
Abstract. Osteosarcoma is the most common primary bone
tumor and represents a major therapeutic challenge in medical
oncology. While the use of aggressive chemotherapy has
drastically improved the prognosis of the patients with non-
metastatic osteosarcomas, the very poor prognosis of
patients with metastasis have led to the exploration of new,
more effective and less toxic treatments, such as immuno-
therapy for curing osteosarcoma. Compared to the numerous
reports describing successful immunotherapy for other solid
tumors, the number of reports concerning immunotherapy for
osteosarcoma is low. However, this therapeutic strategy opens
new areas for the treatment of osteosarcoma. In this review,
the reasons for delay and all elements essential to develop
immunotherapy concerning osteosarcoma are defined.
Several pieces of evidence strongly support the potential
capability of new therapies such as cellular therapy and gene
therapy to eradicate osteosarcoma. Thus, clinical human
trials using peptides, cytokines and dendritic cells have been
performed. Tumor-infiltrating lymphocytes and some tumor
antigens have been identified in osteosarcoma and resulted in
an important breakthrough in cellular immunotherapy. Also,
RANKL/RANK/OPG, the key regulator of bone metabolism,
is a hot spot in this field as therapeutic tools. Immunotherapy
for osteosarcomas has great potential, promising improvement
in the survival rate and better quality of life for the patients.
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1. Introduction

Osteosarcoma, the most frequent primary bone tumor, typically
affects children and young adults (1). The overall survival with
an aggressive chemotherapy regimen before and after surgery
now varies between 50 and 65% (2). These poor results have
led to the exploration of new, more effective and less toxic
treatments, such as immunotherapy for curing osteo-
sarcoma.

Immunotherapy is a therapeutic strategy based on the up-
regulation of the immune response in tumor-bearing hosts.
Two immunotherapy types exist: i) passive or adoptive
immunotherapies consist of the administration of ex vivo-
expanded tumor-specific cytotoxic immune cells especially T
lymphocytes, ii) active immunotherapies including pulsed
dendritic cells and cytokine treatments that elicit immune
response against tumor cells. Several reports have strongly
underlined the potential interest of these new therapies
applicable to osteosarcomas. We summarized the pathway of
the representative immunotherapy for osteosarcoma in theme
(Fig. 1). This review focuses on the current knowledge as well
as the future trends of immunotherapies for osteosarcomas.

2.  Therapeutic strategies based on passive immunity also
named adoptive immunity

Cytotoxic T lymphocytes (CTL) specifically recognizing
tumor cells are the pivot cells of passive immunotherapies.
Monoclonal, polyclonal and cell lines of T lymphocytes
have already been envisaged to develop such therapeutic
strategies.

Tumor antigens inducing HLA class I-restricted tumor-
specific cytotoxic T lymphocytes (CTL). The identification of
human cancer antigens restricted to HLA class I opened a
new area of antigen-specific cancer immunotherapy
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specifically targeting these antigens (3). Specific immuno-
therapies utilizing peptides deriving from these antigens are
ongoing for the treatment of HLA-A1+ patients suffering
from melanoma and resulted in major clinical responses
(4,5). Based on these observations, this therapeutic strategy
was extended to other malignant tumors including osteo-
sarcoma. Indeed, several tumor antigens: melanoma-
associated antigen (MAGE) (6), squamous cell carcinoma
antigen recognized by T cells (SART) 1 (7), SART3 (8) and
papillomavirus binding factor (9) are expressed in
osteosarcoma and provided the rationale to develop cellular
therapies in osteosarcoma. A newly defined tumor-rejection
antigen SART3 is highly expressed in osteosarcoma (8).
SART3 was identified from eosophageal cancer cells KE4
(10). The SART3-derived peptides were able to induce HLA-
A2-restricted and tumor-specific CTL in various histological
types (squamous cell carcinoma, astrocytoma and adeno-
carcinoma) (11). These facts support the potential use of the
SART3-derived peptides for specific immunotherapy of
HLA-A2+ patients suffering from osteosarcoma. SART3-
derived peptides induce the production of SART3-specific
CTL in an HLA-A24-restricted manner in osteosarcoma (8).
Taken together with the prevalence of HLA-A24 (12), this
strategy could be applicable for ~60% of HLA-A24+ patients
with osteosarcoma. Furthermore, no severe adverse response
associated with peptide administration and a significant up-
modulation of the cellular immune response against tumor
cells in clinical trial using SART3-derived peptides in HLA-
A24+ patients with colon cancer (13) encourages further
application of this strategy for osteosarcoma.

