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This thesis consists of two unconnected »narts.
In the first part we study the Creconjugacy classes of
flows on two dimensional manifolds whose flow lines near
a fixed point are diffeomorphic to the level surfaces of
a Morse function near a critical point and which have no .
holonomy. tie shéw how these can bé deconmposed into fhose
in which every flow line is closed and those in which no
flow line_is closa2d, In the remeinder of the thesis we
consider the latter case and show that then the numbar of
limit sets is finite. We describe_their geonetry and use
the techniques of ergodic theory to szhow that the numder
of asymototic cycles is finite in certain cases. We shov
that the asymptotic cycles are classifying for flows of
his type on a2 manifold of genus 2 with exactly two non-
-trivial limit c=2%s. Finally we give some new examples
on manifolds o Zizgher genus both of flows in which every
flow line iz d=n:z> and of flows in which each limit set
ig a clogsoi,newr=re dense set which meets any transverse
interval in = - Teclt seb.
In the seconé 7T we consider différential operators
which are functorially associated to Riemannian manifolds

205

v a regularity condition that arises in

RSSO

Y
v

and which ¢

iy

7
i

the proof of thoe indsx theoren via the heat equation.
Tnese are clozsified in terms of the On—equivariant

representstions of the general linear group.
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FART 1

MORSE FOLIATICNS



Chapnter 1. Introduction.

Consider a smooth codimension 1 foliation of a &differenti-
able manifold M in which is embedded a closed two
dimensional submanifold. By Sard's theorem, the embedding

can be approximated by one in which the intersections of

|
-—

the leaves of the foliation trace out on the submanifold

N
a flow which near a2 fixed ooint is like the level surfaces
of a lMorse function near a zero. By adjusting the exbedding

gar a saddle point it can be assumed that no saddle point

of the flow is joinsd to any other by a flow line.

>}
~ET

hesis we study €7 flows on two dimensional

}_.
H
s
<t
=
H
}_l .
143}
t
_J-‘

manifolds wvhose fixed points have these Two properties
As they are studied from a foliations theoreglcal

viewpoint they will te called Morse folistions.

smbeddings of 7. iimensional manifolds in foliated

manifolds arise zZaturally in a number of ways. For exaaple,
if M is a fibr: - mile with fibre a two dimensional
manifold,then = <. 2 are many embeddinzs of the fibre in M.

Again, of hq(u,;;:: O and M is compact or has a non-closed
leaf there is a transverse circle embedded in M which
bounds an embedded two dimensional manifold. The study of
the induced flow in this case is exploited in the o»roof of
liovikov's theorem (see [10] ).



N

Conversely any lMorse foliation of a two dimensionsz

[

manifold '/ is induced from the natural sembhedding of

the normal bundle of the corresponding Haefliger structure
(see [14) & 2.9

We shall mainly be concerned with the holonomy groun

(see [10] ),the limit sets and the invariants of Morse

foliations.

R T R ~ TV oA el e
with every leaf closed and orse

The 1nterssting Morse foliations to study are those with

‘no nolonony and no closed leaf and the remainder of our

n
(¢}
O
o]
G
D
[
v
ot

ese

=1
’)
u

12oter 7 we prove our Tecon:
main resuls. Us the theorem of i.J.ichwartz (see [31] )
and an elsro:727 analysis of the point of first return

function on o = . .21 transverse interval we show thzt in

this situation -~ :ue are only finively uany linit sets.
m general a 17 .t set is a nowhere dense set which nesets

ransverse cubnmanifold in a perfect set.
his behoviour contrasts sharnly with tha situstion on th
spitere or torus (see [1] and {4)).Cn the other hand Fector

([12) ) and Lacksteder ([20]) have given examnles of



codinension 1 foliations (in one case analytic) of three
dimensional manifolds in which there are exceptional

minimal sets.

In chapter eight we apply the technigues of ergodic

oy

theory
to prove that in a certain restricted situation the

number of asymptotic cycles of a liorse foliation is finitee.
The essential feature of these liorse foliations is that
given any transverse circle meeting a single w-limit set
of a leaf in a set {lL ,any holonomy invariant transverse
measure and any point » of L£2 then that circle can be

aporoximated in measure by the disjoint union of iterates

under The zoint o

4y

small interval zbout

-
e

In chapter 10 we give the first known examoles of liorse
foliationz with trivisal holonomy grouvs and no closed

leaf on Z-nanifolds of genus greater thuan one.

Y

lie also show that iorse foliations of the tvwo manifold of
genus 2 with no holonomy and no closed leaf which have
exactly twe limit sets (the other possibility is one
limit setv) are classified by their asymptotic cycles.

3

A Typical exemple of such a iorse foliation is shown in

~

figure 9.5 in vwhich the vpairs of circles Aﬁ,AQ and I have

to be identified by suit

sy
o3

le diffeomorphisns.

,

Three cguestions are raised and left unanswered by the

thegis. The first is whether Morse foliations without



\J1

holonony and without closed leaves on manifolds of genus
greater than one can be analytic. The second is whether
it is5 poss wble for liorse foliatiocns with no holonomy and
no closed leaf to iave a sinzgle limit set which is not
the whole manifold.

hirdly it is not known,in general,whether the asymptotic
cycle of a leaf depends only on itsw-limit set. Indeced,
except in a weak measure theoretic sense,it is not known
if the ﬁumber of asymntotic cycles (up to multiplication

by positive scalars ) is finite.

hapter two sketches the theoretical foundations of the

. o [S SR R SR | zzzumod ~ K Lot -~ .,
study and states tne matoriadl zzzumed, Chanters thros ond

rour consider tihe Tehaviour near o centre and i

ct
}.J.
n
N
Ivé
]
(o]
5

that if the holoromy groups of the rorse foliation are
v O Ry

o

ot

all trivial then the centres are of just two types. The

v

iy

rest of the thesis contains the results already mentioncd.

standard notation is used throughout the thesis. In

particuler,? <s-ctes Tthe real numbers and round brackets
L . . -

are used 1o der:iTs cither an interval or 2 wolnv of IR

~ dependings ¢ T2 context, Lemnes and propesitions arc

numbered in the szme secuence vithin each section of

o

gach chapter and diagrams are numbered within each chapter
in a geparate sequence., iumbers in sgquare brackets refer

to Lha bibliosraphy

l:a
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Chapter 2. Morse foliations.

A

2.1 The manifolds Hg.

faw]

To fix our ideas we define for each integer g » O an

o

orientable two dimensional manifold Hg of differentiability

&e

s ‘
class ¢ (ogrgw) and genus g
S . 2 2 2 -
MO is the 2-sphere {(x,y,z) GER5 P X+ Yy 4+ 2= 1} with the
usual differential structure and orientation induced from
R , 3 . . - . ~ .
that on H'. It is siwply connected and is therefors its

owrl universal cover.

H, is the Z-torus vhich is defined as follows.
Tet 4@ 7% act on R via:
((myn),(x,7.) € %O T xR (x+m,y+n) eiR%
Mq is the auoti=ns svace of R? under this action. The
projection/oﬂ T ET e Mq is a local homeomorphismf The

r . ‘ e o )
C™ structure z=. osrientation on h1 are the unigue ones

. - . . . r . A ) .

maklnglpq a lc-zl orient=tion preserving C° diffeomorphism,
2 . T . . .

where IR~ has 73 usual C -structure and orientation.

i, for g » 2 is defined as follows.

et H = {z e :1z1<1} be the hyperbolic plane with

108
&

codesics circles perpendiculer to the boundary circle of H.



Let ¥ be The unique geodesic sided regular polygon in B

with centre st 0,4z sides,angle sum 27 and a vertex on

1

tiie posibive real axis. Label and orient the si

ao

es a’:_,] [ -J/l 9

p,

A%,B%,A2,....,,A s B ,A',ﬁb in an anticlockwise direction.
Let X, denote the unique orientaticn preserving isomatry
of H mapping Ai onto Al in the op 051te direction and fsl

the unique orientation preserving isometry of Z mapping B

- s 1
onto Bi in the oopposite direction.
- - ; . -1, =1 -1..~-1
=) J = : £ 4 S5 1 e e 2 .
Let ig Gp{ql,ol 1<lsg : a,bja; b, agbg“g bg }
hg acts on L via alk——+dl ,Oi——~7ﬁl and hg is the quotient

it p = " 15 the projec:ion,f% i3 a loczal
g S @

nomeomorpnism.

s T

vhe C 3T

tructure and orientation on ng is the unigue one
which makes Fg 2 local CT orientation preserving
diffeomorsnism,wiers I has the usual ¢¥ structure and
orientationr =5 = submanifold of C.Further details may be
found in [24] czz-t=2r &4 section O.

-

bow it is ver~ . =_%1 known that any orientatabie two
dimensional =22 .201d is homeomorphic to Mg where g is

the genus of the manifold (see for example [6]). It then
: - ,.r . . . L.
follows from (18] that any ¢  two dimensional manifold is
o alileomqrpsllc_ To lig (0 € T 00 ),

nis ohservation shovs that we cuan regard the manifold



i as the Jjoin of g-1 tori :

&

2.2 Homology of Ii_
g

it is well known thst

¥

H, (MP"Z V224 (i.e. direct sum of 2g copies of Z ).
]

"

[ /] : 3 M 1 b )
Give S the usual orientation (i.e. that induced from the

. . 1 ; . |
usual orientation on R under the covering map p:R—3
by e oLt 7, =nd let «enq(sq,zz) be the associated
generator.

iny embedding L:s'*———emg as a submanifold induces a

class LJdkﬁiﬁﬁf,¢I)which we shall refer to as the

homology class =z:sociated to L(qu. iny integer homology

class is an in~::-=2 multiple of the homolegy class

1

associated to =-

¢

zbedded circle in this way (see e.sg.
[36) ;. This homzlogy class is zero if and only if there is

a commutative diagram:




0

vhere J is a diffeomorphism onto 9% and k is an embedding

of w,a two dimesansional menifold with boundary,into i
. [

: . . - -
geonetrically this means that when we "cut” zlong u(s

ct

N
J
in Hg we obtain manifolds diffeomorphic to M_ \disc ani
D/]
§ . | .t S
r,\disc where 2 T8y = Gy L(3') = 3ddisc and w is
22
cdiffeomorphic to M _\disc or Hg\\disc.
1 2

The homology classes assoclated to the circles ai,bi shown
in figure 2.1 szrve as & set of generators of Hq(ﬁ e

c‘,w
o

2.3 Intersection numbers.

)

[ . . o > . A
raoection nunrner 18 2

2onusn & vilineur p:iring

~
e

L L)), (1 )
O &
ity ————— (§)h]
which is associztive and antisymmetric (see [5]).
1

Geometrically,2f o, L ¢ & —— 1M
: ; = )

.

are two embedded

circles intersescTing transversely,and if we trmfersel.,i

once in the <2 direction and count +1 for each tite

L2 Crosse

)]
i
[S]

"% right and -1 for each time L2 crosces

from the lsft,7 .27 2dding these numbers gives the

. . - . -2
interscction v :x of the class associated to Lq(b )

with that associzted to Lg(Sq) up to sign.

~aking the classss [ai],[bﬁ associated to the circles

#i+94 showr in figure 2.1 we see that:

ile 4] = bﬂ’@ﬂ =0
] o] = ~[Pal o] = 815
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2.4 lorse foliations.

in this section we define the fundomental objects of our
stuldy. we give a definition which belongs unequivocally
to foliations theory and those who have other tastes may
prefer the definitions given in sections 2.5 or 2.6.

4 Morse foliation ¥ of class CF (2€r ¢w) on the orient-

able 2-manifold M_ of genus g and class ¢S (s>»r) is a
: g
" set {fi:Vi—~——+B%: ie I} of Morse functions satisfying:

(i {v,

. - 13 an open cover of M .
i*ier =7 P g

(ii) fizvi——-ﬁ Ris a ¢ ;orse function.

(iii) If xe vinvj there is a neighbourhood U of x in

- . . . ~ . .
anvj and an orientation preserving ¢ diffeomorvhism hi’

defined on a neighbourhood of fj(x) such that:

2,.02,(3)) = £,(y,  yeU.

(W]

(iv) 3 is =mzxiznal with resect Lo vrorerty (iii)

ihe riorse func- 13 fie 3 ars called distinguished mavs.
Condition (iv, =:ans that any horse functicn which is

) . . R o . L. .
locally the cor.zzition of a CT— orisntation preserving

diffeomorphisxz ..:h some fiea also lies in'3.

vondition (iii) needs further elasboration. wWe firsi
Temark that (iii) includes the orientation preserving

property of the diffeomorphisms hij so that we always



A
I

assume our [forse foliations to be "transversely oriented".

This condition also implies that if p is a critical point

(&8

or Iy and_;)GVj then » 1s & critical point of f.. Such a

point will be called a singular point ¢f B. Since the

critical points of Morse functions are isolated =nd M

Finally note that the germ of hij at fj(x) is unicuely
specified except in the case that x is a centre. This

remark i3 elaborated 1n section 2.5 which follows.

2.5 Distinguished charts.
e . .
e shall suppose that R hus co-ordinates (x,¥,.

The following remarks are explained in [14) .

A ar - . ~T . . -
Let 3= {f,:V,—~— R:1€I3 be a C lMorse foliation on |

g
If pei iz nct = singular point and.;>eVi then there 1s

en orientaticr [ r:izarving chart centred =zt p whose image

o)
is a neighbourz:3: U of O in W7, such that
= ) o PR -
TP (Xey) = X (x,y, €.
Such o chart Lr .L:1lled a distinsuished chart =t ».

lfjpeP%gis a singular point and pe\G-the Morse inde

or fi at p is desfined to be the meximum dimension of a

subspace on which the Hegsian of f. is negative definite.

L
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If pe VJ then since the hi* are orientation preserving,
. J

the inorse index of fﬁ at o 1s egual to that of fi at o

(¥

and hence D has awell defined iiorse index.

If this index is O or 2,p is called a centre and if it

is 1,p is called a saddale point.

It follows from the lMorse lemma,that if ;feVi is a singular
point then there is an orizsntation preserving chart @

centred at p defined from a naighbourhood of p in I to

) g
s 4 s L2 o , '
a neighbourhood U o7 O in & such that throughout U
oo ~ . =L ~ . Fod C
£ (xy) = fi(;,LxLTyL if » i3 a centre of index O,
-7, . . AT . .
4 (x,y) = iikp,;x”—y“ 11 p 1& z saddle point,
N 4 . ~ 2 . . . A
@ Xy = f.(p)~X =y 1f p 1 a centre of index 2.

such a chart is called 2 distinguished chart at p.

Consideration ¢f =2 “istinsuished chart at p<=.Vi shows

why the germ ol -.. at fi(p) is well-defined except at

a centre,

[6)]

A lorse folisti:n can eguully well be defined as a
maximel atlss oI iistinguished charts but as the exact
properties of such an atlas are somewhat inelegant
(the overlap proverties vary according to whether one

is at a singular point or not) we omit them.
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2.5 Vector fields tangent to 2 orse foliation.

consider the standard flows on Béz:

Flow:@t(x,y) =-(x,y+t)._

Fiz. 2.

N

Flow:@t(x,y) =

(xcost~ysint,ycost+xsint)

Fleld:—ya/ax + Xa/ay .

Fig, 2.4



i-"low:@tf\x,y) =
(xcost+ysint,ycost-xsint)

Field:ya/.ax - Xa/ay'

-,

Let M_ be the two dimensional orientable manifold o
2
oo s s ~S S .
senus g and differentiability class C7 (52 2) and let

3 be 2 O (2$rgs) Morse foliation on ©i_.

g

3e]
o
}_J
[6}]
)
0]
pJ
(¢}
L5
[t
L
(4]
]
ct

ror each point;qefg“]xﬂ:?> be o disting
1

& D

[6\]

p dafined on naignhbourhooa Uo ol n.

sccording as p is non-singular or has [orse index 0,1 or
2,o0ull back the vector field given in figure 2.2,2.35,2.4,
2e5 via(P to obtain a vector field s_ on U_.

D D D

Using & partitisn of unity subordinate to {u d

o WE
9 ptsng
can piece togetzsr the local vector fields Sp to obtzin
a vector fi=1zZ .. on Hg with the following prop

;erties:
(a) eacr i:cinguishod map f is constant along the
flow linez cI ...
(b) X{(»; = & if and only if p is = singular point

of ¥ (by the compatibility condition 2.4 (iii) ).

Tnis observation leads to the third possible definition

0of & horse foliation. ihst is,it can be regarded as a flow



of a vector field with the property that in s neigh-

bourhood of a zero of the wector fic=ld the flow lines are

diffe0m01p11c to the level surfsasces of 2 rorse ifunction

near a critical point. However different ilorse foliations

mey arise from the sane flow-a poilnt waich is discuss=zd
N4 X

(D

in more detall in section 2.74.
2.7 The index theoremn.

m=ving constructed 2 vector field 4«3 in 2.5,the index

thecrem for vector fields (see e.g. [7]) trcn shows that:
2~zg = number ol centres - number of saddle points,

where & 13 the genus of the manifold.

in terms of dlutlnguished maps this becomes

e-rg = C_ - C, + C
© 0 >4 2
where U, is the numter of singzular points of the liorse

foliation J o7 .owse index i (4 = 0,1,2).
.8 Leaves an® —..: leaf space.

-~ o

e --mznifold of genus ¢ which is oriented and

iy?

Let M be L
of differentisbility class ¢S (s%»2) as defined in section

2.1 and let I = {1 Vi———+£R}be a Morse foliation on K

C

of clagss cFf (2\<r$s).



wWwe define the leaf manifold ﬁ; of ¥ as follows.

The points of Hg are the points of [ .

0
L Inea o o e o ¥
ti ase o1 Open 3EeTH 101 1 N
&
form Unfgq(c) where c€ Rand U is an open subset of I

consists ol a2ll sets oi thne

Although we have used terminology analogous to that in use
- in foliations theory,Hg is not usually a manifold (except
possibly in the case g=1),since there can be no chart
about a singular point. :owever if the singular points

are removed Ifrom Mf we obtain a 1-dimensional manifold

" o

1% ywhich is no%t secouni countaile.
)

i o - LR R . [V G A &
the centres are isolated points Li oo
(o)

There is a naturzl continuous bijection
Lot S ——
2 )
which restricts to an immersion on Mé.

4 leaf is a2 conznzciad component of hﬁ.iny component of

O
..l—x 3 - M vy . I =5 Kal ™o
M. 1s & supman-i-27% of M_.
5 g
The vector fi:l:: constructed in 2.6 are all tangent to

the lerves of » . #1ix such a vector field iyg .
Then the associsted fiow
. W ’ ] . )
By M X R—l G, t)— q"s,t(x)

Parametrises each non-sincular leaf (that is each leaf

not containing a singular point).



Suppose now that each leaf contzins at most one saddle

o]

point.Then each leaf which contzins a saddle point is the

I

disjoint urnion of a fixed point o of @g and

o

2t most four

[$5}

and at least two trajectories of ¢, -These trajectories

are called separatrices of Y.

i separatrix is called inward if for any point X lying

on the separatrix llm §$t(x ) = and outward if

Any seprratrix is either inward or outward and one that

~

is both is called loop sevarstrix (see figurs 2.5).

jav]

A .
N ) inward
separatrix
‘Y /\
outwarl loop separatrix

separotoi

Flg., 2.6
wWe shall sce To.7 the loop separatrices play cuite an
important rol: .- the theory of lorse foliations.

the flow $4 also parametrises the separatrices of Y so
that if Rg is the complement in Hg of the singular
points there is a consistent orientation on the leaves

of the induced foliation there (see [14)for a survey of

foliationsl



2.9 tie shall now make the assumotion that no leaf of any

riorse feliation contains more than one sinsular point.

lote that any Morse foliation 3 =1{ oo 0y —>m} iel

on Hg can be approximated by one satisfying this special
condition (compars the rezults of [20]and [37] ).

To see this,it is first ﬁecessary to embed I_ in a
(genuinely) foliated three dimensional manifold (N,%)
constructed as follows.

Choose a finite subcover U, ,....,U0. of 1U.}. .. such
. . i, Piel

hat ezca singular noint of 3 is contained in 2 single

i

set U, . For eacs o (1€ xS€10, let wi be & neignhbourhood
X k
of {(:{,1‘_i (z)) Xe.ui3 in Ui x R with the property
L, T ¥k
S Py
that for eech point xéiUi n Ui the unique local diffeo-
( k 1
morphism . . of Rwith
- Tkt
fi’ = £, . fi on a neighbourhood of x
k k71 1
is defined at e=zz2 point y with (x,y)él%_.
n k
Then we let I = I l W
‘ 1 N
k=" X
i,y )€ Wy nz(x,gi i (yJ))€ Wi
k 17k 1

and take the Zi::inguished nep of %.on W. to be the

Tk
projection on .
Low there is an embedding
,,,,, < o~
i Ml @ xeu, 00T ()
k k

With 1‘9 = ’3 .

Then by making arbitrarily small adjustments to i near



each saddle point we can ensure that the induced Morse foliations

catisfy our condition and aporoximate 3 .
o' 3 5 -\-‘
2.10 The regular covering space hg of M

In this section we define a covering svace which will

enable us to give a rigorous definition of holonomy in

section 2.11.

f is a germ 2t x in ¥ of a distinguisned man.
5

N
The oven sets of Mf have & subbase consisting of sets
g
~ N o
0(e) ={lx,1) : [x,f1ei¥, xeT}
(]

T 0L i

n
WL

contained in the domain of f.

ca A

Lenma: % is Hz =i:-ff and the map
— g

: [x,8) ——x

R
{
A
oy N

is a regular co o7 ng mas.

Tt

-~

LToof: 3ince Fin

1o ausdorff and centres are isolated points
it is sufiicient to show that distinct points [x,f],
,where x is not a centre,can be separated by
TS, suppose that f and g are both defined on an

open neignbournood U of x in Mﬁ,containing no centre.
o



Let U =.UN f-q(c) Ur]g”q(c') be an open neighbourhood

i

of x in M%
)
.. o I " !._‘:/_c_ :'v hY Fal 1 - 1 - ~
we show that U(£)NU(g) #¢P for all open neighbourhcods
U of x in Mg leads to a contradiction.
oince [x,f] and [x,glare distinct we can choose a
diffeonorphism k of a neighbourhood wc, of ¢c' in Ronto a
neighbourhood Wc of ¢ in R whose germ at c! is not that
of the identity and choose U so small that gUGiHC, znd
f(y) = k(g(y)) yeU ().
~n N~ B ' -
If [z,h]l € U(£)N U(g) then h(z)=f(z)=g(z)=c=c' and there

is 2 neighbournood V of z in U such that

I-1y

s(y) ye7T (ii).

~
11

“ e N { e
\y/ = hiy

low since z is not 3 centre (V) 1s a neighbourhood of ¢!

in W,,. Statement (ii) then implies that k(e) e ecezg(V)

contradicting the assumption that the germ of k¥ at c¢' is

not that of trne 1dentity.

1

This completes ~re nroof that M is Hausdorff.

»€ now spow thz- X 1s a covering map.

2t f be defined on the domain U of g

L—{
o)
t
r~
3
L
g
m
4
FiN
1
) 1

distinguished c.2t @ at p.

(@]

For each germ of a diffeomorphism h defined at f£(p) let:

U, = fx,g] : xe Ur\f"/l(f(p)),g:hf as germs at x € U},and

v o= Urlf-q(f(p)) an open subset of Mg

‘Then diUh : Uh-———afV is 2 homeomorphism.



4 1
¥inally nOue that if [x,k

also U nU' # = U_ .
g h.
istinsuished map at x and f(x) = f(p).It follows froam the
definition of a ihiorse foliation that there is a germ of
a diffeomorphism h at f£(p) such that k = hf nsar x

thus ®~ (V) = U Uy,
h

It remains to show that the covering is regular i.e. that
: ~g o : .
if [Xo’f’IJ ’[Xo’fz]e“g there is a homeomorvhism @ of
ny
ri_ such that:
= .
Plxg ] =plxg
(1i) Xe@=K |

0%

et B ?g — R [x,f—1T(x).
Then -1 i
P (£, (XO)) and p (£,(x_)) are op ani closed
subsets of Mg.
Choose h such tzzi 12 = hfq near X .
. . : =
If f2(xo) # £ 0 let Plx,r] = {x,hf] on B Lq(ko)
[x,n” .ﬂ on B~ 'f (%,
[x,f] otherwise.
- N\ el I s r o) "/'
If £.(x,) = -2 0 let ?fa,f] = (x,hf] on B 1( )
{x,1] otherwise

gJis the reguirz=d covering map.
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2.11 Holonomy

Cur definition of holonomy is dus to Haeiligsr ([2] or
In this section holonomy is defined using the lifting

property of the covering map
Bty
K : M —— . ;
4 geometric interpretation of the notion is given bslow

in section 2.13.

“o°
~ ~N
to a path ¥V in i : V(¢ [V\U; T ] with £ oreviously
o
chosen.

a4

¥urther,it follows from the properties of regular
covering spaces (see [15]) that if YaVY' rel X, then

Y1) = ¥' (1) and Y=Y rel. 0,1.

If L is the l:z:z7 contalning X and f 1is fixed, this

X
o \ o
process definesz © map
r - : I X )——a3G. ,
{=..2.1 n’l( ¥ ? o> f (x )
7o o} o]
where Gi (x 17 she group of germs of & diffeomorrchisms

maopping fo(xo} cnto itself and h[x £ ]([1]) = h where
0’7o
h is the unique germ with fq = hfo near x ,if X, is
not a centre and_hrX £ ]([Y]) is the germ of the identity
A 0770

if X is a centre.



The definition is reasonable for a centre since

NN : €t £1 in this case.
Y(t) = [xo,fo] 0 . . ; _

. | ' . .
If fé is another germ at Xo7let h' be the unique ge;m a

féxg with fé = h?fo,assuming that X is not a centre.
If ¥ is the unique 1lift of VY starting at'fx , S0
that V(t) [Y(s),t ] then the unique 1lift ¥ oor ¥
starting at [xo,félls given by 7'(t) = [Tft),h'ft].
Thus h[xo,f;]( D - h'.hfxo,fol.<[v1)o(hf1)' . | ﬂ
lience in particular, th £ 1s an antihomomorphisa of
TH(LX yxy) into Go , and the images of TQ(LX X/ are

o} SN - 0
isomorphic.

‘ ~ s o+ i 5 rohi as the
- : P 5 the isomorphism class of th
The holonomy group of LX 13

(o]
image in Gfo(x ) Ofnl(LXo,XO>.

iow (see [35]).the equivalence classes under inner
automorphigmg of G, (Y ) of homomorphisms OfTH(‘Y 2 X )

1 a
into G (x y are in blgectlve correspondence Iltﬂ elements

of Hq(hx 4G. .. - the set of isomorphism classes of
A
O o < - o] ; N = K
principal g , bundles on L_ ,where G. (x ) has the
ol¥s/ o ° 0

discrete topology.

' . T .. \

Iff‘ﬁ is the topological groupoid of C° diffeomoryc Thisms
. . r

of W1 (see [81),7 restricts to = I, - structure on L

o)
wbich has a representative in the groupoid taken with the



discrete topology.It should be no surprise that this 1

the element just obtiined.
2.12 Transverse vector filelds

Let 3 be a C HMorse follation on hg,the orientable

2-manifold of genus g. :
If peli is a non-singular point of 3 ,a tronsverss
&)
. . T N ; . .
interval =2t p 1s a <~ embedded intsrval whoses Tungent

vector at every point,together with the tangents to th

leazf througii that vnoint span the troagent space €0 Hg.

Consider the vector fields on R° :

3 . xra
A Field: x /ax + ya/.ay

»
+

Flow :(xet,yet)

fig. 2.7

Field: Xa/'bx - ya/ay

t
sye

AT

_t)

Flow :(xe

Fig. 2.8

o
=



AW
\Ji

D e . D _ 3/
Y field:-x /ax N 3:/.
. o1 . T - -T
- < flow :{xe’,ye ~)
~

Fig. 2.9

. . b e . ,
A transverse vector field Xy on M_ 1S one constructed as
o

follows.

Choose a finite cover of I by distinguished chzrts such
g .

that a2 neighbourhooi of each singular point is ccntained

in a unique chart.

o

Jefine loc:l vector ficlds on each cnart by pulling back
the field of figure 2.7,2.5,2.9, if the chart contzains

a singular point of iorse index 0,1,2 respectively and
on any other chart choosing a flow whose trajectories
are locally trzrsvarse intervals and such the »nairs
(tangent to trznsv:rse flow,tangent to 39 ) lie in the
orientatioa oI . .

od . s . . T C s
x; is formed fz:z these local fields using a C° partition

of unity.

€& make several observations.

N . T
{g is C" if 3 is C .

. . . . . . - - e .
In a neighbourhood of a singular point of 9 sag is

locally diffeonozphic to one of the flows in 2.7,2.8 or 219.



Finally note that if we are given a transverse circle
a compact union of transverse circles,together with a
finite number of transverse lntervals we can extaend

these to the flow of a transverse vector field.

To conclude this section,the following definition is

useful.

A transverse interval at a singular polnt p is the

homeomorphic image c¢([0,1)) of a homeomorphism

onto 1its image such that:

(1) c|(0,1) is =n embedsing ol (0,1) into a
trajectofy of = transverse vector fieid.

(ii) ¢(0) = p.

-

2.1% The holoncay lemna.

tn

Suppose that 8 1z = (02) lMorse foliation on M .

ca

Given & leaf I ::nvaining a saddle point and

™

or

p2th Tin

L from jo toe = ~cu-singular points) which passes
through the s=2i._=2 point,it is false that a transvsrsse

interval at D, Sweeps out a "strio" when translated along

4

Y. However if 7Y has the property that eac

the saddle point is either contained in a fixed p=ir
adjacent separatrices or the opposite pair then half

transverse interval will sweep out such a strip.

» passage th

rough

of



W)
~J

This condition on paths 1s made precise in

part (i, of the definition of an admissible curve belo

'n
P

-2 A | 5, 2.2 )
N A A\0) ~
8

) vive) | > Lf
VRN 5.8 {//>////:::::\\\\\~Vu)

5 - _
(a) half strip swept (b) no striv swept
out. out.

-

50 let s be a szdulz point on a leaf L and @ a
distinguished chart at s. consider the four subsets of

the range of @ :

“’l = {(x,x; : x>0} S_, = §(x,x) : x<03}
Sy = 1{x,=x : =01} 5_p = f(x,-x): x<03%.
vefine I(3,6., =¢ O if 1il = ]l
\ 1 if 1350

3
}

| (-1 if i3<0 .
let K = (0,1] o K = s - [0’1]/021 .

Let Y : ¥ ——>L be continuous and let £, be a distin-

guished map at Y(0).

We



)
e

Then Y is admissible if and only if:

(i) Either s ¢ Y(i) or there is a number Eywkich is +7
or -1 and such that whenever t,<t, and 7([t1,t7]) lies
.
in the domain of @ with Y(t,)€s8. ,Y(t.,)€S. then:
' 1 i, 2 i,

either i, = 1i

1 c
or I(8: ,8. ) = &y,
1,771,

(11) B ryo), £ ](”ﬂJﬁQK,O))is the germ of the identity map.
0

If 7 is admissible we can define the index €&y of V¥ to

be 0 if s ¢ V(K) and as ia (i) if s € WK).

Mnally we need =z novion of whicn nalf of a transva
interval at ¥(t) we can define a strip through,and suczh

an interval will be culled an admissible transverse

intervzl.
If 7Y is an admiésicle path and & = 0,any transverse:
interval at Y(t, is admissible. If &= ¥1,orient the
transverse intsrzls at Y(t) by letting the pairs

angent to int::val,tangent tod ) lie in the orientation
of Mg. i“hen 17 E4 = +1 take the right hand (positiva)
helf (includinz 7.t)) and if &4= -1 take the lelt hand
(negative) half. ¥or example,the half interval (V(0),a).

in figure 2.10(a) is admissible,whilst (7(0),B) is not.



Holonomy Lemma: Let #_ be tThe orientable 2-dimensionzal

s

~

-5 ‘o - . , . T
¢° manifecld of genus ¢ (s»2) and let 9 be a T Forso

foliation cn Hg (7 $r€£5) 1in which no leaf contains more
than one singular point. .

Let L bte a leaf of ¥ and let X? be a transverse vector
- field.

et ¥ : K—— 1L be a continuous admiésiblevmap (where
K = 81 or [0,1]) of index &4.

