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Abstract. 

~Chis thesi,3 consists of tHO unconnected yarts. 

In the first part we study the ar_conjugacy classes of 

flows on two dimensional manifolds 'I."hose flm'l lines near 

a fixed point are diffeomorphic to the level surfaces of 

a I'Iorse function near a critical point and "'1hich have no 

holonomy. lJe show how these can be decomposed into those 

in which every flow line is closed and those in whioh no 

flow line is closed. In the remainder of the thesis we 

consider the latter case and shoi'! that then the num~er of 

limit sets is finite. He describe their geometry and. use 

the techniques of ergodic theory to sho,'! t~lat the num'jer 

of asym)totic cycles is finite in ~e~tain cases. We show 

that the e.symptotic cycles are classifying for flm-!s of 

. this type on a ma~ifold of genus 2 with eXRctly two non-

-trivial limit ssts. Finally we give some new examples 

on manifolds 0:: :'~i;her genus both of floNS in l"hich every 

flow line is ~~~~~ 9ud 6f flows in which each limit set 

is a clossi,~c~~~~e dense set which meets any transverse 

interval ilL :: 

In ~he second --~~ we consider differential operators 

'which c,~:e functo';'-ially associated to Hiemannian manifolds 

the proof of th2 indax theoreD via the heat equation • 

.. " -I' f' -'l" ~ " 0 . . 'J.c.ese are C.Lt;'SSl ·lel.L In 'Ge:cmc, 01 '(.1'.8 n-eC}Ulvarlant 

represent2tions oft~e ~eneral linear group. 
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Chanter 1. Introduction. 
! 

Consider a smooth codimension 1 foliation of a aifferenti-

able manifold f'1 in which is embedded a closed two 

dimensional submanifold. By Sard I s theorem, the eDoede.ing 

can be approximated b~ one in which the intersections of 

the leaves of the foliation trace 'out on the submanifold 

a flow which near a fixed point is like the level surfaces 

of a Morse function near a zero. By adjusting the e3bedding 

near a saddle point ~t can be assumed that no ennuIs , .1.-

pOlni..o 

of the flow i~ joined to B2Y other by a floN line. 

~n this t~Gsis we study flows on two diQensional 

manifo11s Hhose fixed points have these 'C;~'iO properties. 

As they are studied from a foliations theoretical 

viewpoint they ~i:l te called Morse foliations. 

~mbeddinGs of -::', :':'i!llensional manifolds in foliated 

manifol,J,s arl s e- :_:-:c::;urall.y in a number of ~·!a:7s. Li'or exa:nple, 

if Ii is Cl fi br~. ',=~ jIe \·.ri th fibre a -[;\'!O clim~msional 

"'li-'nl' fol,-l .1,h (.;,~, 
II '''' u, l-.L~~."' - ~ are many embeddin~s of the fibre in M. 

o and M is compact or has a non-closed 

leaf there is a transverso circle el~1bedded in T-i which 

bounds an embedded tHO diuensional manifold. r:!:he StUd7 of 
v 

the induced flo\'! in this case is e~coloitcd in the Droof of 

r;ovikov's theo:cem (see [~JO] ). 
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Conversel:.r any I'lorse foliation of a tHO dimensional 

mar:.ifold L3 incluced from the natural e r:!oG(lding of 1. in 

the nOI)}~:18.1 bundle of- the corresponding I-Iaefliger str1..lcture 

(see [14] &: 2.9) 

We shall mainly be concerned with the holonomy group 

(see [1 OJ ), the limit sets and the invariants of j'io:!:'se 

foliations. 

In chapter 5 we prove that 3. i-Iorse foliation \'li tl: t:!':_vi,=d 

holonomy ~roups can be deco~?osed into Morse foliatio~s 

closed. 

'111e interestin:.; norse foliations to study are those ~'.'i~cll 

. no 1:1010:10;:lY and no closed leaf 2,lld the remainder 02' ou:::-

J:esul ts con08:::-':: -::"e,S·2. In cJ.lapter 7 \'le prove our ~eco::."l-: 

main res~l~. ~S~~; ~he theorem of A.J.Schwartz (see [31] ) 

and em ele:,:,':':.-:- s:'!3.lysis of the Doint of f.irst return 

function 0:'--1 :-:" :::., ,:"'1 transverse interval v;e sho,:! -ells. t in 

~, ....... " 1 f'" 1 l' 'I- <-GillS Sl u us. "Cl2·~·_-: .. -::.:2 C' .. :'?G on y 111.1'Ce;;7 uany H.11'v se'vs. 

In general a :~ ~~ set is a nowhere de~s8 set which 3eets 

anJ transverse 2'...i,DnClnifold in a' perfect set. 

cont::'8.sts on the 

sp'::;,ere o-!~· torus (see (1] and [4}). en the other hand Eector 

( ['12J) :=:'~I.d Lncksteder ([20]) have [':1 ven e}~am7)les of 
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codiuensiol1 1 foliations (in 021(:'; case anal:vtic) of three 

dimensional manifolds in v;hich there are exceptional 

minima]. sets. 

In chapter eight \'le apply -che techniques of erGodic theory 

to prove that in a certain restricted situation the 

number of asymptotic cycles of a norse foliation is finite. 

The essential feature of these i';orse foliations is that 

e;i ven any transverse circle P.1ee·~il1:; a sinsle w-limit set 

of a leaf in a set.n. ,a..'YlY holonoE1Y invariant transverse 

me2sure and an;T point p o:-.n the:!'). that circle can be 

ap?rOXilnated in measure b~T the clisjoint union of iterates 

under the Joint of first j~'8t;url1 i'u.ncl~ion 0:1'.' B.ny arbi-cro.ril,y 

small interval ;::i.bout :"'. 

In chapter 1 0 vIe give the first knovm eza~7lDles of norse 

f'oliatior~.s ,-:i -en ~c::.'i vie.l holonomy groups and rro closed 

leaf 011 2-manifolcls of genus greater than one. 

\Ie also sho\;, tl:9.t j';orse foliations of the t\'iO t1anii'old of 

cenus 2 \'ii th :1O holonOli:Y 8.rrd no closed leaf which have 

exactly two li~~t sets (the ot~er possibility is one 

limit set) are classii'ied b;y- ·::;~".oir· asympto'\;ic cycles. 

i~ typical eX2.li1.~)le of sllcli a Lorse foliation is shmm. in 

figure 9.5 in ~'!hich the Dai::...~s of circles j../, A? and E have 
- I ~ 

to be identified by suitable diffeomorphisDs. 

'J.'hree questions are raised and left lli"1.anSHerec1 b;y the 

thesis. ~le first is whether Morse foliations Hithout 



holonomy and. Hi thout closed leavos on manifolds of ge2.1US 

greater than one can be ai"1alytic. The second is 1;'/hether 

it is pOSGi ble for norse foliations v..;i th no holonomy a.:.""ld 

no closed leaf to ilE!.Ve a single li:-:1i t set idlich is not 

the whole manifold. 

'J.1hirdl;:-l it is not kno'lfm,in general, v'lhether the asymptotic 

cycle of a leaf depends only on its ~-limit set. Indeed, 

except in a weak Tileasure theoretic sense ,it is not knm·m 

if the nUfilber of aS3Tffil)totic cycles (up to wultiplicatioll 

by positive scalars ) is finite. 

Chapter b,.ro sl-;:etches the ';;heoratical foundations of the 

four consider the tellCJ.viour ncar ;:, centre and it is sho·,-m. 

thl3.t if the lJ.olonor:lJT groups of "~~>.8 Lorse foliation a::'o 

all trivial then the centres are of just h'lO t;y-pes. 2.'11e 

rest of the thesis ~ontains the results alreadymentionod • 

. Jtanda:r:'d r.1.0-~a-;:;:..):-_ =.8 used throug:':'out ·the thesis. In 

particular, :::E~. 'C::.-:) :; as the rc;al r.u:n('0;::'s and. round in'ackets 

are used to ~e~:~_ oither an interval or a point of m2 

....... , . --"-:-)' 
v._ . _ ~ co:;t e~::t. L8iJn2.~.i nncl :nroposi tions arc 

~lurl1bcred in thE; S&ffie so Cluence lli thin eaC:1 section of 

ee.ch Chc"':;'1ter and dia5x'a:1s are numbe:r:'ed ' .. Ji-l.;lJ.in eaci chapter 

in a se:;mrate :::;equellC(;. l:umbers in senare brackets refer 

to 



Chapter 2. Morse foliations. 

2.1 the r::anifolds ri • 
C1' ,.' 

~J.lo fix our ideas 'JIe define for each integer g ~ 0 an 

orientable two dimensional manifold N of differentiability 
g 

class Cr (0 ~ I' ~ w) and. 'genus g. 

l"io if3 the 2-sphere {(x,y,z) E m.3 : x2 + y2+ z2= 1] with the 

usual differential structure and orientation induced from 

t:1--at on ill. It is sb:ply connscted and is therefore its 

own univ2rsul cover. 

1'l1 is the 2-torus uhich is defined as follows. 

Let LZ ® Zl act onffi2 via: 

( 
- ) / ",-,", rl>-, cn TU 2 t---~ ( ) 'n2 (m,n ,~x'c' _, -' E !.LJ 10 i.LJ)(JI\. ) x+m,y-I-n E. ill • 

h1 is the C'~uot=--=~:":; ;::;-pace of fR under thi$ action. The 
~ 

projectio:l f--: : 2-.' -----7 f-11 is a local homeomorphism. The 

Cr structure 2.:'_:, J:cientation on r-11 are the unique ones 

makingp1 a lc:~: orient 0 tion preserving Cr diffeomo;Phism, 

I'/here m2 has ::>:; USUi:i.1 Cr-struct;ure and orientation. 

M~ for g ~ 2 is defined as follows. 
o 

Let H = t Z €, ~ :, zl < 1 } be the hyperbolic plane 'J!i th 

geodesics circles perpendicular to the boundary circle ofR. 



Let F be the unique geodesic sided regular polygon in H 

with centr~ at O,4g sides,angle sum 2" and a vertex on 

tL9 positive real ~xi3. Label and orient the siies A1 ,31 , 

Jq ,B1 'rl.2' ••••• ,Ag,Bg,A~,B~, in an anticlockwise direction. 

~et ~l denote the unique orientaticn preserving isometry 

of H ma?ping ~i onto Al in the opposite direction and PI 
the unique orientation ~reserving isometrJ of E mapping BI 

onto Bi in the opposite direction. 

- t 7,' G { , 1"" 1 -~. b -1, -1 b __ -1 b -1 1 1.:e 1_Q' = P a l , 0 1 " ~ 0 . a 1 1 a1 01 ••• ag erd", C' J. 
000 -=> 

l'~g acts OTl h vi,:", a l ~ 0(1 ,bl~ (31 and l'ig is the quotient 

space of h unde~ this action. 

If fg : r,. ,-,,' .. - };': 
g 

, , ' nOl1-:eo:nor }fllSr:1. 

is a local 

'.Lhe Cr ctructure and orientation on ,'[ is the u::liaue 
g 

which makes f~ a local Or orientation preserving 
(:;) 

has the usual Cr structure and 

one 

orientation 28 ~ submanifold of V.Further details may be 

Now it is V2!~-~~l known that any orientatable two 

dimens,~_o:::-~e,l:,;..:,_:',)ld is hOr.'leomornhic to Iv] where g is 
- g 

the genus of tbe manifold (see for example (6]). It then 

follows from fi8J that any ;)r two dimensional manifold. is 
, ,r .. ~ .. ~ , . 
J Qll1eomorp::llc to I-lg (O~r"oO). 

~~is otssrvation shows that we CtlD regard the 2anifold 



M as the join of g-1 tori 
2; 

Fig. 2.1 

2.2 Homology of 

It is well known th~t 

H1 ([/Ig' 2Z ) ~ 2gLZ (i. e. direct sum of 2g copies of LZ ). 

Give ~1 the usual orient~tion (i.e. that induced from the 

usual ori entati o~ on ill 1 under the covering map f:.fR ~S 1 

:tl )~2T1'it), ':.0-:1 let «.tIi1 (81 , 2Z ) be the associated. 

generator. 
/1 

.lilly embedding L -.~ '-_-+)M as a submanifold induces a 
g 

class 1..*(cx)e.,.'S'i c: .. .::::; 'llhich '\;Ve shall refer to as the 

homology cle.ss-:.:,:sociated to l-(S1) . . Any integer hOE"lology 

class is an i=-~~~r multiple of the homology class 

associatej to -:= eillbedded circle in this way (see e.g. 

[3~).This hoc~logy class is zero if and only if there is 

a commutative Ciiagram: 



s 

vJhere j is e. diffeomorphism onto o\J and k is an embeCi..:ling 

of .,j, a tHO li.i:nensional ffie.nifold VJi th bounJ.8.rv, into ~.: • .; c· .. 
o 

'1 
:.~8oruet:rically this :Cleans t~lat itlhen "lrie "sut" c;.lor:.g ~(.3') 

in h we obtain manifolds diffeomorphic to ~ 'disc ani 
g g1 

'd' 1 1.(,1) ":l." ::; .. r'g2" lSC 'v'uere g1 +g2 = g, )::) = gQlSC e.nu. " lS 

d.iffeomorphic to !Jj "disc or !ji ,disc. 
- g1 g2 

The homology classes 2ssociated to the circles a.,b. shown 
l l 

in figu~e 2.1 sarve as ~ set of generators of H1(Mg'~~ 

2.3 Intersection nu:nbers. 

which is e.SSOci2tive and antisymmetric (see [5]). 

Geometric8.1ly, if '"1 ,l.::: : S 1 __ ----+~ I'lg are two embedded 

circles 

once in 

transversely, and if we traverse L1 

direction and count +1 for each ti~e 

: __ : l'ight and. -1 for each time l0 crosses 
c:. 

from the lef~,:_~~ ~dding these numbers gives the 

intersection :-_'.:~ : .~::. of the c.lass associated to 1.1 (.S 
1 ) 

. th th . . d " ,.., 1 ) t . Wl at a3soc~~~e to ~2l0 up 0 slgn. 

·.~aking the class:=:s (a.], [b.l associated to the circles 
l l 

cti ,b
l
. ~ show~ in figure 2.1 we see that: 

[b i ]· tb) 
= - [1:> j] • [:tiJ 

[aj] • raj] -­

[ail • (b j1 

= 0 

c ...,. .. 
~lJ 
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C • ..,- horse foliation's. 
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In this section we define the fund2mental objects of our 

stuJy. ~e give a definition which belongs unequivocally 

to foliations theory and those who have other tastes may 

prefer the definitions given in sections 2.5 or 2.6. 

it r'iorse foliation ~ of class Cr (2 ~ r (w) on the orient­

able 2-manifold I'I of genus g and class CS (s >;. r) is a g 

set £ f . : V. ) ill : i e. 11 of JVlorse functions satisfying;: 
l l 

(i) lv.j. 1 is an open cover of i'l • 
l l~~ g 

(ii) f. : if .--~~ lR is a CI' ; torse function. 
l l 

~iii) If x e '/ it') V j there is a neighbourhood U of x in 

v.n V. and an orientation preserving Cr diffeomorphism h .. 
l J lJ 

defined on a neig~bourhood of fj(x j such that: 

b..'(f.(y))=f.(y~ yEU. 
l.J' ~; l 

(iv) g is =~~i~al with res 19ct to prorerty (iii). 

'l'he i'lorse fur.:::-::.:: =-~3 fi £ ~ are called distinguished TIla'Os. 

Condi tion (i v:" :-:: .': :11:18 that un.) i'lorse functiGn \';hich is 

locally the c:~c~~ition of a Cr _ orientation preserving 

diff'eomorphis:' also lies in 'a • 

Jondition (iii) needs further elaboration. We first 

remark that (iii) includes the orientation preserving 

property of the diffeomorphisms hij so that we always 



assume our horse foliations to be "transversely oriented". 

Ibis condition also implies that if p is a critical point 

of.' i'i an'i p € V j then ) is ;3. critical point of f j . .;jucn a 

point will be called a singular point of ~. Since the 

critical points of ~lorse functions are iqol;=1te(~ ;:-'-,r; :-; )..".; ...... :...J.. _._~,-._ J. log 

is compact,there are only finitely many singular points. 

Finally note th'3.t the germ of h .. at f. (x') is unicuely 
. l. .J J .. 

specified except in the case th~t x is a centre. ihis 

remark is elaborate r} in section 2.5 which follows. 

2.5 Distinguished ch2rts. 

,", 
.. 8 shall suppose that ffi~h~s co-ordinates (x,yj. 

'J:ihe following re::l:::.rks ctre explained in (16]. 

Let ~ ::: sf,: if .--~) ~{ : i ~ 11 be a Cr Norse foli2.tion on Lg_ ~ l. =-
If p E ;'. is TIC:; 2. singular point and p e. V. then there is - g l. 

an orientatio~ ;~~2grving chart centre~ s.t p whose image 

such that 

I 'u \..:C, y) e . 

Such n chart _~ '~llej a distin~uished chart at ~. 

If P E. M is a sino.:uL'lr point and 1) E: V. the horse ind.ex - g u .. l. 

of fi at p is defined to be the maximum dimension of a 

subsjace on which the Hessian of f. is negative definite. 
l 
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If De -J. then since the h. . are orientation preserving, 
- J lJ 

the Lor3e index of f 
j 

at p is equal to that of f. at p 
1 

Ci11Q hf.::nce ;) has a w811 defined Lorse index. 

If this index is 0 or 2,p is called a centre and if it 

is 1,p is called a saddle Doint. 

It follows from the horse lemma, that if p 'Eo V. is a singular 
1 

point then there is an orientation preserving chart p 

centred at p defined from a n2ighbourhood of p in I'ig to 

a neighbourhood G o~ C in ".,2 , 
.dJ 3D en that throughout u 

n tp-1 " 2 
1· Cx,y) - f . ( ~o) '+xc.: +:v"" II l) J. ;:,; ':} centre of index 0 

1 1 - / , 
1 " :2 i .q; - (v y' f 

.. iot' i:.:: saddle point, J ... , ) o \. :) ..:·x -;; p 9. 
1 1 

('.' 2 ') .., cp -'1 f \.p)-x if is centre of index J.o ~x,y) -y P cl c.:. 
1 1 

~uch a chart is called a distinguished chart at p. 

·~onsider:·: ... tior.. c: ::o~istin:)uished chart at p e. V. shm.oJs 
- 1 

1tVhy the germ O.:~ 

a centre. 

.:....!.... 
at foCp) is well-defined except at 

1 

A Morse folic:~_~ ~an equ~lly well be defined as a 

:!1a~:im8.1 at19.:O =~ .. :istin2;uished charts but as the exact 

properties of such an atlas are someNhat inelegant 

(the overlap properties vary according to whether one 

is at a singular point or not) we omit them. 
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2.6 Vector fields tangent to a Korse foliation. 

. 2 Jonsider the standard flows on ill 

:Fi,;. 2.2 

Fig. 2.3 

.Fig. 2.4 

}illo\'v:~+-(X,y) = (x,y+t). 
v 

Field: 0/-0 • 
y 

(xcost-ysint,ycost+xsint). 

Field: -ya/-::.. + x aj ~ • 
uX gy 

]'low:~t(X"y) = 

(xcht- .:sht ,xsht+ycht:'. 

Field: y o/~ + x a/a • 
!;lOX y 



1i'l' f)' 2 5 ..L. C). • 
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i'low : ~G (x, y) = 

\xcost+ysint,ycost-xsint) 

Let M be the two dimensional orientable manifold of 
g 

Genus g and differentiability class C
S 

(3 ~ 2) and let 

'3 be ~\. Cr (2 S r" s) [,-10rS2 foliation on L • 
o 

p defined on a nai~hbourhood U of o. 
~ p' 

l~ccorc.lins as p is non-sinGular or has i':orse in;..'i.ex 0,1 or 

2,pull back the vector field given in figure 2.2,2.3,2.4, 

2.5 via rop to obtain 1:3. vector field. s on U • 
T P P 

UsinG:' a parti'Si::-_ of uni tv subordinate to tu j ~ " we 
v - ~ P D ... 1'[ 

" g 
can piece tose~2~r the local vector fields s to obt~in p 

a vector fi;31.: ... :)~, rIg with the follov'ling properties: 

(a) e8.c:·.~ :inguishod map f is constant along the 

flovl lines 0:.' 

= v if and only if p i~ a singular point 

of ~(by the co~patibility condition 2.4 (iii) ). 

This observation leads to the third possible definition 

of u horse foliation. ~h~t is,it can be regarded as a flow 
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of a vector field with the property that in a neigh-

bourhood of a zero of the 78ctor fi(o,ll the flm,! lines are 

diffeoillOl'i)l1ic to the 1e'.r81 surfaces of G. !':orse _{unction 

near a critical point. However different Morse foliations 

fi10.y arise from the S,j~ile flow-a :point 'l'iLlich is discussed 

in more detail in section 2.14. 

2.7 The index theorem. 

~~ving constructej e vector field ~s iL 2.6,the index 

theorem for vector fields (see e.g. [7]) then shows that: 

2-~S == Humber OJ-: c'2nt;res - nUf7loer of saddle points, 

where C i3 the Genus of the :nanifo1d. 

In terms of distinguished maps this becomes 

2-~g = Co - C1 + C2 

where U, is the ~~Iter of singular points of the Morse 
l 

foliation ~ o~' _ .:J:."_'S e inG.8x i (i = :), '1 ,2). 

2.8 Leaves leaf space. 

i.,et 1'1" be t~e ~-':~nifoLl of Genus S i·/hich is oriented. and 
b 

of differentiability class as (s ~ 2) as defined in section 

2.1 and let iJ = £ f, : V ,~ffi} be a l"lorse foliation on I"l 
l l g 

of class Cr (2~r~s). 
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We define the leaf manifold h~ of ~ as follows. 
g 

'11he points of £'1.( are the points of 1'1 • g - g 

A base of open sets -,.-, aI' ,:.t. c"nQl' "+-C' 0 '0 "'11 -L 1.. v v 0LJQ ..L c.;.... 

g 
o~O the 

, -1 ( ) lR' I form unf 0 c where c E. and U 1S an open subset of r: • 
1 g 

Although we have used terminology analogous to that in use 

in foliations theOry,M~ is not usually a mbnifold (except 

possibly in the case g=1),since there can be no chart 

about a singular point. ~owever if the singular points 

are remov8d from M~ we ob~uin a 1-dimensional m~nifold 

(l~ ,which is no"c secu:-~J.. cO~.J.:',t~::>le. 
6 

J ~ • 

P' 
C) 

There is a natu~al continuous bijection 

\. . Til __ -+) i"l . Ilg g 

which restricts t,o an immersion on Al. 
g 

Jl leaf is a co::::-=::c ~:.;d component of lj~o. ciny component of 
(,) 

~he vecto~ fi0~~~ constructed in 2.6 are all tangent to 

the le:','ves of ~ • ,/ix such a vector field -'~1 • 

Then the associated flow 

i!!l: I"I x ffi --~) f1 
~ g g ex,t) .... ' --tt ~~ .l...(x) 

;" l,. 

parametrises each non-singular leaf (that is each leaf 

not containing a singular point). 
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Suppose now that each leaf contains at most one saddle 

. t n' b 1. .L' ,', ," Idl"' . th pOJ_Yl' .l.::len eac _ .J...ea.L WDlcn con'C',:,lns a sac e 'Ooln~ lS ._e 

u.isjoint union of a fixed POL1t[) 01' P';1 and at l7lost four 

and at least two trajectories of ~~.These trajectories 

are called seDaratrices of ~. 

~l. separatrix is called in"vlard if for any point x lying 
o 

on the separatrix lim iLt(x ) = p and outvlard if 
. -. t-;CIO-a, 0 

+.im !~ t (x ) ~ p. 
'C~-oO '" 0 

Any sep:::cratrix is either im'lard or outHard and one that 

is both is called a loop separatrix (see figure 2.6). 

loop separ::'t::::'ix 
seDare::::::..:: 

l!'ig. 2.6 

,ie shall see :: ___ ,::: ~he loop sep-':l.ratrices play quite an 

important ro~~ _~ the theory of horse foliations. 

~he flow i~ also parametrises the separatrices of ! so 

that if ~ is the co~plement in M of the singular g g 

points there is a consistent orientation on the leaves 

of the induced foliation therE; (see (14) for a. survey of 

foliations). 
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2.9 ~e shall now make the assumntion that no leaf of any 

liorse fcliation contains Elore than one sin;:;ular point. 

note that any Morse foliation ~ = [fi : Ui --'-:"'''''~ffi} i £ I 

on ~ can be approximated by one satisfying this special g 

condition (comparS' the re::n.11 t s of [20] and [37) ). 
, 

To see this,it is first necessary to embed Mg in a 

(genuinely) foliated three dim8nsional manifold (N,~) 

constructed 28 follows. 

Choose a finite subcover l) . , •••• , U. of { u.1 . € T such 
11 In 1 1 -

that eaci singul~r Doint of 3 is contained in a single 

setU~ • l;o2:' SOCl .. ~:. ('i ~ :: ~ nj let )'i. be a neighbourhood 
lIe .1., 

K 3 of { ( ~ .. ",,7" (""\,...\', ...... ..,- c l" 1'1 A,J...; \.,.)) ....... j. L 

-lr l 1r 
Hi x ill 'IIi th the property 

k ....:\. ...:,\. 

that for ee.ch Doint x € u. fl 
~ 1 U. the unique local diffeo-

11 k 
morphism r;. . 

, lkll 
f. = 
lk 

is defined at 

of ill \'Ji th 

,-' of 
:::':'..~{il - i l 

e 2.:;.::. Doint 

'I'hen VJe 1 et :: = 

on a neighbourhood of x 

v 'Ji ·I-n' (v,,) tC i'}' v v· ....... L. ..J,... , J ~ I. • 

n lk 
U ~'/. 
k=1 lk 

and t ~~ke the _~.:. ~ : :"':lguishea. ::\8 . .9 of ~ on 11 to be the (J . i
k 

proj ection on ..r .• 

how there is an embedding 

X€U. I-I __ ~)(x,f. (x)) 
1 lk 

k 

Then by making arbitrarily s~all adjustments to i near 



each saddle point vIe can ensure that the induced I"iorse foliationl: 

s~tisfy our condition and a])roximate 0 

2.10 The regular covering space ~L of ~~ g <g. 

In this section 1'le define a covering space I'J11icb. \<;ill 

enable us to give a rigorous definition of'holonomy in 

section 2.11. 

liot ~ bc c~ ;:orse foliatio::1 on. =~~. 
6 

_~1e point:::; G.t' ~:: :>011siGt oL --}2.::":C3 [x, f] 1;,h(:-1:'0 x e ;'i~ B.nd 
G c 

f is a g;erm e.t z l'" 

~Che 
IV 

o:)en set s of I'i l 
g 

:i of 8. c'! .. istin~·) .. lisned rwro. g 

have ". subbase consistinc:; 

zr (f) = { [x, fl : 'VI '''' } [x, fJ € ncr., x ~ U 
17 
<.:.) 

Li is set of' 1'i"- contained in the g 

Lemma: TI~ is rta'~~~=ff and the map 
G 

of sets 

domain of f. 

::"roof: ;'3ince (.:;;:-::....:. .. ·=ausdo2:'ff (;.nCl c(:ntres are isolated points 

in M it is sufficient to ShON that distinct points [x,f], g 

[x,g] of Ma ,where x is not a centre,can be separated by 
t:) 

o.?en se-ts. ,:.lUppOS~ that f and C" are both defined on an 0 

o:t!en neig'nbourhood U of :x in fIt ,containing no contre. a-
0 



"-
11et U un f-1 (c) = un g -1 (c ,) be an open neighbourhood 

of x in r'I~. 
o 

,..., "J 

,:e show that Li(f)n U(g) "I¢ for all open neighbour!::l.oods 

U of x in Mg leads to a contradiction. 

<;ince [x,fl and. [x,g] are distinct Vie can choose a 

diffeomorphism k of a neighbourhood W , of c' in manto a c 

neighbourhood Wc of c inffiwhosegerm at c f is not that 

of the identity and choose U so small that rj'~Ll ,... \,' 
Q ""'" >"c' 

fey) = k(g(y») y£U (i) • 

If Cz,h] € D(f) n G(g) then h(z)=f(z}=g(z)=c=c' and t!::l.ere 

is a neighbourhood V of z in U such that 

_-,~ \' ,,- ;\ 11 ( -r \ r-- " ~- \ '''; - ~\..;) = 6\.1) (ii) • 

~ow since z is not 9 centre g(V) is a neighbourhood of c' 

in Wc '- Statement (ii) then imDlie~ that kee) e e e g(V) 

contradi9ting the assumption that the germ of k at c' is 

not that of t~e ~le~~ity. 

i'his completes -.- L-:- "-)roof that ~..t is Hausdorff. 'g 

,.8 no1tl sho~:,' tf:,=,-: x is a covering map_ 

l ' t r ""]""" Je p,l € :i,,::~-:. ::"et f be defined on the domain U 
c· 

6.is tinguishec.. at p_ 

of a 

For each germ of a diffeomorphism h defined at f(p) let: 

Uh = f[x,g] : xE: Unf-1 (f(P»,g=hf as germs at X~ Uj,and. 

V = un f-1 (f (p) an open subset of rv1: • 

Il:hen 0( I Uh : Uh --~> V is a homeomorphism. 
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",,-1 s 0 Dh n D1- :f ¢ ~ U, = Uh • 
1 112 111 2 -1.' 

l.·inally note that if (x,k]So( (V) J:: is the [jcr'El of a 

distin6ui2hed map at x and f(x) = fep).It follows from the 

clefini tion of a i"iorse foliation that there is 8. germ of 

a diffeomorphism h at fep) such that k = hf near x. 

~ehus 0{-1 (V) = ~ U
h

• 

It remQins to show that the covering is regular i.e. that 

J.' f [x f] [x f] E. ':;~ ther.:::. l'ro a "10'T'~omo"""""hi sm (l) of' 0' l' 0' 2 lig ~ >.:> .L .lle .u 1. .~/--- ••• r ~ 

N 

1'1 such that: 
~). 

,.:.::-

( i i) <X. o<p = c< • 

:Let f!>' ~ iC --7 ill . [x , f ] It----+) f ( x ) • . 'g , . 

subset S of fig. 

Choose h such t~at £2 = hf1 near 

If f 2 (xo ) f L] <==v:O let q>[x,f] = 

_' let cp[x,f] 

~is the requi=~d covering map. 

x • 
o 

[x,hf] on A-
1 f (x ) ,.., 1 0 

[ -1:'J -1 ( , x,h ~ on A f~\x) 
,.., c:. 0 

~,f] otherwise. 

[x ,hi] 

[x, i] other';;ise 
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2.11 Holonomy 

Our definition of holoTIomy is dus to haefliger ~[3J or 

[9] ). 

In this section holonomy is defined using the lifting 

property of the covering map 

0( : 'M.£ -~) ~l.e. • 
g g 

A geometric interpretotion of the notion is given below 

in section 2.13. 

-. "","- x eo '., ani let -y b2 a loon at x • l' lifts uni auel ~t .u'"- vOl, g ._' - 0 _ <I 

,.., "" 
to a pa. th )' in' : 'Y (t) = ['Y ( ~ ~ ,: ... J \'ii t~-: f u:2eviousl;y g v 0 ~ 

chosen. 

Yurther,it follows from the properties of regular 

covering spaces (see [131) that if 'Y!::: "I' reI Xo then 
,.., IV ,...; ,., 

"'Ie 1) = "y I ( 1) an1 -t ~ ~' reI. 0,1. 

If L is the :~~f ~ontaining x and f is fixed, this 
Xo 0 0 

process defines ' ~sp 

.::: (_. ",] : n1 (Lv ,x ) ~ Gf (' ), 
.- ~ . - :) "'0 0 ~ Xo 

where Gfo(Xo~ ~: ~h2 group of germs of G- diffeo~orphisms 

mapping fo (xo ) :ll.to itself and hex f) ( ['Y1) = h ';'ihere 
0' 0 

h is the unique germ with f1 = hf near x ,if x is o 0 0 

not a centre and hex f ] ((Y]) is the germ of the identity 
. 0' 0 

if Xo is a centre. 
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,:[Ihe definition is reasonable for a centre since 

If fl is another germ at x ,let h' be the unique germ at o 0 

f ex ) with f I = hI f ,assuming that x is not a centre. 
d 0 000 

If Y is the unique lift of 'Y starting at fx ,f 1 ,so 
- 0 0 

,.., N 

that Yet) = [Y(t),ftl ,then the unique lift 7 ' of ~ 
rv 

starting at [x ,flJis given by YI(t) = [Y(t),hlf
t
). o 0 

Thus h [x fl]( rY'J) = h ~h r f] ( (-vJ) o(h 1)-1. 
0' 0 xo' 0 

Hence in particular, he f 1 is an antihomomorphis8 of 
xo' 0 

n1(Lx ,x) into Gf(X) and the images Ofrr1(LXo,Xoi 
o 0 0 0 

are 

isomorphic. 

The holonomy group of Lx is the isomorphism class of the 
o 

image in G of TT/l (Lx ,xo ). 
fo(xo ) I 0 

Now (see [35]) tte equivalence classes under inner 

automorphisms 02 G .. " ( ) of homomorphisI:ls ofn, eL ...... ,x ) 
.:.. X ""-0 0 . 0 0 

1nto Gf ex ) a~e in bijective corresponience with elements 
1 0 0 

of H (L . G . ~ - the set of isomorphism classes of x ' .,.~ 1_ ... · •. 

o ..L o '''·,:>' 
)rincipal Gf ( '; bundles on Lx ,where Gf ex ) has ti.1e 

o x o ' 0 0 0 
discrete topology. 

If r~ is the topological groupoid of C
r diffeomorphisms 

OJ'': m1 (see (8));':1 restricts to a r~ - structure on L 
xo 

v!nj ch has a representative in the groupoid taken Hi th the 



discrete topology.It should be no surprise th2t this is 

the element just obt~ined. 

2.12 TrGnsverse vector fields 

Let 3 be a Cr Morse foliation on M ,the orient2ble 
G 

2-rnanifold of genus g. 

If P ~ hg is a non-sinGular l)oint of ~ ,a tr::'.nsverse 

interval . ,r .... ,·, 
:'.t D lS a \..i erntJec:..Cled intc:-rval whose t:~ngent 

vector at every point,tog0ther with the tanGents to the 

leaf through that point span the t ~'llc;cnt s Dace to 

Consider the vector fields on ffi2 

~)~ 
~((-

Field: x a/ax + YO/OV' 
~ 

'-1 (t t) 1" ow : xe ,ye 

liig. 2.7 

}iclcl: x o/-ox - ya/oy 
( t -t) }i'low : xe ,ye 

Pig. 2.8 

- I 
l'~ • 

g 



A transverse vector field X~ on 

follows. 

TV: 
II is one constructed as g 

Choose a finite cover of r>;O'. by distinguished cn3.rts such 
o 

that a neizhbourhoo~ of each singular point is contained 

i~ a unique chart. 

Jefin~ loc~l V2c~or fi61ds on each chart by pulli~g back 

the fiela of fisure 2.7,2.8,2.9, if the chart co~tains 

a singular point of ilorse ir:dex 0,1,2 respectively ani 

on any other ch2rt choosine; a flow whose trajectories 

arc locally traLs~~~se intervals and such the ~airs . 

(tangent to tr~~3~6r3e flow, tangent to ~ ) lie in the 

orientatio:1 0:.' 

x~ is formed f~:~ these local fields using a Cr ~artition 

of unity. 

"e make several observations. 

In a neighbourhood of a singular point of ! ,Xi is 
. 

locally diffeomo~phic to one of the flows in 2.7,2.8 or 2.9. 



Finally note that if we are given a transverse circle or 

a compact union of transverse circles,together with a 

finite number of transverse intervals we can extenl 

these to the flow of a transverse vector field. 

To conclude this section,the following definition is 

useful. 

A transverse interval at a singular point p is the 

homeomorphic image c((O,1» of a homeomorphism 

c : ( 0 , '1 )" ----4>~ l'-i f .. 'rl' 

onto its image such t~at: 

trajectory of a transverse vector field. 

(ii) ceO) = 0. 

2.13 The holonc:]? .l.s:;,.:na. 

Suppose that ~ ~s ~ (C2 ) Morse foliation on Mc~ 
u 

Given a leaf 1.., :-.:::-saining a saddle point and 8. 'Os. til 1 in 

lJ from P"j to .ell-singular points) .,-:hich passes 

through the s3.:':':'~? point,it is false that a transverse 

interval at P1 s',ieeps out a "stripll when translated along 

Y. However if ~ has the property that each passage t~rough 

the saddle point is either contained in a fixed nair of 

adjacent separatrices or the oppositc pair then half a 

transverse interval will sweep out such a 



27 

'l'his condition on paths is !".8.cie procise in 

part (i; of the definition of an admissible curve below. 

"' , -' 

) ( 

(a) h~if strio swept 

3" 
2 

) 

~b) no strio swept 

out. out. 

00 let s be a s~d~13 point on a leaf L and ~ a 

( 

S 
1 

distinsuished chart st s. Jonsicier the four subsets of 

tIle r ~n"''''' of (?j • ct--i.:1 - r· 

02 == {(x, -=< 

:Uefine I(3i'.s.~~ 

lJet K == [0,1] 0::' 

x> oj 

x } 0 J 
=r 0 if 

\ 

~ 1 • .co 
l..L 

( -1 if 

S 
-1 = 

s -2 
::: 

Iii == I j I 

ij ) 0 

ij < 0 . 

== [0,1J/ 
0=1 

{ex,x) : x < 01 
{(x,-x) : x (oj 

i_at 'Y : l:\ ---?)-L be continuous and let fa be a distin-

guished map at ~(O). 



Then ~ is admissible if and only if: 

(i) Either s ¢.. Y(L) or there is a number €." \;,l-:.icl'l is +1 

(ii) 

or -1 and such the-At \'ihenever t"J < t2 al1d_ 1',~ Ct1 ,t; ,~]) lies 

in the domain of cp w;i th '}I ( t1 ) € S - ,1'( tr-) E: S - then: 
1.1 -C' 1. 2 

= E-y. 

the germ of the identity map. 

If "'( is admissible we can define the index £y of Y to 

be () if s ~ 'Y(K) and as in (i) if s €roo. 

iiaally we neei a no~ion of ~~ici half of ~ transv~rse 

interval at Yet) we can define a strip through,ani sU8h 

an interval I'/ill b8 c'_lled an o.dmissible transverse 

intervCAI. 

If "Y is an acirn.is2iole path and e.l' :.= O,any trClnsverse· 

interval at ~lt/ is admis3ible. If Er= !1,orient t~e 

transverse in~~::~ls at 7(t) by letting the pairs 

(tangent to L-:'-:: c.:.val,tanGent to ~) lie in the oriente.tion 

of h g • i.Lr:eY1.::i.': c,.::: +1 take the right hand (positiv'~) 

half (incluoir_~ 1,,1:;)) and if E-y= -1 take the left ns.nd 

Cnegati ve) hE ... I£'. For example, the half interval ('""I ( 0) ,_~) , 

in fiGure 2.10(a) is admissible,whilst C7(O),B) is not. 



