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ABSTRACT 

In Chapter 1 we use a Poisson stochastic measure to 

establish a method of localizing, and a change of chart 

formula for, a class of stochastic differentia\' equations 

with discontinuous sample paths. This is based on Gikhman 

and Skorohod [4]. 

In Chapter 2 we use essentially the method of Elworthy [2], 

to construct a unique, maximal solution to a stochastic 

differential equation defined on a manifold M. 

Chapter 3 establishes some properties of solutions of the 

equation. In particular if M is compact, then the solutions 

have infinite explosion time. We evaluate the infinitesimal 

generator of the process. By defining stochastic development 

of a-stahle processes on the tangent space, we produce a process 

on the manifold which, as is shown in Section 6, is not a-stable 

on M. 



INTRODUCTION 

This work is an attempt to generalize the stochastic 

calculus of manifolds to include the case of discontinuous 

sample paths. 

Unlike Stroock [9J, we are interested in pathwise unique

ness and so must use other techniques than solving the ":MartingaIE 

problem", which guarantees uniqueness of distribution only. 

We use the concept of a Poisson stochastic measure (see 

Gikhman and Skorohod [4J) to provide the necessary extension. 

In Chapter 1, we first review the local theory of stochastic 

differential equations, as set down in Gikhman and Skorohod, 

·with minor changes (Sections 1 to 4). In Section 5 we specialize 

to the differentiable coefficient case and use the change of 

variables formula: Theorem 1.3.1, together with a stopping time, 

constructed in Section 5,to produce a change of chart formula: 

Theorem 1.5.4. This is stated in "Stratonovich" form, as we 

are interested in the integrals behaving well under change of 

chart. 

In Chapter 2 we formulate and prove the existence and unique

ness of a unique maximal solution to a stochastic differential 

equation. This is done using substantially the techniques of 

Chapter 7 of Elworthy [2J. 

We have, however, some problems caused by the lack of 

continuity of sample paths. In particular, we are obliged to 

change the definition of a process being affirmed as a solution, 

saying that a ·solution must be affirmed by aZZ regular locali-
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zations rather than, there exists a cover of the manifold M, 

by regular localization which affirm M. The point is that we 

may otherwise lose uniqueness of solutions (see Remark after 

Lemma 2.2.2). 

In fact we need the notion of a big atlas (definition at 

the beginning of Section 2) i.e. an atlas of charts A such 

that any pair of points, of the manifold M, are contained in 

a chart of A. We observe that we may always do this. This 

is so that if x(t, ) is a solution, then x(t-, ) and x(t+, ) 

are always contained in a single chart. Using this we prove 

global uniqueness of solutions. 

We proceed to construct a solution of the stochastic 

differential equation and show that this solution is the 

required one. This differs from E1worthy [2], but is formally 

equivalent. 

In Chapter 3 we establish some properties of the solutions. 

In Section 1 we prove a theorem which implies that if M is 

compact, then the solutions of stochastic differential equations 

on M have infinite explosion time. In Section 3 we show the 

solutions are Markov processes and find their infinitesimal 

operators. Section 5 generalizes the construction of Brownian 

motion in E1worthy [2], in that we place on every tangent space 

of the frame bundles of M, a process with independent increments 

related to one another by parallel translation, and solve the 

resulting equation. 
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In the special case of (symmetrical) a-stable processes, 

"something goes wrong", i.e. the infinitesimal generator of 

the solution process .is not what one might expect. Molchanov 

[7J shows how to construct an a-stable process on a (Riemannian) 

manifold by subordinating Brownian motion, producing a process 

having infinitesimal generator _(~/2)a/2. In Section 6 of 

Chapter 3 we produce an example to show that this is not the 

infinitesimal generator of the solution process constructed 

earlier. In fact it is clear that they never will be equal 

unless M is flat. 

It is not clear why this should be so, except to observe 

that we are dealing with gZobaZ operators, as opposed to local 

ones. 

On the sphere, the example of Section 6, it is possible to 

work out the eigenvalues of the infinitesimal generator of the 

solution process and, by looking at the first three-hundred, it 

seems that they converge to the 'correct' value. Explicitly 

for a = 1, let ~n' An be the eigenvalues (for the eigenfunctions 

Pn <x,e>, Pn-Legendre polynomials) for the infinitesimal operator 

of the solution process and -(-6/2)', then we find 

4n+2 

although no proof is available. 

It is clear that to resolve this problem we need some 

information about the geometry of the manifold. However, in 

the case above there seems no obvious way of obtaining this. 
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STANDING ASSUMPTIONS AND NOTATION 

1. We assume a fixed probability/base throughout, i.e. the 

collection (n,F,p,{Ft}t~T) where n is a set, F is a a-algebra 

of subsets of nand P is a probability measure on (n,F). Also 

T c R is an interval, either [a,b] or [~,oo) and F
t 

c F are a 

collection of sub-a-algebras of F such that if s,t c T and 

s < t, then Fs eFt. 

We assume in addition that the Ft's are complete with 

respect to F, i.e. that V N ~ F with peN) = 0 and V A € Ft' 

we have that N ~ A ~ Ft. 

2. We call a map ~:T x n ~ X, where X is some measure space, 

adapted if ~(t,w) is Ft-measured V t ~ T. 

3. Cn-(A,]R.q), where A c]R.P is an open set, is the collection 

of n times differentiable functions with locally Lipschitz n-th 

differential. 
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CHAPTER 1 - STOCHASTIC DIFFERENTIAL EQUATIONS IN VECTOR SPACES 

1. Stochastic Integration: 

The results of this section can be found in Chapter 1, 

Part II of [4J. 

Given a finite dimensional vector space V, define the 

set IT (L,C,g) to be the set of random functions 
o 

a:[a,bJ x V x [0,£) x n ~ V, subject to the following 

conditions: 

(1) 

(2) 

( 3) 

(4) 

(5) 

(6) 

IE{a(t,x,h)IFt } I ~ Lh; 

2 
E { I a ( t , x , h) I 1Ft} S Lh; 

IE{a(t,x,h) - a(t,~,h)IFt} ~ c 

E{la(t,x,h) - a(t,~,h)12 1Ft
} 

Ix-ylh; 

2 
~ clx-yl h; 

I Ft +h }I 
1 

where Land C are positive constants and g is a non-random, 

non-decreasing function and lim g(h) = O. 
h~O 

Let H be the space of function s:[a,bJ x n ~ V such that: c 

(i) s(.,w) is· Borel measurable, 

(ii) s(t,.) is Ft-measurable 
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and E(ls(t+h) - s(t)1
2

) + ° as h + 0, 

wi th the norm \I s II = sup 
a~t~b 

Given s E: Hc' we may define sl by 

1 · . t of t" °1 to be the mean square 1m1 ~ 

Theorem 1.1.1. 

s + a 

as c + 0, where 

then there exists a unique s E: Hc such that 

(1) ~(t) = ~a + J: a(s,s(s),ds). 

Proof 

This is essentially Theorem 1 of Section 3, Chapter 1, 

Part II of [4]. 0 
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Remark 

The method is standard, i.e. using the Lipschitz conditions 

(3) and (4) for a, we show that the operation defined above has 

a unique fixed point in H • c 

Theorem 1.1.2. 

Let ~ be as in Theorem 1.1.1 and suppose that a(t,x,.) is 

right-continuous with left-hand limits, then there exists a 

separable version of ~ which is also right-continuous with left-

hand limits. 

Proof 

This is essentially Theorem 1, Section 2, Chapter 1, Part 

II of [4J. o 

Remark 

If ~(t) is as in Theorem 1 then we will often say that 

~(t) is the solution of the stochastic differential equation 

d~(t) = a(t,~(t),dt), given ~(a) = ~a. 



-9-

Definition 1.1.1. 

An Euler appro~imate solution of ds = a(t,s(t),dt), given 

initial condition sa' is a stochastic process so(t), satisfying 

is some partition of [a,bJ. We write 101 = max Itk+1-tkl. 
k 

Theorem 1.1.3. 

If EIsal2 < ~ ; and a € ITo' then for any € > 0, there 

exists an €o such that for 101 < €o' 

E{ sup Is(t) - so(t)1 2 } s €. 
astsb 

Furthermore, lim ,E{ls(t) - ~0(t)12} = o. 
·101+0 

Proof 

This is Lemma 2, and Corollary 1, of Section 3, Part 2 

of [4J. o 

2. Poisson Stochastic Measures and Integration 

Definition 1.2.1. 

A random variable v on a probability space (n,p,F) has a 

Poisson distribution with parameter IT € [o,~) if 



P«w) Ivew) = n) 

We have Eev) = IT 

and Var(v) = IT. 
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n € N u {O}. 

Definition 1.2.2. 

If X is a separable, locally compact, Hausdorff space and 

B its a-algebra of Borel sets, then a Poisson measure, with 

parameter measure IT, is an assignment, to every relatively 

compact set A € B of a random variable veA) having a Poisson 

distribution, with parameter IT(A), which satisfies the following 

two conditions: 

(1) If A1 , A2 are disjoint and relatively compact, then 

veAl) and V(A
2

) are independent; 

(2) If Ai € B for i € ill, the 

relatively compact, then 

Ai are 

veUA. ) 
i 1 

disjoint and UAi is 

= r v(A.), (it follows 
i 1 

= rITeAi), hence we may take IT to be a measure). 
i 

Definition 1.2.3. 

If in Definition 1.2.2 we take X = [a,b] x (V\{O}) where V 

is a finite dimensional vector space, then we say that v is a 

Poisson stoahastia measure on X, with parameter measure IT if: 
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(1) E(v(llxA» = IllIII(A) (where II € B[a,b] 

A € B(V\{O}), and I· I is Lebesgue 

measure on [a,b]); 

(2) v([a,t] x A) is Ft-measurable for any t and for 

any A € B(V\{O}) and 

(3) v((t,t+h) x A» is independent of Ft for any h > 0 

A € B (V\ {O} ) • 

Remark 

We may have II({xl Ixl < €}) = 0) or II({xl Ixl> €}) = 0) 

for any € > O. The former will be the case if 

du. c n'a II ( d u) = -.::;..~- , where n = dim V, a € (0,2) and 

c a constant, n,a 

corresponding· to the case of a symmetric a-stable process. 

To integrate with respect to v, we first define the 

'" auxiliary process v, by 

'" v(ll x A) = v(ll x A) -lllIII(A). 

'" The n E ( v ( II x A» = 0 

'" Var (v(ll x A» = Ill/II(A). 

Suppose that an adapted random function 

~ : [a;b] x V x n + W (where W is a vector Space) 

is simple in the sense that. 
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Aik € B(V) 

o,ik: n ~ w is Ft -measurable. 
k 

If J EI ¢k(x)1
2

IT(dX) < 00 

we may define 

We have 

E J fb 

and Var 
f fa 

'" ¢(t,x)v(dt,dx) = 

'" <I>(t,x)v(dt,dx) = 0 

'" J fb <I>(t,x)v(dt,dx) = 
a 

E(I<I>(t,x)1 2 ) dtIT(du). 

