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Summary

This thesis examines the asymptotic behaviour of solution flows of
‘certain stochastic differential equations utilising the theory of Lyapunov
exponents. The appréach is taken on two fronts. Initially flows are
considered on compact manifolds that arise from embedding the manifold
in some Euclidean space - the Gradient Brownian flow. In this case the
existence of the Lyapunov exponents is known. Results are obtained for
the sum of the exponents - which has the geometrical interpretation as
the exponential rate of change of volume under the action of the flow -
and for the largest exponent on generalised Clifford Tori and convex

hypersurfaces.

The situation on non-compact manifolds is then considered - where
the existence of the exponents is uncertain due to the fact that the
vexistence of a finite invariant measure is not guaranteed. However, by
considering a stochastic mechanical system this problem is overcome and
conditions for existence are obtained fdr both the Lyapunov spectrum and
the sum of the exponents. Some examples are then considered in the non-

compact case.

Finally in the Appendix a computational method for calculating the

largest Lyapunov exponent on a'hypersurface is considered.



CHAPTER 1.

1.1. Introduction

Our main aim in this thesis is to examine the asymptotic behaviour
of certain solution flows of stochastic dynamical systems on manifolds.
This requires the theory of Lyapunov exponents, a background history of
which is discussed in [AJ. A breakthrough was made in A. Carverhill's
Ph;D. thesis [13], forming [14] and [151, in which the existence of
such exponents for stochastic dyh%mica] systems on compact manifolds was
examined and the existence of local and global stable manifolds, this
closely fo1lowing the work of Ruelle, [56], for deterministic systems.
The theory has been developed extensively in recent years, see in
particu]af [A] and the works of Arno]d [2], Baxendale [5], Carverhill
[14 and 151, Carverhill and Elworthy [181, and Kifer [40]. In this
fhesis we continue this work on two fronts. In Chapter 2 we consider
the stochastic flow arising from embedding a compact manifold in some
higher dimensional Euclidean space - the gradient Brownian flow. For
such stochastic systems we consider the sum of the Lyapunov exponents,
this has the geometric interpretation as the almost sure exponential rate
at which the flow changes volume. We also obtain other results on the
Lyapunov spectrum, in particular examining the Lyapunov stability of

convex surfaces.

In Chapter 3 we consider stochastic dynamical systems on non-compact
manifolds. The existence of a Lyapunov spectrum in this case is uncertain

as there is no guarantee that the process will possess a finite invariant



measure - an essential requirement. However by considering a certain

type of S.D.E. which has the form of a ground state stochastic mechanical
system (see e.g. Nelson [48]) the existence of the finite invariant
measure is ensured and hence, under certain regularity conditions, the
existence of a Lyapunov spectrum. This is first achieved on R" and

then extended to more general systems on complete Riemannian manifolds.
The approach taken is basically that of Carverhill in [13]. The theory

is also developed for higher energy levels of the stochastic mechanical
system, (the time dependent case being dealt with in [21]). For ground
state systems on manifolds examples are considered concerning deterministic
systems under a small stochastic perturbation (analogous to Carverhill's
section 4.3, [13]). Here the invariant measure concentrates on hyperbolic

fixed points of the deterministic system.

In Chapter 4 examples are considered using the theory developed in
Chapter 3. In particular the spectrum is examined for a stochastic model
of the ground state of the Hydrogen atom, originally developed by Lewis

and Truman in [44].

In the Appendix we consider the problem of calculating the top
Lyapunov exponent using computational methods, considering Brownian motion

on an ellipsoid of revolution in R3 as a particular example.

1.2. Preliminary Results

Throughout we shall consider a stochastic dynami¢a1 system on a
complete Riemannian manifold M of dimension n of the form

m
dx, = = X.(x

£7 I (JodBl + A(x,)dt (1.1)
i= :



where Xi(°) en.aRm;TXM) s, 1 £i<sm, Bt € BMaRm) and A is some

vector field on M . Here o denotes that the system is taken in the
Stratonovich sense. We shall assume that the process {x43 t 20} is
stochastically complete (i.e. non-explosive). Under conditions that

we will employ this assumption will be a natural consequence.

Denote the underlying probability space for Bt € BMaRm) by
(2,FJP) , taking 9 to be the set of continuous paths in R" starting
from the origin. Denote the time shift.by time s on @ by 6 where

6 is defined by

(85 ())(t) = w(t¥s) - u(s)

Under the completeness assumption, system (1.1) has a measurable

solution flow ~gt(w) :M>M, t=20 such that

dey()(x) = T X;(E,(w)(x))odB] + Mg, () (X))t (1.2)

(See e.g. [17] or [32]).

In the case M is compact {£.(w) ; t =20} s a flow of diffeo-

morphisms of M .

The following result is immediate from the time homogeneity of the

Brownian motion and the a.s. uniqueneés of the flow.



Lemma 1.2.1

If the flow of system (1.1) exists then for each s > 0 we have

a.s. that

Ep(05(w))Eg(0) = &gy (w) Vtzo.

Proof

See Carverhill and Elworthy [171. Db

In [561, Ruelle considers an abstract probability space (M,z,p) ,

a measure preservingmap Tt : M>M and a measurable map

T:M>LERRY .

As in Carverhill we shall apply the results of Ruelle's sections 1-5
by considering the product measure space (Mxq, B(M) & F , p 8P) and
the map o :Mxa-+Mxgq (s>0) defined by '

o (x,0) = (g(0)(X) » 0 () S0l

corresponding to Ruelle's 1 . We now consider the following result

which will prove important in the following chapters.

Proposition 1.2.2
For any s > 0 , the map ¢S(x,w) preserves the measure p 8P

on MxQ .



Proof

As in Carverhill (131, it suffices to show that for any B ¢ B(M) ,
A ¢ F, the set ¢;](BxA) has measure p(B)JP(A) . Since

o A P(o]' (BxA)) =pBP{(X,0) 3 Eg(w)x € B , 6 (w) < A}
“oBP{(Xsu) 5 £ ()X ¢ BY.pBP((x,0)30_ (u)eA|E, () (x)eB)
= ([ P (xB)(x)).0 8 PL(x)i0, ()e)
XeM
as the events of the conditional probability are independent. Hence
o AP(e]! (BxA)) = o(B) P(A)

as required. 0

We shall also frequently use the following.

Proposition 1.2.3 (Strong Law of Large Numbers (special case) or the

Ergodic theorem).

Suppose that the stochastic dynamical system (1.1) is nondegenerate -
with unique invariant measure p on M . Then for p &P - almost every

(xsw) € M x o we have
1 t
E[ stz - [ sty as e

for any g ¢ C(M;R) .

Proof

See for example Yosida [65] » Chapter 13,or Doob [2617. o



As in Carverhill [133, it will be more convenient to consider the
S.D.E.'s that we shall be dealing with as systems defined on a flat

space. In order to do this we have the following:

Lemma 1.2.4

Consider the stochastic system (1.1) with measurable solution flow
gt(w) : M>M . If M is embedded in some E@’(m>n) , the system (1.1)
can be extended to give a system on R"  with measurable solution flow
?;'t(w) :R"SR", t20 given by |

N

X (Fylw)(x))otBy + AF (@) (x))de . (1.4)

R

¥ (w) (x) =

i=1

Proof

(Similar to proof of theorem 2.1 (1) in Carverhill, [133.) Consider
a continuous map +t:M +R(> 0) such that the set Mﬁ = {MTixj;x e M}
of points in R" less than a distance +t(x) from M at x forms a
(pseudo-tubular) neighbourhood of M . Then for any y « Mﬁv the nearest
point -z e M to y is unique by the definition of a tubular neighbourhood,
and the Tine yz 1is perpendicular to M . Also for any other p e M ,“‘
if yp 1is perpendicular to M then d(y,p) > t(x) . Take a smooth
bump function f : M Q]R +R (2 0) , supported on the set
{(x,r)3]r] < t(x)} and such that f(A) =1 where A ={(x,r);|r| < 2t(x)} .
Then for any y eR™, if y ¢ Mﬁ set %i(y) =0 (1 s‘i <m) ,

K(y) =0, otherwise take the nearest point z to y in M and setv

A
ol
IA
3

><O
<
o)
1

f”f(x,lz-yl)Xi(z)e 1

>

—
<

~
i)

2y A -



Clearly %i (1 <i<m and K are just as smooth as Xi (1 =49 sm)
" .
and A and are supported on an open domain M , say, in R" , giving

system (1.4) with solution flow Et(w) ;R R" 0

We now give a general hypothesis that ensures the existence, almost

surely, of a Lyapunov spectrum for (1.1).

We note first that as a measurable flow {gt(w)(x) ;s t 20}
exists for (1.1) that the derivative process of gt(m)(x) with respect
to x € M exists in probability to give a process Tgt(w)(x)(v). for

each tangent vector v at x (see for example [32]).

Hypothesis 1.2.5

For the stochastic dynamical system (1.1) where the measurable
solution flow {gt(m)(x) ; 20} has finite invariant probability

measure p , suppose that

sup _ log*||Tey (w) (x 111, ¢ L' (M0, 8 P) (1.5)
te[0,T] | P |
where 1og+f = max{0,f} , Tgt(w)(x) is the derivative of gt(w)(x)

in probability and

||°||op denotes the operator norm on GL@®™) .

Note that under the above hypothesis we have that

1

sup  Tog" || T(Ep_ (8 () (¢ (@) (X)) gy € L' (Mx2,0 @P)  (1.6)

te[0,

since  T(eq_q (04 () (6, ()(x)) = (Tep(w)(x))o(Te(w)(x)™) - (1.7)

We then have the following major result.



Theorem 1.2.6 (cf Ruelle [56], Theorem 1.6 and introduction to section 6,

and Carverhill [13]1, Theorem 2.1)

Suppose that Hypothesis 1.2.5 1is satisfied. For a stochastic
dynamical system (1.1) on a complete Riemannian.manifold M, choose
a ‘measurable version of the flow gt(m) tM>-M, t20. Then there
exists a set T cMxqQ of full p 8P measure such that for each

(x;w) ¢ T we have a Lyapunov spectrum

r r-1 1
A(X,w) < A(X,m) < sees < A(X,w) (Y‘ < n)
~ and associated filtration
0 rl r 1
{ } = V(x’w) [ V(x’w) [ ...no C V(X’w) = TXM

. i 141
such that if v e V(x,m) \ V(x,m) then

—]

T .Iogl ITEt(w)(X)VH > )\zx,w) as t » o

Here ||+]] denotes the Riemannian metric on TM for which (1.5) holds.

Proof

(As in Carverhill [13], proof of theorem 2.1)

As in lemma 1.2.4 embed M in some R" (m>n) and consider the
solution flow %t(w) : R" > R" of the extended system (1.4). In this

way the tangent spaces of M can be identified in a Borel measurable way.

We prove the result first for discrete time increments of length T .



Consider the time shift map

v

m
o7

' R xQ+Rmx{z

as defined in (1.3).. By Proposition 1.2.2, gT preserves the measure
o &P on R™ x o and in fact 3’T is ergodic with respect to , &P
(see [13] Appendix B). Consider also the linear map GO:IRme > GLﬂRm)
defined by

6, (%>0) = DEp(w) (x)

and put
6 (Xs0) = G (3 1(x,0)) .
So
6 (%s0) = D(E(6,7(w)))E 1(w)(x)

and by lémma i.2.1, (1.7) and the definition of the time shift 04
Go(x20) = (07 (0)) (g () (010D (w) ()
= 0847 1) (K000 (001 Vo010 0))
Thus by the Chain rule we have that the map
6" (x50) = 6 _1(X0) o ... o G, (%sw) = D?,-'nT@)(x)

Now by Hypothesis 1.2.5 we have that
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+
Jﬁ jg 1og" |16 (%u) [ I Pdo < = - (1.8)

For each q =1,....,m consider ||G0(x,m)Aq|| where aq denotes

the qth exterior power. Consider then the linear map

*

(Gy(xsu) Gy (xu))?