Then there is an admissible transverse interval V at Y{0)

contzined in a trajsctory of Ay and a continuous man

-t
(&S

R R V2
g
(i) | F*(b,v) = v all vev,
(ii) - d(t,v) lies in a2 non-singular learf LV of ¥ for vV # Y(0)
which depends only on vE€V,
(lll} H(tﬂ'(ol, = 'y\t/\a
(iv) For each -e€ X H({t} xV) is an admissible transverse

. . -4
interval at Y. -  contained in a trajectory of I

(possibly witn = zingular point added) and

" - 7 - T . Tr N

Dot T—H(EY X V) ¢ v e—i(t,V)
2~ "“1r X—; Eal ey o ,\ P - —~ ~ o A ~ N\ 3 2
is a " diffecrcoronism,whoss germ at Y(C) depends

basically only on 7.

Moreover:

(v) If K' iz the selt of points of K not manped by 7 to



D

Ao
“

a singﬁlar point and YIi' is C* then so is HIK'x V.

(vi) If 7 is = homeomorphism onto its image and VI’

. 1t B = . TN 2 T . - .
i3 a ¢ embedding (O £t €r) then H i3 a acmeomorchism &

ot

HIK'x V is a ¢~ diffeomorphism.

Proof: The idea is to desfine H locally and use the

covering of section 2.10 to piece these maps together.

S0 let I~1§ be the leafl svace of'ﬂv, Hé‘ the covering ’space
o .

defined in section 2.710.

7 can be regarded as a map into Mf.

&
Let f_ be a distinguished map at Y(0) and 1lift ¥ to a
~ N
sath Y(t, = [7<t>’ft]'
net e ve an o-on neizhbourhocd of ¥(t) sufficiently

mell and of

[6)]

(1) There is a distinguished chart ¢% at Wt)

defined on Ht such vthat

Ny o e : -
P, (x,5) = . (i {VE)) + x if Y(t) is non-singulsar
> > §
—~ rd Id NN d . - - -
T_WE)) + x= -y if Y(t) is a saddle point
whenever (X,7, €Q.+, .

(2, Thers Z: an orientation preserving chart V%
defined on w. I- which
[

L(Y(E)) = ©

9

_<

and,Xs is given by EVéX if ¥(t) is non-singular and
XB/BX. - ya/ay if ¥(t) is a saddle point.
(30 Wy is a union of segments of leaves of ¥ and

. A 4 N o B . ~
traaectorxles of X: as saown in flgure 2.1,



L
Y

(4) WTK)r\Wt is connected.

@)
g

O

]..J .
3

+

Fig., 2.11
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v

Now choose a partition O = t <t4< e <t = 1 such thsat

) iaf wne ‘V“ = H me
7K[ti,ti+q]) ;.H_thre / L some t e[L

i? 141]

We are now able to give the local definition of .

T ", = £, where t is such that w. = %W_.
Let £, = f, | L7 e
If 7[ti’ti+1] contains no singular point then the map

pioF P B AS T T

mapping g)é%ﬁ.to tne unigue point OL'Ttt t1+4] lying

on the same segment of trajectory of Aa in ﬁi as aoes p

\ ~

(see figure 2.117, is a2 well defined submersion.
Thus p. x £. ¢ . ——Y([t.,5: 4)) xf.l. is a O
- f%. i 71 i? 7141 i1
diffeomorphism.

ir se'Y([ti,ti+ﬂ]} is a szddls woint,let BT have co-ordinates

which mups D& ..'. *o the unigque point of WT[ti,tiyﬂ.)

with (Y (P 2000 (LY (R (000 = s (o)) (Y, (2))

where ! is txz -oodrant of i, bounded by'y([t.,t.. 1)
: 1 1?71+

o - . T
(see figure 2.7 . ,is a surjective map which is C on

iy = #Nfo Y S () = o)

thus po x £, ;! ——3Y( ety ] x £,/ dis a homeo-

7Tt

. . . . r iy . .
morvhism which restricts to a U diffeomorphism on w;.

rinking down Wi i1f necessary,we can assume that

i—b
=
1

. bu.nu;
J J
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AN

since the fi were obtained from a l1ifting of a continuous
Then il V 1s sufficiently small and admissible we may

. — . \ 7 -—/li ,

H : n-xV—-——-?hg by H(t,v) = \‘aixfi) (y(t),t

1]’

H then has the reguired properties.

for t. .
or t € [bl,tl+,
In particular ths uniqueness in (iv) follows from the fact
that since the germ of fth 1s a locally constant functior

of t,it is constant and ejual to fd‘
2.4 Jiffeomorshismns and COnJUusacy.

Let 3= {fi : Vi———%ih3be a licrse folistion on Hg’ and
suppose p: Ng---?ﬁf is an orientation vpreservineg

diffeomorphism of
vwe define 2 new [ orse folistion on Mg,the lMorse foliation

induced bvpo T: =
K

! o= .
P 3 = {fi"c’ P \/i————am} .
If p' is anot::r orientation preserving diffeomorphisn

of i we have

<

(prop 3= prp'=3 -

1f 3,¥" are two Morse foliations,we say that 3 and ¥

-
Latie = U 3 > i 3 -+ > vt > 1.2 .
are C ~conjugate if thers is a 7 diffeomorphism f)Of N

o

&



preser#ing orientation such that

1

1f p is isotopic to The identity 3 and J' are sz2id to be

completely eguivalent.

It is important to note at this point that two iorse folia-
tions 3, J' are not necessarily conjugate
there is a diffeomorphism of Hg mapping the leaves of 3

onto the leaves of 3' .

Indeed it is always true that given a llorse foliation

5 NP .
of class C° with at least one saddlie pnoint thers is =z
non-conjugate foliation W' heving the sare leaves as J.

To see this consider the liorse foliation of R~
lines xy = constvantb.
et h : Mm———[0,1] be a C*® function such that

0 x20 & x€ -1

o)
(=)

nlx)

3]

=, the germ of h

Now define I :LEE-———+IR2

t O is not ecual to O.

by

Yoo, o= (%, if x20 or xy 20
(+xh(xy),y) 1T x€0 & y»C .

-
. . . B P . —
Then there is = onen neighbourhcod ¥ of O in I~ such that

Came 00 NP . " - , SN
I is & C” diffzomorphism of 1 oato H(i).

et

¥

Now let B be the rotation of Rfa through -4,

Replacing a distinguished chart @ at a sadd

=

£
}d
()
e}
O
-
[



with suitable range by E(HIN)S_WP gives the inegquivalent

Morse foliation ¥'.

This departure of the model from the intuitive conception
oaly appears to matter in considerations of the holonomy
aroﬁnd a loop séparatrix. However,as is shown in the nrext
section,we can always choose a lorse foliation which
reflects the intuitive situation,with the stsible loss
of one degree of smoothness.

2.15 Practical intesroretation of holonomy.

we wish fo link the holonomy lemma with the holonomy
£ToUD. |

suppose K = [0,1] and Y is a path in a leaf of ¥ with
Y0) = Y(1). Z=st I ve the map

v [0, 1)xV—1i

g
ovtained in oz :lonomy lemma for some transverse
vector field zn: write h = Hq.
“hen writin~ & = “eo; . - ([¥]) we seec that
) L‘Y'\O)aio'] ‘
kofo°hIV = folv

as germs at ¥(7) in V so that if ¥([0,1]) contains no

. . =1 . .
saddle point,k and h agree as germs in a suiltable
co-ordinate system. If ﬁQ[O,ﬂl} contains a saddle point,

-1 .
k and h agree &8s one-sided germs.



The holonomy also has significance when there are one

or more loop separatrices at a saddle point s.

To simplify matters let @ be a chart at s in which the
map £ defined by fo(x,y) ~ Xy 1is disfinguished.

suppose that there is a loov separatrix at s.

Choose points &_,B  in that separatrix with @(AO) = (0,1)
(P(BO)= (1,0) and transverse intervals A1A2 at AO & B,IB2
at B (see figure 2.12(a)) with image under @ similarly

named (see figure 2.13%). A
1

Fig 2.12(b)
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2 Jj
(07—/]>
Fig., 2.13
et VY (0,11 —— . be an embedded path in the loop
g
separatrix starting at Ao and ending at Bé,and passing
outside the domain of ¢
‘“he holonomy construction determines a diffeomorphism of
444, into B B, given in the chart ¢ by
(2,10 ¥ (1,P(x))
where f*is a germ a2t O of an orientation preserving
diffeomorphism of M.
If ¥ is now comdleted to a parametrisation of the loop
separatrix then the image of [¥] under the holonomy map
is essentially ths germ of p.

I

h

there is no other loop separatrix at s and every
leaf on one side of the locop is closed,as in figure
2.12(2) then intuitively there is no holonomy. However

the germ of‘F>may not be thst of the identity,although it

will of course be the identity on one side of zero.
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e can then replace the lMorse foliation by one in which
‘the holonomy is formally trivial as follows.

The map P satisfies :

-

x if x 2 O.

P (x)
Ihusb - ,D"q (%)

x if x 0.
Write qu(x) = X + X?(X). |
Then if F is ¢F n is ¢ ana has all jets up to and
including the (r-1)th zero at O.
Define a local diffeomorvhism Y of R-at O by:

Y(x,y) = (x,y) x&0or (y20 & x20)

(x+—xq(§{y),uf) x 20 and y £0.
Jriting Wx,y) = (W%(x,y),?%(x,y)} and replacing £, by
(3, 7 )Y, (5, 7 Y5 (X,y)

Al

X . RN o C s
then gives the required C Morse foliation.

If thers sre two loop separatrices at s and the situation
is exactly as in figure 2.12(b) with all nearby leaves
closed we can again choose a Morse foliation with the

same leaves and no holonomy around the loops by modifying

and C_ B

the original foliation just in the quadrants 0.A -
> 4 - i 171

2.0 X and W 1limit sets.

The & and o limit sets of a Morse foliation 3 play a

crucial role in describing the conjugacy classes of Morse



(&
O

foliatiéns. They encapsulate the asymptotic behaviour of

the leaves and are defined as follows.

Let g be a flow tangent to 3 obtained as in section 2.6.
Let 1 be a non-singular leaf,separatrix of éingular point
and suppose 1= {Qa(xo,t):t e |}

T“he W~1imit set W(l) of 1 and ®~1limit set ®K(1l) of 1 are

defined by:

w({l) = N closure($ (xo x [t,00))),
teiR ’ _

x(1) = N closure(i%(xb x (-00,t})).
telk

w.ince Q@L%mschosen according to the orientstion on I
and trausverse orientution on Y ,tns distiaction between

o and w~1imit sets is well-defined.

These sets have the following provperties:
(1) e(i) is = union of singular
points,separatrices and non-singular leaves.

(11) T = 1uw(L)Ux(l).

(iii) If 1 is a circle leaf T =uX1) = ox(1).

(iv) If 1 is an inward separatrix at s then wW(l) = s,
if 1 is =2n outward separatrixz at s then X(1) = s,
if 1 is a loop separatrix at s W(1l) = &X(1) = s.

(v) If s is a saddle point in (1) and 1 is not an
inward separatrix then W(1l) contains in addition a pair

of adjacent separatrices.
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Lo . . .
2.17 the Poincare-Bendixson Theorem.

ihe doincard-iendixson theoram describes the global
behaviour of vector fields on the plane or sphere and

has been generalised to higher dimensional foliations in
many ways (see [21], [27],[2%], [31] ).The original papers
of Poincard and Bendixson can be found in (1) and (24]
and a modern trestment in [3)}. we state below the resﬁlt
for liorse foliations on the sphere MO (inIWhich each leaf

contains at most one singulsr noint).

o lexf 1 i3 sail to be proner 1I its tonolcgy as a
mznifold agrees with its topologr as a subset of Hg.

—3

Theorem: Let F be a PMorse foliation of thne sphere 10 such
that no leaf contains more than one singular point. Then:
1. mvery leaf is vroper,
2. For every singular point,non-singular leaf or separatrix
1 one and only one of the following occurs: |
(i) 1 =1, and 1 is a singular point or circle.
(ii) ol) = W(l) and 1AW(1l) = ¢ . Then 1 is a loop
separatrix, (see 2.16(iv)).
C(iii) 1,0{1) and &X(1) are mutually disjoint and
either a) (1) is a saddle point,
or b) WX1) is a circle,
or c)WX1l) is the union of a saddle point and one or

two loop separatrices.
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in cases b) and c) the leaf containing «w(1l) has non-
triviél holoncmy group and 1 spirals towards w(l) as t—ee,
Ir other words,if pew(l) and T is a small transverse
interval about p the sucéessive~intersections of 1L and T

tend monotonically to p from one side as T—300 .,
2.18 ''ne theorem of A.J.Schwartz.

A . 2 . . :
this theorem applies to any C° flow on a 2-dimensional
manifold and a proof can be found in [31)}. Since every
. . . Y ; A~ o . ,

torse foliation is &7 we can apply this thesorem,

ortalining the rssult below.

‘heorem:Let 3 be a (Cr,r‘?éﬂ Morse foliation on Mg, the

oriented two dimensional manifold of genus g (satisfying 2.9).

g
If 1 is a singular point,scparatrix or non-singular leaf

of Y ,oune. and oniy one of the following occurs:

7 .

(1

s

w(l) = Mg and g=1 i.e. Mg is the torus.
(ii) (1) is a circle and if 1 is not a circle,
1 spirals towards W(1l) which has non trivial holonomy group.

(iii1) {1l) contains a singular point.

thus if ©i is the join of more than one torus and every
o

leaf has trivial holonomy group,(iii) is the only

possibility. sven if W(1) is not Jjust =2 saddle point we

shall see that the saddle points in «X{1) determine it.



Chaoter 3. Centres.

{

n fiorse foliations of manifolds with positive genus,each
centre is associated with a saddle point. In this chapter
we obtain a detailed descriwntion of the behaviour near a

centre and thus exhibit this association.

In our treatment of liorse folistions with trivial holonomy
it is crucial that the behaviour can be deduced from that

liorse foliations without centres on a manifold of the

same or smaller genus. On the otvther hand the construction

of appendix 4 can bz u

a

n.
(T

Y

s, to bulld =2 liorse foliation of
the torus in which thew-~linit set of every leaf is a
perfect,closed,nowhere dense set as in figure %.1. Any

Morse foliation without centres would either have all leaves

o

idel’ltifzf [ X ) AV
to obtain a

torus )
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dense or the limit set of every leaf is a circle,as
follows from A.J.Schwartz's theorem (2.18) and was first
proved by Denjoy ([4)). 7“his is quite different behaviour

to that of the original fpliation.

Cur approach is to use the fact that a centre lies in a
disc foliated by circles and to extend this disc to a
maximal one using the holonomy lemmza.

This information is contained in the following:

. .. . ) . . . R
Pronosition 3.1:Let 3 be a ¢ (rP2) lorse foliation on

H%,the oriented Z-mznifold of genus g (zatisfying 2.9)5
Let ¢ be>a centre of Y and let
€ = {i)EF%f D is an open embedded ct disé which is a
union of ¢ and non-singular leaves and 92 is a
circle leaf }.
Then if Q, =U € ,one and ounly one of the following
possibilities occurs:
(1) z = O,I-’ig is the sphere and'3qc is a centre.
(2) che so that BQC is a circle leaf.
c
In this cuse,either there is a separatrix in QC which
has.aQC as its & or Wlimit set or every leaf near BQC
but not in Lo is non-singular,spirals towards'bQC at one
end and to the union of one or two loop separatrices at

th

[

other end (see figure 3%.2).
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all leaves here
spiral to loop
separatrix

~

Fise 5.2
(%) QC contains a saddle point s and one or two loop

sevaratrices (see figure 3.3).

™N

QC the linit
or circles
Q

N
/
S

-

Fig. 3.3
Proof:Since each embedded CF disc DEE is a union of
non-singular leaves,sepuaratrices and singular points,
the holonomy lemma shows that this is also true of GQC.
Since‘BQc is closed, the wand X limit set of any
separatrix or non-singular leaf in BQC is also in BQC.
Having noted these facts we show that if (1) does not
hold then (2) or (3) must.

The proof proceeds in four steps.



in step 1 we show that if agc contains a circle leaf then
G, €€ and that every circle leaf near 2  lies in 5~o‘ The
proof is topologically straightforward,but recuires

slightly more care in ensuring that Qc is embedded as a

.r .
¢~ disc.

In sten 2 we show that if C,;Cee then either there is a
c ' ¢

separatrix in §, near 9., or every leaf in Qc near dy,

has 3;0 as limit set at one end and limit set at the other

end eitner & circle leaf or one of the sets in figure 3%.2.

C
In step 3 we ghow tnat 1if gc‘ze and every leaf in QC
near BQC has a circle in both limit sets,then Qc lies

in the interior of a disc in €. This is impossible and

thus (2) is proved.

in step 4 we szocw that if BQC contains a saddle point,

.

then the situa=icnz is as shown in figure 3%.3.

Step 1. Supves: B contains a circle leaf. Suppose that

A

does not be_:ng to e.

“hen 3~€c is limit of circle leaves bounding discs in €.

o)

By lemma 1 of asopendix 1 there is a Sr embedding
Y5t x (<1,1) ——m
such thzt 'Y(S/l x 10}) = 'BQC

fY(qu -33) is a circle leaf bounding a disc in €.



f~
puny
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By lemma 2 in appendix 1 there is a ¢t embedding @' of

. o . e )
the unit disc in H~ onto QC.

Hence ;;C;Z contradicting our assumption.
Thus Q_Cee.

Similar arguments show that if there are circle leaves
c
arbitrarily close to BQC in Cc then they bound discs in

€ - an impossibility since such a disc would contain CC

in its interior.

c
Step 2. Suppose that no separatrix in QC has aQC as

limit set at one end.

“he holonomy lermmz and the factT oo

Y

.

there are no ¢

<f

rcl

‘._I .

®

=t

S

leaves in Q. @arbitrarily close to 3%, show that there
. g

BQC anl 1is such that any leaf cutting it has agc as limit

set at one end,(ses figure 3.4).

no circlse leaves




Let‘p be a poinf in the limit se2t at the other end from
aQC of a leaf lo cutting the transverse circle CO,
suppose that p is non-singular and let T be a transverse
interval at py,lying outsi@e the disc bounded by Co.
Suppose lO cuts T for the first time at ot énd next at Ps
(assuming p&uc(lo)).

Let EO be the subinterval of T with endpoints o and D5

(see figure 3.5).

T D 1
o]
Fig. 3.5
Then the holorczm~ lemma shows that every leaf leaving CO
cuvs TO in exzctly one point (except for lo) and every

trajectory through a point of To meets CO in exactly one
point (except for endpoints).
Thus every leaf on one side of p and cutting T has limit

set BQC at one end and has the non-singular leaf or



separat}ix through p in its limit set at the other end.
ﬁﬁrther no point in the limit set of the non-singular
leaf or separatrix tirough » can cut T 1n any point

other then p.

nence either p lies on'a circle leaf or a léop separatrix.
If p lies on a circle leaf the holonomy lemma shows that
evéry lesf leaving GO is eventually "trapped" in a small
neilighbourhood of the circle leaf containing p given by
the holonomy lemma. Thus this circle lesf is the entire
limit set of every leaf cutting QO.
Otnerwisecu(lo) contains one or two loop separatrices

a7

thz holononmy lemma shows

and another anzlilcztion of
that the situavion is as described in figure 3.2.

This completes the proof of step <.

ste 2 15 = circle leaf and every lesf
near 9., has ©._, =5 limit sei at ore end and a circle C
as limit set =T Tz=2 other end.

ie have to show Tnat ¢ bounds a disc in € for this
implies that . <cintU€ = 9, — a contradiction.

~

) e ol . : 1 I‘ = 5
By lemma 3 of avpendix 1,there are ¢ embeddings

7
’Yq "Yg C

winose images do not meet,with the following properties:
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rd

(1) “ﬁ(sqx -+
(1) Yo(8" x {3
(iii) All the circles "‘CI(S/] x it} ),“]“2(5/I x 1s})

BQC
C

for O£t ¢% , -4 $s€0 are transverse.

-

The situation is shown in figure 3.6,

* -~

(R L

~ Y, (S™10D)

- — -

Image of’Yz shaded

Fig. 3.6
By the holonomy lemma,using a suitable transverse vector
field in which all the circles of (iii) above are
trajectories and adjuSting the resultant map we obtain a

r T
C" embedding



1 iy
Y+ 8 x [—1,1]————»ug
with the following properties:
(iv) each Pe s’ ,"I’B(iﬁ} x[-1,11) is contained in a
single leaf of Y.

(v) 411 the oircles"fa(sqx {t}) are transverse and
YosTx ) = st Lo, (T x {-2p) = (87 x $2),
vs(8" x 121 =, "xi-3D, % x £ =1, x D).

Let @be the embedding of (;C.
Application of lemmz 2 of appendix 1 to ¢>and.ﬁ% yields

an embedding @' of a2 disc bounded by'Yq(qu izD.

Oy
j-2
(D]
Q

mepitition with @' and Y. yields @” an enb=ddiing of =&
S
o) » rx/] 4 A .
bounded by Y, (5 x {~%}).
o z
Finally repetition with " and'Yé yields an embedding of

a disc bounded by C so that QCE intU€ as required.

Steo 4. We have T¢ show that if'aQC contains no circle
leaf then 1t ¢inT:ins only singuler leaves and every sep-
aratrix in 9., 13 a loop separatrix. "Trapping’ arguments

used in sten Z T:23n give the required result.

~
-~

1t is at this zcint that we use the fact that ¥ is C°

and hence subject to A.J.Schwartz's theorem.

Let 1 be a non-singular leaf or outward separatrix in 2%

C.
By the theorem of Ai.J.Schwartz there is a saddle point



s in w(ll).

If 1 is not an inwazrd separatrix at s,l mezkes two successive

[¢3]

a

e

sages A5,CD past s in

.
n

single quadrant cutting a

transverse interval T at s in points p,l,p2 as shown in

figure 3.7.

l.Lgo ./
- N - o~ N . .
LET iy De & Transverse vector field having T as a trajectory.

is the limit of discs in €.

e e e . . Y .

This implies tnat thsre 18 a trajectory of L4 which cuts

a circle leaf zTwics - which is impossible by the transverse

orientatvion of

G

lience 1 is an Z:wz2rd separstrix at s.

-o& proof oif provosition 3.71.

r_
ot
'_J
0
0
O
g
—
4%
ot
w
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Chavter 4 Centres in Morse folistions with no holonony.

. . - N . o
Assumption: From now on we shall consider C

transversely
oriented Morse foliabions 3 with no leaf containing more
than one saddle point and in which the holonomy group of

each leaf is trivial. The latter assumption will be

stated as "3 has no holonony".

Definition 4.1.71: Tet ¢ be a centre of a l'orse foliation

on Mg,the oriented Z-manifold of genus g,and suppose that
>

no leaf of J contains mora than one =3addle point.
et € be the collection of all distinguished charts (@,U)

..
aT Ce.

&)
D
i

Dc is defined to be ths

p U

= U
(g, U)ee

Lemma 4.1.2: Les J =and D, be as defined in definition. 4.1.74
and let QC be &z Zefined in the statement of proposition 3.1.
Then DC = {, 222 T=2nce the situation is as in proposition

3.7 (1) or fizur: 2.3,

\r

rroof: Clesrly -8, ,and BDC is a union of non-sinzular
leaves,separavzizczs and singular points.
If BDC is not a centre,we have to show that it does not
contain any circle leaf.
If ¢ is any circle leaf in the boundary of Dc’ the holonomy
lemma gives a ol embedding

Ve st x (=1,1 )1,

onto a neighbourhood of C with each set ‘F(qu 1t1)
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2 leaf of 3.

Temma 2'of avppendix 1 then gives an embedding

4 :{Xe}iﬁg :lxl <1} ——

6o

which agrees with some distinguished chart at ¢ near O,
and contains ¢ in its image.

The proof of lemma 2 then éhows That @' is a distinguished
chart at ¢ - a contradiction.

Thus SDC contains a saddle point by the theorem of 4A.d.

schwartz.This proves the lemma.

. e N , T AN . ..
Definition 4.2:1et Fhe a C (r22) FMorse foliztion with

no holonomy and no leaf containing more than one saddle
point.

et ¢ be a centre 0of Y.

Then ¢ is of tyne 1 if DUC contains a single loop separatrix

‘and is of vpe 2 if BDC contains two loop separatrices.

The situation iz illiustrated in figure 4.1 below:

Centre of type 1. Centre of type 2.

Fig. 4.1



\J

4,3 Standard models for behaviour near a centre.

In this section we fix the properties of three ctandzsrd
models of partial liorse foliations near a centre,.

The precise constructions are given in appendix 2.

1.The first examule is tne lMorse follation 8 of the sohere

- 2 2 2
I, = = 1(x,5,2) EiRB x“+y+z° = 1}
given by the circles z = constant.
‘‘ne centre (0,0,7) nhas Morse index 2 and the ceatre
Y

(0,0,-1) has Forse index Q.

ses figure 4.2,

(0,0,1)

(0,0,-1)

71, 4.2. The Forse foliation 8.

2.The second ex of liorse foliations 8 & 8

.o N &
on the sguare {(~1,1) X (=1,1) €R™.
the foliation & has a single centre of tyoe 1,is
Symmetric about the line y = 0,is equal to the folistion

‘ . . . . 2 2
by lines x = constant outside the circle x’+y = {,and



\H
A

has a centre at the point (0,») and a saddle point at
(0,%) where 0 < N <A .

£ J'_s:,f‘f;‘+ rotated through an snglsz 77 with the
orientation on the leaves.

These are illustrated in figure 4.3%.

=5}
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3.7he third examples are of Morse foliations & ,g on

the half torus,which is the image under the covering mad
,o,] : Tﬂg—,—-)i\'i/] = torus

of the strip 0<y< 3.

These have one centre of type 2 and one saddle point and

agree with the foliation by circles p,]((-oo,ao) x {y}) for

y near O or 3.

The situation 1s illustrated in figure 4.4.

0

The ljorse foliation €7, The liorse foliation & .
Pig. 4.4
It is easy to ==z tnat there 1s a natural way to replace

the Morse foliz—i:ns o8 ond & by foliations without
singularity.

In the rest oI tne chapter we show that any centre of
type 1 is loczlly Cr~conjugate to one of the examples
$" or 8~ and any centre of type 2 to one of the examples

8" or g”.
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In the case of a centre of type 1 we can replace the centre
by a foliation without singularities,and this can be done
uniquely up to Cr-oomplete equivalence, |

‘The trouble aboﬁt doing this with centres of type two

is that the resultant lorse foliation will hot be
transversely oriented. However,we shall see that in
decomposing a lorse foliation we can always deal with a

centre of type 1. Thi

n

< o
[SEEN S

is Dbccause a sphere always h

4]

centre of type 1.

cfrovosition 4.4:(1i)fhere is a unique C -complete

equivalence class oi horse foliations on the spheres .
with no holonony and rno suddle point (32 2).

(1i) There is a unique o conjugacy class of Morse
foliations on the torué Nq'with no singular point,no
holonomy and at lzz2st one closed leaf (r22).

To see that thzr: sre many complete equivalence classes,
look in [17].

Proof:(i)Let Y -. a ' lorse foliation of the svhere MO
wvith no s=2di’» -2int.

Then 3 has a c=nire 5 of lorse index O and one of lMorse
index 2.

iet € be the standard Morse foliation of HO defined in
section 4.3 and let z_ denote the point (0,0,-1) and =z

2
the point (0,0,1).



we construct a Cr—diffeomorphism @ of Ho onto itself with
P d =Y.

wince @ is isotopic to the identity by lemma 2 of
appendix 3,the result follows.

By lemma 4.2 we can choose distinguished Charts’YO,ﬁé

at Cy1Co .and /oo’/o2 at Zy1%n ,whose images overlap and
whose range is the unit disc in Eg?.

without loss of generality we may also assume that if

B’I = {xe?ﬂgz Hxl <13 B, q = {XEERE: 1 <ixli< 1%
A ]
. -1 e s g~
then Y 'B.NYZ'Z, =Y CERp =Y, By, 1

T B
Fo PANP2 By = Po By g = P2 By 4

(see figure 4.5

m—————— zz ' C,
-y —
P’l B| ’ FO‘BL“ ‘r ").‘B
4 i 2 'YO-B_L Y .
-t P. B, | o
P By L— I == i e
Z; CO
Fig. 4.5

since B4 4 C2n o3 identified with S X (-1,1) in such a
2 :

. 2. .2 .
way that the circles x"+y~ = constant become circles
qu {t},it follows from lemma 4 of appendix 2 that there

is a oF diffeomorphism

) 29



with X = identity map near x = 3
gy =] |
A= /02[00 Yo¥o near x = 1.

Then the required diffeomorphism may be defined by
>
@<X> = Po 'Y (x) X e,"i’(;/lﬁ% |
/°2 A'\‘Vg(x) Xe'YE B%,/] -
-1
e € B,
Pe"*’2<2> xeYo By
where B% = {XGB-"{ : llxllg —}}.

(ii)The nroof of this part relies on the results of

N

chaoter 5 but we siketch e proof hsasre.

S0 .let ™ be a lorse folistion of the torus with at l=as

ot

one circle leaf 2nd with no Lolcnomy. By the theorsn of
s.d.Bechwartz,if 9 has no singular noint,every leal of J

is a cilrcle leaf.

Cutting along such a leaf and gluing in centres (sse 5.1.1)
produces a lorse Ioliation without holonomy or any

saddle point or tzs sphere,which is well-defined us to

AT R, Y S

C =conjugacy {(z==z 5.1.2)

C L . . T . -
By part (i) to:z-2 is a unigue { -conjugacy class of such

iy

Florse foliaticrz -f the sphers.

_ T : '
But g is obtziz:zi,uo to (T -conjuzney,b

,_‘l
0
l._)
—
-
=
ct
O
i)
()]
ok
!3
H

the centres of tais foliation on the sphere (see 5.2.1
and 5.2.2).

Hence "3 is unique up to C -conjugzcy
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Definition 4.5.1: Let 9 be a Morse foliation on the

oriented 2-manifold I1_ of genus g.
: >

Wie define an equivalence relation ~ on the circle leaves

of ¥ vy:
1~1' if & only if there is a CT embedding

H: 30 % (=1,1) — I

&
with H(Sq x {t}) a leaf for ecach t &€ (-1,1)
and  1(s X {Q'b =1 Qe[o,'l)
(2 x {-n3) = 1 :

The equivalence class of 1 is denoted by U,.

Temma &4.5.2: Iet 9 ve = ct (r &, lorse foliation on i1,
)

the oriented Z-manifold of genus z,with no holonomy and
no.leaf'containing more than one saddle point.
Then: (i) ~ i35 an eauivalence relation.

(ii) Ul is open.

(1ii) EBEithzz g = 1 and U, = Mg

| or Ui\l has precisely two componentse.

In the latter ¢::z,the boundary of each component consists
either of a cenre or :
of the disjoinT .rion of l,a saddle point and one or two

loop separstric:z:c.

1.

Proof: (i) This is immediate from elementary considerations
and lemma 4 of appendix 1.

(ii) It is clear from the definition that Uy is open

since all leaves in H(qu(éﬂ,ﬂ)) are in Ul’ (

(1ii) The proof of this part relies on the results of
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chaplter 5.

According to lemma 5.1.1,by cutting along a closed leaf

1 and "gluing in" two centres CqsCn We obtain either
[

Morse foliation on a manifold of genus g-1 or lorse

foliations on manifolds of genus g-u,u (0 €u £g) each

with exactly one of the centres Cq9Coe

The result now follows from lemma #4.1.2 by inspection of

the boundaries of the discs DC ,DC .
. /’ 2
- — I’ ~ - bt h T
Lemra 4.£.7: Tet ¥ be a ¢ (x p2) Morse foliation on I1_,
g
the oriented Z-manifold of genus g,with no holonony =and

no leafl containing more than one saddle point.
iet ¢ be a centre of J of type 1.
ihen thefe is an open neignbourhood U of ic and a ¢F
orientvation vreserving difieomorphism:

& 1 U (=1,1) x (=1,1)
such that 88 = 317 or @*8 = YU according as ¢ has
Morse index O or z.
The neighbourzcois U may be chosen arbitrarily small.
Proof: ¥Without Zoss of generality assume that ¢ has lMorse
index O.
‘"he idea of the -roof is to construct a diffeomorphism on
parts of a neightourhood U and either to modify then on
overlans or to ensure ,by using a transverse vector field,
that they already agree.



we first chop up (-1,1)x (=7;1) foliated by F into

regions Aq,...,A7 as shown in figure 4.6.

fig. 4.6

e T T s .
specifically,there are ¢ orilentation preserving

diffeomorphisms:

@, A/l—————-){(x,y)e}ﬁ?: |

a distinguisnsd chart at the saddle point s

P> Ag"“““’{f:—:‘;‘}ema:

~ . ~ &
chart at ¢ _,th=s s=nitre of &

o]

Qs A { ,3Ix(=1,7) 1 = 3,4,5,6,7 mapping
segment of lszZ :zto [0,1)xixi.
we also assume tae following overlap conditions:

i - ""/I "N ) fo) A 3
A,lnAB = qo,.j, (00,1/83 x(-1,1) v [7/8,1] x (-1,1)).