We may, by standard techniques [4J, extend the definition 

of the integral to the set of adapted random functions <I>(t,y), 

such that 

J J
b . 2 
a 1<I>(t,y)1 dtIT(dy) < 00 a.e. 

If also f f: 1~(t.Y)ldtn(dy) ~ 00 a. e. , 

then we may define 

= 

<I>(t,y)v(dt,dy) 

'" <I>(t,y)v(dt.dy) + f f: ~(t.y) dtn(dy). 
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" 3. The Generalized Ito Formula 

Theorem 1.3.1. 

Suppose we have: 

(i) finite dimensional vector spaces U,V and W; 

(ii) (a) A Weiner process w adapted to Ft on W, and 

(b) A Poisson stochastic measure on U, v, adapted to 

Ft and independent of w, with parameter measure IT; 

(iii) a [a,b] x n -+ V 

S [a,b] x n -+ L(Vi,V) adapted to Ft 

y [a,b] x U x n -+ V 

Ef ba Such that I a( t) I dt < 00 , 

y( .. ) (w) is a Borel function 

I
b

a 
. I 2 and ly(t,u)1 IT(du)dt ~ 00; and 

(iv) g: [a,b] x V -+ V such that if ;t and n denote differentiatil 

with respect to the first and second variable respectively, then 

n2g a o· and at exist and are continuous 

I
b

a J Ig(t,x + y(t,u» - g(t,x)1 2IT(du)dt < 00 , 

and 

I
b

a 
J. Ig(t,x+y(t,u»~g(t,x)-n2g(t,x)(y(t,u»IIT(dU)dt < 00 
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J
t Jt + f J t

a 
"-Then if ~(t) = ~a + a(s)ds + S(s)dw(s) y(s,u)v(dt,dy) 

a a 

where ~a is Fa-measurable, it follows that 

g(s(t» = g(sa) + r
t 

L(g)(s,s(s»ds + Jt Dg(s,s(s»S(s)dw(s) 
Ja a 

+ JJb[g(S,S(S) + y(s,u» - g(s,s(s»]~ (ds,du), 
a 

where L(g)(s(s~s) 

Proof. 

Remark 

1 2 
+ 2 Tr(D2g(s,s(s»(S(s)S*(s» 

r 
+J[g(s,~(s)+y(S,u» - g(s,~(S»-D~g(s,~(s»(y(s~u»]n(du 

This is Theorem 2 §7, Chapter 2, of Part 2 of [4]. 0 

The terms involving a and S are standard. To give an idea 
n 

of how the 'Poisson component' transforms, suppose Sn = L ai' 
i=l 

= 
n r 
L (g(L ail 

r=l i 

r-1 
g( L ail) + g(O). 

i 

This is the essence of the form of the formula, the term involving 
"-

the differential results from using v, as opposed to v. 
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4. Stochastic Differential Equations 

Theorem 1.4.1. 

Suppose we have U, V, W, wand v as in Theorem 1.3.1, and 

a:[a,b]xV+V, 

b:[a,b] x V + L(W,V) 

and c:[a,b] x V x U + V 

satisfying: 

la(t,x)1 2 + Ib(t,x)1
2 

+ J Ic(t,x)-xI2TI(d~) ~ L; 

la(t,x)-a(t,y)1 2 + Ib(t,X)-b(t,y)1 2 +J Ic(t,x,u)-x-c(t,y,u)+yI 2 TI(du 

~ clx_yl 2 

and la(t+h,x) - a(t,x)1 2 +, Ib(t+h,x) - b(t,x)1 2 

Ic(t+h, x,u)-c(t,x,u)1 2TI(du) . s Lg(h), 

where 
~o >0 g:R + m- and g(h) + 0 as h + O. 

Then given t;a - Fa-measurable, with E( 1 t;a 12) < 00 , 

there exists a unique solution to the stochastic differential 

equation 

2) d~(t) = a(t,~(t»dt + b(t,;(t»dw(t) 

+ J c(t,~(t),u) - ~(t)~(dt,dU) 

with ~(a) = ~a' 
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Such a solution will possess a separable version with 

left-hand limits and which is right-continuous. 

Proof. 

Define a(t,x,h) = a(t,x)h + b(t,x)(w(t+h) - wet»~ 

+ J c(t,x,u)-x ~([t,t+h),dU) 

Then (1) E{a(t,x,h)IFt } s la(t,x)lh S L!h 

2 2 2 
( 2) E { I a ( t , u, h) I 1Ft} s I a ( t , x) I h + Tr (b ( t , x) b * ( t , x) ) h 

+ fl c (t,x,u)-x I2rr(dU)h 

s Lh (for small h) 

(3) IE{a(t,x,h) - a(t,yjh) 1 Ft } I 

(4) 

=IE{a(t,x)h-a(t,y)h + (b(t,x)-b(t,y»(w(t+h)-w(t» 

+ f c(t,x,u)-x-c(t,y,u) + y~([t,t+h),dU)}1 

la(t,x)-a(t,y)lh s L!h. 

2 
E{la(t,x,h)-a(t,y,h)1 1Ft} 

2 2 
s la(t,x)-a(t,y)1 h + ITr«b(t,x)-b(t,y»(b*(t,x)-b*(t,y») 

~ J Ic(t,x,u)-x-c(t,y,u) + yI2n(dU)h 

s Ch (small h) 
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(6) 

2 2 
~ la(t,x) - a(t+h1,x)1 h2 + \Tr(b(t,x)b*(t,x» 

So there exists L', C', g' such that a(t,x,y) € ITo (LI ,c' ,g') and 

by Theorem 1.1.1 there exists a unique solution ~ € Hc of (2). 

The regularity properties follow from Theorem 1.1.2. 0 

5. Stochastic Dynamical Systems in Vector Spaces. 

In this section we will fix the following: 

(i) finite dimensional vector spaces U,V,W; 

(ii) a a C1- bounded vector field on V, 

b a C2- bounded map b:V + L(W,V) 

2-and c a C map c:V x U + V such that c(x,u)-x is bounded 
. . , 

~<.(:x.,O) i~ 06UN\ckJ aJ\d CO-,tt)':! X ~ 
(iii) . a Wiener process w, and a Poisson stochC3:Stic measure v, both 

adapted to .{Ft } and independent on each other with the 

paramet er me asure IT sat isf ying 
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[ 
lul2 - - II(du) 

1+l u 1
2 

< 00. 

Theorem 1.5.1. 

Given ~-, F -measurable with E(I~ 12) < 00, then there exists a a a 

a unique solution,~, to the stochastic differential equation: 

d~(t) = a(~(t»dt + b(~(t»dw(t) 

given initial condition ~a· 

Proof. 

'" c(~(t),u)-~(t)v(dt,dw) 

We verify the conditions of Theorem 1.4.1. We have 
2 

c~x,u)-x - D2c(x,O)(u) + O(lul ), by the assumptions on c, so 

[ Ic(x,u)-xI 2II(dU) = [ Ic(x,u)-xI
2

II(dU) 

lu I ~€ 
+[ Ic(x,u)-xI

2
II(dU» 

lul~€ 

~ [ A I u 12II( du) + J ~II(du), (where A ,A. and € are positive· 
lul~€ 0 lul>€ 0 1 constants 

< 00 . 
,- by assunption on II .. 

Also a and b are bounded, so 

2 2 J I 2 la(t,x)1 + Ib(t,x)1 + c(x,u)-xl II(du) < L, some L. 

The Lipschitz condition follows similarly, observing that a and 

b are Lipschitz~ 

Since a, band c are independent of time, the third 

conditio~ is trivial. o 
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Proposition 1.5.2. 

Proof. 

2 Suppose that g is a bounded C map from V to V. 

If ~(t) is as in Theorem 1.5.1 then 

2 
Tr(D g(~(s»(b(~(s»,b(~(s»»ds 

[g(c(~(s),u»-g(~(s»-Dg(~(s»(c(~(s),u) 

+ Jt Dg(~(s»(b(~(s»)dw(s) 
a 

~(s»]II(du)ds 

'" g(c(~(s),u» - g(~(s» v(ds,dw). 

This is a restatement of Theorem 1.3.1. We verify the 

conditions. 

The conditions of a,S,Y, imposed in part (iii), follow 

. from the boundedness conditions of a, band c respectively. 
2 g(c(x,u» - g(x) = D2(goc)(x,O)(u) + O(lul ), in a neighbourhood 

of zero and bounded outside this neighbourhood so the conditions 

on g follow from arguments similar to that in the previous theorem. 

The proposition follows. o 
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We wish to use the above "change of variable" formula, to 

create a "change of chart" formula. To this end it is useful 

to have an invariant ~ormulation, such as, in the continuous 

case, is afforded by the Stratollovich integral. To this end 

we introduce the following objects. 

Definition 1.5.1. 

In the following formulas the left-hand sides are 

defined by the right-hand sides, whenever they make sense: 

(1) I: ~(x(s»dw(s) = It b(X(S»dw(s) + T; I: Db(x(s»b(x(s»ds 
o 

(2 ) 1
ft 
J

o 
C(X(s),u) - x(s)v(ds,du) = II: c(x(s).u) - x(s)~(ds.dU) 

+ II 
o 

c(x(s).u) - x(s) - D2 C(X(S),O)( 1 : IUI
2

) IT(du)ds. 

Remarks: 

~ is identical to the standard Stratonovich integral. 

Note that the second integral exists, for suitable processes 

x (s), since c is C
2

- and is bounded together with its first 

derivatives. 

Note also that the function u appearing in (2)is 
1+lu1 2 
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to some extent arbitrary, more precisely we could use any 

bounded function 11 (u) such that 11 is differentiable in a neigh-

bourhood of the origin with D11(O) = 1. Later when we 

consider manifold~ it will be found necessary to consider the 

case in which we are free to assign a and b outside a set A 

and c outside a set D c V xU. It is hence necessary to show 

that the solutions corresponding to different assignemtns are 

eqaal at, least up to some stopping time. The choice of stopping: 

time is crucial. The first exit time of the process fran A, 

for example, is generally not adequate. 

Definition 1.5.2. 

Gi ven bounded open subsets Ao' A1 and A of V, with 

Ao cAl' A1 c A and open neighbourhoods D1 and D of A1~tO~ &tid AXtO~ 

respectively such that D1 cD, write F = {Ao ,A1 ,A,D1 ,D}. Then 

define '[(F), by 

'[(F) = inf{tl (x(t),J(t» ~ Aox(-i,i) } 

where J(t) = J J: (1 - XD
1 

(x(s).u»v(ds.du) 

and x is a right-continuous process with left-hand limits. 