0

which has eigenvalues t] <.... <t , say. We then have

m
e (xw)Ml = 1ty
- pam-q+]
and hence
+ AQ m +
log |6 (x,w)™ || < = . Tog" t
p=m-q+] P

Also, for each p

2
||

t, < 116,(x,0)
Hence by (1.8), for each g =1,...,m

J” f 1og+||Go(x,m)Aq|| dPp(dx) < «

M’
and by Kingman's Subadditive érgodic theorem (Ruelle, Theorem 1.1) applied

to Tog]|G"(x,0) || we have that 1/nilog||Gn(x,w)Aq|I tends to a limit

a.s. which is invariant under the map %T . Also.by Birkhoff's Ergodic
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n-1

Theorem, 1/n = 1og+||Gi(x,w)|| tends to a 1imit a.s. Therefore
i=1
Tim sup %-1og||Gn(x,w)|l <0 a.S..
N->x

We then apply Ruelle's Proposition 1.3 for each (x,»w) a.s. where
Gn(x,w) corresponds to Ruelle's Tn , from which we can deduce the

existence a.s. of a spectrum

r 1
A(x,w) < tesnen < A(x,w)

| and filtration

_ yr+l r ,
{0} = V(x,w) c V:x,w) "'7"C V(

such that if v ¢ sz_w) \ Vi+]w then

;L-1og||G"(x,w)|| > AZX,w) as n -+ w

nT

The discrete time version of the theorem follows.

To extend to the full continuous time result, we continue as in
Ruelle's Appendix B. Foreach s , 0 <s <t we have by lemma 1.2.1

that
n N
B (o () (E () = £ p(w)
Then a.s. independently of n,t we have

’gt(w) = gt-nT(%ﬁw))’gnT(w) , _ (]'9)
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Ernan)1(®) = E(nanyrog(0g(0)) e (w) (1.10)

for all n and all t e [nT,(n+1)T] . Hence a.s. we have by (1.9)
and (1.10) that

Tog| [DF, (w) (x)v]] < Tog] [D(¥,_ r(qr{w)))E,p(w)x|| + Tog| D8 1(w)(x)v]]
and

]Oglngt Y(x)v]] = ]09||D§(n+]) x)v||-Tog||D( 5(n+1)T-t(et(”)))(gt(“)(x))I|

for all t e [nT,(n+1)T1, X,v ¢ R"

Thus, if we set

¢](xs‘*’) = sup ]Ogl ID'é't(w)(x)Il
tel0,T]
6p(xsu) = sup _ Tog|[D(¥;_y (6, ()))¥,(w) (X)1]

te[0,T]

Then we have a.s. indebendent]y of n, x, v, that

Tog |02 gy () (IVI] = 0p(8 1(x0)) Tog] | 0¥, (w) (x)v| |

< 1og||Dg (@) (x)V]] + #¢(e T(x,w))

for all t e [nT,(n+1)T1 . Thus ¢1 and 6o correspond to the functions
(B.1) and (B.2) in Ruelle's Appendix B. By Hypothesis 1.2.5 and

(1.6) 61 and ¢, are o @ P dintegrable and are clearly non-negative.
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Therefore by Birkhoff's Ergodic theorem
1
= 95 ( nT( w)) +0 as n=+eo for a.e. (X,w) .

So for these (X,w) € R" x

Tim - Tog| |08 1(w) (x)v1] = Tim § Tog] [0¥(w) (x)v] ]
N+ nT to
and the continuous time result follows. ' 0

Remarks 1.2.7

(i) It is clear that for the above result to hold it}is only required
that a measurable solution flow {Et(w)(x) ;s £t 20} of (1.1) exists
and hence its derivative Tgt(w)(x)(v) exists in probability; strong
completeness (i.e. such that gt(w) : M~> M is continuous a.s.) and
the existence of a flow of diffeomorphisms is not required. Completeness
is assured by the existence of the finite 1nvariant probability measure o

(see for example [641).

(i) If M ds compact then we have Carverhill's Theorem 2.1 where

[1-]] in Theorem 1.2.6 is any Riemannian metric on M.

(ii1) From the proof we see that the Lyapunov spectrum is a.s. jnvariant
under the time shift op - Indeed in Carverhill's Appendix B it is
shown that o, is ergodic with respect to the measure p BFP for a
non-degenerate system (1.1) and for such a system the Lyapunov spectrum

is a.s. constant, independent of (x,w) a.s..
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So for a non-degenerate system the statement of Theorem 1.2.6

could be rephrased so that the spectrum and associated filtration can

be written as

AT <. < A] (r <n)
and
r+] r 1 .
{0} V( V(x’ ) C eovee c V(X,w) = TXM

Vi+1

(X50) “then

d \
and if v e % o) N\

Tim %-1og!|T£t(w)(x)v|| =2
toe '

where a]]ythe A s (1 <1 <r) are independent of (x,w) a.s..

In this case we can also consider the weighted sum of the exponents

given by
- J J+1
A z d1m(V(x’ V 9 A
j=1
= Tin 1 Tog|det g, () (x) | (1.11)
toeo | .

1.3. Formulae for the Lyapunov Exponents

In [14], Carverhill obtains a formula for the Lyapunov exponents,
in particular this formula picks out the leading (largest) exponent A] .

This is given.by

tin & Togl e, () (vl | = [ g(v)y o a2)
toe veSM
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where SM denotes the sphere bund]e to M and v 1is an invariant

probability measure on SM . The function g : SM >R 1is defined by

m n,
g(v) = ga(v) + % gldgx (X(v)) (1.13)

where

and

. ,
gxi(v) = <in(v),v> *i = X(-,ei), where Yi = X; -

D. Elworthy has reformulated (1.12) to give the following

L1t m
A(x,w) = 1im ?'J {<ns(w)y,v(A +§.z

e 0 521 ‘in(xi))(ﬂs(w)v‘b

‘ m
32U g1 - 249K g (0)v)sng (0)°
i= ,
- <R(X.i,ns(w)v)ns(m)V,X_i>}}dS (1.14)
Te () (%) | |
where ns(w)  — is the sphere bundle flow and R(-,:) is
1Ts () (0] |

~ the curvature tensor (in the notation of Kobayashi and Nomizu, [41]).

In particular when (1.71) determines a Brownian motion on M then

m
A+3 = in(xi) = 0 and we can choose orthonormal co-ordinates so that
i=1 ‘
X],..,Xm form a” frame at x , whence
m . _
I <R(X,,n (w)v)ns(w)v,xi> = R1C(ns(w)V,nS(w)V)

. 3
i=1 !
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where Ric (+,*) denotes the Ricci tensor. Then (1.14) becomes

M) T L0 %Jo{ﬁf!vx W% - 27 (ng (Vg (w)v

-RiC(ns(w)v,nS(w)v)]}dS . (1.15)

In the special case that M is embedded in some R" and the system
(1.1) is obtained from the embedding (i.e. the gradient Brownian flow)

then (1.15) becomes (see for example [163])

k(x,w) 11m 2—{ {{a, (ng (0)v,- Iz-zlax(n (w)vyng (w) | -Ric(ng(w)v,ng (w)v)}ds
(1.16)

where o, TxM X T*M > TXMl denotes the second fundamental form of M .

We also have the fo]1owing formula for the determinant which enables
us to examine Ay s the sum of the Lyapunov exponents. This was first
shown to us in a private communication by P. Baxendale and basiéa]]y

follows from Itd's formula. We have for system (1.1) -

t m j t
log|det Tgt (x)| = JO 1.Eldiv Xi(gs(w)(x))st + JO div A(gs(w)(x))ds

oyt om
3 Jo I T X (6 () 00) K () ()25 (1117)

which on compact M yields, by (1.11) and Proposition 1.2.3
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= 1im %i]ogldet Tgt(w)(x)l

o

>
1

T <Oy X (0. (p(d) (1.18)

n

J div A(x)p(dx) + 3 J
M M i=]
where p is the unique invariant measure on M . We note here that
the advantage of (1.18) is that knowledge is only required of the
invariant measure o on M and not that of any derivative system as

required for (1.12) - jthus making A, more accessible to actual

calculation.

1.4, Stationary Stochastic Mechanics

For the following see Nelson [48].

On a Riemannian manifold M" consider the Schrodinger-opérator

Shaev, | | (1.19)

Where A s the Laplace-Beltrami operator and V 1is some potential |
function Vv : M+R . Let EO “be the lowest eigenvalue (ground state)

with Corresponding normalized eigenfunction 99 * M>R (> 0) such that

(- 38+ V)og=Epey - | | - (1.20)

V is assumed to be sufficiently regular such that Vg € L2(M,dx)

where dx "denotes the Riemannian volume element.

Consider the renormalization procedure ¢61(-§M-V)(¢00 this yields
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the operator

3 8+ A(%).V (1.21)

where A(x) = ;v]og|¢o(x)|2 Under suitable regularity conditions
there exists a stationary Markov process with generator (1.21) which

has invariant distribution

p(dx) = l¢o(x)lzdx . (1.22)

Such a process can be represented as the solution of a stochastic

differential equation

dx t

¢ = X(xt)odB + Z(xt)dt + A(xt)dt | (1.23)

provided the solutions to the Stratonovich equation

dy, = X(yy)odBy + Z(x;)dt

form a Brownian motion on M . Here Z is a vector field on M and
for each y ¢ M, X(y) ¢ R" » TyM maps R" , some m linearly into
: TyM . The system (1.23) is called a ground state stochasfic mechanical
system and its solution '{xt;t > 0} ds called a ground state process.

The Kinetic energy of the stochastic mechanical particle satisfying (1.23)

is given by

K.E. =} JM IV¢O(X)12 dx . (1.24)
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By the existence of the finite invariant measure (1.22) the system
is complete, but not necessarily strongly complete (= strictly
conservative), so solutions starting from some point Xq € M continue

for all time a.s..

For the time dependent case, (1.19) becomes

oY '
P2 v
ot

and (1.22) is then given by
04 (x) = vy (x)]%ax
t t ’

This situation is more comp]icatéd, but the work of the following

chapters has been considered for such cases in [211.
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CHAPTER 2.

2.1. Average Lyapunov Exponents and Gradient Brownian Flows

Throughout this chapter we assume that M is a smooth, compact,
n-dimensional Riemannian manifold. A standard way of obtaining Brownian
motion on M s to isometrically embed it in some Euclidean space RrR" .
If f:M->R" , f = (f],...,fm) is the embedding map then we can

consider the vector fields

X. = vf. 1<i<m.

This is equivalent to considering the map X : M x R™ > TM of

(1.23) being given by
X(x) = orthogonal projection of R" onto TxM .

The vector fie]ds‘,Xi (1 =i sm) give rise to the stochastic differential

equation

m

dx, = & X

i Ly
7 5 (x,)odB} : (2.1)

.i

on M, where o denotes that the equation is taken in the Stratonovich
sense. As shown in [32], (pg.253), this equation has infinitesimal

generator A = 3A , that is each solution is a Brownian motion on M .

Definition 2.1.1

A solution flow of a gradient stochastic differential equation of
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the form given by (2.1) 1is called a gradient Brownian flow.

We shall consider the asymptotic behaviour of such a gradient
Brownian flow by considering X and Ay the top exponent and sum

of the Lyapunov exponents associated with such a process.

We first consider the sum of the exponents Ay - The following

gives a formula for Az

Theorem 2.1.2

For a gradient stochastic system on a compact n-dimensional

Riemannian manifold M , the sum of the Lyapunov exponents Az is given

by the formula

2
A =0 J IH(x) | 2dx (2.2)
2(Vol M) u

where H(*) denotes the mean curvature vector of M .

Proof
- By (1.11)

1

Ay = lim g log|det Dg, (w) (x)| . (2.3)

1o
where gt(w)(x) denote$ the solution flow of equation (2.1). For a

gradient Brownian system of the form (2.1), A =0 and (1.17) reduces to

tm ;
Tog|det Dgt(w)(x)l = JO 1‘i]div Xi(gs(m)(x))st

tm
+ ;JO i£]<vdiv X; (£ (0) (X)), X5 (g () (x))>ds . (2.4)
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We first show that

1 ‘jtm X (E(w)(x))dB} = 0 '
im — L div X. (& _ (w)(x = a.S..
oo Lo 421 1S s

tm .
For this we shall show that J z div Xi(ES(w)(X))dB; = ¢ (w)(x) , say,
0 i=1

is a time changed Brownian motion. By the Ito formula

2 t mo =
o2 (w)(x) = 2 JO b5 (6 (0)- T div Xy (& (1) (x)) 8]
tm \2
+ J0,121 (div Xi(Es(w)(x))) ds .