Holonomv Lemma: Let M be the orientable 2-dimension~1 
" c; 

,-.s . n 1" f G D.EUlllO CL 0 genus t: (s ~ 2) and let ~ be c,- Cr I",ors~ 

foli;~,tion on j'j ('~, ~ r ~ :.:;) in which no leaf contains more g \ 

than one singular point •. 

Let L b~ a leaf of ; and let l~ be a transverse vector 

field. 

Let l' : K )L be a continuous admissible map (where 

K 
~1 

::;; ti or [0,1]) of index E~. 

l;hen there is an admissible transverse interval V at "Y(O) 

., ,J. 
contained in a traJec~ory of A~ and a continuous ma~ 

E : 

3uch tl:irJ.t: 

(i) H ( 0 , v) ::;; v ell v e'{ , 

(ii) d(t,v) lies in a non-singular leaf L of ~ for v I YeO) v 
\vhich depends only on v € v-, 

(iii) H(t,l(O), = l:t), 

(iv) Hor eact :: € Z H( {t} X V) is an admissible transverse 

interval at I,: 22ntained in a trajectory 

(possibly wit~ _ singular point added) and 

-: ----4 II( ttl xii) : v t-l -...,..,H( t, v) 

is a Cr diffe:~:~)hiSD,whose germ at 7(0) densnds 

basically only on ,.... 

r'joreover: 

(v) If hI i2 the set o:f pDints of Knot ma:)Ded bvY 'Y to _ J. 
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a sing~lar point and i'll(' is Cr then so is H lK' x V. 

(vi) If ~ is a homeomorphism onto its image and Yl~' 

i3 .:-.\. Gt embed:ling eO ~t ~r) then H i:::; 8. DO:Tl8omor"r:hism &. 

HlK'x V is a at diffeomorphism. 

Proof: 'llhe idea is to cl.::;fine H locally and use the 

covering of section 2.10 to piece 

So let h,( be the leaf S1)8.Ce of ~ , g k 

these maps together. 

Ii.t the covering space 
g 

iefined in section 2.10. 

1 can be rebo"arded as a map into MJ. 
g 

Let fa be a distinguished map at 1(0) and lift ~ to a 
,.. 

:)atl1 ,,( t ) 

~f ret) sufficiently 

(1) i~;:here is a clistin2.::uished chart <Pt at Ye t) 

defined on "j su.-. h .L.'1~.1.. ,." t . ....,1.... v.l ct l.r 

-1 " \ 
ft<l't (x,y) + x if 7(t) is non-singular 

2 2 x - Y if Yet) is a saddle point 

whenever ex,::: E. 0"-"";.; .• 
• ',J ',J 

(2) 'I'hs.:':; ~-;;;. an orientation preserving chart Y t 
defined on ~" ~~ ~jich 

"C 

'(4- e 'Ye t )) = 0 
v 

s.nd" Xa is give!). by a/ax if 'Yet) is non-singular and 

xO/ax - yO/ay if 'Yet) is a saddle point. 

e':») Wt is a union of segments of leaves of ~ and 

trajectories of X~ as shown in figure 2.11. 
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(4) 1'(K) (\ \:Jt is connected. 

L.. 

\;'t shaded 

'Y ,,~ t) non-sin~~t:lar 

g uniasned 

I 

..' " 

let) a saddle point 

Fig. 2.11 
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Now choose a partition 0 = to<t1( •.•• (tn = 1 such that 

c;: \'j. ""There VI. = Ii .... some t e. [t. ,t. 11• l l L. l l+ 

We are now able to give the local definition OL ~. 

Let fi = f t "'There t is such that I'ji = 'tIt. 

If "Yet., t. 11 contains no singular point t!len the r::ap l l+ 

mapping to the unique point 

on the same segment of trajectory 

of ,[ t. ,t. 11 
l l+ 

f 
~ .. J.. -

o A~ In "~ii as 

(see figure 2.11) is a well defined submersion. 

lying 

<ioes p 

Il'hus c. x f - : 'i: l· --~, -V( [t. ,t. 1])" f. '.;. is 8. (;I' 
III 7 1 l l+ ~ l l 

,jiffeomox'phism. 

(x, y) wi tL! TI1 (x, y) 

'Ihen the map 

)oint,lst 

= x , nh(x,y) = y. 
c:. 

co-ordinCltes 

D Eo ",1. :0 the unique point of ')I( [t. ,t - 1].) 
- ~ - l l+ 

i>'Jith 

where (. t • \";. lS 
l 

--,,:'-drant of,;. bounded b:-:r 1'( [t. ,t. 11 ) 
- l - l l+ 

( f . ~" . t - 1--' h' ,..,r see - 19ure~. . ,lS a surJ8C lye map WtilC~ lS v on 

d~1 = \;J !\ff) : n ....... ,. :';:::, )n~~. (p) = 01 . 
l l - :. "- 2. 'l 

morphism which restricts to a Or diffeomorphism on 

Bhrinking down ~Ji if necessary, II:e can assume that 

f. Vi. n ~'i f ·iJ n ... -; i .. 
j l l tJ J 

Pi 
\'! - n " j fj ,''1 

i n .. ; ; l <J 
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since the fi were obtained from a lifting of a continuous 

path. 

~hen if V is sufficiently small Dnd udmissible we may 

define 

H : I~X V -~)hg 

for t e. (t. , t. '1]. 
1 1+ 

by H(t,v) 

H then has the required properties. 

In particular the uniqueness in (iv) follows from the fact 

that since the germ of ftE
t 

is a locally const~nt function 

of t,it is constQnt 

2.14 ~iffeo~or~~~:~3 

C1ual to f • 
o 

:Let ~ = {f, V, ') IHl be a herse foliation on I': , o.nd 
1 l g 

suppose p: l'lg--~ :\; is an orientation preserving 
J... 

diffeornorphisIT of class 0 0 (for suitable t). 

~e define a ne~ ,orse foliation on hg,the Morse foliation 

induced b:i p ".;0. 

I 

If P' is anot~~: ~rientation preservin~ diffeomorphis~ 

c; 

If ~,~I are two ~orse foliations,we say that ~ and ~' 

&I'e ct-conjugate 'f 'h . .',t l'ff l' .C' 1 ~ ere 18 a ~ (1_ eomorpn1sm f o~ 



preserving orientation such that 

'I~ P l"C l"QO~ODl"C ~O +~e .J.. u w v ~ u tJ.LJ.. identity a a~d 3' a~e S3.lQ to be 

completely equivalent. 

It is important to note at this point that two ~orse folia-

tions ~,~, are not .necessarily conjugate just because 

there is a diffeomorphism of 1'1 malYt'Jino·C7" the leave;:; of ~ g-

onto the leaves of a' . 
Indeed it is always true that given a Morse foliation 

,... ,-'1r'... I-
OI class v wltn a~ least ons saddle point there is a 

non-conjugate folia~ion~' hQvinz the S~2e 
~ 

To see this consider the Morse foliation of H~~ 

lines xy = constant. 

:l..Jet h : m ----4-> [0,1] be a coO function such that 

~\ ;"(x\ -- 0 
G/ .d\ ) x ~ 0 G; x ~ -1 

~;iven 07 v 

~) the germ of h at 0 is not eeual to O. 

l\10W define by 

-~ --
~ - , ,: .: if x ~ 0 or xy ~ 0 

if x ~ 0 (.~ y ~ G 
'"' 

r \ '" " 1 b ' - -- f)' ~c: h th -'­r~en tnere lS a~ o)en nelg~ our~ooa ft 0 ( ln lli sue _a~ 

HIN is a coO diffeomorphism of N onto Sell). 

',- 1 I- .n 0 ' 1 J.L. • ., ~ . 2 .... ' h 1 llow ell '(;I e 1; 18 ro ca ulan 01 lH lInroug -'Zj:TT. 

Replacing a distinguished chart ~at a sad~le point p 
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with suitable ranze by '8CHIN)e-1cp gives the inequivalent 

horse foliation'S t • 

This departure of the mod~l from the intuitive conception 

only appears to matter in considerations of the holonomy 

around a loop sep2ratrix. However, as is shO\'ln in the next 

section, we can al\vays choose a norse foliation which 

reflects the intuitive situation, with the possible 10s3 

of one degree of s~oothness. 

2.15 Pr~ctical inter~retation of holonomy. 

~e wish to link tie holonomy lemma with the holonomy 

group. 

~uppose K == [0,1] ani ~ is a path in a leaf of ~ with 

'Y(O) == t'(1). Let ~~ 'oe the map 

~1 : [0,1)xV-----+h g 

obtained in t~~ ~_:lonomy lemma for some transverse 

vector field ~-. ~rite h == H~. 
I 

'i.'hen writin,~- .. == :.(CY(O),foJ ([V]) \-le see that 

, .-, 1-- I TT f' I V j:~OI 0d V =_ 
. 0 0 

as germs at 7lC) in V so that if '([0,1]) contains no 

ddl . t 1. -, b -1 ".t.. bl S2 e pOln , l'i.. 2nr.) ~ agree 2S germs In a SUl va e 

co-ordinate system. If 1'([0,1]) contains a saddle point, 

-1 k and h agree as one-sided germs. 
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The holonomy also has significance when there are one 

or more loop separatrices at a saddle point s. 

To simplify matters let ~ be a chart at s in which the 

map fo defined by fo(x,y) ~ xy is distinguished. 

Suppose that there is a loop separatrix at s. 

Choose points fi ,B in that senaratrix with ~(A ) = (0,1) - 0 0 ~ T 0 

~(Bo)= (1,0) and transverse intervals A1A2 at Ao & B1B2 

at Bo (see figure 2.12(a)) with image under ~similarly 

named (see figure 2.13). 

1!'ig 2.12(b) 



37 

(0,1) 

(-1 ,0) (1,0) 

(0, -1 ) 

Fig. 2.13 

Let 'Y: (0,1) ----t 1-=>7 be an embedded 'Oath in the loop 
o 

separatrix starting at AO and ending at Bo,and passing 

outside the domain of ~. 

~he holonomy construction determines a diffeomorphism of 

(:.;:,1) ~, ~) (1 ,f(x)) 

where f is a germ at 0 of an orientation preserving 

diffeomorphism of ill. 

If ~is now com~leted to a parametrisation of the loop 

separatrix then the image of [Yl under the holonomy maD 

is essentially the germ of f . 

If there is no other loop separ~trix at s and every 

leaf on one side of the loop is closed,as in figure 

2.12(a) then intuitively there is no holonomy. However 

the germ of f m3.Y not be thiJ.t of the identi ty, although it 

will of course be the identity on one side of zero. 
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We can then replace the Morse foliation by one in which 

the holonomy is formally trivial as follows. 

The rna;,) f satisfies : 

p(x) 

.Lhus p-1(x) 

Write p-1 ex) ::: X + x~(x). 

---h ".L' f J." s Clr n J." s cr - 1 
'1.' en J..l. _, 

= x if x ~ o. 

= x if x ~O. 

and has all jets up to and 

including the (r-1)th zero at O. 

Define a local diffeomorphism "r of ill? at 0 by: 

"r(x,y) = ~ (x,y) x~O or (y~O & x?·O) 

7.. (x+xfl(xy), y) x ~ 0 anl y ~O. 
'Jriting "rex,y) = (1"1 (x,2'1) 'Y2(X,YJ) dad =:,eplacing fo bv u 

ex, Y)i >"t':1 ex, y )"(2 (x, y) 

then gives the required Cr - 1 Morse foliation. 

If there are two loop separatrices at s and the situation 

is exactly as in figure 2.12eb) with all nearby leaves 

closed we can again choose a Morse foliation with the 

same leaves and no holonomy around the loops by modifying 

the original foliation ,just in the quadrants J 1A1 and C
1

B
1

-

2.16« and ~limit sets. 

'i:he 0(. and VJ limit sets of a [florse foliation '5 play a 

crucial role in describing the conjugacy classes of Morse 
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foliations. C[ihey encapsulate the asymptotic behaviour of 

the leaves and are defined as £0110\'18. 

Let is be a flow tangent ~o ~ obtained as in section 2.6. 

Let 1 be ·a non-singular leaf,separatrix or singular point 

end suppose 

Ii1he tN-limi t set CJ(l) of 1 and CX-limi t set 0«(1) of 1 are 

defined by: 

W(l) = n closure(~9(xo)( (t,Q)), 
te..1R 

<x(l) = n cl()sure(~",,(x x (-oo,tj ). 
t .. H{ ., 0 

,~ince ~~ was chosen according to the orient::.~.tion on I-Ig 

"'.nd transvE:rse orient'..i.tion on !1 ,"CDS cli:~ti:lction bet1!!een 

~ and~-limit sets is well-defined. 

These sets have the following properties: 

(i) weI) is a "c:.nio:.1 of sillgular 

points,separatrices and non-singular leaves. 

(i i ) 1 = 1 U w( 1 ) U ex ( 1 ) • 

(iii) If 1 is a circle leaf 1 =~l) = ~(l). 

(iv) If 1 is an im'lard separatrix at s then W(l) = s, 

if 1 is Em outwD.rd separatriz at s then «.(1) = s, 

if I is a loop separatrix at s W(l) = (X(1 ) = s. 

(v) If s is a saddle point in w(l) and. 1 is not an 

inward separatrix then W(l) contains in addition a pair 

of adjacent separatrices. 
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2.17 ~h~ Poincar~-Bendixson Theorem. 

'ine ~juincare-Jendixson theorsm describes the global 

behaviour of vector fields on the plane or sphere and 

has been generalised to higher dimensional foliations in 

fiLmy ways (see (21), [27], [291, [31] ).The original papers 

of Poincar~ and Bendixson can be found in [1) and (24] 

and a modern treQt~ent in [31. ~e state below the result 

for horse foliations on the sphere I'l (in which each leaf o 

contains at most one sinsul~r point). 

manifold agrees with its topology as a subset of 

Let ~ be a Morse foliation of t~e sphere M such '1 - 0 

that no leaf contains n:ore than one singular point. Then: 

1. Every leaf is pro'99r. 

2. Hor every singular point,non-singular leaf or separatrix 

lone and only one of the following occurs: 

(i) 1 = CJ( 1) and 1 is a singular point or circle. 

(ii) ~(l) = W(l) and InW(l) = <I> • rrhen 1 is a loop 

separatrix,(see 2.16(iv». 

(iii) 1,W(1) and ~~l) are mutually disjoint and 

either a) W(l) is a saddle point, 

or b) lJ(1) is a circle, 

or c) W(I) is the union of a saddle point and one or 

two loop separatrices. 
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in cas~s b) and c) the leaf containing ~(l) has non-

tri vial holoncmy group and I spirals tOl'Jards we I) as t-+oo. 

lr~ other words, if p eW( 1) and T is a small transverse 

interval about p the successive, intersections of I and T 

tend monotonically to p from one side as t--too. 

2.18 fhe theorem of A.J.Schwartz. 

ihis theorem applies to any C2 flow on a 2-dimensional . 

manifold and a proof can be found in (31). Since every 

Morse foliation ~ is 02 we can apply this theorem, 

obtaining the ~esult below. 

:.i.'heorem: Let C1 be a (Cr , r 92) l"'10r.se foliation on VI , the 
g 

oriented two dimensional manifold of genus g (satisfying 2.9). 

If 1 is a singular point,sopar~trix or non-sinE;ular leaf 

of ~ ,0Ee. and only one of the following occurs: 
/ . , 

w(l) f'i and g=1 i.e. I·j is the torus. \..l) = 
g g 

(ii) W'l ') \. , lS a circle and if I is not a circle, 

1 spirals toward.s GU(1) which has non trivial holonomy group. 

(iii) (.,.)(1) contains a singular point. 

~hU3 if M is the J·oin of more than one torus and every n· o 

leaf has trivial holonomy group, (iii) is the only 

possibili t;y. ~ven if W(l) is not just a saddle point we 

shall see that the saddle points in ~l) determine it. 
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Chapter' 3. Centres. 

In horse foliations of manifolds with positive genus,each 

centre is associated with a saddle point. In this chapter 

we obtain a detailed descriDtion of the behaviour near a 

centre and thus exhibit this association. 

In our treatment of ~;orse foliations with trivial holonomy 

it is crucial that the behaviour can be deduced from that 

of Morse foliations without centres on a manifold of the 

salJe or smallel' genus. On the other hand the construction 

of appendix L~ can be l.:sscl to ::milrl S (orse foliation of 

the toru~ in which the~-li~it set of every leaf is a 

perfect,closed,nowhere dense set as in figure 3.1. ft~y 

f10rse foliation 'tIi thout centres would either have all leaves 

identify •• ?: .. 

to obtain a 

torus 

3.1 
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dense or the limit set of every leaf is. a circle,as 

fullo1;vs from A. (J .SchvJartz I s theorem (2.18) and \'ias first 

proved by Denjoy ([4)). ~his is quite different behaviour 

to that of the original foliation. 

Our approach is to use the fact that a centre lies in a 

disc foliated by circles and to extend this disc to a 

maximal one using the holonomy lemma. 

This information is contained in the following: 

ProDosi tion 3.1: Let ~ be a Or (r ~ 2) horse foliation on. 

1::,., the: oriented 2-IilCinifold of senus g (:~atisfying 2. g) • 
o 

Let c be a centre of ~ and let 

e = [j) C; hg : D is an onen embedded Cr disc which is a 

union of c and non-singular leaves and oD is a 

circle leaf J • 

Then if Qc = U e ,one and only one of the iollo1tiing 

possibilities occurs: 

(1 ) 

(2) 

'o~ = O,N is the sphere and ~0 is a centre. 
g 'c 

;~ce. e so that oQ is a circle leaf. c . 
c 

In this c:;.se,either there is a separatrix in C(C which 

has. ao as its 0( or VJ limi t set or every leaf near ao cc cc 

but not in ~c is non-singular,spirals towards ~Qc at one 

end and to the union of one or two loop separatrices at 

the other end (see figure 3.2). 



all leaves here 
~]piral to loop 
separatrix 

(3) ~c contains a saddle point s and one or two loop 

seDaratricGs (see .!:' • ..Llgure 

,) the limit 
'c 

o~[' circles 

Pig. 3.3 

Proof: Since eacn embedded Or disc D € e is a union of 

non-singular leaves,sep3~atrices and singular points, 

the holonomy lemma shows that this is also true of 'OJ • 
- 'c 

Since o;~c is closed, the wand ex limit set of any 

sGDaratrix or non-sinoaular leaf in ao is also in 30 • - . 'c 'c 

Having noted these facts we show that if (1) does not 

hold then (2) or (3) must. 

The proof proceeds in four steps. 
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In sten 1 we show that if aw contains a circle leaf then 
'c 

::. .. ··c e e and. that every circle leaf near a;". lies in (.) • The 
v 'c 'c 

proof is topologically straightforward,but requires 

slightly more care in ens~ring that Qc is embedded as a 

;)r disc. 

In sten 2 we sho~ that if 0 ~e t~en either there is a 
'c c 

separ'atrix in U " 'c near a~c or every leaf in u 
'c 

c 
near ai,~ c 

has o'tc as li:nit set at one end and limit set at the other 

end eit~er a circle leaf or of the sets in figure 3.2. 

In ste~9 3 l::e if C c;.e 
'c 

anct 
c 

every leaf in "<c 

near ~0~ has a circle in both limit sets,then Q lies 
.~ c 

in the interior of a disc in e. 'rhis is impossible and 

t~us (2) is proved. 

In step 4 1;:e s::_~'" 'that if o'~c contains a saddle point, 

then the situa~~c~ is as shown in figure 3.3. 

Step 1. Su~~os~ ~.~ contains a circle leaf. Suppose that ... - ~c 

" does not 
'c 

'-,-hen a. t is a L .. mi t of circle leaves bOl.mding discs in e. 
c 

-, I 1 f i' 1 th ' .,r b dd' ~y emma 0 8ppen(lX .ere lS a ~ em e lng 

'Y: S 1 x (-1 ,/1 ) }fil 
g 

such ths.t 'Y(S 1 x. {OJ) = 'OQc 

~(s1xt-~1) is a circle leaf bounding a disc in e. 
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By lemma 2 in appendix 1 there is a Cr embedding ~' of 

the unit disc in £R2 onto r 
'o(c • 

Hence .~. "" e contra',licting our assumption. 
'c 

-
Similar ~rguments show that if there are circle leaves 

c 
arbitrarily close to aO in 

'c 
then they bound discs in 

e - an impossibility since such a disc would contain Qc 
in its interior. 

Gtep 2. Suppose tt~t no 

limit set at one end. 

separatrix has ac as 
'c 

ij~he holonom,Y 
c 

leaves in Qc 

le=m~ ~~d the fac~ ~~&~ there are no circle 

arbitrarily close to 

a Or-embedded transverse circle in 

0'; 
'c c 

Q c 

show that there is 

whic~approximates 

'a,'; ani is such that any leaf cuttinO'o it has a::, as limit 
~ ~ 

set at one end,(see figure 3.4). 

leaves 

B'ig. 3.4 



Let p be a point in the limit set at the other end from 

aQc of a leaf 10 cutting the transverse circle Co. 

Suppose that p is non-singular and let T be a transverse 

interval at p,lying outside the disc bounded by C • a 

Suppose 10 cuts T for the first time at P1 and next at P2 

(assuming PE:·-~'(lo)). 

Let ~o be the subinterval of T with endpoints P1 and P2 

( -::, . see .Llgure 3.5) • 

T D 

c -, 
a \ 

I 
I 

\ / 
.... " -- -

ii'ig. 3.5 

1 a 

CJ.1hen the holo:-_:::::-.;.- lemma show;3 that every leaf leaving C 
a 

cuts To in exac~~y one point (except for 1
0

) and every 

trajectory through a point of ~ meets C in exactly one 
-0 a 

point (except for endpoints). 

~hus every leaf on one side of p and cutting T has limit 

set oQc at one end and has the non-singular leaf or 
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I 

separatrix through p in its limit sei at the other end. 

~urther no point in the limit set of the non-singular 

leaf or suparatrix ttrough p can cutT in any point 

other then p. 

hence either p lies on a circle leaf or a loop separatrix. 

If p lies on a circle leaf the holonomy lemma shows that 

every le9.f leaving Co is eventually Iltrapped" in a small 

neighbourhood of the circle leaf containing p given by 

the holonomy lemma. Thus this circle le0f is the entire 

lirnitset of every leaf cutting ',J • a 

Otrierwise welo) containz one or two loop separatrices 

and another a~)l~c~~ion of th~ tolono~y lemma shows 

that the situation is as described in figure 3.2. 

~his co~plete3 the Droof of step 2. 

is ~ circle leaf and every leaf 

near aV(' nas ~ .~ limit set at one end and a circle C c '-.~ 

as limit set ~v -~~ other end. 

\;e have to sno-,,;:;.:.:at C bounds a disc in .e for this 

implies that~.~. S; ~:1t ue = ~ - a contradiction. 
'c 

By lemma 3 of a?~endix 1,there are Cr embeddings 

~hose images do not meet,with the following properties: 



( i ) Y 1 (s 
1 ~ {-~-}) = 0 Qc 

(ii) "(2(S1 x f .;J) = C 

(iii) All the circles 11(31 x £tj )'''(2(81 )( is}) 

for a 't ~ -;. , -~ ~ s ~ 0 are tre.nsverse. 

~(lhe si tuatio':'1 is shown in figure 3.6 . 

Image of"t'7.: shaded 
? 

iig. 3.6 

By the holono~y lemma,using a suitable transverse vector 

field in which all the circles of (iii) above are 

trajectories and adjusting the resultant map we obtain a 

"r b v em ed'iing 
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'Y 3 : S 
1 

x (-1,1) ----4) Ilg 

with the following properties: 

,'I . 
(iv) each -Be:;.) '~3 ( t-eJ x (-1,11) is contained in a 

single leaf of ~ • 

(v ) All the circles Y3 (81 X [t}) are transverse and 

y 3 ( S 
1 x [-1}) = "r1 (S 

1 x l 01 ), "1'"3 ( s 1 
X {-J 1) = "(1 (S 

1 
K {~J), 

1'.3 (S 
1 

)\ { ~ J) = "Y 2 (S 
1 

X {-~}), "'3 (S 
1 

X {11) = l' 2 (S 
1 

X to J ). 

Let tb be the embedding of ( • 
T ~ 'c 

Application of le;:\:n::~ 2 of app:.:ndix 1 to q> and "(1 yields 

an embedding <pI of a disc bounded bY'Y1 (S1 x t~-l). 

hepititiolJ.Vli t::1 q>' [;n1~:' 'Y .. yields Q)'l an eL1b'~dding of e. disc 
j T 

boundeci b;y 1"2(8
1 

X f-~-1). 
:Finally re peti tion v.ii th <pI' and "fJ2 yi elds an embeddins of 

a disc bounded b,Y C so thdt ('~c 5 int ue as required. 

Steo 4. We have ~a show that if a~ contuins no circle 
c 

leaf then it c.:;:-_~ =-r.s only singulc.r leaves ::md every sep-

aratrix in o'cc ~3 a loop s8par8.trix. l!Trappinb!! arguments 

used in ste~ ~ ~~~~ give the required result. 
') 

It is at this ~:=-nt that we use the fact that ~ is C~ 

and hence subject to A.J.Schwartz's theorem. 

Let 1 be a non-singular leaf or outward separatrix in ac • 
. 'c 

By the theorem of A.J.Schwartz there is a saddle point 
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s in ,-,>(1). 

If 1 is not an inw~rj separatrix at s,l makes two successive 

}assages aB,CD past s in a sin~le quadrant cutting a 

transverse interval T at s in poirits P1,P2 as shown in 

fiGure 3 •. 7. 

8. trarlS\T5'.rse vector field having T as a trajectory. 

Now tho interv~l (P1,P2) meets some disc in e since 1 

is the limit of discs in e . 
~his implies th~t th2re is a trajectory of x~ which cuts 

a circle leaf ~~iC2 - which is impossible by the transverse 

orient f3.tio:':1 of::;. 

hence I is arr i~~ard separ~trix at s. 

r ,~ • 
.L'l1.lS complete::; proof of proposition 3.1. 



Chanter 4 Centres in Morse foliations with no holonomy. 

Assumution: From now on we shall consider Cr transversely 

oriented Morse foliations ~ wit~ no leaf containing more 

than one saddle point and in which the holonomy group of 

each leaf is trivL?I. The latter assumption -Hill be 

stated as 113 has no holonomy". 

Definition '+.1.1: Ijet c be o. centre of a Lorse foliation 

on Mg,the oriented 2-manifold of genus g,and suppose that 
-) 

no leaf of a contains mora than one saddle point. 

2.1: c. 

D is defined to be the set c 

:0 = c u u 
(f, U)e e 

(9', G) 

J~emma LJ-.1.;;': ~Le~ ~ qnd D be as defined in definition· 4.1.1 c 

and let Qc be as :::afined in the statement of proposition 3.1. 

Then D c ~e~ce the situation is as in proposition 

3.1 (1) or fi ;-';'~:: :3.3. 

?roof: Cle3rl~.- -._ £':c' and aDc is a union of non-sin~-ular 

leaves,separa~=~:~3 and singular points. 

If oDc is not a centre, \I/"e have to show that it does not 

contain any circle leaf. 

If C is any circle leaf in the boundary of Dc' the holonomy 
r lemma gives a C embedding 

onto a neigl10ourhood of C 1;1i th each set Y (,.;1 )( {tl) 



e. leaf of ~. 

IJeffima 2' of aypendix 1 then 

9" : [xEIR2 
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gives an embedding 

: \I xII < 1J --~~ I'I g 

which agrees with some distinguished chart at c near 0, 

and contains c in its image. 

~\he proof of lemua 2 then ShO~'lS that ~' lS a distinguished 

chart at c - a contradiction. 

'.rhus aDc contains a saddle point by the theorem of .~ -
Ji. J • 

Definition 4.2:Let a Cr (r ~ 2) l'lorse foliation Hi th 

no holonomy and no leaf containing more than one saddle 

point. 

Let c be a centre of ~ • 

of tYDe 

and is of t:YDe 

1 if cro c contains a single loop separatrix 

2 if oD contains tl,I}"O loop separatrices. c 
~he situation i3 illustrated in figure 4.1 below: 

Centre of type 1. Centre of type 2. 

FiG. 4.1 



1+.3 Standard models for behaviour near a centre. 

In this section we fix the properties of three stands-I'd 

models of partial Norse foliations near a centre. 

The precise constructions 'are given in appendix 2. 

1. The first example is the norse foliation ~ of the s-ol1ere 

rio = 8 2 = i(x,;y,z) €J:R3 : x2+3r2+z2 = 1 J 

given by the circles z = constant. 

bas Morse index 2 and the ce~tre 

lJ,0,-1) has ~orse index O. 

~e::; figure L~.2. 

(0,0,1) 

(0, 0, -1 ) 

Fi • 4.2. The Morse foliation ~ • 

2. 'Iihe second eZ::.:::Jles are of Lorse foliations ~+-

, . ) ( ~ 2. on the square (-1,1 X -1,1) 5 ill • 

~he foliation ~+ has a single centre of type 1,is 

symmetric about the line y = O,is equal to the foliation 
. ?? by lines x O~ constant outside the clrcle x-+y~ = ~,fu"lQ 



has a centre at the point (O,~) and a saddle point at 
l 

(O,~) Hhere 0 < \' < \ • 
..,- <'+ '': is ,fj rotated through 3.n,~'ng12 Ti ':Ii th the o :;~osi te 

orientation on the leaves. 

~hese are illustrated in J;'igure 

I 

, , , , 

t 
~or3e foliation ~+ 

1 
I 

...... 
" 2 2 

,.+--4--~.--)~ + Y 

Morse foliatior ~-

Fig. 4.3 

~ 

= i:;: 



3.The third examples are of I"lorse foliations ~+, e- on 

the half torus,which is the image under the covering map 

P1 
of the strip 0 < y ( -a-. 

'11hese hB.ve one centre of t'ype 2 and one saddle point and. 

agree with the foliation by circles f 1 (( -«),w) x fyl) for 

y near 0 or ~-. 

The situation is illustrated in figure 4.4. 

II-he horse foliation -e- . 
li1ig. 4.4 

It is easy to ~~~ ~iRt there lS a natural way to renlace 

the Morse fol~~-~:23 ~ and! by foliations without 

In the rest of L:ce chapter Vie sho~': that any centre of 

type 1 is 10c211y Cr-conjugate to one of the examples 

~ + or Jj- and any centre of type ? to one of the examples 
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In the case of a centre of type 1 we can replace the centre 

by a foliation without singularities,and this can be done 

uniquely up to Cr-complete equivalence. 

The trouble about doing this with centres of type two 

is that the resultant Morse foliation will fiot be 

transversely oriented. However,we shall see that in 

decomposing a horse foliation we can always deal with a 

centre of type 1. This. is bCC3.l.1SC: a sphere ah!2.Ys has a 

centre of type 1. 

i?ro-80si tion 4. LI··: (i )'jJlere is a unique Cr -complete 

equivalence cL:~ss oi' 

wi th no holoIlO:ll,Y arid EO s'.,.ddle point (r ~ 2). 

(ii) There is a unique Cr conjug3cy class of horse 

foliations on the torus M1 with no singular point,no 

holonomy and a-: 1:::2.st one closed leaf (r ~ 2). 

~o see that th2~} are many complete equivalence classes, 

look in [17J. 

Proof: (i )Let ~ - •. a Or horse foliation of the sDhere N 
o 

1;li th no s s.(i_ i::, .: ::'21t • 

index 2. 

a c,:-::::::.re c o of Morse index ° and one of Morse 

Let d b o the standard Morse foliation of M defined in 
- 0 

section 4.3 and let Zo denote the point (0,0,-1) and z2 

the point (0,0,1). 
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r .. 
We construct a C -diffeomorphism ~of N onto itself with 

o 

Dince ~is isotopic to the identity by lemma 2 of 

appendix 3,the result follows. 

By lemma 4.2 we can choose distinguished charts Yo ,V2 

at c o ,c2 and fo'f2 at zo,z2 ,whose images overlap and 

whose range is the unit disc in ffi2 • 

Without loss of generality we may also assume that if 

B1 = {xe.m2
: IIxU < 1} B,~,1 = tx 6m2

: i <lL"'{W< 11 
"'V-1 , n 1'\u'-·1 T -1 ~ ",,-1. then '0 .0"1 T"_? D"'I = "r. BJ 1 = I? B-J_ 1 o ;!, ~ 2' 

-1" n.l"\ -1 .- p-1 ., F 0 1)1 r 2 b 1 = 0 Jj-~, 1 P
-1,.., 

= r-...b", c:: -~- , 1 

lsee figure L~.5) 

-, po B, 

I,_~ 
z, 

Fig. 4.5 

0ince B~ 1 ca~ ~~ identified with S1x (-1,1) in such a 
2 , 

'h 'th . 1 2 2 ~ t become cl'rcles way 'G a-c e c~rc es x +y = cons van '-' ,1 

S1x {t},it follows from lemma 4 of appendix 2 that there 

is a Or diffeomorphism 
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with ~ = identity map near x = 1 
2" 

1\ = f2f~1"fo"21 near x = 1 • 

Then the required diffeomorphism lliRy be defined by 

<P(x) = P ~1yo (x) 

F 21~~2(:X:) 
. 1 
P 2 1'2(x) 

where B~ = {x €. ffi2 : 
;:!-

(ii)The proof of this part relie3 on the results of 

chaoter 5 but we s::s-tc.1: e. proof h(~:re. 

;Jolet ~ be a horss folL~tion of the torus \-lith at l'2:tst 

-'i.. J. Schv}ul'tz, if ~ h:3.S no singula:r- T)oint, every le2.1 0: ~ 

is 2. circle leaf. 

Cutting along such a leuf and gluing in centres (see 5.1.1) 

produces a horse foliation without holonomy or any 

saddle point o~ ~2e sphere,which is well-defined us to 

Or_conjugacy (s~~ 5.1.2). 

By P<--, ... t (l·)'.. -;--', --.:;, cA..- ..... _ .... __ __ is a unique Or_conjugacy class of such 

norse foli2-:':;i2~: 'JI the sphere. 

but "S "I' . b 
G -conJuG:~cy, Y gluing tosether 

the centres of this foliation on the sphere (see 5.2.1 

and 5.2.2). 

Hence ~ is unique up to Cr-conjugscy. 



Definition 4.5.1: Let; be a Morse foliation on the 

oTiented 2-manifold lIc- of genus g. 
t~ 

Vie define an equivalence relation"'" on the circle leaves 

of ~ by: 

1 N 1 t if & only if there is a Or embedding 

H : 
,1 

;::;, x (-1,1) ~ f\:; 
with 11(31 x {t} ) a leaf for each t E (-1,1 ) 

and T'( ,1 x. {~1 ) :.} ~€(O,1 ) .tl ,,) = 

H (0
1 

X {-Y(,l ) • 

The euui valence class of :L i:=, denoted by \]1. 

/' r- r ... 
-r.~.~: 1 ~,. ... , 

J 

the oriented 2-:-:l8.:'1ifold oJ sen"Ll.s ,:j, 1,'lith no l1010nomy 2..c'1d 

no leqf containin3 301."8 than one saddle point. 

r;::he!l: (i) ~ is an enuivalence relation. 

(ii) D., is o';)en • 
.L -

(iii) E~~~~~ g = 1 and Ul = Mg 

0:: Ul,l has precisely tvIO components. 

In the latter c:~~,the boundary of each component consists 
either of a ce~:~~ or 
of the disjoin: _.~ion of l,a saddle point and one or two 

Proof: (i) This is immediate from elementary considerations 

and lemma 4 of appendix 1. 

(ii) It is clear from the definition that Ul is open 

since all leaves in H(S1 x. (-/1,1» are in Ul. 

(iii) The proof of this part relies on the results of 
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chapter 5. 

According to lemma 5.1.1,by cutting along a closed leaf 

1 and II cluing i::1 t: tvlO cen~res obtain either a 

norse foliation on a manifold of genus g-1 or norse 

foliations on manifolds of. genus g-u, u (0" u :S.g) each 

with exactly one of the centres c 1 ,c2 • 

The result Em'! follows from lemma L!-.1.2 by inspection of 

the boundaries of the discs D ,D • 
c'1 c 2 

.Lem~a 4. C .1: Let ~ be a Cr (r ~ 2) I·lorse foliation on 1-10-' 
o 

t'c.e orien-cect 2-r.:?~1.jJold of genus [;, vJi th no holonon1Y and 

no leaf containing ,Jore than one saddle point. 

-." +' . -f' "'" ~. 1 Le u C 08 a cem::;re 0-,- :;J OJ: 'c~{pe • 

is 2::1 open neichbourhood U of D c 

orient ation :9reseJ:,ving d.if:feomorpl-:.ism: 

:3: • ,,--~> (-1,1) x (-1,1) 

and a 

such that @ :~oB' = ~ l- or @*"R- =.: ~ I U according as c has 

Morse index 0 O~ 2. 

The neighbou::,~_.J: ~_~: U I.:lay be chosen arbitrarily small. 

})roof: Vii thout ::'03S of generality assu.rne that c has r'Iorse 

il1dex O. 

1'ho idea of t::::e =.:·:;:oof is to construct a diffeomorphism on 

parts of a neighbourhood U and either to modify then on 

ovorL~p,-; or to on::mre ,b.y "lwinf; a transverse vector fic;ld, 

tha~ they alread7 a·o~ree. 
",J tl 
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VIe first chop up (-1,1) x (-1,1) foliated by Jt into 
I, 

I, ' " r h 'f' Ll 6 eglons i'-1' ••• ' /17 as s_ m'lil In 19ure '. • 

; 

li'ig. 4.6 

Specifically,there are Or orientation preserving 

diffeo;norphisms: 

a distin~uis~sd c~a~t at the saddle Doint s , 
~-' - 0 

rll A { , '1,n2 2 2 '1 '2 d'" " d '1'2: 2 ---+» ',,::. ~;'': €. LI:l : :x +y < ..s a l.S1;l.ngu.l.sne· 

chart at c '!-r,,~ -. ':'.-, '-re of $ + o ' c' --' .. ~ - - J • 

!fi : Ai-~) (_~i]x(-1,1) i = 3,4,5,6,7 mapping a single 

segment of IS::: . .f:r.:.to (0,11 xbd. 

,!8 also assume -:'~J.e follOl'ving overlap conditions: 

A1 n A3 ::: <p;1 ( (D,1 18) )( (-1 ,'1) U [7/8,1] X (-1,1)). 