Remarks: If '[(Ao) is the first exit time of x(t), from Ao' 

then '[(F) s '[(Ao )' 
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(2) For t < l(F), we have that (x(s),u)~D1' for all u with 

lui < €, for some positive €. So the integrand of J(t) misses 

a neighbourhood of zero and hence J is well defined. We note 

also that J(t) is an increasing positive integer valued process. 

Lemma 1. 5 . 3 • 

Let x(t) be a solution to the S.D.E. 

dx(t) = a(x(t)dt + b(x(t))d~(dt) + c(x(t),u) - x(t)~(dt,d~) 

V € > 0, j y st V partition of [O,TJ,o, with 101 < y 

t < T(F,w) => t < TO(F,w), for w ~ n~ 

-r°(F) = inf{tl[xO(t), r 
k 

Proof 

, where pen ) > ~, and 
~ 

V ~1 > 0, ~ yst "0 with 101 <V, 

sup 
O<s<t 

~1 
w ~n , where 

€ 

pen 1) < ~1. This follows from Theorem 1.1.3. Now since 51 c D, 

° (x(s),u) ~ Ao x B(O,R) n D1 => (x (s),u) ~ A1 x B(O,R) n D, 

for €1' small enough. 

Also V €2 > 0, :3 R st 
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t k+1
A S 

O=:~T : lulcR f ftkAs 

J 

tk+1AS 0 

J (l-XD(x (s),u»v(ds,du)1 < ! 
t AS 

k 

€2 €2 
except for set n with pen ) < €2. 

Now V € > 0, choose €1 and €2 such that 

€1 + €2 < €, and we are done. 

Theorem 1.5.4. 

(1) 

Let ~.(t) be the solution to the S.D.E. 
:1 

d~.(t) = a.(~(t»dt + b;(~(t»dw(dt) 
:1:1 ... 

o 

+ J ci(~(t),u) - ~(t)v(dt,du) with initial conditions, 

~.(O) = ~~, for i = 1,2. 
:1 :1 

2 
Suppose that g:V + V is C and, together with its derivatives, is 

bounded; 

(2) that A is an open set and DcA x U is an open neighbourhood 

(3) glA is a diffeomorphism; 

(4) Dg(x)a1 (x) = a 2 (g(x», x € A· , 

(5) Dg(x)b1 (x) = b
2
(g(x» , x € A· , 

(6) g(c1 (x,u» = c 2 (g(x),u), (x,u),€ D. 
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If F = {A
O

,A1 ,A,D1 ,D} is as in Definition 1.5.2. and 

G = {Bo ,B1 ,B,E1 ,E}, is the image of F under g, (i.e. Bo = g(Ao )' 

etc and E1 = {(x,u)lx € B1 ,(g-1(X),u) € D1} and similarly for E), 

and if ~~ = g(~~) o 0 
for ~1 € A and ~2 E: B then 

~ (t) = g(~ (t» a.e. for t < T(F) and T(F) = T(G) a.e. 
2 1 

Proof 

We write net) = g(~(t», by Proposition 1.5.2, net) is the 

(t) g( ~o1) + ' It B( ~ () ) stochastic line integral n = ~ oS'~1 s ,ds , where 

+ Dg(~1(s»(Db(~1(s»(b(~1(s» (t-s) 

+ (t-s ) fg2(Dg(~1(S»(C(~1(S),U)-~1(S)-D2C(~1(S),U)( u 2) IT(du) 
l+lul 

+JJtg;(C(~l(S),U» - g(~l(S»~(dS,dU). 
s 

Write, for a partition 0 = {O = to < tl 
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o 0 n1(to ) = g(~l) and 

000 
n (t) = n (tk ) + S(tk , ~l(tk)' t - t k ), t € [t

k
,t

k
+

1
], 

where ~~ (t) is the E .. dQ.( a pprO~U\\$~ sollA~ to ~I C-t). 

Now E(supln(t) - nO(t)1 2 ) 
't 

~ E(supln(t) - n
O
(t)1

2
) + E(supln~(t) _ n O(t)1 2 ). 

t t 

By Lemma 4 Section 2 of Part 2 of [4], V €1 > 0, ~y s.t. 

Vo withlol <€o' 

Also by the remark following Lemma 2, of Section 2 of Part 2 of 

[4] 

~ cr E( sup 
O~t~T 

o 2 
l~l(t) - ~(t)1 < €2 

So V € > 0, we choose €1 + €2 < €. 
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IS IS IS 
Assume that t < T (F), and that n (tk ) = ~2(tk)' then for 

t € [tk ,tk +1], 

Let Ik denote the k-th term of S(s,x,h), then 

IS IS 
11 = Dg(~1(tk)a1(~1(tk» = a2(g(~1(tk» (t - t k ) 

IS = a 2 (~2 (tk »)( t - t
k

) . 
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t 

+JJ~g(Cl('l(tk)'U» - g('l(tk»~(dS.dU). 

Combining the first two terms and expanding the last we get 

I It ~ 
tk XD(~l(tk),u)[g(Cl(~l(tk)'U)) - g(~l(tk?)]V(ds,dU) 

J J:u(l. - XD('l(tk)·U»[g(Cl('l(tk)·U»-g('l(tk»]V(dS.dU) 

where the last two terms come from the definition of v in terms 
~ 

of v. 

Combining the first and last integrals we get 



-28-

u 
- Dg(~1(tk»D2C(~1(tk)'O)( 2)IT(du) 

1+lul 

+ JJtXD(~1(tk),U)[g(C1(~1(tk)'U» - g(~1(tk»]~(dS,dU) 
tk 

Jf t (1-XD(~1(tk),u»[g(C1(E;1(tk)'u» - C1 (E;1(tk »]V(ds,du). 
tk 

From the definition of D and TO(F), the last term is zero. It 

follows that 

for t k +1 ° < '[ (T). 

The result follows now by Len~a 1.5.3 and taking the limit as 

101 + o. 0 
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Defini tion 1. 5. 3. 

We refer to (a,b,c,w,V) as a stochastic dynamical system 

(SDS) on V. 

Theorem 1.5. 5. 

Let (wi,v i ), for i = 1,2, be a pair consisting of a 

Wiener process wi and a Poisson stochastic measure vi as at 

the beginning of this section. Also suppose that IT 1 (du) = IT
2

(du), 

i.e. that the parameter measures of v 1 and v 2 are the same. 

Let ~o be the solution to 
]. 

cL;].o = a(~o)dt + b(~o)dw (dt) + J c(~o,u)-~o v(dt,du) 
].]. ].]. 

with initial condition ~i(a) = ~ia' 

If P(~la € A) = P(~2a € A) V A € B(V), then 

P(~1(t) € A1 , ~~(t2) € A2""'~1(tn) € An) = 

Proof 

It is clear that the finite dimensional distributions of 

Euler approximations to ~1 and ~2 (with the same partition) 

will be equal. The result follows since Theorem 1.1.3 implies 

that the finite dimensional distributions of the Euler 

approximations tend to those of the solution. 
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CHAPTER 2 - STOCHASTIC DYNAMICAL SYSTEMS ON MANIFOLDS 

1. Preliminaries 

Definition 2.1.1. 

3 
Suppose that M is a C Hausdorff locally compact manifold 

based on En and we have: 

(i) a a C1- vector field on M; 

(ii) 
2- m m b a C section of Hom(m ,TM), where m is the 

trivial bundle; 

2-"(iii) c a C map from D to M where D is an open 

neighbourhood of M x {oJ in M x mP, and 

satisfies the following maximality condition: 

:Lf a sequence of points (xyU i ) of D r-e.hds to L')(}lA)~]), 

-}1.'Q..y~"C.(~ii)\A.~) .Q..VQ.VItlAQ.l~ ~,,~ tW\~ "'-~~-~~ of /.1. 

(iv) a Wiener process w adapted to {Ft }; and 

(v) a Poisson stochastic measure v, adapted to {F t } and 

independent of w, such that its parameter measure IT 

satisfies 

f "'u,2 "" IT ( du) < 00. 

1+/U/
2 

Then we say that (a~b~o~w~v) form a stoohastio dynamioat system 

on M (SDS). 
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Remark 

The condition in part (iii) is a maximality condition 

in the following sense: suppose D cD' and c is defined on ~ 
I 

then D is open in D'. Suppose {(mi , ui )} is a sequence of 

points in D with limit (m,u) in D', by maximality we have 

(m,u) € D, and so the only way D' can be an extension of D; 

is if it has a whole new component, which also satisfies the 

maximality condition: We note that if D = M x mn, then D 

is automatically maximal. 

Remark 2 

Objects such as c can, and often will, be constructed 

from objects such as b as follows. Suppose b is a section of 

Hom (mP,TM). Let a(m,u,t) be the integral curve of the vector 

field b(u) such that a(m,u,O) = m. If D = {(m,u)la(m,u,1) is 

defined} and c(m,u) = a(m,u,1), it is easy to see that D is 

maximal. 

In the following, we construct an example which the 

domain D of c is much larger than the maximal domain of b. 

Example 1 

Let M = m/~ and m = p = 1. Let b(u) = u and c(m,u) = 
m + u mod 1. Here we have a(m,u,1) = c(m,u), and D = M x m. 

If we remove one point, say 0, from M and consider it as (0,1) 

we still have b(u) = u, and a(m,u,l) = c(m,u), but now only 

on D1 = {(m,u) € (0,1) x mlm + u € (0,1)}. 
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If we consider c separately, however, we see that we may 

sensibly define c on 

D~ = {(m,u) E M\{O} x Rim + u ~ 0 mod 1} 

clearly a much larger domain. 

We sum up the si tua tion in the following informal diagram, 

which fails to commute. 

integrate 

b's > CIS 

restrict 1 1 restrict 

b's > CIS 

Definition 2.1.2. 

If ;:n + [a,b] is a stopping time, we define 

Definition 2.1.3. 

We say that a stochastic process x: [a,;) x + M is 

admissible if 

(i) it is adapted to {F t }, 

(ii) a.a. sample paths are right-continuous with left-hand 

limits. 

Two admissible processes xi:[a';i) x n + M, i = 1, will 

be called equivalent("') if C1 = C2 a.e., and 

W E 
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Definition 2.1.4. 

