity also

occurs in the full model.

The simplified model we consider is:

Ki + S
κi−−→ Y for i = 1, . . . , n Y

η1−−→ K1 + Sp

Ki + S
µi,j−−→ Kj + Sp for i ≥ j ≥ 2 Kn

ηn−−→ Kn−1
ηn−1−−−→ . . .

η2−−→ K1

Sp
κn+1−−−→ S.
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When n = 3, the simplified model cannot have more that 3 positive steady states,

because we can reduce the steady state equations with the conservation laws to a

polynomial of degree 4 with positive independent term and negative leading term.

By the Descartes’ rule of sign, the polynomial can at most have 3 positive real roots.

For n = 4, we find the following instance of parameters that give 5 positive

steady states.

κ1 = 0.0369, κ2 = 0.000172, κ3 = 1.4 · 10−9, κ4 = 0.00011,

κ5 = 1069.496, µ2,2 = 0.0003, µ3,2 = 0.000008426, µ4,2 = 0.00016,

Ktot = 102, µ3,3 = 0.000085, µ4,3 = 1999.97, µ4,4 = 25165410,

Stot = 120, η1 = 0.0107, η2 = 0.1, η3 = 0.001,

η4 = 0.1.

The general scenario is too complex mathematically and cannot be analysed as we

did for the model in section E.2. We conjecture though that the number of positive

steady states grows with n as well, such that the system admits at least m + 1

positive steady states where m = n if n is even and m = n− 1 if n is odd.
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