A1 () A l+- ::: ~4'1 ( (0,1/8] )( (-1 ,1 ) ) 

A1f1A5 = li'51 ([7/8,1)( (-'],1») 

as shaded in figure 4.6,and 
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(A
1

U A3) ()A
2 

=cp;l(£(X,y) €.m2 : ~. <x2+y2< 1}), 

(;~lUA2UA3U A4 UA5) rL\6 = <P61((_~,1) x(-1,1)), 

(ILl U A2 U il. 3 lJ A 4 U:I. 5) () 1'1.7 = 'P71 
( [ 0 ,;] x ( -1 , /1 ) ) • 

:;/8 nOH construct analoO'oous regions A.' in [1 -and. use lemmas 
l g 

4 and 5 of appendix 1 to modify the overlaps - except for 

A6 and ~? where we use a tr~nsverse vector field to , 

ensure th~.t the 

Fig. 4.7 

Let c oe the:::,:-:_::.:'= of ~ and s the unique saddle point in 

ODC • 

:Let'" be c.t cEsti~guished chart at s and suppose l' maps 

the seGments of loop separatrix to the same pair of half­

lines as ~1 maps the loop separatrix of £r. 
In i':::;.ct \'ie m'J.y assumo that the image of r is 



• 

~e may 'assume that the holonomy is defined from t~e 

transverse interval t/ 
I 

to t~e transverse interval 

(see figure 4.7) where 

{ 
r, 

<~} T = (x,y) £ IRe: y",-x+2 lX-'if '1 , 
T 2 = l ex, y) E rn2 

Y= x-2 , Ix-1l 
-
< ~1 • 

== ~-1 t (x,y) ,..-)2 ;::> " < ~ I + y\< 11 l..et ' I €. I y-_V
C I -'"'-1 tiL ~. V i.j.-, x-

<[>1 = 1'1 iLl and ® 1 i, I --1 = rp1 cp-1 . 

0upyose th~t for all i the ~:1a;;s rtl_ arc:: -- ""2 cl10sen so t;ll3.t 

Iij. -1 Cb -1 ,a :' ". 
'--' :,- T 3 :,: '- " ox ) 

.. C)/ " 
\ i ax / 

b;y 

... 
extends to a transverse vector field Z~ on all of M 

::s g • 

.A. 

Then using ~ne ~clo~omy lenma with resnect to A~ and the 

fact that ~ 1.:a3 ::0 Lolonom;;r (see 2.15) irie can construct 
r c'. C diffeor.:w::·. : ___ ~ ::;~_: 

Cfi; .. <- > [J, lJ x (-'J, 1) such that 

<Pi; I"·} n ~ :.' 'P3®1 iq n~3 

Eence vTe can extend @ to iJ. I U A~ by taking ---I ? 

on "'::'3 -

and the holonomy lemma we can extend 

~, to rep:l- OIlS _''<.', t"J.nd _,.!. as s'''''o'''n l- -n 1"'2" C'U"C> [, 7 ~ • _. .!..l ,'- .!..!. - O.~ ~ :-. • 
~i· ~ 
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IJemma 4 of appendix 1 and lemma4.1. 2 then allow us to 

extend ® toA,j b~' choo[-3ing a distinguished chart <f'2' vIi th 
l;.. -1 

'" J..J -: /: • 

';::', I 

Using the holonomy lemma \,;.e can construct diffeornorphisms 

q; i : Ai -~) [0, 1J x (-1,1 ) i = 6,7 

mapping segments of leaf to segncnts [0,1] xtcll,'!here the 

rCf;ions A6, A7 are as sho\"m in fi[;ure Ll-.7 and satisfy 

analogous overlap conditions to A6 and A7. Using these 

maps and lemma 5 of appendix 1 finally allows us to 

nO'd @ 1.18.:)8 leaves to lc-:aves but at singularooints it 

?reservcs distinguished charts and hence distinguished maps. 

Hence (ii, ,,'b+ _ 
~ cCJ -

J?inally note ~~~ing the domain of Y sufficiently. 

small \18 C8.~ 

as we like. 

Our next task =-.:;: T"O s~cO\'J that centres of type 1 can be 

removed. or adc.s:_ .-:"Il 1:1. unique Ivay up to Or complete 

equivalence. Eefore we state and prove this we need the 

.J"' , 1 . 1 
.L O_L Oi'J~nt; emm8.. 

iJ~lnma LI_. 6. 2: Let ~ be the foliation of (-1, -1) x. (-1,1) by 
lines x = constant. 



I,et X be a Cr flol'l on (-1,1) x (-1,1) equalling d outside 

Then there is a 
r l 

.,..... .. • U QlfIeOmOrpnlGD 

such that 

cp~: (-1,1»)( (-1,1 ) -~) (-1,1) )( (-1,1 ) 

(i) rp,:'~a == X ,. 

identil.;;y r:l<1:9 near the boundary 

(in B.=(2) of (-1,'1) X(-1,1). 

rl'oof: X is 
r a C map 

(-1 ,1) x (-1 ,1) x ::r~ --~) (-1 ,/1) X (-1 ,1 ) 

• 

C":hea define 

(h. ( /1 /.' " ( .~ " '\ ____ ~;", ( ." ,", (/1 /! '\ 

r?, . '- - i , ; / " \ - I, i.l i \ - I, . 1)( - I, I ) 

:= X 'C"(x,O) • 
J 

·.:;ince X has no singular points ~;c. is the recuirec;. !:lap_ 

F:coDosi tioD L!-. S. -:;. : . + ~ b .. , • .L!e v :.J • e a .~ . ~ ) . U- (r ~ 2 norse folia-clon 

on 0 +l~e o~~~~~~~ -- -0-' v 1 .- - t:: -- .. --'-
b 

2-mEmifold of holono::ny 

and no lec'.i CO"_ :::-:cc':",:-c::'ng more than one saddle point • 

.Get c be a ce~-:-.~::- of ~ of type 1. ;1'11e11 up to Cr -cooplete 

equivalence th9~~ lS a uniaue way of removing c from~ • 

..... 
T'Dat is, up to C-'- -complete ecmi valence there is a unique 

nor'se foliation:l' on I-Ig satisfying: 

1. ~I has one less centre and one less saddle point 
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than ~.i 

..... 
2.There is an open neighbourhood U of D und a c 

U~ orient~tion preserving diffeoGorphim 

such that 

<p: U--+(-1,1)( (-1,1) 

a) ~ 1r'1 ~ U.. = ~ I F1' U -j gig 1+ 

b) ~IU = ~*~+ or 'fJ*¥ as appropriate, where 

= q> -1 ( (-i, i) X (--~, i) ) . . 

3.'Ihe leaf of ~IU cutting CP-1((-i,-1l)( {-i,.-J) at 

-1 ( 3' - -1 (( 3 3) {"1) -1 ( 3) ~ x, -(,: ) cut s <f' --Ii: , 7; X '+ at cp x, ,;- • 

~h2n up to Cr-com]lete equivalence there is a unique way 

of addinG a centre of type '1 and horse index 0 to 1. 

ii1hat is,up to ::;r-::o::'.~lete equiv::,lence there is a unique 

C
r 

Morse foliat~8~ ~' on Mg such that: 

1 .~ I has: ~_-:? :-::o1'e centI'e of type 1 and I'lorse index 

0, and one moY's ::: '~ile point than ~. 

2.Thera i: ~ 81' diffeomorphism 

9: U-~)(-1,1)x(-1,1) 
l.'I[here U is a neighbourhood of some point x E. 1 

o 

such that a) ':3 1 ): r\ U, = ~ I , M \ U 3 
o -il g II 

b) q> is a d.i,stine;uished chart for ~ at _ x 
o 
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3. 1.i.'he leaf of ~I,U cutting cp1 CC - i ,iJx{-il) at 

<l31 (x,--1D cuts ~1((_i,-~) x f~}) at ~-1(x,~). 

4.The additional saddle point lies on a leaf ~~1'eelng 

with 1 outside U. 

u 

?roof:A. ~he existence 

' .... .. .. 
\ .... 
\ .. .. ~ , , 
v ~' ... ~ , 

l f' 'to : ~- I 

'- .... ~, 
,- ., ,. 

LL 0 .. /' 

.. , 
" , , 
1\1 ." II 
1 

1''101'se foliation 
with extra centre 
is dashed 

O f ~r"Q foll'~~l'nn~' ...... 1".,.1 ...... _ _ cl.. L., ....., J._ .:J is im.mediate 

fro;'1 lemma. 1.1-.2· ani t-}e fact that the horse foliations 

0»+ ,~- on (-1,'i~x(-1,1) agree with that given by lines 

x = const~nt o~~siie the circle x2
+ y2 = ~. 

1']0\>1 we orove U:l:::'::~..:.;:-;.es:3, supposing that c has I'10r8e index O. 

Buppose that~; ,~~ are two Morse foliations w~ich satisfy 

conditions 1.,2 .. 5. of the statement and let 

be the correspoEiing diffeomorphisms as defined in part 2. 

by the hypotheses of this proposition and the proof of 

lemma 4.8 we can find a neighbourhood U of D with o c 

U 0 S Cf'1"1 C (--~, -2-) ~ C -i, -;5:) ) n <1>:21 (( -,~, -1J x (-i, i:) ) 
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and 'P 0 : Do ~~) (-1,1) x (-1,1) 

a Cr diffeomorphism such that 

q:>~ ,It = ~Ilio· 

There is a well-defined C
r 

Morse foliation ~' on M o g 

given by ~ outside lio and. 'by <p:CX on Uo • 
. . r 

VJe show that ~1 and 'M 2 are C -completely equivalent to ~~. 

Now by lemma 4.6.2 and assumption 3 of the statement \'Ie 

may assume that 

<p/jC% = ":J}] I U 1 and Ci'2 ct = "32' U2 

\'!nere ct is the flow on (-"1,1) X (-1 ,1) given by lines 

x =- constant. 

Pi: ( -1 , 1 ) x (- /1 , '1 ) ~ (- '1 , 1 ) X (-1, 1 ) i = 1 , 2 

such tn~t Pi agrees with the identity map outside 

*~ -1 * I '1~' fi"-\.:::' ~i ~o l= ,c~. 

-1 -1,." Then by lemma .: ':.):~ a~)pendix 3 ,<Pi Pi 'ri extends by the 

'd ,r l entity map to ~ 'j diffeomorphism 

"Yi : f"Ig .)-

isotopic to the ~~entity. 

then y"(- ~! - 'd t 

l l 0 
i=1,2 as required. 

B. The existence of ~I is straightforward - simply 

replace the foliation on a distinguished chart at a 
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f\+ • point of 1 by standard example ~ 

duppose that ~1' and ~~ are norse foliations with one 
c:. 

more centre of type 1 and. 'r'lorse index 0 and-one more 

saddle point than ~ vlhich s~tisfy conditions '1,2 and 3 

of the st~tement. 

:Let f1,CP2 : U1 , U2 --~>( -1 ,1) x (-1 ,1) be the corresponding 

diffeomorphisms as in part 2. of the statement. 

~y sireilar met~o~s ~o ~he nroof of lOillma 4.8 he can find 

G
r diffeornorDhisms 

P l : (-'1,1) x (-1,1 ) ~ (-1 ,1) >( (-1 , '1 ) i=1 ,2 

l'ihich RGree ~"i tn the identity outside (-1.:-, ·in x (-.:~, i) 8..t.'1d 

satisfy-

Similarly we ca~ ~i~d a Or diffeomorphism 

Po : x ,-1, '1 ) -~, ( -1 , 1) x (-1 , 1 ) 

agreeing wi tt~ -:- .:-_? i::ten ti ty outside (-~" -}) x. (-;:, i.-) such 

then by lemma 1 of appendix 3 the diffeomorphism 

-1 -1 -1 
'P1 P1('oCf>1CfJ2 f2 Cf2 : Do )0 Do 

extends to a Cr diffeomorphism 
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H • n ---~)l\ • a-
D G 

\'lhich is isoto~)ic to the identity and satisfies 

Hence it remains to ShOH that '\'lie can assume that U1 = 

To do this we first construct a neighbourhood V of a 

segment of 1 as S110H11 in figure 4.10. 

--"'\ 
,--------- ...... - t. 

, ,. -..- .... 
I ,'" .... , 
I , ,.- .... , 
, I,' " 
: " / r _ .. , " " 

~T , , 
'-'2 • 

, , -- ,-..,.----

that of ~ 2. 
Let 11 denoto +-> .. ~ v __ .... 

i'lith , 
ol.ltside U ) ..L 1 

l~ig. 4.10 

~d~itiona1 saddle ].oint of~! and D~ - °'1 ~c: 

leaf of ~1 containing p~ (which agress , 

and l~. the 
c: 

leaf of ~2 containing '2-
- L 0'1-1 '~ 1 
.Le"t, T'l (l.k~)( (-'1,1)) c:er..ote the cora ;Jonent of 1 n u . -. /1 

which aGrees with the sesment of l1n U1 containing P1 on 

" 9'1 J (tk11 X (-1 ,--~-) U {k11 x. (-Z-,1 )). 

1 
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Let <P21 C {k21 )( C -1,1)) denote the corresponding component 

of 1 n U2 • 

Interchanging the subscripts 1 and 2 if necessary, v.le can 

find a positively oriente~ embedded curve 

"I: [O,1} ~l 

such that "Y ( 0) = CP 1'1 C k1 ' -7 12 ) 
-1 ) "'1(1) = q;;1(k2 , 7/8) or <P1 (k1 ,7/8 as 

appropriate so that 

<P1"1 C{k11 x C-7/S,1))U<P;1({k21 X C-1,7/8))S'Y((O,1]). 

We choose W to be given by the holonorny map of 3 along 

small trs~3V?~Se interval at 

In fact we reauire 

'10q>1"1(C--1,1)X{-7/sJ )Scp~1((-1,1)Xt-7/8J) and 

\'iO~21C(-1,1))(.{7/8}) E~1((-1,1)x t?/S}) or 

'Y( 0). 

~;jO<p1'1 (C -1,1)(. tl: /3}) 9qJ1'1 (( -1,1) X {7/8}) as appropriate. 

Let c 1 , c 2 denote -.;~'..e additional centres of ":11 '~2. 
I..Jet K1 be the ·~--:2.0D. of DC1 and all segments of '0'; meeting 

\i'J' n (1)-1 (( 1 '" \ :; '.7 /S-I ) . 
" I I T1 \ - ,I) X .. - . .1 • 

Let K2 denote -';~2 union of D and all segments of~2 
~ c2 

meeting \1/ fl ~2 I (( -'1,1) ~ t7/81) as in figure L~.11. 

Let Xi (i=1, 2) be a Cr i'lorse foliation agreeing Hi til ~i 

outside K. and without singularities on K .• 
1 1 



shaded 

Fig. 4.11 

B;;r le:ni:ia L!·.9 and lemma 1 of - ~" d Cr 
j 'de can Iln 

diffeoElOI'phiS,GS 

P "::, 
• • i. 'r--

J. G 
i == 1,~~ 

isotopic to the identity and enual to the idsn~ity 

01J.tsidc <Pi'! (C-,\'}) x>, ,".)) 

such th::lt ::l = f i~i l 1,2. 

:;:~Oi'! fi~i 3,;;1:'ee8 v!it~. ~ oll.tsius fi1I~i (j.:=1,2). 

EO\'iever, the c~10ice of If:" shoHs that 
l 

........ /' . 
Corollory L~. c.:: • .'< =_~"C ~ I ,J denote the set of equivalence 

S,f" 

cl ~. ~ \ h ~. Cr i~.',:o~~e foll'atl"on asses o~ p~~=?~,c/ v"ere 3 lS a _~ 

0'1 '·i .L_ l.cr 1,lit;} r_o ::.:- -=- ::::omy, I:li t:'l no leaf containing ;nore than 
t;) 

of ~ of type /j 8..:.'1:-1 I'Iorse L1dex j (j =0 or 2). 

(~,c) and (~~Cl) are eouivalent if there is a Cr 

diffeol':1orphism ./:' of n .. - is isotopic to the identity ~ \--TillC£l 
0' 
0 

and vl~licJ.l satisfies " , , 
I and f:~~' ~ I ~C) - C • 
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Let ~ ~ denote the set of Cr-complete equivalence 
g,'" 

classes of Lorse foliatio:1s on !-TO' '''hich have no holonomy, 
o 

no leaf containing I:.IOre '~llcin Ol1.e saddle point 2.::'1.8. f5 centres. 

Then there are bijections: 

I'V . 
~1,j __ -+ 

g,~ ) ~r 0"-1 .j = 0,2 
0' 

IV 'I -j 

)~;~'~ j = 0,2 
0' 

j = 0,2 such that q j uj = idcntit-.i 
-g ,6"'" g ,~ -

j ,k = 0,2. 

Proof: It if'; left to the reader to chec~ that 

proDosi·tion defines such maps and to prove the equalities. 

- . . d "e no',-; COllSl or centres of type • It turns O"~ ..... v in 

this CEl.se irJe cannot remove the centre ltJi thout destroyinG 

the transverse o:c'ientabili ty of the 110rse foliation. Thus 

we have to exp~es3 the uniqueness up to Cr-comolete 

eaui valence of -:::-~:s jehaviour near a centre of type 2 in 

a different way _~ t~at for centres of type 1. 

Defini tio'Q. 4. '7: .~ ~ t ~ be a Cr (r ~ 2) norse foliation on 

1":0" the orient&2 ~-;nanifolc1. of ge~:u.s g, l'Ii th no holol1omy 
a 

and VIi th no Is?.f containing more than one saddle point. 

Let c be a centre of ~ of type 2 and let 

u == D U Ul U Ul c c 1 2 

where 11 and 12 are circle leaves which lie in t~e 

complement of Dc and approximate each of the loop 
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separatrices in aDc (see figure 4.12). 

c 

2?ig. 4.12 

T"" __ ..l.. S=1,ths fect that a is t~8nsversely oriented precludes 

TJ c from beins 2.11 of 

~hU3 it is always true t ~t auc is a non-e8pty union of 

singular points and loop separatric8s. 

I.!emma. 4. C ... 1: :Le-: ~ ':)e a Cr horse foliation on f1 ,the 
g 

oriented 2-:nc'-.:.'1i:':; ::..~:. of genus g ,\:ii th no holonomy, no leaf 

containin~: rclO:::e .... ~_::"~l one :Jacldle point and I .. lith a centre 

c of type 2 an~ ~r3e index O. 

Let U be a se.-;:;·_~_.:~ ~ ~-CL neichbourhood of Dc i,i110se closure is 

cO!.ltained in 

the ~·,-,lf torus. 
r 

~hen there is u ~ diffeomor~hism 

({': U --~)T.1 
2 

such that ~IU = f*~+,where @+ is the stendard MOrse 

foliation on T1 defined in section 4.3. 
'" c_ 
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Froof:This is similar to the proof of lemma 4.6.2 and is 

left to the reader. 

Proposition 4.8.2: Let fig be the oriented 2-manifolcl of 

Genus g and let ~1'; be CI" (r ? 2) lVlorse foliations on I'l
g 

\,Ii th no holonomy and no leaf containing more than one 

saddle point. 

Let c 1 ,c 2 be centres of ~1'~2 respectively each of type 

2 cmd norse index O. 

12.:'0 of: r:::'hi ~3 

of the cornplepe~t of II • 
c 

uses le~sa 4.3.2 and is left to the reader. 
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Chanter5.The decomposition theorem. 

\Je have al.r'8:3.dy made a start in cl;:>.~~sj.f7ins horse 

foliations ~,·jithout holonomy up to Cr conjugacy, indeed 

\'18 have seen that up to Cr coo:olete (;r:.uivalenC'e the 

b~haviour at a centre is of two types,once the Morse 

index of the centre is fixed. 

~ie have also seen that any circle leaf 1 :nas a mnximal 

open ne~ghbourhood Dl consisting entirely of circle 

leaves. In general ul is a c~;linder ;-1h038 bounctRries consist 

either of a centra o~ of a sad~le ;~i~t and one or two loop 

separatrices. If a boundary component of Dl has two 100) 

separatrices there are in general circle leaves near aUl 

not in Dl • Thus there is sone le8.! l' i:!i th Dl and Dl , 

a~)utting. Inductivel::" adding on sets UI , \1e obtain a tltree tl 

made up of cylinders foliated by circles joined to each 

other by loop separatrices and sucb th~t each boundary 

component is ei tl:.e::::- a centre or n.c-,s c~o nea:r~by circle leaves 

not in the Iltree rt. Addir~.e-; in cent:r:t':;s in the boundary and 

plugging off the remaining boundnry coru.ponents of the lIt-ree" 

with centres and the holes left also with centres produces 

a nevI f'iorse foliation. Repeating this procedJ.u',,~~ and shrinking 

m'JaY centres of type 1 \'-e end up Hi th C:~ ll.umber of 2-I118.nifolds 

and I'lorse foliations Hi thout holonom~T either h.3.vine; all 

leaves closed or having no leaf closed. 



78 

In this chapter we shall construct such a decoD~osition 

and prove it to be unique up to Cr conjugacy. 

In figure 5.1 below we give an example of this procedure. 

cut and :;;,>lug 

off here 
no leaves closed 

in " . 
"GillS region 

Cutting G: -plu::;S~~_;,~; off proJuces a torus \",i th three centres 

&. three sad~:i2.s -; ::;':nts. 1~ern8.inder of manifold is a torus 

with two centres of type one and no other closed leaves. 

:B'ig. 5.1 
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Definition 5.1.1:Suppose ~ is a Or (r ~2) Morse foliation 

on the oriented 2-manifold of Genus g, without holonomy. 

i0up.l?0se 1 is a closed leaf of 1'; , then cutting 
g 

gluing in two discs produces a manifold H 1. g, 

alongl aIIQ 

f"l 1 is foliated by foliating the discs wi tn circles and g, 

a centre. 

Rigorously we proceed as follows. 

Let B1 = 
S1 = 

{(x,y)e }R2 

r ' ffi2 l y ,7 'E' ~ .... , d ) 

2 2 1 x +y ~ '1 

y2 2 _ " J <= ~, 
•• +Y - I - b 1 • 

J~et B/j X !-'II and B1 x {21 be two co ~}ic:"s of B1 with foliations 

~I' ~2 3 iven b~,' fUl:.ctions (z,:< }o -(J? + y2) and 

( 2?· . 
(x,;y)-~" x +- ::/") respectlvely. 

0e define a new oriented Or manifold M with a horse g,l 
foliation as follows: 

1'-10' 1 = )\1 \.1 U I?"t )( t1JU.B1 X t2jas a set. 
C)' g 

IJet -Y: S 
1 ~ 1. be a Or orientation preserving embedding 

and H : 8
1 

X. (--t,1)--+t]'~ a Or orientation preserving g 

embedding such that: 

(i) H((x,y),t) f!.lt a leaf depending only on t. 

(ii) H((x,y),O) == '"Y(x,y). 

Define 

t <0 

and 
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H2 ( (x , y) , t) = S H ( (x , y) , t ) 

( (((1+t)x,-(1+t)y),2) 

t>O 

t ~ o. 

Then the differentiable structure on M 1 is given by 
g, 

taking a chart at x E. fIg" 1 to be any chart for h 
g 

contained in M \l,obviolls bharts for points ~n 
g . 

(i=1,2) and for Xc B 
1 x tiJ take H-:-1 as a chart 

l 

B1\ S1 x {iJ 

(i=1,2). 

Similarly, the distinguished maps for ~l are obtained by 

ad,joining those for ~II'lg\l, ~iIB1\S1x {il (i=1,2) to the 

functions n_H71 (i=1,2) where TI is the projection onto 
l 

(-;~-, J). 

fiatt:; that one 0:;:' t-,,;o GUmponents. 

It also satisfies: 

(1) hg\1,B1\S1x t1J,B1\S1X {,21are open submanifolds and the 

inclusion maps are maps of Morse foliations. 

( '"' ' -,1 {11 . 81 S' "1 1 f ~ c:.) 0 X anc1 x 1.-:': are eaves a VI-

Lemma 5.1.2:I]:'he Cr structure on I-l 1 and Horse foliation g, 

/\.11 defined in 5.'1.1 are the unique ones on N up to ~ - g,l 

Cr diffeor1Orphism satisfying properties (1) and (;:.:) 

immediately above. 

Proof :Let 9\ be the Cr structure on ]VI and 0 the I'lorse 
0(.1 g,l 1 

foliation defined in 5_1.1. 

Let~' and~i be any others satisfying (1) and (2). 

I'j'e construct a diffeomor\)hism 

such that "t"*~i = j . 
1 
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Let Ll1 : S 1_~) 0"1 lJl) be a smooth embedding onto the ,- g, 1 ' 

leaf .S 
1 )( {110f d i a.t:·,d 

K1 (x , 0) = P 1 (x) 

K1 (x,t) lies in a leaf of ~i independent of x. 

,Ji thout loss of generality we may choose a diffeomorphism 

h1 of (-~ ,~-) into itself such that K1 . and H1 - (id x h1 ) 

have the same image and h1 = identity near O. 

_.1 
.0 x. 

is an orientation preserving diffeomorphism preserving the 

foliation by leavesS 1 x tt1. 
By a double application of lemma 4, appendix 1 \-le can 

find a Cr orien~ation preserving diffeomorphism 

P1 8
1 x (-~,i-)~ 81 x (-~,~) such that 

P1 = { identity map near S 
1 x to} 

I(i1 E1 (id x h1 ) near S 1 x {±~l. 
1 s ') Similarly choose K2 ,h2P2 for S X 1.2J. 

Now define "fI by 

"r(x) = K1P1 (id)( h11 )H1"1 (x) x e image H1 (id X h
1

) 

K2P2(id x h-2
1 )'II-

2
1 (x) . H (. ) 

1 X € lmage 2 l.d x h2 

x otherwise. 
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"t' equals the identity outside a small neighbourhood of 

81 )( f11 U 131 x {2}. 

Lemma 5.1.3: Up to Cr diffGomorphism,r-lg,l andOl depend 

only on Ul • 

Proof: Let l' 5: Ul • 

Vh thout loss of generality, \'Te can assume that there is an 

orientation preserving diffeomorphism 

such that H(S 1 X £-;}) 1 

HU:
1 

~ ." >< £ .. } " -,;- ) = l' 

H(S1 X t t}) is a leaf each t. 

Let h1 be an orientation preserving diffeomorphism of 

(-i,i) equal to the identity map near !i which maps 0 to-i. 

Let h~ be a similar map,mapping 0 to i. 
L 

Then R(idX h1 ) can be used to define the structure of Mg ,l 

and H(id x h 2 ) to define that of rIg, l' • 

Define "Y: rIg, 1 > tjg, I' b;y 

-'-.)...-" S n ( • d h h-1 )TT-1,. ) 
I ,X) = ( : 1 l< 2 1 n \X 

where Y = S 
1 

X (-~, 0) U S 
1 )( (0, i) . 

X E. H(id l\ 111 ) (Y) 

otherwise 

Then"!' is a diffeomorphiSJ!l with respect to the structures 

referred to above and~~~l' ~ 
• a = vl. 
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5.1.4 Ha.ving defined the 2-manifold f-lg,l and foliation ~l 

vie must relate these to the stancie..rd oriented 2-m.J.nifolds 

Now M is an oriented 2-~anifold with one ur two g,l 

cO:Jponents. 

If M 1 has a single component ,then by index number g, 

arguments applied to ~l,it has genus g-1. 

If Mg,l has two components M1 ,M2 then without loss of 

generality B1 x. t11 sn1 and B1 )( £21~i'12. 

has genus genus g2 then index 

sum argum'snts s110\'i tiJat: g." 
I 

By the remarks of chs?ter 2, this second C2.SC occurs if &. 

only if the leaf 1 represents the zero homoiogy class in 

It follo\·;s from t:he above lemme.s that the above process 

defines a unicu~ Cr conjugacy class of Morse foliations 

'al on f-1g_1 if 1 is not homologous to zero and on l"I 11 1'1 
g1 (3;2 

if 1 is homologous to zero. 

Conversely we shall see in the next few sections that 

this procedure can be reversed. By removing tvlO centres 

and identifying the two circle boundaries we retrieve a 

manifold \'lhich is Cr diffeomorphic to r"l and ~'lorse foliation 
g 

\.)r conjugate to ~. 
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Definition 5.2.1:We now define the notion of gluing 

centres together. 

Let 1"1 Ii .ll j'j or 1"1 be siven a. liorse ~ l· " ~ . = I.O.Lla"Glon 
g1 g2 g 

0 
Let Br denote the closed r-ball in lR2 B the open antj. r 

r-ball. 

Let c 1 be a centre of ~orse index 2 and c 2 one of Morse 

index 0 in~. 
0 

Let ~1 U1~ ]3., 'roo 

o?/c. 
be a distinguished chart at c1 

and ~2 U2 ----. B3/2 a distinguished chart at c 2 • 

~.Juppose vii thout loss of generality that U
1 

n U
2 

= ¢> • 

c11tc,) 
.:e define a ne'c: ;-n::ln.ifoLi. I-; '-;::;:, tz~i ned by gluing the 

c ,,:#- c '> 

centres c
1 

and c
2 

together plus a iiorse foliation ~ i c. 

as follolt/s: 

as a set. 

or vice 
versa 

c11fC", 1 
:B'or points x E. T'T c.\<P~ ('031 ) charts and distinguished 

maps are defined as in M. 

ll'or points in cp1'1 (oB1 ) we can take B-1 as a chart 

.. '"1 81 (1 A) M c 111 c 2 . d f· 'b \;Jnere t:, X -2" -,t ----? d lS e lnea. y 

H((x,y),t) = S'P1((1-t)x,(1-t)y) t<O 

l<P2((1+t)X,-(1+t)y) t >0. 
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.Further'if n is the projection onto (-~,~-) 1,.'·re can take 

TTH-1 as a distinguished map for points in <1':;1 (cm1 ). 
c,,(fc2 This defines the Morse foliation ~ with two less 

centres than ~ and the same number of saddle points. 

c
1 

..... c
2 

. c
1
1tc

2 Ii and ~ satisfy the follo\.'I'ing properties: 
-1 0 '\ -1 0 

(1) The inclusion of f"I\('P1 (B3/ 2 'B1 ) U<P2 (B3/ 2'B1 )) 

is an embedding of a submanifold preserving a Morse foliation. 
c tfc 

(2) The image of f:;1(OB1 ) is a leaf of ~ 1 2. 

,I' c1;tc2 Lemma 5.2.2: The ~ differential structure on M 
c",1fc~ 

and i-Iorse foliation on i t ~' ,::.. are the unique ones 
, _ c11fc?, _ r 

on the set fl - up to C diffeomorphism satisfying 

the conditions 5.2.1 (1) & (2) immediately above. 

Proof: This is left to the reader and is similar to 

that of lemma 5.~.2. 

I 
,c 1it'c 2 

Lemma 5.2.3: Up to Cr diffeomorphism ~ and 

depend only on c1 and c 2 i.e. they are independent of 

<f1 and <1'2' 
t'roof: Let 11, "f2 be another pair of distinguished cha:-cts 

at c1 ,c2 respectively with domains V1 'V2 • 
,_ . C1ttic2 c -Wc2 
l"et r-1 c:p clenote the manifold f'1 1 Hi th C

r differential 

structure defined by 'P1,<f2 as in definition 5.2.1 and 
c1itc2 

['1'1' . that defined by'Y1 , 1'2. 

~ji thout loss of generality vITe can assume that 
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and 

. m '\1,1-1 
1\ 01,'1 ""1 '1 

o 0 
B;'" /2--~)D3/2 preserves the iJiorse foliation 

.J, . _ 

by circles. 
o 0 

p : i33/2---~~3?/2 be a Or diffeomorphism Let 

preserving the norse foliation by circles w{th: 

3/2 

1. 

~ow define a Or diffeomorphism 
c if'c c itc 

R : f'1~1 2 ) f'1,.,) 2 by . / ~ i -1 m ('\ (D-1 (9, \. Q \ l{V~) = C'p1 P"T1 ,X) xe. T1 b~,/?"D1) 

x otherl'lise. 

l'rooosi tioD 5.3: Let ~ be a [~orse foliation without holo-

nomy of class 

genus g. 

,..,r 
.v (r ~ 2) on Ilj ,the oriented 2-manifold of 

g 

Let 1 be a closed. leaf of ~ without singular points and 

let c1 (1) ,c 2 (1) be the additional c':~ntres in ~l. 

Then (Ml'~l) depends up to Or conjugacy only on the Or 

conjugacy class of (Mg'~). 

Conversely if h,c
1

,c 2 are as in definition 5.5 let 1(c
1

,c 2 ) 

b,? a closed leaf in H(S1 X (-~,~». 
c1if:cr) c",t-c 2 Then eM c,~ I ) depends only on the Or_conjugacy 

class of er1,~). 
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Further up to Cr-conjugacy: 

c14fc 2 c :trc2 ((Ml ) '(~l) 1 ) 

'" c1tr-c 2 C'1*fc 2 
((~ )1(c1,c2)'(~ )1(c

1
,c

2
)) 

Proof: The proof is entirely routine. 

In the course of the proof of the decomposition theorem 

we shall need the following lemma: 

Leoma 5.4.1': Let ~ be a Cr 
(1.')0 2) horse foliation on the 

sphere with no leaf containing more than one saddle point. 

If ~ has Elore than two ccntr8s then it has at least two 

centres of type 1. 

Proof: Suppose that j has ~ sa(,(11e points, Hhere fi' ~ 1. 

Then j has CT+2 ce:.ltres. 

If cr = 1 ~ has t 1,!O centres of type 1 and one of type 2. 

If a >1,suppose inductively that the result is true for 

Morse foliatio!l3 with ~-1 saddle points. 

Let c be a ce~~~2 of ~ of type 2. 

Let Dc be t~e:::,<~~:...::.':~er associated to c as in definition 

T-~ 
-L..l. 

of 

one or bott :~ the boundary comnonents of U consists - c 

a single ce~~~9 then clearly a has a centre of type 1. 

Othe:r:vlise Dc has tHO boundary components and we can choose 

circle leaves 11 ,12 in Dc approximating dUc • 

Gluing in centres along 11 and 12 produces three Morse 

foliated spheres. 

One of these spheres contains c,tN'O IIg1ued inll centres 



2nd one saddle point. 

Each of the other tVTO spheres contains exactly one "e;lued 

in rr contre and at least one E'c at most 0"-1 saddle points. 

frhe rasul t now follows by incluctio~lD 

Corollory: Let ~ be a ar (r) 2) I-lorse foliation of rIg' 

the ol'iented 2-manifold of' genus :.;, \'ri th no holonomy a..'1d 

no leaf containing more than one saddle point. 

6uppose that ~ has at least one closed leaf and that every 

closed leaf of ~ is homotopic to zero. 

Then ~ has at least one centre of type 1. 

Proof: Li3t 1 be any closed leaf of ~ • 

Glue in centres along 1. 

8ince 1 is homotopic to zoro,~t l~~st ono of the resulting 

manifolds is a sphere. 

If this sphere contains two centres of type 1,the result 

folloHs. 

OtheT't'lise 

c. 

1 lies the disc D c associated to 

If c is of type 1 the result follows. 

some centre 

If c is of type 2, oD is a figu~e of eight and there is c 
a closed leaf 11 approximating one loop of this fi~ure 

and lying outside Dc. 

Now l' cannot lie in a disc D I associated to a centl"e c 

c' of type 2. 

Repi ti tion Hi th l' of the above 2.r:::;u::ont for 

1 then Gives the desired result. 
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The Decomposition Theorem. 

r Proposition 5.4.2: Let d be a C (r ~2) Norse foliation 

on f'l ,t:hl~ oriented 2-manifold of Genus g, 1:lith no .holonomy 
8 

and no leaf containing more than one saddle point. 

Then,up to Or_conjugacy, eM ,~) is uniauely ~onstructed g _ v 

as follO\vs. 

Take t,,/o (not necessarily connected) closed 2-!l1anifolds 

each Morse foliated with no holonomy and no leaf 

containing more than one saddle point. 

Suppose that the first manifold has every leaf closed 

and that the oecond has only those leaves lying near a 

centre of type 1 closed. 

Then (IvI~,~) is constructed by gluiE; centres of the first 
!:) . 

Morse foliated manifold to centres of the second. 

Bxplici t13T, U!,_,'~L is Ull_i(luely constructed as folloHs: 
c.') 

Ohoose norse fo.:!.is.--cions (rih ,~.) , en ,~.) \'lith 0' i·( s , 
i 1 gj J 

o ~ j ,t intese== ;::.:::1 hi > 0, gj ~ 0 v'Iithout holonomy such· 

that ~i ha3 TIC ~. ~~ closed and~. has every leaf closed. 
,] 

Use proposit~c~ --.5.3 to add k. centres of type 1 to k. 
1 1 

distinct nOll.-s::"~:.:::-J.lar leaves of ~i • 

Then (Ng ,!) is c:~ained by gluing aij centres of 5i to 

centres of ~j "I' i 'S , l' j 't. 
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Converse;Ly such a process will produce a l"'lorse foliation 

of l'Ig with fS centres provided the following constraints 

are satisfied: 
s t-

a) La . . ,"6. , 
. lJ J 

[a .. 
j:' 1J 

~ k. where j. has ~. centres. 
l J J 

'~I 
b) cs". = 0 if &~ 

J 
only if s=O t=1. 

c) g. 
J 

o , 5. = 2 ~ a .. -I 0 for at least two distinct 
J 1J 

values of i. 
5 "to .s 1:. 

d) G = L k i + L 6. - 2 L La .. 
i:a s J;' J t a", j::, 1J .."to 

g =1 + L (h. -1 ) + L (5-;-1) + [:2::>-\ .. 
"::1 l j::1 U i..a~ j:1I -J 

e) To ensure connectedness we require: 
. , . , 
J1 ' •.... ,J /C p- I 

:q , ..... , i ~ ';-.Ii tIl 

a. , . I =t 0 1 ~ v "p-l • 
1V-I-l J v 

I~oof:lf g=O the result is proved so we assume g )0. 

~e first locate the manifolds (Mh"~i). This is done by 
1 

cutting along closed leaves and gluing in centres. 

li'ollowing such ap:::oceedure we end up with the (I"1h . '~i) 
-1 

with centres of type one added, except that the discs 

foliated with single centres are replaced by some more 

general horse foliation of tho disc (see figure 5.2). 

Choose in 1"1 a maximal collection of closed leaves 
g 

11' •.•• ,lr representing linearly independent homology 

classes. 

Glue in centres along 11' ...• ,lr thus obtaining a Morse 



Initial decomposition Final decomposition 

]1ig. 5.2 

foliation of M with 6+2r centres,in which every circle g-r 
leaf is homologous to zero. 

LO"11 cut along circle lc~aves homologous to zero but not 

homotopic to zero and glue in centres until this can no 

loncer be done. 

'''''lIis gives ~1' ..... ,3n I'iorse foli::::..tions on oriented 

2-manifolds 1") Y , ••••• , hey \'Ji til 
1 11 

a total of 6+2r+2n-2 

centres and '>'1+ ••••• +"n= g-r. 