We say that A ={(~,U),Uo,Ul,A'} is a regular localization 

(r.~~ for (a,b,c,w,V) if: 

(i) (~,U) is a chart such that ~(U) = W, say,is bounded j 

(ii) Uo c U1 c U are open and if~(Uo) = Wo ' ~(Ul) = WI' then 

Wo c WI and WI C W; 

(iii) A:V + [O,lJ satisfies supp A c W, A/W1 - 1 and 

(iv) if, aA, bA, cA are defined by 

and 

VI + A(v)~*(a)(v) 

bA:JRn 
+ L(lRm,lR

n
) 

v + A(v)~*(b)(v) 

~: JR
n x 'JRP + JRn 

( v , u) + A ( ~ ( c ( ~ -1 ( v) I u) ) ) A ( v )( ~ ( c ( ~ -1 ( v) , u ) ) - V) + V, 

-1 
[~*(X)V = T -1 ~ 0 X(~ (v)), where X = a or bJ 

~ (v) 

then aA, bA and l\.c;/\(-.r..,O) CUe 8bbdL( l:,~c~~ a.vtJ ~LS c..l: 
-....J • 

. It- \6 he~ ~+~ ~IWlo.M.~ ~cL~ OV\ Co ~~ ~~. Mov~. py"~~\~ 
If (:~LIIA~)e:.D t,~ ~·,~~v· .. ,~w~ ~f;J",-n ~\it1 l~;.("~IU~~.'G'"o(,tA) ~ t>,_ 'X., € U ~ 
~Cx.~t~\t!~ ~ £..\ I ·i~ ~vv ~tl ~f'~ ~t- K w~1h Ii, c ~ c: U J c(l~~V\) 
('~'='f~v.dt, I l:~~ 01.-\.~~ k . -H~ W~ <GJA (..~ ~ ~l ~ 
C~(t5~\U) ...;..rf(l(i)~O ~~ ~ C4"~ c=hMI.I.tl.U. A 
~I»\~kvr ~~ ~~ ~ ~VoflV~ 6f c s~ ~c. ~ 
~ ~~ ~ ~ ~ (-4'.t.-: 



-34-

Notation 

Suppose that x:fT ,~) x 0 -+ M is admissible and I\. is r.1 
o 

for (a,b,c,w,v). Then for t E: [To,T1), set 

1\.0 
°t o 

= 

I\. Let x t 
-+ En be the uniquely defined solution 

o 

to the stochastic differential equation 

yet) = 

f J
t 

+ cl\.(y(s),u)-y(s)V(ds,du) 
to 

and let 'r~ = 'reF) where F=CUo,U2'U1,D2,D1}' Do c U2 , O2 c U1 o 
and Di = {(x,u)lx E: Ui,c(x,u) E: Ui}for i = 1,2. 

Definition 2.1.5. 

Let (a,b,c,w,v) be an S.D.S. on M and A an r.1. of it, 

suppose x:[a,~) x n -+ M is admissible. 

if for each to E: [To,T1) 

where e:M -+ RP 

We say I\. affirms x 

is some, not necessarily continuous extension of ~. 
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Definition 2.1.6. 

Let x:[T ,~) x n + be admissible. Then k is said to be 
o 

a looally regular solution of the stoohastio differential 

equation 

dx(t) = a(x(t))dt + b(x(t))dw(t) + fC(X(t),U)-X(t)V(dt,dU) 

if every r.1 of (a,b,c,w,v) affirms x. 

Remark 

This statement makes even less sense than usual since 

the last term contains manifold valued things. However, we 

regard it as a global representation of what goes on in charts. 

2. Uniqueness and Extension 

We shall take a different approach to that of Elworthy 

[2J in that we shall construct a solution and show that it has 

the required properties. In fact the two approaches are formally 

equivalent, the difference being mainly one of emphasis. 

Definition 2.2.1 

We sayan Atlas A consists of big charts (by abuse, A 

is a big atlas) if V x,y € M, .3 (<P,U) € A s.t. x,y € U. 

We use big atlases to cover the paths of an admissible 

process as shown in the following lemma. 
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Lemma 2. 2 . 1. 

Let A bea countable big atlas, and let x:[a,~) x n ~ M 

be an admissible process. If we define Li[tj,tkJ as 

then U Li[tJ"tk J = [a,~) x n, up to a set of measure zero, where 
ijk 

the tt fonn a ca.mtable dense subset of [a,oe) and cmtain a. 

Proof 

We can suppose that ~ > a on n. 

Since a.a. sample paths are right continuous,for any V, a n1:x:l. of x(a) there. 

exi~a nbd.of a, [a,E) say, such that x([a,E),w) € V • . 
So~{" o.<\.w ~,,~ ~·~t~;"o.~lj :su.c.h~t- (SI",)E LLf.o. }"tjl:1;,r se.Ca) tj1. 

F6r"a.a.1.iJ and s €[a,~(w»OOdfot-~~ nejghba.ahoodS V!""and V- of x(s,w)and 

x-Cs':,'w) respectively +h~r~ u..:st., ~~OSt.4.Cht:~"dt.X.((S-e)~+~))~ V-t-uV.
'$0 ~ CL.q.. CoO ~ QJt~~ i-J l'~ k. ~il (\;, w) .~. L i [t j , tk J for aU ' 
J1:._-E. '-C::t J) t£\ . ~ ( ~; -' 

The lemma follows. o 

Lemma 2.2.2. (Global Uniqueness) 

Suppose that xi: [To'~i) x n ~ M, i = 1,2 are locally 

regular solutions of 
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dx(t) = a(x(t»dt + b(x(t)dw(t) + I c(x(t),u)-x(t)v(dt,du) 

Proof 

Let {Ai} be a countable collection of r.l's of (a,b,c,w,v) 

such that {~jlu~,U~} forms a big atlas and let T' be a countable 

dense subset of C Tb,Tl ) 

Define E(t) = 

so E(t) € Ft. For to' tl € T', let 

By hypothesis 3 zj[to,tlJ € Ft of measure zero such that 

for w € Aj[to,tlJ \ ZjCto,tlJ 

ei 0 xl(w)ICto,tlJ = ~j(w)ICto,tlJ = e
j 

0 x2(w)ICto ,t l J, 

where e~ and ej are extensions of ~i and ~j, and 

yet) = ej 
0 x1(to ) + J: aA(xj)(S))dS + It bA(Y(S»dw(s) 

0 to 

+ I It c(y(s),u)-y(s)v(ds,du). 
to 
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Suppose that w satisfies t < ~l (w) " ~2(w) and xl (w) I [To,tJ 

is right-continuous with left-hand limits. . Suppose ~ s € [T
d 

t) 

such that 

Then, ~ j with w € Aj[to,tlJ for some to,t l € T' such that 

T ~ t ~ s ~ tl ~ t, since {(~j/uj,uj)} forms a big atlas. o 0 0 0 

It follows that if w € Aj[to,t1J we have 

Remark 

If we had not used a big atlas in the proof then we 

could not have deduced the result. 

For example, suppose M = R, a = b, a = b = O,c(m,u) = m + u 

and v is such .that its parameter measure satisfies, 

Il{(±l)} = I, Il(A) = ° if A n ({-I} u {+l}) = C/J. 

Then x(t) ~ v(t,l) - v(t,-l) is a solution of the stochastic 

differential equation, induced by (c,v). If we take an atlas 

of r.J!sof.ID. such that diam/Uo / < I, then we cannot get 

information beyond the first jump time, so for example, -x(t) 

is also affirmed as a solution by this cover. 

Lemma 2.2.3. 

Suppose that xi:[ai'~) x n + M, for i = 1,2, are l.r. 

solutions to 
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dx(t) = a(x(t))dt + b(x(t))dw(t) + I c(x(t)u)-x(t)V(dt,du) 

given x(ai ) = 

If we define: 

x , ao 
l. 

a.s. for i = 1,2, 

(i) x':[a1'~') x n + M 

where ~ , = f'l if ~1 S a2 or a2 S ~2 S '~1 

~2 if ~2 > a2 and a2,·s ~1 S ~2 

and x'(t) = x1(t) a1 S t < ~l(w) S a2 

or a s t s ~, 2 <" 

and 

( ii) of [ l. a1 = a2 define x: a1'~) x n + M 

then x' :[a1'~')' and x:[a1'~)' are admissible processes, , 

and are solutions to the stochastic differential equation. 

These definitions are made clear by the following diagrams: 
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. (i) 

(ii) 
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Proof 

In case (ii) the proof follows if {w/~_ > a
1

} n {w/~ > a } 
.l 2 1 

= ~, since then for any l.r. 1\ 

[a
1

, A 
v ~2» 

A 
[a1 , A 

A~l) x nA 
Tt A (~1 x n

t = Tt 
0 0 0 to 

U A A disjoint [ a
1

, T t A~2 ) X n
t 

• 
0 0 

Hence if xl and x2 are affirmed by 1\ , so is x. 

Otherwise put ~' = [:1 
if ~1 ~~2 1 

~2 ~~1 

~' 

= r: ~2 > ~1 2 

~1 ~ ~2 

Then ~i v~' = 2 ~1 v~2 and 

x i /[a1 ,;i) x n is a l.r. solution for i = 1,2. 

follows. 

In case (i) Put ~i = 

~' = 2 

~1 

a 1 

~2 

a 1 

if 

or 

if 

~1 !> a 2 

~2 !> ~1 

~2 > ~1 

~2 > ~1 

otherwise. 

Again we have ~1 v ~2 = ~~ v ~~, and given a r.l. A 

The proof 
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Now 

In the remaining case the result follows from the existence and 

uniqueness of solutions. 

The proof follows. o 

3. Construction of Solutions 

In this section we shall construct a solution and show 

that it is maximal in a strong sense. 

Lemma 2. 3 . 1. 

Given the equations dx(t) = a(x(t»dt + b(x(t»dw(t) 

+ fC(XCt) u) - x(t)~(dt,du) together with x(T) = x , F -measurable 
' 0 T T. , 

} . [ 0 0 A and A a r.1. A = {CCP,U),Uo,U1,A. Def1ne x: 't,';)x 11 -+M, where .; =TT,by 

o 



-43-

Then x(t) is a solution to the above equation. 

Proof 

We need to show that if A' is any other r.1. then AI 

affirms x. 

Without loss of generality we can suppose that 

Let g be a bounded extension to mn of the change of 

-1 
chart map ¢' 0 ¢ 

Writing y(t) = g(xA(t)), then by Theorem 1.5.5, 

g(XA(t» = g(xA(TJ) + f; a'(y(s»ds + f: b'(y(s»dw(s) 

o 0 

A for t < T , where 
T o 

+[ 
o 

~ 

c'(y(s),u)-y(s)v(ds,du), 

a' = Dg(g-1(y))a(g-1(y)), y € Ui 

b' = Dg(g-1(y))b(g-1(y)), y € Ui 

-1 c'(y,u) = gc(g (y),u) (y,u) € D(Ui,Ui) 

and are suitably smooth bounded functions. 
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Now by definition of aA ' bA ' cA we see 

a' = a' A 

b' = b' on U' _ 1 or D (U 1,U1) respectively 
A 

c' = c' A 

So 8' 

a:nd we are done. 

Now let {Ai} be a countable collection of l.r's such 

i that {Uo} cover M, and let T' be a countable dense subset of 

~011) including To' 

Let it. ,Ak } be an ordering of T'x {Ai}' such that t 1· =T. 
1. "EJN 0 J J J 0 0 

B L mma 2 3 1 Yo 
~s a solution. y e .., .... 