-

A/] N AZ{_

A,i A !\_5

- @7 (10,1/8) x (=1,1))
= @5 (17/8,1] x (<1,1))

as shaded in figure 4.6,and

O,

o

32~y2|<n,!X+y1<1,lx—yl<1}

2. .2
X +y £ 13 = distinguished

single



(A’IU AB) NAa, =?;({(x,y) € m° : =+ <x2+y2< 11),
@2 (13,11 x (=1,1)),
@' (00,2) x(=1,1)).

'(A,' Uisu 4z U AU AB) Nig

(A,, U ;:;2 U ;’15 U, 09.5) HA7

We now construct analogous regions Ai in Mg’and use lemmas

4 and 5 of appendix 1 to modify the overlaps - except for

A6 and A wnere we use a trsnsverse vector field to

i

Let ¢ be the z22272 of Y and s the unique saddle point in

distinguished chart at s and suppose Y maps

-

et Y be s
the segments of loop separatrix to the same pair of half-

A

lines as @, maps the loop separatrix of 8.

=1

In fzct we may assume that the image of ¥ is

2

(x,)eRe: | x-yol <, Ixiylcul.
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ve may assume that the holonony is defined from the

transverse interval Iq to the tiransverse interval

T3t 2 , | Pl <5;}

=l
N

It
~
TN
b
e
A
m
5

y= x=2 , |X~1|’<{iz
ixg—y2|<£b'xi 71< 3,
1

1l
~an
—
>4
e
N/
m
Yl

Ty
Let Al '\{’_q i(x,y) € 'ER‘?
?"I YI A and ®|Af

s
S
i

il
it

vupoose thint for all 1 the nans @ are chosen so that

1- DU AE N~y —~ S ad N . A [PUTL AP
the partial transverss vecvor Tield onm i given by
g
A ”
PP ’ = "'/] . N
L ?7 s\ a D/ on 4 ( Sia L
/ B ¢ ~
| -4 ‘ .
=] oy
& N a./' .-/ on ¥ \-ta !
: b ox |

Then using tne Zolonomy lemma with respect To Zy and the
fact that 3 has no holonomy (see 2.15) we can construct
& ¢ diffeomor ~fan

!

z A;~———>[Qyﬂ X (=1,1) such theat

Py 17

a4 13 e z.own in figure 4.7.
)]

-

wWaere

Iience we can

v
: i
i
¢y
o
(o]
®
ct
O
e
C
T
o’
e
ot
Q
by
=
3
q

- .
[P -
?5 on ;;5-

wimilarly using Xg and the holonomy lemma we can extend

& to regions 4! =nd o

1
i 2

as snown in figure 4.7,



Lemma 4 of appendix 1 and lemma#4.1.2 then allow us to
extend & to AL br choosing a distinguished chart ?% with
[48

Tomain A1 at o oand LAt U ALY - @
domain A4 at ¢ 2nd ,.20\\.&,] Ug_p) = QD: Bs g .

Using the holonomy lemma we can construct diffeomorphisms

@i s Al ——[0,1] x (-1,1) i=6,7
mapping segments of leaf to segments [O,ﬁ]x{ﬁ}where the
regions Aé,Aé are as shown in figure 4.7 and satisfy
analogous overlap conditions to A6 and A7. Using these
naps and lemma 5 of appendix ‘1 finally allows us to

extend ® to all of “fU .....L)An,

Iiow ® nevs leaves to leaves bul at ngular ooints it
preserves disvinguisned charvs and hence distinguished maps.
Fence &+8" = AU veees UAY

3 AU eeeee Ui
Finally note Thow vsxing the domain of Y sufficiszntly.
small we can mz:ii qU ....U}ﬁ,EdomainﬂﬂJﬁgUAé as small

as we like.

Our next task : 70 slow That centres of type 1 can be

- - . T :
removed or adds. a uniaque way up to C° complete

i~
)

—

eguivalence. Before we state and prove this we need the

LOJlOblng lenme.

Lemma 4.6.2: Let @ be the foliation of (~1,1) x (-1 »1) by
lines x = constant.



Let X be a ¢t flow on (=1,1) x (=1,1) equalling & outside

(~Z,7) % (=&,7).
Then there is a C© diffeomorphisn
¢)=: (-1,1) x (=1,1) —=>{(~1,1) x(~-1,1)
such that (i) @@ =X, -
| (ii) @Px is the identily map near the boundary
(in W2 ) of (=1,1) x(=1,1).
froof: X is a ¢* map
t(=1,1) x (=1,1) % R ——(=17,71) x (=1,7)
PGyt X ((x,7)) .

Then define

by ¥, = X _ (340
L ?7(.( | RO }.K 9 ) .

woince X has no singular points gzcis the recuirsd map.

TN
v

Y

2) lMorse foliation

(r

on i1_,the orientsd Z-manifold of Fenus g,with

Trovosition 4.5.3: L. Let Y be

89}

!

no holonony
15} _ .
and no leaf conT:zining more than one saddle point.

. , A o - r
Let ¢ be a centr- of B of type 1. Then uo to ¢ -complete

g
!

cqulvalence therz 13 a unicue way of removing c fromJ .

3

That is,up to C -complete ecuivalence there is a unique
lorse foliation ' on Hg satisfying:

1. ' has one less centre and one less saddle point
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than 9.

2.There is an open neighbourhcod Uvof ic and a

¢¥ orientation preserving diffeomcrphinm
@: U—— (-1,1) x (~1,1)
such that  a) ¥IMNU, = g |Mg’\U;Li -
b) JiU = ?*3+ or @*68" as appropriate, where

Uy = @7 ((-2,2) % (=7,2)).

%,.The leaf of YIU ting cp (( L,,Qx{-—}) at
qé'q (x,2) cuts C@'q((—f’ —?)x{-*}) at CP (Y,?D

o AT SN s
L.Conversely,let g be a ¢ (r2Z2) Morse foliation o=

7

)

, r . . . B . .
then up to C -comnlete equivalencs there is a unigus way
of addiag a centre of type 1 and lMorse index O to 1.

. T . .
That is,up to T =-czomplete equivzlence there is a unigue
T . ‘

C” lorse foliaticn "8' on Mg such that:
1.83' has --.2 ~ore centre of type 1 and Porse index

i

O,and one mors ::“ile point than 9.
2.Thers iz = 07 diffeomorphi
@: U——(~1,1) x (=1,1)
where U is a neighbourhood of some point XOE,l
such that a) 'Hl‘ﬁg\ U, = 'S'll"lg\U%

b) @ is a distinguished chart for 9 at.

where U —?"I]((— si) x(=2492)).

A - S ey : - . LN I -
JLTN Tig ZEMe L0 LEUACS &5 1 L. ald let 1 be & circlz lo



[e)}
w

3.'ihe leaf of Y|U cutting qu((—%,%)><{—%}) at
&' (x,-2) cuts @ ((-%,2) x £2}) at @ (x,2).

—

4.The additional saddle point lies on a leazf

-1
Y]
U\)
3
@
[©)
l—J.
I3
04

with 1 outside U.

X “sk‘\\‘v ~
v IR XY Morse foliation
b L] .
N L vl e with exvra centre
U } /\\~""Ol’: . Anahad »
4 l \‘-":‘:l/ lS ka.’_ﬁs_-eu..
,- at
~
4 4

rroof:i. whe existence of the foliation 3' is immediate
from lemma 4.5 and tae fact that the liorse foliations

+ - L N . . .
of ,y 8 on (=1,9.%x(=1,1) agree with that given Dby lines

, S 2
X = constant outside the circle x + y2 = .
Now we prove unicuzness,supposing that c¢ has iorse index O.

osuppose that 3 ,’gé are two Morse foliations wiich satisfy
conditions 1.,z..7. of the statement and let
qrq,Qng: Uqs U2~——-—+(—1,1j x(fﬂ,ﬂ)

be the corresponding diffeomorphisms as defined in part 2.

By the hypotheses of this proposition and the proof of

lemma 4.8 we can find a neighbourhood U, of EC with
-1 '

Up€ @7 ((=3,2) x (=5,20)0 @5 ((=1,7) x (=3,2))



and @, : U — (=1,7) x (-1,1)
a ¢f diffeomorphism such that

PsF = Flu,-

There is a well-defined o

Morse foliation E% on Mg
given by 3 outside U, and by @i on U . -

e show that‘%% andf%é are Cr~completely equivalent to @%.

Now by lemma 4.6.2 and assumption 3 of the statement we
- may assume that _
* _ t £ — [ I
q:,ia = ‘S,] | ‘U/I and ¢2cz_ '32102
where Qis the flow on (~1,1) x{(=1,1) given by lines

X = constant.

T
P (—1,1)><(-ﬁ,1>———+ (=1,1) x (=1,1) 1=1,2
such thut O, agress with the identity map outside
(5,20 x (=i,2) and
- . ,
31 SRS |
. - s o ] —%P
T emma ¢ oI appendl . P, Q. e S )
Then by lemma avpendix 5’q2 Pl L extends by the
identity map to =z " diffeomorphism
Vi Mg
isotopic to ths Zientity.

Then W}'3i =g’ i=1,2 as required.

B. The existence of §' is straightforward - simply

replace the foliation on a distinguished chart at a



point of 1 by standard exsample 3.

0w we prove unlgueness.

Suvpose that E% and 3& are liorse foliations with omne
more centre of type 1 and Forse index O and -one more
saddle point than ¥ which s=tisfy conditions 1,2 and

of the statement.

Let @,9, ¢ U,,Uy —>(~7,1) x (=1,1) be the corresponding

N2

diffeomorphisms as in part Z. of the statement.

Suppose first that U, = U, = U_ (say).
=y similar methods to the prooi ¢ lemma 4.8 ve can
vo aliffeomorphisns

Pl : (_"]?/]>x("/‘,/]>__ﬁ("/l,/]>x<—/i,/: j_:’],2

AN

fin

d

wihich agree with the identity outside (-%,2)% (~.,%) and

~ P
F:T.?l *33{ = E .]_-”~1,:.,..

similarly we can Zind a O diffeomorphism
P‘O : (=1,7 % ‘\"/},I]>'——_7<_/]’1) x (“/l,/l)
agreeing with T-: Zdentity outside (-2,Z) X (-#,2) su
that P& = (@9, 'R .
then by lemmz 1 of appendix 3 the diffeomorphism
=~ =1 =1 .
P1 PIPPR 2P+ T

T oian .
extends to a C° diffeomorphism

ch
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R o ——) lﬂ

G
M_ :
O [}

[63]

which is isotopic to the identity and satisfies

EEE RIS IO

Hence it remains to show that we can assume that U1 = Ug.
To do this we first construct a neighbourhood VW of a

segment of 1 as shown in figure 4.710.

1
\

]
1
)
1
)
i
I
1
1
1
\

&
-

Ll

1

o

-

Ll

. re 1. o .- T N - - - -~
with 1 outside U,/ and 12 the leaf of 3é containing ..

T b "'/} N bt - N q 4 ) - -
Lev ?H (i&ﬁ X (=1,1)) Cerote the component of Lf\Uﬁ

&
|

A
-1

'z
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Let Cpgq({kg} x (=1,1)) denote the corfesponding componant
of 1N U2. |
Interchanging the subscripts 1 and 2 if necessary,we can
find a positively oriented embedded curve
| 7Y: [0,11—>1

such that V(0) = @5 (1,,-7/2)

Y1) =’Q?51<k2’ 7/8) or Qqu(k1,7/8) as
appropriate so that A
-7 (Lip x (-7/8,100 @5 (f03 x (=1,7/8)) € ¥(10,11).
We choose W to be given by the holoncny map of 3 azlong
Y of a sufficiently small tranzverse interval at MO).
In fact we reguire :
g ((=1,x4-7/83 )€€ ((=1,1)xE7/81 ) and
ings ((=1,7) x {7/8%) e@ ((-1,1)x 17/8}) or
‘V\J(\@,'I/]((-—’l ,1ox 17/8 )Eqa:']q((-’l ,1) % {7/83) as appropriate.

Let CisC, denote the additional centres of“s% ,’Hé.

Let K, be the union of 501 and all segments of.ﬁa meeting
N (1,1 x £-7/81).
Let K2 denote t-.= union of Ec and all segments of‘?é

. 2
meeting WA® ((-1,1) »{7/8}) as in figure 4.11.

Letaéi'(i=1,2) be a CY¥ Morse foliation agreeing with'Bi

outside Ki and without singularities on Ki.



~J
\N

Ki shaded

By lemma 4.9 and lemma 1 of avrendix 3 we can find C

diffeomorpnisng

p: v M —— i 1= 1,2
3 & &
isotopic To the identity and enual to the identity

_
.o -] p P I SN
outside Qo ({(~7,2) x (=", J)J

SU.Ch Cz‘_SLt B = P—;ri i = /] . 2.

Low piy!

1

I'owever,che choice of ¥. shows that f’; KiEEJ.

Hence we con assuns that U, = U..
1 2
' : e T '
Corollioxry &,8,%: 2% {FF’; denote the set of eguivalence.
Sy
. : . T .. . .
classes of paizr 3,c) where 3 is a C° lMorse foliation

on Ii_ with no Z:l_cnomy,with no leaf containing more than
<o

one saddile wolivw.with ¢ centres and in whickh ¢ 1s a centre

of 3 of typve 4 and Morse index Jj (j=0 or 2)e

(Yyc) and (¥,c') are ecuivalent if there is a CT

diffeomorphism f of !M_ wnich is isotopic to the identity
o
o

Falt

and waich satisfie f{c) = ¢! and £*3' =193,

2



~J
J=

T .
Let ¢, denote the set of C -complete equivalence
o
classes of liorse foliations on M_ which have no holonomy,
_ G

no leaf contalning more vhan one saddle point eand & centires.

Then there are bijections:

. ~e P

J .1 .0

Pg,e ' g,c_'—_)gg,c—”l 3 =02

qd o .————)ﬁ%q’a j=10,2

g,0 3,071 46 ’ ?
S (j j ~ 1fentiltyr —= (’3
uch that qg,cg%bc = identity J 0,2

X OJ‘ = 1dentity J.k = 0,2

46 "E,8 o > T

Proof: It is left to The reader to checkx that the
pronosition defines such maps and to prove Toe ecualitie
e now consider centres of Type . 1t turns out that in

this csse we cannot remove the centre without destroying
the transverse orientability of the lMorse foliztion. Thus

s . T .
we have ©To exdress The unigueness up o C -comnlete

e

93]

equivalence of Tiz behaviour near a centre oi type 2 in

.

a different war T2 that for centres of tyne 1.
T K] : . ' ~ T e wr N T e ol ' da g
Definition 4.7: 225 J be a ¢ (r2>2) llorse foliation on

I: ,the orientsi Z-manifold of genus g,with no holonomy
<Q

and with no lesf containingz more than one saddle point.

e]

Let ¢ be a centre of J of type 2 and let

where ZL,l and 1~ are circle leaves which lie in thne

2
complement of ﬁc and approximate each of the lcop



~J

separatrices in 9D, (see figure 4.12).

;igo L!‘o r:
If g=1,the fect that J is transversely oriented precludes
U, from being all of ¥ .

Thus it iz always trus Lhot BUC is a non-empty union of

[

singular points and loop sevaratrices.

-~ i ~ -~ - I’ o . . ™
Tenna 4.2.,%: Iev 3 be a C liorse foliation on M_,the

> of genus g,with no holonomy,no leaf

1% mere Lzn one saddle point and with a centre

¢)
@]
3
d‘
O]
e
3
}.
3

c of type Z and . corse index O.

Let U be a zavir 24 neighbourhood of e whose closure is

conbained in o _.

et

m
S

L2
2

be the h=l
when there is a U diffeomorphism

@ : U—T

RN

e

such that YU = @*@+,vhere g+ is the standard Horse

foliation on T

1
=
o

defined in section 4.3.



N
[Gh!

oy

‘roof:This iz similar to the proof of lemma #4.5.2 and is

a

,_.l
10)
)
<t
O
ct
1
D
H
[¢]
s
o
[
=
L ]

Proposition 4.8.2: ILet M_ be the oriented 2-manifold of

genus g and let 913E be CI“(I‘?Zﬂ Morse foliations on Hg

with no holonomy and no leaf coataining more than one
saddle point.‘

Tet CqisCop be centres of 34,32 respectively each of tType
2 ond Morse index O.

juppose that U, = U, sand 3, and 3., azrec on =
s —~ [
| ot

saturated neicr-touvrhood off the comnlemsnt of oo
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Chanter5. The decomposition theorem.

ile have already made a start in classifying ilorse
s . R . .
foliations without holonomy up to { conjugacy,indeed

r - . .
wa have seen that up to C convnlete enruivalence the

4y

behaviour at a centre is of two tynes,once the Mors

index of the centre is fixed.

we have also seen that any circle leaf 1 has a maximal

open neignobourhood Ul consisting entirely of circle

" e

leaveé. In general 1 is a cylinder whose boundaries consist
either of & centre or of a s2dlls [0int and one or two loop
‘separatrices. If a2 boundary component of Ul has two loo»
separatrices there are in generzl circle leaves near aUl

not in U.., Thus there is sonme leaf 1' with U, and U
1

1 1!
abutting.‘lnductively adding on sets Ul' we obtain a "tree'
made up of cylinders foliated hy civcles ;joined to each’
other by loop separatrices and such that each boundary
component is either a centre or has 0o néarby circle leaves
not in the "tree. Adding in centres in. the boundary and
plugging off the remaining boundary components of the "tree'

with centres and the holes left also with centres produces

new lMorse foliation. Repeating this procedure and shrinking

[t]

awvay centres of type 1 ve end up with a number of 2-manifolds

i

and llorse foliations without holonomy either having all

leaves c¢losed or having no leaf closed.



In this chaopter we shall construct such a deconvosition

. . r .
and prove it to be unique up to C conjugacy.

in figure 5.7 below we gilve an example of this procedure.

cut and p1i§¢<;£fg&

off here

off produces a torus with three centres

Cutting & plugsisy
& three saddls coints. demsinder of manifold is a torus
with two centres of type one and no other closed leaves.

Fig. 5.1



Jefinition 5.1.?:Suppose'3 is a ¢¥ (r »2) Morse foliation

cn the oriented Z2-manifold ! 1, of genus g, without holonomy.
[
ouppose 1 1s a closed leaf of Mg,then cutting alongl and

gluing in two discs produces a meanifold Mg 1°
?

Mg 1 is foliated by foliating the discs with circles and
?

a centre.

Rigorously we proceed as follows.

Let B, = {(x,y)e R2= X2+3’ s1%
]
§' = {Gy e B xPayteals

Let b x {1¥and B, x {23 be two conies of Bq with foliations
- £Y N 1T S Ay { ~r o= £~ =

9,3, given by functions (¥,7.—>-(x" + ¥y ) and

(x,7) —(x“ + 37) respectively.

we define a new oxriented o manifold M 1 with a liorse

9
foliation as follows:

P-Ig,l = Mg\l UE, x {j}ufj‘1 x °las a set. |
Let W S -3 1 De a ¢" orientation preserving embedding
and H : S )((-%,%)~———7Mg a O orientation preserving
embedding such that:

(i) H((X,y),‘t)el~t a leaf depending only on t.

(i1) H((x,57,0) =V (x,7).
Define H, : 8 X (=%

(x,7),%) t <0

(((1=-t)x, (1-%t)y),1) ©20

“and H2 : S x (-3, ~—->Pg’l by
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H2(<X7y),t> = H((Xay>,t> t>0

(((1+t)x,-(1+t)y),2) t €0.
‘Then the differentiable sitructure on M 1 is given by
oI

taking a chart at xei%?l.to be any chart for It
contained in F%}l,obvious charts for points 4in Bﬂ\qu ii?
(i=1,2) and for x€ 8 x {i} take H; as a chart (i=1,2).
Similarly, the distinguished maps for'ﬁl are obtained by
adjoining those for 3&%}1, Si|B+\qu 1i} (i=1,2) to the

1

functions U'Hz

("%?%)o

(i=1,2) where 77T is the projection onto

Hote that Il 1 mey have one or Two components.
(&%
it also satisfies: .
P r " m/i T :‘/I - Lgpa 2=
(1) ”gg\l’B’I\D X {’l},ﬁ,]\o x {2¥are open submanifolds and the
inclusion maps are maps of lMorse foliations.

(2) 57 x {12 ana qu{-‘j}are leaves of ’;\-]l.

Lemma 5.1.2:The ¢¥ structure on H-,l and Forse foliation
'gl defined in 5.7.71 are the uniqgue ones on Hg,l up o
ol diffeonmorphism satisfying properties (1) and (2)
immediately abovse.
Proof:Let o) be the C* structure on Mg,l and '31 the Tiorse
folistion defined in 5.71.7.
Let @ and.ﬁi.be any others satisfying (1) and (2).
we construct a diffeomornhism

Vi (M, D) (g 159D

such that‘Y*gi =Y. .
1



a1

Let,oq : Sq————a(Mg,l,ﬂ') be a smooth embedding onto the

leaf qu {13 of Ei and

TS

! . o \
Kq 0 8 % (=3,3) — (U, ')
an embedding such that
Ki(x,0) = py(x) |
Kq(x,t) lies in a leaf of 91 independent of x.
Without loss of generality we may choose a diffeomorphism

h, of (=3,%) into itself such that X, and H, °(id x 1)

1
have the same image and h/l = identity near O.

1

Then K;/‘H,}(idx hy) s 30X (-2,30s"x 103

A Ly A
5 5 x (=3,%0s x {0}
is an orientation preserving diffeomorphism preserving the
/I
foliation by leaves 5 X it3.
By a double application of lemma 4,appendix 1 we can

s T s s . . : o
find a C° orientztion preserving diffeomorphism
1 A

Py : 5% (-%,2)—> 8 x (-%,3) such that
P, = { identity map near s« 103
,]4t1 (idx h, ) near 8" x {1

Similarly choose X,,h,P, for sTx i23.

How define ¥ by
Y(x) = (K,P(idxh] )d,] (x) x € image Hy(idxh,)

2P2(ldx h2 )Hé/] (x) =x eimage H2(id xh2)

X otherwise,



[¢e]
no

“equals the identity outside a small neighbourhood of

STx t3ust x 123,

—~
o

Lemma 5.1.%: Up to C© diffeomorphism,Mg 1 and“al depend
9

only on Ul' ’

Proof: Let 1'€ U, .

Without loss of generality,we can assume that there is an

orientation preserving diffeomorphism
g8t x (-3, 1) —1i,

such that H(Sq)<f—{}) =1

55 x {43 = 1

I(Eﬁ X 1.}, is a leaf each t.

- Let hq be an orientstion preserving diffeomorphism of

R . . . ) + . ;
(~%,%) equal to the identity mav near 2} which maps O to-i.

t

Le h2 be @ similar map,mapping O to 7.
Then H(idx hq) can be used to define the structure of Mg,l
and H(id><h2) to define that of Mg,l"
Define W: I l“"‘*Ng,l' by

Y (x) = i’a(idxhzh;n’)ﬁ"'(m x € H(idx by ) (¥)

' X '~ otherwise
where Y = 8'x (=3,00u 8" x (0,4) .
Theh'Y 1s a diffeomorphism with respect to the structures

referred to above and Y™y =9,



[04]
2

5.1.4 Having defined the 2-manifold M and foliation.?l

g,1
we must relate these to the standzrd oriented 2-manifolds

1 e

g
Now Mg 1 is an oriented 2~-manifold with one or two
3 . .
conponents.
1t Mg 1 has a single component ,then by index number
e
arguments applied to ﬁl,it has genus g-1.

It Hg 1 has two components Mq’mg then without loss of
b

generality B, x 113 €, and B, x {2 eH,.

1

Further if Mq nas genus 84 and H2 has genus 8o then index

sum argumeats show that gq F g2 = g

P

By the remarks of chapter 2,this s

Ty

cond case occurs if &
only if the leaf 1 represents the zero homoliogy class in

H, (Ng v 2 s

It follows from the above lemmzs that the above process
. . r . . . .
defines a unicu= C° conjugacy class of Morse foliations
9, on Ng_,l if 1 is not homologous +to zero and on Mgll M

_ 1 82
if 1 is homologous to zero.

Conversely we shall see in the next few sections that
thislprocedure can be reversed. By removing two centres

and identifying the two circle boundaries we retrieve a
manifold which is ¢F diffeomorphic to Mg and Morse foliation

oL .
U7 conjugate to ‘9.
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Definition 5.2.1:We now define the notion of gluing

centres together.

Let M = M_MM_ or M_ ve given a liorse foliation .
g/l u2 g ) 5 o
Let Br denote the closed r-ball in R and Br the open

r-ball.

Let 4 be a centre of Forse index 2 and 02 one of lorse

index O in “d.
o}
Let P, Uq———ajbj/é be a distinguished chart at 4

and q:2 IR ——~+Ba/d a distinguished chart at Coe

isuppose without loss of generality that U, 0 U, =@.

c fc,
e define a new manifold I © Jttained by gluing the
cH#c.,

centres c, and c, together plus a lorse foliation 3 e,

as follows:

, o) o) 4 0 )
“*2 g (B B DUES (B A B,
xnvy 10T @, ( (%) =1, Q@(y) —1,Q%(x} ?b(y) or vice

versa

I

as a sev.

~ cqc,

FPor points x& M \¢% (33 ) charts and distinguished

maps are defined as in M.

For points 1n.¢% (BB ) we can take H ~1 25 a chart

i

where Ho: g x (—»,Z)———a M is defined by

H((Xay),t> = CPq((q"t)Xa(q't)‘V) t<O0
qz)((’lth)x,-(’l +t)v) t DO,



Further'if T is the projection onto (-%,%4) we can take

ni™! as a distinguished map for points in qﬁ“(an).
c,HC
172

his defines the Morse foliation Y | with two less

centres than ¥ and the same number of saddle points.

c:,lﬂ-c2 ‘ c,l‘ﬂ‘c2
and satisfy the following properties:
=1 0
e : I I N
(1) The inclusion of I‘I\(@,I (BB/E\B’I)UCPE (85/2\B,])).

M

is an embedding of a submanifold preserving a lorse foliation.

(2) The image of ?H (3B1) is a leaf of =

_ ' T , _Cqﬁcg
Lemmna 5.2.2: The ¢ differential structure on M

c Hc .
and Morse foliation on it @ ' <
cfﬁcﬁ

o

are the unique ones

T

on the set I up to ol diffeomorphism satisfying
the conditions 5.2.1 (1) & (2) immediately above.
rroof: This is left to the reader and is similar to
that of lemma 5.7.2.

c #c - c #c,
Lemma 5.2.%: Uo to ¢t diffeomorphism [ e and T2

depend only on 4 and CH i.e. they are independent of
Py end @ |
rToof:Let’ﬁ,qb be another pair of distinguished charts
at Cq1Cs, respectively with domains V,,V,e.

9
e e, ooy © L
LetIﬁ? denote the manifold M with C° differential

stﬁ;cture defined by'qq,?% as in definition 5.2.1 and
cHc

= .

My = that defined by ‘Y,,Y5-

Without loss of generality we can assume that



0
o)

=Yy s Uy = vy and V€U

o 9

' - o)
now Q%\%q 5 /D3 ;o Dreserves the Morse foliation

by circles.

0
Let p : 35/2—-—-—-—)

ujo

2 be a CT diffeomorphism

/

preserving the lorse follatlon by circles with:
fo(x) = (x near x|} = 3/2
qhﬁqagnear Uxfj = 1.

- . r . .
xow define a C° diffeomorphism

o,]#c2 c ﬁc
R : I"?, — iy by
o)
(%) go,] FQD,](X) Xﬁ(Pl (b7 / AL
X otnnerse.

then ® 13 the reguirsd diffeomorphism and
c . Hc c Hc

2+ Y 12 _grTe
v ¢

rooosition £.%: Let § be a Morse foliation without holo-

nomy of class_Cr {(r>2) on Ng,the oriented 2-manifold of
genus g. |

Let 1 be a closed leaf of ¥ without singular pcints and

let cq(l),cg(l} be the additional csntres in gl.

Then (Ml,ﬁl) depends up to CT conjugacy only on the CF
conjugacy class of (Mg,g).

wonversely if F,c,,c, are as in definition 5.5 let 1(01,02)

b2 a closed leaf in H(qu.(“%a%>)-
c.¥c., c #e
Then (M 1 d,% : 2) devends only on the Cr—conjugacy

class of (11,4).



¥urther up to CT~-conjugacy:

; cqﬁcg c,l#c2 '
(1) ,(3) ) = (M,9)

c.¥cC #CA _
(¢ 2>1(C o >,<a N(eyye,) = (11,9).

Proof: The proof is entirely routine.

In the course of the proof of the decomposition theorem
we shall need the following lemma:

Lenma 5.4.4: Tet ¥ be a CI‘(I‘}2> Morse foliation on the

sphere with no leaf containing more than one saddle point.
If ¥ has more than two centres then it has at least two
centres of type 1.

Proof: Suppose that J has ¢ sacdle points,wvhere €2

Then J has ¢+2 centres.

If ¢ = 1 3 has two centres of tyve 1 and one of type Z.
If ¢ >1,suppose inductively that the result is true for
Morse foliations with o= saddlé points.

Let ¢ be a centrz2 of B of type 2.

et Uc be the cr._acter associated to ¢ as in definition
4.7.
If one or bot:r :I tThe boundery components of UC consists

o

(O N

a

single cenztr2 then clearly 3 has a»centre of tyne 1.
Otherwise U, has two boundary components and we can choose
circle leaves 1,515 in U, approximacing BUE

Gluing in centres along ld and 1, produces three Morse
foliated spheres.

One of these spheres contains c,two "glued in" centres



)

and one saddle point.

I'e

Bach of the other two spheres contains exactly one "glued

in" centre and at least one & at most -1 saddle pointse.

3 4

The result now follows Dy inductio:

p]
w
)

Corollory: Let ¥ be a ¢t (z»2) tiorse foliation of Mg,

the oriented 2-manifold of ‘genus z,with no helonomy and

no leaf céntaining more than one saddle point.

Suppose that ¥ has at least one closed leaf and that every
closed leaf of ¥ is homotonic to zero.

Then Y has at least one centre of type 1.

Proof: Let 1 be any closed leaf of 9.
Glue in centres along 1.

T e
L0 EY

since 1 is homotonic ©to zero,= oanc of the resulting

manifolds is a sohere,

If this sphere contains two centres of type 1,the result
follows.

Ctherwise 1 lies in the disc DC associated to some centre
Ce

i

o}

If ¢ is of type 1 the result follows.

—

If ¢ is of type 2, BDC is & figure of eight and there is
a closed leaf 1' approximating one loop of this figure
and lying outsice Do’

Now 1' cannot lie in a disc DC. associated to a centre
c' of type 2.

Repitition with 1' of the above arsurent for

1 then sives the desired result.
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The Decomposition Theoren.

|

Proposition 5..4.2: TLet ¥ be a CT (r »2) Morse foliation

on Mg,the oriented Z2-manifold of genus g,with no holonomy
and no‘leaf containing more than one saddle point.
Then;up to Cruconjugacy, (Mg’9> is uniquély.constructed
as follows.,

Take two (not necessarily connected) closed 2-nanifolds
each Morse’foliated.with no holonomy and no leaf
containing more than one saddle point.

Suppose that the first manifold has every leaf closed

and that the second has only those leaves lying near a
centre of type 1 closed.

Then (M_,Y) is constructed by gluing centres of the first

Torse foliated manifold to centres of the second.

Bxplicitly, (M_,3 > is uniquely constructed as follows:

o~
19

b

Choose Morse fcli=ztions (I"‘Ih. ’§i> , (I-‘Ig.,'sj)- with O€i€s ,
i

O0€j€t integezs 2nd hi >0, 83 2 O without holonomy such’
that ?i has no . -2 closed and'Bj hag every leaf closed.
Use propositic: -.%.% Lo add ki centres of type 1 to ki
distinct non-siz:ular leaves of 9i'

Then (Ng,g) 1s cctained by gluing aij centres of 9i to

centres of 'HJ. 17¢€1i€s , 1€]¢t.



Conversely such a process will produce a lMorse foliation
of Mg with © centres provided the following constraints
‘are satisfied:

(=)
a) Z:a . . EZalJ < ‘i where 93 has Gb centres.

izl J J
b) Gj C if & onla if s=0 ", t=1. _ )

c) gj = 0 ; Gj = 2=—) a,, # 0 for at least two distinct

values of i.