Note that hcv" has every leaf closed if & only if 1'. = 0 
'1 . 1 

and i=D=I. Fo:;:' ":ie can remove all centres of type 1 and 

then by lemma 5.~.1 the resultant foliation either has no 

saddle points,iD which case ~. = 0 or has no closed leaf, 
1 

l.!~lich is im1)Ossible. But~. = 0 and i > 1 im.?lies that 1-1 
- 1 /'.. 

1 
was obtained by cutting alon~ a circle leaf homotopic 

to zero. 

'I'hus either l'ig has every leaf closed or for each i, r'i~" 
1 

has a non-closed leaf,and thus we may assume the latter. 



"je now show that each closed leaf 1 is contained in an 

open disc Dl l'1orse :foliated by clo;:,ed leaves Hhose 

boundary is a saddle point together with a single loop 

separatrix contained in a non-closed leaf (see figure 5.2). 

In fact since any such leaf 1 is contained in an open 

disc Morse foliated by closed leaves we may choose Dl 

maximal. 

Since~i , 0 the boundary of .01 is a union of saddle points 

and 100D separatrices. Since Dl is maximal the boundary 

of D is 1 as reauired. 

J~8t c· . O~ j ~ t. (lc~l.ote the dis~inct sets '0.01 in I'I",. 
lJ 1 '1 

satisfying one of the two additional conditions: 

(i) Dl contains more than one centre. 

(ii) .01 contains a centre Hhich was glued in at some 

stage in the decomposition. 

Then c. . 0 ~ i 'n , 0 ~ j ~ t. correspond to well defined 
lJ 1 

sets dij ' in jO'g 'dhich consist of 3. saddle point and a 

loop separatrix contained in a non-closed leaf. 

LO~'J choosing closed leaves d! . anoroximatimo'=- d .. and 
1J 1J 

gluing in centres in ~ decomposes (Ng,S) into Morse 

foliated manifolds (I'-1~ ,~.) 1 ~ i ~t and Ul1\1 ,e!) 1 ~ i~ n 
6i 1 'i 11 

\"li thout holonomy in which ~i has every leaf closed., and '1 is the Morse foliation on My. obtained above but with 
1 
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each disc Dl replaced with a disc foliated by circles 

and a single centre. 

i. O~";~ b;y PI'oposi tion 4·.6. ;; since eve:::y centre of ~i is of 

type 1 1ile may remove it and removing every centre from 

~i in this way y-ie Ids a horse folioation ~i without closed 

leaf and without holonomy. 

to:' 1:;' • 1 t:\J 0eo "clng n. = ,. , n = s ,\'Ie 
1 1 

have the required decomposition. 

Je now prove uniqueness. 

/i::cst note that fro;:! the proof that the si ven decoITIDosi tion 

of eM ,~) is clearly the g 
"r . n -. , • unique one up to v dlI!eOmOrpnlsm 

leaves 1 ~hich are well defined up to UI - the maximal 

annulus containing 1 which is foliated by circles. 

~ow if f is a Cr diffeomorphism of M~,the decomposition 
o 

is obtained by e.~lui:::tg iIi centres along closed leaves 1 

But then the decoGposition of ~ is obtained by gluing in 

centres alous t~e circles fl - leaves of ~. 

Hence f defi~es a diffeomorphism of the factors obtained 

in the decolr.posioLion of f"::1 onto those obtained in the 

d.ecomposi tion of ~ • 

This completes the proof of uniqueness. 
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Chanter 6 il/Iorae foliations 1.',i th all leaves closed. 

~e saw in the last chapter that any ~orse foliation 

without holonomy can be decomposed into Morse foliations 

without holonomy and eith~r with every lea1 closed or 

with no leaf closed. This decomposition respects Cr 

conjugacy. Thus in studying the Cr conjugacy classes of 

Morse foliations without holonomy we need only consider 

these two restricted cases. 

i..L'he case of no ClO~:38d leaf is complicCltod and not yet fully 

unde~8tood. It l~ill he con8ids~e2 ~~ subsequent chapters. 

In the present Ch8.DGcr Vie consider iiorse foliations ~'iith 

no !:.olonomy and 8.11 leaves closed (see 2.15 for an 

explanGtion of why these conditions are both included), 

up to Cr conjugacy. :~hese are relatively managable. 

In the first l-Jro:;;osi tion we consider the number of Cr 

conjugacy classes and in the second we consider some 

invariants for these. 

~roDosition 6.1:Let ~ be a Morse foliation on the oriented 

2-manifold Mg of genus g,without holonomy,with no closed 

leaf and with no leaf containing more than one saddle point. 

Then there is a f'1orse foliation -::lo on the sphere with no 

holonomy and every leaf closed such that ~ is obtained 
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by gluing together g pairs of centres of ~ • o 

Proof:By lemma 5.2.2 there must be S closed leaves 

aI'C linearly independent in H1 Ulg' t.z). 

Cutting along them and gluing in centres proves the 

desired result. 

Corollory:Let (Mg'~) be as in the statement of the 

proposi tion. Then for a fixed number of se.ddle points 

there are only finitely many Or_conjugacy classes of 

such Morse foliations (see proposition 4.4). 

Proof:From the proDosition we see that it is sufficient 

to prove the result for the snhere. 

holonomy either there is a centre of type 1,by lemma 5.4.1 

or there are no saddle points. 

In any case,we can use proposition 4.6.3 to successively 

remove the centr83 of type 1 and Vie eventually arrive at 

the uniQue horse foliation (u.p to Cr conjugc.cy) with' no 

saddle points. 

In the reverse procedure we successively add centres of 

type 1 to circle leaves 1. At each stage,the Or_conjugacy 

class depends only on Ul (see definition 4.5.1 ). 

Since there are only finitely many such sets,the result 

is proved. 
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ProDosition 6.2: Let ~ be a Cr (r ~2) Morse foliation on 

It., the oriented 2-manifold of conus g, \vi th no holonomy, 
6 

every leaf closed and no leaf containing more than one 

se.ddle point. 

IJ:hen the number n of nOl1-?ero homology classes renresented 

by the closed non-singular leaves of ~ is a 

Cr_conjugacy invariant of ~ and satisfies 

g ~2 

n ::: g f, == 0,1. 

lurther each such value of n is att~ined for any 

precl.etermined :numbe:c of centres. 

If g ~ 2 and the nurnb:::;r of centres minimal, n is a 

complete-invariant. 

If g > 3 this is not the case. 

Froof: First note that by lemma 4.5.2 the homology claes 

of a circle leaf dep8nds only on Dl - Indeed if c is ~ 

centre of type two,the homology class of a leaf 1 in U c 
1;Thich is not hOrJologoUi3 to zero (see 11-.7 for definition 

of lie) depends only on u • c 

To shmv tl1at n ~ 3g-3 we first re~nove all centres of type 

1 from ~using proposition 4.6.3 and this does not alter n. 

In the resulting Horse foliation 'l;ve take a maximal 
collection U1 ' •••. ,Um of pairwise disjoint open cylinders 
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in the manifold such that 

either Vi = Dl for some closed leaf 1 which is not 

contained in cu'1Y set V c 

or Ui is a maximal connected union of intersecting 

sets Dc (see figure 6.1) • 

Hi ,'.: • 6 • 1 U. 
'- l 

rrhcn every circle leaf 1 lies in some U. and if c is a 
l 

centre D· 5 U. for some i. c l 

Further the homolog3T class of each circle leaf 1 in D. 
l 

which is not homotopic to zero depends only on D .• 
l 

Now each component of the boundary of U. consists of 
l 

one or two loop separatrices and a saddle point. In this 

way each Vi is associated to one third of two saddle points 

(possitl;y the same) in the complement of U'l U •••• U V • m 

lIenee n ~ ill =( 3/2) (2g-2) = 3g-3 • 

~'hat n) g is clear since if 11 , •••• , Iv are closed leaves 

re;)resenting a maximal linearly inde?endent set in H1 (rIg) 

then cutting along 11' ..... ,lv in succession and gluing 

in centres,produces by lemma 5.4.1.a Morse foliation on 
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the sphere. 

Lence r = g. 

Ue now ShOVI th,s.t any value of n in the given range can be 

attained. 

This is done by induction. 

Je define operations which add 1 to the genus of the man­

ifold and 1,2 or 3 to n. 

To add 1to n,glue a torus foliated with a single centre, 

which is of type 1 to R centre of type 1 added to a circle 

leaf of ~ as in fi[ure ~.2. 

Fig. 6.2 

To add 2 to n add centres of type 1 and opposite Morse 

indices to circle leaves 1,1' with Ul = Ult , and glue 

them together. 



This works provided g t O,see figure 6.3. 

leaf in second 
new class ---AI:'"" 

Fig. 6.3 

leaf in first 
ne\'! class 

To add 3 to n we do the same as in the case for adding 

two except thet 1 and I' are chosen to represent 

li~early indeDendent homology classes. This works 

provided g ~ 2. 

Now proposition LI-.L~ gives the res'ult if g=O or 1 and it 

then follows for g > 1 by the preceding remarks and induction. 

E'inall;y we wish to show that n is classifying for g ~ 2 

but not for g > 2 if the number of centres is minimal. 

This follows from proposition 4.~ for g = 0 or 1. 

]or g=2 the two classes are shown in figure 6.4. 



n=3 

00 
.1.1 

:B'ig. 6.4-

n=2 

l!'or g'1' 2 VJe have to find. two non-conjugate norse foliations 

with no holonomy,every leaf closed and the closed leaves 

representing the same number of distinct homology classe·s. 

Ii.~his is left to the reader, but an example. in genus 3 

~~th n = 3 is indicated in figure 6.5. 

In first picture there are two Ul representing non-zero 

homology classes with ~UI two halves of different 

figures of eight (UI & Ul ). 
1 2 

li'ig. 6.5 
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Chapter 7. Geometric structure of ~orse foliations with 

110 closed leaf. 

From now on we consider only Morse foliations with no 

holonomy,no closed leaf and no leaf containing more than 

one saddle point. The first tV-TO of these conditions imply 

that there are no loop separatrices since any loop 

separatrix has nearby closed leaves. The no holonomy 

assumption is necessary since the latter two assumptions 

do not preclude a loop separatrix on a non-closed leaf 

from having holonomy. ~h8 three coniitions together are 

equivalent to the single condition that the induced 

foliation of the non-singular manifold ~as no closed leaf. 

Lemma 7. 'l.1: Let a be a Or (r ~ 2) r-lorse foliation on r-I
r
,.,. 

o 

the oriented 2-manifold of genus g,ahd suppose that 3 
satisfies the coniitions immediately above. 

Then there are outward separatrices s1, ••• ,sk such that: 
~ 

(i ) [we s1 ), ••• ,C-«>3k~)} is the set of distinct minimal 

(under the ordering by inclusion) elements of: 

(ii) 

(iii) 

(iv) 

(v) 

d = {W(s) 

,.., c: w( ~ " ""i- \';'''i)· 

s is an outward separatrix} • 

c.J::s, ) nw(s.) consists only of saddle points if i/j. 
l J 

,,>(si)(lw(sj)nCA)(sN) = ¢ if i/,j/w/i • 

"'l' +-'ner k 1 ' .... ,( ) ,- ,:V), I d .!:~ u.l. ~ = - ann "",,,\81 = jig or ~si lS a c ose 

non-empty nowhere dense set which meets every transverse 

interval in a perfect set. 
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(vi) If I is any non-singular leaf or outuard separatrix 

then for some i w(s. ) S weI) and if lSUX£·) 
1 1 

w( 1 ) = w( s. ). 
1 

Proof: Note first that if I is any non-singular leaf or 

out'Hard separatrix, there is a saddle point p in w(l) by 

the theorem of A.J.Schwartz. Since 1 is not a loop 

separatrix 1 passes through some quadrant at p infinitely 

many times as t ~CI() • 

It follows that weI) contains at least one inward and at 

least one outward separatrix. 

""8 ~ be ollt··"".L-~(1 C~(~·,)aI·~T.T'ices QUc'~'"' 't;'l".at '1 ' ••• , "'l\.~ , \', "l, - ~ ~ - ~ v_ - ~ _.L ~ 

[ w ('3 '1 ) , •• • ,we s" '; 1 1.)..3 

is the cofu~lete set of distinct QiTIi~al clements of d • 

Let s. sw('s.) be an out,'lard separatrix. 
1 1 

Then the minimality of W(Si) implies that w(si) = CtJ(si). 

i,ie show that wes1), ••• ,cu( S,_ ) have the requ,ired properties. h,:. 
(i) and (ii) are satisfied by definition. 

(iii) follows from the minimality. 

(iv) follows from the fact that at least two of the 

separatrices at a saddle point in w(si) also lie in ",(si). 

(vi) follows from the choice of the sets w(si) and the 

fact that for any non-singular leaf or outward separat:rix I 

there is an outward separatrix s \'lith ssw(s)SC4l(l) (and 

if I £w(Si) 'vole may take S = si). 

It remains to prove (v). 



First note that if ~(s1) = Mg then k~ = 1 by (iii) • 

.suppose that ,.{ s.) is a proper subset of N • 
- - ""V\. l - g 

Clearlyw(si) is non-empty and closed. 

H'urther s. !:CI..l s.) implies that l \ l '" any transverse interval 

meets w(si) in a perfect set. 

N01," w(si) is a union of non-singular leaves, saddle points 

and separatrices .. If Bc:.u(si) contains a non-singular leaf 

or separatrix aw(si) = wesi) by minimality and hence wesi) 

is nowhere dense. 

Other\'lise awe si) consists of finitely many saddle points. 

However this is impossible since a finite nu.i'l1ber of points 

cannot separate a 2-rnanifold. 

This completes the "proof. 

'1:11e technical lemma which follows is in fact true for 

any Norse foliation S in which no leaf contains more tha.l'J. 

one saddle point. The proof in the general case is 

essentially the sa~e as the case we give. 

Lemma 7.1 .1·a-: Let ~ be a er 
er ~ 2) j;Iorse foliation on f'lo.' o 

the oriented 2-manifold of genus g,with no holonomy,no 

closed leaf 8.2.1d no leaf containing more than one saddle 

point. 

Let T1 , T2 , T3 be open transverse intervals with T3 ~ '1:2 -

Let p < q be points of T1 and suppose that every leaf 

cutting (p, q) subsequently cuts ~13. 

Then: 

either (i) The non-singular leaf or separatrix through 

p subsequently cuts T2 (see figure 7.0(i)). 



OI' (ii) p lies on an Ll.i:!al"'(~ s8:;)aratrix that never 

subsequently cuts T2 - There is an O-Gt,,'rarcl separatl"'iz in 

the same leaf which cuts T2 ,as in figure 7.0(ii). 
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rr 
\, 

.. ~ 

( . "\ 
l) 

0'1 

Ir-

""'I q 

1 
D ql 

(ii) 

Ij1 -2 

'~'l'"''''''Of' ;';~Yooc.·e 0 1 "" 'L'l - .... v ~. '...1_.. "'-ol, .... ~ • 1 1;;ith :.p <' q I < q and a transverse vector 

field x; containing T1 & T2 in trajectories. 

i,)Uppose that the non-sin~Lllar leaf or out\.vard. sen8.rctl"lix 

through C1 I cuts '::r,=or the 
c::. 

first time after passin; 

throush q 1 , at C'J, 

C~oose a p8.r2.:::l,,:'-:-·:':.:::"~tion "(t) of the portion of this leaf 

betwee::l Q I 2112.. ~~ 1 ':;3T the unit intol"'val [0,1] 

holonorJ.Y ., ..... _ ... - ..... 
.:- ::;~~_. __ ·:.t then d.termines 

...... 
r (1.J.. 

d v -map 

, . (0,1] x (p,ql)--~;>n 
G 

such that (i) dC t, q I) = "yet) 

(ii) H(O,x) = x e T1 

(iii) H(1 ,x) € f1'3 ST
2 

(iv) For each point x of (p,ql] the set 

H( (0,11 X {xl) is a single sogment of leaf. 
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Let K = H([O,11 x (9,Q']) be the image of H,as in figure 

7.0 • 

. Jupyose that tho lemma is false. 

If D lies 02.1. a non-singular leaf or out\'lard separatrix 

then 1 never subsequently cuts 11 2-

If P lies on an im·mrd separatrix, there is an out'!.vard 

separatrix 1 lying in the same leaf as P2 "'Thich never 

cuts T2 as in figure 

T 2 

7 .·~-. L. 

p q' q 

In either case i __ ~ is clear that w(l) S K. 

1 

Let m be a non-~~:i:r:.~:ular leaf or out\'JD.rcl separatrix in WCl). 

By lemma 7.1.1 we can assume mil. 

If m meets K it cut3 (p,q'l. 

Ho\'l m cannot cut (1::"),q') since then msw(l) \'Tould imply 

that 1 cuts (p, q' ) infinitely many times. 

By lemma 7.1.1 w(l) is 12.rge enough that '\,ve may in fact 

assume that m does not meet K and hence,in particular, 

Cp,q'J. 

Let x em and let \;1 be a. transverse interval at x. 

Wi thout loss of generality, shrinking T1 D:. T2 if necessary, 
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is contained in a distinguish~d chart at x which does 

~ie may al.so assume that 1 limits on x fran the right. 

,:='ince noints of 1 meets VI 

between each pair of points of intersection of 1 with W. 

;':;ince He I.i1ay then assume t~lat the risht hand end of W 

is in the complement of K and since also ~l does not meet 

rl~l 1 1 2' v, meets every segment in K betvlsen fu"'ly pair of 

point;.:; of intersection of 1 '.'ii th li. 

ILenc.:;; each segment of K contains a sequence of points 

i'Ii til limit x .. 

,But clcarl;y 8,1131 such limit l)oint :.:1).~~ 17 lie on a segment 

fCl1is contradicts RCl18 fact that; :r:1 rloes not me:::t rr 
l\. and 

nence prove2 the lem~a. 

Lemma 7.1 .. 2: I.Jet a and S1'."'" sk~ be 

ancl let .n == c.v(s1) tJ ••• U w(s'r ) • 

3.S in lemma 7 .. '1 .. 1 

',- ,-, +­
J,J':,. v 

.n..tJ 
~I be a transverse interval 

transvc::rr3e in'cc:c'val ':lith T 5 ;1" .. 

and let ~ be an open 

':;:'11en any leaf me·ats T only fini tel:,- l~l2.ny times .. 

I'roof: ,;ul');,)ose ".:;hat ~~I = (-1,1) and II == (a,b) where 

-1 < 2. < b < 1 ,as in figure 7 .. 1 .. 

oi' 

r,et P1 < ..... < Po. denote the points at lihich those im'Tard 

:.:; epEtr2,'crices which cross (a, b) cross it for the last time. 

~uppose that there is a leaf m 1'lnieh +-' ) euus (p.,p. 1 at a 
l-l+ 

?~. 
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'0 

1()3 

a 

and which then roturns to (a,b) at a point m1 -

Then every leaf nea::r' In returns to (a, b) _ In fact since o 

no leaf cutting (D. ,D. 1)\ runs into a se-_paratrix before 
\- 1 ·1+ 

cutting (p . ,D. 1) a~ain lemma ~.1.~ 1 -1+ 0 -

llo\'! parametrise the segment of m from mo to m1 by mt 

(t 6 [0,1]) and choose a transverse vector field x~ ,.,rhich 

has T as part of a trajectory. 

'J:hen the holonomy lemma provides a map 

H : [ 0 ,1] x (p. ,p. 1) )0 ~'I 
1 1+ g 

s1.).ch that: 

(i) II(O,x) == x , 

(ii) H(t,mo ) = fit ' 



(iii) H(t,x) lies in a leaf 0hich depends only on x , 

(i v) each segment HC [0,1) x {xl) :neets (a, b) only at 

~i(O,J::) =: x and HC1,x) • 

Let Hi be the closure of the ioage of H (shaded in-figure 

7.1 ). 

If no leaf cuttin~ (,n.,u .. ~) cuts (a,b) again let H~ = 0. 
~ 1 "1-r- I .l.. 

Note also that since no leaf is closed either p = a or ·1 

no leaf cutting (c",p") C~lts (2., b) 8gain.The S3J"fl8 is true of b. 

Je have now shown that any leaf m which cuts Ca,b) 

infinitely wany tir::e8 re;nains perEl8.nently in Ii1 U ••• U Ed 

8.fter its first 

·.·.·)·l·n(',p ( "h"nn rl.~' n 1 h .'-}, +- ~- U un . -~ ,a,.'-I) =- 'f" 11gure '(. S 0"'13 v~lav li1 ••• nd 

;ne~:ts n only in that ~)aI't of the boundary of H1 U ••• UHcl 

which is made U~ fro~ seg:r:1ents of leaf. 

hence w(El)nn is the union of a finite number of sad·ile 

points and separ2trices and therefore meets ~ in a 

countable set. 

On the other hand by lemoa 7.1.1 (vi) there is an i such 

that w(s. )~w(m) = w(rn)n.Q. Thus by lemEla 7.1.1 (v) 
1 

<N(m)nU () T contains a perfect set \-ihich by a 'Hell-known 

theorem of Cantor must be uncountable. 

This is a contradiction. 

'Corollory: If 1 is any non-singular leaf or out\iJard 

separatrix of a then 



we 1) = we s . ) () ••• nw ( s . ) 
~1 ~e 

for some integers i. l' j ~ e 1 ~ i . ~ k':J • 
J J < 

I'roof: Pirst note that W(l)S W(s1)U ••• U w,-s, ) since 
.i(~ 

if m is a leaf in wCl)\ (we S1 ) U ••• U <.u(sk )) by considering 
3 

W::m) 1I'1e can find a transverse interval T about ill satisfying 

the hypotheses of the lemma. Then since m£~l) 1 cuts T 

infinitely many times contradicting the lemma. 

1.,'urther, the choice of the sets w(si) shows that if WCl) 

meets w(si) for sase i then either w(si) is cont'ained in 

each of these lie;:) in so:,w Get wes -i) which is contained 
t! 

in w(l). 

~his completes the uroo! of the corollary. 

Lemma 7.1.3: Let ~ ; s,.,I' •••• ' S1~ be as in lemma 7.1.1 
J.'\.~ 

and let n = w (s1 ) U ••• Uw( s" ) • 
J\.~ 

Let T' be a transverse interval and T an open transverse 

interval 1;/i th T!: r:.;.~' whose endpoints are in.n but "'hich 

does not neet n . 
Suppose that there is a non-singular leaf or outward 

separatrix whic[2. cuts T at distinct points rna ,m1 • 

'l'hen there is a point of T between rna and m1 lying on an 

inward separatrix. 

Proof: We prove the result by supposing that some non-

singular leaf or outward separatrix m cuts T at points 

mo ,m1 between 1:Jhich no point lies on an inward separatrix. 
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We shoH that this implies that :r.J. cuts T infinitely many 

times,contradictinG the conclusion of lemma 7.1.2. 

Let T = (a,b) and suppose that rno < 8 1 • 

GuP:tlose that m cuts T first at IJ
O 

and then at ill1 -

.tS in figure 7.2 every leaf near rno cutting (mo ,ill1 ) returns 

to (a,b) in the interval (m1 ,b) • 

.since ill n.n = ¢ , a&be,Q and there are no invl8.rd separatr­

ices cutting (~o,m1),every leaf cutting (mo ,m1 ) returns 

to (a,b) at a ~~~~~ of (~ b) bv le~-c ry 1 1 ~)v..L.l..J. v 11~1 ' f..,' Lll·L .. ·.. r· • 2-

j3;y continui tJT and. the fact that In nn == r:p ,Tn cuts T' for a 

third time at a point m2 as in figure 7.2. 

The hypotheses of the lemma show that we can repeat this 

argument for (m1 ,m2 ). Thus we obtain a sequence of distinct 

points iD·l . , 0 of :r.J. n Iii contradicting le:nma 7.1.2. 
J: l~ 
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Lemma 7.1.4: Let~; s1, ••• ,sk~ be as in lemma 7.1.1 and 

1 t () "'C-" \ U U"""r, \ e - ... = '-4J ':>1) • .. .. ""I.. '~lcl) . 

l,et 1 be any non-si::Jc;ular leE.~f or outward se)aratrix 

wh:lch does not lie in n .. 
Para~etrise 1 by It • 

Then there is a real number to,a closed transverse interval 

I at It whose endpoints are in distinct leaves ffi1 ,m2 of 
o 

w(si) for some i & whose interior is in the c6mplement of 

w(s1)U .... Uw(sk ) and a diffeomorphism 
~ 

T~; 

n [t ,00»)( I ---+l' 1'-1 
o g 

vvith the properties: 

(i) 

(1' l' ')1 FC+- 1 '\ - 1 
~.' .. v, t ) _. -'- t ' 

o 
(iii) ~(t,x) lies in a single leaf for x fixed 

(i v) }It: I --~) Btl is a cliffeon1orphism of I onto a 

transverse interval about It with the same properties as I. 

Proof: Let p e.w(l) bt-; a non-sincul8.r~)oin-c a~l.d let 

T = (-1,1) be a transverse interval at p (vvith p corres-

ponding to 0). 

Without loss of generality we can assume that there is a 

secJUence of :tJoints of (0,1)ti T on 1 tending to p as t~ao. 

~e shall construct inductively a sequence of distinct 

intervals In = (an' bn ) ~ '11 tending to p from the right 

\-;ith an,onEn (an ,bn )n..Q=9'> and (an,bn ) meeting 1, 

as follows (see figure 7.3). 



Je take 10 to be any interval with t~2 properties just 

mentionecl 'vlhich contains a point of 1. 

~uppose that In has been chosen. 

I L , , 

'6" cp" 

.. \. 
...... , ~ 

'\ 

c" 

1i'l' a' 7 Lt - o. • r-

, , I n+1 
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By lemma 7.1.2 only finitely many points of (a ,b ) lie n n 

on il1vJard separatrices. 'i1hus we may choose points c d - n' n 
of (,:, b 'i 

,c.n , n / with the following properties: 

(i) 1 cuts (an,bn ) for the last time in (cn,dn ) at a 

point In 

(ii) no point of (cn,dn ) lies on an im·rard. separatrix 

(iii) either cn = 2'n or cn lies on an in"'lard. separatrix 

, 

(iv) either d - b or d lies on an invrard separatrix. n 11 n 

Note that by lemma 7.1.3 c and d lie on distinct n n 

se~~a:rcltrices • 

, 

lies let p be the saddle --n 

point that this separatrix runs into. .3imilarly a is the n 

saddle point corres~onding to bn • 

Eote that if p and. a both n -n exist then by the choice of 

c n g~ d n and lemma 7.1.3, Pn .; qn· 

If cn lies on an inHard separatrix let -en be that outward 

separatrix at Pn near Nhich there are leaves that emanate 

from (cn,dn ) &S shown in figure 7.4. If cn does not lie 

on an inv"ard separatrix, so that cn = a ,we let 6 be the 
n n 

leaf through a • :;imilarl-r choose Cb corresponding to d n· u rn n 

as shoNn in figure 7.4. 

i1'h8n He can choose I to have the follOi.'ling properties: 
n+1 

(i) 0 < an 1 < b 1 < a < b < 1 since 1 tends to p from the + n+ n n 



right 
.... " 

f 1 1 ' \~-) 

f l" l-" ~ \ \, _J.. ) 

-(iv) 

(v) 

and (cn,dn ) contains no inward separatrices , 

I nn = )6 
n"+1 

an+'l ' bn +/l en 
e and (D cut I -1 ' n Tn n+ 

If en or ~n cuts In "it cuts In+1 after it has cut In-

By the holonomy lemma and the fact that no inward 

separatrix cuts (cn,dn ) every leaf cutting (cn,dn ) 

subsequently cuts I 1 and cuts it for the last time in n+ 
an interval whose enipoints lie on e &:, m 

n Tn and v.Jhic~l is 

contained in (c -1 ,d-) ,as in figurG ?L~_ n+, n+1 

,.'e shovi that for sufficie:ntly large n a = - c ,b = d . n n n n 

and a & b lie on a non-sin~ular leaf or outward n n 

Let K be the numbe~ n 

outward separatrix. 

" -j-> 
u"~ 

From figure 7.4 we see 

points in (c ,d ) lying on an n n 

that K 1 ~ K and K 1 = n+ n n+ 
1 " f . d ' r, b b 1-1 1" t' on y l an =cn ' on = en ana anG~ n O'v 1 le on an ou wara 

separatrix or non-singular leaf. 

If Kn increases without limit it follows from the fact 

that there are only finitely many separatrices and lemma 

7.1.2 that for sufficiently large n there are two points 

of (cn,dn ) lying on the same outvlard separatrix. 

Since no point of (c ,d ) lies on an inward separatrix n n 
this contradicts lemma 7.1.3 • 
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Hence there is an integer N such that n ~ N implies that 

a = c b = dn and a [.J) lie 011 a non-singular leaf n n' n 1'1 n 

or outward separatrix. 

li'urther for n ~ N no non-singular leaf or sep?-ratrix cuts 

Can,bn ] more than once by lemma 7.1.3, the fact that no 

point of (a , b 1 lies on an in':rard separatrix and the , n n ' 

fact that no leaf in n is isolated. 

EOl:r let I = IN • 

Let 1 cut If at It 
, 0 

Then the holono~y construction with respect to a fixed 

transverse vector field in which l is part of a trajectory 

Gives a diffeomorphism 

Ii n 

1'01'" each n)/ 0 s'1).ch that: 

H (t ,x) = x , n n 

Hn(t,lt ) = It 
n 

(i) 

eii) 

(iii) Hn (t, x) lies on a leaf ,(-Thich depends only on 'x. 

of F is --n 

trajectory of 
transverse flow 

shoi,tm in figure 7.5. 

I·H~.:ac.) I~ 

~ ~ ~ 

'-., 
Fig. 7.5 
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Let h. 
1 

ra1l~' b"r] --~~ [a1- ., b>-. . J be defined inductively L H J." ~+l 11+1 

by: ho ex) =: x 

, C" !- (t he' , ni~~1 X) :::: .lii i+1' i X)) 

that h·el ) =: lot;. 
1 to 1 

Note 

Then the required diffeomorphism 

is given by 

H : [ to ,00) x I ---~') 1'1 --g 

H(t,x) =: H (t,h ex») 
11 n 

--

t6 [t ,t -1]. n n+ 
iie have alreadJT reIilarked that the end-ooini:;s of I lie on' 

distinct leaves and by construction th8SC lie ina. 

The only non-obvious point remaininc to ~e checked is 

set ~si)· 

liL ... c:: 

w;: m1 ) == we s. ) 
11 

and W(IlL .... ) =: c.v( S_. ) for some integers 
c: 12 

i1 t" i 2 , however it is eas~jT to see that any non-singular 

leaf or outward separatrix meetins the image of U has' the 

same ~-limit set as m1 or ill2 • Hence i1 = i 2-

Since m.Ew(s.) tr-... is completes the proof. 
,1 1. 

J 

Pro')osi tion 7.1.:5 : Let ~ be a Cr (r ~ 2) j-Iorse foliation 

"\"Ti th no closed leaf ,no leaf containing more than one sad~ile 

point and no holonomy on 1"1 ,the oriented 2-manifold of 
g 

genus z;. 
Let s1, ••• ,sk~ be outward separatrices as in lemma 7.1.1. 

Then the ~-limit set of any non-singular leaf or outward 

separa.triz is one of the sets wes.). 
1 



,similarly inward separatrices t1, ••• ,tk~ can be chosen 

satisfying analogous properties to those of s"" ••• ,sk 
I ~ 

tIence in particular the O(-liui t set of an;y non-singular 

leaf or imvard separatrix is one of the sets w(Si). 

Proof: Let 1 be any non-singular leaf or outi'Tard separatrix. 

If lSw(si) for SOfi:e i then w(l) = w(si) by 7.1.1 (vi). 

OtheI'ldise 1 $ ~(s1)U ••• uu.x:sk~) and lemma 7.1_4 gives 

a whole strip of leaves about 1 bounded by leaves m
1 

and 

m2 lying in w( si) 

weI) = w(si). 

for some i. Hence in this case too 

r-1' .Lne G:xistence ~(~~-['~~~l'ce0 t t satl'sf~~n~ ..,.,yc~.c. .. I> .•. ,0 1' ..• ' e . J-'- 0 

~ 
analogous properties to those of s1' ••• 'Sk~ is obvious by 

reverEing tlT"o.e. 

It remains to show t~at e1 = k1 and that w(si) 

after reordering. 

= "'(t.) 
l 

Now for each i c((t i ) meets each transverse interval in a 

perfect set. Ee:lc2 0(.( t.) contains a non-singular leaf 1. 
l 

By minimali ty w(l) S o{( t i ) = c<.(l) .. 

NOir] there is an integer ,j i \1i th cu(l) 

v.(s. )SO((t.). 
Ji J. 

= ~s. ) hence 
Ji 

neve~sing time the same argument also shows that every set 

w( si) contains some set 0( (t f. ). 
l 

The result then follows fro3 the minimality of these sets. 

Corollory: If ~ satisfies the hypotheses of the proposition 

and some leaf of ~ is dense then every leaf is dense. 

Proof: Immediate from the proposition. 



I'. similar result for a general flow on a 2-manifold can 

be found in [30] under the additional hypothesis that the 

W-limi t sets meet the non-singular.' manifold. in a COiIl oact 

set, a condition 1,-Thich is never met in our case. 

7. 2 J~ransi.Terse circles and the bouno. k-a ~ g. 

Consider a ~orse foliation ~ of class Or (r >2) with no 

holonomy,no closed leaf and no leaf containing more than 

one saJ118 point on the o~iented 2-manifold H~ of genus g. 
b 

:Get s1' ••• ' ska l')e 

le:Jma 7.1.1. lea 

ti:::.e 

is E:. 

out~ard sepRr~trices defined in 

-- '- -i ,;, -(>l- '" -n"- 0 f ~ ._ .... .1 \ '.-... _ c ... _ v _::J • 

It follo~2 from the results in [1j] (where 2B-1 is 

nis-rJrinted for g) or [231 that k ~~ g. VJe can see this as 

fol101::s. 

Choose p e s1 a non-singular point and T a transverse 

interval at p w~ich does not meet the closed set 

we s 2 ) U •••• U W'~ .s 1 ) • 

K'I 
Now s1 meets T as~in at subseauent time at a point q. 

As usual in foliations theory by taking a small strip of 

segments about the segment of s1 fran p to' q '!;IS can 

construct a transverse circle ..'\"'1 meetin3 only leaves 

\.;Thich cross the interval (p,q) of T as in fic;ure 7.6. 
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~y a similar method,taking the strip sufficiently small, 

can then construct inducti7el~ transverse circles A. 
l 

'1 , i ~ k~ such tt:.at .;'ci n Aj == q> ifj and such that every 

non-sinsular leaf or separatrix in WC s i ) cuts 1'-1 

infinitely Dqny times. 

IToVl let 1
1
, ~ CAl(S.: > be a non-singular leaf and suppose that _ .l.. 

at successive times t ,t1 at points p ,UA1 and o .. - 0 ~ 

at no time t 1'Ii'0h to <. t <t1 • 

By the holonom;y lelllrna there is a strip of segments 

containing the segment of li from Po to P1 in its· interior 

and in which each segment cuts A. exactly twice 
l 

once at 

each end. By the choice of the Ai we may choose this strip 

so small that no segment in it meets any other transverse 

circle 1\ ."l.j. 
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Using this strip we may then construct a second transverse 

circle Bi 1tlhich does not cut any other circle A. j Ii and _ J 

cuts A. transversely exactly once,as in figure 7.7. 
~ 

Choosing B~ inductively we can assume that B.nB. = 0 i/j. 
..... ~ J 

A' , 

Fig. 7.7 

Then orienting the transverse circles so that the pairs 

(tangent to circle, tangent to ~ ) lie in the orientation 

of Mg , the homology classes [Ai] , (Bi] (see 

[AJ • (Bj] = - iij 

[Ai) • [Aj] == [BJ. [Bj] = 0'. 

It follows that the classes [A1] , ••• ,[Ak~ 

are linearly indepenclent in H1 UIg' ZZ;). 

Hence 2k,,! ~ climHi (JIg, n) =2g. 

2.2) satisfy: 

and 
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The definition of these classes was somei'Jhat arbitrary. 

However in certain cases at least, 'vie shall see in chapter 

8 that it is possible to define k~ classes in H1 (Mg ,m) 

which in some sense carryall the information of the 

possible classes [Ai] and' [BJ. In order to do this we 

need to study the point of first return function and this 

is defined below. 

7.3.1 The point of first return function. 

Let "a be c, horse foliation on i'l,,. l'li tn no holonony,no 
G 

closed leaf and no leaf containinG more than one saddle 

point. 

Let Ii.. be a transverse circle containing no saddle point. 

Orient A so that the pairs (tangent to A,tangent to! ) 

lie in tho orientation of M • Let P1' ..• 'P be tbe last g n 

points at 1:Jhic~.l the im':ard separatrices of ~ cut A,in 

order around c!'. 

It follows fro~ the holonomy le~ma that if some leaf 

cutting (Pi'Pi'~~) returns to A then so does every leaf 

,'!hich moets (Pi' Pi+1) (He identify P1 & Pn+1)· 

Let i 1 , ••• ,iu be those i for which every leaf in (p p ) i' i+1 
returns to A. 



Then there is a flli~ction 
u 
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f: ~ (Pi. ,Pi .+1) ----~)A 
,] = I J J 

defined by taking for x e(p. ,po 1) f(x) to be the point 
1. 1.+ 

J J 
of A at which the leaf through x next cuts A. 

f is called the point of f'irst return function. 

I~)imilarly we have the point of previous return function. 

Lemma 7.3.2:Let ~ be a C
r (r~2) Norse foliation on the 

oriented 2-manifold n~ of genus g as in 7.3.1. 
o 

J~et A be a transverse circle to ~, EmCL f the point of 

first :cet"Ll.rn function on A. 'rhen: 

(ii) 1 · s ( \ 1m .. D f x) '" and lim D~f(x) 
X-tD:" 

-1 

defined on (Pi,Pi+1). 

-v --><0."") .A--,·, 1 -1+ 

s ~ r e xi s t iff is 

(iii) There is a real number IJ > 0 such that IDf (x)1 ~ L 

for all x £ do:nf. 

Proof: Away froD a saddle point the overlap maps are of' 

the form 

and so f is locally the composition of a finite number of 

h2 '6. This proves part (i). 

Now the holonomy past a saddle point is essentially the 

identity map.Henc~ f extends to a diffeomorphism in a 

neighbourhood of an endpoint of any interval in the 

domain of f. 

This observation proves parts (ii) and (iii). 
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Chaoter 8. ~':easure and Holonomy. 

In chapter 7 ~e considered the elementary properties of 

horse foliations with no holo!lomy and no closed leaf. 

However that chapter left unanswered a number of questions 

of a general nature: 

1) Is it true (in the notation of 7.2) that k~ = 1 

if & only if every leaf is dense ? 