Now given Yn-1: ~o'~n-1) x n ~ M, define 

Explicitly we put Yn-1 = xl' a1 = T, a2 = t. and 
0 1 n 

i i 
(cj> n)-l [t. , II. n) n ~ M 

x2 = 0 xII.. 'tt. x 

ln 
ln ln 

(X
2 

is a solution by Lemma 2.3.1). 
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Then define Yn to be x or Xl, ~n to be ~ or~' according to 

whether t. = T or not. 
l.n . 0 

By Lemma 2.2.3, 

Yn: [Td ~n) x n -+ M is a solution. 

Finally let ~ = sup ~n and define 
n 

y: [TO' ~) x n -+ M, by y(t) = Yn(t) 

if t < ~n ~ ~. 

Lemma 2.3.2. 

Let y:rr ?~) x n -+ M be the solution just constructed and 
o 

let X: fl' ,n) x n -+ M be any other solution. If the {U
i 

,<pi lui} 
o 0 0 iclN 

form a big atlas, then, n ~ ~ a.e. and 

x(t,w) = y(t,w) for t < n(w). 

Proof 

The second assertion follows from Lemma 2.2.3. Suppose 

the Lemma is false, then we can assume without loss of generality 

that n > ~. 

By Lemma 2.2.:1:. U Li [t
J
. , tk J = [To' n) x n and so 

ijk 

for a.a. w, ~ i, t j , tk such that tj < ~(w) < tk and 

(~(w),w) € Li[tj,tkJ· 
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have included this in one of our inductive steps, so we have 

a contradiction, and n ~ ~. o 
Collecting together the results of the previous sections we 

have: 

Theorem 2.2.3. 

Given the stochastic dynamical system (a,b,c,w,v), and 

initial condition x , f -measurable. There exists a unique a a 

solution x:~o'~) x n + M, of the corresponding S.D.E. which is 

maximal in the sense that if y: IT ,n) x n + M is any other o 

solution, then n ~ ~ a.e. 



-47-

CHAPTER 3 

1. Submanifolds and the Completeness Theorem for Compact 

Manifolds 

Proposition 3.1.1. 

let (aI' b1 , c1 , w,v) and (a2 , b2 , c2 , w,v) be stochastic 

d~namical systems on the manifolds M1 and 112 respectively and 

suppose that h :M1 -+- M2 is a C
3 

-diffeanorphism of M1 on to an open 

subset of M2 su ch th at I 

h*(a1 ) = ~lh(M1}' h*(b1 ) = b2Ih(M1)and 

hOC1 (h-1 (.),.) = c2 Pit1 (M),h(M». 

If xl : rrol~) x n -+- M1 is a locally regular solution of 

(1) dx1 (t) = ~(x1(t»dt + b 1 (x1 (t»dw(t) 

then x 2 = hox1 : [T'J~) x n -+- M2 is a locally regular solution to 
, 0 

(1) with the index 2 replacing I, throughout. 

Proof 

Choose an ascending sequence of open sets {U
i

} of h(M
1

) 

such that Vi C Ui +11 Ui/t h(M1 )· let Li be the first exit time 

i 
A ~, Xl = x I IT ~ ~ .) x n and o 1. 
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iii x
2 

= hox
l

. Each x
2 

is a solution of the second equation, since 

it is affirmed by all regular localizations supported in Ui + l · 

Since ~ = sup ~i' by uniqueness we have that x 2 is also a 

solution, as reqUired.,C.F'. Wa.~ 2.2.~. 0 

Theorem 3.1.2. 

let j:M
l 

-+- M2 be a C
3

-embedding of a manifold 111 into 

the manifold M2 • Suppose the stoch asti c dynamical system 

(a2 ' b2 ' c2 ' w, v) on M2 has a2 !j (M) and b 2 ! j (M) tangent to 

j (M) and c2 ! j (M l ) x lRP n D c j (M l ) . This induces the stochasti c 

dynamical system (aI' b l , c l ' w,v) on Ml given by j*(al ) = a2 !j(Ml ), 

i*(b
l

) = b
2

!j (M
l

) and jocl (j-l,.) = c2 (·,·) !j(Ml ) x mP n D. 

let xi :[Tb'~i) x n -+- Mi a locally regular solution to 

(i) dxi(t) = ai(xi(t»dt + bi(xi(t»dw(dt) 

+ J ci(xi(t),u) - xi(t)V(dt,dU) i = 1,2. 

Then Xl = jox
l 

:['r
o

.';) x n + M2 is locally regular solution of (2). 

Conversely if j is a closed embedding then any locally regular 

solution of (2), with X 2 (TJ(Q) c j(Ml ) is equivalent to one of 

the form j 0 xl' where xl is a solution of (1). 

Proof 

We first suppose that j is a closed embedding. Choose 

a cover of M2 by a countable family of local regularizations 

{A:i, such that {(~IU~,U~)} forms a big atlas of M2 , and such 

that if Ml n U~ =i f/J, then I 
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cp~(U) = W = w,. x W" c mr x JRn-r 

cpk(U
o

) = Wo = WI X W" c lR r x Rn - r 
0 0 I 

cpk(U
1

) = W1 = WI 
1 

X W" 1 
c JRr x lRn - r , 

. cpk(Ml n U) WI X {OJ c mr n-r 
and = xm 

where r = dim M1 · 

Then if Ml n U~ f ~ 

A~ restricts to a local regularization A~ of (a1,b1,c1,w,v), 

\\ith 

a2~klmr = a1A
k , 

2 1 

b2Aklmr = b1A
k , 

2 1 

and sAklmr x lRP = c1A
k . 

2 1 

It follows that any solution to the stochastic integral 

equati on 

yet) = y(to) + aiA(y (s»ds + J: biA(y (s»dw(s) 

o 

+/J: ciA(y (s),u)-y (S)V(ds,du), 

o 

wi th i = 1 is also a solut ion wi th i = 2, and vic e-versa if 

1 y(t
o

) € m x {Ole 



-50-

First suppose that each x. : El' ,t;.) x n -+ 11. is maximal 1. 01. 1. • 

Each x. is then equivalent to a constructed solution. Let T' 
1. 

be a countable dense ~ubset of [Td oo
) and take an ordering of 

T' x {A2k} with t = a, giving a corresponding ordering of 
.Q,l 

k n [ n) ,.., M b T' x {A
l

}. Let xi: To,t;i x ~~ -+ i e the n-th construct. 

. n. [T t' n) x n ~ x 2
n [T C-

n) Assume that J OX l · o'~l 0''''2 x n. From the above and 

the method of construction it will follow that 

The theorem will follow in this case by taking the limit as 

n -+ 00, in particular t;l = ~2 a.e. write t;l = t;. 

If x. is not maximal, then t;i = t; /I. ni a.e. for sane stopping 
1. 

time n. $ t;, and the theorem follows. 
1. 

In general j is locally closed, so take a sequence of 

compact sets U
i 

such that fi.Q, c U.Q,+l and U.Q, ;II Ml • Let V.Q, be a 

sequence of open subsets of M2 such that V.Q, n j(Ml ) = j(U.Q,)' 

Let L.Q, = t;l /I. L(U.Q,) , where L(U.Q,) is the first exit time of Xi 

from U.Q,' Now each j~U.Q, is a closed embedding and so 

joxi [TdL.Q,) x n ~ X2 :[TO,L.Q,) x n by the first part of the 

proof. the theorem follows since t;l = sup L.Q, . 
.Q, 

Corollary 3.1.3. 

If M is compact then the explosion time ~ satisfies 

t; _ 00 I f or an y SD E on M. 
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~~ t. be ~ c.'l ~~~OP ~ ""to ~ fOY"&m~ s. 
We write M1 = M and identify M with i(M). 

- 3 s 
Let a:V + M be a C -normal bundle to TM in ill 1M. Using 

the exponential map, this gives a bounded neighbourhood U of M 

in mS with C
3 

retraction map 13:U + M, such that, Da(x) :Rs 
+ T 13a(x)M 

is surjective. For each x E: U, let Sx be the orthogonal complement 

of Ker Da(x) in JR
n

, then D 13(x) I Sx is an isomorphism onto T 13(x)M. 

Define 

ao(x) = (D13(x)ISx )-l a(!3(x», 

bo(X) = (D/3(x) ISx)-l b( /3ex», 

Co (x I U ) = c ( /3 (x) I u ) + /3 (x ) - x, 

X E: U 

X E: U 

(x , u ) E: U x :uP 

[We observe that D = M x mP , since M is canpact]. 

2 f ° ':lRs [0 1] °th Choose a C - unct10n 1\ + , ,W1 supp A C U, and A(M) _ 1, 

'" define a(x) = A(X) ao(x) 

'" b(x) = A(x)bo(x) 

'" c(x,u) = A(CO(X,U»A(X)(CO(x,u) - x) + x. 

'" '" '" s Then (a, b, c, w,v) is an SDS on R , which satisfies the 

conditions of Theorem 1. 5.1. 

Since x~ )(n) c M, and M is compact, E(lx(T·)1 2
) < co, if we let o 0 

x(t) be the maximal solution of the stochastic differential 

'" '" '" equation corresponding to (a, b, c, w,v), then we have ~ :: co, 

and by The orem 3.1. 2, it follows that the solut ion on M has 

~ :: co a.e. 
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n Stochastic Dynamical Systems on R . 

Lemm a 3. 2 . 1 . 

For a canplete. separable metric space M and a finite 

measure space (n,F,ll), suppose y E: LO(n,F,D([a,bJ,M)). Then 

there exists for any E: > 0, a compact subset K of M, and an 
E: 

n E: F, such that: 
E: 

(i) 

(ii) 

Proof. 

and 

and t E: [a,bJ, y(w)(t) E: K • 
E: 

Since D([a,bJ,M) is a canplete separable metric space, 

the measure v = yell), induced on it by y is tight. Thus for E: > 0, 

there is a compact subset of D([a,bJ,M),D , with v (D ) > ll(n) -E: E: 

By Theorem 6.2 [8J {f(t) E: M; f E: D 
E: ' 

t E: [a,bJ}, is canpact in 

subset and n -1 
Let K denote this = y (D). 0 E: E: E: 

The orem 3. 2 .2. 

Let (a,b,c,w,v) be a stochastic dynamical system on Rn. 

n 
Let x:fT,~) x n -+-JR be a locally regular solution to 

o 

dx(t) = a(x(t))dt + b(x(t))dw(dt) + f c(x(t),u)-x(t)V(dt,du). 

E: • 

M. 

Then for any Tl > Td xl [To'~ "T1), satisfies the stochastic integral 

equat ion 
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x(t) = x(a) + Ita fa
t 

a(x(s))ds + b(x(s))dw(ds) 

+ f f: c(x(s),u) - x(s)V(ds,du). 