S =
d) 6 = X, 6. - 7 }: ) a, .
;’ Z\ . t 13y 3:./]:[) € '
g =1 + ;;(hi—ﬂ J o+ Z; (gj—l/ + Z:Z:aij .
=) Jz! 3t jz1
e) To ensure connectedness we recuire: -
given i/l,i2 1< *1,12 s 3 31,.....,3 01 H

1. ! s e o e i ! Tu"]i‘.'_l’l
17 "Ep T

iFid, iézié_ and a. £+ 0 a. £+ C1¢v <o-1 .

tydy Tyaad'y
froof:If g=0 the result 1s proved so we assume g »0.

e first locate the manifolds (Nh_,gi). This is done by
cutting along closed leaves and gluing in centres.
Following such a proceedure we end up with the (M g )
with centres of typs one added,except that the dlSCo

foliated with single centres are replaced by some more

general lorse foliation of the disc (see figure 5.2).

Choose in Mg a maximal collection of closed leaves
1,,,....,1r representing linearly independeat homology

classes.

Glue in centres along 11""”lr thus obtaining a Morse
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Initial decomposition ' Final decomposition
Fig. 5.2

foliation of IM_

—

T with €+2r centres,in which every circle
leaf is homologous ©To zero.

Low cut along circle leaves nomologous ©to zero but not

o3

omnotopic to zero and glue 1n centres until this can no

longer be done.

“his gi cevne 401 foliations on iente
“his gives 31, ,3n lorse foliations oriented
c-manifolds M‘V """’MW with a total of €+2r+2n-2

g 14} -
centres and 71+ .....+9£= g~T.

43}

Note that MV ha

i
and i=n=1.For =

every leaf closed if & only if 7& =0

&

can remove all centres of type 1 and

then by lemma'S.@.ﬂ the resultant foliation either has no
saddle points,in which case ?& = O or has no closed leaf,
vaich is impossible. But ‘Yi = 0 and 1 21 implies that g

i
was obtained by cutting along a circle leaf homotopic

ot

O zero,.

Thus either Ng has every leaf closed or for each i, M

75

has a non~closed leafl,and thus we may assume the latter.



We now show that each closed leaf 1 is contained in an
open disc Dl Morse foliated by closed leaves whose
boundary is a saddle point together with a single locp
separatrix contained in a non-closed leaf (sece figure 5.2).
In fact since any such leaf 1 is contained in an open
J J
disc Morse foliated by closed leaves we may choose Dl
nmaximal.
Since’Yi t O the boundary of D; is a union of saddle points
snd looo separatrices. Since D, is maximal the boundary
= - 1
of D, is as required.

N

. T A o 17y A mlron o T A G A
we are now ready to undertake the Jecomposition.

0<] Stj denote the dis

ci

et c.

i inct sets BDl in M

satisfying one of the two additional conditions:

(1) Dy contains more than one centre.

(ii) Dl contains a centre which was glued in at some
stage in the decomposition.
Then cij 0O€ign , ()$j~$ti correspond to well defined
sets di.~in ii which consist of a saddle point and a

J g
loop separatrix contained in a non-closed leaf.

i
,3) into Morse

Lkow choosing closed leaves dij approximating d. . and
gluing in centres in 4 decomposes (Mg
foliated manifolds (M, ,¥;) 1€1 ¢t and (My ’gi) 1€i€n
. .ul i

&

without holonomy in.whiCh‘yi has every leaf closed,and

gi i1s the liorse foliation on oy obtained above but with
i



(O
N

eacn disc Dl renlaced with a disc foliated by circles

and a single centre.

' o

Low by proposition 4.6.3 gince every centre of §i is of
type 1 we may remove it and removing evéry centre from
gi in this way yields a liorse foliation.gi without closed
leaf and.without holbnomy.

sSetting ns =‘Yi , n = s ,we have the required decomposition.

W/e now prove uniqusness.
First note that from the proof that the given decomvosition

. N . < o . L . po .
of (ng,@) is cleariy the unique one up to U difresomorphismn

for it was obtained by gluing i c¢onvres along closed

£

leaves 1 wnich are well defined up to Ul - the maximel
annulus containing 1 which is foliated by circles.

wow if £ is a ¢T diffeomorphism of Ng,the decomposition
1s obtained by gluing in centres along closed leaves 1
of £+§.

But then the decomposition of ¥ is obtained by gluing in
centres along the circles f1 - leaves of Y.

lience f deflnes =2 diffeomorphism of the factors obtained
in the decowposition of £*3 onto those obtained in the
decomposition. of 3.

This completes the proof of unigueness.



Chapter 6 Morse foliations with all leaves closed.

We saw in the last chapter that any iorse foliation
without holonomy can be decomposed into Morse foliations
without holonomy and either with every leaf closed or
with no ieaf closed. This decomposition respects o
conjugacy. Thus in studying the onl conjugacy classes of
Iforse foliations without holonomy we need only consider
these two restricted cases.

o
!

he case of

-

no closed leaf is complicated and not yet fully

2]

understood. It will bz considersd I subseguent chapters.

in the present chapier we consider [iorse foliations with
no holonomy and 211 leaves closed (see 2.15 for an

explanstion of why these conditions are both included),

T o - .
up to C7 conjugacy. hese are relatively managable.

\ .. - . ~ AT
In the first procvosition we consider the number of C

conjugacy claesses and in the second we consider some

1

lnegse.

invariants for t

“rovposition 6.1:Let @ be a Mlorse foliation on the oriented

2-nanifold Mg of genus g,without holonomy,with no closed
leaf and with no leaf containing more than one saddle point,

m

Then there is a Morse foliation'ﬁb on the sphere with no

holonomy and every lezf closed such that @ is obtained



by gluing together

g pairs of centres of 90'

Proof:By lemma 5.2.2 there must be g closed leaves

l/l,..‘..’lg

Cutting along them

desired result.

of 4 which are linearly indevendent in Hq(

—

A
1

and gluing in centres proves the

Corollory:Let (Mg,y) be as in the statement of the

proposition. Then for a fixed number of saddle points

- T .
there are only finitely many C -conjugacy classes of

such Morse foliations (see proposition 4.4).

Proof:From the »rop

osition we see that it is sufficient

to prove the result for the stherc,

wow glven a liorss

Toliation of *ra gnhere withoutb

holonomy either there iz a centre of type 1,by lemma >.4.71

L

or there are no saddle points. .

in any case,we can

remove the centres

—

the unique

saddle points.

jorse fo

use proposition 4.6.3 to successively

of type 1 and we eventually arrive at

s L AT : o
liation (u» to C° conjugzecy) with no

In the reverse procedure we successively add centres of

. ) T .
type 1 to circle leaves 1. At each stage,the U -conjugacy

class depends only

on Uy (see definition #4.5.1 ).

Since there are only finitely many such sets,the result

is proved.



O
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i . . T
Provposition 6.2: Let ¥ be a C

(r »2) Morse foliation on

",.,the oriented 2-manifold of genus g,with no holonomy,

S .
every leaf closed and no leaf containing more than one
saddle ooint. |

Then the number n of non-zero homblogy classes repreéeﬁted
by the closed non-singular leaves of J is a

~T . . . ] o s .
C =conjugacy invariant of ¥ and satisfies

z¢ng3g-3 g P2
n=g g = 0,1.

“urther each such value of n is attained for any

b !

oredeternined number of centres.

Ifgg$228nd.the numbar of centres is minimal, n is a
conplete invariant,

if g;}B this 1s not the case. |

TIroof: First note that by lemma 4.5.2 the homology clacs
of a circle leaf depends only Oanl’ Indeed if ¢ is a

centre of tType two,the Lomolo

O8]
o
<t
¢}
8]

v class of a leaf 1 in Uc

for definition

~3J .

whnich 1s notv homologous To zero

Ve

see 4

¢}

L4

of UC) depends ohly on U_.

To show that n € 3%g~-3% we first remove all centres of {ype
1 from ¥ using proposition 4.6.% and this does not alter n.

In the resulting Morse foliation we take a maximal

collection Uq,....,U of rairwise disjolnt open cylinders

~h

m Py
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ih the manifold such that

either Ui = Ul for some closed leaf 1 which is not
contalined in any set UC
or Ui is a maximal connected union of intersecting

sets U, (see figure 5.1, .

—— o—— ———

\Y/

— m—

A
Mege 6.7 Ui |
Then every circle leaf 1 lies in sone Ui and if ¢ is a
centre ECSUi for some i.
Further the homology class of each circle leaf 1 in Ui
which is not homotonic to zero depends only on Ui’
ow each component of the boundary of Ui consists of
one or two loop separatrices and a saddle point. In this
way each U. is zssociated to one third of two saddle points

i
(possibly the same) in the complement of U,V .... uu_.

1
Ilence ngn =(3%/2)(2g-2) = %g-3% .

That n» g is clear since if l,},....,lv are closed leaves
representing a maximal linearly indenendent set in Hq(Mg)
then cutting along 11"""’1v in succession and gluing

in centres,produces by lemma 5.4.7.a Morse foliation on



the sphere.
fIence r = g.

iie now show that any value
attained.

This is done by induction.
we define operations which
ifold and 1,2 or 5 to n.
To add 1

which is of tyoe 1 to a

leaf of J as in

of n in the given range can be

add 1 to the genus of the man-

foliated with a single centre,

1 added to a circle

/‘}\

)
)

/\+_J

of type

Fig. 6.2

To add 2 to n add centres of type 1 and opposite lorse

indices to circle leaves 1,1'" with U, = U

them together.

1 = Uy and glue



This works provided g ¢ O,see figure 6.3.

leaf in second
new class

leaf in first
new class

To add 3 to n we do the same as in the case for adding
two except thet 1 and 1' are chosen to represent
linearly indevendent homology classes. This works

provided g ¥ 2.

low proposition 4.4 gives the result if =0 or 1 and it

then follows for g »71 by the preceding remarks and induction.
Finally we wish to show that n is classifying for g42

but not for g> 2 if the number of centres is minimal.

This follows from proposition 4.4 for g = O or 1.

or g=2 the two classes are shown in figure 6.4.



n=)' n=2
Fig. ©.4
For g2 2 we have to find two non-conjugate lorse foliatiens
with no holonomy,every leaf closed and the closed leaves
represeﬁting the same number of distinct homology claéseé.
“his is left to the reader,but an exazmple in genus 3

with n = 3 1s indicated in Tigurs C.5.

In first picture there are two Ul representing non-zero
homology classes with‘BUl two halves of different

figures of eight (U, & U )
l/I 12

Fig. 6.5
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Cnanter 7. Geometric structure of lorse foliations with

-no closed leaf.

From now on we consider only Morse foliations with no
holonomy,no closed leaf and no leaf containing more than
one saddle point. The first two of these conditions imply
that there are no loop separatrices since any loop
separatrix has nearby closed leaves. The no holonomy
assumption is necessary since the latter two assumptions
do not preclude a loop separatrix on a non-closed leaf
from having holonomy. The Three conditions together are
couivalent to the single condition that the induced

foliation of the non-singular menifiold nas no closed leaf.

ct

Lemma 7.1.1: Le

AT N s o
d be a ¢ (r¥»2) torse foliation on M_,
=

the oriented Z2-manifold of genus z,and suppose that 3

o

satisfies the conditions immediately above.

Then there are outward separatrices SqaeeesSy such that:

_ | -
(1) {uxsq),...,a(skg)} is the set of distinct minimal
(under the ordering by inclusion) elements of:

g - {co(s} : s is an outward separatrix} .
(ii) siSw(si) .
(iii) Q(si)ncu(sj) consists only of saddle points if i#j.
(iv) @(s;Ne(s;)Nexs,) = @ if ifjAwé .
(v) Either kg = and.Qqu) = M, or &Xs;) is a closed
[}

non-empty nowhere dense set which meets every transverse

interval in a perfect set.



101

(vi) If 1 is any non—singulér leaf or outward separatrix
then for some i w(si)Sw(l) and if lGCcJ(si} w(l) = w(si).
Proof: Note first that if l is any non-singular leaf or
outward separatrix,there is a saddle point p in w(1l) by
the theorem of A.J.Schwafté. since 1 is not a loop
separatrix 1 passes through some quadrant at p infinitely
many times as t —>e0,

It follows that w(l) contains at least one inward and at

least one outward separatrix.

Low let gﬂ""’gka be outward seonaratrices such that

{ CJ.)(g/' ) gee ,(D(S,;__ ) }

. iy

is the complete set of distinct minimal elements of g .
Tet siscu(gi) be an outward separatrix.
Then the minimality of w(gi) implies that w(si). = w(gi).
Ve show that u(sq),...ﬁo(ska) have the required properties.
(1) and (ii) are satisfied by definition.
(iii) follows from the minimality.
(iv) follows from the fact that at least two of the

separatrices at

0

saddle point incu(si) also lie inco(si).
(vi) follows from the choice of the setsco(si) and the
fact_that for any non-singular leaf or outward separatrix 1
there is an outward separatrix s with s€@w(s)E€w(l) (and

if lEQKSi) we may take s = si).

It remains to prove (v).
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First note that if aﬁsq) = Mg then k? = 1 by (iii).
Suppose that «(s;) is a proper subset of Hg.
Clearly'u(si) is non-empty and closed.
Further gi;cu(si) implies that any transverse interval
meetsco(si) in a perfect set.

Now aKsi) is a union of ndh~singular leaves,saddle points
and sepafatricesc If aa(si) contains a non-singular leaf
or separatrix auxsi) = uKsi) by minimality and hence_uKsi)
is nowhere dense. |

Ctherwise aw(si) consists of finitely many saddle points.
However this is impogsible since a finite number of points
cannot separate a Z2-manifold,

This completes the proof.

The technical lemma which follows is in fact true for

any lMorse foliation ¥ in which no leaf contains more than
~one saddle point. The proof in the general éase is
essentially tTthe same as th

Temma 7.1.1%4: Let Y be a ¢ (r22) Morse foliation on M

-9

GO

the oriented Z-manifold of genus g,with no holonomy,no
closed leaf and no leaf containing more than one saddle
point. |

Let T,I,TE,T3 be open transversa intervals with T5C2~2.
Let rw<q,be points of ’I‘,l and suppose that every leaf
cutting (p,q) subsequently cuts TB'
Then:

either (i) The non-singular leaf or separatrix through

p subsequently cuts Ts (see figure 7.0(i)).
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ck

or (ii) p lies on an inward separatrix t never

)

subseauently cuts Tg.There is an outward separatriz in

the same leaf which cuts T,,as in figure 7.0(ii).

| ~
o a g

: l
~ A~ ~ . T

T, Lp
D ol |i D a! ‘a
(i) (ii)
Mim.e 740
Froof: Cnoose q'e Tq with p<g'< q and a transverse vector

field Xy containing T, & T, in trajectories.

suppose that the non-singular leaf or outward sevaras

through ¢' cubts T.,for the first vime after ing

as

,__.
N

- " h e ~
through ¢'y,at = zcint a'.

Choose a parsmzTrization Y(t) of the portion of this

LV

between o' and ~' by the unit interval [C,1] .

-

The holonony lsz=mz then dotermines a O -map

H
<2
~~

<y
.

such that (i) H(t,a")

(ii) H(O,x) =x€T

™

it

€]

~r
L



et K = 1H(L0,1) x (»,q9']) be the image of H,as in figure
7.0,

Supoose that the lemma is false.

if p lies on a non-singular leaf or out%ard separatrix 1
then 1 never subsequently cuts T2.

If p lies on an inward separatrix,there is an outward
separatrix 1l lying in the same leaf as Do which never

cuts T2 as in figure 7.7%.

1
7 o
2
1
N N A
r[l l
=1
p a' g

Pige 7.3
In either case it is clear that w(l)s X,
Iet m be a non-cinzular leaf or outward separatrix in «1).
By lemma 7.1.7 we can assume nm £ 1.
If m meets K it cuts (»,a'l.
liow m cannot cut (v,qa') since then mewll) would imply
that 1 cuts (p,q') infinitely nmany times.
By lemma 7.71.71 in} is large enough that we may in fact
assume that m does not meet % and hence,in particular,
(p,a'l.
Let x€n and let W be a transverse interval at x.

Without loss of generality,shrinking T1 g, T, if necessary,



-~

is contained in a distinzui
not meet Tq or Tg.
ve may also assume that 1 limits

since noints of 1 subsecuent ©o

between each pair of points of intersection

since we may then assume that
is in the complement of XK and
T

or T

i
?,V»

1
points of intersection of 1 with
zence each segment of K contains
with limit .

#ut clearly any such
"his contradicts

k)

nence prove: the

Lemna 7.7.2: Let 3 and Sqseees5)

~

and let 1= w(s,!)U ceVa(s, J.
e

Let D' be a transverse interval
transverse interval with Tei',
supnose that the sndpoints of T
Then any leaf mests T only finit
Troof: Jupsose that T' = (=1,1)

-1<2<b <1 ,as in figure 7.1.

Tet p,< ... <Py denote the point

A

separatrices which cross (a,b) c

o

suppose that there is

ES)
[

gince also ¥

ich does

5

chart at v

on x from tThe right.

W

- " T orsoT
bound K,k meets

~

of 1 with

the right hand end of W

does not neet

meets every segment in L between any pair of

s
sequence of points

on a segment of

<t
}_.J
s
(¢

.
S
py
s
P

m

meat X and

r“.l
O
®
6]
;
Q
ct

lemma 7.1.1

be an open

sut DNT = ¢,
times.

and T = (a,b) where

o
w2

rocs

Le
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RS e el
Flge a7

point LI and which then returns to (a,b) at a opoint m

Then every leafl near m g returns to (a,b). In fact since

no leaf cuvting \Ul,*. q/ runs into a separatrix before
cutting <p1’~1+1> azain lemma Y.1.% shows that every leafl

which cuts (pi,pﬁ;q} returns to (2,b) as in figure 7.1.

BNy

low parametrise tne segment of m Ifrom m, to m, by m

1 t

. ) . N 3 .
(te [0,1]1) and choose a transverse vector field Xy which
hee T as part of a trajectory.
Then the holonomy lemma provides a map

2 00,11 x (py5P; 4) — 11,

such that:
(1) I(0,x)

(ii) H(t,mo) me



(iii) H(t,x) lies in a leaf which depends only on X ,
(iv) each segment H([0,1) x {x}) meets (a,b) only at
A(0,x) = % and H(1,x) ‘

Let Hi be the closure of the image of H (shaded in-figure
7.1).

1f no leaf cuttine (p Dyl ) cuts (a,b) again let g, = Be

P+
Note also that since no leaf is closed either p, = aor

no leaf cutting (a,pq) cuts (2,b) again.The same is true of b.

vie have now shown that any leaf m which cuts (a,b)

3
(D

infinitely many times remalns permanently in Hqtl...LJHd

PR R £ K - - . LN N
after 1ts first crossing of {(a,b).
since (a,b)NS = Figure /.71 shows that H,U UH
Lilnce \a’, ) = llgui—u ) S O‘IQ L;.-.lau Li/l . e e L—O‘|
't of the boundary of HyU ... UH

H

2ts & only. in that »a

o}

1kd d
which is made up from segments of leaf.

nence w(m)NL is the union of a finite number of zadile
points and separztrices and therefore meets T in a

countable set.

7.1.1 (vi) there is an i such

Cn the other hand by lemna
that cu(si)S (n) =w(m)NLL. Thus by lemma 7.71.7 (v)
W(mINQ N T contains a perfect set which by a well-known
theorem of Cantor must be uncountable.

This is a contradiction.

"Corollory: If 1 is any non-singular leaf or outward

sevaratrix of Y then



w(l) = W(s., )ﬂ...nw(si )

i
1 e
for some integers iJ 1€j€e { $ij$ kg .
Froof: First note that W(l)E w(s/i)u el w(s1{ ) since
e Fa
3

if m is g leaf in.a(l)\@u(sq)u...(JaXska))tmrconsidering
w(m) we can find a transverse interval T about m satisfying
the hypotheses of the lemma. Then since mew(l) 1 cuts T
infinitely many times contrédicting the lemma.

rurther, the choiée of the sets uﬂsi) shows that if QKl}v

.) is contained in

meets QKsi) for some 1 then either u(sl

w(l; ort»(l)ﬂcu{ai) conmists just of saddle points and

each of these lies in son

,\
®
[®]
[}
<t

N

3
~’

which is contained
in w(l).

[y

‘his completes the proof of the corolliory.

=
{

I
and let Q:w(s,]} ...Uw(sk

Lemma 7.1.%: Let Y 5 SiaseessysS, Dbe as in lemma 7.1.1
fa%

)
E|

Let T' be a transverse interval and T an open transverse
interval with TE€ ' whose endpoints are in £LX but which
does. not meet £L.

suppose that there is a non-singular leaf or outward
separatrix whicr cuts T at distinct points MMy e

1hen there is a point of T between m, and m, lying on an
inward separatrix.

rroof: We prove the result by supposing that some non-
singular leaf or outward separatrix m cuts T at points

IyyMm, between which no point lies on an inward separatrix.
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N

We show that this implies that m cuts T infinitely many

times,contradicting the conclusion of lemma 7.1.2.

.
Hlge Ved

Let @ = (2,b) and suppose that m < .
suppose that m cuts T first at Iy and then at m, .

-

48 in figure 7.2 every leal near " cutting (mo,mq) returns

to (a,b) in the interval (mq,b).

Since m N =9 a%b€f and there are no inward separatr;
ices cutting (mo;mq),every leaf cutting (mo,mq) returns

to (a,b) at a point of (mq,b) by lemna 7.7.%.

2y continuity and the fact that m ﬂ.Q:Sb ,m cuts T for a
third time at a point m, as in figure 7.2.

The hypotheses of the lemma show that we can repeat this
argument for (mq,mg). Thus we obtain a sequence of distinct

points §n.} . N ntradicting lemm .2,
X t {ml} i 0 of m N contradicting na 7.1.2



[0}

Lemna 7.7.4: Let 3; s,l,...,skg be as in lemma 7.1.71 and
le

Oy T~ ) { o )
t —-—a = w(o/lj U o0 0 Uw\'vlig) -

et 1 be any non-singular leaf or outwafd senaratrix
which does not lie in Q. | )

Parametrise 1 by lt .

Then there is a real number to,a closed transverse interval
I at 1t ‘whose endpoints are in distinct leaves Mgy My of

o :
w(s.) for some i & whose interior is in the complement of

i
w(s )U ...Uco(skg) and a diffeomorphism
g lt ,0)xI—I1
o g

with the properties:
(i) H(to,Xj = X,
(i) H(t,1. ) = 1
(1ii) H(t,x) lies in a single leafl for x fixed ,

(iv) He ¢ I—H. T is a diffeomorvhism of I onto a

t
transverse interval about lt with the same properties as I.
Froof: Let pew(l) be a non-singular point and let

T = (~1,1) be a transverse interval at o (with p corres-
ponding to O).

wWithout loss of generality we can assume that there is a
seoguence oi points of {(0,1)E T on 1 tending to p as t—>w,
We shall comstruct inductively a sequence of distinct
intervals I = (an,bn)g;T tending to p from the right

with an,‘one.Q , (an,bn)n_Q=¢ and (an,bp) meeting 1,

as follows (see figure 7.3).
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T o UL S L
-1 P Q |b, q, b a b°+'

Fig., 7.3
+Je take IO to be any interval with the properties Jjust
mentioned which contains a point of 1.

wuppose tnat I has been chosen.

Qnsy Cne l-t..m dnat byl
i ¢ . B VT T
' N Tt n+’l
8, @n
4 Y
——g ) e
n N LS
P \ I
] T n
a, Cn 't., dn Qn

Fig. 7.4



By lemma 7.1.2 only finitely many points of (an,bn) lie

on inward separatrices. “hus we nay choose points Cn’dn

of (aq,bn} with the following pronerties:

1 ES

(1) 1 cuts (a_,b_) for the last time in (c_,d_) at a
n’°n n’’'n

point 1l

(ii) no point of'(cn;dn) lies on an inward separatrix ,

(iii) either ¢, = &, 0T ¢, lies on an inward separatrix ,

(iv) either dn z'bn or dp'lies on an inward separatrix.

KWote that by lemma 7.7.5 c, and dn lie on distinct

sevparatrices,

SN q s
10 G LLE
L1

A

g on an inward separstriy we let Py be the saddle

ot

point that this separatrix runs into. Similarly a, is the
saddle point corresvonding to bn‘

A 3

fiote that 1t p, and a, both exist Then by the choice of

c, & a, and lemma 7fﬂ.5, o, # Q-
Ir Ch lies on an inward separatrix let f; be that outward
separatrix at p, near which there are leaves that emanate
from (Cn,dn) 25 shown in figure 7.4. If cn'does not lie

on an inward ssparatrix,so that C,h = B, Ve let E% be the
leaf through g Similarily qhoose ?h corresponding to dn-

as shown in figure 7.4.

Then we can choose In+1 to have the following properties:

(i) © <a .4 <b,,4< a, < bn<’] since 1 tends to p from the



right and (cn,dn) contains no inward separatrices ,

e . \‘ —

ii) I .NQ = ¢

k / 1’1-\‘-1 5Z )
PRI P
(1ii) a .4 » P4 e} ,

: }_J.

(iv) en and (Pn cut In+‘1 ,

(v) If 9n_or ?% cuts I it cuts I, after it has cut I .

By the holonomy lemma and the fact that no inward
separatrix cuts (cn,dn) every leaf cutting (cn,dn)'
subseguently cuts AN and cuts it for the last time in
an interval whose endpoints lie on @n & ) and which is

contained in (c J ,as in figure 7.4.

450 .
n+"1 "n+

Je show that for suificiently large n a_ =-¢c_ , b_ = d

(&S]

H

and a,_ & bn lie on a non-singulsa

n leaf or outward

separatrix.

Let K be the number of points inv(cn,d

n
outward separatris

"N

From figure 7.4 we se h > K { = K_ if &
From figure 7.4 we see that K 2 K and K ., = K 1 &

only 1f a_=c b_=d

= b_=d_ and a &b both lie on an outward
n "n?'® "n n “n " n an o

separatrix or non-singular leaf.

It Kn increases without limit it follows from the fact
that there are only finitely many separatrices and lemma
7.1.2 that for sufficiently large n there are two points

of (cn,dn) lying on the same oubtward separatrix.

Since no point of (cn,dn) lies on an inward separatrix

this contradicts lemma 7.1.5 .



Hence there is an integer N such that n 3N implies that

&)

n = S o0 bn = dn and angbn lie on a no?—51ngular leaf

or outward separatrix.

Further for n» N no non—singular leaf or separatrix cuté
[an,bn] more than once by lemma 7.1.3%, the fact that no
- point of tan,bn] lies on an.inward se?aratrix and the

fact that no leaf inflis isolated.

O.’ltI=I~.

n 11 +- and T.. 1 .
Let 1 cut I, at 1to and Lo at £

Then the holbnony construction with respect to a fixed
transverse vector field in waich ¥ is part of a trajectory
gives a diffeomorohisnm

iy s [ 2% L’}] X [al 0 P -;-n] _—>“g
for each11b0~such that:
(1) B (t,x) - x ,
(ii). Hn(t,ltn} = lt R )

(iidi) Hn(t,x) lies on a leaf which devends only on X.

The image of K _ is shown in figure 7.5.

n
ANeney Wie, (o) “bm-\ bﬂvn-vl
trajectory of M, (e
transverse flow
I S A N N N
Cllﬁyﬁ “R“‘) ‘.-‘ ED Ne4wny
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Let hy : [ay,by] ——[8y5, 1Py, e defined inductively
by: ho(x)
By 0G0 = Hy (8 g,
Note that h.(1, ) =1
. i to

X

Il

hi(x)) .

'b-
1

Then the reguired diffeomorphism
H : [to,w) X I ——>]

is given b H(t,x) = H_(t,h_(x te Lt _,t_.]-.

= J H(E, %) *n< ’ nKA)> ( n’ n+1] v
We have already remarked that the endvoints of I lie on-
distinct leaves and by construction these lie in.

iy

The only non-obvious point remaining to ne checked is

that m, and m. (which lie in Q 3 bovh lie in the same

set a(si);

How QKmq) = u(si ; and w(m.) = uxsi ) for some integers
1 “ 2

iq & i2,however it is easy to see that any non-singular

leaf or outward separatrix meeting Tthe image of X has' the

same W-limit set as m, or m, . Hence i, = 1 e

r

bince m Ew(s;, this completes the proof. :
j |

Pronosition 7.1.5: Let B be a CF (r 22) Forse foliation
with no closed leaf,no leaf containing more than one saddle
'point and no holonomy on Mg,the oriented 2-manifold of
genus g.

Let Sq5eee,8, Dbe outward separatrices as in lemma 7.1.1.
Y

Then the w~-limit set of any non-singular leaf or outward

separatrix is one of the sets (s, ).



-5
._\‘
N

similarly inward separatrices tq""’tk can be chosen

satisfying analogous properties to thos

O a

of SaseeeySy

A

for negativs time and with u(ti} = uﬂsi

Hence in particular the &X~-limit set of any non-singular
leaf or inward separatrix is one of the sets u(si).

Proof: Let 1 be any non-singular leaf or outward separatrix.
If lSco(si) for some i then w(l) =(»(si) by 7.7.1 (vi).
Ctherwise 1 $ w(s,] JU ... Uw(skg) and lemma 7.1.4 gives

a wnole strip'of leaves about 1 bounded by leaves m, and

/]
my lying in.axsi} for some i. Hence in this case too

he existence of inward sevaratrices tq,...,te satisfying
3
analogous provsrties to those of SqyeeeySy is obvious by
N

It remains to show that Gy = kg and that u(si) = u(ti)

after reorderinz.

4

Now for each 1 d(ti> meets each transverse interval in a

perfect set. llence x(ti) contains a non-singular leaf 1.

By minimality w(l)E D((ti) = o&((1).

Now there is an integer 3 with (1) = quj') hence

wis . )Qo((ti).
i

lieversing time the same argument also shows that every set

QKSi) contains some set N(tf_).

The result then follows fromlthe minimality of these sets.

Corollory: If 9 satisfies the hypotheses of the proposition

and some leaf of 3 is dense then every leaf is dense.

Proof: Immediate from the proposition.




4 similar result for a general flow on a 2-manifold can

be found in [30] under the additional hypothesis that the

i . -

Ww-1imit sets mest the non-singular manifold in a compact

set, a condition which is never met in our case.
7.2 Transtverse circles and the bound kgs g.

i . o T .
Consider a Morse foliation ¥ of class ¢ (r 22) with no
holonomy,no closed leaf and no leaf containing more than

ne saddle point on the oriented Z-manifold [_ of genus g.

-

&

et S4400.,8, be toe outward sevaratrices defined in
La N

- - . r . . .

lenma 7.7.1. Ka is a U ~conjuzac, Lovariant of 3.

=
cr
o~
@
L
@

t follows from sults in [15] (where 2g-1 is
nis-printed for g, or [23] taatisgsgg Ve can see this as

fo

|-

iowWSs.
Choose‘pesh a non-singular point and T a transverse

w(sg)u eeeo U3

interval at p waich does not meet the closed set
Xy

)e
tiow S4 neets T azain at subsequent time at a point q.
£3 usual in foliations theory by taking a small strip of
segments about the segment of S4 fron p to g we can
construct a transverse circle iq meeting only leaves

which cross the interval (»,q) of T as in figure 7.6.
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Zr oa similar method,taking the strip sufficiently small,

v BN (7]
e can then construct inductively Ttraznsverse circle Ai
1€1¢ k‘é such that Ain A, = @ i and such that every

non-singular leaf or separatrix in a(si) cuts Ai

infinitely many times.

iow let ligco(si)-be a non-singular léaf and suppose that
1. cuts‘Ai at successive times to’tq at points Dy P4 and
at no time t wizth 'to<t <t,‘

By the holonomy lemma there is a strip of segments
containing the segment of l from Py to P4 in its-interior
and in wnich each segment cuts Ai exactly twice - once at
each-end. By the choice of the Ai we may choose this strip

so small that no segment in it meets any other transverse

circle Aj.



Using this strip we may then construct a second transverse

circle B. which does not cut any other circle Aj Jj#i and

i
cuts Ai transversely exactly once,as in figure 7.7.

Choosing Bi inductively we can assume that Bir\Bj = @ ifj.