Define o : [0,») x @ » [0,») by
qsm ' 2
o(tsw) = Min {J L (div X, (£,(0)(x)))%dr =
s 0 i=1
if such an s exists, or « otherwise. (Note that since the integrand

is non-negative a.s., o(t,w) 1is non-decreasing a.s.). So

o(t,w) m i .2
J (z div Xi(as(w)(x))dB;)= t
0 i=1 |

and ¢2(t w)(m)(x)-t is a martingale. Hence by Levy's characterization
bo(t )(w)(x) is a Brownian motion, ﬁt(w) say. (See e.g. [32] pg.80-84).
o(t,w

Henqe

bylo)(x) = ép(t,w)(w)



- 23 -

where

t 2

o(tw) = [ 3 (@ (e ()00 e
m
. *

is bounded ¥ x e M,

Since M 1is compact, the integrand (div Xi(x)

7 i=1
by K, say. Hence p(t,w) s Kt a.s. Also %'éki(w) +0 a.s. as

by Hin&in's Law
t + =, (see Mckean [45] pg.9), therefore

Tim 1 ¢, (0)(x) (= 1 §p(t’w)(w)a.s.) - 0 a.s.

too

as required.

For the second integral in (2.4), by the Strong Law of Large Numbers
and the fact that the unique invariant measure on M is given by

o(dx) = (VoI M) ldx we have that

Ay = N J I . <vdiv Xi(x),Xi(x)>dx .
2(Vol M) /M i=]

"~ Since -div and v are adjoints, integrating by parts bives

1 m 2
B = — J z (div’Xi(x)) dx
2(Vol M) IM i=1
T : 2
= - J (trace ax) dx
2(Vol M) ‘M

‘where oy : TXM X TXM -+ TXMl e R" , X € M, denotes the second fundamental
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form, [411. Thus since H(x) = T (trace a,)

2
S H(x)|%d
"1 2(Vol M) JM 1HG)

and hence the required result. 0

We remark that since f : M >R" is an isometry (2.2) can be

written as

AL = -

2
e ML
2(Vol M) ‘M

where 1 denotes the tension field of Eells and Lemaire, [313.

Examples 2.1.3

By (2.2) it is clear to see that the leading and only exponent for

an embedded 1-dimensional manifold is given by

S Y
2(Vol M) M

where K(-) denotes the curvature of the p]éne curve,‘ i.e. K(x) = 1/r(x)

where r(-) 1is the radius of curvature.

() Consider the standard embedding of S| in R given by
f(x) = (cos X, sin'x) . o

Equatiqn (2.1) has the form

dxt = -sin xtodBl + ¢os Xt°dBt .
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Clearly K(x) =1, ¥ xe S] and hence A = -} .,

(i1) Consider 3 isometrically embedded in R® as an ellipse,

the embedding given by

f(e)

(asine,bcose) azb>0.

Then

ab

¢ 2s1n 9)3/2

K(e)
(a cos & +b

the volume element

= (a cosze + b sin e)]/2

and the Tength of the ellipse is given by 4a E(k) where E(k) is the
complete elliptic integral of the second kind, [58] , defined by

m/2
E(k) = J (1 - kPsined
2 2
and k2 = 3—59—
- U
So \ ‘ o
\ _ -b2 : JZn de
8a’E(k) Jo (1 - K%sin Z0)5/2

(a2+b2) (IR
“3a%b® E(k)  6a

where F(k) denotes the complete elliptic integral of the first kind
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(58], defined by

F(k) =

JW/Z do
0 (1-k%sinZe) /2

k as before. We now examine X for various values of a and b .

Clearly A =-3 when a =b (i.e. the circle S]) .

Suppose that the length of the perimeter of the ellipse is kept fixed,

i.e. & =4afE(k) , & constant. Then

Since a 2 b and the length of the perimeter is kept fixed, as a increases

b must decrease and tend to zero. Clearly as a increases -1/3a2

remains finite and small. We therefore need to examine - -12-+ EXE). E_
3b 2 3a

for small b .

By obtaining the maximum value of the continuous function

2

h(e) = (1 - k%sin%e)? 6 e [0,1/21, KZ <1

we can find an upper bound for F(k) , namely

m/2 d T 1 ma
J. - S-é-.————z—é = e—

0 (1-k%sinfe)} (1-k°) 2%

Hence
1im - _l?.+ F(k) 2_ < lim - —12-+ m Z
b0 362 & 3a b0 35 2b  3as
- 7im AT
b+0  3b%%
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For small enough b , £ > bmr , hence

]'im-]__2+ﬂl(_)..g. = -~ ©
b>0 3" 2 3a

and A + - 3as a increases and b approaches zero. This implies
increasing stability of the system as the eccentricity of the ellipse
increases, (k2 = e2 where e is the eccentricity).

In[19] it was also shown that for S] isometrically embedded in RZ

the induced gradient Brownian flow satisfies:

A s the leading eigenvalue of A (i.e. =-3).

] . For this

(i11) Consider the standard embedding of S" in R
embedding it is well known (see e.g. [41]) that H(x) =1, ¥ x ¢ s

Hence by (2.2)

2 . .
n
A = o= — (2_5) )
z 2 ‘ : _

We note in [161, Elworthy showed that for this embedding the top Lyapynov

exponent A = -n/2 and hence by (2.5) all the exponents for s" e ]Rn+]
are equal.
(iv) Consider thé torus of revolution, or e-tube, embedded in R3 .

The embedding is given by (see for example [491])

f(u,v) = ((1+e cos v)cos u, (I+e cos v)sin u,e sinv) O<e<1.

Then the elements of the first and second fundamental forms are
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E = (1 + ¢ cos v)2 n=ce
F =0 m=20
2 .
G = ¢ ¥ = (1 + e cos v)cos v.

Hence the mean curvature is given by

H = %[_l 4 oS V4

e  (l+ecosv)

and the unique invariant measure on y is given by

dx = e (1 + e cos v) dudv

4r-e
Thus
2melm 2.
A = -2 j (1+2ecosv) o (Jrecosv) gy
z Jo o ae%(14ccosv)? 4nZe
r2m | 2
I (1+2ecosv)™ 4

8ne2 Y0 (1+ecosv)

which by residue theory yields

1
252?]-82

Ap = -

We see from this that A, tends to -» as e tends to-0 or 1 and

2 . 2/3, this being A™* = _3/3/4 .

also Az- has a maximum value when ¢ .

Remark 2.1.4

We note that it is clear from the formula for As ‘given in Theorem

2.1.2 that Az < 0 . The above examp]es.all in fact have Ag < 0 . The.



- 29 -

following well known result from differential geometry confirms this

fact.

Theorem 2.1.5

There are no compact minimal submanifolds of Euclidean space.

Proof

See for example Willmore [63]. 0

Proposition 2.1.6

For a gradient Brownian flow we have Ay < 0 a.s..

Proof
Since
2

e | (2.6)
‘ 2 M (Vol M)

and the unique invariant measure p(dx)l= (Vol M)-]dx has positive
density the integral in (2.6) is zero a.s. iff the integrand

|ﬂ(-)|2 is zero a.e..

By Theorem 2.1.5

P{H(x) =0 a.e.} = 0

hence AZ <0 a.s.. ' o 0

Remark 2.1.7 

P. Baxendale has since proved by entropy arguments that Ay < 0
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for more general processes on compact manifolds, (see [5]).

Having shown that Az is strictly negative using results of
Reilly [52] and Takahashi [61], we are able to obtain an upper bound

for Az

Theorem 2.1.8

For any compact M embedded in R" (m > n) the induced gradient

Brownian flow satisfies

IA

Az ny

where u is the leading (first negative) eigenvalue of 1A (i.e.
3Af = uf) , and equality holds if and only if M is embedded as a

minimal submanifold of somehypersphere in R™ of radius (n/2 lul)é .

Proof

By Reilly's Theorem A, [52L with r =1 we have

- J [H(x) |%dx Su:
2(Vol M) ‘M

Thus by Theorem 2.1.2 and the formula (2.2) for A

< :
VAZ nu

as required. The fact that equality holds if and only if M is

embedded as a minimal submanifold of somehypersphere of radius

(n/ZIuI)% follows ffom Takahashi‘; result ([41] note 14 or [61]). O



- 3] -

Remark 2.1.9

An alternative proof of this result is given in [16].

Example 2.1.10

Consider the embedding f : S\ (1/vZ) x S'(1/v2) » R*

(the Clifford

Torus) given by

f(u,v) = (1/v2Z cos u, 1/V2 sin u, 1/¥2 cos v, 1/¥2 sin v) .

Then S](]//E) X 51(1//2) is a minimal submanifold of S° < R* (see,

e.g. [631), u=-1 and (n/2|u|)% = 1. Hence by Theorem 2.1.8 for

this f , AZ = -2,

Suppose now that the secohd fundamental form oy defined in
Theorem 2.1.2 1is given in local co-ordinates by the symmetric matrix

(h..) . In [23] Cheng and Yau give a result which, given certain

iJ
conditions on the curvature_properties of the manifold M , provides a

Towér bound for Ay ona hypersurface.

Theorem 2.1.11

For a gradient Brownian flow on a compact hypersurface M with

positive scalar curvature R and on which the form ansij - hij is

positive semi-definite, then

‘ 2
o2 -3sup { T PAR_ L 2R (2.7)
z M min Ry
it

where R..k1 , is the Riemann curvature tensor computed relative to .
1] , : _ .
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an orthonormal frame. There is equality in (2.7) if and only if M

is embedded as ahypersphere in Rn+] .

Proof

Since for a hypersurface, by (2.2)

2
Ay = L J H(x)%dx
2(Vol M) ‘M
we have
22 .- AR 2
Ag 2 = 3 sup nH” 2 -} supl ———— + "R} (2.8)
M "M min Rijij
i#j

by Cheng and Yau (Theorem of Section 3) [23]. The fact that we have
equality throughout in (2.8) if and only if M is embedded as a

n+1

hypersphere in R again fo]]owé from the results of Reilly [52],

(53] and Takahashi [61]. Note also that for a hypersphere of radius

r, R= 1/r2 = constant,and each extreme of (2.8) is given by —n2/2r2 .

Remark 2.1.12

We note that if n = 2 the condition that the form (2H6ij-— hij)
is positive semi-definite gives h]1h22'(h]2)2 2 0 which is just the
condition that M bounds a convex domain (see e.g. [411). Indeed more
generally the condition that (nHaij - hij) is positive definite implies
‘fhat M is a strictly convex hypersurface. N

We also have the following lower bound for surfaces of higher

codimension.
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Theorem 2.1.13
For n> 2 , the gradient Brownian flow on

(1) the Veronese surface in R’ , (p=3)

(2) the generalised Clifford torus in R"*2 and
(3) the n-sphere in R"™P (p>1)
satisfy
S (223 (n-1) (223 - 11“.J R dx
2(Vol M)  p-1 p-1 M

where R denotes the scalar curvature of M .

Proof

By a Theorem of Chen [22] we have for the above manifolds that

R » np-1) Lﬂ(x)lz{(n-l)(gElg) - 1} : (2.9)

- (2p-3) p-1

and by the formula (2.2) for Ay the result follows. We note that in
[22] Chen states that these manifolds are the only closed pseudo-umbilical

n

submanifolds M~ of RrR"P (p > 1) with mean curvature nowhere zero

that satisfy (2.9). , 0

2.2 The pth Moment of the Determinant

th

Analagous to the work of L. Arnold (see e.g. [21) 6n p moment

h

. ' . t
exponents, we now consider for a nonlinear system, the p moment of

the determinant. We define the function
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s(p;x) = 1im %-109 E{|det Dgt(w)(x)lp} peR,xeM. (2.10)
{900
We now show some elementary properties of the function s(p;x)
and shall obtain a 1ink between sample and moment stability. Initially

we consider a process satisfying the stochastic differential equation

for sujtably smooth vector fields Xi (T<is<m) and A on M. We
recall that for such an S.D.E. by (1.17) we have the following formula

for the determinant

gt om j t
|det Dat(w)(x)l = exp{JO .Z]div Xi(é;s(w)(x))dBS + Jodiv A(gs(w)(x))ds
i=

t m |
+ %jo 1_£]<vdiv Xi(Es_(w)(X)),Xi(Es(w)(x))>ds}. (2.12)
Proposition 2.2.1

For a process satisfying the S.D.E. -(2.11) the 'pth moment of

the determinant is given by

' t
S(pix) = Tin L Tog Eay exolp [ div Alg (w)(x))es
o | 0

tm
jo 1.§]<\7d1'v X; (B (w)(x)) Xi(gs(w)(x))>d$

+
oo

2 ¢t m 2
+ J T |div Xi(as(w)(x))l dsl} pelR, x e M (2.13)

0 i=1

A% pe

where Mt' is a bounded martingale.
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Proof

Using the Girsanov Theorem (see for example [32], pg.258) we

can dispense with the stochastic integral in (2.12). Set

m
W(u) = I Xi(u).(p div Xi(u)) ueM, pelR,
i=1
and
t m . ;
Mt = exp[J p.f div Xi(gs(w)(x))st
0 i=1
t o M > |
-3 JO p .Z]Idiv Xi(ES(w)(x))| dsl .
1:

Then substitute for M, din (2.12) which together with (2.10) yields

t
the required result. ]

The following gives elementary results for s(p;x) which are

similar to those for g(p;x) obtained by Arnold in [2].