Proof 

We res trict n to nT' and app ly the previ ous lemma to 
1 

construct, for any E: > 0, a canpact K E: lFP, and n c E: E: 

such that 

We have a regular localization.l\ = {(U, <p),U
O

,U1 'A}' for (a,b,c,w~), 

with K c U and <P:U1 -+ lR
n 

the inclusion, by definition A affirms 
E: AO E: 

x.Since 'rTE:(Ul) ~ Tl" for a.a. Ul E: nE:' this implies that 
o 

xl [To,Tt x ne.' satisfies the integral equation. 

Since E: was arbitrary, the result follows. 0 

3. Solutions as Markov Processes 

From now on we assume that we can find an embedding 

i:M -+ lRq such that the coefficients a,b and c can be extended 

to be globally Lipschitz. This includes for example the case 

when M is canp act. 

The orem 3.3. 1 

Suppose that (a,b,c,w,v) is a stochastic d~namical system 

and that x:[a,oo) x n -+ M is the maximal locally regular solution to 

(1) dx(t) = a(x(t))dt + b(x(t))dw(t) + J c(x(t),u)-x(t)v(dt,du). 
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Then x is a Markov process with transi tion probabilities given 

= P(x (t) € A) where x (t) is the solution 
s,xo s,xo 

of (1) with x (s) = s,xo 

Proof 

We take an embedding i:M + mq 
such that the coeff icient s 

can be extended to be globally Lipschitz. The theorem then 

follo~s from Theorem 1.of Section 9 bf Part 2 of [4J. 0 

Proposition 3.3.2. 

If (a, b, c,w, 'V) is a stochastic dynamical system on a 

manifold M with infinite explosion time, for any FT -measurable 
o 

starting distribution, we have 

Jt 1 ft f(x(t» = f(x(a» + df(a(x(s»)ds+2 Tr d( df(b(x(s»»(b(x(s»)d~ 

To To 

+ ft J f(c(x(s),u» - f(x) - df (T2 c(x,O) ( u 2)II(du)ds 
To l+lul 

+ f:{/f(b(X(S)))dW(S) + fJT:f(C(X(S),U)) - f(x(S))~(ds,dU), 

where: (1) Tr d(df(b(x»)(b(x» = L d(df(b(x)(ei»)(b(x)(e
i
», 

i 

f or any orthonormal basis e. of lRm; 
J. 
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(2) T2 C(x,O):RP 
+ TxM is the derivative of 

c(x,.):RP + M, evaluated at zero inlRP , and 

(3) f is C
2 

and is bounded together with its derivatives. 

Proof 

By Lemma 3.2.1, there exists n c n, with pen ) > 1-€ 
€ € 

and K€ c M, compact such that x(t,w) € K€, V W € n€, (t € [I'o,T
1
]). 

Take an embedding i, of Minto R S for sane s, Since i 

is continuous i (K ) is comp act. 
€ 

'V 'V 'V 'V 

Let a, b , c and f be extensions 

of () . (b) . (. -1 ) d f . -1 to i* a ,1* ,1C 1 ,. an 01, a canpact neighbourhood 

of i (K ). 
€ 

'V 'V 'V _ 'V 
c(x(s),u) - x(s)dv(ds,du),x(a) = 

'V 

iox(a), 

then by Theorem 3.1.2 for w € n€, x(t) = iox(t) a.e. where x(t) 

is the solution to the corresponding stochastic differential 

eq ua t i on on M. 

'V 
x(t) 

- -From the definitions of wand v, we obtain 

'V ft 'V 'V = x(To ) + a(x(s »ds + 

To 
It 1 'V 'V 'V 'V 

T 2 Tr Db(x(s»(b(x(s»)ds 
o 

'V 'V 'V 'V 'V 
c(x(s),u) - xes) - D2C(x(s),O) ( u 2)IT (du)ds 

l+lul 
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+ f; b(~(S»dW(S) + Jf: ~(~(S).U) - ~(S)~(dS.dU). 
o 0 

Now, by the change of variables formula: 

'V 'V 'V 'V It 'V 'V 'V 'V 
f(x(t» = f(X(T» + Df(x(s»(a(x(s»)ds 

o T 
o 

+ It I Df(~(S»[~(~(s),u) - ~(s) - D2~(~(S),O)( u 2)]TI(du,ds) 
To l+lul 

+" ft 
T 
o 

1 2 'V 'V 'V 'V 'V 'V 
2 Tr D f(x(s»(b(x(s»,b(x(s»)ds 

'V '" 'V 'V 
Df(x(s»b(x(s»dw(s) 

ff t'V'V'V 'V 'V 'V 
+ T f (c(x (s) , u» - f (x (s) )v (ds ,du) 

o 
'V 'V IV IV It 'V 'V 'V IV 
f(x(t» = f(x(a» + Df(x(s»(a(x(s»ds 

T o 

f
t 'V 'V 'V 'V 'V 'V 

+ ~ Tr T D(Df(x(s»b(x(s»)(b(x(s»)ds 

o 

'V 
x(s»TI (du)ds 

ft I IV 'V 'V 'V 'V 'V 'V 
+ f(c(x(s),u» - f(x(s» - Df(x(s»(D2 c(x(s),O»( u 2)TI(du)':h 

To l+l ul . 

I

t 'V 'V 'V 'V 
+ Df(x(s»b(x(s»dw(s) + 

T 
o 

The result follows by observing that 

IV 'V 'V 'V 

f(x(t» = f(x(t», a(x(s» = a(x(s» etc. 

and since ~ was arbitrary the formula is valid for a.e. w. 0 
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Corollary 3.3.3. 

Given a linear connection on M, with covariant derivative 

V, 

f(x(t» = f(xT )+ ft df(a,(x(s»)ds + ft ~ Tr[Vdf(b,b)+Vbb)f]x(S)ds 
oTT 

o 0 

{t J + . k. f ( c (x (s ) I U » - f(x(s» - df (T2 c(x(s),O» (u ) n(du)ds 
1+/u/

2 
o 

+ It df(b(x(s»)dw(s) 

T 
+ f f: f(c(x(s),u» - f(X(S»~(ds,du) 

o 

where (1 ) Tr V
2
f(b(x),b(x» = r V

2
f(b(X)eil (x)e

i
) 

i 

(2) Tr Vb(x)b(x) = r Vb () b(x)e. 
i x e i l. 

n and e. forms an orthonormal basis of R . 
l. 

Proof 

This is . immediate fran the theorem, and the fact that 

o 

Theorem 3.3.4. 

If (a,b,c,w,v), and f are as in Proposition 3.3.2, then 

the infinitesimal operator is given by 

Af(x) = lim E (f(Xt)-f(X») = df(a(x» + ~ Tr d(df(b(x»)(b(x» 
t+O J 

t - a 

f(c(x,u» - f(x) - df(T2 C(x,O»( u 2) n(du) 
1+/u/ 
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where x is the solution of the stochastic differential equation 

corresponding to (a,b,c,w,v), with x(a) = x. 

Proof 

Fran Propos iti on 3.3.2 using the fact that E( f: h (s )dw(s)) = ( 

and E(f: W(5, u)~ (cis ,du)) = 0, where h and 11 are suitably integrab~ 

and adapted functions, we have Af(x) = lim t~if[ft df(a(x(s»ds + 
t-+To 0 T 

o 

IT
t 

~ Tr d(df(b(x(s»(b(x(s»ds 

o 

+ It f f(c(x(s),u) - f(x) - df(T2c(x(s),O»( u 2) lI(du)ds~ 
To l+/u/ 

= df(a(x» + ~ Tr d(df(b»(b) 

+ J f(c(x,u» - f(x) - df(T2 c(x,O»( u 2) lI(du). 
l+/u/ 

(s ince f and its deri vati ves are bounded). 0 

Corollary 3;3.5. 

Gi ven a connecti on on M, 

Af(x) = a(f) + ~ Tr V'df(b(x) b(x» + ~(Tr V'bb(f)(x) 

+ I f(c(x,u» - f(x) - df(T2 c(x,O»( u 2) lI(du). 
l+/u/ 
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Proof. 

Irmnediat e. 

4. Processes with independent increments 

n 
Let M be R , a and b be constant, and c(x,u) = x+u. 

Then we construct the maximal solution 

n x:[O,.;) x n +JR. , to 

dx(t) = a dt + b dw(t) + J u v (dt,du). 
• 

Now if J lu/
2

rr(du) < 00, then (a,b,c,w,v) satisfy the conditions 

of Theorem 1. 5.1 and we would be able to conclude that .; :: 00 by 

Theorem 1.1.1. In the general case we need the following pro-

position. 

Proposition 3.4.1. 

If a,b,c, and x are as above, then'; :: 00 

Proof 

Define the stopping times, LR , by 

------,.-1 ~ 

LR = inf {tlv([O,t], B(O;R») ~ O}, where B(O;R) is the 

complement of the ball of radius R centred at O . 
..... ,.,.._ ...... ~."M 

Since E(v([O,t], B(O;R)) -+ 0 as R -+ 00 we have LR ,'?foo. 

Define v
R

([t
1
,t2 ],A) = v([t 1 ,t2 ],A n B(O;R», then we have 

that the integral equation 
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y(t) = f: a ds + f: b dw(s) + J ~u ~R(ds,dU) 
o 

h as a unique s oluti on, s ay ~ (t ) : [0 Joo) x n -+- En. Now define 

and we are done. 

Prop os i t i on 3. 4. 2 . 

If x is as above, then x is a process wi th independent 

in crements . 

Proof 

This is immediate since if sl < s2 < s3 < s4 then 

x(s2) - x(sl) is F s2 -measurable, and xes 4) - x (s3)' depends 

only on w(r) - w(s3)' s3 s; r s t, and v«(s,r),du), s3 s r s; t, 

and by definition, these are independent of FsJfor s2 < s < s3. 0 

Remark 

Any homogeneous process with independent increments, at 

least up to distribution, can be constructed in: this way as a 

glance at the Levy-Khinchine formula imnediately shows [5J 

Chapter 3 page 154. 

In a sense, in the general case, we place a process with 

independent increments in each tangent space, corresponding in 

ordinary differential equations to a tangent vector at each point 

on the manifold. This interpretation is only loose, however, due 
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to the character of (c,v) term, which, in some sense, represents 

a process on the manifold at every pOint. 

If, however, c is related to a geanetric object, as for 

example in the next section we may make this interpretation. 

5. G-bundles, connections and stochastic devel0E!!!~. 

Following Elworthy [2J we are going to represent a class 

of processes on GM, where GIll is a sub-bundle of lM, the bundle 

of frame fields on M, with structure group G c GL(n). 

A connection of GM is a splitting of TGM, into 'horizontal' 

and 'vertical' spaces. 

TGM = HTGM e VTGM.: 

If n:GM + M is the projection, then 

Tnl HTGM is an isomorphism onto each f-ibre of TM. 

We define X:R
n 

+ TM (R
n = R n 

x M, the trivial bundle) as follows. 