Polyclonal tumor-infiltrating lymphocytes (TIL): Selected
immunotherapeutic weapon that directly induces apoptosis in
cancer cells. An immunohistochemical study revealed
infiltration of osteosarcomas by T lymphocytes (14). Pheno-
typic analyses demonstrated that these infiltrating lympho-
cytes were 95% CD3+ and 68% CD8+ (14). Rivoltini et al
have also performed phenotypic analyses of TIL in 37
pediatric tumors, including 12 osteosarcomas and revealed
their CD8+ predominancy (15). It is theorized that the
infiltrating lymphoid represents a selected population of cells
which have preferentially migrated to the tumor secondary to
an immune response. These T lymphocytes termed TIL are
considered to be more specific in their immunological
reactivity to tumor cells than the non-infiltrating lymphocytes
(16). Thus, the identification of tumor-specific lymphocytes
has resulted in new therapeutic strategies based on mounting
a sustained and effective anti-tumor immune response
(16,17). Recently, we have shown that only TIL extracted
from osteosarcoma were cytotoxic against allogeneic tumor
cells in the analyses of 27 human patients with bone-
associated tumors (osteosarcoma, Ewing's sarcoma, giant cell
tumor, chondrosarcoma, plasmocytoma and bone metastases)
(18). Furthermore, TIL lytic activity was significantly higher
compared to autologous peripheral blood leukocytes.
Moreover, TIL extracted from rat osteosarcoma were very
sensitive to the tumor antigens expressed by autologous
tumor cells and demonstrated increased proliferation (18).
These findings strongly support the potential capability of
TIL therapy for osteosarcoma.

Rivoltini et al reported in 1992, that TIL obtained from
pediatric patients were difficult to use for immunotherapy at
required levels (15); however, recent in vitro culture methods
have shown great advances. Now, one of the most important
conditions of T cell immunotherapy is their anergic/tolerant
manner against tumor cells (19). It has been reported that the
Fas-mediated apoptosis pathway plays a crucial role in this
condition (19,20); however these poor immune responses
could be normalized upon in vitro culture (21,22). Furthermore,
immunotherapy combinations with chemotherapeutic agents
induce an anti-tumor effect for Fas-mediated apoptosis
resistant tumors (23-25). Moreover, interferon (IFN)-Á

sensitizes osteosarcoma cells to Fas-induced apoptosis
through up-regulation of the Fas receptor (26). Combined
immunotherapy with IFN-Á and either anti-Fas monoclonal
antibody or CTL bearing Fas ligand (FasL) might be useful.
Thus, TIL remain a viable arm of immunotherapy for
osteosarcoma similar to clinical phase II trials in melanoma
(27,28).

Except for tumor immune escape in osteosarcoma, the Fas/
FasL pathway plays a crucial role in chemotherapy-induced
apoptosis (25) and metastasis (26,29,30). Thus, this pathway
was used as a therapeutic target in several strategies (31,32).
Mainly, osteosarcoma patients die from lung metastasis;
therefore Fas/FasL may be a good therapeutic target,
especially as a lung metastasis inhibitor.

Another important factor of T cell therapy is the immuno-
logical specificity of T cells for the tumor (19,33). One
approach is to use ex vivo-expanded T cell clones
demonstrating specific lysis of an antigen-positive tumor
target. As shown in phase-I study in metastatic melanoma,
several advantages of T cell clone strategy were demonstrated
without sever toxic side effects (5,34,35). This T cell clone
strategy will be able to achieve more effective and less toxic
T cell therapy for osteosarcoma.