I'tore generally: 

2) T ~ l' +- +- -.~. 'P .1-.1_ 0:0 -:- W' 1 ., 
~.::o v u"'- l.',~ l",'",-,-v \,_) 

AI "1' n '-..... ,, __ ) Ior a non-Slne;U.Lar 

1 n 1 '~", 1 '.t:' 1 c: ",( 1 \ 'I _e3..i lI,e orl~.' l.L -"""\_) 

3) Is it t~ue tbat th2 asy~)~otic cycle of a leaf 1, 

as definec. fo::' ,')zE.iJ'0le in [32] de.pends only on wCl) ? 

~n the remainder of this thesis we propose first to givo 

solutions to all t::'ese questions although in a restricted 

sense. If we nla89 ~~ additional restriction on our 

110rse foliatio~~ ~~ turns out that the first question is 

inappropriate ~~- that the second and third Questions 

can be answere~ ~= the affirmative. ~e then apply these 

results to 2-,.~~~~01ds of genus 2. The resulting analysis 

gives a methoQ for constructing a large number of ex~~ples 

of Morse foliations without holonomy or a closed leaf on 

2-manifolds of genus two or higher. Other research workers 

looked for such examples without success so that our 

examples are the first of their kind. 
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.D8fini tion 8. "1.1: ]~et::3 be J. I·Iori:3e foliation on Ill,..., the 
(:) 

oriented 2-manifold of genus g, 1:.ri th no holonomy,no closed 

leaf and no leaf containing 20~e than one s~ddle point. 

Then ~ has order preserving holonouy if the ooint of first 

r.\.:;turn function f on any transverse circle .I~ is orier 

preserving. In other words if a,b are distinct points in 

the domain of f and A has been given an orientation then: 

f( [a, bJ n domf) = (f(a) ,feb)] n imf 0 

This condition is automatically s2tisfied if~ has no 

singular points since then the ciomain of ~ is the i'Thole 

of h and as ~ is tra~sversely oriented f is orientation 

)J::'e:3erving .. On the other hanclcne condition is also ~ligllly 

restrictive: 

Leml7la 8.1.2: J~et 3 be 2. (r ~ 2) norse foliation 0'0 

the or'iented 2-1:18..:'1i£016_ of Genus f:S, with no reolonomy, no 

closed leaf a::.c~ ~.~) L7;af containin:-:; i'l.ore than one sadci,le 

point. 

fI1hen k~ .- 'I -: '.:13 order prese:;:ving holonooy if &. only 

if r:r' u = 1 .. 

'c:;:·an3v:::r'se circle j~ which meets the set 

and let f be the point of 

first return f~~ction on A. 

k~ = 1 so tjF~.t :LS the unique c..>-lir::i t 

set for ~ .. 



Then every leaf cuts A infinitely many times. 

~ince every point of A which is not the last point of 

intersection of an inward separatrix with A lies on a 

leaf which returns to A,the domain of f is of fo~m: 

(a1 ' a2 ) U (a2 , a3) U ...•. U (a4g_4 ' a1 ) • 

If f has order preserving holonomy f has range 

(b1 ,br)) U(b2 ,b-;JU'" "U(b4 ."b1 ) 
~ ~ g-~ 

vIllere f ( a· ,a. 1) = (b., b. _,). 
1 1+ 1 1+1 

This implies that f extends to a continuous fu~ction 

defined on 0.11 of cl.. 

f is order prese~ving f Dust t~ C~3continuous at 

.p.' ,~ "r~ .;-:. 1" ..ll(::,U_ e .. , •. ). 

:Fig. 8.1 

b. ? 
1 

A 

Conversely if g = 1 calculation of the Euler characteristic 

ShoviS that ~ has no singular points and it is then clear 
that ~ has order preserving holonomy. 
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IJroDosi tion £.<:.1.3: Let 'a be a Cr (r ~ 2) :rvrorse foliation on 

i~~,the oriented 2-manifold of genus g,with no holonomy, 
(':, 

no closed leaf and no leaf containing more than one sadd.le 

point. 

0uppose that '0 has order preserving holonomy. 

CL'hen if 1 is a non-singular leaf of ~ • 

w( 1) = 0( ( 1 ) <==> 1 5 ~ 1 ) • 

2roof: Clearly lSW(l)~l) == 0((1) by '1.1.1 (vi) • 

. ;e prove the other implication by contradiction. 

In the notation of 7.1.1 and 7.1.5,su]pose that thore is 

':1 nO"l-si nc'''ul'''''' j c,af'.l- \\fl' +'1 ".(1 '~ = "'(1 )'\ b""- 1 ~ cdl .) 
G. -. L ---~ u.L...L. ~ ~ 0 v. "",,\.L 0 -' ""\ - 0 ' l..t 'J 0 T \ 0 " • 

circle rl.' . as in secti on ';.2 vll1icr.J. intersects le.s.ves in 
1 

w( 3 .) if &:. only if i = j • 
.] 

,,:e consiuer the point of first return function f on )'i 2..n·.:]. 

obtain a cont~a~iction using a method analogous to that 

of <5iegel [33J .. 

Give Ai an orie~:~~ion. 

It follo'.1 s fro~.~ ~.::::::na 7.1 • Ii· applied for both positive and 

(xo'yo) (xo g: j10 are not [;enerall;y in t.IJ(si») aboutpo in 

Ai meetinG only non-singular leaves whose Go) and ot-limi t 

set is ~(si) but which do not lie in wesi). 

l?urther the interv2.1 (xo ' Yo) can be chosen so small that 
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it satisfies: 

n d ~m .onn. • 
mE:;Z 

b) The trQnsverse intervals f mc ) xo'Yo are mutually 

disjoint. Il'his can be achieved if (x ,y ) is o 0 
sufficiently 

small since 10 is not clos~d and if 1m' is large the 

intervals fm(xo'yo) are automatically disjoint by lemma 

7.1.4. 

c) Lemma 7.1.4 implies that for sufficiently large n 

there are intervals (u ,v ) and lu ,v ) in A. with 
n n -n -n l 

endpoints in W(~i) such that: 

(i) 

(iii) 

dis,joint , 

(iv) 

disjoint 

n ~ fm o.om_ 
]:1 ~ 0 

= (um+n'vn +m) 

(u v ) Co -n' -n - n domf-1J and 
m~O 

f-m(u ,v ) = (u v ) 
-n -n -m-n' -m-n ' 

the int'2rvals fm(u ,v) m~O are mutuall:;,'" 
n n 

the i:::':s:c'vals f-m(u ,v ) m~O are mutually -n -n 

(v) eve::'-- ~_,~int in (un' vn ) lies on a non-singular 

leaf or outV!e.:::·-;. ':::::;Daratrix 1 1;'Jith wCl) = W(si) and. e""'.rer;l 

point in (u ..... ,"";7 _,) lies on a non-singular leaf or im·Jard 
-.L.L -: . ..1. 

separatrix 1 T,!iGD 0«1) = w(si) by the assumption on welo) 

and le~ma 7.1.4. 
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F'ix q large enough for the intervals (uq,Vq ) a.."'1Q (u_Q.'v_q ) 

to be defined. 

IJet g = f o. and gD(xo'YO) = (xm,Y
Q

) m e a~. 

Then: (i) The intervals (x y) ill E: ~ . are mutually m' m -
disjoint and contained in 

r"I Tl 
I I domg - , 
ne.~ 

(ii) (xm,Ym) ~ (uqm,Vqm ) if m/O. 

(iii )1Ae leave the reader to check that W(si) n Ai 

is the accumulation set of { DC ,') g x ... : [1~ 03 if x € n domgm 

m ~O 

2_11d of {gm (y) r1 ~ 01 if 3i € n cloITlg m 
: . 

1J ~ c) 

11 > a such that either all the in'l:;ervC',ls (x 1~' y_~ 1-) or 2.11 
- .. ':\.. 1.1-.::)'" 

the intervals (x_ 1" Y JJ k :.' '1, ••• , n a:c'e eli,::; joint 0 

il-A - '.. 

11:his condition means that if 1;·,e choose a point I\n. in 

( y -Y) for eac-'~ Y'l l·"l' tll r- ~ n .__ , __ t.. __ d -.;; _ 

ill m then in t~~e orderins of the 

points Pm on J.i :;')I1-~<:: either 2-.0pears immediately 9.i'ter :;:>-k 

for all k (1 ~ ~,: ~~l) or immediatel;y before P-k for all k 

( . '\ 
"'/ 

intervsl 

Condi tion (ii: ::.:::.:,--;,.?diatel v above ,ShOHS that u lies in 
oJ qmo 

the interval (xo ' x1110 ). The fact that u
qmo 

is in W(Si) 

and condition (iii) immediately above shows that there is 

an integer h' with I h'l > Nand xh' € (xo,xm ). 
o 

Let h be an integer wi tIl I hi > T·; , xh e (xo ,xm ) a.."'1d 'h ( 
o 
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minimal ( if hand -h satisfy this criterion choose h if 

Xl is nearest X and -h otherwise) • 
.Ll 0 

1. claim that if h > 0 all the intervals (x_k,;Y lh\ -1;:) 

k = 1, ••• , I hi are disj oint and if h <'0 all the intervals 

(Xthl-k'Y_k) k - 1, ••• ,lhl are disjoint. 

If h '> 0 and the claim is false there QJ.:e integers Y.:1 ' :;':2 

1.'Tith 1 ~k1/k2 ~ lhl and x k e. (x k 'Ylh' 1~ ). Then 
" -,. 2 - 1 -":'-1 

x k k e (x ,-:Ih) (this the only p1ace that ~'Ie uee the 
1- 2 0_ 

that f and hence g is order preserving) and so 

contradicting 1 ~ k] ~ ''cl and k2 ~1. 

J·","_'P h <. ("I; a" "nd i~'D",e clc"'l" -.'.,0 -i,e.,: f,",llsa,. t·_i., ~" •. r:''-.' ~""e -i Yl+'· ~''.>"''''' 1- > "'" "'" ~ ... ......... ' ....... - _ .... ~ __ , C":.J4- --....!.. ... vC~.,:)cJ...-"'::;' .!.":."/i' .:.\_::: 

a contradiction. 

This proves (*). 

variation V. 

Let N be any ii~2~sr and n as in (*) above. 

',Chen if Sj = 

Hence 10C; 

lS~,o'-:Q of (x., y.) 
J J 

for some Y/jE (xo'Yo). 

.- log 1 

= log Dgn(g-Ucq_n)) 

Dgn(WZn) 

I ~ 



by (*) and the bounded v~riation of 10gDg. 
::> 

B t 1 · bO-u 1m· ~-- = +00 since the intervals (x., y.) 
J J n~oo SnS-n 

disjoint, ""lhich is a contradiction and hence proves the 

result. 

Definition e. 2: IJet ~ be a I'Iorse foliation on Ii • 
g 

A t "" . , ., . Transverse measure JA. on ~ aSSlcns "GO eactl ·cransve2.. .. se 

submanifold (o~en interval or circle) X,n Borel ~G2SUre 

IJ -T h' . . 
, ___ F on 1\ 1:J len J.S 

I\. 
finite on com,act sets. 

A transverse measure ~ is holonomy invariant if whenever 

K1 ,K2 are tranSVCTse submanifolds and the holonoh:Y ::a"O 

is defined ·s~:e:~ 

= }AIr (h(A)) 
\.2 

lilhere .:\.. S L/j i:'": : .. ~ f'tK1 measurable set. 

\;8 shall deno".: --~~ '"_8h measure jJt,. by fA • 
l~ 

.A point p lie. :'_~,-:he SUDDort of a holonomy invar'iar:t 

transverse meas~_lre}-'l if for each transverse suboanifold 

Ie containing p, JA(K) ) C. 

The support of a holonomy invariant transverse ueasure 

is a union of non-sinGular leaves and separatrices. _~y 
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point in the point set boundary of the support of such a 

measure ~ is arsaddle point in the w or ~ limit set of a 

separatrix in the support of ~ • 

Lemma 8.3: Let ~ be a Or (r ~ 2) Morse foliation on Mg , the 

oriented 2-manifold of genus g,with no holonomy,no closed 

leRf'and no leaf containing more than one saddle point. 

Then for every non-singular leaf or outward separatrix 1, 

there exists a holonomy invariant transverse measurep on 

~ whose support has closure equal to w(l). 

Proof: Let s1' ••• ' sk be outward separatrices whose w-limi t 
~ 

sets form the entire collection ofw-limit sets of leaves 

of ~ as described in 7.1.1 and 7.1.5. 

Let A1 , ••• ,Ak be transverse circles such that 
'iJ 

A'('A.=~ 
~ J 

if i -I j 

A.nw(s.) -I ~ 
~ J 

if & only if i = j 

as described in 7.2. 

Without loss of generelity w(l) = C-](s1) and in 

order to define the required transverse measure f4, it is 

clearly sufficient to define measures on A1 , ••• ,Ak which , 
are invariant under the point of first return functions on 

each of these circles. 

~je take fA = 0 on 

:B'or each point p 

. 

we shall define a measure tAp 

.~ 

• 

on A1 which is invariant under th~ point of first return function. 

To do this we define a linear functionalA p on O(A1 ) (the 

continuous real valued functions on A1 ) as follows. 



A1 is a comn2ct cebric space. 

A standard application of the Stone-Weirstrass theorem 

then implies that C(A1 ) is separable. 

Let ~1' ••• ,Cfn '··· be a countable cie.'1.se subset of CCi1 ). 

Eor each positive integer n choose a sequence frn,mlm ~1 

of positive integers such that 

r -1 
lim 1 ~m . 
rn~O() r ~ <P(fl(p)) 

n,m i~.::O 

exists. 

fl\nen civen <p e C C~) 1.-'7e let 

lirIl 
n~co 

,.., 
I 

r n,n 

'The ?:.iesz representation theorem then gives a measure ft p 

on A1 • This if] the l.mi!:iue positive measure satisfyinG 

I\p (~) = l'1'Pdf'p · 

Clearl~; fJ.p has su~).oort Ggu:~"l to w(l) n ":'~1 and one can 

I"J"e shall see b<-;lo~'J in Pl"'opositioJ.1 [).l~ that if t11e 

holono:):t :nap i= o}.:der Il:L'8SeI.'ving then 'chs measu:re given 

by lenu::l3. 2.3 lS u':lique u~) to multiplication by a positive 

real nU:ilber. 

It then follows that in this case 

I\p(rp) ::-: lim 1 
- n~oo n 

is well defined for all points p and indep8ndent of p. 

Hence the measure ~p is well defined for all points p. 
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I do not k..1l0W i'Thether l)rOposi tion C3404- is true in general. 

It may be that the recent example of a IInon-uniquely 

ersodic interval exchange tranSfOrE'lo.:~ionll civen in [40] 

will suggest a way of constructing a ~orse foliation with 

at least tVlO ergodic invariant measures which have the 

same support. 

HOloJever the recent paper [39] on interval exchange 

transformations does sugGest a Vlaj~ of proving that the 

number of ergodic measures is finite. 

The proof of this given in lemma 8. 14 .• 0 beloitl is closely 

Ii10delled on that of (39]. 

Defini tion n.L~ .. oo: ;\ holo~10r.1Y i2'.·'I?:::'i3.nt measure)-l is 

for any set .,~ i·Thieh is a l.J.:r~ion of nOTl-si:,'1cular 

leaves and separatric8c and an::r tr&nSVeI'se Gubmcmii'olr\ T.:: 

either f-4(X n T) := ,Mer) 

or ,M(XnT) = )2) 
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I'emma 8.'+.0: Let ~ be a Cr (r ~2) r";orse foliation on M_, 
o 

the oriented 2-manifold of genus g,with no holon02y,no 

closed leaf and no leaf containinf: !Jore than one sado,le 

point. 

Let CU be the w-limi t set of some leaf of ~ and let .-_ be 

a transverse circle meeting w but no other distinct liDit 

set. 

~et e be the minimum of the number of im'lard and the 

number of outward senaratricas WhOS8 limit set is w . 

20St 8 ~ 1 er~o(ic ;50rel Ele8.SU2:'SS ~ 

. ...iince 8V(~l'y separ8.-~:cix v,':lose limit set is not w meets ."l. 

only ;init~ly many ti~e8 we can assume that a separatrix 

meets ~" if and onl:.' if it has limit set w. 

Let K~, •••• ,Km ., iisjoint invariant sets in A with 
I u. ... 

(~r \ > " f;'\J-.) \.... 
1 

',.8 sl1O~'J tbat c_ ~:::i- 1 and this then iD')lies the result. 

For if ~1' •.•• ~~ are distinct ergodic measures,it follows 

from the ergodic theorem ([2]) that the:r.:e are invariant 

sets satisfying 

AA.(K.) == 1 i=j 
r'l J 

= 0 ilj 
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-1( ~ rrhen setting ~ = m fA1 + ...... + fA r:l ) Gives the required 

result. 

He first choose for each j (1-'j,m) an interval L. in 
J 

with ~(L.nK.) > '?-;JA(L j ) (*) 
J J 

~he existence of Lj is implied by the fact that ~ is a 

Borel measure and hence for some aDen set U. containing 
J 

U. is a countable disjoint union of onen intervc.ls 9.:rlCL 
J 

( " ') , ," 

for any subinterval L~ 

Let f be the poin~ of first return function on A. 

If e = 1 it is c:~~r that f is order preserving and the 

lemITla fo1101.'J8 f::::- ~:: .;;roposi tion 

A 

If e > 1 i'/-3 cal: ::: .. 'J:)se an open interval I = Ca, b) satisfying 

(i) Inn I:' • 

(ii) a and b . -.:m distinct im'rard Geparatrices .. 

(iii) a and b are the last Doints of intersection of the 

in~ard separatrices on yiliich they lie with the closed 

interval fa,b] .. 

(i v) '" (I) < S (si;~ce f4 l.:: 8. I-'ec.:';ular :':~orel I:leasure and a 

point l.'.as }A-measure 0) .. 



We can achieve these properties by initially choosing 

B.ny interval J Hi th J nn -I 0.:_;ince n contains an il1"12.:rd 

separatrix we can choose the last point of intersection 

of this separatrix with J to be one of the endpoints of ~. 

0ince e > 1 1;Ie can arJ~'ange ·for the other endpoint of I to 

be as stated. 

J:Jow let e + be the n1).:nher of im'rard separatrices meeting ~-_. 

let 

be the last points of intersection of each inward separatrix 

with the open interv~l (a,b). 

}Jior each j 

either 

2.nd 1tle 

I _ ('" -:\ '1 a u., ':"1 ' 

( ) 1 ~ J' < e -;-I J. = P,,;,P";'/oi ' u 0;-

T ( , \ 
-'--e+= Pe ·:-, t)) 

on I.,in which case 
,] 

I. nn = ;5 
J 

or f is c.::'::::'~-:e:l throughout I. and vIe let t. ) 0 t)e 
:: . t. J J 

minimal <iUC r' 7;' . ... .,' J (I . n <3 omf ,]) () T .( 0 ... .. - -- _.. - J - - 7 • 

liote the foll':;:'=-::i; properties: 

defi~sd throughout I. 
J 

for all t ~ t. since 
J 

otherwise for sor:le t ~ t j there is a point pe ft1j l:lhicn 

is the last point of intersection of an im"Jard separatrix 

with ~.lten f-t(p) e I j is the last point of intersection 

of this im1ard separatrix with I contradicting the defin-

ition of the intervals I
j

_ 



t. 
(2) f JI.S I. 

J t. 
3. or b lies in f JI." 

J 

:~e~,since a a~~ b were chosen to be the last points of 

intersection of inward sep~ratrices with the closed 
-t. -t. 

interval [a,bl ,this implies that f J a or f Jb eI. 
J 

is the last point of inte:csection of an im·.rard separatrix 

with I.This contradicts the definition of the intervals I .. 
J 

(3) Given a point p in.n vlhich does not li3 on 2, seps.ratrix 

there is an inteGer j (0 ~ j ~ e +) and an integer t (O~t<t.) 
J 

~ , ., ft-~ lor HDlcn p Eo' j --i. 
u 

1'J:2is follows fro~" pr02e:cc2T (i) of .!: since this id]lic8 

that we CRn CtOOS2 rr~ intcser E ~O to be ~inimal with 

,,-2. / 'I ~,-- iT]' f-S I. )e T .CO ." -'r ""0 •• l' P ~ _._,nS_T_. J: \. p) IW ..L" .'.nen (, p ... ..;.L Ol ,:0,);,,__ J lrnp_les ~ _. 
o J 

and the minimality of 3 implies 3 < t j" 

the set of points in.n ilhich lie on a 

separeJ.trix. 

. . . . . t +-1 J _. f' e 
~ '1~' ••• '- I, e eo • 

of .Q\6 by pairwise disjoint intervals 

of measure 1882 ~~~n S .(In fact we can replace 3 by a 

finite se.lc but; " ,. :10 not need this accuracy). 

This is imGed~~~~ from (3),the disjointness of the sets 

Note that~(cl) = 0 since J is countable and that the 

[{leasure of the cOlTI1")lement of..Q. is 0 by lerml1Cl 7.1 .. 4- and 



the fact that if tl:e iterates of any set under f e.re 

disjoint then their uniun must have Deasure 0 or infinity. 

It follows from (4) that since ~. is an interval there is 
J 

a finite union X. of intenvals in U such that 
J 

}~. 5: IJ. 
J J 

and /A(L.\ X .) < 2 'b • 
J J . 

Then by the choice of 'b 

~ .. ence 

• 

Jince the sets .l... ,j 3.re di.s,j oint (**) can hold for given 

I. for at ~03t one set v h. . -'-j. 
J 

For each j Ch0032 ~j such (~*) is satisfied. 

Ci.ihen til.e ;:129 ,~ll--.... ':Cj is injective. 

TOO' / T /" 
uence m ~ e + '. 

l~i.ppl;;Ting tl:e SE.':' -:: argument for the point of previous 

intersection f~_:,~;ion 8110-'18 that 

m ~ e + '1 as required. 

Corollory:Let ~ be as in the state~ent of the lemma. 

Let c..J( 8 1 ), .... .. ,CAl ( Sk~) b(~ the distinct non-trivial w-limi t 



sets of nOll-singular leave,'3 or OU-(;\'!G.l'(l sepal'atrices of 

~ as in section 7.1. 

Let 0i '::'e the :ninimurn of the ynmber of im'rard se':)=~ratrices 

Hi th c( -limit set w..s,) and ~he :mmber of out1,'lard. 
l 

separatrices vii th ~-limi t set ~(s. ). 
l 

Then,up to multiplication by positive scalars: 

1. The number of ergodic holonom;y il"lvariant transverse 

measures with support Cl..(s.) is at .8ost 8
l
. " .. 1. 

- - l 

2. The number of ergodic l10lono~'.1;Y invariant transverse 

measures is at r.:wst 4g - L:. + k~,. 

Proof:~Che results are im:J.ediate from the l.1roposition,the 

fact that the 3UppO~t of any ergodic neasure must be 

some 

as in section 7.2. 



In the followihg Drol)osi -:-;ion He ,)rove .J.- -'- of' ~ ella v l_ ;;J h2.S or·d.er 

preservins holonomy then [my holonomy invariant transverse 

men.sure \'Ii th support the,", -limi t set of a single leaf 

is ergodic. 

~he important property which is implied by the existence 

of order preserving holonomy is the following. 

Given C1n;:i transverse circle A 1tlhich meets a sin2;lc "'-li:ni t 

set in a set .n ,any point p of.n and any holonomy invariant 

trru1.3\-erSe measure; then J.i can be approximated as cl03el;)'" 

ar3 desired in measure b~y the disjoint union of iterate;:; 

i~terval contairrin: D. 

"' c. v,-· 

~'~c;' 'th:~ oriented 2-m2.I:.ifoLi, of C':;:rlU~:: Z, \'Ii th no holorlo:-:{, ~10 

closed leaf and no leaf containinc more than one saddle 

point. 

Then Givan any :_~~-3iDgular leaf or outward separatrii 

there is, :';,:;) tc . _~=- --::, ,)lication QJ positive real nU:Jbers, 

J:) ,:C()~:;:':-~_~)~l ?1.5 '0Te can 2,3snme w(l) == w(~;,;). 
j 

Let i~ be (1. trcl:"S7erse circle meeting w(si) if ~~'::. only if 

i -- 1 as in '7 ? 
I • ~ (or 8.3 above) and let f be the point of 

first; I 'p"--Ur '1 f'unC""j on 0'" ,:' ~ L ~.... _ _.. u_ ..I.. J.J.. .lt1. 
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The proyosi tiem is proved by shm1ling that any transverse 

measure ~ restricts to an ergodic measure on A1 (i.e. to 

a measure in which every invariant set has measure 0 or 

J.A(A1 )) and then applying the ergodic theorem ( see [21 ). 

Note first that by lemma 7.1.:4 any inte-rvai of A1 in the 

complement of cu( s1 )nA'1 has measure 0 and also. that any 

point of A1 has measure O. This is because if all the 

iterates of a set under f are disjoint then their union 

must have measure zero o~ infinity • 

. :uypose that WCl1 ) == '1. 

],etRS)'1n domf be an invariant set i.e. R == feR) then 

vri thont loss of generality we may assume that ItS w(s1) n A
1

• 

We must show that ~(R) = 0 or ~(R) = 1. 

0uppose fA ern > 0 and let E > O. 

GinceM is a Borel measure on a cdmpact set ~ is regular 

( see [26] p.~7) and since also w(s1)n A1 is totally 

disconnected Ne cs.n find a sequence {ljl j ~ 0 of disjoint 

intervals in 

~{5 U I. , 
1=0 J t.J .. 

Then pC Ie) == 

1'1 with 

t ?o(l.) < /feR) 
'j J 1- E J=\,.-

co 
L ,u(Rnr.) > (1-£) 
j==O J 

and fA (I . ) < e 
J 

00 

[, fA (I .). 
j=O J 

Thus one of the intervals 1.,sav I. == I satisfies 
J U J 

all j ~O. 

fA(Rn I) > (1-E.)p(I) (hence in particular P.Cl) > 0). 

:::;ince (i) there are only count ably many points of we s 1 ) n A1 
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not in n " fID 0.07. , 

2.nc1. 

(iii) any interval in the conplement of~s1) n A'1 -has 

measure zero , 

we can assume that the endpoints of I lie in 

CIJ( s1 ) n n domf ill
• 

m6iZ _ 

Orient A1 and let I = (a, b), wi th a, be w(s1) () n domfrr:. 
mE::Z 

Either every non-singular leaf or outvmrd separatrix 1'"" . H 

w(S1) lirnits on t, from the right or b is the l~.;;ft-hancl-

endpoint of an o?en interval _ ~~~ ~om;lenent of 

W(s1 ) n A1 - In either case I'/e can find an integer 111 such 
'n 

thatf(b,f. 1(a)) is as small as we please. 

Then either 1-'( I) > ~- or we can find an integer n1 such 
, ~ n1 n'l 

that (a,b) and (I (a),f (b)) are disjoint and 
n 

,.,.(a,f 1 (b) < 3JA(I). 

'.·;e leave it to tl:e reader to sho\-J similarly that if 
, 

(m+2)u(I)~ 1 we can choose inductively-an integer n > n 1 ,- m m-
such that the intervals 

n n n n 
(a,b) , (£,--1(a),f 1(b)) , ••••• , (f m(a),f m(b)) 

n 
are dis,joint and p(a,f m(b)) «m+2)f(I) • 

This process stops I'1hen m = N = ((p(I))-1] - 2 0 

n· n· n· n· n· 
Hence the intervals f l(IOdomf 1) = (f l(a),f l(b))n inf 1 

(Hhere 0 ~ i ~ N and we set no = 0) are mutually disjoint 
n 1 nn 

and P.(IU flU ••• U f I) ~ 1~ft(I) ~1-2f • 
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;',1" 

= t: fJ CR fl I) since.t{ is invariant 
i=O 

~ N(1-t)p(I) 

) (1-2.)(1-2e) • 

But e was arbitrary hence fACE) = 1. 

Now let jJ,}J' be distinct i!lVariant f:leaSures on A.1 

Let X denote the characteristic fu~ction of a set. 

~hen by the ergodic theorem (see [2]) if X is either 

j.). or p.' ,and ir lS c~:n;y A-:lleEu3urable set, 

}..(T) = lim 1 
n--+co n 

n-1 . 
r:; X(T n{rl (9)J) for ~-almost all p. 
i=O 

Then if ~ f ~' there is a set T such that ~(T) i~'(T). 

"[T th ". -I- '-'"q • th (:' ) I ( :"' I ) 1 Llence . erF: ar(; :..nvarlarn; se uS i-),') vll ~ ,) ::: fA. ,~ > = 

and fA (T) = -
n~06 n 

n-1 . r: X (T fl {fl(p)l ) 
i:c:Q 

n-1 . 
po' 0:) = liln 1 L X ('11 n {fl(p)J ) 

:'.l.~110 n i=O 

iJ:hen",(T) i JA' (T) => d n i~' = yi 

peS 

• 

But then the measu:ce ~tA -;- _~p.' is not ergodic - contradiction. 

Hence there is a unique iEvariant meaSUI'e on 11.1 with 



If JA is any transverse Iileasur'e which has support l;.Ti th 

closul'e eaual to cu(l) and 'l:lllic~l is invariant under the 

hence any transverse measure invariant under the holon0ll!-Y 

nlap, vIllose support has crosure eCJual to wCI) ,is a multiple 

of the measure}A i'!ith ~(A1) = 1. 

8.5 Rotation numbers. 

(r ~ 2) j',orse foli.ation on N ,the oriented g 

2-E10,nifold of genus ~.~, Hi th no h010no;:7, no closed. leaf and 

DO lAuf contaiLin; ~o~e than :~2 2s~ile point. 

SupJose th2.t ~ h8.:3 orientation ~~j~>sf~·:::'vinG holonom,Y and let 

W1, ••• ,cuk~be the conplete set of ·~j.istil1c~ 4'··limi t sets 

of non-singular leaves or ouh·Taro. se:paratrices in 3. 

l,et Ii be a transverse circle ;{leetin:; leaves in precisely 

one set wi. 

Let f be the point of first return function on A and let 

}J be a transverse holonom;y invariant measure \vllose support 

has closure equ21 to c.)i. 

iiet p e. A n Wi lie on a non-singular leaf or separatrix 

w~ich returns to A. 

Let ceCA) =~(p2f(p))) 

p.(}~) 

'llhen cx.(A.) depends only on A and the orientation on li. 
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For let 0 6 A n~. lie on a nOri-sinf,ular leaf or outl'Jard 
- J. 

separatrix,then for sufficiently large n,fn(q) and p lie 

in the same interval in the domain of f (see 7.3). 

11hen since f is defined throughout the interval of A 
- . n· 

between p and fn(a) Vie Can: assume that fhe points p,f (cD, 
f(p) ,fn+1(i) appear on· A in precisely this order. 

,M(p,f(p)) 

:::; jJ(p,fn(q)) -I- ,u(fn(q),f(p)) 

:::; ,M(f(P),fn +1 (q)) +f(fn«-:),f(p))(since f is 

,~ince f is order preserving and p. if) invariant under f, 

Assuming that A has the orientation in which the pairs 

(tangent to A,tangent to ~ ) lie in the orientation of 

fIry,~(~) is uniquely defined and is called the rotation 
C) 

number of f. 

8ince ~ has no closed leaves and no holo~omy ~(A) is 

irrational. ]or without loss of generality ~(A) :::; 1 then 

if «(~) is a rational 

preserving shows that 

number min the fact that f is order 

for any point x E w. n n domfn' 
J. n'ELZ 

Since any open interval meeting~i has positive measure 

(~ is the support of ~) the intervals (x ,fEl(x)) are 



'l/~O 

m~~imal open intervals in the complement of~. which are 
1 

disjoint for (iisti:lct x. Hence there are uncountabl;y many 

disjoint intervals in the comple~ent 

impossible. 

of w. - which is 
1 

~e rema~k that the rotation number as defined here is the 

same as that defined classically (see e.g. [19]) a-s \-le 

shall see in section 9.2 ~ollowing. 

- -{:'. .,. ---, - 1 -- , ~ , "r ( ,,~, 'j • - .co 1· t· JJe-L.lnlt;lon u.b. :.L..ST; '" De a ,_: r ?':.: l'-iorSe.LO la lon on 

~~,the oriented 2-~anifold of genus S,with no holonomy, 
o 

-:;,0 clospc:. leaf ,no 18:-':'_1' contc\iI:ciL~; ::;,):2';:; than one sEddle 

point and order preserving holonomy. 

be a holonom:l invariant transverse measure \'lhose 

support is the su~)port of some non-singulc.r leaf or 

outward separ2t~ix 1. 

',.'e associate 1>Ji t~l JA a 0ohomology class 

which is an invariant of ~ .This invariant is called the 

asymptotic cycle ElssociatecL to E. (or 1) and is defined as , 

follows. Various e~uivalent definitions of ~(r) can be 

f ,. ["~J - ouna ln c:._ or [23] • 

vie realise ®(p.) as a homomorphism 

----~~ ill. 



1 LJ-1 

If [11 € 171 (1'1
5

) ir18 can write 

I' t:!. 1'1 * &1 ,~ • • • • • • * "Y n >.< Sn 

-vIllere S. 
1 

[0,11 ----+) (if" if:l a path lying in a leaf of ~ 
b 

and .,. 
1 

[0,1] ---+HIg is a path transverse to ~ • 

Then setting ~(Yi) = +1 if' Y. is traversed in the positive 
J. 

direction & e(y.) = --1 if -y. is traversed'in the- negative 
J. J. 

direction we make the definition: 
n 

®(fA)([Y1) = ir;1 £(~)f'(Yi([0,1])) • 

If C is a transverse circle it is clear that 

,]0, ( 'J ( [ (" J '- u,. '! \ ~~l \1-4 \ j ) :::: ,-.:... \....') • 

LO\·[ let " n be +~_,c.~n.s-v-,,~~.~o -'i ' ,LJ i v ,-- - - - ~ '-' circles Deetin~ leaves in~. 
o J 

if ~ only if i=j as in 7.2. 

iIf !:l.Gl1 there is a unique holonomy invariant transverse 

Eleasure fAi on t1 such that u.(A. ') = 1 and the sUPDort of 
'-1 1 ' ---

-, , Pi nas c-,-osure e ~UQ.L to CAli (since ~ has order preservinG 

holonomy). By the choice of the circles B., u.(B.) = ~(A.), 
1 Il 1 l' 

an irrational n'_unber. 

(. 'p C(.l A.) _ 
" l' 1 

+ IC 
1 

where C(-, p. are 
_ _ ,1 1 

the Poincare duals of A. ,D. resDectivelv and K
1
· lies in 1 1 ~ .., 

a subspace of H1 (I-lg ,IR) complementary to that generated 

by 0(1'··. 'o(k ; /31'··· ,Pk . 
~ - 1 

,-,iDce any holonomy invaricmt transverse measure \',[110S8 

support has closure equal to the w-limit set of a single 

non-singular leaf or outward separatrix is a positive 
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multiple of ~i (proposition o ,,', 
'-.J.~. ) have: 

Proposition 8.6.2: Lot ~ be a Or (I' ~2) Norse foliation 

on . 1'10" the oriented 2-manifolcl of ,sonus g, Hi th no holonomy, 
D 

no closed leaf,no leaf containing more than one saddle 

point and ord~r preserving holonomy. 

Then up to multiplication.by positive scalars the 

asymptotic cycle of a non-singular leaf or outward 

separatrix I is an irrational real cohomology class \'Thich 

depends only on weI). 

To end this section VIe remark that if the number of 

distinct~-limit sets is equal to 3 (its maximum Dossibla 

value) then fra~ the remarks ~r?cee~ing the proposition 

we see that the asymptotic cycles are given by: 

@ ( u.) = C<. + 0( ( A. )[\, 
'l l l/r'l 

1 ~i~g • 

8.7 Asymptotic 2y:::l<::s in general. 

Even if we do =:~ ~3ve order preserving holonomy we can 

define the as;:-:::;-- :;cc:ic cycle of a non-singular leaf or 

outward s'3pa::,2."':::'~:: 1 for "almost all leaves 111. 

In other words ~~3re is a set X consisting of non-sinGular 

leaves and sepa:catrices such that: 

(i))J.(XnT) =p(T) for any transverse interval T and 

any holonomy invariant transverse measure ~ • 

(ii) If I S X the asymptotic cycle of 1 is defined. 



:c'e define the asymptotic cycle as folloH:]. 

Let t..,)1' •• '~ be tbe set of distinct w-limi t sets of 

lE;c:,ves of ~ • 

;,:3 i:::1 ?;~ let -'1.1 "'" _l"leg be diSjoint 

',Ii tb Ai meeting only leaves in ""i. 
-CrD.llSVGl' E.~ 8 ci~cc~C3 

~ehen a careful application, of tbe results of Oxtoby [q.31 

81101'lS that for almost all p E- A. tbe measure u. of lem:la 
J. r'p 

8.3 depends only on p and not on tbe sequence r • n,m 

j_iet 1 be the non-sinsular leaf or outv-Tard separatrix 

through p. 

jJ.-') deternines a treYlsver.se measure foil depending only on 1 • 
. ~ . 

Lote that th::? clo21.;.l's of the SUT)-;:)Ort of ~l is ~l). 

111' "h t'i ~p. ~ ) ,1: e 
. .L 

a c:nrm-'-~O"'-i n 
_ ' ~ .. / lJl : .. 1 II 1.-' __ \...., 

-- lQ, '-'n •. -{_~:l.1_ 1 !:)- .L" o~ c . .'c v Ro,:,OCla"eo. 1..00 ,can lo!l",. __ 

d.efined exactl~7 as in 8.6.1 VJith)JI replacing fA. 

!~ l'uI,ther care':::- '.J. ~,_-::?lication of [43] ShO~'J3 that)AI is 

ereo',Jic for ;::.:1..:.-::::::: o~ ?~ll lenves 1. 

'I'hat is: fo::,. ... "<:. -, '. ~- l::J 1:1omy invarir.Glt transverse measure ~ 

the se~, 0: l,-:;f"": ::'Jl' \'Ihich -l~he me2,sure ~l is ercocJ_ic 

meets ccny t::'~.::-:~.:::"C .ce subT21anifold r;~ in a S8t of meaS1).re i\(,:r) .. 

~his observati~~,~ogether with lemma 8.4.0,gives the 

follol-ling: 

Pro:)osit.ion: r ('1 
v (r "),,2)' r.'.!()rse l'oli·"'tion 0'" 7.' Y ---'- - -- -- jj~, 

u 
th:.! oricnt,:)c, 2-manifolci of Genus ~,v:i th no holo!lomy, 210 

closed leaf and no leaf containin2; more than one sadc11'8 

point. 



Let k1 be the number of distinct no~-trivial linit sets 

of ] as in section 7.1. 

~'~J.en there is a :Jubset ~i{ of 1·'1 
" l g 

(1) X is a union of non-sin;?;ular leave;:; 8..,."ld (,sp2.racrices. 