Pige 7.7

Then orienting the transverse circles so that the pairs

(tangent to circle,tangent to ¥ ) lie in the orientation
of Mg,the homology classes [Ai] ) F&J(see 2.2) satisfy:
(251 « [B5] = -%;
(2] e[25] = [Bi]e [Bs]= © -
It féllows that the classes PLJ,...,[AKJ and [Bﬂ]"‘°’[3kg]
are linearly independent in Hq(Hg,ZO,

Hence 2k3 < dimHi(Hg,Z) =2g.
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The defiﬁition of these classes was somewhat arbitrary.
However in certaln cases at least,we shall see in chapter
8 that it is possible to define ky classes in Hq(Mgﬂﬂ)
which in some sense carry all the information of the
possible classes [Ai] and'[Bﬂ. In order to do this we
need to étudy the point of first return function and this

is defined below.
7.3.1 The »noint of first return function.

Let 9 be &« liorse foliation on i with no holonony,no

e
&

closed leaf and no ieaf containing more than one saddle

Let A be a transverse circle containing no saddle point.
Crient 4 so that the pairs (tangent to A,tangent to 3 )
iie in tThe orienvation of Mg‘ Let PqsesesD, be the last
points at which the inward separatrices of ¥ cut A,in'
order around :i.

It follows from the holonomy lemma that if some leaf
cutting <pi’pi+ﬂ} returns to A then so does every leaf

which meets (py,0

Moo 4
R

) (we identify Py & Pn+1)'

Let iﬂ""’iu be those 1 for which every leaf in (pi’pi+1)

returns ©to A.



SN
-
o

Then there is a function

£ O (o hpy q)
J=" J J -

defined by taking for L.e(n 1 +1) f(x) to be the point
J

of A at which the leaf through X next cuts A.

f is called the point of first return function.

Similarly we have the point of previous rebturn function.

Temma 7.3.2:1et d be a ¢t (r% 2) lMorse foliation on the

oriented Z-manifold M_ of genus g as in 7.3.7.
' g
et A4 be a transverse circle to 3, and £ the point of

first return function on A. Then:

.- . <
(1) £ is C7,
‘ N PPN . . a .
(ii) 1im _ D" ®f£(x) and lim Df(x) s<€r exist if f igs
X—»D. b Yol
TPy STTEi4

defined on (pl,n

40

(i1ii) There is a real number L >0 such that IDf(x)l ?

1+1

for all x €donf.

~Proof: Away from a saddle point the overlap maps are of”
the fornm (xyy)— (0, (x,5J,0,{y))

and so f is locally the comneosition of a finite number of
h,'s. This proves part ().

Fow the holonomy past a saddle point is essentially the
ldentity map.Hence f extends to a diffeomorphism in a
neighbourhood of an endpoinf of any interval in the
‘domain of f. |

This observation proves parts (ii) and (iii).



Chaoter 2. reasure and Holonomy.

In chapter 7 we considered the elementary properties of
liorse foliations with no holdnomy and no closed leaf.
However that chapter left unanswered a number of questions
of a genefal nature:

1) Is it true (in the notation of 7.2) that k, = 1

3
if & only if every leaf is dense ?
liore generally:
2) Is it true that wW(l) = &«(1) for a non-singular
leaf 1 i.f % only if 1Sw{l) ?
%) Iz it true that the asymovotic cycle of a leaf 1,

as defined for example in [22] depends only on 1) ?

TR IR PR

in the remaincer of tThis thesis we propose first to give
solutions to 211 these guestions although in a restricted
sense. If we plzcs =2n additional restriction on our

{Torge foliastiocrs 21t turns out that the first question is
inappropriate TuT that the second and third guestions

be answersl -2 the affirmative. e then apply these

results to zZ-:z::70lds of gesnus 2. The resulting analysis

6}

gives a method for constructing a large number of examples

of Morse foliations without holonomy or a closed leaf on

o~

z-manifolds of genus two or higher. Cther research workers

looked for such examples without success so that our

examples are the first of their kind.
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Definition 8.7.7: Let 3 be a Horse foliatiOL on li_,Tthe
&

oriented 2Z-manifold of genus g,with no holonomy,no closed

lieaf and no leaf containing more *than one saddle vtoint.

}j“

‘hen 9 has order preserving holonony i1f the voint of firs

J

return function f on any transverse circle 4 is order
preserving. In other words if a,b are distinct points in
the domain of £ and A has been given an orientation then:

£([a,blndont) = [£(a),£(®)I N inf .

This condition is automatically satisfied if 8 has no
singular points since then the domain of ¥ is the whole

of 4 and as 3 is transversely oriented f is orientation

o

preserving. On the other hand the condition is also higaly

restrictive:

: s . . .. .
Lemna 8.1.2: Let d be a ¢ (r 22) Horse foliation on il_,
. g

~

the oriented 2-manifold of genus g,with no holonomy,no

closed leaf and =0 legaf containinz more than ons saddle

point.

Then kg = 7 zn” T tas order preserving holonomy if & only
if g = 1.

Froof: Considisr : Transverse circle 4 which meets the set

uﬂsqj (as defizz® in 7.1.5) and let f be the point of
first return function on i,
suppose that kg = 1 80 Ta=t alw/, is the unique w-1limit

set for Y.

T



’

Then every leaf cuts 4 infinitely many times.

Iy

Since every point of A4 which is not the last point ©
intersection of an inward separatrix with A lies on a
leaf which returns to A,the domain of f is of form:
N e 3
(aq,agjtl(ag,aa)ll U(a4g_4,a1, .
If £ has order preserving holonomy f has range
b, ,b. b,,b ceeU .
( /l’ba)U( jo}) B)U (b4g_4abq>
IS X . . = 1. . . -
where f(al,al+1) (01’b1+1>
This imvlies that f extends to a continuous furction

defined on all of ..

~ 4 = . M B - PPN TIPS, o
If &> 71 esch point a4 lies on an inward genaratrix and ii
D0 e g D [ . o SO e S S o e - JS ~ 4
T is crder preserving I nust te ciscontiauous at ay {se2

Fig. 8.1

Conversely if g = 1 calculation of the Buler characteristic

shows that Y hes no singular voints and it is then clear
that 9 has order preserving holonony.
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Provosition £.71.%: Let 8 be a G° (r »2) Morse foliation on

%,tne oriented Z-manifold of genus g,with no holonomy,
no closed leaf and no leaf containing more than one saddle
point.
osuppose that J has order preserving holonomy.
Then 1f l is a non-singular leaf of 9.
w(l) = x{(1)S1sw(l).
rroof: Clearly 1Sw(1l)=1l) = «(1) by 7.1.1 (vi).
e prove the other implication by contradiction,.

In the potablon of 7.1e1 and 7 1.,,bu\u030 that there is

- A, | 4 ™ 4 * e b
1, with wil ; = o(-’\lO),buL 1O$w(lo,‘:.

o]

ve consider the point of first return function £ on A; znd

radiction using a method analogous to that

Give i. an oriemc=tion.

i
It folliows frow lzmnma 7.1.4 apolied for both positive and
negative time o7 il A n there is an interval

o

N

(x ,v o (x. & 7, &re not generally in a(s ) aboutp  in
Ai meeting only non-singular leaves whose wand w-=limit
set is e(s;) but which do not lie in w(sy).

further the interval (xo,yo) can be chosen so small that



it satisfies:

a) (x ) & () doms™ .
m € 7

. n ,
b) The traonsverse intervals f (xo,yo) are mubtually

\r
oo

disjoint. this can be achieved if (Xo,yo) is sufficiently
small since lO is not closed and if Iml is large the
intervals'fm(xo,yo) are automatically disjoint by lemma
Velolte

c) Tenna 7.1.4 implies thét for sufficiently lérge n
there are intervals (un,vn) and (u_n,v_n) in Ai with
endooints in.aﬂsiﬁ such that:

/

RN - N N Y m
(1) 'z ,voye (v ,v)ye | ] donf and
0’9o n’'n ">

LU

I O
M u,v. ) = (u v )
n’ n m+n? n+m ?
(ii) £ x o"o> < (u Vo n) < M domf™ and
msgO

AT

oWy V-n) = (u —m-n’ '~ m—n) ’
(iii) the intervals f© (u v ) m20 are mutually

disjoint ,

(iv) the inzzrvals f~m(u_n,v ) m&L0 are mutually

~-n
“disjoint

(v) ever: »oint in (u n2Vy) lies on a non-singular
leaf or outwars zzvarabtrix 1 with w(l) = uKs ) and every
point in (u_n,v_ﬁ) lies on a non—singﬁlar leaf or inwsrd
separatrix 1 wivh &«(1) = QKSi) by the assumption on uKlo)

and lemma 7.1.4.
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~
4

7

Ffix ¢ large enough for the intervals (uﬂ,vo) and (u c,v__o)
to be defined.
) = (x

Then: (i) The intervals (Xm,ym) meZ are mutually -

_ n, .
Let g = £+ and g (%57 ) medd.

0 m’<mn

disjoint and contained in - (\ domg

] )
_ nexn
. ) - L mdO.

(11) (x,,7,) S (uqm,vqm) if m#

(iii)We leave the reader to check that uKs%)fﬁAi
. . . §.n Y m
is the accumulation set of {g (x) :Inéiﬁ ir x€ N dong

- .'.’.?’O
and of {g (72 -1“$(D} if v € {W domyg .
ng O
e show that four I sufficlently large,there is zan intsger

n > such that either all the intervels (x ,,y. . ) or =11
the intervals (x_ ,.,5 ..)

This condition means that if we choose a point p_ in

-

(Xm,ym) for each n with m€n then in tle ordering of the

o)
fub]

points p, on iy D, -, either appears immediately aider k

for all k (1€ <) or immediately before o_j for all k
(1€ k<n) .

There is a unic.: integer m, such that 1 Shm;s N and the

*

N

N

interval (¥ _,x-_ containe no point Xy with O<€IjlsH,
Condition (ii} zzmediately above shows that U, lies in
dil
250
the interval (x_,x_ ). The fact that u is in e(s.)
, 0" my qm, i
and condition (iii) immediately above shows that there is
an integer h' with lh'l > N and xp: € (X0:%p J.
: Yo

Let h be an integer with lal > W , x € (XO,XmO) and lhl
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minimal ( if h and -~h satisfy this criterion choose n if
Xy is nearest X and ~h otherwise ).

T claim that if h >0 all the intervals (x_,,¥ ),

k = 1,.00,lhl are disjoint and if h <0 all the intervals
(thl—k’y—k> kK = 1,000, bl are disjoint.

If h >0 and the claim is false there are integers kq k

w1th 1% k, #k lh) and A_kge.(x_k ’ylhl—k ). Then

1 : _ .
—k € (x ,gh/ (this the cnly place that we uce the fack

X
k

1772 v : T :
that £ and hence g i1s order preserving) and so k, = k2+ h
contradicti ng 1& k. < hland 1«:2>,”1.

i
If h<0 and the cleim ig false therc are integers L, ,i.
! [k
with 18 k.4 k- € |nl and 3, . . € (= - ) vhich ig arzin
! “ W=t 0t =

a conltradiction.
This proves (*).

~
—

By lemma 7.3%.2 and the fact that g = fq,long has bounded
variation V.
Let ¥ be any irzTszrer and n as in (x) above.

‘then if Sj = ler==n of \X J ) ' o

[}

SJ. &, o ;\r)j) for some ns€ (xo,yo).

Hence log ¢ .% g

< = log . -
&y 6. Dgn(7n>Dg “<Q~n)

= log Dg(g™"(_,))

’n<Qn>




- (logDg(e ™ (n__)) ~ 1ogda(e™ F(n 1))
k=7 S a
1 - . _ ‘ _1 .
< X 1logPe(e™(p_ 0> - Logdz(z™ *(p, )|

(*) and the bounded variation of logDg.
o
6 = . - N
But lim - =+00 since the intervals (x.,y.) are
n—00 Shs—n 3’73
disjoint,which is a contradiction and hence proves the

result.

Definition &£.2: Let 3§ be a Morse foliation on II

2
A transverse measure on‘g assigns to each vransverse
submanifold (open interval or circle) X{,a Borel meosurs

M. on X which is finite on compact sets.

LIy

4 transverse measgure M is holonomy invariant 1f whenever

Eq,Kz are transverse submanifolds and the holonomy =22
o Kq—————~—? K2

is defined then

M \/ [‘ Y = - 1 : \

M N v/ /AI\*.(—QCQ‘/)

2
where_:x.E%L.,I ig P My measurable set.
Vie shall denot= ==22h measure M.. .
SE { Hi& by /4-4

A point p lie. - the sunport of a holonomy invarian
transverse measure M4 1f for each transverse submanifold
K containing p, Mm(XK) Y C.
The suugort of a holonomy invariant transverss neasurs

is a union of non-singular leaves and separatrices. sny

o
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point in the point set boundary of the support of such a
measure u is a’saddle point in the w or « limit set of a

separatrix in the support of Mo

Lemma 8.%: Let 3 be a ¢t (r »2) Morse foliation on Mg,the
oriented 2-manifold of genuslg,with no holonomy,no closed
leaf 'and no leaf containing more than one saddle point.
Then for every non-singular leaf or outward separatrix 1,
there exists a holonomy invariant transverse measure u on
3 whose support has closure equal to «(1).
Froof:Let s,],...,skg be outward separatrices whose w-~limit
sets form the entire collection of w-limit sets of leaves
of 4 as described in 7.7.1 and 7.1.5.
Let Aq,...,A-k'5 be transverse circles such that
AN Aj = ¢ if i1 # J e
Ain‘”(sj> £ @ if & only if i = j
as described in 7.2.
Without loss of generelity «u(1l) =c0(sq) énd in
order to define the required transverse measure M, it is
clearly sufficient to define measures on A,l,...,Akg which
are invariant under the point of first return functions on
each of these circles.
We take M= 0 on Ag,,..,Ak3 .

For each point p € (\ domf™ we shall define a measurefAP
' m>0

on A,I which is invariant under the point of first return function.
To do this we define a linear i‘unctional/\p on G(4A,) (the

continuous real valued functions on Aq) as follows.
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Aq is a. comoact metric space.

A standavd application of the Stone-iWeirstrass theorem

then implies that G(Aq) is separable.

-

Let @i y.ee,Pyr--- Db a countable dense subset of O Aq).
For each positive integer n choose a sequence {rn n}n1>1

of positive integers such that

T -1
lim 1 n,m i
y o (£~ (p))
11-300 rn m 1=0 ?
exists.
Then given Pe C(4i,) we let
_ 1

1}

lin _4_ 13 @)
n-»0 I° n 1=0
+Ll9

A (@)

The Xiesz repres ation theorem then gives a measure

on Aq. This is the unique positive measure satisfyin

(@) X/fpdﬂp .

728

Clearly has suvport equal to W(1) N i, and one can
< Mo < 4 1

Y

check uhdb}A is holonomy invariant.

We shall see below in vproposition 8.4 that if the

Py

holonony map is order preserving then The measure given

-

by lemna 3.3 is unique un to multinlication by a positive
real number.

It then follows that in this cass

- lim A 1= U
No(P) = lim 1 I Pl (p))

n-»o0 I

is well deflpe for all points r and independent of p.

£

Hence the measure is well defined Ior all points p.
Mo



d‘

I do not know whether pronosi

=

ion S.4 is true in general.
It may be that the recent example of a "non-uniguely
ergodic interval exchange transforsation' given in {401
will suggest a way of consftructing a worse foliation with
at least two ergodic invariant measures which have the
same support.
However the recent paper [39] on interval exchange
transformations does suggest a way of proving that the
number of ergodic measures is finite.

The proof of this given in lemma &§.4.0 below is closely

modelled on that of ([39].

Definition 8,4.00: & hclouomv inveriant measure m is
erzodic 1f for any set 4 which is & union of non-ginzular

leaves and separatrices and any traansverse submanifold @

either am(XNT) = u(1)
or Mm(ENT)

]
S
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D
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Temma 8.4.,0: Let 9 be a ¢ (r¥»2) lMorse foliation on M_,

1)

the oriented 2-manifold of genus g,with no holonomy,no

closed leaf and no leaf containing nore than ons sadd

‘_J
[

point.

Let € be the w~limit set of some leaf of Y and let 4 be
altransvérse circle meeting w but no other distinct limit
.set.

et e be the minimum of the number of inQard and the

number of ocutward sevaratrices whose limit set is w .

pj

0

“hen there are ot most 2 + 1 ergodic Zorel measurses p on
&£ owhich are invariant under the polnt of filrst return

function on 4 and gAblui;;J(A}

since every separatrix wiaose limit set is not w meets =a
ounly Finitely many times we can assume that a separairix

nmeets s 1f and only if 1t has limit set w.

nt measure on A.

Let Byyeeee,i 27 disjoint invariant sets in A with
fA(f: > C 1¢€1¢m.

‘e show that €= + 1 and this then imnlies the result.

ffor ii‘f%,..,.Hw are distinct ergodic measures,it follows

from the ergodic theorem ([2]) that there are invariant

i

/ui(KJ.) 1 i=]

il
O

i .



3

Then setting H = m"q(

.y

Pq t ees +pM. ) plves the required

result.

We first choose for each j (1€ j€m) an interval L. in 4

with | ‘H(LjnKJ.) > 2u(Ty) (+) .

The existence of Lj is dimplied by the fact that M is a

Borel measure and hence for some open set Uj containing

N\

X, P <GP,

Uj 1s a countable disjoint union of onen interv

one oI them must satisf

1 .

m
)
v
o
[an
2

ijow chooze 820 such that for any J (1€ j€m) (=) holds

with Lé replacing L, for any subinterval L! of L. wizh

J J L

Let £ be the voint of first return function on i.

serving and the

1
a0’
)
]
R
}_l
ct
].J
[}
bl
] J
D
W
[
5
{0
C.}.
)
’._J
n
O
e
a¥
[©)
i.
e
2
\ I.)
Y

lemma follows fz:= >roposition 8.i4.

If e>» 1 we can coose an open interval I = (a,b) satisfying

(ii1) & and b i on distinct inwvard separatrices.

(iii) a and b are.the last »oints of intersection of the
inwvard separatrices on which they lie with the closed
interval [a, 1.

b
{(iv) H(I)(S (since m iz a2 resular Zorel measure and a

point has m-measure 0).



/

We can achieve these properties by initially choosing

eny interval J with J0NN ¥ @. Since L contains an invwsrd

. . Kl
separa

srix we can choose the last point of intersectio

5

T

of this separatrix with J to be one of the endpoints o

. ok

<

since e 11 we can arrange.ior the other endpoint of I to

be as stated.

ow let e’ be the nuaber of inward separatrices mee

I_et p/] <p2 <o.- <pe_:.
be the last points of intersection of each inward separatrix
with the open intsrval (2,b).
_— - \
L o= o ’\_:
I, = (a0,
I, = (p-)f); /> /]\<J<€
J TR
T W
“‘e»}-: (pe,—’ D J/ .
for each j :
either L i1s defined nowhere on Ij,in which case Ijtﬁfl:= o
¢,
end we set T. = o
d
or £ is <:zZined throughout I. and we let tj'>O 1=
minimal such T © J(T N domf J)l\* £z .

- = :
i

ote the foliowizgz properties:

(1 £% is defined throughout Ij for all'bﬁtﬁ since
therwise for some t € tJ there is a vpoint pe,ft s whicn
is the last point of intersection of an inward separatrix
with A.lhen T t(p) € IJ is the last point of intersection
of this inwverd separatrix with I contradicting the defin-

-

ition of the intervals Ij



-
O
N

J t,
For otmerwise a or b lies in T 314.
‘ J

Jhen,since a and b were chosen to be the last polats of
intersection of inward SQparatrlceo with the closed

‘ -t -t
interval [a,b] ,this implies that £ 9a or £ Ub eI,

J
is the last point of intersection of an inward separatrix

e}

with I.This contradicts the definition of the intervals Ij.

(3) Given a point p in £ which does not liz on = separatrix

1

for which Deft"

U

This follows from nronerir (1) of ! since this imnlies
that we can croose zn inbtoger ¢ 20 to be minimal with
,;-"’S 7 N\ - M -3 - T £ - - .:‘S-'-
F77(p)€ I. Then £ “(p)€ 1. for some J implies p€ 7T,

B J 1Y
and the mlnlmell*“ £ 3 implies s<t..
(4;%et < be the set of points in £ which lie on a
separatrix.

v "O._/i tev—/]

T L. - Fal T » T
.hebu— {__O,-ovg- _LO, s o e e e 3 -Ler,.’.,“ Ie+} .

Then 8 is a covar of NS by pairwise disjoint intervals

of measure lesz —-an ® .(in fact we can reolace S by a
finite setv but ~* 10 not need this acouracy).

This is impmediz—: from (3),the disjointness of the sets

Lyreee9ly and vie choice of the integers tj.

Iiote that/a(&) = 0 since ¢ is countable and that the

measure of the complement of L is O by lemma 7.1.4 and

. . N . A . . .
there is an integer Jj (0$j<€e”) and an integer t (C £t <%v.)
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A\

,

the fact that if the iterates of any set under f are

disjoint then their union musse

ro measure O or infinity.

It follows from (4) that since Lj is an interval there is

a finite union X. of intervals in W such that

.81, and (LNLL) < 2%.
J d H Jd o J v

Then by the choice of ¢

MM (Z‘( .ﬂ L_.) > -%F(I{J).

Hence for sone 1Duerva1 £ k in Xi
J (&)
z'nt—~ /».'t-— > N,
(£, N30 7 ApETT, ) (=) .

o
6]
A
I 1
i
s
A4
T
N
ki
¥
=i
'
N
H
(@]
H
I
[
}.._.l
0
~
(@]
/A
14}
N
cl

since the sets 1. are disjoint (sx) can hold for given

Ib for at most on=z set ..

For each J choosz:z x. such (**) is satisfied.
Then the men [ <. 13 injective.

lience m§e” + “.

b

spplying the sz zrgument for the point of previous

_;J

intersection funrtion shows that

.1_
D

nge - as required.

Corollory:Let J be as in the statement of the lemma.

Let aﬁsq),....ﬁu(skg) be the distinct non-~trivial w-limit



ets of

S

Y as in section 7.1.

O
L

noun-singular leaves or out

1. s}
)

paratrices of

t

Let i Ze the minimuna of the nunber of inward senaratrices

with & ~1limit set Qisi) and the number of outward

separatrices with w-limit set axsi).

Then,up to nultiplication by positive scalars:

1. The number of ergodic holonomy

measures with support a(si) is at

2

measures is at most 4g - 4

Proof:The results are

fact that the support
some seb QKSi> and the

as in section 7.2

+ K.

K

. The number of ergodic holonony

invariant transverse
T

invariant transverse

immediate from the proposition,the

of

(&

—

any ey

124
<

s s
TA8Tence

odic measure must be
of transverse circlsg



In the following vrovosition we prove that if 3 hez owrder
preserving holonomy then any holonony invariant transverse

messure with support the w-limit set of a single

-

zal

1s ergodic,

The important property which is implied by the existence

of order preserving holonomy is the following.

Given any'transverse circle 4 which meets a single w-linit
set in a set L1 ,any point p of N and any holonomy invariant

transverse measurs;then ., can be approximated as clesely

I

as desired in measure by the disjoint union of iterates
nnder the point of Jirxst return functilon of any small
interval contalnial .

Proposition 2.4: et 8 be o T il S rse foliliation on

f_,the oriented Z-menifold of genus g,with no holonory,no0

P L

(857
closed lezaf and no lecaf containing more than one saddle
point.
Ssuppose that 3 ass order preserving nolonony.
Then given any on-zingular leaf or outward separatrix
there is,up tc ol7inlication by positiva real nuabers,
2 unique holenco inveriant transverse measure m on Y

whcse suoport ~:: 2losure equal to w{(1).

Proof: By nronciicion 7.1.5 we can assume w(l) = w(c, ).
Let Aq be & transverse circle meeting w(s. )
i =1 a5 in 7.2 (or 8.3 above) and let f be the point of

first return furnction on Aq.



AN
(Y

The proposition is proved by showing that any transverse
measure M restricts to an ergodic measure on A,I (i.e. to

a measure in which every invariant set has measure O or

(A )) and then applying the ergodic theo”em ( see [2] )

Note first that by lemma 7.1.4 any interval of A, in the

complément of a%sq)ﬂAq has measure O and also that any

point of 4, has measure 0. This is because if all the

iterates of a set under f are disjoint then their union
must have measure zero or infinity.

-unpose that w(a

= 1.

b/

letfREfﬁf\domf be an invariant set i.e. ¥ = £(R) then

[,_1.

without loss of generzlity we may assume thatiﬁsrn(sq)f\A1
We must show that M(R) = O or M(R) = 1.
suppose p(R;) O and let E2O.

cince pM 1s a Borel measgure on a comnpact set M is regular

( see [26] p.47) and since also w(s,)N 4, is totally

1
disconnected we can find a sequence {I }. 320 of d10301nt

intervals in Aq with

R~ U I: s Z M(I. )<é;—‘§§l and /u(I.)<8 all j »0.
J 0

J=0
Then (k) = Z Iu(hnT ) » (1-¢) }:,uu )
Thus one of the intervals 1;.5ay Ij - T satisfies

M(RNTI) >(’I-5)/A(I) (hence in particular m(I) > 0).

since (1)  there are only countably many points of w(s,])ﬂA,I



{(ii) (s, N, ic pexizcty and
1 g o
(iii) any interval in the complement of g(sq)lﬁﬁﬂuhas

measure zero ,
we can assume that the endpoints of I lie in
cp(s,’)n n doms™ .

me€ 7 -

Crient A4, and let I = (a,b),with a,be '-d(s YN ﬂ aomf®.
L m € Z

sither every non-~singular leaf or outward separatrix in
sq) limits on b from the right or b is the left-hand-
endpoint of an open interval ir th:z complenent of
u(s )f\nq. In either case we can find an integer ny such
‘thath(b f (a)) is as small as we please.
Then either M(I) >3 or we can find an integer n, such
n n,
that (a,b) and (f 1(a),f ](b)) are disjoint and
n
1 N
pa,r (b < 3m(I).
e leave 1t to the reader to show similarly that if
(m+2)M(I)& 1 we can choose inductively an integer nodn._4
such that the nte“vals )
\ R Ny N
(25) 5 (£ (@))€ 1(0)) yunaeny (£ M(a),f (D))
are disjoint and m(a,f m(b))((m+”zH(I)
This process stops when m = [(p(I))'q]
. s B T nj ny Ry
Hence the intervals f *(INdomf %) = (£ *(a a),f ~(b))N inf
(wvhere O€ 14N and we set n_ = 0) are mutually disjoint

g

-y
and p(IVEf 'TV...0f "I) 2 12u(1) 21-2¢ .



men MR ) L M@NI L))

= ), M(RNI) since % is invariant
420 | o .
2 T(-8)u(I)

> (1-8)(1-28&)

But € was arbitrary hence M(R) = 1.

Now let M,p' be distinct invariant measures on hy,

t

sstisfying P<"*q> - /‘"<%> = 1.

;*p ‘ : =1 .
nE = rll-l-::o % ¥ x(T N{f*(0)}) for A-almost all p.
1=0

Then if pm # M' there is a set T such that M) # ot (T).
Hence there are invariant sets 8,3' with }4(\)) M(EY) =1
N~

and  M(D) = lim 1 )T X(TNirT(p})  pes
n—-»s n  1=0

n-"1 .
p (DD = 1in 4 35 x(enizt(eld) pest .
n—>»w n i=0 »

ThenT) # p(D)=pa3n3" = ¢ .

tr

vt then the measure Fm + M 1s not ergodic - contradiction.

Hence there is a unique invariant measure on A,l with

pM(aq) =



s

If M is any transverse measure which has support with
closure equal to w(l) and which is invariant under the .
holonony map pﬂfi) = 0 for i>1.

Hence any transverse measure invariant under the holonomy
map,whose support has closure equal to «X1),is a multiple

. A L A A - 7
of tltle measure p with /f‘<—“1> o
8.5 Hotation numbers.

. T - o e
let 39 be C™ (r »2) rorse foliation on M_,the owlentvi

(i

2-manifold of genus @,with no holonony,no closed leaf and

5l

‘ile point,.

)
{1

~ e a T

no leaf containing wmore tThan cns 2

SuDn0s

(€3]

thet J has orientation vres: >rving holonomy and let
uh,...,wkqbe the complete set of distinct w--limit sets
of non~singular leaves or outward separatrices in 3.
et A be a transverse circle meeting leaves in precisely
one set w, .
Let £ be the point of first return function on A and let
M be a transverse holononmy invariant measure whose support
has closure equal to .
et pe dfley, lis on a non-singular leaf or separatrix
waich returns to A.
t x(4) = M(p,f(p))) .

M)
"

Then &(4) depends only on 4 and the orientstion on 4.

1,

0]
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-

For let qe.éncgi lie on & non—singular leaf or outward
separatrix,then for sufficiently large n, £ (¢) and p 1lie
in the same interval in the domalp of T (see 7.5)

Then since f is defiﬁed throuéhout“theintérVal of &
betﬁeen p and (o) we can assume that the points.p,fh(é),
f(p),fn+q(q) appear on. 4 in precisely this order.

Then M(p,£(p)) ’

Mo, (a)) + p(2%(a),2(p))

P, 7@ (e (0),£(p)) (since £ is

I

il

holonomy invariant)
isince f 1s order preserving and M is invariant under I,
/J\q,f(c)) ;4’””(3),f (¢)) as required.

Assuning that A has the orientation in which the pairs
{tangent to A,tangent to d ) lie in the orientation of

F,&(~) is unicuely defined and is called the rotation
<«

numnber of f,

3ince Y has no closed leaves and no holonomy ®K(A) is
irrational. ror without loss of generality AKA) = 7 then
if «(x) 1s a rational nunber m/n the fact that f is order
preserving shows that for any point x€ () domf™

a ne 7w
CM(x,E(x))
Since any open interval meeting «; has positive measure

(w; is the support of M} the intervals (x,£7(x)) are
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maximal open intervals in the complement of co; which are

disjoint for distinct x. lence there are uncountably many

3joint intervals in +tThe compleasnt ofc»i - which is

impossible.

We remark that the rotation number as defined here is the
same as that defined classically (see e.g. [19)) as wve

~
-

shall see in section 9.2 following.

- LA T - T b ‘ /“r ~y S h¥ ) : >
Definition 3.6.7:Let J be a ¢ (r ¥72) lorse foliation on

¥.,the oriented Z-nmanifold of genus g,with no holonomj,
[

no closed leaf,nc lexf containiing mors than one saddle
point and order nreserving holonony.

Let M be a holonomy invariant transverse measure whose
support is the suvport of some non-singuler leafl or
outward sevaratrix L.
e associate with m a cohomology class @(u) ex’ (Mg,El)
which is an invariant of ¥ .This invariant is called thé

asymptotic cycle associated to p (or 1) and is defined as

follows. Various equivalent definitions of @(F)_can be

found in [22] or [23].

wWe realise ®(u) as a homomorphism

@(m) : TT,‘(I‘Zg) —> R .



1 Me Tr,, (Ng) we can write
’YLJ 'y,]*s/i;goo-ooo*'yn>;<sn

wnere Si : [O,ﬂ]—————?ﬁg ig a path lying in a leaf of 3

and 1& : [Q,ﬂ]—————#ﬁg is a path transﬁerse to 3.

Then setting &(¥;)

H

+1 if'W& is traversed in the positive

il

direction & C(V&)'

-1 1f Y, is traversed in the negative
direction we make the definition:

BQOCITD) = 3 €AY (0,11))
,

If C is a transverse circle it is clear that

P N " N ’ 7o
By (el = M) .
bow let Ai,Bi be transverse circles meeting leaves in ab

if & only if i=j as in 7.2.

Then there is a unigue holonomy invariant transverse
measure M. on 3d such that fﬁ(Ai) = 1 and the support of
M has closure esunl toco (Since)ﬁ has order preserving

holonomy). 5y the choice of the circles Bi’f&(Bi) = K( A )

v v ' “| a0 . T a ‘ A

Hence @(Ni) = O + a(hOp. + K. “ ‘_whe1?~qi,pi‘ar°
the Poincare duals of Ai,Bi respectively and K. lies in
a subspace of Hq(mg,ﬂk) complementary'to that generaved

by“/‘,ooa, g ﬂ/l’.'.,Pkg ‘-

wince any nol onomy invariant transversc measure whose

support has closure equal to thecu—llnlb %@t of a sing

non-singular leaf or outward separatrix is a positive
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multiple of my (proposition 8.4 we have:

Proposition 8.6.2: Let 4 be a ¢t (r 22) Morse foliation

on M_,the oriented 2-manifold of genus g,with no holonomy,
O

‘no closed leaf,no leaf convaining nore than one saddle

point and order preserving holonomy.

bThen up to multiplication.by positive scalars the

asymptotic cycle of a non—singular leaf or outward

separatrix 1 is an irrational real cohomology class which

depends only on «w(l).