Natural killer (NK) cells and T cell lines: The cell populations
specifically directed against tumor cells. NK cells have
innate anti-tumor functions upon tumor regression (36). TALL-
104 is endowed with MHC non-restricted killer activity against
a broad range of tumors across several species, sparing cells
from normal tissues (37). TALL-104 cells were administered
systemically in an adjuvant setting to 23 cases of canine
osteosarcoma after surgery and chemotherapy (38). This
therapy achieved favorable median survival times and
disease-free intervals compared with canine osteosarcoma
treated with standard therapy, and supported the efficacy of
adjuvant TALL-104 cell administration. In this series, severe
side effects including TALL-104 cell-induced leukemia were
not observed, thus this strategy could be worthwhile also in
humans.

To up-regulate NK cell-mediated anti-tumor function,
certain strategies have been envisaged (cytokines are
mentioned below). Kubista et al reported that hyperthermia
increases the susceptibility of osteosarcoma cells to NK-
mediated lysis by increased expression of heat shock proteins
(hsp) 72 (39). Hsp 72, implicated in tumor immunity (40), is
involved in the interaction between T lymphocytes and
hsp72+ osteosarcoma cells (41).
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3. Therapeutic strategies based on active immunity

To elicit immunity of tumor-bearing hosts, antigen presenting
cells (APCs) such as dendritic cell (DC)-based therapies,
cytokine-based therapies and gene therapies have been
demonstrated.

Monocyte lineage constitutes a complex system of professional
APCs which can induce primary T and B cell responses. DCs
constitute a complex system of professional APCs that have
the unique capacity to induce primary T and B cell responses

(42). The main pathway of DC-based immunotherapy is to
up-regulate lymphocyte activity, such as NK cells and TIL, and
the goal will be to optimize the use of DCs (i.e., vaccination)
in maintaining T lymphocyte survival and specificity. A
number of clinical trials are currently underway studying
DCs in a variety of tumors (43). One clinical phase-I study
using DCs against solid tumors in children including osteo-
sarcoma has been reported (44). In this series, one patient
with metastatic fibrosarcoma demonstrated strong positive
response without obvious toxic side effects. Some relevant
topics include antigen loading and DC maturation procedures,
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Figure 1. Potential immunotherapeutic approaches against osteosarcoma cells. T cells such as TIL and NK cells directly attack tumor cells in an MHC-
restricted manner or not, according to their populations. Administration of DCs induces up-regulation of T cells by presenting peptides in an MHC-restricted
manner and also directly targets tumor cells. For priming DCs, several strategies were identified. Cytokine networks stimulate immune therapeutic cells.
Administration of peptides (L-MTP-PE) and cytokines (TNF-·, IFN-Á) stimulate macrophages. Bisphosphonates have potential anti-tumor effects as
metastasis inhibitors and modulate immune response as Á‰ T cell activators. RANKL cannot only prolong the survival time of DCs, but also induce T cell
growth. OPG acts as a decoy receptor of TRIL. CAMs, cell adhesion molecules; CDDP, cisplatin; DCs, dendritic cells; fit3L, fit3 ligand; FLIP-L, FLICE
inhibitory protein long form; FasL, Fas ligand; GM-CSF, granulocyte macrophage-colony stimulating factor; IFN, interferon; IL, interleukin; L-MTP-PE,
liposome-encapsulated muramyl tripeptide phosphatidylethanolamine; RANKL, receptor activator of nuclear factor-κB ligand; OPG, osteoprotegerin; PBF,
papillomavirus binding factor; SART1, 3, squamous cell carcinoma antigen recognized by T cells 1, 3; TCR, T cell receptor; TGF-ß, transforming growth
factor-ß; TIL, tumor-infiltrating lymphocytes; TNF-·, tumor necrosis factor-·; TRAIL, TNF-related apoptosis-inducing ligand; TRAILR, TRAIL receptor;
black solid arrow, activation; dotted arrow, suppression.
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frequency and route of DC administration, efficacy of DCs
homing to lymphoid tissues and their durability once there
and the role of distinct DC subsets (42,43).