(2) Given any holonomy invariant t:cansverse measure }A and 

any transverse submanifold. T 

(3) Up to multiplication b;:? positive scalars there are at 

most 45 - 4- + k~ asymptotic c;ycles associated to the 

non-singular leaves or s8paratrices of ;1. 

we iHarn thu L~!11ess ev::::ry lcc.f of ~ is den3e 

there is no tl'J eOl"l(-;':ci8~".1 .., -, ., ., 
sn 'JU..LQ no'c De a 



Chapter 9. norse foliations on manifolds of genus 2. 

in this chapter \18 Morse foliations on M~,the 
c... 

join of two tori, ~~. wh;.ich there are exactly tivO non-
-.- - ... " '" 

iri vial limit sets. C[lhese results are applied in chapter 

10 in the (~onstruction of nQrse foliations with no ho~onomy, 

no closed leaf and no leaf containing more than one saddle 

point on <1 tHO ITla.l1ifolc1 o.-f ?ny _ po.si ti 1[8 genus. In chapter 

. ,..,0. l' f' . !- • :..~ th 10 we also glve a 0 -conJugacy c aSS1_lca~10n o~ e 

horse foliations on 1.2 with exact137 tl'jO :2on-"crivial limit 

sets. 

I ~l~ 
.J (r ~ ~.) f.orse i'oliation on 1"1 , g 

the oriented 2-manifold of genus g,~ith no holonomy,no 

closed leaf and no 12af containinG ~ore than one saddle 

point. Let .2, F be transl.---:;rse circles and SU~) )OS8 that some 

non-singular leaf or separ~trix cuts E and then cuts F~ 
-

Then either some inward separatrix cuts ~ and never 

subsequently cuts .l? or every non-sinsular leaf or separa­

trix whichcutsE subsequently·cuts F. 

In the latter case ~ and ~ are homoto?ic. 

})roof: ~3uppose that there is a leaf Fhich cuts E at a 

point e and then cuts :l!'. 

The holonomy construction sho~s that every leaf cutting 
E in a neighbourhood of e subsequently cuts F. 

It is immediate i'rom lemma '7.1.:\- that the only 



obstruction to extending this neighbournood is the 

existence of an inward separatrix which cuts E and never 

subsequently cuts F. 

The required homotopy is given in the case- s.t?-.ted-'by 

flowing along the leaves. 

Lemma 9.1.2: Let ~ be a ar (r ~2) Morse foliation on ~~, 
."- ---

the join of two tori,with no holonomy,no leaf containing 

more than one saddle point and precisely two distinct 

non-trivial limit sets. 

Then there is a transverse circle which represents the 

zero h0::101og;y claE5s in lLl (f'l2' Z:-;) • 

Proof: ;;e remark first that the non-existence of closed 

lA,'3ves if-:) iI:lplied by the conditions of the lemma since 

the exis~ence of a closed leaf together with the no holo-

nomy assnr1;YGion ;"lQuld imply the existence of infinitely 

many distinct non-trivial limit sets. 

So let (A)1 ' W 2 be the distinct non-trivial cu-limi t :sets of 
- ---

~ • The pro)erties of th~s~-sets were-described in ~ection 

7.1. ]~et ":~1' -''-2 be transverse circles such that A1 () A2 == 0, 

every leaf inW1 meets A1 but not A2 and conversely as ~n 

section 7.2. 

Let P1,P2 be the saddle points of g and let the inward and 

out\'Tard separatrices be denoted as shown in figure 9.1. 



a' 1 b' 1 

1W7 

, 
a 2 b' .. 

2 

and c..>,) both contain at least one il11;rard and at 
L. 

least one outward se]arntrix. hence at least one inward 

and conversel;),. 

Eance either one, "I:;v.;o aT' three i:-:~;"·:":::';~. seD3.ratrices cut 

A1 • If a single inward separatrix cuts A1 ,every point of 

A1 lies on a non-singular leaf or seoaratrix which returns 

to A1 • lIenee, as in figure S. 2, there aTG t"ltiO outHard 

':?nother copy of A1 

Fig. 9.2 
vie can the~ce i'ore assume, reversing the orientation of the 

leaves if necessary,that the number of inward separatrices 

cutting A1 is two or three. 



~ithout loss of generality we now have two cases: 

or d_oes npt C.1lt 
, -

F_/l • 
I-

.. -.. . 

We show first that the latter hypothesis implies the 
- -

result and then that the former hypothesis i8- impossible-. 

Suppose that b1 and b I cut 
1 

points 13'1' (31 respectively. 

fl.", for 
1 

the last time at 

'I1hen,-us shOi:,m in figure 9.3, 'iTe cnYl find 8. transve-rse 

circle ~ such that eac':n 

the 

i'1 subsequentl~i cu.ts ~ ancl every ~oint of ~ except one 

i:-3 a poiEt of in~ersection of 



Similarly let E' be a transverse circle such tha~ every 

in A1 subsequentl;,/ 

cuts ~, and every ]Jint of ~I except the last point of 

intersection of a1 with b l lies on such ~' leaf,as 

figure 9.3. 

he assert first that if C is either of the circles 

then C ~asthe property that either every leaf cutting C 

subsequently cuts 1-'1.1 or there is some inward separatrix 

}'or by lemma 9.1 .. 1 i.f ,some leaf cuts C and subsequeYltly 

te true. hence the only 

otl'ler possibili t,y is that no leaf cutting C subsequently 

cuts A1 • If this is so thew-limit set of every non­

-sin:ylnr leaf Ol-' ou-c':Tard separatrix cutti.ng C is w') and 
'-

Lence eV8J.:>;y n02-2-.3~_::,:,;-,:,-cllar leaf or outl.-.;arcl separatrix Hnich 

cuts C subsequs=::y cuts A2 . If our assertion is felse 

it is also tr"J.s -:: _c:~".:; no inward separatrix cuts C, for such 
" 

an im'iard s ~2..:,::,-: -.c~'-x vlo1]~ld -=_ve~· subs.0quel1'~J;i Cll.t A1 -_. 

Hence by leI:l~na ::. ~.1 -if"~the_:af{;er~ion is:-.,;false every-' 
-: - .:. 

- J.- _ 

non-singular 
-. -, 

1..-:: ~-=- se.1?}tr"atrix ~cut.t-ing C subsequently 

cuts 1-1.2 • But "'Chis means tfl.at eyerynon-slngular leaf 

cutting 1-1.2 has previously cut A1 '1.Ihich·is impossible since 

every non-singular leaf in w 2 cUf~ -'A2 anet not A1 -

lIence the assertion is true.: 



I claim that the on.ly invJarcl separatrix \·lhich. can cut .9 

(:= l:: or ~ r) and ':lhich never subs sov.entl v cuts _~/, is 0". _ v I . ::: 

time at P1'P~ and never subsequently cut 'eith~~_E.or.E~~, 
. --

Also by the assumption at the beginning of the proof b~ ~ 

never cuts A.1 and hence never cuts either ~ or :.-, r 
..:.......J. • 

But -~. 

nOvl b 2 cannot have the property that it cut sboth :s En:1. 3' 

R,,_Tld l"'ever' ::::1l.bsp.q1-1e'0..Ll,ly r.l)_1~,q _."'_"1 Slo TilCR, ::;'s ·foj :::"11~t:> C, 7,: -r~~,.~" .• c:-.~ . ..1. ...... __ .... -...lJ. .., __ v"-' _. __ ......... ...L...--o- ...... ';;J , • .../ _ __ ... _ ..... r.~_~ 

any leaf cutting both E cmd:j! cuts "'1.1 at' an ints::'r;)c iiate 

~ence at least one of ~he Ci~81?? ~ or ~l ~as the ?r6;5r~7 

evp.ry leaf Hl.!.ich cuts 
, 

.r:../, _ • i (; 
I 

that ~r is the circle with this pro]erty. 

'.LInen E' can be identified with ' ..:·1. ... 1 and it is then clear 

joined b;;.r a :b'?~nclle) that 

.c" bouo,ndE; a tor;" . .:: ·:~t,h a ~ole,in ;oIc-,al1d, he~ce 
D 

'JihusE lS the :;::°2 ~'·.:i.red circle. 

It remains 

which cut .A2 • _. 
;1e can also aSC-;;V.i·;18 that exaetly one ·ou'cl'lard -se?3'ratri}: 

from each B2,delle Doint cuts sach circle Ai' since 1:18 coula 



otherwise reverse the orientation of the leaves and repeat 

the above arguDent. 

Orient the transverse circles AI and A2 so that at ru'1Y 

.:point the pair (tangent to A. ,tangent to 3 ) lies in the 
l 

orientation of Ng • De.note the points at Hh.ich separatrices 

cut the circles A~,A2 for the first or last time by the I _ 

corresponding Greek letter so 

r.Che reader is advise;:. to .refer constantly to figure .~' I· ..... --:-

overleaf whilst rsadinz the follo~ing argument. 

Without 10s5 of generality every leaf crossing (P1'~2) 

returns to A1 in the interval (oq, ~). 

This impli~s thatb1,b2,a~ and a 2 arc precisely the 

separatric8r3 vl~:ic[.:. cut .A/
I 

and b1 ' b 2 ' , a1 ' a2 are l)recisel:r 

Dince is clear from figure 9.4 ~Dd the fact 

Cllt;S leaf leaving (P";;' p",) -subsequently cutz 
- I 

first time in the interval (o(,~.,oc..A). 
L I· 

='hen in fact :r~o iW:JEu'd separatrix cuts· (0<2, C(1) since EJlY 

such separatrix would cut both A1 and A~. Since also a~1 c:. . 

Dever cuts A/I no leaf cutting (0(2,0<.1) ever returns to A'1 

;:md every leaf cuttinf, (Cli.2' CX1) subsequently cuts A2 -
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Similar arguments and the configuration of~th§ ~eparatrices 

, ~." - ~ 1-" • : " i (J , ,,\ ".1- . -t \ 
8.(101,;J 'crl':~'G every J.82.I C'll\,'C1ng '':-\''2 1n \. 1,11 2 ) re lJur:i.1.S - 0 .A2 ' 

no leaf 

cuttins 

Thus: 

cutting (~~,p~) ever returna.to c: I 

(P2' (31) subseqU:entlycuts 

and. every 

~ence the points of first o~ ~ast intersection of 

lear." 

se:Jaratrices lie 0:'.1 the eirc:),.es iI"I' A2 in the foI10l'iirrg 

order: 

as 1n figure 9.4. 

I:o':T choo~3e transverse C'lll'VeS =<1' X 2 and Y1' Y 2 1tihich s cart 

at :9oints X1 'Y1 OD a COElmon leaf in a distinguished 

neighbolJ.rhood of :;;>1 c'DO. \,;hich finish at points X2 , Y2 

on a com.non leaf i;:-~ D. distinguished neighbourhood. of P2 

as sho~m in figure 9.4. 

Z1Zr-, cuts b; at y .. and b?'. at. X4 in the saGle distinguished c: i ~ L 

same distingtlishe,i neip:hbourhoods. 

Further every leaf leaving Y
3

Y4 c~ts (~~'~1J 2nd every 

leaf arr1v1~; at ~3X4 has cut [p~,p~] • 

'Ihus . fro;:'] the preceeding; remarks no leaf leaving Y
3 

Y,+ 

ever returns to X~Xu • 
./ . 
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Hm·! cut along the segments of leaf X1 Y1 & X2Y2 and along 

that p~rt of tLe manifold containing the sadd18 Doi~ts 

(a torus minus a disc) and-e;lue in 2 square along the 

boundary of what reDains (~lso a torus minus a di~c) to 

get a torus_ 
-

I10liate this torus by the restriction of· ~ 071tside the 
~ 

square and foliate the square by line~ y_arallel-to its 

such a way that the holonomy mR? 

fI>O~ X1 Z." to Y1 Y"" m~d from XJ1 X2 to YiIYr, is the S3.T1e as 
?) "T 4,- C 

., . 
(;lla"G for~. This co~stEuction can bo carried out so 

i1:1'.; torus is I' r. v • 

Denote this foliation of the torus by Sf. Then no leaf of 

a I which cuts Y3Y4 ever subsequently cuts X
3

X4 _However 

since I' ~ 2 either every leaf of ~f is dense or ~' has a 

closed leaf. ::3i:.'1oe ~ bad no closed leaf and:J has the S8.::le 

leaf structure as ~ outside the souare these properties 

are inc02?atible. 

This proves the lemma. 

9.1.3 Description of Norse foliations on M2 

Ve describe below the geometry of any Cr (r~2) Morse 

foliation ~ on M2 ,the join of two tori,with no holonomy, 
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no leaf containing more than one saddl~ point and exactly 

tHO non-trivial c..>-lioi t S9ts (so that in addi tion ~ has 

no clo;J<.';ci leaf). h. t;y~)ical ~ is snm·m in figure 9.5 

overleaf in which the pairs of transverse circles A1 ,A2 
and E have ,to be identified. by suitable diffeomorphisms. 

-'" 
Let E be the transve:::-'se circle homologous to zero given -, " 

. -
by lemma C).1.2. 2inceE senar2tes M~,~very non-singtilar .. c.. 

leaf or outward. separatrlx cuttin5 1i; has w-limi t set w1 ' 

every non-3ingu1ar leaf or inward separatrix cutting E 

-;elF''''' """-ll' f1'; -[- e-e+- n d-i T'L"cperd- set I." ~nd no non-s1_' n. 00'. u_l a"'-'_, J. __ .. ~:J """ • · ....... v ..:.,) JV '-'~ - __ --'- __ v ~ \"oA#2 c. _ 

180.£ or 8eparatriz cuts "more ~han once. Then when we 

lie in d.ifferent components and 

h'2nce no non-singular leaf or separatrix in "'1 uW2 cuts E. 

In addition if P1 is a sacldle point in w1' (1:Jhich Gust contain 

one by the theorem of . .'co J. :)chl''lartz) a..rJ.d P2 is a saddle 

point in w2 • then P1 and P2 are distinct D.: are the on13T 

saddle points of ~(compute the Euler characteristic). 

Ho\'! choose trans~ICr[)e circles Ai (i = 1,2) lying in one 

or other component (in 6ther words not meeting E) such 

that I\...., () J...~. ::::: 0, A
l
· meets every leaf in w. infinitel v many 

Ie"' l v 

times and i~.nW. = 0 ilj as in section ?2.:Umv if no ' .. l J 

in\'!a~d separatrix cuts E,E is homotopiC to A1 ,by lemma 

9.1.1,which is false since ~ is homologous to zero and A1 

is not. 
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" 

\ 
i 
I 

.' 

Hence at least one l~J2r1 s0~aratrix cuts E and does not 

cut A1 • Now at least ~JJle j.n~l1ard. separatrix cuts A1 and 

lies in ~1. Since no norL"sinsv.1 ar lea.f or separatrix .in 

w1 U""2 cuts B there i~; iJ'eci&ely one invJard separatrix 

cutting ~ and precis(;J..y one inward separatrix cutting E 

<at e1 in figure 9.5) M.n<i these together are precise~y 

the inward separe.tri.c82 -3.t T-"1. 

Gimilar2.y precisely orl~ o· .... :ti.·u.rc. separatrix cuts E (at e 2 

in figure 9 .. 5) and pre ~ . .i.821;l' one 01.ltv-lard oeparatrix 01:t03 

A2 and t~18se are preciG81,f the outward separatri(~es from 

Let Xo be ~b~ last point 0';: intersection of the wiig,ue 

inward separ9.trix cuttiEr; J~'i with A1 • Let Y"'I,z1 be th.3 

first p0ints of intersection of the outward scparRtri~e8 

at P1 ... ,i tY )'1. 

From figure 9.5 \'ie see t.t.c.t if a suitable oriente.t~on is 

chosen en A1 and if 11 ~ [:/1 ,z '1) then the point of fir[,t 

return function f on .£1.1 is a dj.r'feomorphism 

Also ever'Y non-singular It";i-\.! \))'.' outvIard separatrix crosoing 

E cuts A1 in the interval L :~'i ,z~. 

f has the followin~ propertie2: 

(i) f is order iJI''';seTvins • 

(lj) d r _p--"L 
_·1 ..... _ f - i ana' t'- (" po;nts x' = x are L\'.U.J'" ~ 0 

distinct, since w1 n 'S = 0 an\~ .t1 has no closed le9.i'. 

" 
a~.A.. 
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( ) C n n' .c-j-1T [ ] iii 11 - Il~<') 'domf' ~1d the inte:!:'vals I j _ . .J. -"!':: Yj,Zj 

are mutually disj oint· and. contain none of th(~ point.s xi. 

These proper-ties follow from the facts that eve'!'y 16&.£" 

cutting (Y1 ,z1) he,s w.-limit. set w1 , Y1 & z1 E W 1 ~:!d ~ 

has no closed leaf. 

(iv) 

(v) 

f has no per:'odic roints since ~ has no clcf3ed leaf. 

lim , 
x-.,x'· 

o 

IDf(x)1 ~ L ') 0 for some L Em and all x &domf by lem~a 

00 

(vi) W 1 nA1 = A1 \ U (Yi,zi) by ?'!.'cposition 8.1.2 and 
i=1 

the fact that 

complement of 

any non-singular leaf w~ich cuts A1 in the 
eo 
U ' ) h d 1··.... .... ,y. ,z., aSe( 3.n c.J- lr.nll sell «P

I
_ 

i=1 l l 

Similc'.rly let x' be the first point of intersection of o 

th~ unique out"rard separatrix cu~~tJ.ng 1\2 with A2 aJ"I.d. let 

Y~ & z~ ~e the points of last in~erseotion with A2 0f the 

inward scparatri~es at P2. 

Then if 11! = [y~,z~J and g is t~e point of previ0~~ 

intersection function on A2 ,g is a diffeomorphism 

\{ 'j ~ \", g ~ .11.,2 Xo ).h.2 ·1.1 • 

g satisrie~ the sailie properties as f. 

Every le~~f cutti:::lg .F: cuts A2 for the last tirr.e in the 

interval 11-
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9.;2.1 :)iffeomorp~isms of the ptUlctUI'ed. eircle. 

~. . 
;.Jat S' be the circle and let xoE S1 and 1"1= [Y1,z11 be 

8 pro~s:' closed interval in 81 • 

Let f : S1\{xo~ ) S1\11 b~ a Or (r ~~) d.iffeomo::r'phism 

satisfying the properties (i) to (v) of f ::.::1 9.1.J. 

Ii' x E. n domfn let ""ex) be the accumulation set in 81 

n> 0 

of.' {fn(x) : n ~ Ole 
A:C'guing a:3 for cliffeomorphisms of the entire circle 

~Re9 [19] chapter 1) we sec that w(x) is a perfect,closed, 

"r!t::MhE;re dense set \I1hich is independent of x and invariant 

1L.'1dsr f. The ree.der is warned that the argument here is 

non-trivial but since these facts are only ~equired for 

d . f' j' h . th t' . 0..... 3 . t th d + ., ~ ~._ : €:omorp ~smB . a arl,se as ~n '/. I. we om~ e e .... a:::.. ... s. 

f:u:lpose also that if n(f) ~s t'ne accumulation Get of evt;ry 

orbit then: 
eo 

(vi)'n<f) = .::;1\ U (Yi,zi). 
i=1 

Of. course all the diffeomorDhir.:;ms f arising from I-Torse 

fol ;.ations of M2 as in 9.1.3 ha,re a'll theaa properties. 

E;y the arguments of lemma 8.3 .gnd the I'A'li'le,I'A~ following it' 

there. is a unique non-trivial T!leaSUl'e ).A on S1 ~:!hich is 

invariant under f ,has support.n and se,tisfies jA(.S1) = 1. 

Then the rotation number C(f) of f is an irrdxional number 

equal toP.(x,f(x)) for any XE.d~!1.f. 



'i , 
i 
f 
~ 

i 

I 
i 
I 

It will be convenient to re~nt~rpret ~(f). 

This is done as foll(;t/s. 

Let TT : ffi-~> S 1 be the covE:ring map .,.Ii th "0 = xo. 

"Let 11- [y l' 'l1] ~ (0,1) bo ~"3UCr. that ,;11 = 11 • 

Let F : ffi\2Z -----.ffi\{x E H( : x-l-m Eo 11 eome mE. LZl be a 

lift of f (i.e. flT = TI?) satisfying: 

(a) F is monotone incJ.'e&..u~g .. 

(b) F(O,1)S;(~1'Y1+1). 

(c) F(x+1) -- F(x) + 1 x G.:R\Z6 • 

The graph of e. typical. F is shO\·m ir .. figure 9.6. 

- -- ---- ---I' 

~d ;2 ~~~~I __ I __ • __ ~ ______ ~ ________ ~ ____ • 

: ~ ... ___ "' _ ~ -1 1 2 3 
I I t>I 1 
: ~----- :;'"1-1 

V------------ ;~-2 

-3 

I _____ . _____ 'rr -2 
: ~ ~'1 

(.:--- __ •• _______ Z~~3 
I ~ ~ /--- ------"~------y1-; 

Fig. 9.6 



Lemma 9.2.2: Le·t f,F be as in 9.2.1. 

Then if x € n 
n~O 

d To,n I' nn() 8' . s .... •. 0ffiJ.1 ,lIT!.r! X " .. {l t...S 

n-+OCJ n 

-1 C ") , F "I lS c:" ~·,.:·ell -:)oint of 

and equals oc.(f) • 

fizur-e 9.,6) a.nd py the definition of ~-(f) and the ergodic 

theorem: ~. CC (f) ,-, JA (n~-1 ('1) ,"fTtF-1 (1) = ,u(TTF-~ (1), xo) 

n-1 ' . 
== lim .1 C X( {flex)} n (tTF-1 (1) ,xo )) 
n~.a 11 i=O 

for almost all x (*). 

Let y e (0,1 r be a :point such that (¥) holds lor x = ny. 

Let p. = [Fn('~Jr/\] so that i) 'll'n(-,{) < D + 1. 
-n' -n"" '"11 

Then XC£fi(x)J n (ni-1 (1),x )) :c: '1 o 
-- .... ': '1" < -oi( '\ < /1 +.i: ~ j 1; y ) I + Pi if' 9_ onl;)' if "0, I.:' ... 

-'-l 

if ;:. .... 0:i.11y if P' l 
,Ai < -_,,-:, i + 1 ( :," 'j" < "',' ',', "")l' " 'rr

1 
( \, ~y ..: V by a~9)l;yins 

}? to the previous ine::ualit;y [mel 1 ' --(' ~ ) l 'l""'l h' "V" 1--"\'1 _ _, _ J .. /-" 

:x:~O-

if i..~ onl v if "0, ::: D· + ~ • 
. v ·l+1 ~ l 

Hence )C({fi(x)} n (Tr}?-1(1),X
o

)) = L;1i+1(y)J _[Fi(y)] .. 

Eence (((f) =: li~ L~nCy)] = lim J?ll(y) 
n-71la D n~ n 

S1.10'; 

y' € n ~ 

6.o::~~-- • 
n~O 

Let Gn(y') '" ,-- .y') - ;7' 

Then ~(yl+ 1) = ](y') + 1 

-is independent of y' 

for 8.11 ;y' €. 

==> Hn(y' + "j) =: iJ.(y') + 1 for all n~ 0 

==> Gn is periodic of pc:;riocl 1. 

for all 

0ince F ha.3 no :periodic points Gn never has an integer value .. 

:F'rom fiGure S.c:.: \"Ie see that G increases across a discontinuity. n 



~S2 

Hence (G (yl)J is an increasing integer valued flllction n . 

of y' '!dhich is periodic of ]eriod 1. This mes.E3 tl1at [Gn(y')] 

must take a constant int8ger value Pn -

iI'hen l:c,nC)" )_7n(;yll) I ~ 10.-,ll(yl )_y' )_~i'n(y!!)_;;(I~1 

Hence lim Fn (:;!) 
n~oo n 

, 1 I I "T' " tr I ~ ~.' J ,-.y 

= lim j}'n(yll) 
n-+OO n 

-
1·_" I _-.T l! I 

'./ J 

properties .listed in 9.2.1 and with irratiorial rot~tion 

nUl!lber 0(. 

linec1.r. 

CLrhe lift of this diff8o~or~~i3m is 

1-1 ~)-1 
I 

Pi;;. 

--------~ I I 

'1 

• 

C\ 7 -' . 

l 
I 
I 
I 
I 
I 
I 
I 
I 

2 

}~et « be ~m i:rratioIlal EUL1be:..~ in (i, 1; and let 0( e (0,1) 
m 

be the number mO( (mod 1) for El €. z:.. 
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}':>OI' i' 0 lr:;t 

.() "m-1 a. = 1-# t- p.'-
1 {ill e z;j: m ~1 DC < 0(. 1 

ill 1 

,-

~ior i> C; let 

b. == (1-}A) L"um-1 
1 {m e. LZ :m~l ~r!(~J 

ci == (1-f')·· L...um- 1 

{m e. 2Z: ill~1 (XrrfOCi t 

Then OCq <OC'p¢:.::) c (b p,o .. ~1 o D - , 
"' ... 

c <a p",O q)1 q p 

a <b D~1, q'O. o p 

'fhus: the intervals [oi,cil are dis,~ioint (i~1)S(O,1); 

the 

in [0,1); 

points a· are all distinct (i ~ 0) 2J:1Q contained 
1 

the points a. (i'O) do not lie in thG intervals 
1 

by x e(0,1) 

1 ,all x E ill\LZ • 

Td t' f .1 ',. to, 1) / t"'t-. h t' t' ~ - en 1 :v () 1"11-c:l 0=1 ,'Hen teres rlC lon OI @p,,,, 

induces 

liote that i} (c.) =..a (b.) + L4(c.-b.) 
p,fl.l /4 ,fA 1 I' 1 1 

== '6 (b.) + c. 1 - b. 1· 'JA,14 1 1 + 1 + 



10-1-

'tfe sho\~ 

The Draaf s81its into two cases. 

Case 1. 

11hen 

0(. < 1-0< -
l 

(i > 0) 

(i < 0). 

@ (b.) = c. + (1-JA) L jAm-1 
!"tJ. 1 1 __ ~ _{rn : m ~1 O(m < Deil 

Now in this case __ 

-_ ........ 

tm m ~ 1 &, O(l'"n < 0(1'} = \- m : m) 1 C( 1 ( ci. 11 \ { m m ~ -1 ,0( 1<ot} m+ 1+ _ m+ 

and {m m ~ 1 , ~ /1 < ()( "- c:. Sffi m ~ 1 , ex 1 < oc
l
' +11. , m+ I ,J - 1. 111+ 

Hence 

--(1-jJ.) L .Mn- 1 

tn : n ~ 2,OCn (O(} 

- ("1 - p.) + b i + 1 ( 1 - JA) := b i + 1 • 

Case 2. ex.) 1-0<.. 
1 

Then G (b) C ".,rIo i = i 

how in this case 

+ (1-r) L,um . 
{m : m ~1 ,0( (oc.} 

ill 1 

r- m : m ~ 1 0( < P(.} = {m 1- , III ~ 

u tm _m ). 1 O(m+1 ~ ",1 
a.nd {m m ~ 1 ex 1 < oc· 11 n I IIi : D ) '1 ex 1 ~ 0( 1 = (/l • m+ 1+- m+ 

Hence 

® (b.) = (1-p) L m-1 + ("I-AA) 
r'rt. 1 {m :~~1DC <0(1 r-{m 

m 

L~41-1 
m ~ 2 0( < 0(. 1 't m 1+ S 

I 
! , , 



= 1 + b. 1. l+ 

\~e nov! shoH inducti vel;y 'C.!.lCl C ®~,II\, (b ... ,) = r (n.+1 )fX] - + Dn+_1 ~ , 

This follo1;Jseasily having noted thatln~l= net - C)r. 

hence the rotation number 0(('6 -- ) = C\ for any.u~ , . 1-'," ' '-' 
....... --.. -. 

is analytic and hns constant derivative. 

To show that it satisfies our reauirements _it-Temains to 
.'. " .. 

ShO'd that nCfJ .. , ... ) := ~)1\ U (p_ ,c ). 
, .... . ... '1 n n D? 

Othorwise,none of t~e points 0,0.. ,b, ,c. 
l l l 

Ii e in n ( '6 ) .. -
- - .. ,jA 

S1).o,;)ose ° E ((:-1 ,e1 )· 

since fl1clPS 

endpoints of maximal complementary intervals to endpoints 

of maximal complementary intorvals. 

Jince -e has no -::;eriodic Doints (for then c«(1.1 ) would IA,- ~.. 14,04 

be rational) we may assume i = 2. 

I1hen the il1terv2,ls -e-n (c'i' 0.-1) are distinct intervals in 
,M,cC. I 

the complement of .G(-6 ), none of \'Jhich contains [b1 , ~1] • 
~,CIl " _ . '. 

~i3ut lenstl: 1}-n (C/1 ,d~) = j-t-n(d
1

':"c
1 
)~Co~ :as-n--4-oo,which 

104,01 i I 

is impossible. 
,-

He 11 c e n ('B ) = S 1 \ - U C h ,c ').. . -
. !A,~ n ~ 1 n n 

The above example I'JaS sugcested by a construction of 

Iv1ilnor (see (25) of an example of a diffeomorphism of S 1 
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with non-wandering sst a perfect,closed,nowhere dense 

set and YJithout periodic points. Cf cou:r:-se , it fo110\-JS 

f:com tho "\'ior\: diffeornor]Disr:l 

of the entire circle can be c2 , since' eveq eX', (r ). 2) 

..:l • f"" , . n .. ,1 
I..ll J. eomorplllsm OI 'J is eO-conjuc;ate.to a rotat.ion if it 

has no periodic points. 

Eelow we prove an analogous result for diffeomorphisms 
1 ,1 

f : ::3 \ {xol > D 1\ I1 • 

In this case,the diffeomorD~isms 9 reulace the rotations. p,u. ~ 

,;ince conjugate diffeomor~)l1is8s ha\."a the saLlS rotation -

number,~ must be the rotation nu~b0r of f. 

in lemma 10.6. 

Prooosition 9. LL : let f : ",,;1 \ I' 'or, l-~... ,1 \ J-l..- (j T ~) 1 be a diffeo-

morphism with the properties outlined in section 9.2.1. 

'".'hen gi vel~ f' l:Ii tL: CJ < fA < 'i ,there is 0. homeonorphisI!l 

hjJJ: 81 ~31 

such that hili) .. hul ;;31\tx t:", f 
JA,ff.ff} .... '- ct 

and h~ I J1 is 2:11:- arbi trary hQ.nleo~Jorphisxn of ,J1 

onto ['01 ' c1J • 
Proof: Let J? be a lift of f as in C\.2.1 • 

Ue Shovl first that if TI1 ,n2 , °1 , m2 e 2Z 
n-1 11 

and x e dO}71 F I () domV 2 
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n n !" ~ ~ 

then F 1 (x) + m1 < F 2(x) +l!l2 

if and only if 11
1
«(f) -!- ffi1 < n 2 «(f) + ffi2 • 

J."irst note that it follows from the prooZ_oflemma 9.2.2 " 

that for each integer s the.re is an integer PI"' ~uch-t-hat 
- ;;::, .--- - . - . 

p <Fs(x) - x(ps + 1 for all xE.d;mFs • 
:: 

Hence the 
s .. n --

order of the points F 1 (x) +ID
1 

is inq.ep~nde"n't . 

of x. 

'I'hen 

~ 

<==> 
~ 

< 
< 
< 

< 
< 

~ 

n 
F 2(x) + ffi2" 

!!l,) - Jn1 L .• 

r;L~, - ffi1 c 

~ be as in 9.3 . . p.,OJ.. 

Then since ®u,~(~)is a lift of ~ 
r- ... r fl'ec('f) 

n1 n 2 
F (~) + ffi1 < F ex) + ffi2 

:. ... 

¢::::::> (~ (y"")" -i- ]111 (i~ (Y) -I- m
2

, for all sui table y. 
,",'-"of) jA,cdf) ~ . 

. ;i th thG notation of 9.2. '1 , the above and -ehe fact that 

.... 
Yn T 

1 

lim ,1) . (x) = c 1 x~aT ,..'~(f) 
o 

+ ffi') 
L. 

. , 



e.nd 

Let 

Define II"... : 'AI 

Ej04(Xn + m) = 

H ('V + \ 
ill) = fA "n 

.. ~~ 

a n 
b 

n 

+ illr c: 

-
162. 

n ~O 

by 

+ ill 

m. 

n l )O,.mELZl 

,n'''IO ,.'mE~}. 

Then H extends to a unique orientation preserving map 

n: 1R~sl is the projection. 

:0'urther -1 (' HI-' F~ X) := XE n-1 (n(f)). 

ELI maps endpoints of intervals (y ,z ) to encl':Joints of ,- n 11 

intervals (b ,c )~. 
n n 

HOi'j ext:;md :S,... to all of lR by letting H",' J
1 

be any 

orientation preserving diffeomorphism of J 1 onto [b1 ,c1 J 

and letting 

~(lhen Ef':..m -~,. ill is an orientation preserving 

hOITleO;nOrDhism and I-lP1:b'E~(X) = ~'.'tfx). -
Thus II" induces a hO'Gleo'Glorp::.tism IIp : S 1 t S 1 

such that h;1fh~ = e . 
}A,fI. 
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In [37] the author gives an example of a C~ diffeomorphism 

of the entire circle without periodic points Nhich is not 

the differentiabili t;y class of -the conjugacy in 

proposition 9.4 is the best-possible for general I. 

On the other hand in [38] the author pr~ves that for 

particular rotation nu~bers diffcomorphiscs of the entire 

to c.', rotation. 
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- --. 
Chapter 10 Examples of Norse foliations. 

/jO.1.'j In this ch2,pter i:le shall construct a number of 

examples of Cr (r ~ 2) r'jorse foliations- i.~ithout closed -

leaves. 

In order to do this we first generalise th~ type of point 

of first return function encountered in chapte~o9. 

, ~r d '-'ff h' We requ1re v or er preserv1ng d1 eomorp lsms 

f ,1 \ { J ~ .. 1 \ ~ U U I :;j x1 ' • • ••• , :XU. --~-r::::' .l.1 •••• • u 

satisfyinf; the pY'operties: 
, .. 
\1) E - ~,-n u "'- " . ~-n ' ff 0 ' x 1 ' •• ~ •• ,xu CtO::lI v n ,,'-' c'''..,;,'-:.,. 1. Xs=Xs' 1 11=, s=s • 

(ii) Lone of the points f-nx 'j, s ",u,n ~O lies in ru"'l 
s 

interval I j 1 ~ j ~ u. 

(1,'1''; '\ I I CQ10flfn w n ~- 0 ana" fnI n T 
t, .J.. ) 1 ' ••• • ., u - ,~ y yo s -s ' \¢ iff 

s = S I ,n ::: O. 

(iv) f has no periodic points. 

(v) ]'or all s ~ r DS f is bounded and Df is bounded away 

from O. 

(vi) nCf) is well defined and 
00 

rv' '_! 1 \ U C T S - s· ) _4\ f) ::: 'oJ - 1./\ U ••••• U fl. 
s=o I u 

Note also that as in 9.2 we can define the rotation number 

of f in two '\flays and it is irra-cional. 

',Ie shall assume I
j 

::: [limflX) ,limf~x) J 
, x-+Xj X~Xj 
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In the follOlving lerama '\'ie show that such difieomorprosills" 
-' 

exist. 

Lemma 10.1.2:Let f 

as in 9.2.1. 

Let u be a positive integer ond 

I. 
J 

f j -1 I 1 ". . ,; .n j -1 " ~ . " . or = 1 ~J ~U , Xj = 1. Xo 1 "'ilJ~u.. o. 

Then fU S 1\ {X1 ' •••• ,xuJ~ s 1, 11 U •••• U Iu s·S1.ti_sfies the 
-

( ) ( 
. \ 

conditions of 10.1.1 and has roto.tion number uC)( f mod 1). 

Proof: Everythinc excey-c (vi) is obvious. 

r ( .) , t- -'-.n' f U ' u( f.''' fo ~rove Vl we snow .ha~ l ) ~ £). 

If yEQ(f), 3 xe n domfn and ni~ suc!.:' that 
n. Il~O 

flex) >-yasi~oo. 

EOi'JeVer for 130me k, 0, k ~ u 1;'1e he.ve n i -. mi U -j. k for 

infinitely ~any i. 

Hence 

Cf.ihen 

we can assum~ n· = m.u + k. 
1 1 

1:1. 1 
(fu) l(r=(x» ~ y and hence ;y-e.n(f). 

Let T denote tIle torus Ii1 v:ith u .i.iscs removed. u . 

--' 

In appenclix L~, we construct r, -
on Tu a C (r). 2) transversely 

oriented I'lorse foliation 1; u transverse to the' boundary , 
VlhicD has. the follo\'Jing "9:'::"op(':)rties: 

1. :every leaf cutting 'Cn never return,s to e)'].' • u u 



2. ~f+ has exactly u saddle points, no ~ol_~:momy, no closed , ,u 
leaf and no leaf contQinin~ more than one saddle point.' 

3. ~yactly one inward se~aratrix cuts each component of 

L~. '}1:nere is a closed,non-empt'y nOj,'lhere dense se't n vv'hich 

meets every transver~e interval in a perfect set and in 

which every leaf is d_ens,e such that the w-l::!:Jnit set of 
, - ~ , 

every non-singular leaf or outward separ?trix is-a. 

5. There is a transverse circle A1 not meeting,dT on - u 

v!hich the point of first return function, is the function 

~ " 't ' , I V1rllCLl .J.8~D '0118 outlined in 10.1.1. 

,[1'r1° ;;o"''''e foll' ::1+-l' 0'(') ~+ l"~ sl r c.t"i-}c,J(l l'11 -"'l' ~urn 111 1 l' ~ ~ ..1... '-' __ ..LO· - '-AV ':'J..;;}f OJ .1:\.C v .... -'._ - . .1. 0 (..,. v. _11. "'" - ,u 

fundamental region of the to::cus. 

Fig .. 10.1 

A 1 
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., 
;3imilarl;:r vle have the norse foliation~-' 'which is -:t "" 

f,u f,u 

with the opposite orientation on" the leaves. 

t:e shall construct general Tvlorse foliations by glui~ng " 

together foliations like '3+ ,~- • To"do this In f,u g,v 

sufficient generality,we need to constru~t another f~~il¥ 

of Norse foliations vrhich occurs naturuilY--'"l,'ilferl-one 

considers Norse foliationi on ti2 ,the join or two "iori;with 

just one limit set. 

1 :l .., "'''' f - - '- - 9\ \'.) '.Lne horse "oJ.la"vlOn «.1. 

\:e conside:c first I-iorse foliations on fI2 vIi th no closed 

leaf, no holonomy and. exactly one w-limi t set. Let .A be a 

transverse circle cutting this set. 

Let points and label the invlarcl 

and outt'mrd separatrices as shol'm in figure 10.2. 