ProEosifion 2.2.2

s(p;x) 1is a finite function which is convex in p such that
¥peR
2
(1) Is(psx)| = Ipl(Ky#+K,) + p7Ky K;sK, and K; are constants,
(1) s(psx) 2 pA;
(iii) s(p;x) is increasing in p ,
0 |
(iv) s'(073x) s A; < s'(0%3x) .
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Proof

(i) By Proposition 2.2.1

' t
5(p3x)| = 1im  Tog ECIMJexet || [41v Ale (o) (x)) e

|p| tm )
+ 2 f I |<vdiv X, (g (w)(x)),X; (5, (0)(x))>]ds

2 40 i=1 S 1
2 ¢tom
+ E—-J % |div X 5 NI 2457}
2 ‘0 i=1
< 1im l-]og K, + 11m 1-1ogil£{exp[|p|K t+ |plK,t
o T 0 1
¥ p2K3tJ}
where K0 = max{Mt} is finite since Mt is a bounded martingale and
Ky = sup |div A(g () (x))]
sel0,t]
G =3 sup I 17 div X (g (@) (011X (&, () (x)]
se[0,t] i=1
m 2
Ky =13 sup [div X;(gg(w)(x))]
se[0,t] i= 1

are all finite since M is compact. Thus

2
As(psx)| = [pl(Ky + Kp) + 7Kg

as required. The convexity of s(p;x) follows immediately from the

convexity of log E{]X|P}



- 37 -

(i) By considering the expression (2.12) for |det DE, (w)(x)]s

by (2.10)

tm . t
CoN v . i .
s(p;x) = 1;2% Tog IE{exp[p(jo‘iE]dw Xi(gs(w)(x))st + fodw A(Es(w)(x))ds

tm
+ 3 fo 1_z=:]<\7d1‘v Xi (g (w)(x))s X (E () (x))>ds)I}.  (2.14)

Jensen's inequality applied to exp X yields

tm j t
Etextp([ T ¢iv Xj(g,(e)00)68] + | div Ale (o) 00
1=

tm ‘
+1 Jo i§]<Vdiv X5 (Edw)()), X,i(ées(m-)'(x'))>d.s)]}
tm t

2 explpt ]E{-,]c-(JO 1'i]div Xi(Es(“’)(.x))dB: + jo div A(gs(w)(x))ds

, t m .
+ 3 jo 1£]<de Xi(gs(“’)(x))’xi(Es(w)(x))>ds)}] '

Taking 1im ']E log on both sides and applying the Dominated Convergence
oo
Theorem on the right hand side gives

s(p3x) 2 p Ag

(iii) Again using expression (2.14) for s(p;x)

t m .
$(B32) - 1in L tog Etexplp([ 3 div ¥ (5 (0) () 8]
p too pt 0 i=1

t .
+ fO div A(gs(w)(x))ds
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tm
+ % JO if]<VdiY X5 (g (0)(x)),X; (6 (w)(x))>ds )}

1 tm i, (b,
= Tim ¢ log( ]E{exp[p(J I div X (g5 (w)(x))dB, + Jodw (g (w)(x))ds

{0 0 i=1

+1 Jt ? <vdiv X, (& (w)(x)),X; (£ (w)(X))>d5)]})]/p
0i=1 v S

and monotenicity follows from the momotenicity of ]E{lep}1/p for p >0 .

For p <0 we consider lE{(1/lX|)-p}-]/p

(iv) Follows from (ii), the existence of the one-sided derivatives

being assured by convexity. D

We now consider the gradient Brownian flow and examine s(p;x) for

this particular case.

Proposition 2.2.3 |
For a gradient Brownian system (2.1) the pth} moment of the

determihant is given by

. . | pn2 t 2
s(p3Xx) = 11m-€ log E{expl- ———-J Lﬁ(gs(w)(x))l ds
2 ‘0

toe

22 ¢t .
+ B e () (x)) Pas)
2 0

Proof

For the gradient Brownian flow A =0 and
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for e ¢ R" let X° denote the vector field X(+)® . When

E]

e has norm one, div Xe(x) is just the component of the trace of

the second fundamental form oy in the direction e , since
div X% = trace vX° = <(trace vzf)se> .

In particular it vanishes for e tangent to M at x , while Xe(x)

m
vanishes for e normal at x . Thus I (div Xi)xi 0 for the
i=1

gradient Brownian system. Hence in the proof of Proposition 2.2.1

in

W(u) = 0 and by the Girsanov Theorem, since’ E{Mt}= 1, .(2.13) becomes

tm
s(psx) = 1im-% 1ogIE{exp[% J L <Vdiv Xi(Es(w)(x)),Xi(Es(w)(x))>ds
troo 0 i=1 ‘

2 ¢t m 2
+E_j 2 |div X, (g (w)(x))|%s03

2 ‘0 =1 '
Taking divergences in the first integraT and by the proof of Theorem
2.1.2 this becomes

¢ .
)2

O(trace ags(w)(X) ds

i}

s(psx) 1im % Tog E{expl- % J

v

pZ t 2
+ -2— JO (trace ags(m)(x)) dS]}

t

toe

1 pn2 t 2
tin 1 Tog E(expl- 22 jo [H( () (x) ] 2s

2 2 ¢t 2
+_p__n_J H(E () ()] %8sy (2.15)
2 0

as required.
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Lemma 2.2.4
For the gradient Brownian system (2.1) consider the perturbed

operator

IZ + p2n2

Ao =34 - 3 pn’[H(-) (2.16)

then Ap is for each p € R the generator of a strongly continuous

semigroup on C(M;R)

n2 t 2 2¢t 2
S,(P)F(y) = E,{(expl-E] (e (w)(R)I s + J [H( () ()1 2s DF(y D
2°0 2

(2.17)

Proof

The generator of the gradient Brownian system (2.1) is A = }A

Since M is compact nZLl_i_(x)l2 is bounded ¥ x € M . The perturbat1on

is

of a generator by a bounded operator (- E%—Lﬂ(x)lz

again a generator and (2.17) is just the Feynman-Kac formu]a (see e.g.

[32] pg.259). | o

Remark 2.2.5
The perturbed operator Ap is self-adjoint over L2(M;IR)
We now use the following standard result in analytic perturbation theory

of linear operators on Hilbert space, following this preliminary lemma:

Lemma 2.2.6

The ieading eigenva]ﬁe of the perturbed operator Ap , (2.16), is
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given by

2t
u(p) = 1im l-109 E{explp(p-1)5> J |H( (£ (0)(x)) | dsl} .

t-—)oo

Proof

Consider the eigenfunction h : M =R(> 0)

and the modified Doob-h-transform semigroup '{52

h _ 1 (p)t
Skt = - (Pt s (he)(x)

and its differential generator AE where

A (hf)(x) - uf(x)

Ahex)) = -
KUCIE

with diffusion '{gz(w)(x) ;3 t 20} (see for example [34]).

P

Considering this set up we have

APE(x) = Af(x) + <Vlog h(x), VF(x)>

such that Abh
3y t >0}

1 n2 t -
1im —-1og E{explp(p- 1)-?- J |H (£ (@) (x) | ds]}

t")°°

t+w'

t
= 1im l-1og]E{exp( -3 J slog h(g (w)(x))ds) .
* g

Then

(2.18)

= u(p)h
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t n2 't 2
exp(3 s1og e folx)ds + p(p-1) - [ T8(e, ) (0) %))

et
7109 h(gf (w)(x))|%ds). e (P

t
= 1im l-]ogiE{exp(-gj Alog h(g ( )(x))ds- %
to ¢ 0

which after a simplification using Ito's formula for 1log h(zt) gives

- lin 1 Tog IE{——%‘-)L(—)) o, . en(P) » (2.19)
o0 X

(g, (o

where

t

‘ t
M, = exp{J v log h(gh(w)(x))dB - J |[viog h(g_(w)(x))] ds}
0 s s

Thus by the Girsanov Theorem (see [32] pg.258) and the fact that on
compact M, h is uniformly bounded, i.e. O < K] < h(x) < K2 for

all xe M, (2.19) yields

K 2
1 1 2
1im —-1og + u(p) < 11m'— log E{explp(p- 1) J ]H(g )(x))]“ds1}
K
.1 2
< Tim < log -~ + u(p)
and since K], K2 are constant the result follows. O

Theorem 2.2.7 (Kato - Rellich)

Suppose that A(p) is a bounded operator defined on a Hilbert space

H which is a power series in p

2
Alp) = Ay * pA; + PTAy ..l
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convergent in a neighbourhood of p = 0 . Suppose that for real p ,

p small, A(p) is self-adjoint on H . Suppose that ﬁ is an
eigenvalue of finite multiplicity h of the operator A(0) = A0 = A
and suppose there exist positive numbers d],d2 such that the spectrum
of A 1in the open interval u—d] <k < u+d2 consists exactly of the

point eigenvalue u (some k eR) . Then there exist ordinary power

series

u](p) ges ey uh(P)

and power series in Hilbert-Space

91(P) »eeees oy (P)

all convergent in a neighbourhood of p = 0 which satisfy the condition:

The element ¢i(p) is an eigenelement of A(p) be]ohging to the eigenvalue

ui(p) ’ i.e.
A(p)o;(p) = 1;(p)é;(p) T<ish.

Furthermore “1(0) =y (1 sish); andfor real p the eigenelements

form an orthonormal set, i.e. for real p

IA
=

<¢‘i(p)’¢j(p)>H = ‘Sij 1 51,7

Proof

See Rellich [541,pg.57 + 64.
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Using this result we have the following.

Theorem 2.2.8

For the underlying gradient Brownian system (2.1) consider the
perturbed self-adjoint operator -Ap on L2(M; R) given in Lemma 2.2.4,
Ap has Towest eigenvalue u(p) of multiplicity one and corresponding
eigenfunction ¢(p) . Both wu(p) and ¢(p) have convergent power
series representations in a neighbourhood of. p=0 and

w'(0) = a;

In particular u(p) and s(p;x) coincide and s(p) is independent

of xeM.

Proof

Since A = A0 = 3A is self-adjoint on LZ(M;IR) (see for example
[501) and has eigenvalue u0(=0)<3fmu1tip1icity 1, by the Kato-Rellich

Theorem 2.2.7 there exist power series

2 , |
u(p) =ug * Puy + Py ..l - (2.20)

and

2
6p * POy TP Oy F ..l (2.21)

¢(p)

convergent in a neighbourhood of p =0 which satisfy

A(p)e(p) = n(p)e(p) - (2.22)



- 45 -

Substituting in for these power series in (2.22) yields on the left

hand side

(AO + PA] +p Az)(¢0 TPy TP by te.. )
= Agog * PRy *+ Ayog)

2
+ P (Aydg + Ajoy + Agdy)
toeenann (2.23)
and on the right hand side
(us + £ plu, + on + + plo, + )
uo Pu] p Ho XX ¢0 P¢] p ¢2 sere

A
= UO¢0 + p(U]¢0 + U0¢]) +p (U2¢0 + U]¢] + UO¢2) oo,

Equating coefficients of powers of p up to p2 gives

Ao = Moo =0 ‘ (2.24)
Agéy = Moty = ¥1%g T Ayto (2.25)
Agbp = Mgdp = Hpbg ~ Apbg Fuqoy = Ayey . (2.26)

Then taking the L2 inner-product of 4o With (2.25) gives

<4grhgty " ¥ot1> T “PorMio T
Since the ¢; are orthonormal and gd =0

0 = uy - <bgohydg>
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In particular

u1 = UI(O) = <¢0’A]¢0>

1]
]
3
[RS]
—~
-
nN
-
= ad
o
L]
o
-l
o
—
=
g
1
o

and since A]

2
SO J 11601% o

by Theorem 2.1.2. We know by Proposition 2.2.2 (iv) that s'(0;x) = Ay
The fact that wu(p) and s(p) coincide follows from Lemma 2.2.6 and

also Donsker and Varadhan's extensions of Kac's result for Brownian

motion, (see in particular [25]).