Monocyte/macrophage-mediated tumor cell killing is a
major mechanism of the hosts' defense against primary and/or
metastatic neoplasms. Liposome-encapsulated muramyl
tripeptide phosphatidylethanolamine (L-MTP-PE) is a peptide
that acts as a potent activator of monocytes/macrophages in
humans, mice and dogs (tumor antigen-derived peptides used
to produce T cells in vitro or to charge DCs). In over 125 dogs
with osteosarcoma, L-MTP-PE was found to prolong
metastasis-free and overall survival rates when given alone or
after systemic chemotherapy (45,46). Kurzman et al reported
that canine pulmonary alveolar macrophages from dogs
treated with doxorubicin (DOX) + L-MTP-PE have enhanced
cytotoxic activity against osteosarcoma cells when compared
to dogs treated with DOX or L-MTP-PE alone (47). These
findings support the rationale for combining chemotherapy
agents with immunotherapy for the treatment of metastatic
disease. The greater anti-tumor activity of L-MTP-PE has
been also demonstrated in children with metastatic
osteosarcoma and a phase-III randomized trial has been
started (48,49).

Cytokines: most widely used and investigated, possibly
essential molecules in immunotherapy due to their excellent
wide range ability. Cytokines represented by interleukins
(ILs) play a crucial role in the expression of cellular adhesion
molecules (CAMs) and the function of anti-tumor effector
cells as the most potent modulators of the immune responses.
CAMs play an important role in immune responses including
NK cell binding to target (50). Indeed, melanoma CAM,
synonymous MUC18 plays a crucial role in osteosarcoma
metastasis (51). Osteosarcoma cells express this molecule
and ABX-MA1, a fully human anti-MUC18 antibody,
inhibited the metastasis of human osteosarcoma cells in vivo
(51). The most widely studied IL in this field is IL-2 (52).
Luksch et al have reported a clinical trial in osteosarcoma
using IL-2 (53), in which 18 children with localized
osteosarcoma received four IL-2 courses (9x106 IU/ml/day
x4), alternated with pre- and post-operative multiple
chemotherapies. The results showed that intensive chemo-
therapies have no effect on the IL-2-induced immune
activation, and suggested a role of the NK cells in the control
of osteosarcoma. On the contrary, it has been reported that
the clinical use of IL-2 is limited by the significant toxic side
effects caused by the administration of this cytokine in doses
sufficient for cell activation in vivo (54). Other ILs have been
recognized as candidates for human immunotherapy. Some
studies using IL-12 (55), IL-12 associated with IL-18 (56),
IL-18 (57) and IL-17 (58) in osteosarcoma have already been
performed. These cytokine-based therapies demonstrated
enhanced cytotoxic activity of T cells in osteosarcoma. Also, it
has been reported that tumor necrosis factor (TNF)-· and
IFN-Á can induce the anti-tumor activity of macrophages (47).

Gene therapy eliciting immune response in tumor-bearing
hosts represents one option of immunotherapy. In the field of
gene therapy for osteosarcoma, several approaches have been
envisaged, such as the suicide gene therapy (59,60), tumor-