~I S' ~1 2 
- t' t2 P 2 -P" 

t' 1 t 1 
s1 s2 

1 
! 



· :; ... 

Let Ti' 'ri denote theC)oints at which. the separatr~~e~~ 
-. 

~ tf f~rst cut ~ and' "the ".noints _at whieh i Sf ~ i' i __ .L A c ~ Ji" '·Ji ~ i' i 

last cut n. Orient ~ so that the pairs 

(tangent to l~, tan~ent to l-ea:f)~ 
-. -

lie In the orientation of 

L'ie consider the point of' first return iUlic-tiGll on A.-

---... 

-
-.~'-. 

Doints T., fj1! :lssociatecl to different saddle _u~ints ... .." .. 
J: 1 -1· 

interlaced arotmd A 2.;:, are the points S., S! • 
- J. 1 

For sU9pose that thA i~terval(~1'S~) ,say, conthiris no 

SA • 
c::. 

}?ig. 10 .... 3 

Then every leaf cutting A 111. the interval (S1'cl~) re~u~n3 

to A. Purther,as can be seen from figure 10:3,the image in A 

of (81 , B~) under the for1JJard holonom;jt map i~ ;\ '1'1. 

but since every leaf of ~ cuts "i this is clearly absurd. 

Hence our assertion about the order of the points T,S 

holds. 
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Thus HE: r1ay assume that the pointi33i , S~ R1;'pear a!:'ound A 

iTl th~ order 81 ,82 ,31,,82. and therefore ti:lat: the points 

~I'i' '1'1 ~lppear around A in the order T1 , T2, T~ ,1]'2e 

~L:1US j h~ ,oin.t of first return function 

~8~S intervals (81 ,S2) 

(82 ,81 ) 
(81,82.) 

(82,81 ) 

---~) (T1 , ~'2) 

---~ (T2'~~1) 
___ ~ (rn, rn '~ 

\..1.1' .1.21 

,----#" (" rn' T' '\ 
T "Jo.2' 1)e 

Gu-:;tint; along A produces ~i I'1orse f'oliation of 'r
2

" the 

i,'~r';,ls with two discs, re:11o~·ed, ,,:hioh is transverse to the 

bO'u(.;da.:cy. Every leaf leaves on(': bC1undary cOIPponent and 

r'&.';i.':;hes the other e:;:cept for fOiJ'~ inward oeparatrices. 

li' I,I' •••• ' I4 are the four' open ir..tervals of one boundar~· 

C').Q1??v."l~.mt from which every l.=;af r8!3.ches tre other boundar~T 

CC!:'lJor.~nt, appearing in OJ:'d,~r of the orient:1:ltion, then thei:r' 

~!!iages .)1' •••• ' JL~ in the othe~'" (loundary com,onent appear' 

in "I"l1.e ord'Jr J 1 ' J 4' J 3 ' J 2 e 

~~hf~ fr'\liation in a fundE-mental region of t.rJ.e 'U.."liveI'sal 

. cO~I€ring space is shOvln in fig1.i~A ~IO .. + .. 



" 
~ 

i 
f 
" 

\ 
I 

Fig. 10.4 

An example of such a C· r'iorse foliation, JJ, is con.E'tI'ucted 

in appen<liy. If,. 

It is defir.ed. on T2 • All lHaves leave tl:e b01.lmi~=·y 

..... 
component :t:' and return "Co the boundary component Ie. 

+ + 
There are COO embeddings \.- : :::;1_--+.- K- \'lhich preser-.re 

orientation such that if 

is the map given by trans~L8.ting along leaves then 

g (1-)-1fl+ ,..,1\[O'~ 1 ';1 ~,~1\f'o' ~ 1.:2.} = ~ :;:;, ,,", ""!, 1; I:) ~, "4, ~, 4 

,is given by 

g(x) = 



j 

i ., 

\ 
I 

1?'7 

10.4 Morse foliaticn~ ~i~h ne dense leaf. 

In the preceding section.:; we constructed three types of 

1\10rse foliation: 

S~,v : on Tv,the toruc minus v discs. S~,v is a 

"generalised source" ir:l i.;he sense that a leaf crossing 

any boundary component o:f Tv rbJllEi.ins for ever in 'I' • v 

~;,u on fi'U· ~; u is Ii gpneralised sink. , 
JJ on T,2· In lJ evc;;"!.'y leaf croseing the bounclary 

component K1-, except .for four iorJ:~ola.:L:'d separatrices, Rl.'ri ves 

at the boundary component; Y...... In the Morse folie.tiona 

constructp-oo j:n this section ~ \..;ill al\,lays be wana.el·ing. 

In this ~er;tion we show how to construct from these 

components Cr (r ~ 2) f'iorse foli9.tions d \,/i th no holonomy,. 

no leaf COJlol-;a.ining more tl~.q:l 0n8 saddle point and eX.J.c+...ly 

k (k ~ 2) non-trivial limit ~e1;S. ~~hese will have no de:lse 

leaf and oreler preserving !101onomy. 

The construction proceeds as follows. 

Choose Norse foliatj.ons: 

+ -I-
~f U , •••• ,~"t~ U 

l' 1 -q' q 

such that 

~ l:. 
• J. 
~= 

= 
s 
L 
j=1 

~: v,···· ,~;: v 
°1' 1 Os' s 

= c> 0 • v. 
J 



1. 

': '/3 

Pair each component ,~\.t the tOUlldary of Tu. 1tlith a boundary 
~ 

component of some T •. 
v.j 

Construct c chains 01' J)':.; (possibly of le.ngth 0) by 

inducti.vely gluing the bour..C"lu::'y component K- of rl> to '~h9 

boundary component K+ of cnot;16r copy cf lJ', taking C13.re 

not to glue together sepcratrices. 

~:hen glue each boundary cOTnponent of Tu. to the remaining 
~ 

component K- of a chain of .t>'s and glue the boundary 

component K+ at the othbr end of chis chain to the paired 

boundary component of ~I,"".," 
"1 v 

The result "t·/ill alwaJ~E; be a l'!()l'se fol iation of a c.·!...of: sd 

2-manifold and for suj.t£l.·td.e choices of the original 

componen'l:;s and pairins t:h.is 2-manifold l.~;j.ll be cOnJ1.ec1;cd. 

The only c0nstraint on t~e gluing map is that it should 

~ not glue tog~ther separatL~ces. 
f ., 

\ 
\ 
I 

Fig. 10.5 

In a Morse foliatj_.7il~ :Jbtained like this each ~- cope""'" ;Jg,v'~ vv_ 



f 
l 
~' 
f 
" 

\ 
1 
I 

1'-'0 
, .1 

:orth v streams of le.':l.f. T~3..(.:h .-:;tream flovlS along a number 

of I)' s and is eventur;:!.J.y sud,:od, together with u-1 other 

streams ,into an ~;, u ' !"tS if"- rigure 10.5. 

Suppose that, a total of. J: copies of .f) \vas used in the 

construction. 

00unting up the number cJ -:addle points and using Euler's 

formula shows that if the :..'esnltine; manifold is connected 

then it he.s genus g whGre 
q s 

g ::. m + i~ 1:.~ -t 1 = m + r:; v. + 1. ..... j=1 J 

Let GJ· bd the unique lim'- t: set associated to ~ I 
~ 1. • ,u.. a:LlCt 

~ :. 

~~ the u~~~ue limit set ~s~ociated to ~; .• v .• 
u ~,J' J 

Then the d:i.:::.tinct non-tri.'/j al limit sets of ~ are: 

""'1' • • . • ,(Ai <111d 0(1' •••• ' ~ • q 

Hence the number of distinct limit sets k is eeual to r+s. 

Further ''Ie GP..n choose a b;:u.is of 1-forms 

'21 ' · · · · , "l P" ~ ... rJ ,~ "1'····' '012' _ 0 

of H 1 (I1g ,ffi.) \vi th respect to "Thich the asymptotic cycle; 

of ~ are positive ~ultiples of: 

5" 'li + 1X{:~~)"i 
'( "2j -:. «(tl: J _rJ. )'\}j q+1 'j ~Q+s , 

whe:t"'s Ol denotes tr.';; rotation number. 
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It fo110\10 fro!D. 1 (). 6 following that if S",,;~ 
.L ~ .. 

t..ne 
-I- - .: or--" 

aSpp~O(;lC 

cvcles v ' 1 ' f' ~ t r,O.. H c aSSl Y ~ up 0 0 -conJugacy. owever thfs cloes 

not remain true for genera greater than 2,even a~bng. 

l;or8e foliations constructed as above,~ince there is a 

counterexample with g~3,k=2 and ffi=O_or m~1. 
-' .. .. 

On the other hand, if, in addition the .-number of imi'larcl a.i1.d 

the rmmbeI' of out1'rard 13eparatrices in each limit set a::i-d. 

the number of separatrices_ limiting 9~ each limit set is'-

known,the asymptotic cycles are classifying for our e~i~~les. 

10.5 Iiorse fo1iati',):1o l'Jitj-l ever;y leaf· dense. 

s ~onstruct 0o~se foliations ..... - -;- .. ~ 
~ I -L ....... L"':'" every leaf dense by 

~',rljoi.:J.ins g-1 copies of t!) to obtain 2.n orient2cl 2-:':2.:::ifoli 

of gel11}.s g. 

On a torus, 8.S fcll()~i;s from the results of Denj O~T ( [ 4- J -), 

s-re-"'''''' i-iores fo I ~ 0C-~ 01'} which is c.;r (I' ~ 2) and has no J\ ~tY ~£ o..j _._-'"'-'---..... \ , 

holonomy and ::J.O ~:cs2d leaf has every leaf dense. -

I do not kno\·! ',';:-.-'; :218r the analogous result is--true' ()n_~:--~. 
-' manifolds of i::.: -- :;::' sen-us for 1'1orse 

With the notation of 10.3 let 

Ii = 

for some irrational number ~ • 



I:Phen there exists -a C co structur_e onl'-Lsu,ch that lJ defines 

a COl\lorse foliation ~ on il.0incel-I in orientecl and has 

= I'L- bv the remar};:s 
C:' " 

!~Tote that the irrationality of 0( im?~ies-that ll" has no 

closed leaf and that no leaf' of .0" has-ffiore than one 

saddle point on it. -

-- ,-' ~ 1 " 
J.12\, l : b ---~} L 

/; 

l:hen i is an embedcJ_ing of ;:) I onto a transverse circle "~. 

Si ve11 

f(x) x+o<. or 

X'i-o(+-} OT' 

how it is clear f~o~ the construction that A meets the 

w -limit set of ~,-,cj-:"~y leaf. 

-, f no leaf is ':~::::-:S'3 it fo110\·!s from ?1 •. 4 that"· there is 
.-::.-

elll interval I c: _-c suc:r- t.hcitall it:e:ca~e8 of-.I 

Ln the othe:.:' ~~an'i it is clear from the definition of' f 

that l-iebesgue Ti12::1sure is invariant under f. Hence no 

such interval I can exist. 

-- , - -, -'" l' " f1\, 
l~ence -cne i'lorse .L 0 If:J-ClOn tel", nas every leaf dense. 



. , 
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To construct Morse fofiations 0ith all leaves dense on 

a 2-manifold of arbit~ary genus g~2,we proceed as follows. 

:Let 0( be an irrationcl1 number with goc < 1. 

Take (g-1) copies of T~ i T(1) T(g-1) with the c.:" 2 ' • ••• , -2 -

I-iorse foliation rlJ on 
+(i) 

each of them. 

Let K- be the corresponding boundary"components S!1a 

+(j) +(j) 
le+ t - '. ::;1 ____ ~T- , b 'd" "10 I 

v '" "-' > i'~ De em. ea lngs as ln • -+ • 

Let M be the manifold obtained by identifying 
(.j +1 ) . (g-1) 

and l. - (x +0<.) (mOd 1) and L+ (x) with 

( "\ JJ 
.l.+ (x) 

(1) . 
l..- (x-:-oc). 

Then ;·1 is an or"iented 2-nanifolci of genus is 8.nd. hence C:3.;'1 

be identified with ~ • g 

oince Lebesg~e 8easure is invariant under the holonooy 

map it follows that every leaf of the induced foliation 

is dense. 

Finally,we give ~ne promised result on CO-conjugacy of 

Morse foliatic~3 ~~ !~ - the join of two tori. 
e 

--" J:" . --Fro')osit-ion -:2. ~ ;~ ___ e t '~be a C (T ~ 2) 110rse :t-o.J..ie.ti-on on 

;.~,the join of ~~o tori,with no holonomy,rto leaf containing 
c:.. 

more than one saddle point and with exactly. two non-trivial 

limit sets. 

sJith the notation of lemrne. 9.1.2 suppose that the point 

of first return function f has rotation nUl.'lOer ~ and the 

point of previous intersection function g has rotation 

number P' .. 
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Let 0 < >",p < 1 be arbitrary and let f'l be the norse foliated 

manifold, obtained b~l id.entifying the- boundaries of two 

~+ cO"ip~ r,j" n.·o"", fo'icited by 1 d,n ... d the other by :.! '-" b ... ) _~ -'-/i' _J.\:... ....L ~ I'Q 

,0' )A,cc. ' ,-
~- (with the notation 6f proposit±o~ 9.4). 
:Jt9" ,/l ,1 ~ 
Denote the induced norse foliation by ~ rt.,p 

... ~-

'\.f ",,0 . t l:; 'Y fj<hen .:J is v -con.lUga' e '-0 y -. 
~,~ " cc.,p 

Proof:C2he meat of the proof is contained in lemma 

and proposition 9.4. ~e sketch the rest of-th@ probf. 

~ also satisfies ~he hypotheses of lemma 9.1.2. 
0<" 

Let .G be a transve~se circle transverse 

ci:ccle to 21O(,p' hO,'iolo50US to zero. ""hoose transverse 

circles it1' A2' to ':j and 1'1, A2 to ~ 04,,. as in the statement 

of leoma 9.1.2,with ~iffeomorphisms: 

f 

:'~~ \ t "Yol --~) JL2 \ J 1 ! 
,c:~\tr~l » £c2\J1) 

" 

points of first 

return functions 

points of previous - . 
return functio"n s. 

.. r' [ ~ ~rlt~ = v - I 
v 1 r..,. '1 ' - -:'" 

~ 

, I1 =[Y1,z'1] 
Choose projec~i~~3 

Pi 
Pi 
Lift 

-
H-~ ---+)?. i:lcy,,)ing':Z to x- (i=1) or '}t- (i=2) 
100 

ill )A! mclpping ~to x'(i=1) or 'Y'(i=2). 
1 0 0, 

f,g,-9J.hol' ~,~ to maps ,B',G,@f"«'®~'P with domain ffi\ZZ, 

as in 9.2.1'. 
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r---___ -~--r_"r'__...:O+_~_c_.~.,......__t H ( to, 11 xo {1} ) 

L--____________ ~ .• __ L H 

H(x,O) Xo 

I 

/ 
/ 

1o~ use the holonomy lemma i~ it6 full CO-~or~e to 

COil~t~uct continuous maps: 

rIi ,3i : [O,1]X{O,1]--;.rI2"io

; (respec"tively) for i=1,2 

sat-is f~iI·ing the following condi",:- ions: 

(i) H11[O,1)X(0,1).is a home0:rJ0rph:i.":)~'1:nt,) its image 

and H1 (x,t) = H1 (y,s) if & only if ~ 

a)t=0,s=1 and x=F(y) 

y=1,x=lim F(x). 
x~O-

or b)x=0,y=1 and s=t' i. 

(mod 1) or Y=O x=li.m F(x) or 
+ x·· ... 0 
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(ii) H,.,(O,O) E(1,0) Xo ,H1 (0,1) z1 
-- //' l' 

Y1· = = = ~ H., ,_ I , . ..' = 
I I 

(iii) H1 (x,O) = P1(X): 

(iv) H1 (O,~-) is ~ saddle point, 

(v) H ... (x, t) lies ill a leaf-independent of t 
I 

, 
as in figure 10.5·~ 

Let H2 ,I-i1 ,H2 hav~ unn.logous properties with tilt; 

appropriate substi tu~;ions for F ,xo ' .Yo' Zo and p.,-

Image of X : 
r-

Td-:'l~t'; f--:r .... 10ng A .J.. \ •• 1, ........ J c_ .. 

Fig. 10.6 

Now t.he closure of 1"'12' H.
1

({O,1) X [n,/i]) UtI2 ( [0,'1j )( [0,1]) 

is homeomol'I'hi_c to ':l cylinder S 1 )( I ':!i th bouildary 

compO:::l€nts: 11~' H1 ([0,11 x (-~-,1]) 

J'1 U H 2 ( [0, 1] x [~, 1] ). 

The Bame is true ':J:: r-l\H1([0,1] x [0,11)u ::2;(0,;1])( [0,1]). 

I.Jet the homeomorpl:dsms be X,X' respecti V2J.~· ~ .... i th i11ages 

9.S ~hu'.:n ill figure '10.6. 
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Applyir_~ the holonomy lemma we ca~1. constl:Uc.t a 

homeon;orphism "t' mapping the, imae;e of X Ollto the imae-;e of 

X' anl '- such that: 

"(( H1 (0, t) ) = f~1 (0, t) t; } ~ 
Co 

"1'( H1 (1 , t ) ) = H1 (1 , t) 1- ); 1 
v j':! 

"t'(H2(0,t» = H2(0,t) +. ~..4. " ~ ~ 

'1'( H2 ('1 , t ) ) .- H2 (1 ,t) t ~.~ '. , 
and the leaves of ~ are mapped 011-1;0 the J.ea-.;·(~s of 

a..~d their orientation preserved. 

Nowb~ prnpositio~ 9.6 there are homeomorphisms 

A ----.' AI '1 ,. 1 

/'. ----t • .J.~?I 
"~2 ~t;.. 

preserving orientation end such that: 

<r>1"1e}4,ttCp1 .: f 

CP21
-S",p'P 2 - g 

'P1 111 = 'YII-; 

<{J21 J1 = YfJ1 • 

~ 
1Il,~ 

:Wif:.; 0/1,'P2 to orientation preserving homeomorphisms t1 '~2 

of: LR such that 

i1 (0) = ° = ~2(O) 

®JA"o i1 = +1 0F 

® A~o.~ 2 = cf2• G • 

Now extend "i" to all of f'12 by d~'fi:ning 

"t'H1 (x, t) = R~ (9?'j (x) , t) 

~2(x,t) = H2(~2(x),t) • 

This completes the lemma. 
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Corollory": Lat S and ~t be Cr (r >- 2) Moree f::liatior..s !.'m 

l"12 , the oriented 2.·msnifold of genus 2. 

Suppose that S, l' ha.ve no holonorny,no leaf contaiai.::1g 

more than one sadole point and exactly two non-t:cilria.L 

limit sets. 

Suppose that each acymptotic cycle of ~ is a pOS:tlVP. 

multiple of some aSJIuptotic cycle of S'. 

Then ~ and 3' a:r'e CO-conjugate. 

Proof: It follo\-18 from the results of paragraph [) .. IS t~L:J.:t; 

tlJ.e :rotation nunibe1.'3 C( ,p are deter::n:"ned by t;~1F. as:;;Jlptotic 

cycles. 

Th~ fact that care ".,as taken to choose a specil':. (j 

tran~verse o~ie~tation ensures that we can tell wtich of 

. C( and {3 is aS30ciated to which limit set. 
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,Appendix 1. 

Lemma 1: Let S be a Or HO.r·t<3 fclie.tion on Mg , the oriented 

2-manifold of genus g, an t let C be f.l. Gircle leaf of :.9. 

'£hen there is a Cr embeci. l:1il1g· 

E3uch that: 

(i) "I'(S1)( {OJ) :.; 0 

(ii) Any circl£' leaf meeting the image of "'I' is 

of the form (S1)( {t}),f'rJ.r scms t e,(-1,1). 

Proof:Let -V: S1 ,C be a. Or diffeomorphism. 

Identify 31 wi-ch [0,1]/ 0=1 and let 

C)": (0,1] -~ C ne the lift of 1'. 
I.Jet H : [0,1) x (-1 ;, -: ~ ) )0 ~1g be the map 

determiued by the holonotny lemma (2.13) with resPect -::;0 

some transverse vector field • 

In particulfl:= H(t,O) = "I(t) so that without loss o:f 

generality we can suppose that 

'["-1 ( ( ) ) C' .. . 1 ' Ll.1 H 0 -1 , 1 _ ( ... ·1·~, '1-2 ) 

(where fIt : (-1i,i i) • ~Ig : X t----+H ( t, x) ). 

Let cp: [0,11--)0 [0,1] be 8 Sl.lOOth function equal to ° on 

a neighbourhood of ° and 1 on a neighbourhood of 1. 

Define K : (0,11 x (-1,1 )--~ (-1~,1~) by 

K(t,v) = (1,-qxt)~1 + q.>(t)f(j1(v) • 

K is Or and K(t,V:1 ,~"lT t nea.:r:- 0, K(t,v) = H:j1(v) t ne3.r 1. 
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DE:!'in'') "til : [0,1] X C -1 ,1 ) ~ I"lg by 

1" C t , v) = H C t , K ( t , v ) ) • 

'l1~)8n yr projects to the required map 

- 1 -+- I'J 1" • , and e v ... i, ,.\ .. oe as J.n 
'-' 

lE;rnma 1 .. 

Iet; ~: B1 )l"lg be a Or embedding 

an5 lOy: S 1 )( C -1,1) --4I"lg be :3. Or embed-ding S'.lch that 

"t' ( S 1 X (-1, 1 ) ) n <p C B 1) =. "r' (S 1 X (-'1, -i ) ) . 

~!len there is a Or embedding 

r'll. B ,. M . .,.... • 1. g 

w:.t;.i q>'(B1 ) = <PCB1 )U'\((S1x. (-'i,~). 

P.::.:>of: Let f: (-1,1) ~ (-1,1) be a Cr orientation 

F::r'2:~jerving diffeomorphism ":tlith f(-~') :: i, ruld f eCf.lal to 

t·'i.e identity map near :!:1 • 

rrhen let: CP' (X)=t X 
f\J/( , '1\Ir 'k, I ' 
T\l,dXp)T T\Xj 

x • <1'-\vCs'1 x. (-'1,1» 

~1 x€'P' f(S X (-1,1». 

Then ql is the required Or emted.·.iing. 

Lemma 3: Let ~ , rig be as in lemm!::. 1. 

Let 0 be a circle leaf of ~ ,Cin':!. suppose thai.; there is a 

ene-sided neighbourhood of 0 containing no ci.rcle leaf 

except O. 

Then there is a Or embedding 

"r": S 1 x (-1 1) --1' i'I , g 

I 

r 
~ 
I 



~ 
) 

I 
" 

~ 

1 
! 
I 

'I 
such that (i) yes x (-~. }) .= C 

( .. " All' '-, 11) ~L~C1r~~eS 

are transverse to ~. 

Iroof: The proof of th:U:: lcmmtL it: similar to that of 

lemma 1. 

i"or we may choose the '~;r2nsverse intE':rval in the defini tiol1 

of H so that H1 (v) t v v ~(O,1~) 

Then choosing <p to be a d~ ff'-:;or.J.orphism with 

epeO) = 

nieo) 
dt 

0 

= 

, CP(~ ) 
9-~~_('! ) 
dt 

. - "1 

k>O 

and after rE.~parametrisat.,'i,on of the second factor in 

S1X (-1,1) ive obtain tnt:.. I'81uired embedding. 

Lemma 4: r,et f>: S 1 x (-1,1') ---i' s 1 x (-1,1) , I"'Ir oe 5. \J 

orientation preserving diffeomorphis~ which maps clrcles 

S 1 x It} to ci:!'~les S1 X {'1 ("!.:)} 1::i -I,.-h p orientation pr~~:3ervir:~. 

Then there is a real nUlJi.;e!' t)'O and a diffeomorphisIil 

1 '( 1" 1 ( ". p: S X - ,1) -----t S . x -1, '1 ) 

which has c.:.ll the propertiE:s of p and satisfying: 

(i) pL::1 X (.-: ,-E) = identity map 

(ii) fA I S 1 x (e., 1) = pi s 1 )( (E, 1 ) • 

Proof: f is of the i'or:n 

p ef) , t) ~; ('\I ('6, t ) ,tz. (t ) ) 
where 'l: (-1,1)--_~tl,-1,1) is an orientation pr(~sF-:ril"i:1.g 

Or diffeomor~hism. 



Let 'l' : (-1,1 )-<p, (-'1,1) b0 ;3.n orientation preserving 

Cr diffeomorphism with 

, e 1 C!) .".1- • ~. ~ - ,-~ = 1Qen.,1~~ 

~, (c ,1) . , 
n 

and 'f: (-1,.1 )--+)00[0,(( d C" map sati'Zfying 

f(x) = 5 01 x E: (-"I ,-E) 

~ x E ce, ,) • 
l'hen define jJ. by 

P. (-6 , t) -= (epe t )6+ (1··f( t ) .'I~('9 , t) , rz' (t) ) • 

Then po is 1:1e required ,"!,iffeOIIlOI-9h::"SD. 

Lemma 5: Lut; p :[0,1) )( (0,:] ---+)[0,1] X [0,1] be 

orienta-::;'OI.l preserving ,i.iffecmorphism which ma-ps lines 

. [0,1] )( 'LJ to lines [0,":] ){ 'lex) where 7 is orientation 

prese:rvi!lg. 

Then thp.I'e is a real numbw,:, ~>O and a diffeomorghism 

having 8.11 the propertie:~ of: p and. satisfying 

(i) }AI [0, 1J X [0 ,t] ~- iclenti ty map 

(ii)r l [0,1] X [1-e.,i] =f' [0,1] X [1-t,1]. 

Proof: Similar to that of l~mma 4. 
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A(;T~enr..=i~x~2..;... _.J-:": __ 

In t!lis exa:ilple the square is i'o:i..iated by lin.es X" = constant 

ex~ept in a neighbourhood of Dc - where ~ is the centre. 

l~e \; q>: ffi ~IR be a C· bump func tion with the l'ollowing 

u-) CP(x» ° 'o'x E ill 

(ii) CPCx) :: Q'(-x) 

(iii)<P(x) = ° x 4 C-i,i) 
(iv) CP(x) = 1 on a small neighbourhood of 0 

(v) «pmonotone increasjng on (-CX»,O) and mono-cone 

oecreasing on (O,~) 

(vi) cpt monotone increasing on (-0),-1-') , (tA,oo) and 

mcnotone decreasing on (-1-',14). 

1 I 

_~1 __ ~~ 
~p I-~ 

x=-i x=i 

-i 

-a 

Graph of cP 
!I"ig-. AC'.1 

Graph of <pI 
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G/:.t'0se ). > 0 such that ~'(~) < 0, Cf" (~) > 0 

Define f m2 till: (x,y)1 , xq'(~) _CP(J(x2+y2)). 

Then f is CCO and (x,y) is a critical POil.l.t of f 

i,f & only if CP' (~) = CP' (Ixl.)signx (1) 

y = 0 • 

Ihe Hessian of f at such a point is 

( 
q'J"Clxl) , 0) 

o -" ( lxl ) / , I xl 

'~Tow CP' (~-) < 0 i.mplies that (1) can only bE; s-;;.tisfied if x ) 0. 

!"ibU~A 1\2.1 shol'ls that CP' ( b::l) ..: CP' (~) at precisely tvJO 

values x=" and x=~' with O<~'<A. 

Jomputing the Hessian we see that ().,O) js ~ centre and 

(~I,O) a saddle point. 

The Morse foliation determl.ned on (-'1,1) x (-1,1) by the 

lev~l curves of f has the l)rOper-cies stateJ. :"IJ. section 4· •. 3 

c:.:'lC. i:3 th8 required f'Iorse foliat::'on J; . 

Th:i:3 example is constructed as i'ollot!s. 

Let cp: ffi-iffi be a COO funct~_oL: with C{J= J on a 

neighoourhood of 0 and <pex) = 1 i or I x I > 1- r .. ,I'lhere 0 < E < 1. 

Suppose that (('(ill) ~ [0,11. 

Define f:}R2 ) ill by 

f(x,y) = Nsin2rry .. <peSi1l2nY)COb211XSin~?'.Ty 
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for N E IP. sufficiently large. 

Then the critical poiI',lts of f are the point;:1 'Ill. th 

The 

ye (mod 1) and 

Hessian at euch a point is 

( _q,,2COs2:xsin21Ty : 

x5o,i (lLvd 1). 

wi'th sign of thE:: determinant the same as that ·::>f N'::082rrX 

as N is large. 

ThUE:> the points xs: 0 (mod 1) are centres and t'r.€:: 1?cints 

xs ~ are saddle points. 

'l'he induced foliation on the half tc:cua 0 < Y <.J i::: !,'* 

or e.- according to the transverse or; entation c!.~o.:=<:n. 



195 

l,om~,E1 1.: Let f : (-1,1))t (-1,1) ----tt(,q1,1) )( (-1,1) 

Le a dI' (1 'r, 00) diffeomorphism whicb 8.gr".:H~s vIi t;... the 

·:o.enti ty map on a neighbourh()od of the boull~.:.ry of 

(-1 ,1 ) )( (-1 ,1 ) • 

::hl~n :f is Or isotopic to the identity thr01.'.gb d.~_.i·feomorph-

i£IDS \1hich fl.gree vIi th the identity' on a ::leichboul'!.tood of 

the 'boundary of (-1,1) x (-1,1) • 

~:?I)()f: A proof can be four.LJ. ~n rL~21 or [W+ 1 • 

~mma 2: Every orieI?-tation preserving Or (1 r '\ d" ".i:> ,/ J.I.LeO-

morphism of the 2-sphere iB Or-isotopic to the identity U~~. 

P'E...oof: In [44-] it is proved that GO(3) is D. st~'o]Jg Q8form.s.-

t " t t f th f ~"~¥ h" f' -2 .~on re rac 0 e space 0 Q~~.eomorrL~sms 0_ d • 

Since 60(3) is path cormec~ed this implies t~B result. 

The result also follorlS frorl lAIlima 1 by f"hovling that every 

diffeolliorphism of 82 is isotop:i l! to one 1.rhich agrees wit". 

the identity on some disc. 

To st:.e that this is t.rue let f be 3. cl::".-:fE;.:-"l'lorphism o:f 32 • 

Taking an isotopy through rote.:] JnB we can aSSUTae that f 

fixes a point. 3tereographic projection thej~ gives: 

g : ffi2 .It m2 • 

Taking another isotopy \rle ca.n '-~ . .:'>SUIEe that g(C) = O. 



" 

i 

1 
I 
! 
I 

!.Jemma 8.1 of [LI1] gi vcs a di.ff,:omorphism 

which agrees with g on the dj ~J0 of radius i, wi th the 

identity map outside the unit a.i~c and which is isotopic 

to the identity through tliffeomorphismc which agree i!li th 

the identity map outside the unit disc • 
. ."1 

Then g is isotopic to Sgr) , v.'hich agrees vii th the identity 

map on the disc of radi i.I.G .~ .• 

The result ±·ollO'tvs. 
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The Norse foliations 1:f+ • ,u 

2:he co:nstruction is in two pa.rts. 

::?irst we construct a Horse foliation on an unn1llus with 

u holes which depends only en the dome.in cf: f - this is 

the left-hand threequarters of the iiagr&m i:1 fi~ure A4.2. 

Tht-:.n on a seGond annulus we construct a tlm,; which. when 

adjo:Lned to the first Morse foliation g5.ves "the required 

f~orso foliation \·d th point of first retu.rn fUIlction f -

-:-"1.18 is the right-hand qv.aI'ter of the diagrCl..ffi in figure .A4.2 .. 

In appendix 2 we constructed. a 110::"se foliation.B+ on 

(-1,1) x (-1,1) as the level surfaces of a Morse fl.L.""lctioTJ f. 

~hen the flow of the vector field 

~f 1 ~f a rx 'iX + )'1' ay 
if> 0verJ,where transverse to ~ t (see figu.re .4.4.1). 

, ," , \ , \ , \ , , 
• 
I 

• , , 

\ , 

" I \~ 

) ;..,...----,....".-_.-, , , 
\ 

_-"Ir:-~,­, 
" 

) 

, . , 
r-.......~Cl==~+=;: "i---'- )) 

, t ' " ',.... I . -=,,"4' _ ~ '-'---l- __ .. ::::i'-'«---- -1---
) -
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Furthermore,outside the circle centre the 

i,the flow lines are lines y = constant. 

Oriellt the transverse flow so that a pair 

r~dius 

(tangent to t~.'a.l'lsV'erse flow, ~angent to ,+) lie~ 1:-. tht~ 

orientationcf m2 
• 

Denote this flow by ~ ,anl suppose that it is d.c:t'ir-.(;-i on 

[-1,1] X [-1,1]. 

diffeomcrphism batisfying the properties given j.!:.. '10.1.1. 

Identify S1 with [0,1] 1
0

=1 and Ghoose reprssentr ... ciYes of 

thE; points x1 ' ••• ,xu in [0, 1] with n <x1 < .. • (Xu < 1" 

We wish to define a flow on r ° , ~J ~ r 0, ~, as shc1>m in figure 

Choose E1 , •••• ,Eu ) 0 such that the closed inter\ .. ~ls 

ex. -£. ,x. -;-£.J aT':;: disjoint and define 
~ ~ ~ ~ 

f i : r -'.j ,1 J )( [-1 ,1] .. [0, i] )( (xi -Ei ,xi +eJ "hy 

fi(x,y) :; «3/8)(x+1),Ei y+xi )·· 

Choos(: the florl onCO,;;:])( [Xi-£i~xiTtJ to be fi1~ D'1d 

extend this by lines y=constant to a floll 011 

[O,iJ X [O,1]which D.grees \vith t;he flow given 'oy lines 

y = constant near the boundary. 
1\1) ,. .,] 1 

It thus determines d well-defined flow n 0n LO,: X s . 
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_----,----+----'"'"1 (°1[1 ) 
~ E- ---.,.c~~.fE!oI-._ 

Xu t = !~;-..:'-
1---'---_ - ·~::!E,: 

~-______ I ""'- ... 

o-------,,.....--...,...--,--.:--~---.:~ 
,~I ........ '-J 

i I 
t I 

~----~I_.~~ I 
I ........ -----T-" 

r--C-.:--------1 .... 1 x._'_+~' 

x
1 ~-------It-; -r.-e.,'=i I1 

________ ,_L-, __ _ 

(0,0) (~,O) . '\ (1,0.1 

Now in ',the holonomy map is a diffe0morp~ism 

'I'll,,::'F- in ~, the holonomy lnS.P j.G a. diffeomorphism 

h : {oj XS1 \{x1 , •••• ,x l---t{:1- J )\;3"I\J.., U •••• U J 
U I U 

h(O,x) = x. -e.e. ,lirr h((!.,.x.)=x. +tf. .• 
2 ~ x~x: 2 2 

2 

Further : lim 
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)fhas u saddle points 8.nd u sources .. 

For each i, ther.'e .is a' source such that one f-..m'J lin:3 

emanc.ting from it is a separatrix and the other flow ].ines 

eventually Cll:~~ {-l J x (x. -:e.., ,x. +t!· ) • . ~ ~.~ ~ 

This corup~etGs t~e first part of the proof. 

Consider the map 

P: 81, J"1 V •••• U J -~) 81, I", U •••• U I , u , u 
defined byp(x) = fg-1 (x). 

']!hen p extends ,to a Cr diffeomo:!:'ph.i!:1m (wbic:!: i,Je ;.1:.:30 call 

p ) of 81 • 

Ac;ailL id.entifyillg 81 with [0,1~O=1 ' choose C'JJ :'FJ('~:Opy 
tt 8

1 
-+S1 i't'1 

such that tt is the identity naar t:,t and fJ near ~::·1. 

~deter-mines a flow on [,*,1] X 8'! &nc! adjoining t.t.:..s to 

'" J.t deter;;;ines a flo';'[ on [0,1] )( S' '\.-. h' Or .:l I'T.L.i.~C ~s ane:. 
1 1 

that the holonor:~y map from {O} x .'3' to l1} x S' is 151 'len b~{ f. 

No\'! i(Jentifying to 1)( 81 and l1} x .S·· 1.etermines a f'1ovi on 

1 1 the torus S ~ S • 

Let A be the ci~cle corresponding to {0]X81 and reillove 

. small d.iscs whose boundary circles are tr~::':'SijeI'se to the 

flm'l from the sourC:8S. 

This [.;1V88 the reqr.ired flm" ~f+ u on T , u· 
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The Horse foliation JJ on T2 

We construct a C· I'lorse foliation on T2 , the tor'~l$ w:i.:fJ~. 

two discs r'9moved, \I'!hich has the properties out} inca. at "the 

end of section 10.3. 

Let f: m2 
---+) Ht: (x,y) \-\ --+)-Nsin2ny+,Y(sin2ny:'·.:;iJl;::r1ysin21,x 

where N e ffi is a l8.1"ge ponitive number and "Y is ~ !'u::c"ci.cn 

on IR \vi th range [-1,1] and x near () 

x ~1-~ 

"r(x) -. "f'(-x). 

9'is a r~orse furlction vIi th saddle- points at I'oi~tE 

r1+m ""n') d (", ., ) \. "4 ,"'t."-r ... an . "1.+ m , ~+ n Til, n E ~ aIJrl centres at rO:!.nts 

(-l+m,i+n) a.nd (~+m,-:1-+n). The leve::' f.:urfaces of ~;;. je.:Zine a 

Morse foliation 0:' the torus. 

The 'vector fielc (at/ax' ~vray) has a flow \-lhier: i.s 

every\\There tran8verse to the MOJ'se foli~tion defir:~:d by q:. 
It has sources 0.1:; the points (1~+mt,*+n) m,n E LZ sinks T'e 

the poin"!;!3 (i,.,:1l,il·!-n) m,ne LZ and saddle points at p0ints 

(i+m,l-+:l) and (i+ro,-~+l:) m,n&LZ. 

Projecting onto thE.' torus defines a flow JJ! ·:m the to~us 

every;·:hare tranSVeT'G3 to the flow define(l ;):' p. 
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Now remove froID the source and sink a smalJ r~ .. ·d.gL .. 'bc· .. 1L'hvod 
. 

bounded by a flow line of the flow defined by ~~ 

This defines a .f1('J1,·' J) on T2 as shown in figure ..::L.3. 

((J-1 C- a ) 

Fig. A4.3 

-1 ) 
~~-~-+-- q,- (a 

Orient the flow as shown in figure }\4.3 and let the 
1 -1 bO'.llldaries of T2 be '1'- (a) and cp (-a) for some a) o. 

Let K+ be the COli"!pOnent of T2 froin vvhich all lec..v~s df;part 

and 1 et K- be tile other boundary component. 

No~ f h~s the s~~etries: 

cp (x, -~-+y) = q>(x, -2:-y) , 

t(~,1+y) = ,(x,i-Y) , 

f(x~i,Y+~) = ~(x,y). 
Hence we may choosp. C- embeddings 

+ ,,' + 
t, - : S I --~. K-

with the properties required in 10.3. 