To end this section we remark that if the number of

i

distinct w-limit sets is equal to 5 (its maximum possible
value) then froxm the remarks wmraoceeding the provosition
we see that the asymptotic cycles are given by:

@(,ui) = K. + a(.zfxi;pi 1€i€g .
8.7 Asymptotic cycles in general.

Even if we do ncT have order preserving holonomy we can

define the asymTotic cycle of a non-singular leaf or

outward separz:zr_x 1 for "almost all leaves 1'%,
In other words =i2re is a set X consisting of non-zinsular

a separatri S t:

leaves and sepzratrices such that

(i)~/4(Xr\T) :‘f(T) for any transverse interval T and
any holonomy invariant transverse measure a4 .

(ii) If 1 €% the asymptotic cycle of 1 is defined.
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Je deilne the asymptotic cycle as follows.
Let aﬁ,..,U%g be the set of distinct w-1limit sets of
leaves of Y.

=3 1n 7.2 let Aqv""’

: e 3
with Ai meeting only leaves inw..

be disjoint transverse cirTcies

Then a careful application of the results of Oxtoby [43]
shows that for almost all peAi the measure M, of lemna

3.3 depends only on p and not on the sequence T n®

B

et 1 be the non-singular leaf or outward separatrix
through p.

M, deternines a transverse measure My depending only on 1.

Wote that ths clozure of the sunvort of‘Ml is «1).

@(P:},“he asymptovic crcle associated to l,can then bz
e

lefined exactly as in &8.0.1 with.pl replacing u.

& further caref 1l =z=-plication of [43] shows that py is

crrodic for ziirozt =il leaves 1.
That is: for =~ _clonomy invariant transverse measure A
the seiu ol les s -or which the measure My is ergodic

meets any trans - oie submanifold 7 in a set of measure A{T).

“Ynis observaticn,together with lemma 8.4.0,gilves the
following:

P

Pronosition: Let J be a ot (r 22) torse foliation on i

~?
&)
e o

the orientzd 2-manifold of genus 7,with no holonomy,no
closed leaf and no leaf containing more than one saddle

polnt.



b '

vLet ky be the number of distinct aon-trivial linit sets
of ¥ as in sectioﬁ 7ele
Wen There is a subset L of M satisfying
(1) X is a union of non-singular leaves and separatrices.
(2) Given any holonomy invariant transverse measure a and
any transverse submanifold. T

psEAT) = m(1) .
(3) Up to multiplication by positive scalars there are at
most 4g - 4 + kg asymptotic cycles associated to the

non-singular leaves or separatrices of Y.

lie warn the reader thnt unless every lcaf of Yis dense

}_J
o)
=
o]
cr
@)
%)
0]

shou
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Chapter 9. Morse foliations on manifolds of genus 2.

In this chapter we examine lorse foliations on M,,the ..
: _ o)
join of two tori,in which there are exactly two non-

trivial limit sets. These results are applied in chapter
10 in the construction of liorse foliations with no holonony,
no closed leaf and no leaf containing more than one saddle

point on a two manifold of any positive genus. In chapber

p . O . . . .‘ ~
10 we also give a C ~conjugacy classificaticn of the
Y J

Morse foliations on ﬂg wis

o

h exact

+

3

WO non-vrivisl limit

=
\g:

¢

- o . LT, ~ ) N .
Temma, ©.1.7: Let 8 be a U7 (r 22 lorse folistion on M _,

03

<41 M -4

the oriented Z-manifold of gzenus g,with no holonomy,no
closed leaf and no lzaf containing more than one saddle

point.Let =,F be transvarse circles and suppose that sonms

non-singular leaf or separatrix cuts & and then cuts F.

Then either some inward separatriz cuts = and never
subsequently cubts I' or every non-singular lecaf or separa-

Je - .

trix which cuts. ® subsequently cuts 7. -

In the latter case = and ¥ are homotonic.
Proof: Suppose that there is a leaf which cuts E at a
point e and then cuts F.

The holonomy construction shows that every leaf cutting

-

T

I in a neighbourhood of e subsecuently cuts F.

It is immediate from lemma 7.7.% that the only



-

ObSETUCulOﬂ to extending tnl neighbourhood is the

existence of an inward separatrix which cuts X and never

“subsequently cuts F. ”

The recuired homotopy is given in tne case—_tat d-~by

flowing along the leaves. ' L : _ .

Temma 9.1.2: Tet Y be a CF ( >2\ Morse folla ion on Mé,

the jein of two tori,with no hol onomy no leaf coatalnlnb

~more than one saddle point'and precisely two als+ ct
non~tri§ial limit SETS.

Then there ié a transverse circle which represents tne
zero homolegy class in Hq(HZ,ZD .

Prooif: Qe~remark first that the non-existence of closed
leaves is implied by the conditions of the lemma since
the existence of a closed leaf together with the no holo-
nomy as;umption would imply the eXxistence of infinitely

many distinct non-trivial limit sets.

So/ietcaq,co? be the distinct non-trivial ew-limit sets of

Y . The provertiss of these sets were described in section
7.17. Let 31732 be transverse circles such that A A2 a3,

4

every leaf inm1 meets A, but'not.Ag‘and conversely as in

section 7.2.

Let Pq9P0 be the saddle points of 3 and let the inward and

outward separatrices be denoted as shown in figure 9.1.



one inward and at

lcast cne outward separabtrix. Hence at least one inward
separatrix cuts Aq and not i, and conversely.

lience eithier one,twc or three inw-z2d separatrices cut

.. If a single inward separatrix cuts Aq,every point of
Aq lies on a non-gingular leaf or separatrix which returns
to 4,. llence,as in figure ©.2,there are two outward

separatrices cutting Aqe

another copy of A,l

o

_ , fig. 9.2
e can thereifore gsune,reversing the orientation of the

[en]

leaves if necessary,that the number of inward separatrices
cutting 4, is two or three.



¥
.Y
o=
0

.

dWithout loss of -generality we now have two cases:
either only b, andhbg_cut A
or b, and b,' cut i, =nd b,' dGoes. not cut 4

We show first that the latter hypothesis implies the
result and then that the former hypothesis is~ impossible.

S - R
. ~ Tm

Suppose that bq and bq‘ cut Aq for the last time at the

Then,as shown in figure 9.3,we can find a transverse
circle © such that each leaf cutting the inverval (pﬁ,pa)

in iq subsequently cuts & and evers

i A 2
- . A £ S e e o~ . Y- o —— e - i P o)
13 & ooint of intergection ol zucn & leafl.




N

.

Similarly let E' be a transverse circle such that every
leaf leaving the inverval (p],p‘) in A subsequently
cubts ' and every woint of »' cicept the 1ast point of

intersection of a, with B! lwes on such & leaf,as in

figure 9.3, - . L -

We assert first that if C is either of the circles L,Z',

then C has the property that either every leaf cutting C
subsequently cuts hy or there is some inward separatrix

which cuts C and never subscaueatly cuts Aq.

For by lemma 9.7.1 if some leal cuts U and subsequently

cuts Aq then cur szserition mugt ks true. Hence the only

otner possibility is that no leaf cuttinz C subsequently

cuta Aq. if this is 50 the w-limit set of every non-

-singzular leaf orx outward separatrix cutting C is w, and
[

hence every non-siurular leaf or outward separatrix waich

cuts € subsecusntly cuts AP. If our assertion is felse

it i1s also tTrusz ~..2¢ no lnwa rd scparatrlx cuts C,Ior such -

an invard sa;a:ztfix wou*d never SUbSbCueﬁb%¢ cut 4,.

Hence by lemmz ~.7.7 1f‘uﬁe,aoserV1on 1¢:-alse every-
= -

non-singular lzal or SGQ&T&ETLX cutu:lg C subsequently

cuts A,. Bubt thiz nmeans phat eyérynnon-sihgular<leaf

cutting A2 nas previodsly cut. 4, which 1s impossible since
every non~singular leaf in ws; cﬁ%é-Ag and not 4,.
. <.

lience the asservion is true.’
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T claim that the only inward seoawatrlxxi11ch can cut C
= O or ') and which never subsscuently cubcrgﬁyis 52. i
CZor from Eigqre 9.4 we see ‘hag bq,a% cut 31 for tne-~a§t
time at Pq,p% and never sgbsequently cuf eith§r;E_Qr_3{4_
Also by the assumption at The beginning of the prbof bé T
never cuté A1 and hence never cuts elther = or S'.'Buf_

now b, cannot have the property that it cuts both

and never subseguently cutls i, since,as figure $.7 s

|_‘

7 leaf cutting both I and o' cuts A, at an inftermc

fience at least one of the circlss I or »' has the prossziy
that every leaf wihich cutvs 1t subsccuently Aq. e oassuze
that ' ig the circle with this property.
‘‘hen Z' can be identified with i and it iz then clear
from fizure 9.3 {irazine m'and fg joined by a handle}.that
< bounds a2 torus with a hole,in Hg,and hence sejarates K@.
Thus & is the zz:aired circle. : : T o
- T R

l
only inward zar:srztrices which cut Aq.'ﬁithout 1085

generality,b) =ani b) are the only inward geparatrices

. - . - .
A . . - -

which cut se

Je can also assume that exactly one -outward sepawvatri:

a 4

It remains *o eli*wnate<x é-case £hat b _~Tand bg“afél*ﬂ

-
"

from each saddle point cuts sach circle Ai,SWnce we could
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otherwise reverse the orientation of the leaves and repsat

the above argument.

Crient the transverse circles Aq and A2 so that at any
point the pair (tangent to i, ,tangent %o 3 ) lies in the
orientation of Mg‘ Denote the points at which separétrices
cut the circles Aq,Ag for the first or last time by the

correspondir Creek letter so that,for eXamﬂle,bg cuss

Ay at So.

[l
o
-4
’ J
)
b
\J
i
o]
I+
o
ot
o}
-
(@)
O
=
[5]
T
Q)

The reader ig ad ntly To figure ©.%4
overleaf whilst rsading the following argument.

Without loss of generality every leaf Crossing (Pq,ﬂ2>
returns fo Aq in the interval (a%,«g).

This implies that b,,b
separatri Ceé v:;ci cut A and.b%,ba‘,aq,aé are precisel

Z,a) and a~ are precisely the

those which cut g;.

i+t is clear from f“gure 9.4 and the fact

‘
VY

Since 24 cuts

that every inw-rd S\Daracrlx wnlcn cuts (ﬁ?‘ﬁq) subs cuéntly

Cuts Ay that ewziy leaf leéving (FE,P¢7«subsequ?ntly,cutS'
L, and dose st oz the first time in the interval («é,ﬁﬁ).
Then in fact no inward scparatv X cuts- («2 q1> since any
such separatrix wOuld'cut both A, and As. Since also a,

aever cuts 4, no leaf cutting («),®,) ever returns to Aa

=nd every leaf cutting ng,uq) subsequently cuts A,.
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Similar arguments and the configuration of .the separatrices

sinow thnt every les cutting Ag in (p%,ﬁé) returns. to A

27
no leaf cutting (ﬁé,P%) egver reiturns. to A2 and every leaf
cutting (B, 85) subsequently cuts Age o
Thus: (%,%;) & (Bq:B5) - - S | . -

(“é,‘xqj' (p’], ’>/ . T e - B

Hdence the points of first or last intersection of

-

separatrices lie on the circles Aq,AP’in:the followinsg

-

order:

% %o A IPARLRS

2s in figure 9.4,

[low choogs transverse curves Xq,x s end Y4,Y5 which start

at ooints X,;,Y, on a common leaf in a distinguished
neightourhood of 2 ond which finish at points X?,Y

-

on 3 comnon leaf in z distinguished neighbourhood o1

H
o)
[\

a5 shovm in figure 9.4,

~

Z,4~ cuts b)! at ¥. and bA at X, in the sane dlstlﬂg ishe
/l fsd | - ? /—L .

neighbourhoods an YqYﬁ“cuts aq at Y., and aé at Y4vin the

5

same distvinguished neighbourhoods. = -

73
3
jo)

Further every lsaf lesving Y3Y4 cuts [dé,uql every
arriving at XX, has L.
leaf arrivinz at ky has cut fpé,Pq] .
Thus from the preceeding remarks no leaf leaving Y5Y“
"~ T

ever returns to H;X, .
Z40
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How cut along the segments of leaf X1Y1 & XgY? and along

AT

the transverss curves qu,;4u9 % Y1Y5Y2Y4 . Throw away

23

-

that pzrt of

=
<
ok}
job]
-
]
l,_.l
=

170ld contalning the gsaddls points
(a torus minus a disc) and-glue in a square along the
boundary of what renains (also a torus minus az disc) to

get a torus. _ _ -

P

ifoliate this torus by the res I‘lCth”l of. 3 011’051

1%

th

Q
%)

i _1fto it

[}

square and foliate the square by lines -paral

3
[aV]
-
()

b

sides Kqu and X5Y, in such a way that the holonomy n
U

r

from XX, to Y,%

)
)

and from X%, “2 to ¥, Y, is the 'sanme
that fo:‘g. Tnis econstrucvion can be carried out so thab

tho resulting (genuine) foliation of the torus iz C.

Denote this foliation of the torus by 8'. Then no le of

(')
f‘i)

Y ' which cuts Y5Ym ever subsequently cuts X5X However

4.
since r 22 either every leaf of ¥' is dense or ¥ has «

@

closed leaf. Since 3 had no closed leaf =znd § has the 2a:
leaf structure as 3 outside the scuare these properties

are incompatible.

This proves the lemma.

Q.1.5 Description of lorse folliations on My

T b 3 3 - S T o~ T e > ») \ T

iie describe below the geometry of any C (r>2) Morse

foliation & on l,,the join of two tori,with no holonomy,

Ras)
-1

(D



no leaf coﬁtaining morelthén one}saddle point and exaétly
two non-—triviaiw-—limit sets (so that in addition dhas
no closed leaf). i tyvical 3 is shown in figure S.5
'overleaf in which the pairs of tfansveréé'éirélés éq;Aé

and £ have to be identified by suitable diffeomorphisms.

B -
=

Let E be the transverse circle homologous to zero given

by lemma 9.7.2. Zilnce I separates I ,evary non- 81ngula?

'\)

leaf or outward separatrix cutting & hast»—limit set w,,

every non-zingular lesf or inward separatrix cutting &

has &K-1linit set a different Setcﬂb and no non—singular

leaf ow éegaratrix cuts L more vhan once. ‘hen when we

cut aloLE,E,uﬁ andc»Q lie in different components and

nence no non-singular leaf or separatrix in.uz]Ucoz cuts E.

In addition if p, is a saddle point in e, (which must contain
one by the theorem of A.Jd.Schwartz) and Do is a saddle

point incog,then ¥ and D~

5 are distinet & are the oniy

saddle points of ¥ (compute the Euler characteristic).

llow choose transverse circles A; (1 = 1,2) lying in one
or other compone (1n other words hot neeting £) such .
that A.0 Lo = @y 45 meets every leaf ine; infinitely meny
times and Ay ﬂco = @ i#j as in section 7.2.liow if no
inward separatLLX cuts ¥,E is homotopic to Aq,by lemma
9.1.1,which is false since = is hémologous to zero and 4,
is not.






- Sttt e T AP

- S

7

Hence at least one 2rc-rard separatrix cuts E and does not
cut Aq. Now at least une inward separatrix cuts A,l and
lies ill&%. Since no non--singular leaf or separatrix in
um(Ju@ cuts ¥ there ig ;récisely one inward separatrix
cutting Aq and preciscly one inward separafrix cutting E
at e4 in figure 9.5) and these together are precisely
the inward separatrices at Fqe

similariy precisely one outwerl separatrix cuts E (at es
in figure ©.5) =znd prezicely one outward separatrix cuts
AQ and tanese are precisely the outward separatrices from
Doe

Let x,. “e Lthe last point of

o intersection of the unique

inward separatrix cutting &, with Aq. Let T 4924 be the

first points of intersection of the outward scparatrices

at p,] V‘fit:{ fi,‘-/lc

From figure 9.5 we see that if a suitable orientation is

. [
chosen cn 4, and if I, = L¥.,z,)then the point of first

return function f on 4, is a dirfeomorpvhism

£ Aq\ix(}~————-»31\11 .

Also every non-singular leAl or» outward separatrix crossing

E cuts A, in the interval i 2 Q.

f has the followine prcperties:
(1) £ is order praczeirving .

v . . -i ,
(lJ) X5 € fW deu?”t and the points x; = f "x, are all

0
n/O

distinct,since wyNE = ¢ and ‘d has no closed lear.
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 ss . . % R s N N T ~
(iii) I c nQO donf™ and the intervals I = rT, - 3
are mutually disjoint.and contain none of the points x..

These properties folliow from the facts that every leaf
cutting (7,,24) hesw-limit set w,, Jq & 24 €y =24 "
has no closed leaf.

(iv) f has no pericdic points since % has no clc sed leaf.

(v) lim D°f ana lim - D°f exist for all s €1 snd
x—gx’ o S

|Di‘(x)| L>»0 for some LER and all x edomf by lemma

7.3.2

e /0 —0

-]
(vi) w,‘f')A,l =.A1\ U (yi,zi) by preposition 8.1.2 and
' i=1

the fact that any non-singular leaf which cuts eq in the
complement of }gq (7,42, ) has& ande-linit set .
Similerly let xé be the first point of interscectiocn of
the unique outward separatrix cuvting A2 with A2 ard let
y% & z% be the points of last inversection with A2 of the
inward separatrices at Poe
Then if I,! = [y%,z%] and g is tke point of previous
intersection function on Az,g is a diffeomorphism

g ¢ AN x 3 — ANT) .
g satisfies the sszine properties as f.
Every leaf cutting F putsA2 for the last time in the

interval I%.
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9.2.1 Diffeomorphisms of the punctured circle.

ol

L :
' be the circle and let x € S &and L,= Y112,] Dbe

wet S
" 2 proner closed interval in Sq.

Let £ ¢+ S™\fx3—> 5\, be a C¥ (r)?2) diffeomorphism
satisfying the properties (i) to (v) of £ in S.1.5.

If % € IWO donf? let w(x) be the accumulation set in g’
ny

ot $£7(x) : n ¥ 0},
Arguing as for diffeomorphisms of the entire circle
.sez [19] chapter 1) we sec that w(x) is a perfect,closed,
nowhere dense set which js independent of x and invariant
undsr f. The resader is warned that the argument here is
non-crivial but since these facts are only required for
diffeomorphisms that arise as in %.1.% we omit the details.
Suppose also that if £A(f) is the accumulation set of every
orhit then:

,] [ 4
vid e = SN U (5,250

i=1

Of course all the diffeomorvhisms f arising from lMorse

foliations of M, as in 9.1.3 have all these properties.

Ey the arguments of lemma 8.3 snd the rewmarss following it

there is a unique non-trivial measure m on S’| which is
invariant under f,h and satisfies (1)
T under f,has support 1. and satisfies pm(S') = 1,

Then the rotation number «(f) of £ is an irravional number

equal to M (x,f(x)) for any x e douf.
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o

It will be cenvenient to rsintorpret ®(L).
This is done as follcwse.

1

Iet M : R—>S be the covering map with 0 = x_.

o)
Tet 1,=[%,,%] € (0,1) be sucr that i, = I,.

Iet F : R\Z ——R\{x €K : x+m e'i,l cone me€Z} be =
1ift of £ (i.e. fwr =W7") satisfying: |
(a) F is monotone incueaslng,

(b) F(0,1) € (24,54 +1) «

(¢) P(x+1) = F(x) + 1 X &R\ .

The graph of a typical F is shown in figure 9.6.
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Lemma 9.2.2: Let £,F be as in 9.2.7.

' ¥ : Ik o e T
Then if x € r7 doml™ ,1im F (Xz exists and equals «(f).
nyo n—w n :

?foof:_?”q(ﬁ)bis a well d

f['x

n- nan 3 F g K] T E
:fined »noint of (C,1, {lcoll a¥t

.

figure C.6) and by the definition of O&{f) and the ergodic

theorem: . ®&(f) n}A(ﬂE-q(ﬂ) fﬂF-1(1>>_= ﬁK“?-q(q},x

= lim 1 ):‘X(i (x)}ﬂ(m?"q(ﬂ),:xzo))

n-»d n i=0
for almost all x (*).
Let yfe(Cuﬂj'be a poiht such that (%) hoids for x =My,

Tet = [#¥% ()] so that b §F <ol + 1.

Py = Pn
Then X(££4 ()3 0 =~ (17,%,0) = -
if & only if p; + I 1)< ()€1 + s
N, . . I PN . . ~ T =
if & only if ps + < F (y) <+ 9; +¥q (by avolying
I to the previous inciuality and noting that lim  F(x)=¥y4)
x—0
f - V = . /;.
if & only 1if D5 14 Dy

fense XCLEHGO} A (1), o = @l -G]
fience ®k(f) - lim _[__E“g”;r!l 1im 1;711/312 .
n—w n

N—3% n

e mow show vhzs Lim fo(g') -is independent of y' for azll
y' € (] GomIT. .

Let G11<y') = ,_;’3‘_-‘}";} ",3”4 for all y'e ﬂ domi™ .
Taen P(y'+ 1)
=> ¥(y'+ 1) = FM(y') + 1 for all n30
= Gn is

since

C')

neriodic of period 1.

F has no periodic points G, never has an integer value.

From figure 9.4 we see that Gn increases across a discontinuity.



[6))
N

dence [G (y')] is an increasing integer valued ITunction
éf y' which is periodic of period 1. This mesns that [Gn(y')]
must take a nstant integer value p,.
7 (7 —7“<:«;">|<1'\~ﬂ<;.-, DR G GADES T IO FAR
$1 o+ |3i-y .

Hence lim anﬁ} = lim P(y") .
n—»0 1 n—0" n .

-

Ixanple 9,3%: Ve now construct a d¢f1co"0ﬂ0%1vm with

propertvies listed in 9.2.1 and with irration rotation
number &, The 1ift of this diffeomornhism is nmisceiize

i
e

line=a

[ay]

M) 4———-—-—-———-——————-

h 4

Let & Se z=n irrational number in (2,1, and let «x_ € (0,1)
!
be the number me& {mod 1) for m e .

nppose O< ML,



~

Mor 1€0 1et

m~"1

a; = (M-m ;
* p{mezz:m#«mmi}

For 12 O let

b. = (1=p)
i /“{m

m-"1 - Lo A, -

L
€ Z:m¥ Ogl<0(13

vc. o /'0 }Jm—-’l
L {n € Z:ma x5 3
Then & <etpé=y (¢, < b, P03 ;
Cq<:ap p<£O, Cl)q
aq<bp p21 , g0,

Thus: the intervals [bi,ci] are disjoint (12 1) €(0,1);
the points a; are all distinct(i €0) and contained
in [O,ﬂ);
the points a; (1i€C) do not lie in the intervals

[bj,e0 (331D,

B\Z — BMx € & : xim€[b,,c ] some me&z}

Define ® :
M
by @)ﬁ“ (%) =px + c, x €(0,1)
k)

& (x+1) = W& (x) + 1,all ¥ e R\Z .

LY

M Mi%
oo 1 10,1]) . ot .
Tdentify & with / 0=11 ythen the restriction of @
~induces | .
T P "
'6/‘,“ . D \io}—ﬂ it \ [b/l ,C',»il >

]

Lote that BM (c;) = B, () +pmley-b,)

Do

It

(byJ + ¢5,9 = Piqe



~ We show that 'eﬂ,*gbi) .= ;11 (1 >0) R
G (317 =35 11 (1 <0).
The oroof splits into two cases. ~
Mhe . : ‘ . . .' » ;_ _~
(o) mcy v () o u
S s m 2 o(m<o<1} . , =
Now in this case R o LT

in : m31 2 °‘§n<°‘i} =1 : n¥I1 & 1<<>( }\{m : ,tx

and {m : m *1r’|<°(3'C{“l tmP, K <% +1} y
Hence | ) -
o - o T o T

A my T, <°(} n sn¥2 x < “i+’l}

- (=M M
in : n¥2,x <«}
= (=) + by g
Case 2. &, ¥ 1-%K.

Then (b ) = c. o+ (1—p) E,H .
/"’" T m %1 ,o(m<o(i}
iow in this case
{m‘ :m2 °(m< Oti} ={n : n¥1 O‘Invs~’l<°‘i+’l;
U{m : m ¥ « >a(§

and {m : n ¥ “m+’l< +430im n ¥l X m+l % >} - ¢ ‘_:.—
Cbemce | C - : ' 7’ " .

® (b.) = (1- ) [_‘, m~1 b (=) -1

P H m)—’l X <u§ /A{m : m}zé"&‘muim}

+(/|;- Gl
/A> A :Z: 2 “I’l }K}
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\UH

bi+1'

[l

We now show inductively tuad

This follows easily having note

Hence the rotation number X(®, - )

s
&

o

(bq) [(nﬁﬂ)u]i+ o,
d that [nxl= nx — L

=& for Iany/u'.'

My
Now'5M is analytic and has constant derivative.’ t
To show that it satisfies our requirements At-Temains to

4
show that @, ) = 5'\ U (b.,c_D.

,‘,“ ﬂ>/] ﬂ n oo A"
Ctherwise,none of the points O,a.,b.,c. lie in Q¢(8 ).~
i?7171 < R Y
et q\Slfﬂ ) o= LJ kd . ) and suppose O 6(@,,e Ve
Rop i1 1

Poynr - ~ C’ \:_\
SETOAS I T S [L/],v/‘,] = (d 1055
B ((EL],uq)\iO}, = dj,\,)\[oq,oq] since ©  mnaps

endp01nts of meximal complementa

ary intervals to endpoints

of meximal complementary intervals.

Since ﬂﬂu a5 no periodic voints (for then (P “) would
’ at)
be rational) we may assume i = 2.
m 1 o -1l \ . L. .4 ) .
Then the QL@*J;IS'S;‘“<Cq,d4/ are distinct intervals in
b ! .
the complement of Q(’BA ),none of which contains [b,i,c,]].
. , . -T2
s P e —h -
But length 'ﬁﬂ o (Caad) = (0‘,] --c )———)00 “as “n—w,which
L) [} | . )
is impossible. g
T \/| - - - ~ - - -
Lence (P « ) v U (bq,cn) .
M n1 °

The above example was suggested by a construction of

Milnor (see [25]) of an example

7

of a diffeomorphism of S



with non-wandering set a perfect,closed,nowhere dense
set and without periodic points. Cf course,it follows

from the work of Denjoy ([4]) that no such diffeomornhisnm

o " . ‘ o2 s .
of the entire circle can be U7 ,since evexry Cr,(I*}E)

"t

. ‘ . Y 0 . N . . .
diffeomorphism of S is C ~conjuzate to a rotation if it

hez no periodic points. =

Below we prove an =2nalogous result for diffeomorphisms

R \{-x}-———'}”' 4 e

In this czse,the diffeomornhisms Gi‘“ renlace the rotations.
. . : ? .

wince conjugate diffeomorvphisns have the saie rotavion -

number,® must be the rotation number of £,

& rela’

]
)
}_J
9]
D
[0)]
oo
]._J
ct
bol
l._!
‘._
;_
o

o

ca to coniuzacy of llorse foliations

[

in lemma 10.06.

Provnogition Q.4: Iet £ : ﬁq\{xé-—————+dﬂ\J be 2 diffeo=~

morphism with the properties outlined in section 9.2.71.

-

v“hen given H with O< M i,there is a homeomorphism
Dyt 83
e L= ' 1
such that be hyt & X -
fl/.A '8,‘,“‘9 /.ll \{ O}

and - '%Ml J1 is an arbitrary homeomorpnisn of_Jq

onto [v,,c).
froof: Let F be a 1ift of f as in ©.2.7 .
e show first that if m, s N5y Ty s Tl € 24

N, n
and xedom F ' dom¥



M
~7

n, n, -
then- Foo(x) o+ m, { F “(x) + Mo S T

if and only if 11,Io((i‘) + M, < ngo&(f)»+ m‘g.

virst note that it follows from the proof of lemma 9.2.2
that for each integer s there is an integer p_ such-thaf
= VTS g R ERE

o < PP(x) - x <p, + 1 for all % edomFS.
s T, L X : I

Hence the order of the points F q(x) +my is independent -
of X. . _ _
SN, - n, o RETE
Then Fo(x) + m,, < P o(x) + My Tl
N, =0 e ‘
<1 T2 -
@ j; <Ly e Jl/} < “n m2
& 0 (xy =% <€ m, - m, -
D(nq—pQ/ - .
> (¥ Sy - x) {zim.-n,) for all pe O
& R(F5(n.-n.) < M.~ — m

sow let '9/"“ , @p“ be as in 2.3.
b
Then since ® is a 1ift of
. M 5o (f) ~ eﬁ\:ﬂ(ﬂ

n n _ . -oes

=) (v ~m,] < B () + m,, for all suitable y.
4ith the notation of 9.2.7,the above and “he fact that

lim %) = b linm . @  (x) =c¢c
x—-;a;"al“’““)( ) T x5at T pne 1

imply that b, +m, b +m



PN
[}
ot

| c
and @n. +om <r; + T~
1 ! :) . i
o e
A - 4 M.
Tet 4 =1a +m,b_,+m : n20 , n'¥0 ,1n6223

f}g +m, ¥ Lt nyQ, n'?20 ,.'_.1.1162}.

Define Hy : A'——— 4 by

Hu(X, + m) = a, + m S
N — L
.L'I}l(ul’l III/ = bn - Mo

Then H extends to a unique orientation preserving map
v -1 s ot » i —/‘ N
Hy: T (Q(f)) ——> 17 QQ(’?_‘ °‘)),T.»lhere
- el
T

e

}Rf——»Sq is the projection.
further Hp FHy(x) = () ) xe T (L)),

@M maps cndpoints of 1nuervaiu (Jn,En) to endpoints of

intvervals c_)
v <bn’ n’*

liow extend Hyu to all of by letting Hqu be any

orientation preserving diffeomorpihism of Jq onto [bq,cq]'
and letting

n
M9°‘<i)

if xe wnﬂ ,'Em_,)] (mod 1) and [x]

Talx) = @ “7u(B (x) +m ) - n

Then Hy : H——p IR is an orientation preserving
homeomorohism and E}?FQA(X) = @ {X)'

M i
Thus Hp induces a homeomorphism ha - Sq-~—? S1

-1 .
such that hg'fh, = '8#,“



In [37] the author gives an example of a C”1iiffeomorphism

of the entire circle without periodic pointe which is not

U ~-conjuzate to a rotalion. fence 1t scens

SO LD

the differentiability class of the conjugacy in-

proposition $.4 is the best possible for general
On the other hand in [38] the author proves that for

particular »otation nuibers

o

iffeomorphisms of the entire

circle must be U% conjugats to a motation.




Chapter 10 Examples of Morse foliations. .

10.7«1 In this chepter we shall construct a number of

examples of C* (rP 2) Morse foliations wi out closed -

leaves. ' ' o T

In Qrder to do this we first generalise the type of poinﬁ

of first return function encounteréd in chaptef79. _ |

We require ¢t order preserving diffeomorphisms -
T ;s"\{xq,.....,%_}————>51\1,!u..... I, .

satisfying the properties:

(i x,],..,..,}:ue‘fiomfmn Vndo and £ 0% =x_, iff n=0,s=s'.

(ii) T.one of the points f-nxs'ﬂszsglhrlbo lies in an

ﬁmemmli% 1€3J£vu.

CEEDEN PP Sdonf® ¥V n30 and £ I NI . 4@ iff

s = s'y,n = 0,

(iv) £ has no periodic points.

(v) For all s$r D°f is bounded and Df is bounded away

from O. | _ ) : _;*

(vi) SLU(f) is well defi
LAf) =

Ql

fr5 T,U..... U ).

/’
5 ng

O

o
\

ote also that as in 9.2 we can define the rotation number

o]
I~y

f in two ways and it is irrational.

ED

shall assune I [llm¢< x), 11mfg ]
XK
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- - N «

Tn the following lemma we show that such diffcomorphismz-

exist. . _ : ST

Lenma 10,7.2:0et £ ¢ 5 \fxo}——f+ :r:‘\_L,l pe -a diffeomorphism.

J 1 .
then £ ¢ 8™\ {x ,....,x 3—>8\T U ..., UT_ catisfies the

as in 9.2.1. ' B e *
Let u be a DOSlthe integer and let L = o
I. = fa_/II 1€5 €u , XJ. = fa—/]XO 1 $j\<u;_ T

conditions of 10.1.71 and has rotation number u&(f) (mod 1).
Proof: Everything excedt (vi) is obvious.

. . \ NP b

Mo prove (vi) we show that QUfY) =LA(E£).

Al - U\ , o

Clearly QU(£7) &AL,

TF n ol e

Tf eﬂ(l), JIxe domi” and n,—> such that

np 0
T(%) ——> 7 as i-—00 .
tiowever for some k, O€k gu we have n; = m.u + k for
nfinitely many i.