Clearly since u(p) and s(p) coincide s(p) is independent of

XeM, Ana1ycity of s(p) follows from the analycity of yu(p) . 0

Proposition 2.2.9

For a gradient Brownian system s(p) has the fo]]owingvpfoperties:-
(i) s(p) =0 at p=0 and p=1, ¥n,.

(1) s'(1) = -s'(0) = -2,

(i11) s(p) fis symmetric about the point p =3} .

Proof

(i)  From (2.15) s(p) =0 if

n2 t 2, _ 1 .
2 pip-1) jo He ()(0)|%s =0 forall w.

(2.27)
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By Theorem 2.1.5 H(gs(w)(x)) # 0 a.s.. Hence (2.27) is zero if

p=0 or p=1.
(i1) and (iii). By Theorem 2.2.8
A(p)e(p) = s(p)e(p) (2.28)

where A(p) , s(p) and ¢(p) have convergent power series expansions

~in a neighbourhood of p =0 . Differentiating (2.28) with respect to

p we obtain

A'(p)s(p) + A(p)e'(p) = s'(p)e(p) +s(p)e'(p) .  (2.29)

Taking the inner product on both sides of this with ¢(p) and assuming

<¢(p)sg(p)> = 1 (2.30)

gives

<¢(p),A'(p)e(p)> + <¢(p),A(p)e'(p)>

= 5'(p)<6(p).0(p)> + s(p)<o(p)d' (p)> -

Then by (2.23) since A, = -A; we obtain

(1-2p)<¢(p),Ay0(p)> + <o(p),A(p)e' (P)>

“=s'(p) +s(p)<d(p)se’(p)>
and since A(p) is séif adjoint and satisfies (2.28) we have

s'(p) = (1-2p)<¢(p)sAy4(p)>



- 48 -

Thus with this general formula for s'(p)

at p=20 s'(0) ='<qu]¢0> = Ay
at p=1 s'(1) = -<45sA18p> = =Ag (since ¢(0) = ¢(1))
at p =14 s'(3) =0
Also
Ap) = Ay + L(p-3)" - DA
p 0 P 2
thus A(p) and hence s(p) are symmetric about p =1 . O

Remark 2.2.10

We note here that the prodf of (ii) and (ii1) above was obtained

independently by L. Arnold.

We now use the fo]jowing to obtain a Central Limit theorem for As

and in particular to obtain further information on the expansion of

s(p) at p=0.

Theorem 2.2.11
For a smooth function f on a compact manifold M such that

0 and f e LZ(M,p) , the equation

E {f} = j fdp
e M

Aou = f

- 2 -
has a solution AO]f =uelL (Myp) and

.Lftﬂswﬂﬂws
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converges in distribution as t - « to a Gaussian random variable

with mean 0 and variance 02 given by

0'2(f) = _2<f,U> = -2<f,A6]f> = -ZJ fu dp
: M

Proof
See Bhattacharya [8].

From (2.16) in our case Ay = #A

Theorem 2.2.12

For a gradient Brownian systemon M as t -+«

1t 2
_.j (A = A1 ds => N(0,6%)

. 2 -

n distribution, where o = f2<(A]-AE)¢0,(5A) ](A] - Az)¢0> and
Wy = gl -

$"(0) = 0" - 2Xg

Proof
Assuming that ¢(p) has norm one, from (2.21) we obtain

<¢O,¢]> =0, (2.31)

From the expansion (2.20) for s(p) (= u(p)) we have that

S"(O) = 2112

which, by taking the inner product of ¢, with (2.26), using (2.31)

and the fact that A, = -Ay s gives
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s"(0) = 26«¢0’A]¢0> + <¢0’A]¢]>)

2(<4psAy8y> = 25) L (2.32)
But by (2.25) since ub =0, = Ay
¢] = (%A)-] (’A] + AZ)¢0

As Ay s self adjoint

s"(0) = -2(<A]¢O,(§A)_](A]-Az)¢0> T As<bg85>)
= -2(<A]¢O,(§A)-](A]-Az)¢0> T Ag<bpaty> F As<hpsdy>
+ Ap<bgs85>)
= -2(<(A,-xz)¢o,(gA)f](A]-Az)¢o> *3)
So
s"(0) = o° - 2,

as required.

- Remark 2.2.13
We note that Theorem 2.2.12 can also be rephrased in a slightly
different context.
Let 6 = Aj-A, and assume that 995 1. Then G = -(5A)’1 'is.

. - - 'l '
the Greens function for AO] = (38) ° on M and

Gf(x) = jM g(x,y)f(y)dy
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where g(-,*) denotes the Greens kernel (see e.g. Brosamler, [111).
Then Theorem 2.1.12 can be expressed as:

Theorem 2.2.12 (a)

For a gradient Brownian systemon M, as t =+
t
1 J 8(x_)ds => N(0,0°)

in distribution, where

o? 2<6(x), GO(x)>

2 J 6 (x)g(x,y)e(y)dxdy
MxM

and

$"(0) = o2 - 2,

Remark 2.2.14

s;nuH‘N\wUS’:S s
(i) We note that Theorem 2.2.12 was also proved,independently and

by a different method by L. Arnold in a private communication. -

(i1)  This result shows that

02 2

s(p) = AP+ (E_ - AE)P + O(Ps) as p - 0.

(iii) By the symmetry of s(p)
WY = ol
s"(1) = -0~ + 2
Hence
2 2 3
-AP (- o~ + Az)p + 0(p”) vas p>1.
2

s(p) =
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We therefore have a complete description of s(p) up to order 2

near the origin for a gradient Brownian flow. We now consider its
asymptotic behaviour as p tends to infinity.
D. Elworthy observed the similarity between the operator (2.16)

and that considered by B. Simon in [57]. We have the following:

Lemma 2.2.15

The perturbed operator (2.16) of Lemma 2.2.4 can be written as an

operator of the form

- &+ pg(-) +p2h(-) (2.33)
where (i) g(+) and h(:) are ¢,
(i) g(+) 1ds bounded be]owland h(x) 20 ¥xeM.
Proof‘
For the opgrator (2.16) we have that
3af - pn’lH(-) |5 . pPn?IH() %6} = s(p)F (2.34)

for some eigenfunction f e LZ(M;IR) corresponding to the leading

eigenvalue s(p) . From both sides of (2.34) subtract the operator

PZB where B = maX{nzlﬂ(')Iz} . This yields
M

(-0 + prllH(-) 12 + pPenZIH() 12D = (p7s-25(p))F (2.35)
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which is just (2.33) with

a(x) = n?JH(x)|Z  and  h(x) = B-n[H(x)]? .

For (i) g and h are clearly C .

For (ii) g 1is bounded below by zero and h = O by the definition of

B . g

The operator (2.33) is that considered in [571, (i) and (ii) of
Lemma 2.2.15 are two of the four hypotheses placed on the functions

g and h by Simon. In order to satisfy the remaining hypotheses we

now make the following assumption on the geometry of the manifold M .

Assumption 2.2.16

We now assume that the global maxima of the length of the mean

Curvature vector H(+) of the compact manifold M are non-degenerate.

Lemma 2.2.17

For g,h defined as in Lemma 2.2.15 under the Assumption 2.2.16

we have that

. - y
(i) h has a finite number of zeros {x(a)}a=] .
(i) at each zero x(@) the matrix

2
o) -y 2 )
2X;3%,

is strictly positive definite.

Proof

(i)  Follows from Milnor [471 page 8.
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(ii) Clear by assumption 2.2.16.

We then have the following result concerning the asymptotic

behaviour of s(p) as p >
p _

Theorem 2.2.18
For the gradient Brownian flow on an embedded compact manifold M
whose absolute maxima of the mean curvature vector H(-) are non-
degenerate we have that
2
Tim (P8 - 2s(p)) . e
p-re P T

or
s(p) = % p°8 - 3 pe; + o(p)

as p + «, where ey is the leading eigenvalue of the harmonic

oscillator & K2 where each Ka‘ acts on LZ(Rn) and is given by
a=] '

8.+ gx@hy s 3 Ai(af) X;X5 -
i,j

=~
|}

- So
k n |
inf aE]{g(x(a)) " (2n41)a{®)n = 0,1,2,..)

&

where (wga))Z are the eigenvalues of A(a)

Proof

By Lemma 2.2.15 and Lemma 2.2.17 and under the assumption on the
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mean curvature vector H(*) of M, the four hypotheses given in
Simon [57] are satisfied. The theorem is then just a consequence of

Simon's Theorem 1.1, the proof of which is given in [57]. 0

Example 2.2.19

Consider S] embedded in R2 as an ellipse. The embedding is

defined by
f(e) = (asin 6, bcos 8) a>b.
Then
H(e) = ab(azcosze + b2sin’ )'3/2
and this has absolute maxima at 6 = 7/2 and 6 = 3n/2 . At these
points
6_a2 o aln/2,3m2) | 3 2%-b%)
=T an i , =
b J b
So
' 2 2 2,2 .22
2,31/2 d a 3a"(a"-b")e
KTT/ ’ = - —— + + :
de2 EI. - b v )
which has eigenvalues
=0,1,2,...

) 4
a_ + (2n+1) —a—3 /3(a2—b2) n
, b

o

Then by Theorem 2.2.18 we have that

’ 2
(p2a2/b4 - 2s(p)) - a 23 /3(az_b2)
' b

P

1im
p—)°°

7=
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V3e]

where e denotes the eccentricity of the ellipse.

Remark 2.2.20

Subsequent to [20], Baxendale and Stroock, [7], have provided

results on s(p) for more general processes.

2.3 A Result of Bougerol and Counterexamples for Surfaces of Higher

Codimension

In a recent paper by P. Bougerol [10] he obtains the following

important result using Lie theoretic criteria.

Proposition 2.3.1

If M 1is a compact hypersurface in ]Rn+]

then all of the Lyapunov
exponents corresponding to the gradieht Brownian flow on M are distinct

unless M 1is a sphere.

Proof

Bougerol, [103, Proposition 7.7.

Using this result, and the results of Carverhill [13] and Baxendale

[4] it may be possible to éomp]ete]y determine the Lyapunov spectrum of

Indeed in [6], Baxendale has obtained the complete

stable manifold structure for an n-sphere embedded in IRn+]', the case

a compact hypersurface.

where all the Lyapunov exponents are equal.



- 57 -

The following result, however, shows that Bougerol's result does
not extend to manifolds of higher codimension. We also furnish an
example of a manifold with codimension 2 for which all the exponents

are equal, and extend this to manifolds of higher codimension.

Theorem 2.3.2

If a compact manifold M is embedded isometrically in R" (m>n)

and the second fundamental form of M , represented in terms of local

co-ordinates by the matrix (hij) » 1is diagonal with h]] = h22 == hnn

then all of the Lyapunov exponents associated with the gradient Brownian

flow on M are equal.

Proof

By D. ETworthy's reformulation of Carverhill's formula for the top

Lyapunov exponent we have by (1.16) and [16] (equation (12)) that

t
o .10 2
, Al = im ?JO{Iax(ns")l -lax(ns,ns)l2 - 3<a,(ngsn),trace ax>}ds

1o

where Ilnsll 1 . If the second fundamental form a;' is represented

in co-ordinates by the matrix (hij) and this satisfies the conditions

given above then

4 ¢ '

T qim X th? 2 _p2 o0 p2 yim-

A = 1im Ej {h]] sup _]|<ns,ws>| h]] 5 h]]}(m n) ds
0 Mfugll=1

to

Using the Cauchy-Schwarz inequality we have
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>
A

t
. ] 2 2 2
<vin b | h sup HIng Pl [ = 0+ 33 (m-my s

oo t 0 1 Ilws

t nh]zl(m-n)
= 11m€J - ds
toe

0o 2

which by the Strong Law of Large Numbers yields

2
nhy (m-n)
ﬂsJ S _d&x . __n f H(x) |°dx
M 2 (Vol M) 2(Vol M) M
So
1.1
A SFAZ

and as A] js the largest exponent we myst have nA] = AE as

required.

Example 2.3.3
Consider the Clifford Torus in IR4 given by the jsometric embedding

£ 8'(1/v2) x s1(1//2) »R* defined by

f(u,v) = (1/V2 cos Y2u, 1/vZ sin v2u, 1/VZ cos Y2v, 1/¥Z sin V2v) .

(2.36)

By example 2.1.10 we know that for this embedding Ay =2 . We shall

now calculate the second fundamental form. The first partial derivatives
are given by

(-sin Y2u, cos v2u, 0, 0)

—h
I

= (0,0, - sin Y2v, cos Y2v) .