This ~omplet6s the construction. 
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PART II 

nA~URAL lJIF]'ERENIJ.'IAL OPERATORS ON RIFMANNIAN I'iAN :;:3C~nG AHD 

REPRFSENTATIOND O"F T.HE ORTHOGONAL AND S"PECIAL ORTHOGO~AL GROUPS 
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In :biz paper "The Foundation of the GeneT.'Cll. Theory of 

Rel!:'.tlv'ity" ((3]) published in 1916, A.E:i.nstein remarked 

ta.at ::m a Lorentz manifold U1, g) ,the only ,~ova.riant 

tensors vf order 2 which depf)!1d in 8.-"lJ'T Ivcal co-,o1:'o,inate 

o~rstem only' en the metric tensor 9.Ild its f:i..:i:'st t°,..,ro derivatives 

c:~d \lhich depend linearly on the seco~d dAl'i vati Vf), are 

J.lnear combinations of the tensors gR Ani R.j .dxi(Vd.x j 
.... a 

wl.ere R is the scalar curvature and R i-_i®,. , .. j is t'ne 
J. ij'.A. ..A.,,~ 

Ricci curvature. In an appendix to [10] lIe l,jeyl proves that 

R iE the only function with these prope~ties. 

!'!o:""e recently in [6} ,P.Gjlkey investigai;ed,in a similar 

\icir~,i'orms on Riemanni&.n m:::.nifolds and his results are 

im~ortant toola in the pr00f oY the in~ex theorem given 

'by l~tiyah,Bott and Fatodi in [2J. In [5] D • .BwA.Epstein 

~nt~0duces the concept of natural tensor field on 

}7j cm.9.r~nian manifolds. His p3per was a major catalyst in 

tile pro3.uction of this cne fi.n.cl should pr€.ferably be read 

be:ore it. 

The :~'urpose of this paper is twofold. I:'5.::·~~'tl;y' it is to 

study natural tensor fields OL R~cIDann~an 9nd oriented 

Riemannian manifolds. i'Iaintaining the spirit of the 

earlier results I shall impose a regularity (~Jndition on 

natur&l tensor fields,whieh 18c.d.G to their 00mplete 
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classification as a space of homomorphisms, bet l."le ep. 

ceTtain represent1:.1.tion spaces for the general linear. 

group, \r·ihich are equi variant unde::-- the action of the 
.-',.---_. -

orthogonal or special orthogonal group~ The second, 

reason for writing this paper is to define and investicat~ 
- ~, 

the notion of natural differential operator in an 

analogous fashion. It turns out that this problem 

reduces to the study of natural tensor fields. 

Ishall only give r83ul ts on Riemannian ma9ii:.eJ.ds. EOi?18ve::-'. -.. 

P.Gilkey haG now extended the Gilkey theorem (c.f. [~ 

pc'..cagl'aph ? ) to c\;)~)l;y to manif:'l~ls '.'Iith an indefinite 

Pl':">~'T'l' C (fRl) , 
_ ... "J l.J...... _ ' ........ _ • 

All manifolds,all functions between manifolds and all 

tensor fields in this paper are eX. 

'1 I)relimina:r·ies. 

(1.1) We shall ~~ ~oncerned with functors E from the 

category of vec~:~ spaces and homomorphisms to itself 

,(sAe n 0' -L/1l-., ....... --.0. ~-rJ/. • ~th such a functor we shall assume given: 

(i) A monomor;~ism of functors 

the rth tensor DOWGr functor for some r. 

(ii) }'or each ordered basis ( vi) of a vector spa.ce. V an 

ordered basis E(vi ) of EV. 
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."- .... .-

(iii) Given vector spaces I[,:"{ and CLll 'i-some>rphism 

ihe rank of ~ is r. 

(1.2) .Ll..n inner proQv.ct b on a vector space V induces an 

innerproduct b on TrV and hence on j~V, which we denote b;:r 

Eb. :J.lhus BIT is a :!:'epresentation s:;?ace for ~L(Y) and O(V, b) 

with 

E(O(V,b)) ~ O(EV,Eb). 

I;;e denote (EV)* by E"'V,then GL(V) acts on..,:E.J:.;\l via 

i,;i th thir:: ;':ction G:: V, b) acts 0::-1~ 'k';' as 8. subg::'oup of 

If (v.) is an ordc~C'ecl basis of V e.nd E( v.) := (w.) take 
l l J 

the ordered basis E(vi ) of S*V to be the ordered basis 

( k) ~(' w where '.,.( 1:1..:) 

(1.3) Given a :.::'2=.~2.::;.nian manifold (JI,g) .r:o -L- .,...., • 

,a~unc~or ~ as l11 

(1.1) induces .-:'::"2:-::annian vector bundles C:[l,~·~.;), (~*j'·;,E*g) 

connection. 

'llhese COIlst:cuc"'ci0ns are functorial and determine 

subfunctors of the rth tensor' power of the tangent blli~dle 

and cotangent bun:J.le respectivel;y. 

Purther it foll01'1s from (1.1) (ii) that given any local 

co-ordinate system x,there are determined unique orde:!:'ed 

., 
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J • -"";C~/:::" i,' -':"C" i'\;:. "--' --'II local bases of sec Clons -.c.. v ,',lX- -:J-,...t.QX --} l.or I;;i'l~ .6': ~ 

respectively. 

(1.4) We describe in detail certain 

properties required in (1.1),which will-be 'neede~ late~~', 

Given a vector space V~Sr(Symmetric group of de~~ree ~\ -'-/ 

acts 'Tlr'lf ..1.': n t' 1 on ~ oe usua~ -- "-. 

, . \ 

1..3- ) C[1118 functor Sr. 
,-

"r,V 
;..) : v 

) 

= (5 vall (j f: 0 5 
'n 
.L 

Let di~V = n a~d let (v.) be an ordered b~sis for v. . 1 ~ 

Yor each r-tu_',Jle of inte,~ers (i i ') 1~i.' ••••• ~l (n - \ '1'· .. • .. ·, r '1 r 

let v. . 
J..1 •.... J.. r 

12 --, -; 
'-'r 

place over all distinct r-tu~les (j1' •••• 'jr) ~lCL sxe 

rearrangenents of (i1 , ..... ,i . ..,) .. 
,/. 

, 1 ~_r( \' , Ue e\; (-) v.) = \ v.: .) 
1 -"-"'I •••• 1 r 

d · (. . , or erlng on l~, •••• ,l ) .. . r 

Cii) The functors Y , r ') 2. 
r 

second. 

:: ,., 2 positive 

ordered by lexicographical 

inteGers c __ c 1:: be 

arranged in ~ -- increasin5 order down th2 colu2Ds fron 

left to right. 

Let Ik denote the kth column in this arran8e~ent .. For 

each integer m in II ~ let PI denote the S3t of 
{+ I {, m 

perllrute.tions 6 E i3 r, \.·rhich fix every integer except those 
r'h:~ 

". 
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in lk U {ms, and which preserve the oJ:de.l'" C'f those in I k • 

YrV = {VETr +2V :Lc(cS-)6"V = 0 1~k"r-'!, mElk +1 ,v+(i,j)v=O i,jE 
6eP

k ,m 

For e~0h ordered r+2-tuple of integers (11' •••• ,i~+2) 

'Nith 

:.t~t; 

H1cre (J" runs over all penr.l,rcatJ..ons in;j r, v7hich preserve r-('c 

the sets {2,4} , [1 ,3,:J,6, .... ,r+2} and ).ea1 to distinct 

(r+2)-tuples (itJ"(1)' ..... ,:tu~(!: ..... 2) .. 

~~en y (v.) = (v- .) ordered by l~xicograpbical 
r ~ ~1 •••• ~r+2 

ortiering on (i1 ,····,i ,..,). r+c. 

(iii) If E1 , E2 are functors as in (1.1) so is E.,,®Er') 
I Co 

\eli th lexicographical ordering taken for the basis. 

(1.5) It is well kno"m that for a~y vectcI- space V, Y V :i.a 
r 

an L.:·rE::ducible representation space for C.~L(V). 

For e-ach r) 2 define "GL(V) map,~,: 

S2(V) ® Sr (V) ---~~ Y
r 
en 

Y~ ... (V) ) S2(V) ®SrC-'1) 
.L 

by: 
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g. : ; .:; . 
J.JJ. ... ,,) ... '7 l.,~ ._,". • • ~""'+2 

. ~ ;) I ~ .t. 

Vi 18, ••••• 
1 

"There (Yi ) is an ()rdeI'ec~ basis of V, the summ~t:t. :.j!' 

convention is Ubea and the sum runs over all pt:::::m'~1.tatior..s 

(jof {), •••• ,r+2} .0( and Pi do not depend on +.hr bu:;is r Ir 
(Y.) chosen. , ., .-
Nvte that IXr and (3r satisfy 

a) £XrPr = id 

b) If L g. . = 0 (\I[here 8
r

.;..1 j ~J ~:n€: 
6€S 1 ~1~0"(2)·· ·~cr(r+2) . 

r+ 
r .. 

group of :Dermutg,t;ions of t 2, ••• :1-'-25 ) then 

Note that every element in the image of f3r Eatisi'':''e.3 :;llis 

symmetry condit~on. 

0( (.l:) ,·.2(11' (~. c.:r(V) . ,(.j) y (17" 
:r~2'J ) !:lI • ...- , --~7r"$'2 r v) 

---4) (f) S2CV) (g) 3r (V) such "Chat cxf3 = ida 
r~2 

Let (B i ) be the st9.11dard basis of mn ,v;ht:J.'c!1,{denote8 the 

rea::' numberR, ~'li th d.pal ba~~.3 (e i ). 
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Let WE 0:'> Yr !:JRn a:.'ld suppose that the componc'J-G of p( II:) in 
r)'2 . . 

, i
1

' i,... ,. 
is the tensor g. . e ® •• c. ~e .. "t-c:. 

J.1 ···J.r +2 

Let g(W) .. b~ the real valued functions on mD 
J.J 

( ,-:, .. {. ) 
Il~:L,;J ~.I.1 

00 k k 
(" ~ 1 r defined by g(lrJ) . .:(x) = o. 0 + LL g. ok k x •••• x 

. J.,.,. l.J r=2 J.J 1-·· r 

(the superscripts dEmoting co-ordinates and noi.; POI,vCI':"=;). 

It follows from pal'agraph 2 of [5] that thesE' .f.'J.r:.'.ctiODf3 

determine a Riema:nlLian metric on a n€';ighbourhL,·.)c'l tj (H) of 

'1' mn \.. J.n • 

The oriented Riemannian manifold (l~01) ,g(~!):: ha~ the 

inclusion chart as a normal co-ordinate ch:trt e:: i.,l::.e 

origin. It is oriented by the u.3ual orientation l"!. mn • 
Conversely i.t is also shol.'ln in 'pal.'aEraph 2 of [5J tha.t 

given a Riemannian manifold (Mig) there exist tm-"'::'\')rs 

vr € Yr *I"T (r ~ 2)1 obtained from contrE,.cting tenso!' :)rOdl)cts 

of no higher tha.n the (r-2)th covariant derivati79 (,f' the 

curvdture te::lso~,such that in a"".:!y ~lormal co-ordin:::';,;!'> 

system S.t p € ri 1:he coefficients of f\.O.Jr(p)) are -C;Je rth 

partial'derivatives of the metric. 

2 The classification theorem. 

(2.1) Natural ten~~o:;:.' fields on Riemanni ali. r:1f.:ti!i201dz are 

int:Y.'oduced b;T D.B .. A.bpstei!~ in (51. 
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Idem~nnian Danifolds. 

(respecti vely . oriented. Riemanni2..l1 manifolds )6f typ.e. (3 ~~) 
- ~';'----~""-- ~- --~ 

assigns to each Eiemannian Elanifold (rE;.-sp: .. ~~r~.~-n·~ed. 
Idemannian manifold) U1,g) a t£l1sor i'ield 

t 0'1, g) t:: Cooc:r:rI Q.: F"h) -,'"> .. , 

;,"\"' -.-... ::::.". 

such that if f ft" .. _____ 4 l".1 l':3 ;C" ,''; -ffeo·'lo· .... nhl· '"'''' (-r.::;,,,,,.-,, 
..... ~_-'- _ .I......J... '::/~ OJ._.l" \..,.".. _ ........ ,:",," __ 

.. 
orieni::ation ~reser'!in~~ d.iffeoI1ol':;:-J.:lisn) onto -e.n ·open. 

r..'D.bm:mifolo. then 

p .;, +- (l;: r;' \) .L / ' •• t ':.': .. ~ \ 
...!. v .... 1,b - lJ\lJ , ...... t.~). 

(2.2) E~stein h~s pointed out in ~5J that the proble= of 

cl&ssifying all natural tensor fields is a complicated 

one. 

i1olve'le1' there l r 

"" ?'. natlu.·o.l conce i)t of regularity for s'1.8h 

tensor field.s \';:'.'::':::' ';las esscntic~ll;y introduced .by .. ..! .. t-iyc'~.fl, 

Bott and ratod.:' :.:: [~? J yar-agraph.2. 

A ~atural t8~SC~ ~:'eld t,of type (~,F), on Riemannian 

(:c'especti vel;)' c:::-·:'snted :J.nemannian) manifolds 
. , 
lS l"'8G'li._"_2.r 

if c;iven (j'i,g), a Hiemannian (resp. oriented Hiemanniai"1.) 

manifold, and a local co-ordinate chart x on U C:E, then. the 

coefficientG of t(H,g) with respect to ~he lqcal_basis 

,B<-.;F( C1/(3xi ®dx j ) are given by universal polynomials' in g .. , 
lJ 



.- \;;d ;)( I 1 a giJ'!oX \. ex a ffitllti"::i.ndex:, . __ ~lo<J-~l~ J-a!f;e:):-and (qetgij )--
1 _ t_ 

(or (detr:; .. )--2- in the oriented case). - -
lJ .. - _ 

"' ,justification of this _ <J.~fini tion is given_ -by AtiY:lh, 

Bott and Patodi -in [21 para. -2 for the tWor-iented caSB. 
-, -- - - . 

en the other_ hand, thespaee- ~f.. orientea Hiemann~an 

structures on a vector space V is ns:~tB:."'afl-Y- id.~ntified 

1:lith GL(n,ffi)!BO(n,Rt)n,~-climV. It is>,e:J.1-knOl-m _and is· 

shown iil the a9?endi:x~ ur.-2 Y-'thc~_t ariy::-i~.att6n.:Il --function .-- .. 

f on GIJ(n,m) inv!}::ciant under the action of .:';;O(n,ill) is of 

forro.: , • C'T.( 'T-') _t.\.. e-- :r..o ~ll,.!..LL i·.,nel"'>e 

-~, r;. • 
.1." ,\,...' • ,-)1'1 (n, ill) ----~ I{{ ar 2 rat i onal fUlJ<~ t i OES 0:;:. 

s-.)3.ce 

of oriented Sie~annian structures is given by : 

the corres?ondi~G ide~tificntion of rings of rational 

functions sno'."lS -''::~~[lt; it is natur&l to regard 

Hl [g .. ,(detg~ ~)-~~ as the rin~ of functions on the space 
lJ ..LtJ-

of oriented 2ie=~~nian structures. 

- .. 
al)~: - ~ 2..2.. Cl OilS to the Ind.;:.;: C(1heorem, polynornial 

1 

d'<)pendence on (c.,::;tsij ) -:~ appears e~cpliG.i tly even in the 

unoriented case although this was overlooked ih the-' 

orieinal proof in [2J~,sea [1]~ In fact it follows from 

[5] theore~ 5.2 that even if we meraly demand that the 
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co.ei'fi(~ients of our tensor field be gi van by universal 

polynoTIlials in '0 gij(a~Of (0< a multi-index, 1 ~ \ 0<. i ~ N large) 

;',rj.th ~oefficients functions of the g.;.: '::aot' n~cessarily 
...... rJ 

(;:'Inti'!ltlOllS) then the tensor field is r\:'g".;.l .. n· (polynomial 

i.~J. the terminology of [5J ). 

I' ~ 3) ~ ~. ttl f tIt f' . 1 - . th I.t'-. _'1...11 ~mpor an c ass 0 na ura ensoT' _~e .• a.B ~s ose 

wh~ch Rre homogeneous (see [5] paras. 6&7 ). 

P. na,tural tensor field t is homogeneous of t .. ;e~ght k if 

t( ?1 ,2 \ 
! ,.,\ g ~ = )..kt 01, g) , all r~a.l numbers ~ .• 

J'k·te the.t g itself is holti.ogene ous of weiGht 2 and that 

:~:he tensors WI' (I') 2) introduced in (1.3) are also 

~cm0gp.neousof w8ight 2. 

If' t has weight k and is o.f type (E,ff) with rankE ::: a. 

t :nas maximal weight if ~l -:: o. 

(2.4) Before proceding with the ~ain the0ren,we need the 

fc~lowing crucial lemma: 

LEl'lhA: Let (V,<,») be an oriented inner prvduct space. 

k. 
( .; ) Th t 't.~ ( ~ 'IT iT," .... e vee or space .norcO!, ·v). 'U , m) ~s zero 

if k is odd,and if k is even ii.> 3panned by 0lements of 

the form : 

v1® •••• ®vk ~I ---·~)<vn(1),viT(2) •••• <1r<k-1)~vTT(k» 

where n€~. 
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k 
(ii) Th~ V3c~or. ~pace Hom,:;>o(V) ( ® V, :r;].:; i.s e<l[;.[1 . .1. 

to HomO(V) ( ® V,Ht) except, when k-n is non n('ga'd v'''! ana. 

even, any linear cul1,bination of maps : 

v1 ~ •••• ® vk ' ~ 

fJ'fsn'E-<!-')VrT( 1 )JA('i )'" Vn(n}«n/Vn(n+1)' v n(n+2»'" <VT!(k_1)' vn(k 

n 
"vhere TTE.8, ,and v. ::: L v '1 e l K J i=1 J «e1 , •••• ,e ) 3. 

k n 
'::'Qsitivel v 
J. 01 

oriented basis); also lies in H ( .0. V "0)" omSO(V) '01' ,.i.l.L,·. 

PROt}F: (i) :i.E pr~ved in [2] ,appendix 1. 

(ii) is proved in [111 p.64. A pro 0:: is also e;ivcu in the 

a.ppcur'lix (A.1 ) to this paper. 

(2.5) The theorem we shall prov~ in this sectio~ ~~·Ils us 

that E:: very I .. atural regular tensor fiGld on Riarue . .lll ... ian 

manifolds is po.l;Y'!lomial in the senne of Epstein C:; 1 para. 

[5]. Ho",,~:ver it g(;e3 further tha.!l th:i.s. It fo110v.-s frow. 

the theorem and the theory of :!,ppresentotions, tb.[lt 1:be 

space of homogeneous natural re~ul~r tensor fiel~~ 0~ 

some fixed weigat is finite dimensional &l1d that tr ... a 

problem of calc".,.lating i"(; reduces to a problcm in 

repre~icntat.io.L~ tl:e0t'y. 

In the oriented cass,in addition to the l;..:r.;.~).J. polYl'lcmial 

ten~vr fields,tensor fields of the forw: 

L (cletp; .. )igTI(1)- gTT(n)·.... 8, e ... 
n~R ~ J • • • g ••• g g ••. ' E" '\7R ••• \7 R 

' .... n • • • • ••• •• • 

T)' th R' eh . t f ~ 1 t n d i.o. ~ j dJek d 1 .... ~s e ~eiila:rm- r~s 0 1.e ensor -lijkl x 'GIQX ~ ~ X , 
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rThere +:he dots indicate contraction OI' summation with a 

local basis,nre allowed. 

l!:::rui"V:'llently we introduce tensor fields of the form: 

)' , - t \-tgTI( 1). glT(n) - 0'- • g. • ? 1.:t:4 w€r 
LJ ~('I_p. g';J') ••• .0 ••• b ••••• g h ••• 
,"fES' ... •• •.•• • •• 

n 

THJ!:OR.2:M: There is a bijection bet\oJeen na·cu:.~~~J. regular 

ten.sor fields on Riemannian manifolds (rAspe\~ti veJ.y 

o.::ier..tf':d Riemannian manifolds) of type (E ,F) (ranl<:E -- a, 

:s.:ankF = b ) and equivariant O(n) (resp. GO(n») 

00 

$ ~ 
j. 

~S ~(v "'ill 
...... l ... 

2~r 1< • - • <l'i s-=1 

Vll)ich vanish except on a finite number of d.irect fjUmmarl':Ls. 

f'urther: 

(. ) 
,1.. There are no such ton~or fields which are homogeneous 

o::t nO!'TIalised weight w < 0, 0::' W. = 1. 

(i.i) ~he tensor fields which .:l.Xe homogeneous of maximal 

we:i ght co:rrespond bijecti vely '::-0 Oen) (resp. SO(n) ) maps: 

(iii) The tensor fields ,homogeneous 'J.f nO:"'lnfl.}.ised "wight 

w > 2,correspond bijectively to O(Il) (respect;~_vely SO(n)) 

maps CP'ltT 

.~ 
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r 1 j 1+··+r i j i=W 

----~) ElRn®F*lRn 

1 
\'lhere Nw = [i( -3+(9+8w )~) ] • 

PROOF: The proof is given in the oriented case. The 

unoriented case is slightly simpler. 

So let t be a natural regular tensor field on oriented 

Riemannian manifolds. Define : 

Y :lR<f) $ Y*lRn~ Effi~F*J:Rn by vJ 1--1 ---7'}t(U(~v) ,g(W» (0) 
t r~2 r 

identifying the fibre of EUOJ) ® F*U(W) at 0 with ElRn®F*lRn 

via the canonical basis determined by the inclusion chart. 

Now let a E. SO(n). 

Then the_expansion of g .. (aW) at 0 in the normal lJ . 
co-ordinate chart determined by a is the same as that of 

gij(W) with respect to the inclusion chart. Since the 

coefficients of t are given by universal polynomials,the 

coefficients of t(U(aW),g(aVJ)(O) ''lith respect to the 

basis of Emn®F*lRn obtained by applying a to the standard 

basis,are the same as those of t(U(1tJ),g(W»(O) with respect 

to the standard basis_ 

Thus~t is an equivariant polynomial map vanishing except 

on a finite number of direct summands. 

Complete polarisation determines 9?t-
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Conversely,suppose an equivariant SO(n) map ~is given. 

Let (M,g) be an oriented Riemannian manifold,and let p €.l"I. 

Then there is a natural identification of TpM with mn 

which is well defined up to composition with eleruents of 

SO(n) • 

Since ~ is equivariant under the action of SO(n), ~ 

determines a unique SO(Tpli,g(p)) 
00 00 

mEt> Ei3 (£I @ 
i=2 2~r1< ••• <ri s=1 

------)- EpM®F~l"1 , 

vanishing except on a finite number of summands. 

Define t~(M,g)(p) = 

N 00 
<p(I'1,g)(p)(1EE>G> GY Et> 

i=2 2(r1< ••• <ri s=1 

r 1 j1 r. j. 
GJ H (p) ® ... @W ~(p) ~ 

j1,···,ji~1 

j1+···+j i=s 

with N large. 

It follows from (2.4) that t~ is determined in the required 

!,'1ay by universal polynomials. 

Since the \vhole construction is functorial, t r> is the 

required natural tensor field. 

Clearly cp~ = cp • 
Conversely it follows from (1.5) and (2.l~) that t = t. 

<ft 
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with jk~1; 2~r1< .... ··<ri· 

These are determined by SO(n} maps 

j1 j. a ~- b 
S (Y;1 rnn )® ....... ®S ~(Y;i rnn)® ® ffin '(8) ® ffi.n ). ill 

and hence the component natural tensor fields thus 

obtained are of two types : 

u times 1 times j1 times ji times 
r -2 r -2 r.-2 r.-2 

1)g··~ •• g··g ••• g W 1 ••• w 1 •••• W ~ ••• w ~ = . . ..... ... ... ... p 

I'lher.e there are c contractions an:' ... summation is over all 

indices except a upper and blower. 

2) '\' (d t )t n(1)· nen)· p 
~ e g;J' g ••• g 

nES .l-

n 

where there are c contractions and summation is over all . 

indices except a upper and blower. 

In case 1):equating weights gives b-a-w 
i 

= -2u+2l+2 L j, 
k=1 .K 

counting indices gives a = 2u-c 
i i 

i 
whence lJ.l - ~ r J' 

b = 2l+Lrk j l +2Ljk - c 
k=1 . c k=1 

- (--J k k • 
k=1 

i 
In case 2):equating weights gives b-a-w = n+2l+2~jk-2u-2n 

k=1. 

counting indices gives a = 2u+n-c 
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i 
whence \'1 = L rkjk • 

k=1 
That Vi cannot equal 1 follows from rk~· 2 all k. 

Finally the computation of Nw is left to the reader. 

REf"lARK: For future reference \'>/e note that in the unoriented 

case all natural regular homogeneous tensor fields have 

even weight. 

(2.6) Finally in this paragraph we extend the Gilkey 

theorem ((11 para. 2 ) to the oriented case. 
r n-r 

Recall that * : CtXJ( /\ T*f'I) ---.., COO ( 1\ T*lvr) is defined by 

W'I\ *W = (w' ,w)v 

where (l"In,g) is an oriented Riemannian manifold,W' any 

r-form and v is the orientation form given in a positively 

oriented local co-ordinate system by (detgij)~dX1A ••• A~~n. 
Further * maps natural regular r-forms on oriented Rieman­

nian n manifolds to natural regular n-r forms on oriented 

Riemannian n manifolds. 

COROLLORY: The natural regular homogeneous r forms on 

oriented Riemannian manifolds (r1n , g) of weight k are 

linear combinations of forms of tlVO types : 

1) Natural regular r-forms w on Riemannian manifolds, 

homogeneous of weight k. For k=O these are precisely the 

Pontrjagin r-forms. 

2) The iorms *w ,.,here W is a natural regular n-r form on 

Riemannian manifolds,homogeneous of weight k+n-2r. 
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In particular the conformal (weight 0) n-forms are sums of 

a) The Pontrjagin n-forms. 
1 1 n 

b) The forms f(detgij)2dX 1\ •••• 1\ dx where f is a natural 

regular function on Riemanniap manifolds,homogeneous of 

weight -n. 

Thus if n is odd,it follows from (2.5) remark that there 

are no conformal natural regular n-forms. 

PROOF: [2]para.2,(2.5) above and the fact that * adds 

n-2r to the weight of a homogeneous r-form. 

RErIARK: P. Gilkey has recently proved ([7]) the follo'.ling 

result which was originally conjec~ured by I.M.Singer. 

If Let CO be a natural regular n-form on oriented Riemannian 

n-mani:tolds such that for each :..1-manifold f1 I(M) = J M\..L(l'1,g) 

is independ.ent of the metric. Then there is a real number 

c, a natural regular (n-1)-formf and a Pontrjagin n-form 

~ such that 

W = df + cE + '7 ,,·,here E is the Euler class. If n n 

Certainly GJ has to be conformal ,for if we ,\--Trite w = LLv. 
i~O ~ 

where LV. is homogeneous of \\]'eight i, then for all real 
l 

numbers A 

Henc~ fr'IWi (l"I,g) :: 0 i>O and W has to be of type a) or b). 
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3 Natural Differential Operators. 

(3.1) For a review of differential operators,we refer the 

reader to R.S.Palais [9] .Before making our definitions" 

however, there are some notions which \'le 'I,VOU ld like to 

recall explicitly. 

(3.2) Let ~,7 be COO vector bundles over a smooth manifold 

f'l, with COO (~) the space of COO sections of ~ • 

We let Diffk(~'~) denote the space of differential 

operators of order ~k from C~(~) to Cro (7). 

Let Sk(~) denote the k-fold symmetric tensor power of ~ 

with itself and let 
k 

Sk : ®~ ---t) Sk(~) 

be the map characterised by 

Sk(v1~ •••• ®Vk ) = (k!)-1 ~vn(1)® •••• ®vTf(k) 
n""Ok 

where vi E ~x some x eN. 

Then we have the s~mbol exact seauence : 

0~Diffk_1 (5 ,rz)'~Diffk(~'1) CVk >Hom(Sk(T*l'1)® S , ?)~O 
'-lhere i is inclusion and CV~ is characterised by 

CYk(D)(Sk(v1 ® •••• ~vk)®e) = (k!)-1 D(g1···· gks )(x) 

where g.; E CC\)(r1), g. (x) = 0, d g. = v. E T*f"I, s EC
co 
(~) • ~ x ~ ~ 0 

sex) = e e ~x. 
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(3.3) Let E,F be flli~ctors as in (1.1) 

Recall that given a Riemall..nian manifold (H,g) there is a 

unique torsion free connection \J on TI'l satisfying \7g = O. 

This the Levi-Ci vi ta connection. V induces a connection 

V on Ef1 ®F*M in a natural ltray. 

Define differential operators 

Dk : COO(EM ®F*l"I) ) CoO(Sk(T*l"i) ®EN ®F*M) 

by taking the composition: k 
k k S ®1 

dXl(EM i8lF*1'1)~COO( ® T*lvI ®El"l ®F*rl)~CoO(Sk(T'~I·1) <:&lEI"! ®F*f'I). 

Then CVk(Dk ) EHom(3k (T*rvI) ®EI'1 ®Fn ,Sk(T*r1) ®Ef'I ®P*N) is the 

identity map. 

(3.4) DEFINITION: Let E,:F,G,H be functors as in (1.1). 

A.natural differential oDerator of t;)Tpe (E,F,G,H) on 

Riemannian (resp. oriented Riemanni~~) manifolds assigns 

to each Riemannian (resp. oriented Hiemannian) manifold . 

(M,g) a differential operator 

DO'I,g) Ef'I ®F*r1 ---t) Gl'-i ®H*f'I 

such· that if f : M ---+)I"i' is a diffeomorphism onto an 

open subm~~ifold (resp. orientation preserving diffeomorphism 

onto an open submanifold) then 

D(M',f*g) = f*(D(M,g)) • 
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(3.5) Let (l"I,g) be a Riemannian manifold and let x be a 

local co-ordinate system on U ~r'l. 

Then x determines local bases of sections (e~)~EA,(f~)~EB' 

(gY)YEC,(hb)?;ED for ElvI,F*f'I,G!'I,H*f'1 as in (1.3). 

Let D : Er1 <8lF*M ~Gri ® H'''f'i be a differential operator 

of order .~ k. 

Then locally we may write 

using the summation convention,where the functions 
f3'Yi1 • • • ir 

aceS are symmetric in i 1 , ••• ,.i (2 ~ r ~ k). 
" . r . 

t3 ! 1.1 ••• 1. 
We refer to the local functions a~~ r as the 

coefficients of D with respect to the co-ordinate system x. 

Note that locally: 

Y , i1 
k (D)(v~1.. 1.. d.x ® ••• 

~ 1··· r 

i 
®dx r~eO( ® f~) 

(3.6) A natural differential operator D on Riemannian 

manifolds (resp. oriented Riemannian manifolds) is regular 

if the coefficients of D(n,g) in any local co-ordinate 
lod 

system are given by universal polynomials in g .. , Og .. /Oxf>. 
lJ 1.J 

(0( a multi-index 10(\ ~ N, N large) and 

(resp. (detgij)-~ ). 

(detg .. )-1 
1.J 

The operators Dk introduced in (3.3) are examples of 

such operators. 
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Note also that natural bundle maps and natural tensor 

fields correspond bijectively,and are therefore classified 

by (2.5). Our main theorem says that in fact this classif-

ication also works for natural differential operators. 

(3.7) THEOP~M: Let D be a natural differential operator 

of type (E,F,G,H) and order~k. 

Then there are unique natural bundle maps 

tr : dlO

(Sr(T*M)®EI'1 ®F*M) )C
oo (GI1 ~H*~j) (0 ~r ~k) 

k 
such that D = k trDr 

The tr are regular if & only if D is • 

PROOF: The result is proved by induction on k and is 

clear for k= O. 

Suppose that the result has been proved for operators of 

order k-1 and let D have order k. 

Then Yk(D) is a natural bundle map which is regular if 

D is and Yk(D)Dk is a natural differential operator of 

order·k. 

Since Yk(D-Yk(D)Dk ) = 0 by the remark at the end of (3.3), 

D - Yk(D)Dk is a natural differential operator of order 

k-1, regular if Dis. 

Setting tk = Yk(D) , the result follows by induction. 
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4 Examples 

(L~.1) Let D be a natural regular differential operator 

on Riemannian manifolds of order k and type (E,F,G,ll) 

\'lith the ranks of E,F,G,H equal to a,b,c,d respectively. 

D is determined by natural regular bundle maps: 

t : Ooo(,sr(T*IIiI) ®Efi ®}?*M)'--~) OeGr'l ®H*r-1) 
r 

It follows from the general theory in (2.5) that if tr is 

homogeneous of weight wr then : 

1) w ~ a+d-b-c-r r 

2) If a monomial appears in tr involving exactly jl terms 
tl E -2 

W (equivalently \7 1 R) 1 ~ 1 ~ i , 2 ~ El < El+1 then 

a+d 
i 

- b+c+r+wr+ L j.e. 
1=1 ~ ~ 

Thus tr = 0 if wr > a+d-b-c-r , wr =a+d-b-c-r-1 or wr odd 

(by (2.5). 

We say that D has maximal weight if it is homogeneous of 

weight a+d-b-c-k • 

The homogeneous natural regular differential operators of 

maximal weight are of some interest since any differential 

operator between vector bundles over mn which is the 

evaluation of a natural regular operator is a sum of these. 

(4.2) Hence if D in (4.1) has order 1 and maximal weight 

then D =,aoV where ~ is a natural bundle map and ~ the 
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Levi-Civita connection. Thus operators of maximal weight 

and order 1 correspond bijectively with bundle maps. 

It follows that the Levi-Civita connection on EM®F*M 

is the unique connection of maximal weight,which is in 

this case weight 0 (c.f. Epstein [51 5.6). 

Similarly the exterior derivative on forms and its adjoint 

are unique of maximal \-leight, in this case weights 0 and -2 

respectively,up to multiplication by constants. 

Finally note that it follows from (4.1) that there are no 

natural vector fields homogeneous of weight greater than -L;.. 

(4.3) Having seen that the Levi-Civita connection is 

unique of maximal weight,we move on to consider the 

Laplacian on forms. Again we consider the unoriented case. 

The situation is not as simple as in the order 1 case,but 

we can say the following. 
ooP oop 

Let Ci1 ' (J'2 : C (/\ T*f''l) ---~~ C (1\ T*M) be the bundle maps 

defined by : 
i1 i 

0""1 (dx 1\. •• 1\ dx r) = 

r n 
L L 
s=1 j::1 

is i-1 i 1 . i 1 i 
R. dx '1\ ••• 1\ dx s- I\dxJl\dx s+ 1\. ·"dx r 

J 

i k i i 
dx t-1l\dx I\dx t+1,., ~ • • ,\dx r , 
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where Ri j is the Ricci tensor,Rijkl the curvature tensor 

with second index raised and dim M = n • 

Then v1 and ([2 are self adjoint. 

Let R be the scalar curvature,d the exterior derivative, 

d *' its adjoint and 6 the Laplacian. 
iXl P ooP 

LetD : C (1\ T*f1) ) C (1\ T*I"I) be a natural regular 

differential operator of maximal weight,in this case -2, 

and order 2. Then: 

1)If P = 0 or n D = a + cR 

2)If P = 1 or n-1 D = a1dd * + a2d *d +bv1 + cR 

3)If 2~p~n-2 D = a1dd* + a2d*d + b10"1 + b2~2 + cR 

where a,a1 ,a2 ,b,b1 ,b2 ,c are uniquely determined constants. 

Further if D is self-adjoint a1 = a 2 = a so that : 

2) If p=1 or n-1 D = a + b0"1 + cR. 

3) If 2~p~n-2 D = a + b1<T'1 + b2(J"2 + cR. 
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Appendix 

(A.1) L:t:I"INA: 'The vector space 
k 

k n 
HOill

SO 
(,~ }R--, ill) is equal to 

n 
HornO (® mn ,m) except that if 

n 
k-n is non-negative and even 

then any linear combination of maps : 

v1 ® •••• ®vk 1-------4 

f.-'fs [(jA)vn(1 )fC 1)··· vnCn)f\Cn) <vTTCn+1 )' vn(n+2)1·· .<vTT(k-1 )' vITO 
n 

where TIE Sk,E denotes the sign of a permutation, lR denotes 
n 

the real numbers and v, 
J 

standard basis of mn is 

= L vJ'l e l with respect to the 
1=1 

permitted. 
k 

FROOF: l~ote that ~ = 0 /;30 acts on Hom(®IRn,FR) splitting 
2. n n k sO.a. 

it as the direct sum of HomO C ® ffin , ill) and the -1 eigen­

space 1\ • 
n 

If f E 1\ define 
rv 

f(v1®·· .®vk +n ) 

Then f(v1® ••• ®vk~e1 ••• ®en) = f(v1® ••• ®vk ). 

Hence f(v1® ••• ®vk ) = 

~'\ cr,vn( 1 )1 0 
0 0 vTi(n)n <vn (n+1 ) 'V:n (n+2» 0 o. <vlT(k_1 )' V1!Ck», 

some constants ~,if k-n is positive and even and is 

zero other~vise. 

But fEBn determines an element foE On of determinant € eft) 

by permuting co-ordinates. 
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Thus f(v1QY ••• 6S)Vk ) = E(,u)f(MV1~· •• ~vk) 

=n~' t..(,u)crrvn("1 )~(1)··· Vn (n)}J(n)<Vn (n+1)' vn (n+2Y •• 
t::. k . 

• • <vn (k_1 )' vTT(k)-

So that since f E /\ 

f(v1®· - .®Vk ) = (n! )-~h cn LES 
E (i,,\)vrr (1 ),M(1)·· -vn(n)!(;\(n) 

K ,1..1. n 

if k-n is positive and even,and is zero otherl.lfise. 

(A.2) LEIvIftA.: Any rational function f on GL(n,ffi) invariant 

under the action of BO(n,ffi)by right multiplication is of 

form: f(A) = F(AAt ) + (detA)-1 G(AAt ) A EGL(n,ffi) where 

F,G : SM(n,ffi)---4) m. are rational functions on 

the space of symmetric matrices. 

PROOF: Consider the space of rational functions 

f : GL(n,ffi) ---~) ill 

invariant under right multiplication by elements of SO • 
n 

Again LZ2 = On/SOn acts on this space, spli tting it as the 

direct sum of the On invaria~t maps and the -1 eigenspace A. 

If f E.I\ then h : GL(n, ffi) ) ill : X I ) (detX)f (X) 

is On invariant and hence fen = (detX)-1 h (X). 

The req'Ll.ir8d result then fo1101,o]S from Appendix 1 of [21. 
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