Hence we csii assums n. = m.u + K.

1 6] W e C 1 U ”ll i +
i u k, 3 el

Then (f ) (f (z)) —» v and hence ye (f)

H

10.2 The lorse Ioliations 9 u

- Let T, denote the torus H, with u dlscs removed. -

In appendix %4,we construct on Tu a C” (r32) transverséiy

oriented Morse follatlon,Qh
’

ot

ransverse to the boundary

~which has. the following vropertiecs:

1.overy leaf cutting BTu never returns to BTH.'



SN

2 3% u has exactly u saddle points,no holonomy,no closed

leaf and no leaf conbtaininz more th an one saddle point.
2. wxactly ones iInward senaratrix cuts each compounent of
oL . T . Co -

d -~

4, There is a closed,non~empty nowhere dense set £ which
meets every transverse interval in a perfect set and in

which every leaf is'dense such that tnecu—llmlt set of

every non-singular leaf ox outward separatrix is-£2 .

5 Tnere is a transverse circle Aq not meeting:amu on

which the point of first return function. is the function
£ wiich has the pronerties outlined ia 10.1.1.

. + . . . . .
The iiorse foliation af u 13 sketched in figure 10,7 1i
s U

2

Li

fundamental region of the torus.

-
-3

L e e v e e o e e e =

J\/!
Fig. 10.1
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Similarly we have the lMorse foliation Y which is ¥;
, ,

with the opposite orientation on the leaves.

e

ke shall construct general Morse foliati6n5~b; g ulng

together Lollatlons like 3f u ¥, ,- Todo this in

(o) ]

sufficient Penerality,we need to coastruct an obher famlly

of Morse foliations whlon occurs ngtuIJle wnen one

considers Morse Iollqtlogu on u2,the 301n of two tO“l with

just one llmlt set.
10.3 The lorse foliabtion D.

l/e consider first lorse foliations on H2 with no closed
leaf,no holonomy and exactly one w-limit set. Let 4 be a
transverse circle cutting this set.

B

L the two saddle points and label the iaward

(D

+ g
U DDy DS

and outward separatyices as shown in figure 10.2

al . - i 1
A 4 V/] : . — . ‘( 82 -
- £ ! &
2 Ty 2 -
& A‘jL :L 'p:? o -
£ T, A i
. 1 - g
=] n
» ”’] 52

Fig. 10.2
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2 n'.':'-". i
] B
Let T.,Ti denote the points at which the genarairlﬂes -
N et £y 3 e - A o N 2 - B TNt ao 14 3. - | EEIEE
“i’ti first cut 4 and Ji,ui the points at whieh si,si
last cut s. Orient 4 so that the pairs )
(tangent to 4i,tangent to Leaf)— T .- T
) ‘ S iiegh
lie in the orientation oif il,. - Tk -
[
lie consider the point of first return functien eon As
e points T.,T! associated to different saddle goints.
are interlaced around A as are the points o b'
For sunpose that the ir cowvoW“q,Sa) ,say, contains no ~

A 1
pOl ’lT tJ? Ol DE .

Fig.
Then every leaf cutting 4 in
to A. Further,as can be geen
of (bq,ﬁ') under the forward
tut since every leaf of J cutb

IS ]
/I
A =
-
- - -
/l O.- 5 - {L.

.-

the interval <Sﬂ’55) returns

from figure 10.3%,the image in

holonomy map lb ANT Tqe

ts 4 this is clearly absurd.

Hence our assertion about the order of the points T,3

holds.

A
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Thus we may assume that the points 3,,S! appear around A
1?7

1 The order 81,82,5%,Sé and therefore tnat the points

ti,Ti appear around A in the crder Tq,Té,T%,TE.

ihus (he noint of first return function
?

neps intervals (81,82) — (T,,T1) {

1242 ]
(85,88) —— (Tm--/i) |
(84,85) ———=> (14,1
(Sé,S,}) I (\TéQ 4)0

Sutting aloug A produces =2 iforse foliation of Tg,the

i3rus with two discs removed,which is traansverse to the
boucdarye. Evéry leaf leaves ont boundary component and
reaches the other except for four inwzrd separatrices.

1 I,I,....,I4 are the four open intervals of one boundary
comnonent from which every leaf reaches the other boundary
cemporent,appearing in order of the orientetion,then their
imsges Jqs-°"’J4 in the other toundary componenﬁ appear
ir the ordser Jq’J49J7’J2 . |

The feoliation in a fundemental region of the universal

.covering space 1s shown in figura “1Q, +.
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Pige 10.4

An example of such a C* Morse foliation, &.is conctructed
k] 9

in appendix 4.
It is defired on T2. A1l leaves leave the boundsry

s -
component k' and return to the boundary component X ,
: + +
-, 00 . - | - ..
There are C embeddings ¢+ : 3 —> X which preserve

orientation such that if

. - U

is the map given by translating along leaves then
=Ta,+

g = (L-) fv : S/,\ {09:1%,%3_—_?;51\{09%,%9%}

-is given by

g(x) = §x x e (0,4) U(Z,%)
x + 3 xe(i,2) U1 .

-
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10.4 Morse foliaticns with nc dense leaf.

In the preceding sections we constructed three typesAof

IMorse foliation:

- : on T.,the torus minus v discs - is a
sg,v v? ° 38"’

"generalised source" in iLhe sense that a leaf crossing
any boundary component of Tv remains for ever in Tv
94—

f,u

on T . A is a generalised sink.
u f,u

oD : on T2' In b every leaf c¢rossing the boundaxry
component K',except for four inwazd separatrices, arrives
at the boundary component ¥~ . In the Morse foliztions

constructed in this secticn I will always be wandering.

In this section we show how to construct from these

components ¢t (r22) Morse rfoliations 9 with no hclonomy,
no leaf contveining more than one saddle point and exactly
k (k22) non-trivial limit sevs. These will have no deuse

leaf and order preserving holonomy.

The construction proceeds as follows.

Choose Morse foliations:

+ + . -
3f1,u1,°“°s3f JU 3 Sg ’],"",ggs’v

o)

£ B T
L o= ve = ¢20 .
e j=1

such that
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N
°3
(@]

Pair each componcnt of the touvudary of Ty with a boundaxy
i
component of some Tv -

Construct c chains of J's (possibly of length 0) by

inductively gluing the beourdaZy component K~ of ) to the
boundary component K* of cnother copy ¢f H,taking care
not to glue together sepzratrices. |

Then glue each boundary comgonent of Tui to the remaining
component K~ of a chain of §'s and glue the boundary

component KV at the other end of this chain to the pairsd

boundary component of Tv -

The result will always be a Morse foliation of a closed
2-manifold and for suitebple choices of the original
components and pairing this Z2-manifold will be conrected.
The only c¢onstraint on the gluing map is that it should

not glue btogether separatirices.

S0 ‘
’\g/\\ (2 37,

Fig. 10.5

In a Morse foliati.ow obtained like this each.ﬁé y Spews
9
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forth v streams of leaf, Taclh stream flows along a number

of H's and is eventuzlly sucked,together with u-1 other

. streams,into an 8% ., as in [igure 10.5.
9

Suppose that a total of & copies of Jf) was used in the

construction.
Counting up the number cl =addle points and using Fuler's
formula shows that if the resulting manifold is connected

then it has genus g where
Q S
g:m+§u;+1=m+}:}v.+’l.
i=g * j=1

Let @5 be the unique limiv set associated to ‘3:

10U and

-
.

‘“ﬂ the vnigque limit set sscociated to .

itV

Then the distinct non-trivial limit sets of Y are:

o
o

wq,oocogwq iln.d. “/],QQQO,KS .

Hence the number of distinct limit sets k is equal %o r+s.

Further we can choose a basis of 1-forms

Qq,-.oo,qg LA.rJ(i \?/I,....,'Dg
of Hq(Mg,HZ) with respect to which the asymptotic cycles
of Y are positive multiples of:

;i + & 1€i€q

1
rza 3 d({):'jnr, )va q+1 SJ. <q+s 3

where of denotes the rotation number.
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i
i
It follows from 10.6 following that if g£=2 the asympiotic s

_ o o N ) _ R
cvcles classify 3 up to C ~conjugacy. However this does

not remnsin btrue for

oo

senera greater than 2,even among

lHorse foliations ,onstructed as above,since there 1is =

counterexanple Wluh g=2%,k=2 and m=0_or m=1.

- W

On the other hand if,in addition the mumber of inward and

the number of outward separatrices in each linit set‘ané

the number of separatrices limiting on each lim t"et,is"

nown,the asymptotic cycles are classifying for our zanivles.
10.5 Morse Toliations witnh every leaf-dense.

e construct Forgse foliations with every leaf dense by
cAjoining g-1 copies of ) to obtain en oriented 2-menifold

Cn a torus,as fcilows from the results of Denjoy ([#17),

every lorse Io_i:t;on which is ot (r22) and has

no
holonony and nc 21059@ leaf has every leaf dense. ~:;
I do not know wo.z=ner the analobouu result 1S~urua on .
- o - '7':"
:'.:\ 1A o . a s o %:i‘:
rnanifolds of nizz:r genus Ior 1 rge OIl&thﬂq'hluﬂ_guSg’
one w-Limitc z=7. T~ -

Wiith the notation of 10.3 let
M= e
C(x+) = L7 (x)

for some irrational number & .
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Then there exists a C® structure on M such that ) defines

¥
3

a2 O TForse foliation JL on il dince 11 is oriente

o
o)
=3
(S
i
0
0}

5 Dy the remarks ol Z.71.

Hote that The irrationality of & implies that iL‘Las no

" ; . U ST, ¥
genus ,ve Cann assullc vhat oo = 1

closed lesf and that no leaf of ), has more thaun one

saddle point on it. - - . D e

et i : 85— 1 1 x—— ). -

I y
)
(¢}
Ct
Ci
)
(8]
<l
~—
P
4
o
3
Bd
§
~—
-
~
»d
N
| S ]
-
13
[
iy
&
<
ct
o}
ct
b}
(0]
'3
§0
=
0]
2]
v
IS
=
l._l
i
Ll

Wow it is clear From the construction that A meets the

w-1imit set ol zr=2ry leaf.

Par

ws from 7.7.4 that” there is .

(=
]
O
-
€]
[AV]
i~
I
n
a
]
.
()
'..l
ct
=
'O
-
*__!
O
b

—-—

an interval I ¢I . such thdt all iterafés of~-I under.f ~

. X 8] "A S : G SRR S -
are defined ani TELTWILISe GL3J01NT. -

(n the other handa it is clear from the definition of f
that Lebesgue measure is invariant under f. Hence no
such interval 1 can exist.

Lence the lorse foliatiﬁwllakmmsevery leaf dense.



To construct Morse foliations with all leaves dense on

[ S

a 2=manifold of arvitrary genus 3 2 2,we proceed as follows.

Dy

Let o be an irrationsl number with gx<1.

[

Take (g-1) copies of T, £'T<1),....,T(“ 1> w1th tne

[iorse fOllaulOH ) on eacnh of then.

be the corresponding boundary components and

_'_*‘(J) 1 +(3)

Let K
let L P S —> K be embeddings as in 10.4 .

Let M be
< -«

<4

-+

ot
i
o]

1

=
~
~—~

Y
~

(
and L (x +) (mod 1) and L ) (x) with o (x+00

be identified with Ii_.
since Lebesgue measure 1s invariant under the holonony

map it follows that every leaf of tThe induced foliation

X . o) .
Pinally,we gives The vnromised result on C -conjugacy of
[ ] s J 194
Morse foliaticz=z on i, - the Jjoin of two tori.
[l

- - -
- e .

h
pr:
L

Fronosition 40.7:2et Y be a CF (r . 2) lorse Taliation on

£

Lioythe Join of wwo tord,with no holonony,no leaf cont 1nlng
more than one saddle boint and with exactlyatwo non-trivial
limit sets.

With the notation of lemma 9.1.2 suppose that the point

of first return function f has rotation number A and the
point of previous intersection function g has rotation

nunber p
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Let O<A,H<1 be arbitrary and let M be the Morse foliated

nanifold ObL?and by identifying Uthe boundaries of two

copies of 2.0ne ,foliated by 3é 4 ond_the other by
, S
A%
‘3; ] (with the ﬂOfuthﬂ of propooltlon 9.4). _
ap . ~-"”' . B

enote the induced liorse iollatlon DJ @“P.
’ Y

- . ~ O
then ¥ is C°-conjug te,bo-ﬁ

Froof:The meat of the proof is contained in lemma 9.71.2

and proposition 9.4, Je-sketch the rest of -the proof.

3“ also satisfies the hyocotheses of lemma 9.1.2.
¥

Let & pe a transverse circle to ¥ and B' a transverse
circle to 3“P,hgﬂologous to zero. uvnoose transverse
?
circles nq,ﬁg’to 9 and A%,Aé to 3“ as in the statemzsnt
?

of lemma 9.1.2,with diffeomorphisms:

f

..

. ~ K - LI o s

1%“# po 2\ 1z 3 ———— AN\IS ) return functions

Z 52\{73}—————~—+ AE\Jq points of previous

f%vp t 2N ———— 2A\J) ) return functions.
- : o~
;»‘-.-‘"I‘ite I/‘ = :7,-‘:,:2 v }l—[f/l ,Z/I] = [S/I’E/i} »_’ J:, = [S'!I,EJ]] .
Choose projecticns : - o ‘
Fﬁ : E{-———+Ai m&? ng Z to %5 (1 1) OT’W (l P) - T
Fﬁ : H%————#Ai mapplng Z to ,'(1 1) or V'(l d)
Lift f,g,'eﬂ’“', ﬁ’;’p to maps F,G, ®,u, ‘A’P with domain R\Z,

as in 9.2.1.
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H(x,1)=H(¥F(x),0)

X 77 1(lo,11x{13)
(L. t)
>3
4
4 b
//
I_ —_ / (00,17 %59}

Low use the holonomy lemma in its full ¢C-rorce to
constinict continuous maps:
Heod3! 10,1} x[0,1] ~—— i1,,ii (respectively) for i=1,2

1974 ’ 3 D P ’
gatisTying the following condivions:
(i) qulo,ﬂ) X (0,1) is a homeomorpihism nto its image
and. Hq(x,t) = Hq(y,s)_if & only if

a)t=0,8=1 and x=F(y) (mod 1) or y=0 x=lim +F(x) or

K0
y=1,x=1im E(X)-
X—» 0~

or  ©)x=0,y=1 and s=t £ 3.
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#(1,0) = x

pq(x);
(iv) Hq(O,%) is » saddle point,

(ii) H,(0,0) B (0,1) = 2, » H.9,10 = v,

(1ii) Hq(x,O)

fo} L

(v) Hﬂ(x,t) lies in a leaf -independent of i,

as in figure 10C.%.

Let H2,H4,Hé have analogous properties with the

appropriate substitutions for F’Xo’?o’zo and.FH.
-

Image of X : Identify along &

->-p-

84
Fig. 10.6

Now the closure of M\ Hq(lo,ﬂj x{O,ﬂ])\;Hz(RD;G x [0,1])
is homeomovrphic to a cylinder qu 7 with boundary
components: I1L'H1([O,1] x [3,73)
| | 346 Hy([0,1) x [3,1)).
The same is trve of M\HI([0,7 x [0,1])u n.10,1] x £0,1]).
Let the homeomorpuisms be X,X' respectively with images

as shown in tigure “0.6.



Applyirg the holonomy lemma we can coastviuct a
homeomorphism Y mapping the image of X oute the image of

- %' an« such that:

V(H,(0,t)) = EJ(0,8) & ¥?
Y(H,(1,£)) = BI(1,5) 5 3d
Y(E,(0,t)) = HA(O,t) ¢33
Y(E,(1,t)) = HY(1,% t Y1,

and the lsaves of Y are mapped on%o the leaves of gxp
)

and their orientation preserved.

Noew by proposition 9.4 there are homeomorphisms

Pty

?@ : A2—————+.A5
preserving orientation end such that:
L ] o
P10 =L PlTy = VI
-1 - ' _ R
P29, 928 Pl =¥, -
Lifv ?ﬁ??ﬁ to orientation preserving homeomcrphisms §H’§2

of R such that
$,(0) = 0 =%,(0)

Now extend Y to all of H2 by defirning
YH, (x,t) = Hi(® (x),%)

This completes the lemma.
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Corollory: Let 3 and Y' be ol (r ?2) Morce fuliatiors on
Ms,the oriented 2-manifold of genus 2.

- Suppose that 5,?' heve no holonomy,no leaf contéining
more. than one saddle point and exactly two non-triviat
limit sets. |

Suppose that each asymptotic cycle of ¥ is a positave
multiple of somc asyuptotic cycle of %',

Then ¥ and ¥' are CC-conjugate.

Proof:Tt follows from the results of paragraph 5.5 that

the rotation numbevs &, 0 are determined by the asymptotic

cycles,
The fact that care was taken to choose a specific
tranctverse oriertation ensures ifhat we can tell vwkichk of

'® and B8 is associated to which limit set.
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Appendix 1.

Iemma 1:Tet 9 be a CT Morss fecliation on Mg,the oriented

2-manifold of genus g,ani let ¢ be & circle leaf of 3.
Yhen there is a C¥ embedding‘

Vi 5Tk (+1,1) - N

such that:
(1) ¥ x103) - ©
(ii) Any circle leaf meetving the image of ¥ is
of the form (qu ft}),for scme t €(-1,1).
Proof:Iet ¥: S1l—— be & ¢° diffeomorphism.
Tdentify 3' with te.13, 0=1 8nd let
v’ : [0,1] —> C ve the lift of V.
Tet g : [0,1] x(-ﬂ%,f%)—————)Mg be the map
determined by the holonomy lemma (2.13) with respect <o
some transverse vector field.
In particuler H(t,0) = *¥'(t) so that without loss of
generality we can suppose that
EZH, ((=1,1)) € (~13,13)

(where L (=1%,13) —a3 M

g xt—H(t,x) ).
Let @: [0,1]—>[0,7]te & swocoth function equal to O on
a neighbourhood of O and 1 on a neighbourhood of 1.
Define K : [0,1] x (=1,1)— (13,13) by

| K(t,v) = (1-@t))v +q>(t)H;l"'(v) .

K is ¢ and K(t,v) = v t near 0, K(t,v) = H}q(v) t near 1.
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Define ¥ : [0,1] x(-1,1)——->mg oy
V' (t,v) = H(t,K(t,v)).
Then V' projects to the required map

Yo s‘x(-'x,’a)—-———;.mg.

Lemmz 2:Let B, = {xe}R2

: lell(’l} ,and let 4, be as in

lenma 4.

T oad r '- N

et B, ———-}Mg be a C° embedding

ani Y : 5T x (=1,1) —-——7Mg be a C¥ embedding such that
V(% (1, 10NQE,) =VE X (<1,-3)).

Then there is a CT embedding

1, ' .
@' By 1,
P 7r*|/] A
?‘»'.‘.t.o.t Q'(B,I) =?(B1>U'YKD X.(."',%})-
Proof: Let P: (=1,1)—2(=1,1) be a ¢¥ orientation

przserving diffeomorphism with ID(-%) = ¥, and P equal to

thne identity map near 1.
Then let ?'(x)= X x¢¢-1’\”(_.‘5’1x (=1,1))
. a1 N . ,
Y(idxp /Y™ @ix) x€¢"'i’(81 x (=1,1)).

.. . . r PR
Then @ is the required C° emvedling.

. Lemma 3:ILet g,I’Ig be as in lemmz 1.

Let C be a circle leaf of 4 ,and suppose thei there is a
one-sided neighbourhood of C containing no circle leaf
except C.

Then there is a C¥ embedding

Y oslx (<1, — i,
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A ..
such that (i) W3 x{-1}) = ¢

(ii) All vhe circles W(S'x {t}) with

. are transverse to 9.

O ¢t <3

IFroof: The proof of thie lemms ic similar to that of

lemma 1.
For we may choose the trensverse interval in the
of H so that Hy(v) ¢ v v €(0,13)
Then choosing @ to be 2 diffsomorphism with
@) = ¢, Q1) = 1
DK ¥
%_{;L(O) = g%e_l\ k?0

and after reparametrisation of the second factor

s’ X (=1,1) we obtain the required embedding.

1 1

X (=141} —— 8 x(~1,1) be =

orientation preserving diffeomorphism which maps

definition

in

~L
\/

circles

S"x{t}to cirzles qu{vl(*;.} with p orientation preserving.

Then thcre is a real nuucer €20 and a diffeomorphism

: , . 1 N

i 8 x (1,15 8" (=1,1)
which has &ll the properties of p and satisfying:
identity map

Pl st x (g,1).

1) plelx (=1,-8)
(1) plsTx e, 1)
Proof:P'is of the form

P®©,t) =~ W (B,t),n(t))

]

whare 12: (=141 ) =—eaap(=1,1) is an orientation preserving

n .
C™ diffeomorhism,
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Let ' : (~1,1)=——(-1,1) be an orientation preserving
vl diffeomorphism with

n' | (-1,48) = idensity

b e, =nieg 5
and @: (=1,1)—[0,11 a ¥ map satisfying

Px) =1 =xe€(-1,-8)

{ 0 xe(&,').

Then define M by

M@ ,t) = (P(EI0+(1-FE) Ww@,5),0' (£)).

Then M is tke required 3difleomorphiso.

Lemma 5: Let p :[0,1] x (0,71 ——{0,1] x [0,1] be a ¢

orientation preserving diflfecmorphism which maps lincs

~[O,1])({;} 0o lines [0,1] X Q(X) where 7 is orientation

preserving.
Then there is a real number &>»0 and a diffeomornhism
A [0,11 x 12,7} ———[0,1] x [0,7]
having 211 the properties of P and satisfying
(i) Iul [0,1] x [08] - icentity map
(i)l £o,1] x h-¢,1] =f>|[0,1] x [1-¢,1] .

Proof: Similar to thoat of lemma 4,
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Avrencix 2.
. . +
Gonsiruction of &',

In this exanple the square is foiiated by iines ¥ = constant
except in a neighbourhood of ﬁé - where ¢ is the centre.
let @: R——Rbe a C* bump function with the following
eopaTrhies: |

(i) @(x)2 OVxER

(i1) @(x) = @(~x)

(111)@(x) = 0 x ¢(~%,3)

(iv) (P(x) 1 on a small neighbourhood of O

(v) @ monotone increasing on (~0,0) and monotone

dcereasing on (0,®)
(vi) @' monotone increasing on (-0,~p) , (M,®) and

mcnctone decreasing on (-M,M).

- M2

Graph of @ Graph of @'

Ej.g‘_‘. 1\12.’]
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Cheose A2 O such that @' (A)< 0, @"(A) >0

2

Tefine f : RS —— R : (X, 5) —— x@'{A) -qa(,/(x2+y2)).

Then £ is C® and (x,y) is a critical point of f
' J

i

if & only if (p'(?\) @' (Ix))signx 1)
. y = O .
ihe Hessian of f at such a point is

qn(‘xl) ’ O
-9 (Ix}),
0 9 Q( Xl /lX|

Tow @' (AV KO impiies that (1) can only be sotisfied if x » 0.
Figure AZ.1 shows tha{: ?’(le) = @'(A) at precisely two
values x=A and x=A' with O<KA'<A, '

vomputing the Hessién we see tnat (N0) is a centre and
(A',0) a saddle point.

The Morse foliation determined on (~1,1) X {~1,1) by the
level curves of f has the yroperties stated In section 4.3

eal i the required Morse foliation F.
, +
Gorstruction of 7.

This example is constructed as féllous.
Let @: R—R Dbe a C® function with ®=92c0n a
neighbo_ufhood of 0 and ?(x) = 1 for |xl >1- % ,vhere 0K € <1.
Suppose that @(RJ) € [0,11.
Define £ : PRE-——-—-)ER by

f(x,y) = Hsin2mwy - (p(sini‘ny)cosa’ﬂ'xsin?wy'
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for Ne€R sufficiently large.
Thén the critical points of f are the points with
yE L2 -(mod 1) and xEO,} (mod 4.
The Hessian at such a point is
( -432c032nxsin2uy ; 0.

0 , —4T° (Nsin2my+sin2Wycos2mx)

with sign of the determinant the same as that of Hoos 2mx
as N is large.

Thus the points x=0 (mod 1) are ceatres and ire points
x= » are saddle points.

'Mue induced foliation on the half torus O0<y €1 iz ¢!

or & according to the transverse orientation choszcn.



195

Appvendix 3.

.

Lemma 1: Let £ ¢ (=1,1) % (=1,1) ————(~1,1) x (~1,1)

e a 0° (1€rgo) diffeomorphism which agrees with the
“dentity map on a neighbourhood of the boundary of

(=1,1) x (=1,1).

Then £ is CF icsotopic to the iderntity throuvghk diifeomdrph~
igms which agree with the identity on & neirhbouriood of
the woundary of («1,1)x (=1,1) .

gggggz A proof can be found in [42] or [44] .

-

Ierma 2: Every orientation preserving C° (1 o

N

diffeo=-

norphism of the 2~sphere is C —-igotopic 1o the identity nov.

Proof:In [44]i%t is proved that 3C{3) is a strong deforma-
tion retract of the space of diffeomorphisms of ”2.

Zince 50(3) is path connected this implies the result.

The result also follows fronm lemma 1 by showing that every
diffeoworphism of 82 is isc¢topic to 6ne which agrees with
the identity on some disc.

To se2e that this is true let f be a dirfeomorphism of 82.
Taking an isotopy through rotebions we can assume that f
fixes a point. Stereographic projection then gives:

RS .

'g :}R2

Taking another isotopy we can essume that g(C) = C.
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Temma 8.1 of [41] gives a diffoomorphism
2

£ ° H? —r R

which agrees with g on the dise of radius #,with the

identity map outside the unit aisc and which is isotopic
to the identity through diffeﬁmorphismc which agree with
the identity map outside the unit disc,

Then g is isotopic to gggﬂ which agrees with the ideﬁtity
map on the disc of radius J.

The result follows.
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Appendix 4
The Morse foliations '5;. .
)

The construction is in two parts.
¥irst we construct a lMorse foliation on an annulus with
1 holes which depends only 6n the domain ¢7 £ - this is
ihe left-hand threequarters of the diagram in fizure A4.2.
Then on a second annulus we construct a flow which when
adjoined to the first Morse foliation gives the required
Hbrse foiiation with point of first return Tunction f -
Llis is the right-hand quarter of the diagram in figure A£4.2.
in appendix 2 we constructed a Morse foliztion &% on
(~1,1) x (-=1,1) as the level surfaces of a Morse function f.
Then the flow of the veector field

°f f 2

—— + S———
¥x ;X W ?y
is everywhere transverse to ,ﬁ' (see figure 24.1).

Fig. A%.1
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Furthermore,outside the circle centre the cwigin,of radius
+,the flow lines are lines y = constant.

‘ Orient the transverse flow so that a pair

(tangent to tiansverse flow,tangent to &) liea in the

orientation of 322.

Denote this rlow 'by%,an;i suppose that it is defired on

[-1,11 x [-1,1].

Suppose f : Sq\{xq,....,xu}-——~—+81\lqtJ.... UIH is a
diffeomcrphism satisfying the properties given in 10.%.1.
Identify Sq with [0,1]/O=1 and choose representaiives of
the Points Xq,...,x, in[0,Jwith 0 <x, ¢ 0¢x < 1. |
We wish to défine a flow on [O,ﬁ]:(fo;ﬂ,as shewn in figure
Al 2,
Choose €,,....,€ >0 such that the closed intervals
[xi—ii,xi+8i]are disjoint and define

£, :[-1,11 x [-1,1]——(0c,#] x [x;-€; ,x.+€] by

£, (x,5) = ((3/8)(x+1), &, 7+x; ).
Choosc the flow on[0,+] x in-ei,xifeﬂ to be f;qg; snd
extend this by lines y=constant to a flow on
to,2] x[O,ﬂ]which agrees with the flow given by lines
y = constant near the boundary.

It thus determines & well-defined flow X o iO,%])<Sq.



199

(O /I) . . %‘s/]> (1'1)

a 'c_._m__;:lfif"“
k qu"gét‘.‘\\' Iq\
E \5\\\?-\&‘\‘“J
i )
E\ | 5
. | “'\\\\.
/ ::cwa?‘\\
— ~
‘?C -
X : L ~ | ‘ \ I
[ T
~—— -~ } N——
|
(0,0) (&:0) (1,09

, Fig. Al2
Now in Q,the holonomy ma2pr is a diffeonorpaism
g : §-1 x ([-1, 1N} — {13 x ([-1,13\[-€,e] ).
Thas in 3, the holonomy mzv is a diffeomorphism
ho: 03%s\fxy,eeee,x b -— 823 x NG U VT
where J = [Xk-EEk,Xk+E€k]-

Further : lim _ h(0,x) = x;-8€. , lir h(ﬁ,x)=xi+eei.
x—-)xi , - x-—-)xi
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¥ has u saddle npoints and u sources,

For each i,there is a’ source such that one T.ow lin2
emanating from it is a separatrix and the othexr Tlcw iines
eventually cut 128 x (x -t ,x, +EE, ).

This completes the first part of the proof.

Now identify S' with {0} xS! and {3 xs? in {0,21x5".
Consider the map

P 81
efined by p(x) = fg'1 (x).

\J4Uo-oou Ju_—_-_) SII\I/;U OOO.U Iu

ja}

)

. r .. . . . -
'nen P extends %o a ¢ diffeomorpiism (which we slso call
4 ; )

) of S,

A e . ot o] s 41 [O,'ﬂ h P TSP,

Again identifyiug S with /b ~ 3 Choose an IscTopy
$. : & 251 3¢t €1

such that é’c is the identity near iz and P near =1,
., .
édetermines a flow on [2,1) xS ' and adjoining tkis to
. - 4 . . T
M deternines a flow on [0,1)] x8' which is C° and such
_ -] 1 . .

that the holonory map from {0} x3" to {1} xS’ is given by f.
Now identifying {0} x s and {13 x5 determines & flow on

Pet
the torus qu s'.
Let A be the ciitcle corresponding to {O}xS1 and remove
'small discs whose boundary circles are trausverse to the
flow from the sources.

This gives the reqrired flow 3; uw on T
9
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The Morse foliation o on T2

We construct a C® Morse foliation on T2,the torus wiih
two discs removed,which has the properties outlincd at tke
end of section 10.3.

2 — B : (x,7) —y=~Nsin2uy+¥(sin2wy ) sinsaysin2nx

Let ¢: R
where Ne R is a large positive number and Yis 2 tuncticn
on R with range [-1,71anda Y(x) { 0 x near 0
= 1 x 31-¢
\ =1 x £4+¢
| Y (x) -~ Y(-x).

pis & lorse function with saddle points at points
{(z+m,#+n) and (f+m,2+n) mn,n€ Z and centres at points
(+my#+m) and (2+m,2+n). The level surfaces of § 3eline a

Morse foliation o the torus.

The vector field (3¢/ax, 39’3y) has 2 flow which is
everywnere transverse to the Morse foliation defirn:d by ¢.
It has sources at the points (i+m,2+n) m,n € % sinks %

P i ’

the points

~

(44m,++n) m,n € Z and saddle points at points
(#+m, *+a) and (Z2+m,++n) m,ne .
Projecting onto the torus defines a flowdl' osn the torus

everywhere transversz to the flow defined oy P.




Now remove from the source and sink a small neigibcuarhood
bounded by a flow line of the flow defined by .

- This defines a flow «Qon T, as shown in figure :i.3,

=1 (-a)

Fig. A4.3%

Orient the flow as shown in figure A4.% and let the
toundaries of T, be ?fq(a) and ?fq(-é) for some a C.
Let XK be the component of T2 from which all lecves depart
and let K~ be tie other boundary ccmponent.
Now @ hzs the symmetries:

P2 d+y) = Q(xyi-y)

@, 2+y) = Q(x,2-7) ,

P(x+%,7+%) = P(x,5).
Hence we may choose_C” embeddings

+ 4 +

t": 8§ ———— K~

with the properties required in 10.3.

This ccmpletes the construction,
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FART II

NATURAL DIFFERENTIAL OPERATORS ON RIFMANNIAN MANTICING AND
REPRESENTATIONS OF THE ORTHOGONAL AND SPECIAL ORTHOGUNAL GROUPS



In his paper "The Foundation of the General Theory of
Reletivity" (13]) published in 1916, A.Einstein remarked

that on a Lorentz manifold {M,g),the only covariant

tensors of order 2 which depead in any ilocal co-ordinate
svstem only cn the metric tensor and its fivrst two derivatives
end which depend linearly on the second derivative,are

linear combinations of the tensors gR and R, ]1" @uﬂJ

where R is the scalar curvature aand R, Jax iscxd is the

Ricci curvature. In an appendix to [10] il.Weyl proves that

R? x1g the only function with these properties.