-+
!
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Hence the elements of the first fundamental form are E =G

F =0 and the volume element is given by

2

ds? = dul + dvl = F'(du+dv?) .

The second derivatives are given by

fly = (-v2 cos Y2y, -V2 sin Y2u, 0, 0)
fu'\I:(O,O,O,O)
foy = (050, =V2 cos V2v, -/Z sin V2v) .

=1,

The elements of the second fundamental form are given by, (see [91)

_ 1
hij = F} f A quvafij
2 f
|
F fu
fv

(2.37)

where fij denotes the second partial derivative with respect to the

variables i and j and (2.37) is the determinant. So, as F' - 1

h” = 1//2' cos Y2u 1/vV2 sin v2u 1/¥2 cos v2v 1/VZ sin/2v
' “sin J2u cos v2u 0 0

0 0 -sin V2v cos V2v
-/Z cos/2Zu - -V2 sin Y2u 0 0

aﬁd by rearrangement within the determinant
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hyp = | - cosv2u - sinv2u 0 0
- sin'2u cosv2y 0 0
0 0 - sin'2v  cosv2v
.0 0 cos¥2v  sin/2v
S0

Clearly h]2 = hZ] =0 since fuv (0,0,0,0) and h22 =1 as it is
jdentical in form to h]] after rearrangement. Thus for this embedding
the second fundamental form satisfies the conditions of Theorem 2.3.2

and hence all the Lyapunov exponents associated with the gradieht Brownijan
flow on the Clifford Torus are equal. Since Ay = -2 we thefefore have

A el e,

This clearly extends to embeddings of the form

Fostr) xs'r) x v x ST(r) > BT (2.38)
=L T2 e
n
defined by
f(x],.....,xn) = (rcos x],rsin Xpseeoonennss 1.,rcos xn,rsin Xn) .

As above, for such én embeddihg the elements of the second fundamental
form are given by h]] = h22 = ... = hnn = constant and hij =0, 1#3J,
1

1<i,j<n. Thus by Theorem 2.3.2 for such an embedding Ay = nx

Remark 2.3.4

Thé gradient stochastic system arising from the jsometric embedding
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f defined by (2.38) is given by

d(x) ") = T (x),. .. x?) o g8l
X se0 0y —.iz'l .i t"o-,t (o] t

where Bt € BM(Rzn) and the vector fields Xi s 151 <2n, are
given by

Xy = (-1/r sin x5 0,.nni ,0) » X5 = (1/r cos X715 05.00.,0)

Xonoq = (0:05.0uuus=1/r sin Xp) s Xpq = (0,0,..... s1/r cos x.)

Let L denote the Lie subalgebra of C"(TM) generated by X],...,X2n .

Then if we define

L(x) = {X(x) s Xel}c TM

and

M, = {vX(x) - %tr(VX(x))I s Xel , X(x) =0}

it is clear from the form of X],...,X2n above that L = [(x) = TXM
¥ xeM and Mx acts irreducibly on T.M . Thus by Baxendale [5],
Theorem 7.5, condition (A),we have that m! = A , that is all the

exponents for this process are equal.

2.4 Conditions for Negativity of the top Lyapunov Exponent for the

Gradienf Brownian Flow on a Compact Convex Hypersurface

Let M be an n-dimensional compact manifold isometrically embedded
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in ]Rn+] . Throughout this section our main assumpfion is that M

is uniformly convex. This is so if all the eigenvalues of the second
fundamental fofm (hij) of M are strictly positive, that is there
is some € > 0 such-that the inequality

hijZeHgij (2.39)
holds everywhere on M (see for example [37]1). Here H again denotes
the mean curvature and (gij) is the metric on M induced by the
embedding.

We shall obtain a condition on e 1in (2.39) such that the top
Lyapunov exponent associated with the gradient Brownian flow on M s
negative. This condition is obtained directly from E]worthy's reformu-

lation of Carverhill's formula for the top exponent.

Theorem 2.4.1

If M 1is embedded isometrically in Rn+] (n 22) as a uniformly
convex hypersurface and e > % then the top Lyapunov exponent associated

with the gradient Brownian flow on M is strictly negative.

Proof

By Elworthy's reformulation of Carverhill's formula for the top

Lyapunov exponent associated with the gradient Brownian flow on M (1.16),

we have

11 (¢ 2 t 2
A= limg {Joélax (ng»*)]“ds - Jolax(ns,ns)l ds

to

t .
- %jo Ric(ns,ns)ds} o | (2.40)
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where o denotes the second fundamental form

. L n+1
a TXM x TXM -> TXM <R ,
Ric(+,) . denotes the Ricci tensor and Ng is the sphere bundle

process n = vS/IvSl . Note that TXML' is one-dimensional in this

particular situation. Since
Ric(v,v) = -lax(v,-)l2 + <ax(v,v) » > Ve TM

substituting for |a (n.,*)| in (2.40) gives

t
N [ L _ 2
A= llﬂ t[o{ R1c(ns,ns) ]ax(ns,ns)] + §<ax(ns,ns),on>}ds . (2.47)

In Tocal co-ordinates the integrand in (2;4]) is given by

n n n

I(V) == (£ ViR,ov.) - (2 v.hoovi)2 43 1 v.h,.v..nH (2.42
i,j=1 113 i,j=1 1137 } i,3=1 113 J ( )

| n 2k
Ry; = mihy g - sz=1hizg e

and RU is the Ricci curvature tensor. Since we are working locally

we can assdme that gij = 6ij and
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where k]""kn denote the principal curvatures in the directions

€1s-ensl respectively. Hence (2.42) becomes

I(v) = -(;z vi[(k1+"’+kn)hij - 1.]h]J.+ ...... +hinhnj)]vj)
2 2,2 2 2
- (k]v]+....+knvn) + 5(k1+....+kn)(k]v]+7...+knvn) .

As = k,6,. , this gives
iJ iy %
2. 2 2.2
I(v) = -([(k]+ +k )k]-k]]v] toiues + [(k]+ ...+kn)kn-knjvn)
2 2,2
-(k]v]+.. +hkvo )T+ Bkt +k )(k1V]+"'+ann)
~(ky(kot...+k )v2 + +‘k (kq+ +k )v2)
1V2° 1 ) n‘tl n-1/"n’
2 2,2 2 2
-(k]v]+ ..... fknvn) + ;(k]+...+k )(k]v]+ ..... +k vn)
Then by the assumption of convexity we have
k.I 2 € (k]+ ..... + kn) |
. : n | (2.43)
’ k =€ (k.|+ ...... + kn)
- n
Thus
kyt...+4k ~ n’
Teoo 2 2 2
I(v) < '("'”e'(—]‘*ﬁ"‘n)(.z]ki"i) - Dlkqyytetkpvy)
i= :
n
z k.v?)

- %(k]+...+kn)](

1-'11
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k]+ +kn k]+...+kn n 2
< [-(n-1)g( ) - e(———) + 5(k]+...+kn)3( z k,vy)
n n i=1 11
hence
. noo,
I(v) S (e + 3K (I k,v)
i=1
and since k; >0,1<is<n, vI(v) is strictly negative if ¢ > 1. DO

Example 2.4.2

Consider the ellipsoid of revolution embedded in R The embedding

is given by

f(u,v) = (a sinu cosv, a sinu sinv, ¢ cosu) c>a>0,

The elements of the first and second fundamental form are given by

E = a’cos’u + cZsiny g =ac / (a?coszu + czsinzu)%
F=0 . m=20
G = azsinzu : - "~ n=ac sinzu / (azéoszu-+ czsinzu)é.

Since f ‘defines a surface of revolution we have that the principal

curvaturés are given by, (see e.g. [49]),

o=k ac
Tk (azcoszu + c251'n2u)3/2
k, = 2= <
Z g a(azcoszu + czsinzu)]/2
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In Theorem 2.4.1 for the top exponent for the gradient Brownian

flow to be negative we require that

k2 % (kg + kp) (2.44)
and
kp > ;]; (ky + kp) (2.45)
So (2.44) becomes
- ag . , l_( ac + C )
(a°cos urc sin‘u) /2’ 4 (32C052U+<3251'HZU)B/2 a(a’cosutcsin cy)1/2

which reduces to

3a% > alcos®u + Zsin‘u . (2.46)

The maximum value that the right hand side of (2.46) can take since

'Cc > a occurs when u =x/2 , then we require that

3a2 > C

Also (2.45) becomes

S 1 ( ac + C )
172 =4 (a2c052u+czs1'n2u)3/2 (a2cosdu+c sin u)]/z

. Z  2..c
| a(azcoszu+c sin"u)

which reduces to

2
azcoszu + czsin u >-§— o (2.47)



- 67 -

and since the minimum value that the Teft hand side of (2.47) can take

occurs when u =0, we require that
2
a? > &
3

which is clearly always true. Thus the Theorem implies that the top
exponent is strictly negative provided that the major and minor axes

of lengths ¢ and a respectively satisfy

2 2 2

3a->¢ >a

It is clear from this example that the criterion for negativity of

the top exponent given in Theorem 2.4.1 is somewhat crude. Indeed we

are able to improve on this in the two-dimensional case with the following:

Proposition 2.4.3

If M2 is embedded isometrically in R3 as a uniformly convex

hypersurface and the principal curvatures k2 2 k] > 0 satisfy
(7 +473)ky > k, 2 Ky

then the top Lyapunov exponent associated with the .gradient Brownian flow

on M2 is strictly negative.

Proof

For such a two-dimensional hypersurface (2.42) becomes

2 2.2 2 2
I(v) = kfvf+k§v§ - (kqvErkpva)? = 3 (kg k) (kg Vivk,vp) (2.48)
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2 2 _ .
where vyt v, = 1 . Assuming k2

both sides by kf , setting k = k2/k] and substituting for v? .

p3 k] > 0 then dividing through on

(2.48) becomes

T(v) = iél) =1+ (KE-1)VS - (1+(k-1)v§)2 - (1K) (1(k-1)vE)

]
2 2,2
= 3(1-K) + 3(k#1) (k=T)v5 = (T+(k=T)v5)" . (2.49)
v . 2
If k=1 (i.e. k2 = k]) then I(v) = -1 . Also if Vy = o ,
?(v) = -3(1+k) < 0 and if vg =1, T(v) = - %(1+k) <0 . Sowe

n
must find the maximum value of I(v) to see when (2.49) is positive.

Differentiating (2.49) with respect to vg

337 Yv) = (k-1) [k+‘ 2(1 + (k-l)vg)l : (2.50)
2

Assuming that we are away from the umbilic points (i.e. when k = 1)

since ?(v) = -1 at such points, then (2.50) is zero if and only if

vs = k-3 (2.51)
4(k-1) '
This only makes sense if k 2 3, indeed if 1<k <3, I(v) is

negative. So for k = 3, -substitute (2.51) into (2.50) to give

+ k+ k-1 - (1 + (k-1)‘—

1% - 1ak + 1) (2.52)

16

to find fhe maximum we obtain °
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Now k2-14k +120 if k27 +4/3 (since we must have k 2 3) .
Thus if |

k <7+ 4/3

n,
then I(v) , and hence I(v) , is strictly negative, hence the negativity

of the top Lyapunov exponent. O

Examgle 2.4.4

Again consider the ellipsoid of revolution of example 2.4.2. For

this example k2 2 k] and hence the top Lyapunov exponent is negative
if
k2
£ < 7+473
1

which by the values for k] and k2 given in example 2.4.2 yields

azcoszu + cZsinly < (7 + 4/§)a2
The maximum value that the left hand side can obtain occurs when u = /2 ,
then we must have |

<7+ 4/§)a2
So for negativity of the top exponent we require ¢ and a to lie within

the range

(7 + 4/3)a° > 2 > &t

which is clearly an improvement on the range obtained in example 2.4.2.
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2.5 Lyapunov Exponents for Processes with Gradient Drifts

Consider the process
m i
dx, = i Xi(xt)°d8t + A(xt)dt (2.53)

on a compact n-dimensional manifold M , where A =9Vf for some
function f : M >R, Xi(x) : R" + TXM » 1549 =<m,and

Bt = (Bl,....,BT) € BM(Rm) . Since M is compact all derivatives

of X, (1<1ism) and A are bounded and there exists a solution flow

of (2.53) Ei(w) : M>M, t 20 such that

m . '
Gl (x) = T Xi(Ey(0)(0)odBy + Alg(e) (X))t (2.54)

Eg(w)(x) = x .
The following is well known:

Lemma 2.5.1

The process of system (2.54) has finite invariant measure

p(dx) = const. e2F(X gy, | (2.55)

Proof

The differential generator of (2.54) is given by

3+ A1)V

andwsince A = vf for some f the adjoint operator is given by



- 71 -

*
A = 3A - VFY

which has solution p of At:==o given by p = const.er(x) . 0

Carverhill's Theorem 2.1, [13], tells us that, for a process
satisfying (2.54) on a compact manifold M with invariant probabiljty
measure (2.55), a Lyapunov spectrum exists a.s.. Also since the system
has an elliptic differential generator the spectrum is almost surely

constant and the sum of the exponents Az is given by

1
A, = lim ¢ Tog|det Dgy(w)(x)]

{0

As in the case without drift, it is difficult to calculate the
top exponent as this requires knowledge of the invariant measure of the

process on the sphere bundle to M . However knowing the invariant

measure on M enables us to look at Ay

Proposition 2.5.2
For the system (2.54)

7 i 2¢(x) 2
cj z]<vd1v Xi(x),Xi(x)>e dx + CJ Af(x)e f(x)dx ,
Mi= M '

= (j er(x)dx)-1 .
M

A

where ¢ =

Proof

This follows by the formula (1.18) for A., Lemma 2.5.1 and the
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fact that

div A(x) = div(vf(x)) = af(x) . 0

Corollary 2.5.3

If M is isometrically embedded in some R" then for system (2.54)

7 _
Ay = JIH x)% 28X gx + CJ pf(x)e?T Xy, (2.56)
. 2 M M

Proof
Follows from the above Proposition and Theorem 2.1.2. 0

Remark 2.5.4

We note here that (2.56) may also be written as

A= f K F||2 2f(x) dx + cj Af(x)er(x)dx

where ||tg || s the tension field of Eells and Lemaire [311. The

IT ”2 Zf(X)

1ntegrand of the first integral, that is 3| , is called a

Monge-Ampére density and in this case is also called the total tension

density for isometries, (see [30] section 4, pageA22). Indeed the

Euler-Lagrange operator of the first integral is given by a Monge-Ampére

equation of the form
det|FF(x)= f o (2.57)

(see for example [29] example 6). This thus provides a link between
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the Schrodinger operator associated with the diffusion process (2.53)

and Monge-Ampere equations.

Examples 2.5.5

(i) Consider the gradient Brownian flow on the unit circle S]

(cf. example 2.1.3 (i)) with gradient drift A(X) = -sinx , so

. 1 2 .
dxt = -sinx, dBt + cosx, dBt - sin x, dt.

Then by (2.56) the leading and only exponent for this process is given
by
- c J ] 12 g2C0SX 4 . j | cosx o 2008X 4

S S

A==
2

2C0SX dx)'] 5o

| 2n 2cos
A=-3-¢ J CoSX e X dx
0
Whi . o th Lau t . f 2COSX
ich by considering the rents series for e (see for example,

Duncan [27]) gives

_ . .

A=-3-2nc( 2

§=0 (3+1):3:

which is clearly negative. Note that this is also true if A(x) = sin x .
We also note that for the original drift the potential function of the

ground state eigenvalue problem (see section 1.4) is given by
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V) - Adg(x) . 2

= = } (sin"x-cosx) v (2.58)
2¢5(x)

where ¢o(x) = 008X

(i1) Again consider the gradient Brownian flow on the unit circle S]
with gradient drift given by A(x) = x mod(2n) . Then, as above, the

leading and only exponent is given by

2m X2
A=-3+cC J e” dx
0

2'”' x2 _]
where ¢ (j e” dx) . So

and we have a positive exponent. The potential function of the ground

state eigenvalue problem as in (2.58) is given by

V(x) = é(x.2+'|)

We thus have the opposite of the harmonic oscillator on S] . In the .

harmonic oscillator case the drift A(x) = -x mod(2r) and »a = -3/2 .
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CHAPTER 3.

3.1. The Existence of Lyapunov Exponents for Stochastic Mechanical

Systems on Non-Compact Manifolds (Introduction)

Throughout this chapter we shall consider M" as a finite
n-dimensional, simply connected,complete Riemannian manifold. We shall

consider the following Stratonovich stochastic differential equation

on M,

X; (x,)odB] + A(x,)dt (3.1)

d =
X 1

t

n~ 3

i=1
where Xi € l(Rm;TXM) s, 1 517 sm, Bt € BMGRm) and A is a vector

field of the form
_ 2
A(x) = 37 Togleg(x)[% .

Here ¢O is the normalised square integrable eigenfunction correspondihg

to the ground state eigenvalue EO of the Schr5q1nger operator

(-30 + V)<pO = Epdg

for V : M>R a sufficiently regular potential such that Vég € LZ(M,dx)

where dx denotes the volume element of M . We assume throughout this
section that (3.1) has the form:- Brownian motion + drift A , so that

m
the Stratonovich correction term of (3.1) is zero, i.e. giflvxi(xi) =0 .

Thus the Ito and étratonovich forms of (3.1) are equivalent. By this
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assumption the differential generator of (3.1) is given by

1+ A()Y

so the system is non-degenerate and in fact elliptic. It also follows

from section 1.4 and for example Nelson, [48], that the process Xy

has a finite invariant probability measure

2 dx . (3.2)

P (dX) = |¢0(X)I

We shall call (3.1) a ground state stochastic mechanical system. We

shall also assume the existence of a measurable solution flow of (3.1)

denoted by gt(w) :M>M, t20 such that

(8 (@) (x)Jody + A(E (o) (x))dt

"Hm™m3

dey(w)(x) =
1

£p(0)(x) = x -

We shall initially consider such a stochastic mechanical system on R
where the coefficient of the noise is spatially homogeneous and show that
the Lyapunov exponents associated with such a system exist "naturally",
mainly due to the existence of the finite invariant probability measure
(3.2). We shall then extend this result to general non-compact manifolds
by placing stronger conditions on the vector fields Xi’ 1<4i<m and
A and the geometric properties of the under]yinglmanifo]d, In both cases

we shall consider the existence of A, , the sum of the exponents,and

obtain conditions for the existence of stable manifolds as given by Ruelle
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[56] and the stochastic extension of Ruelle's results by Carverhill

L13]. Our approach is basically that considered by Carverhill in [13].

3.2 The Existence of Lyapunov Exponents for Stochastic Mechanical

Systems on Rr" .

In this section M =R" and we consider the system

dx, = dBy + A(x)dt on R" (3.3)

analagous to system (3.1) of section 3.1. In this case the coefficient
of the noise term is spatially homogeneous. In conjunction with the
stochastic mechanical interpretation of this system, the process Xy s

termed as the "ground state process". Here B, « BMR™) and A: R" > R"
is given by

A(x) = 3 V109|¢O(X)l2 . (3.4)

The invariant measure p for the process Xy is given by

o(dx) = I¢O(X)lzdx . (3.5)

where dx denotes the Lebesgue measure on RrR" . Assuming suitable
conditions on the vector field A (for example globally Lipschitz, see

Kunita [43]), there exists a stochastic flow of diffeomorphisms which

is a solution of equation (3.3), that is a map £, (u) :R"-R", (t20),

such that go(w)(x) = x and

de(w)(x) = dBy + A(Ey(w)(x))dt . (3.6)
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We shall however only require that the solution flow is measurable.

We now consider the existence of the Lyapunov exponents. Despite

the lack of compactness because of the stochastic mechanical nature of
the system the proceés has finite invariant measure (3.5) which is in

fact a probability measure. Before we can apply the results of Ruelle

[56] and Carverhill [13] (i.e. Theorem 1.2.6 of Chapter 1) we have

to check that Hypothesis 1.2.5 is satisfied for the stochastic mechanical

process defined by (3.6). We consider the following:

Lemma 3.2.1
For a ground state stochastic mechanical system (3.6), for any

+
2 gy VIl

og*]0g, (@) ()] e L
tel0,11 10+ op

| : n..n
denotes the operator norm on GL@RZJR ) .

te [0,T] we have

1, .n _
R [9) .

( xQ ,p 8P) . Here || ”op

. Proof

sup 109+IID€t(w)(x)llop e L'®"a,0 aP) .

irst show that
We shall first ¢ e[, T3

The derivative process associated with equation (3.6) is given by

d(Dgy () (x)v) = DA(EL(w)(x)) (e (w)(x)v)dt , v e R (3.7)

By Itd's formula
t <De_(w)(x)v,DA(g_(w)(x))(De_(w)(x)v)>
2 B} 2 2 S S S ds.
Tog|[Dg . (w) (x)v[ | = Togl [v] 1%+ JO ST

and since sup log = 1og sup
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i log| [Dg () (x)v]] = Tog up 108, (w) (x)v] ]

Tog| [DE (@) (X)),

Hence

t <D (0) (x)Vy DA(E () (xD(DE (1) (x))>

sup ds. (3.8)
0 [Ivl1=1  <De(@)(x)v, Deg(w)(x)v>

tog 10t () () [, < |

Now, since log' f = max{0,f} ,

+
sup lTog | |DE (w)(x)]] . dIPp(dx)
LR” jg te[0,T] t op

<[] s fogloe )01l dPe(ex)
R" Jg tel0,T] e ep

which:by_(3.8)
<D (u) (x),DA(E () (%)) (D5 () (x)v)>
<DE () (X)v, DE(w)(x)v>

t

< J j sup J sup
RV otef0,T170 [Iv]]=1

ds dPp(dx).

The'Cauchy—Schwarz inequality yijelds

t

DA(E, (w ds dPp(dx]
: ﬁm" ja tel0,T] Io IR [1PACEg () (x))[]ds dPo(dx)
tIIA(‘()('))lId dPp (dx) (3.9)
) D v X s X v .
LR” Jn ig?o,rj Jo gs_ ° |

" o ds dPp(d
< LR" | J N (o0 s dpotan)



- 80 -

since the integrand in (3.9) is positive. By Fubini's Theorem and

the ¢t-invariance of Proposition 1.2.2 We have

ol IDA(x) [ o (dx)

JIRnJ sup 1Qg+lIDEt(w)(x)IIOplep(dx)gTJR

Q0 tel0,T]

‘and by (3.5) the right hand side becomes

=1, Hoagal ] Teg00l o .
R
2
As A(x) = 3 V109|¢0(X)l
-, | , ~
2% 3¢ 36, . 8o, B
1 .70 2 . ¢
DA(x) = 2[99 —7 - (—"Q) % 0 » = 0. 0 e
I¢0(x)l ax-l ax] szax-l . BX] 8X2
-,
RIERA N
b —7 - ()
i axn an

1 5

= . (ALL) say.
. 2
l8g(x)1

~

Each entry of the matrix Aij‘ is given by

2 .
? 3¢y 99
¢0 __,jxl_ - -—jElf—ll . 1<i,j<n
axiaxj axi axj
8¢0 2 . n .
is integrable over IR ~by the finite energy

If 'I=J then l-a-)‘(T




- 8] -

assumption and for 1 #Jj , by the Cauchy-Schwarz inequality

300 3 :
J laioaio f' ]d)%Jnllaii—?,dx)%<m

again by the finite energy assumption.

3 ¢ o
Also %J%x gx s(1 =i, £ n) is integrable over R" since

‘ J

<I¢la

- | Jeo- ;)] Aloglla || =

aa’s X;0X; Hl

nnefr pfbdud: and
where thenorms are those of the Sobolev spaces HOGRn) , H]aRn) and

H'](Rn) respectively. Hence, if we consider the norm

- n
Al = 5 Jags
il " g 1]

then

fRn fsz 15::?0 1og+l|Dgt(w)(x)Hop dPp (dx) < «

as required.
In order to consider the integrability of sup 1og+|]Dgt(w)(x)-]

[
ter0,T3 °p

note that by Ito's formula for the linear map

R")

n
over R x Q , -

D () (x) " ¢ BLER"

n

. . . |
D’ét(“’)(x)-] "jOD*ES(w)(x)-]DA(ES(w)(X))(DES (0)(x))(Dg_ (w)(x) )ds

4]

t .
[ oty ()0 oA )00 (1) (3.10)
st
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2
Since GL(RnﬂRn) is isomorphic to R"  consider (3.10) as an

' 2
equation on R" . Again by Ito's formula we have

£<De () (x) 1, DE () (x) T DA(E (0} (x))> 2

-1

togl Iog, ()0 112 = | : _ R s
t R0 <Dg(w)(x)7, Deg(w)(x)7> 2
IR
Hence, by the Cauchy-Schwarz inequality
-1

- t [1Dg (w)(x)" 'DA(E (w)(x)) ]| 2

ag 10 () (x0T ol = | x R o
R 0 |Ioe(w)(x)7M] 2
IR

and since all norms on finite dimensional Euclidean space are equivalent

3 o,B >0 such that
allfllwsllflh12 < 8l1fll,, -
Thus
|109||D£t(w)(X) llopl < —-IIDA(ES(w)(x))Il ds + const,
oa

| ] : .
and as above  sup 1og+I|D£t(w)(X) ]Ilop e L'@" x q, p AIP) . g
tel0,T] .