suppressor gene therapy (61-64) and cytokine-based gene
therapy (65-68). The most investigated gene transfer vector is
the adenoviral vector (Adv) (69). A single injection of Adv-
encoding IL-2 gene (Ad IL-2) into a primary tumor lesion
elicited anti-tumoral immunity and this immunity not only
suppressed primary tumor growth but also eradicated
disseminated micro-metastases in distant organs (70). In
this study, not only minimal side effects but also maximal
therapeutic effects were exerted only in the case of injecting
the optimal dose (not the highest) of Ad IL-2. Important
limitations in this regard are the failure of non-replicating
Adv to achieve sufficient tumor-cell transduction and effective
solid-tumor penetration. Furthermore, the expression of
coxackievirus and adenovirus receptor, which is an important
determining factor for adenoviral gene transfer efficiency, in
osteosarcoma is controversial (71-73). Witlox et al demon-
strated that targeting a conditionally replicative adenovirus
toward integrins Ad5-Δ24RGD, providing alternative viral
entry pathway, greatly enhances its cytotoxicity on osteo-
sarcoma and warrants further exploration of Ad5-Δ24RGD for
its utility in osteosarcoma treatment (74). However, the fetal
case report following adenovirus gene transfer (75) indicated
against this strategy in humans. As other than adenovirus
gene transfer vectors, it has been shown that osteosarcoma
cell lines were good targets for lentiviral transduction with
favorable gene transfer efficiency (76,77). After the
development of a successful and safe delivery of the
therapeutic gene, this strategy demonstrates great potential
activity to modulate the prognosis of patients with
osteosarcoma.

4. Summary and future trends

There is no doubt that one of the most significant advances
in the field of anti-cancer therapy has been the recent
development of immunotherapy; however, the initial results
of human trials were not realized as expected. The reasons
for this discrepancy have been reported (19,78). It is now
common knowledge that the tumor burden contributes to a
significant suppressive environment. Thus, surgery remains
the first line for debulking tumors and radiation and/or
chemotherapy can be used for the removal of remaining and
micro-metastatic lesions as well as reducing tumor burden. To
achieve desired results, immunotherapies combined with
these conventional treatments are recommended.

The number of published data of immunotherapy for bone
tumors is very low compared with that of other solid tumors.
The reasons for this delay were discussed (9,79) and the
following points were raised; i) the relatively low immuno-
genicity of osteosarcoma as only few examples of
spontaneous tumor regression exist (80,81), ii) the practical
difficulty in establishing osteosarcoma cell lines and
autologous CTL (82,83) and iii) the lack of suitable candidate
genes for a reverse immunological approach such as a tumor-
specific fusion gene (84,85). However, another hopeful
explanation of this delay resides in environmental factors
peculiar to bone. Recent studies have clarified molecules,
such as the receptor activator of nuclear factor-κB ligand
(RANKL)/RANK/osteoprotegerin (OPG) as the key regulators
of normal and pathological bone metabolism (86-90).
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Thus, correlations between the phenotypes of the tumors
and changes of RANKL/OPG have been reported (91). In
osteosarcoma, high OPG (92,93) and lack of RANKL at the
mRNA level (94) have been reported. To prevent bone
destruction due to malignancies, the potential capability of
these molecules as therapeutic tools has been suggested (95).
As osteoclast is the unique cell that can induce bone
degradation, inactivation of the osteoclast by OPG was
targeted. Honore et al have reported that the administration of
OPG blocked bone cancer-induced skeletal destruction (96).
Furthermore, direct effects of RANKL/RANK/OPG on
immune response were reported. Specifically, RANKL can
dramatically inhibit DC apoptosis via increased Bcl-xL
expression (97) and induce T cell growth (98). OPG acts as a
weak decoy receptor for TNF-related apoptosis-inducing
ligand (TRAIL) (99) and modulates tumor apoptosis (100).
Also, bisphosphonates (BPs) can be another therapeutic
approach for osteosarcoma. Except for known function of
BPs, the inhibitory effects of BPs on the metastases as well as
the potent anti-cancer effect have been suggested (101).
Moreover, as BPs can activate Á‰ T cells involved in tumor
cell surveillance and killing (102), the ability of BPs as Á‰ T
cell activators is encouraging for immunotherapy. These
results provide the rational to use the molecules in
immunotherapy for osteosarcoma; however, the safe
administration of these agents in humans should be addressed
carefully.

5. Conclusion

To date, the number of published clinical trial of
immunotherapy for osteosarcoma is low. However, there are
several pieces of evidence strongly supporting the potential
capability of immunotherapy to eradicate osteosarcoma in
combination with conventional treatment. Immunotherapy for
osteosarcomas has potential promising improvement in the
survival rate and better quality of life for patients with this
tumor.
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