Each element g E: GM, naturally defines a map 

g :Rn 
+ Tn (g )M, so we define X by 

X(g,u) = «Tn)IHTGM)-lg (u). 

Suppose that on a tangent space T M, we have: 
Xo 

(1) 

(2 ) 

ao E: Tx M; 
o 

b o E: L(V,T M) (V c Tx M, a subspace), 
-x o 0 
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(3 ) . a Wiener process w on V, and 

(4) A Poisson stochastic me asure v, on T M indep endent of 
Xo 

w and such that the associated parameter measure II satisfies 

J 
lul2 

~-~--= IT (du) < 00 

1+lu1 2 

(Note that these elements together give us a process with 

independent increments on T M given by 
Xo 

J fto u tV Z(t) = ao(t) + bo(w(t» + v(ds,du). 

\\hat we shall do is to transfer this process onto every tangent 

space T GM; of GM). g 

Given go € GM, with Tr(go) = Xo define, 

(1) a g (g) = X(g,g~1(ao»; 
o 

(2) b (g)e = X(g,g-1 0b (e»; 
go 0 0 

(3) c (g,u) = 
go 

a (g,u,O) 
go 

defined} . 

a (g , u,1), where d~ a (g,u,t) = X(a (g,u,t),g-1 u ), 
go go go 0 

= g, and D = {(g,u) € GM x T MIa (g , u,1) is 
. go Xo go 

In this way we produce a stochastic dynamical system 

( a , b , c , w , v) on GM. 
go go go 
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Take a maximal solution of 

dg(t) = a (g(t»dt + b (g(t»dw(t) + 
go go 

wi th g (a) = g . 
o 

Define T :[a,~) x n + 1'1 by 
go 

fCg (g(t),u)-g(t)V(dt,du 
o 

Tg =. 7fog. This is called the stochastic development of Z(t). 
o 

Proposition 3.5.1. 

T is independent of the choice of go in 7f- 1 (X
o

)' 
go 

Proof 

SuPpose h e: 7f-
1

(x ) also, then there exists aYE: G with o 0 

R (g ) = h • where R denotes the right action of G on GM: y 0 o~ y 

R (g) = goy, g e: GM. y . 

By the invariance of connections, for each g e: GM, 

x (g oy )( e) = T g Ry 0 X (g , y (e ». 
-1 

Thus a
h 

(goy) = X(goy, ho a o ) 
o 

-1 = TgRyOX(g,go a o ) 

= TgRy ago (g) 
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Similarly 

b
h 

(goy) = T R b (g) 
o g y go 

and, fran the definition of Ct (g,u,t), 
go 

c
h 

(goy,u) = 
o 

R c 
Y 

and 

= R D = {(g, u) I «Ry - 1 ) (g) , u) € 
Y go 

It follows from Proposition 3.1.1 that 

h(t) = g(t)·y: [0,;) x n -+ GM is a maximal solution of 

dh(t) = ah (h(t»dt + bh (h(t»dw(t) + J c(h(t),u) 
o 0 

h(t)V(dt,du) 

and since 1Toh(t) = ;rQg(t), the result follows. 0 

Examples 

(1 ) If a o = 0, U = 0, for U € B(Tx M), b :T AI -+ T M, is the 
o 0 Xo Xo 

identity and G = O(n), then L reduces to Brownian motion 

on M, as defined in Elworthy [2J. 

(2) Suppose G = O(n), a = ° and V = 0, so.b is trivial, and 

suppose that the parameter measure IT, of v is 

c . du 
IT(du) = n,Ct ,0 < Ct < 2, 

lu In
+Ct 
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where 
20./2 

J 1 - cos <~,u> du where I E; I --= ---- , = 1. c lul n+a n,a 

Note that cn is independent of E; • ,a 

We shall call t(starting fram x o ' say) a geometric a-stable 

process on M. This term wi 11 be exp lained in Section 6. 

Theorem 3.5.2. 

If f:M + R is C2 
and, together with its derivatives, is 

bounded, then 

f(x(t)) = f(x) + It 1 
df(g(s)g- a )ds 

o 0 0 

t . 

J J 
-1 -1 u 

+ f(exp ( )(g(s)go u))-f(x(S))-df(g(s)go )( 2)IT(du)ds 
o . x s 1+1 ul 

+ fo
t. 1 

df(g(s))g- b )dw(s) 
o . 0 

Proof' 
'V 'V 

Define f:O(M) + R by f(g) = 

Then from Proposi tion 3.2.3, 

-1 f (rr (g)), and choose go € rr (x). 
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I
t I ~ , ~ ~ 

+ J fCc (g(S),U»-f(g(S»-df(T2 cg (g(s),O)( U 2) IT(du)ds 
o go 0 l+/ul 

It ~ fIt ~ ~ ~ 
+ 0 df(b (g(s»)dw(s) + J f(Cg (g(s),u» - f(g(S»V(ds,du). 

go 0 0 

Now wri ting (Trr)-l for ('I rrjHTGM)-l , we have: 

-1 -1 ) a (g) = (Trr) gogo (ao ; 
go . 

-1 -1 ~ 
b (g,u) = (Trr) gogo (bo(u», and df = dfoTTI. 
go 

It follows that: 

(1) 

(2 ) 

~ -1 
df(a (g» = df(gogo(ao » and 

go 

~ -1 
df(b (g,u» = df(gogo (bo(U». 

go 

From the definition it follows that the curves S(v,t) = TI 0 o.
g 

(g,v,t), 

o 
are geodesics. 

We have,' at t = 0, 

~ d 2 
d(df(bg (g»)bg (g) = ~ [fOTIOo. (g,b (g,u),t)] 

o 0 dt go go 

d2 
- [foS(b (g,u),t)] 
- dt 2 go 

=; dd [dfCdS(b (g,u),t»] 
t . dt go 

. dB . dB 
= V df (dt (bg (g,u», .dt (bg (g,u»), 

. 0 0 

since!3 is a geodesic. 
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Now 
dS -1 dt (t,v) = gogo v, at t = 0 and so we have, 

(3 ) 

We also have that, at t = 0, 

rv 
df(T

2
C

go 
(x,O)v) = d~ (fOITOago (g,v,l» 

d = dt (fOrroa
go 

(g,v,t» 

= d (S'(v,O». 

Observing that 

-1 
f3(v,t) = eXP 1T

(g) gogo v, gives 

(4) 
rv u _ ( -1 u 

df(T
2

C (q,O»{ 2) - df exp ()(gog ( 2»· 
go l+lul 1T g 0 l+lul 

(1), (2) (3) and (4) give the result. 0 

6. Invariance By Holonomy 

To avoid complications with explosion we assume fran no{v 

on that M is canpact. 

Suppose that M is complete Riemannian manifold, so we have 

a reduction to OM. We can make a further reduction to P(go)' the 

holonomy bundle of M, through the point go € OM with the structure 

group <l>(go). Now P(go) is a closed sub-manifold of OM, and the 

induced stochastic differential equation on P(go) is the restriction 

of the equation induced on a.i, by the Theorem 3.1.2 the 

unique solution, g: [a,E;) x n + P(u o )' of 
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dg(t) = a (g(t»dt + bg (g(t»dw(t) +jC(g(t),U)-g(t)V(dt,dU) go . 0 

is hence equal to the solution of the corresponding equation on 

O(M). Let qJ(xo ) be the holonomy group at Xo = 1T (go) and suppose 
" 

that y(ao ) = ao' for any y E: qJ(xo )· Define a(y) to be the vector 

field on M defined by a(y) = ~: ao where T~ is the parallel trans-
o 0 

latation operator along a curve 0'. such that 0'.(0) = x and 0'.(1) 
o = y. 

Since yea ) = a for any y c:: Ii>(xo )' a(y) is well defined. We o 0 

Will also require that b is a qJ(x )-map, i.e. yb (v) = 
o 0 0 

for any y c::qJ (x ) and v c:: VeT M (which implies that V is an 
o Xo 

irredu cible Ii> (x )-space). We als 0 suppos e that v is such that o 

its parameter measure, IT, satisfies n(U) = n(yU), for y c:: ~(x ) 
o 

and U EO B (T M). 
Xo 

By gs,g(t) we denote the unique solution of 

dg(t) = a (g)dt + b (g(t»dw(dt) + J c(g(t),u)-g(t)V(dt,du) 
go . go 

given g (s) = g. Then by Theorem 3.3.1, % I go is a }'larkov ,s,g 

'\" 

process with transition probabilities P(s,g,t,r), given by 

'" P(s,g,t,r) = P(gs,g(t) EO r), for r € B(P(go»' with corresponding 

'" infinitesimal generator A. 

Theorem 3.6.1. 

Under the above conditions on a t b and v, ~ is a 
o 0 x 

o 
Markov process, with transition probabilities given by 
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-1 P(s,x,t,r) = P(s,g,t,II (r)), where r E: B(M) and II(g) = x. 

Also the infinitesimal generator A is given by 

'VV 
Af(x) = Af(g), where f is defined by 

'" f(g) = f( rr'g)). 

Proof 

We first show that P(s,x,t,r) is well defined. Let 

g(t) = fSs,fS (t) and h(t) = gs,h(t), where rr(g) = 'ITCh) = x. 

if <5 E: ~ (g ) 
o 

then 

Now f or Y E: 'l' ( g ) o 

-1 ) ag (gpy) = X(goy,go ao ' 
o 

= TgRy X(g,yg~l ~o)' 

-1 = TgRy X(g,go ygoao)' 

we put cS = Y . 
go 

by assumption. 

Similarly 

and cg (goY'u) = Ry c(g,yg u). 
o 0 

We now define w, and v' by 

w' (t) = y w(t ), and v I (dt ,du) 
go 

-1 = v(dt,y u). 
go 
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It follows that WI and v' are a Weiner process and a Poisson 

stochastic measure satisfying our standing assumptions. 

It follows that Ry g(t) satisfies 

+ J R c (g(t) ,u) - Ryg(t)V' (dt ,du), 
y go 

with initial con~ition Ryg(s) = goy = h. 

Since w' and v' have the same finite dimensional 

distributions as wand v, by the assumptions on IT, it follows 

from Theorem 1.5.5 that h(t) and g(t)oy have the same finite 

dimensional distributions. 

We hence have the chain of equalities, 

~ -1 -1 
P(s,h,t;rr (f» = P(s,goy,t,.IT (f» 

-1 -1 = P(S,g,t,Ry IT (f» 
-1 = P(s,g,t,rr (f». 

P(s,x,t,f) is hence well defined. 

The theorem follows now by applying Theorem 10.13 of [1J, having 

made the observation of Jprgenson [6] that the Theorem 10.13 of 

[1] is true under weaker hypothesis than that rr maps Borel sets 

into Borel sets. Explici tly we need only the following: if 

F :P (go) + R is B (P(go» -measureab Ie, and is cons tan t on fibres, 

then the function, F:M + R, defined by F(n(g» = ~(y) is B(M)-

measurable. This is immediate, and the Theorem follows. 0 
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Theorem 3.6.2. 