More recently in [6] ,P.Gilkey investigaved,in a similar
vein,forms on Riemannian mcnifolds and his results are
imyertant tools in the proeof of the index theorem given

-

by ibiyah,Bott and Patodi in [2]. In [5] D.B.A.Epstein

3 ‘odvuces the concept of natural tensor field on

1

*icmarnien manifolds. His paper was a major catalyst in
the production of this cne and should preferably be read

be*rore it,.

The —urpose of this paper is twofold, Iizstly it is to
study natural tensor fields or: Riemannian =nd oriented
Riemannian manifolds. Haintaining the spirit of the
earlier results I shall impose a regularity condition on

natural tensor fields,which leads to their complete



(e}

classification as a space of homomorphisms,between
certain representation spaces for the general linear .

group,wnich are eguivariant under the action ci the .

orthogonal or special orthogonal grougfffﬁe Sécéﬁé;'
reason for writing this paper is to define and ;nvestigate
the notion of natural differential operator in éﬁ
analogous fashion. It turans out that this problem’

reduces to the study of natural tensor fields.

Ishall only give results on kiemannian manifelds. HoweveX.
?.Gilkey has now extended the Gilkey theorem (c.f. [2]

-y ~

paragraph & ) to auvnly to manifclis with an indefinite

£11l manifolds,all functions between manifolds and all

~ e . - e 2]
tensor fields in this paper are C .

1 Preliminaries. ) ST

(1.1) We shall =z concerned with functors E from the

category of vszctir spaces and homomorphisms to itseld

(see e.g. [4]). " ith such a functor we shall assume given:
. . . . T ) B

(i) A mononmorzhism of functors in: L——T" where T is
the rth tensor power functor for some r. Y

(ii) Tor each ordered basis (vi) of a vector space V an

ordered basis E(vi) of EV.
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(iii) Given vector spaces V,W and an isomerdlism

@edon(V, ) E@ﬁH) = Fq@ﬁvi)); S e -
The rank of U ig r. , o

(1.2) 4An inner product b on a vector space V induces an-

: T o ' .
innerproduct b on TV and hence on &V,which we denote by
Eb., Thus ZV is a representation space for GL(V) and O(V,b)
with N T

E(0(V,b)) & O(EV,Eb).“

we denote (EV)* by B"V,then GL(V) acts on L&Y via

. . /"\'-‘/]\:': . R e T

(¢ (B¢ )% , for {EGL(V).
With this nction CO(V,b, acts on .*V as a subgroup of
G(E*V,5%D).
- AY . . . 7 I . PLIN %
It (vi) is an ordered basis of V and b(vi) = (Wj> cake

the ordered basis E(vl) of 2*V to be the ordered basis
k . -k
(wk) where w (w., = bj.

(1.3) Given z Zisrannian manifold {il,g) ,afunctor E as in
(1.1) induces izmannian vector bundles (il,zg), (8%1,E*g

over M with connzztion induced from the Levi-Civita
connection.

these constructions are functorial and determine
subfunctors of the rth tensor power df~the téngeﬁt bﬁﬁ&le
and cotangent bundle resvectively. .

Purther it follows from (1.1) (ii) that given any local

co-ordinate system x,there are determined unigue orders:



local bases of sec
re gectively.
(1.4) We describe

properties require

Given a vector space
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[V

ons -E(9/dx

in
Pal

d in {1

v, 5., (Bynme

«1),which will®

tric

LN ny e i
e E(dx™)

-

3.

for T, E*H-

be -

group of

detail certain funefors wi

T . . . - :
acts orr T°V in the usual way. - -
{i) The functor 3. T
LT S o X )
SV o= {vel"V @ v = ov all e 5.

Let dimV = n and let {vi} be an ordered basis for V. R
for each r-tunle of integsers (i],.....,lr> (ES RSN S |
AN .
T Ak %7 - - : =r RSt Tyavam e Ay e e
LeC V. = ) 7. X e oo Y . WieIlg SUMAavTilr. vLLsies
l .C'oal L——l ,1
g 9 U
nlace over all distinct r-tudnles (31,....,3r/ viel orae
rearrangenents of (i17°’.”ir)'
T / - S Jr
ve let & (v.) = (v ; ) ordered by lexicogranhical
_L/l..'. I_'
ordering on (L,yeees,yi_) :
(ii) The functors Y, ry2. )
et T be the Yourmr hableau with r souares in the first’
row and two ia Tos second.
Lt the first = 2 positive integer
arranged in 7T irn increasing order down
left to right. B
Letka denote the kth column in this arrangsaent. For
cach integer m in I let P, denote the szt cf
| k+ k,m
‘permutations szsr ~ which fix every integer excedpt those
=



in 1ktj{m}, and which preserve the order of those in I.
YV = fv ety :) E(&)sv = 0 1€kér-1, meL, ,v+(i,3)v=0 1,3
GePk,m '

for each ordered r+2-tuple of integers (14,..;.,i%+2)
‘T_-L_h- S.( . . . ._.< . .' .’\{-. .
with 1 i ¢n, 14< iy 5 3553, 5 1,88,

Ci € ennns &1

- S 0] .
i l§<l5

lot vl‘...._ Z:( v, -V,  ®v, ) O
> 5(4) c(2) c(2) “s{1)

Cr @w -V, V. ) & (v, Coanoe DV,
T5(3) 7 te(w)  ta(u) to(z) +6(5) 16(r+2)

where ¢ runs over all perrutetions in Sr*? which preserve
the sets {2,42 , {1,3,5,6,40..,0+2} and tead to distinct
(I"!'C)""tuples (lo,(/] ) qgeoe e LI :‘-G,(:_+2‘) ) -

‘Then Y, (v ) = (v, . ) ordered by lexicographical
: l/]..‘.lr+2

ordering on <i1"'-"ir+g)'
2

(idii) If Eqy E2 are functors as in (1.1) g0 is E,®E
. 1

rith lexicographical ordering taken for the basis.

(1.5) It is well known that fcr any vecicr space V, va i3
an icreducible representablon space for GL(V).

For each r2 2 define GL(V) maps !

Ky P 5 <v>®~r<v>-————->y )

F’r : N,\V) -———-——95 (V)@" 7) by:

V. ceee ®V, ) =
O<I‘<€°.L4-...lr+2 11® @ J.r_!_e'
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S i s s s . - 8: i s o5 o 3 - Z; i i3 3 .
g. « . o . . )v. @.o.o @V- .

(R, . T ®eees V. )

1) ©
- -\§'+1 r ;R

where (vi) is an ordered basis of V, the summatiop

. PO 3 . ) s V., & cssase DV,
1'116:3)1210(\4)10(_5)' eol 0'(1‘-!—2) l’l . lI‘

convention is used esnd the sum runs over all permutations
T Of {3,000.,0+2} X, and B do not depend on *he besis
(vi) chosen.

Note that “r and pb_satisfy :
a) drﬁr = id

b) If ’

= 0 (where S_ , i the
s r+1
6€S

il OOOi ~
g ] a(2) a(r+2)
group of nermutations of {2,...,r*2} ) then

X (8; V. 8e.e®V, ) =8

fnesein,,. 3 i i :
qeectpe2 1 r+2 1 r+2 14 T2
synmetry condition.

(1.6) The maps B in (1.5) determine GL(V) maps
. e N e lrwy s |
o« @, 8°(V) # ST (V) ——— @, Y (V)

B r(;‘?g (V) —— @ Se(v)t&Sr(V) such that xg = id.
7 - r72

Let (&;) be the standard basis of R" ,wherc Xdenotes the

real numbers,with dval basisz (el).



Let We® Yr*mn gad suppose that'the component of p(v.’} in
r32 '

i, © i

/ e/l@..‘..&,.'e :':.-r-.

r+e

AR}

2

T

* N
s mle st 'W? is the tensor 8;

,]...i

Let g(W)ij be the real valuea functions on R° (M%iyi€a)
. . . ( c ad kﬁ kr

vdeflned by g(W)i;\#) = Oij + g;%gijk1...er ceseX

(the superscripts denoting co-ordinates and noiv powers).

It follows from paragraph 2 of [5] that these fuwctions

determire a Rienianuian metric on a neighbourhcuod U({W) of

0 in W%

The oriented Riemannian manifold (G(W),g(V)} has the

R

inclusion chart as a normal co-ordinate chart &t ike
origin. It is oriented by the usual orientation or. w2,
Conversely it is also shown in paragraoh 2 of {Z5 that
given z Riemannian manifold (M,g) tnere exist tenrors
Lx'reYr*M (r 22),0btained from contrecting tensor product.s
of no higher than the (r-2)th covariant derivative of the
curvature teasor,such that in any normal co-ordinzie
system at p €M the coefficients of Fi(wr(P>) are the rth

partial derivatives of the metric.

2 The classification theorem,

2.1) Netural tensor fields on Riemannian navifolds are
J

introduced by D.B.A.ipstein in [5].



Ve extend the definition to the case of- oriented s
Yiemannioen manifolds.

DﬁﬁIEITiCE; Let ©,4 be fuﬂctors_as in (1,ﬁ}.¥a1~

4 naturel tensor field t on Wlen nnisn maanol&Q . l)_:;w
(respectively oriented Riemapnian ne nlfOst) of ty?e‘ié,ﬁi
aésigns to each Riemannian manifold (resn;fgrlémcg;A o

Ziemannian manifocld) (M,g) a tensor f;eld-,,;jaf-:”; .
B - P S NS
ﬁ(M,g)Q:bA(LIIQEVrO ;—7-~.n sl T

such that if £ : M'-—————> M i5 = Jiffeonorvhisn {r=

orientation nreserving diffeomorohnism) ontd -ari oner

suonmanifold then

A N I e
LT a8 ) = Tl 42 FJe

(2.2) LEostein hrs nointed out in [5] that the problex of
classifying all natural tensor fields is a compliceated
one.

fowever thiere ic = natural concent of regularity for such

tensor fields wilcz was essenticlly ntroouucd by huivd%l

‘,ls‘“. ’
Bott and Tatvodi Zn [2] paragraph 2. -+ -7 0 - 2
4 natursl tensor fleld t,o0f type (,,ﬂ), on Riemannian

(respectively criznted Riemannian) manifolds»is regulsr

if given (I1,g), = Riemannian (?esv. oriented Riemennian) -
manifold,and a local co- ordl te chart x on U&ll, then. the

coefficients of t(Il,g) with respeetvto_the'lqcalmbasis

E@F(chax ®dx9) are given by universal polynomials in gij’



7

52%../axu (% a multl—lpdex, Lm&<L la ”e} and (det ) j

130 , - 21
(detgij)-f'in.the oriented cas e), R
4o justification of this. deflnltloa is clven v Atiyah, -

Bott and Patodi in [2] para. 2 for the uno¢1entea case.

Cn the~other,handf-the spacéceL,o ntea Hlemannlan

structures on a vector SD@CP V is nécuvai y—idgntlfled
with GL(n,B%)/SO(n,HR)'n;éfdimv. It isf@é}l known .and is“

shown in the apﬁenﬁixwﬁﬁﬁ‘ “that” ﬁv'laﬁlonsl IUﬂCbWOn fj"

f on GL(n, Ei)lnvﬁil ant under the action of 50(n,®R)is of

form: f(n, = B sgt\ (oeu’\"qG(gnt} A €Gh(n,R) vhers

F,G ¢ SM(n,R)——> R ar:z rational functions on

mnetric malrices.

since the identification of GL(n, 1) /30(n,®) with the s»ace

of oriented Riemannian structures is given by :
A e by -y N o M AR t :
(2)eci(n,®) /80(n, R)——(AA " ,sign(dati)),

he corresoonding identification of rings of rational

functions shows Toat it is natural to regard

.Hz[gij,(detgﬁi}"7j as the ring of functions on the space
; i3 b
of oriented Rism:znnian structurcs. - - -

e In aprlzcziions to the ind.cx Theorem,polynomial
1

dependence on (h,uola) ® appears explieitly even in the
unoriented case altnough this was overlooked in the " -
original proof in [2]7,see [1]s Inm fact-it follows from

[51 theoren 5.2 that even if we mercly demand that the
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cozrficients of our tensor fieid be given by universal
polynomnials inﬂbgij/ax“(<x a multi-index,1 < \X| <N large)
with coefficients functions of the g, . {no% necessarily

sontinuous) then the tensor field is rogular (polynomial

in the terminology of [5] ).

(2,3) An important class of natural tensor fields is those
which are nomogeneous (see [5] paras. &&7 ).

£ natural tensor field t is homogeneous of weight k if

t(M,%ﬁg) = %kt(M,g) , &1l ra2al numbers A.
Note that g itself is homogeneous of weight 2 and that
the tensors W' (r?2) introduced in (1.3) are also
acmogeneous of welght 2

If t has weight k and is of type (E&,F) with rank®E = a.

2enkF = b then t has normaliced weight w = b-a=l.

t nas maximal weight if w = O.

(2.4) Refore proceding with the main thenrem,we need the
fcilowing crucial lemma:
IFMiA: Let (V,<,>) be an oriented inner product space.

Toaen:

: x
(i) The vector space Homh(v)( &V, &) is zero
if k is odd,and if k is even i& spanned by ciements of
the form :

V1® o e 00 ®Vk F"“""‘““"‘)(Vn(,i),‘;ﬂ(:e)> oo .<‘{|(k—1>-'vn(k)>
where WGSk.



ro
S
D

k
ii) The vachor: . (® ) 5 ie equol
(ii) *hi vac orAépace Hbmdo(v)\ vV, 0. equs

to Homo(v)( ® V,R) except,when k-n is non negaviv~ and
. even, any linear cuabination of maps :

V1®coc. ®Vk e

P}e:s & GV ) ur 3+ = Vricn () (e ) icne2)? « = <Vicie=1) 2 Vir(e

: n
TTES . o= Vo -
where TTCS,,and V3 g;% V411 ((eqre00ey8 }a positively
- k

oriented bacis); also lies in Hom )( & v,m»,

SOV
PROUF: (i) ie proved in [2] ,appendix 1.

(ii) is proved in {11] p.64. A proc’ is also given in the
appendix (A.1) bte this paper.

(2.5) The theorem we shall prove in this sectior *=ils us
that every natural regular tensor ficld on Rieme:mian
manifolds is polynomial in the sense of Epstein {2 ] para.
[2). Howwuver it gces further than this. It follows from
the theorem and the theory of representations,thatb the
space of homogeneous naturzl regular tensor field:s ux
some fixed weigint is finite dimensional and that the
problem of calculating it reduces to a problem in
representation theory.

In the oriented case,in addition to the usual polynomial

tenscr fields,tensor fields of the form:

1
‘ 4 . .)? TI(1 ) X . & &
T_Zr\ﬂ (detg; ;)%g (1 PALCY £°%e..g"®g .... VR .. VR
n

® e LN 4 L * e e L ]

where R is the Riewann-Christofifel tensor R..,ldx%®dx3®dxk®dxl

ijk 9
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vhere +the dots indicate contraction or summation with a
local basis,are allowed.

Louivalently we introduce tensor fields of the form:

S‘ 1 '\ &
L. (detg..)fgn(q)'...grwn’fg"...g"g ceeg W ...WS"
”ES la ee s as @ oo o

THEOR:ZM: There is a bijecticn between najtural regular
tensor fields on Riemannian manifolds (raspectively

ranxk = a,

1]
-

N

oriented Riemannian manifolds) of type (E,F)
vankP = b ) and equivariant O(n) (resp. 50(n))
homonorphisiie

N oc 00 J./-. .
©:rO® . ® ® ® S (Y RY® ... ®S 1Y
i=1 2§I'1<...<I‘i s=1 ,j,],...,jj-)/’l A +4

j1+..+ji= s

—— > TRV TR
which vanish except on a finite number of direct summands.
Purther:
(1) There are no such tcneor fields which are homogeneéus
of normalised weight w<O0, or w = 1.
(ii) The tensor fields which are homogeneous of maximal
weight correspond bijectively to O(n) (rest. SO(n) ) maps:

@ : R-——ERPS TR,
(iii) The tensor fields,homogencous of norwmalised weight

w 2 2,correspond bijectively to O(n) (respectively S0(n))

maps P,
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By J Js
@ @ ® ST R @... 85 (Y R
i=1 2$r,l<...<ri ,jq,...,ji>/l 1 i

Tqdqte+T; 3 =W

N o oxpll

—> ER"®F*R
R 1 .

where N = [#(~3+(9+8w)%) ].
PROOF: The proof is given in the oriented case. The
unoriented case is slightly simpler.
So let t be a natural regular tensor field on oriented
Riemannian manifolds. Define

Vo RO <§2Y;mn—-—> ER®F*RT by W —t(U(W),g(W))(0)
r

identifying the fibre of HU(W) RF*U(W) at O with ER"®F*R"
via the canonical basis determined by the inclusion chart.
Now let a €S0(n).

Then the._expansion of gij(aw) at 0 in th¢ normal
co-ordinate chart determined by a is the same as that of
gij(w) with respect to the inclusion chart. Since the
coefficients of t are given by universal polynomials,the
coefficients of t(U(aw),g(aW))(0) with respect to the ‘
basis of ERVF*RP obtained by applying a to the standard
basis,are the same as thoée of t(U(W),g(W)XO) with respect
. to the standard basis. |

Thus“Yt is an equivariant polynomial map vanishing except
on a finite number of direct summands.

Complete polarisation determines Q%,
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Conversely,suppose an equivariant SO(n) map @ is given.
Let_(M,g) be an oriented Riemannian manifold;and let peM.
Then there is a natural identification of T M with ®R™
which is well defined up to composition with elements of
S0(n).

Since @ is equivariant under the action of S0(n), @

determines a unique SO(TPM,g(p)) map<p(N,g)(p)

: RO @ @ @ @ S, (X2 M@... ®3 ~(¥) M)
122 2€7,< 00 oll. 821 Jageeesd:dd P 1 P i
1 i 1 g
jﬂ+...+ai=s

—3 E M@F*M

p p
vanishing except on a finite number of summands.
Define thM,g)(p) =
| N o T, 94 T3, 91
P(M,8)(p) (10 @ @ @ ® W ' (p) ®...8W “(p)

l=2 2<r1<ooo<ri S=q jq,...,ji>1
j1+-..+ji=s
with N 1arge.
It follows from (2.4) that t¢ is determined in the required
way by universal polynomials.
Since the whole construction is functorial, t¢,is the
required natural tensor field.

| Clearly (ptgb = (FJ .

Conversely it follows from (1.5) and (2.%4) that t.qj = t.
' t
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For the last part qf the theorem consider S0(n) maps

J.
3 1(Y; B)®... 8 T (1 BY) — iR e PR
1 i

with .2 13 2\‘<r,|<..... <r; .
These are determined by SO(n) maps
10y miye ;
S (Y* )@....@S (Y*m)®®m ‘® ® B® —_— R
T T3
and hence the component natural tensor fields thus
obtained are of two types
u times 1 times jﬂ tines Ji times
T, -2 T, -2 r,~2 T, -2

1)8** 088 eeeg W LW LL.wE oWl - P

- LN ) L L ] - - o - L J -

where there are ¢ contractions and summation is over all

indices except a upper and b lower.

2) 2 (detg; )’5 ()" .ﬂ(n>° P

ﬂéb

where there are c¢ contractions and summation is over all .
indices except a upper and b lower.

!
In case 1):equating weights gives b-a-w = —2u+2l+2z::jk

1

2u-c N

21+ Zrkak +2

counting indices gives a

b

A
i _ k=1
whence w =v£;% Tydy o

' i
In case 2):equating weights gives b-a-w = n+21+22::jk—2u-2n
k=1

counting indices gives a = 2u+n-c

i i
21+ 1 g, 42 J,—~C
k= k°k lg’a k

il

b
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whence w = gi% rkjk .
That w cannot equal 1 follows from rk2>2 all k.
finally the computation of Nw is left to the reader.
REMARK: For future reference we note that in the unoriented
case all natural regular homogeneous tensor fields have

even weight.

(2.6) Finally in this paragraph we extend the Gilkey

theorem ([1] para. 2 ) to the oriented case. _

Recall that * : Cw(;< T*M)————?Cw(?KrT*M) is defined by
w'n xw= W YDV

where (Mn,g) is an oriented Riemannian manifold,w' any

r-form and 1>is the orientation form given in a positively

oriented local co-ordinate system by (detgij)%dqu...Adxn.

Further * maps natural regular r-forms on oriented Rieman-

nian n manifolds to natural regular ﬁ-r forms on oriented

Riemannian n manifolds.

_COROLLORY: The natural regular homogeneous r forms on

oriented Riemannian manifolds (Mn,g) of weight k are

linear combinations of forms of two types

1) Natural regular r-forms e on Riemannian manifolds,

homogeneous of weight k. For k=0 these are preciéely the

Fontrjagin r-forms.

2) The forms *a)whérecu is a natural regular n-r form on

Riemannian manifolds,homogeneous of weight k+n-2r.
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In particular the conformal (wéight 0) n-forms are sums of :
a) The Pontrjagin n-forms.

1A ....z\dxn where f is a natural

b) The forms f(detgij)%dx
regular function on Riemannian manifolds,homogeneous of
weight -n.

Thus if n is odd,it follows from (2.5) remark that there
are no conformal natural'regular n-forms.

PROOF: [2]lpara.2,(2.5) above and the fact that * adds

n-2r to the weight of a homogeneous r-form.

REMARK: P.Gilkey has recently proved ([7]) the following
result which was originally conjectured by I.M.Singer.
"Let <w be a ﬁatural regular n-form on oriented Riemannian
n-manifolds such that for each a-manifold M I(M) =‘fM9(M,g)
is_independentvof the metric. Then there is a real number
¢, a natural regular (n-ﬂ)-form/D and a Pontrjagin n-form
W such that

W = %p + cEn + n where En is the Euler class."”
Certainly <) has to be conformal ,for if we write w= Z;Loi
whérecoi is homogeneous of weight i, then for all reai/o

numbers A

(M) = §Ofmwi(m,g> - ii;ofmwim,%g) - J;Oklfﬁ;o-(m,g).

1

Hence IHQE(M’g) = 0 i>0 and ) has to be of type a) or b).
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% Natural Differential Operators.

(3.1) For a review of differential operators,we refer the
reader to R.S.Palais [9] .Before making our definitions,
however,there are some notions which we would like to

recall explicitly.

(3.2) iét € ,n be C* vector bundles over a smooth manifold
M, with C”(8) the space of C” sections of §.
We let Diff, (§,n) denote the space of differential
operators of order £k from C”(g) to C”(Q). |
Let Sk(§) denote the k-fold symmetric tensor power of €
with itself and let

x K K

St : @F —— 57°(8)
be the map characterised by

Sk(v,]®...;®vk) = (ki) .1 rvrr(q)@)""@"ﬂ(k)

where vy S ?x some xg:I"I.

Then we have the symbol exact seguence

. 3% X
O——>Diff, , (g,Q)‘———l—»Diffk(g’,Q)——k—aHom(S (1@ § ,9)——0
. where i is inclusion and‘V' is characterised by
V(DI (vy @ v @V )EBE) = (k'>““D<g1....oks><x>
where g; € C ), gi(x) =0, d.g; = v;€ TfPI, seC €)
s(x) = eegx.
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(3.3) Let E,F be functors as in (1.1)
Recall that given a Riemannian manifold (H,g) there is a
unique torsion free connection V on TH satisfying Vg = O.

This the Levi~Civita connection. V ‘induces a connection

V on EM®F*M in a natural way.
Define differential operators

D, : CP(EM ®F*M)——> CX(SE(T*M) @EM @F*M)

k
by taking the composition: k
. kK k s‘®1

CP(EM @ F*M) Yo C¥( ® T*M B EM ®F*M)——CAST(T* M) ® EM @F+H).
Then %, (D) € Hom(3"(T*M) ® BN ®T, 55 (T*M) ®EM ®F*M) is the

identity map.

(3.4) DEFINITION: Let E,F,G,H be functors as in (1.1).

A natural differential overator of type (Z,F,G,H) on

Rieménnian.(resp. oriented Riemannian) manifolds assigns
to}each Riemannian (resp. oriented Riemannian) manifold
(M,g) a differential operator

D(M,g) : EM®F*M — GM QH*M
such that if £ ¢« M———M' is a diffeomorphism onto an
open submanifold (resp. orientation preserving diffeomorphism
onto an open submanifold) then '

D(M',f*g) = £*(D(M,g)) .
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(3.5) Let (M,g) be a Riemannian manifold and let x be a
local co-ordinate system on U <M.
Then x determines local bases of sections <e“>ueA’(fP)peB’
(8y)yegs (8®)gep For EM,F*IM,GH,H*M as in (1.3).
Let D EM®F*M —GM ® H*M be a differential operator
of order g k.
Then locally we may write
k i e..i % s 3
& By _ 1 T 6 g,®h
D(sg ex® fF ) = 12:(')8‘*8 I 17 Y
N JX  ses0X

using the summation convention,where the functions
aszlq...lr are symmetric in i ,...,1i (2€r<k).

We refer to the local functions aié?q...lr as the
coefficients of D with respect to the co-~ordinate system x.

Note that locally:

, i i PYi,eel
X 1 T By - o 1 Ty 0,
Yk(D)(Vﬁiqoooirdx R cen ®dX ®e°<® f ) = au(g piq..irg{® n.

(3.6) A natural differential operator D on Riemannian
manifolds (resp. oriented Riemannian manifolds) is regular

if the coefficients of D(IM,g) in any local co-ordinate
: i
- system are given by universal polynomials in gij,"agij/Bx“

)=

(X a multi—indexlﬁlgth N large) and (detgi

-2
ig) o Je |
The operators Dk introduced in (3.3) are examples of

J
(resp. (detg

such operators.
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Note also that natural bundle maps and natural tensor
fields correspond bijectivelf,and are therefore classified
by (2.5). Cur main theorem says that in fact this classif-

ication also works for natural differential operators.

(%3.7) THEOREM: Let D be a natural differential operator
of type (E,F,G,H) and order € k.
Then there are unique natural bundle maps

t, c2(ST(T*M) ® EM @ F*M) ——> C°(GM ®H*M) (0 <r <k)

k
such that D = g;% t.D. -

The trare regular if & only if D is .

PROOF: The result is proved by induction on k and is
‘clear for k = O.

Suppose that the result has been‘proved for operators of
order k-1 and let D have order k. |

Then Yk(D) is a natural bundle map which is regular if

D is and Y%(D)Dk is a natural differential operator of .
order k. |

Since Yk(D—Yk(D)Dk) = 0 by the remark at the end of (3.3),

D -~ Yk(D)Dk is a natural differential operator of order

k-1, regular if D is.

Setting tk = yk(D) s, the result follows by induction.
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4 Fxamples

(4.1) Let D be a natural régular differential operator
on Riemannian manifolds of order k and type (E,F,G,H)
with the ranks of Z,F,G,H equal to a,b,c;d respectively.
D is determined by natural regular bundle maps:

b ¢ CO(ST(TH) @A @) (lan @ H)
It follows from the general theory in (2.5) that if T is
homogeneous of_weight W then
1) w., € a+d-b-c~-r
c) If a monomial appears in tn involving exactly jl terns

(equlvalently vir)a€1€i, 2<€ <€y 4 then

: i

a+d = b+c+r+wr+ %;% i€ -
Thus t, = O if wr)'a+d—b-c—r R wr=a+d-b-c-rf1 or w_ odd
(by (2.5)).

We say that D has maximal weight if it is homogeneous of

weight a+d-b-c-k .

The homogeneous natural regular differential operators of
maximal weight are of some interest since any differential
operator between vector bundles over R™ which is the

evaluation of a natural regular operator is a sum of these.

(4#.2) Hence if D in (4.1) has order 1 and maximal weight

then D = ooV where ¥ is a natural bundle map and V the
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Levi~-Civita connection. Thus operators of maximal weight
‘and order 1 correspond bijectively with bundle maps.

It follows fhat the Levi-Civita connection on EM ®F*!

is the unique connection of maximal weight,which is in

this case weight O (c.f. Epstein [5] 5¢6)

Similarly the exterior derivative on forms and its adjoint
are unique of maximal weight,in this case weights 0 and -2
respectively,up to multiplication by constants.

Finally note that it follows from (4.1) that there are no

natural vector fields homogeneous of weight greater than =4.

(4.3) Having seen that the Levi-Civita connection is
unique of maiimal weight,we move on to consider the
Laplacian on forms. Again we consider the unoriented case.
The situation is not as simple as in the order 1 case,but
we can say the following.

Let 03,05 : Cdk}iT*M)—~—-->Cw(}iT*M) be the bundle maps

defined by :

ti

1 lr
6:]((3.}{ /\ooo/\dx ) =

T n i i i . i i
E Z: R, Sax 1/\.../\dx S-quxJAdx °+1A"Adx T
s=1 j=1 J

n 11 i i
Z R S t‘KdX 1/\.../\5.}( S—/l/\

O’2(dx /\.o-/\dX ) = .
1€¢s<t<r j,k=1 J

s i i i i
deAdx S+1A... dx t-quXkAdX t+qA:..AdX r
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where Rij is the Ricci tensor,Rlakl the curvature tensor
with second index raised and dim I = n .
Then Tq and G, are self adjoint.
Let R be the scalar curvature,d the exterior derivative,
d* its adjoint and A the Laplacian.

w0, P o, P
Let D : C®(AT*M)——>C (A T*M) be a natural regular
differential operator of maximal weight,in this case -2,

and order 2. Then:

1)If p=0OQorn D=a +cR
2)If p = 1 or n-1 D = a,dd* + égd*d +ba, + cR
3)1f 2<psn-2 D =a,dd* + a,d*d + b,0, + b0, + cR

1 2 171 22
where a,aq,a2,b,b1,b2,c are uniquely determined constants.

Further if D is self-adjoint 8,4 = 8, = a so that
2) If p=1 or n-1 D = a + bo, + cR.
3) If 2<p<n-2 D

a + chd + bzﬁé + CcR.
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Appendix

(A.1) LEMMA: The vector space ‘103"0 (2"}3" R) is equal to
Homo (QDHflIR) except that if k-n 1s non-negative and even
then any linear combination of maps

s e e o0 e e————
V,l® ®Vk»

L€

jes, (OVricayucr)* = Friemdpu(n) icasn) racns2)? ey VG

where TTES ,E denotes the 81gn of a permutatlon IR denotes
the real numbers and v. >—\Vgl 1 with respect to the

J
standard basis of R"™is permltted

- k
PROOT: lote that Z. = O_/30. acts on Homgcxmn,m) splitting
2 n’ "'n S0n
it as the direct sum of Hom, (®R",R) and the -1 eigen-
n
space /\.

n+k
If £feA define feHomo ( & m° ,IR) by

+n/ f(va@...ka) Z: E (uwv

f(v’]®° - o®V-|, /ue S y k+,]/u<,] )- - 'Vk+n/.,l(n) -

. ) -
Then f(V,]*&...@Vk@e,]...@en) = f(V1®.-.®Vk).

Hence f(v1®...®vk) =

> CrV

fres, 11117 * @) nST (a1 ) Vcns2 )+ + 1) 1 Yte) Y,

some constants c;,1f k-n 1s positive and even and is
zero otherwise.

e . e .
Butfﬁbn determines an elemenufMaOn of determinant EQM)

by permuting co-ordinates.



Thus £(v®. - -@v,) = &U)L(HUV, @« .8uv,)
1_,6% S nct) ) u) (a1 Ticns2 Y -
) . ‘<Vﬂ(k~’l ) VTR
So that since £ € A |
£(v®. . 0v,) = <n!>_1ﬂe%{¢iu§sns M7 (yp(1) = iiau(a)
<Vr(ns )’Vﬁ(m-2)> .- '<VTT(k-’I Y Y Ti(k)

if k-n is positive and even,and is zero otherwise.

(A.é) LEMMA: Any rational function f on GL(n,R) invariant
under the action of SO(n,ER)by'right multiplication is of
form: f£(4) = F(AA®) + (deta)™e(aa®) 4 eci(n,m) where
F,G : SM(n,R)———— R are rational functions on
the spaée of symmetric matrices.
PROOF: Consider the space of rational functions
f: GL(n,R) —¥ &
invariant under right multiplication by elements of SOn.
Again 7, = On/SOn acts on this space,splitting it as the
direct sum of the On invariant maps and the -1 eigenspace A.
If feAthen h : GL(n,R)—> R : X+—— (detX)f(X)
is O, invariant and hence £(X) = (detX)'qh(K .

The required result then follows from Appendix 1 of [2].
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