Under the above conditions, 

f(x(t» = f(xo ) + f: df(a(x(s»ds 

f(expx(s)u) - f(x(s» - df ( u ) II'(du)ds 
1+lu1 2 

rt 1 
+ J 0 df (g (s) g~ )( dw (s) ) 

J 
f 1 ~ 

+ 1 f(eXpx(s)(g(S)g~ u» - f(x(s»v(ds,du), 

where by abuse we denote by II', the measure defined on T M 
Y 

-1 
for any y, by II' (U) = rr(goog(s) (U». This is well defined, 

by assumption. 

Proof 

This is immediate from Theorem 3.5.2 and the restrictions 

on a I b and v o' o 

Theorem 3.6.3. 

Given f:M ~ m, C2 and bounded together with its 

de ri vati ves I then 
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f(exp u) - f(x o ) - df( u 2) IT(du) 
Xo 1+lul 

where b l (y) (u) denotes the parallel transport of b (u) along o 0 

a curve joining Xo and y. 

Proof 

This follows fram Theorems 3.6.1 and 3.6.2. 0 

7. Brownian motion and (symmetric)a-stable processes 

If we start with Brownian motion in an n-dimensional vector 

space V then we may, essentially by example 1 of Section 5, con

struct Brownian motion on an n-dimensional (Riemannian)-manifold 

M (the const ructi on of [2]). 

In a vector space we have the notion of (symmetrical)a-stable 

processes 0 < a ~ 2. These are characterized by having 

characteristic functions J(t,w) = exp{ -t 2t'J! a}. 

Lemm a 3. 7 . 1 . 

If V is an n-dimension al ve ct or sp ace with a Poiss on 

stochastic measure v defined on it, then Z (t) = 
. t a J t u ~(ds,dU) is a symmetric a-stable process for 0 < a < 2, 

if the parameter me asure IT satisfies 

c 
IT (du) = n t a du 

\u\n+a 

'Xa / 2 
, where ~-- = f du 

cos <u,~>- 1 lul n+ a ' I~I = 1. 
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IL (t) is we 11 define d sin ce it is a process with independent 
a 

increments and so the solution of the corresponding S.D. E. has 

infinite explosion time. 

Let f:V ~ a be u ~ exp i <u,w>. 

Then by Proposition 3.3.2. 

feZ (s)+u)-f(Z (s) - df(Z (s)( u 2)rr(du)d~ 
a a a 1+lul 

Now 

feZ (s)+u) = exp {i a 

df (Z (s»)( u 2) = 
a 1+lul 

'" f (Z a (s) + u) - f (Z a (s ) ) \I (ds ,d u ) • 

<u,w>} feZ (s» a 

i<u,w> 

1+lu1
2 feZ (s». a 

and 

We take expectations of both sides and use Fubini's theorem to 

obtain 

J(t,w) = J(O,w) + Ito I J(s,w)[exp i<u,w> -1-i <u,w> 
1+lu1

2 

t 'c duo ds 
= J(O,w) + 1

0

' fJ(S,W) [cos <u,w> - 1J --"""n...L,..:..;.a-:--__ 
lul n

+ a 

By ch ang ing v ari ab 1es , 

J(t,w) = 1 - !:}: f: J(s,w)ds 

1. e. J(t,w) !bv~ = exp - ----;aT2 . 

c du.ds n,a 
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Now by example 2 of Section 5, we construct a process 

we h ave called ge orne tri c a-s tab Ie on M. Th at is we take an 

a-stable process on a tangent space T M and transfer this process , x 

to an a-stable process on each T HO(M), and relate this to a g 

process on the manifold, via a stochastic differential equation. 

By the process of subordination we may relate Brownian 

motion on vector spaces to a-stable processes. Explicitly let 

Ta/ 2 (t) have stable distribution of index 0./2 on [0,00) (See 

[3J and ... [5J for the definitions and a fuller discussion), and 

if Z(t) is Brownian motion on V, then Z(Ta / 2 (t» has an a-stable 

distribution. We can do the same on a manifold, Le. if x(t) 

is Brownian.motion on M, then we can construct x (t) = x(Ta / 2 (t», 

and we will call the resulting process spectral-a-stable. 

The above statement is justified by the fact that the 

infinitesimal operator Aa of xa satisfies 

Aa f(x) = _ (- ~)a/2 f(x) 

which is true for the vector space case also. The proof of this 

is outlined in [7J, the right-hand side being defined in terms 

of the spe ct ral de compos i ti on of 6. (in vect or spaces by Fourier 

transforms). Now, by Theorem 3.3.4, with the case of Example 2 

of Section 3 with M = R n , we have 

Af (x) = ff(X+U) - f(x) - df(x)( u 2) IT(du). 
1+lul 

If we take Fourier transforms of both sides we see, in a similar 

manner to the proof of Lemma 3.7.1, that 
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Af(x) = -(- ~)a/2 f(x). 

For a general manifold M this is no longer true. 

Th eorem 3. 7 . 2 . 

If x (t) is a geometric a-stable process on a manifold a 

M, then the infinitesimal operator A of the process is given by 

'U 

where f :T M + ill is defined by x x 

u + f (exp u), x 

and Ax is the Lap lacian on TxM, with metric induced on T (Txllf) I 

by parallel trans lation of g I the Riemannian metric evaluated x 

at x, after identifying TxM with To(TxM). 

Proof 

Af (x) -f f(expxu ) - f(x) - df(x)( u 2)JI(du) 
l+/u/ 

So Af (x) = 

sp ace to JR. 

= t J 

= t f 
f(expxu) - 2f(x) + f(eXPx-u)JI(du) 

'U 'U 'U 

f (u) - 2f (0) + f (-u)JI(du). 
x x x 

A 
_(_ ~)a/2 

2 

'U 'U 

fx (0) I since f is just a map from a vector 

o 

I 
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It is not true, in general, that 

Af (x) = - (- 1::./2) 0./2 f (x) 

if M is not flat I as the following examp Ie shows. 

Proposition 3.7.3. 

where P are Legendre polynanials, n 

and e is a cons tan t element of R3 with I e I = 1. (We wi 11 take e 

along the "z-axis"). If M = S2, considered as the unit sphere 

in 11.
3 , then 

n 
where the as are defined by 

Proof 

P (cos 6) = n 

[n/2] 
r a~ cos (n-2s)6 . 

s=o 

2 
If x = (0,0,1), u € T(O,O,1)S Write u = (r sin 6, r cos 6) 

2 
with respect to sane crthonormal basis in T (0,O,1)S We then have 

exp (0,O,1)u = (sin r sin 6, sin r cos 6, cos r), 

up to a rotation in the tangent space. For a general x, we have 

expxu = 0 exp (O,O,1)u', where 0 € SO(3), lui =Iu' I, and 

0«0,0,1)) = x. 



-77-

Now P «x,e» is invariant under rotations about e, so we can n 

supp os e th at 

G = r: cp 0 -sin cp 

1 0 

cp 0 cp Sl.n cos 

It follows that 

<expxu,e> = cos cp cosr + sincp sin a sin r. 

Now 

(1 ) P n (cos cp cos r + sin cp sin a sin r) 

= P (cos CP) P (cos r) + 2 ~ (n-m)! pm(cos cp)pm(cos r)cos na 
n n m=l (n+m)! n n 

(See [10J page 328). 

To compute Afn , we write IT in terms of polar coordinates. 

c2 du ,cx = 

We observe that if we integrate (1) with respect to a, all 

m the IIp " terms vanish and we are left with n 

We note that, tor any suitable f, 
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Af(x) - f f (exp u) - f (x) - df (x) ( u ) II (du) 
x 1+lu12 

1 ( 
= 2" J f ( ex p XU ) - 2 f (x) + f ( e xp x - u) II (d u ) 

since II(A) = II(-A). 

This together with (1) gives 

f
OO c dr 

O 
Pn(cos r) - P

n
(l) 2,a 

1+a r 

Now P n (cos r) = 
[n/2 J 

L: 
s=o 

n 
as cos (n-2s)r 

n 
where the as are known constants (see [10J page 303). 

J
co [nt2J c2 ,a dr 

t... an(cos(n-2s)r-l) i+a 
o s=o s r 

(Pn (l) = 1 which implies L:a~ = 1) 

J
OO c2,a dr 

and 0 cos(n-2s)r-1 r i +a J
OO c2 dr 

= (n-2s)a 0 cosr-l ;r+a 

1 
2 a /2 J 1-cos<x,u> 

du (I x I 1) , now -= 
lul

2
+a = 

c 2,a 

f2n foo dr 
= 2 a / 2 . 0 I cose I a de I-cos r l+a' r 

0 

2 a/2 2. In 
r(l+a) (00 dr = 2 

Jo 
1 - cos r r 1+a • 

r(l +~) 
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So c . fooo cos r - 1 dr = -r(1+a/2) 

2 a /2.2/1f.r(1;a) 2,a l+a 

which implies that 
00 

. f 0 cos (n-2s )r-1 

and in turn implies 

+~ Afn (x) 
2 a / 2 

r 

c dr 2,a 
l+a r 

that 

= 

r(l+~) 

r (l+a) 
2 

( 

a r (1 +a/2) (n-2s) 

2 a / 2 .2./rr.r(l;a) 

[n/2 ] n a r as (n-2s) )fn(x) 
s=o 

= o. 

Now fn is an eigenfunction of the Lap lacian on S2, with eigen-

value - n(n+l) and by definition, we have 

So if we put n = I, a = 1 in the two formulae and compare, we 

have 

Af1 (x) + ~ f 1 (x) = 0 
2/2 

and (-(-~/2)! f
1

)x + f1 (x) = 0, so A ~ _(_~/2)a./2. 

If we let a-+-2 in the formula for the eigenvalues of A, we 

find that 

11fT (11) [n/2 ] 
r 

s=o 

n (n-2s)a -+- n(n+1) 
as 2 

o 
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[n/2 ] 
1.: 

s=O 

2 
(n-2s) cos(n-2s)r and the 

result. n()w follows by' simp Ie manipu lati on of Legendre polynomi als . 

We surr..marize the abi<Dve in the following diagram, whi ch does 

not canmute. 

Browni an Moti on 
on a vector space 

Sub 1 
spe ct ral Ci.-st ab Ie on 
a vector space 

Int 

The vertical arrows correspond to subordination, and 

the horizontal to solving a stochas ti c differen ti al equation 

on a manifold. 

The construction fails to give the "correct" answer 

because of the global nature of the infinitesimal operator. 

It would seem that the measure IT ought to be related, in some 

way, to the geometry of the manifold. Unfortunately, it is 

not clear in which way to proceed. 
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