We also need the following lemma.

Lemma 3.2.2

For a stochastic mechanical system (3.6) on IR",'for any te [0,7T],
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then

1
sup 1091 ID(Er_ (04D () 0D € L ®R'0,0 @P) . (3.11)

Proof

Note that (3.11) is a.s. not negative. Now from (1.7) we have

D(Eq_4(04(0))) (£, (0) (X)) = DE(w)(x)o(DE(w)(x) ")

so that

il Tog|[D(e7_(8(w))) (g (w)(x)) ],

+ + -
< sup_log"|[Der(w)(x)[ ], + Eng]1og | 1Dg  (w) (x) ]Ilop

te(0,T €

~and both terms on the right hand side are integrable over R" x g by

Lemma 3.2.1, hence the result. | B

We are now in a position to give the following result.

Theorem 3.2.3

For a ground state stochastic mechanical system of the form (3.6)

on R" there exists a.s. a Lyapunov spectrum and associated filtration

of IRn

Proof
is sétisfied by Lemma 3.2.1. The proof then

Hypothesis 1.2.5
O
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Remarks 3.2.4

(i) It is clear from Remark 1.2.7 that the solution flow

{Et(w) ;3 t 20} need only be measurable for the above result to hold.

(ii)  Since the ground state stochastic mechanical system is elliptic
by Remark 1.2.7 the Lyapunov spectrum is a.s. constant, that is the

spectrum is independent of (x,w) a.s.
The importance of this remark will become apparent when we consider

the Timit -% Tog|det Dgt(w)(x)l as t »+ o and show that this yields

the sum of the exponents.

(iii) It is clear from Lemma 3.2.1 and Ruelle ([56]) that =~ = does

not belong to the Lyapunov spectrum for such a stochastic mechanical
system. |
We note that Theorem 1.2.6 can also be rephrased in the following

way.

Theorem 3.2.5 (cf. Baxehda]e’[4])

For a ground state stochastic mechanical system (3.6) on R" , for

p R P almost all (X,u) € M x

1/2t

(D (0)(x) Deg () () /2F > A(x0) s tse

| , no. .
where A(x,w) is a random 1inear map on R~ with non-random eigenvalues

1 2 n
0 < et < e < ... < et
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where A]....xn are the Lyapunov exponents for the stochastic flow.

The eigenvalues are non-random because they depend only on the remote
future of the stochastic flow, whereas A(x,w) 1is in general random
because the eigenspaces corresponding to distinct eigenvalues depend upon

the entire evolution of the stochastic flow.

Using this and Remark3.2.4(ii) we have the following corollary of Theorem
3.2.3.

Coro]]arz 3.2.6

For a ground state stochastic mechanical system on R" . For o 8P-

almost all (x,u) ¢ R" x o we have

. 1] : 1 n
1im — log|det D )l =2 +..... + 2 =2
i T gl Et(w)( )I T
Proof
By Theorem 3.2.5 we have that
1im - Tog|det(De, (w)(x) "D }
fom T ‘99 Eplw)(X Et(w)(x)) I
.1
= Tim — Tog|det D X
£3e0 T gl Et(w)( )l
N
= I A = A 0
i1 F

We now have the following result, conjectured first by Elworthy in [16].

Theorem 3.2.7

For a ground state stochastic mechanical system (3.6) on R" we have
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A = - const. x (Kinetic energy of the stochastic mechanical particle).

Proof

By Corollary 3.2.6 the sum of the Lyapunov exponents

o v
= lim E-1og|det Dgt(w)(x)I

s =
z frco
by (1.18)
- J div A(x)o(dx) (3.12)
]Rn
1 . n 3 ¢0 ad)o 2 2
- { 2 (4g—7 = (—)")Heg(x) | dx
LR“ ¢O(x)2 i=] O_axi BX; 0

Considering the first term and integrating by parts gives

| ) ) |
L 8%8g(x) 2o9(x), o 80p(x)

bo(x)—p dx.= [g(x) — T, - f( "2 4,

J’R T T T T R ox; 1

and since 99 € LZGRn,dx)

B nagn(x) 5
AZ = - 2 J ‘Z] (-BT(?- ")de
gh =1 %7

whichis anegative constant x (the Kinetic energy of the stochastic

mechancial particle), see e.g. [48]. 0

_Remark 3.2.8

That 1im %-109|d8t Dty (w)(x)| is given by the Kinetic energy of the

to
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stochastic mechanical partic1é was first given by Elworthy in [161],

but we have actually shown that the Timit considered by Elworthy is indeed
the sum of the exponents. We also note that A has the interpretation
that it gives the rate of change of measure under the action of the

measurable flow (see for example [211]).

Examples 3.2.9

(1) Consider the process on R given by

_ U3
dxt = dBt xtdt

where Bt is a one-dimensional Brownian motion. The process is
strongly complete; since it possesses a finite invariant measure

it is complete and completeness and strong completeness are equivalent
in one dimension. However the flow is not surjective onto R, (see

e.g. the test given by Elworthy [33]), and hence a ™ flow exists but

not a flow of diffeomorphisms. Thus 1if §t denotes the flow

dey(w)(x) = B, - £(w)(x) dt

For this stochastic mechanical process A(x) = % = V(-X4/4) and the
invariant measure (normalised) is given by
o-X 120

o(dx) = 2 dx (3.13)
r(1/4)

where T(*) 1is the gamma function

r(n) = J " eV du .
0 e
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For this process we have

4
-x'/2
e dx

[ Hoactle(en) = [25.
R -=  1(1/4)

- 3/2r(3/4) . (3.14)
r(1/4)

hence,as inLemma 3.2.7,the integrability of sup ‘1og+||Dgt(w)(x)i1|| .
te[0,T1]

Since there is only one exponent for this 1-dimensional process we have

by (3.12) that

4
- o o2 -X'/2
J div A(x)p(dx) = - J_ §§;%TZZ;- dx

>
1l

So by (3.14)

L

\ = - 3v2r(3/4)
r(1/4)

and the process is Lyapunov stable. (cf. Carverhill [13] Chapter 2).i |

(i1) Consider the harmonic oscillator on R" given by

n .2 N oo
2 2
I SRt

where My S Hpoq € venen < py < 0 and M eR (1 <1 <n) .

‘Associated with this operator is the ground state process given by
d(x]...,xn)t = dBy + (ﬁ1x1""’“nxn)tdt on R" . (3.15)

For this process A(x) = (u]x1;....,pnxn) is globally Lipschitz, hence
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the process is strongly complete (see for example Kunita [43]) and
the solution flow exists for all time and is surjective. Thus take a

version of the flow such that
deg(w)(x) = dBy + A(E,(0) (x))dt
and this process has invariant measure

2 2
HaXq F+oooet u X
p(dx) = 17 nNax .

) (lu]....un

— e
§2 (m"/2

The derivative process associated with the ground state process (3.15)

is given by

n
dVt = u]. 01 vy dt Ve eR" . ~ (3.16)

This is just a deterministic equation with unique solution

¢R" . Since Vi = Dgt(w)(x)%), by Theorem 3.2.5

given vy
* 1/2t o
(Dgy (w)(x) Dgy(u w)(x)) A(Xsw) -
‘ : . : M1
where in this case A(x,w) is the matrix |e 0]and wupseee 1y
| 0 n
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are the Lyapunov exponents for the stochastic flow. We therefore also

have a filtration of R"

: _ N+l n 1 I
{0} - V(X,w) c V(x’w) ..... c V

This is just an Ornstein-Uhlenbeck process on R . In particular if

uy = «ee. =u (=1 say) then all the exponents are the same and the

filtration is given by

_ vl 1 _on
O Vixw) < o) 7R

i.e. the whole of R" . Also the sum of the exponents for (3.15) is
given by

>
1]

5 lmndiv A(x)p (dx)

u]+....‘+un.

3.3 Stable Manifo]d Theorems on R" for Stochastic Mechanical Systems

We now consider, for a stochastic mechanical system on R" of the

form (3.6)s the existence of stable manifolds. In this case we have to

insist on the existence of the flow although it does not necessarily need

to be a flow of diffeomorphisms onto R" . Again the work is analagous

to that of Carverhill [13],.Chapter 2 and his extension of the work of |
Ruelle [561.
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Given the previous regularity estimates of Lemmas 3.2.1 and 3.2.2

we have the following:

Theorem 3.3.1 (Local Stable Manifold Theorem, cf. Carverhill [13],
Theorem 2.2.1 and Ruelle [561, Theorem 6.1).

k

For a stochastic mechanical system (3.6) on R” with a € (k = 2)

with bounded derivahves up s order K -
stochastic flow gt(w) , t20,, take A <0 such that 1 is a.s.

disjoint from the Lyapunov spectrum. Then we have a set ™ cr of full

0

p 8P measure and measurable functions a,8,y : ™ R such that if we

denote by v?x w)(a(x,w)) the set {y e B(x,a(X,0)) 3 d(gt(w)y,gt(w)(x)) <
g(x,0)e*t  for all t = 0} where B(x,a) denotes the closed ball at

x ¢ R" of radius o« . Then:

(a) v?x’w)(a(x,w)) isa cK submanifold of B(x,a(x,u)) which

i+]

(Xs0) where i 1is such that

is tangent at x to V

Moy < F <2 )
(b) If y,z e v?x’w)(a(x,w)> then

d(gi(w)y,gt(w)z) < Y(x,w)d(y,z)e;‘t .

(b') If A <X and [x,3] is disjoint from the spectrum for all

(X,w) € r* then there exists a measurable map y':rA +]R>O

such that if y,z ¢ V?x w)(a(x,w)) then

d(Et(w)y,Et(w)Z) < Y'(x,w).d(y;z)ekt

Proof

Exactly as in Carverhill ([13], Theorem 2.2.1). Again since we are
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working on R" the tangent space TR” ¥R" can be identified in a

Borel measurable way. Also if Fo(x,w) : BT +R" , where B(T)

denotes the closed unit ball centred at the origin, is defined by
Fo(xsw)y = gp(w)(xty) = £q(w)(x) (3.17)

for the discrete time interval of length T (as in Theorem 1.2.6), then

the regularity condition required by Ruelle's Theorem 5.1 is

[Fa(x,0) || | dP p(dx) < e (3.18)
0 Ck
RrR" @
where
ol
llFo(X:w)Ilck = sup {Izl kll 7 Fo(xs“’))’ll }.
<
yeB(T) lefsk &Y
k all of these defivativeé are bounded

Clearly since the flow is C

over R" (see for example [38]) - and hence (3.18) holds.

Also as in Remark 3.2.4 (iii) for such a stochastic mechanical system,
by lemma 3.2.1 the Lyapunov spectrum of Go(x,w) (cf.'GO(x,w) of Theorem
1.2.6) does not cohtain - w ., Thus for discrete time increments of

length T we have a version of Ruelle's Theorem 5.1.
The extension to continuous time follows as in Carverhill Theorem 2.2.1

using lemmas 3.2.1 and 3.2.2. 0

Theorem 3.3.2 (Full Stable Manifold Theorem, cf. Carverhill, Theorem

2.2.2 and Ruelle, Theorem 6.3).

. k
Consider. the stochastic mechanical system (3.6) on R" witha C (kz2)
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u;ﬂ-\ bounded derivatives up t order K
stochastic flow Et(w) , t =20, Byremark 3.2.4(ii) the Lyapunov spectrum

for this system is a.s. constant. Let AT < el < AT 4 be the
strictly negative Lyapunov numbers. Then there is a set I in

r «cR" x @ of full measure and such that for each (x50) € Ty we have:

For each p = r-q,....,r the set
| ' -
iy 7 RY;Tin g log d(gy(u)xeq(w)y) < P}

is the image of Véi)w) by a Ck'] immersion which is tangent to the

identity at x . Thus Vgi)w) is locally a Ck-] submanifold of R" .

Proof

As in Carverhi]] [13] Theorem 2.2.2. 0

Examples 3.3.3
Consider the system of example 3.2.9 (ii), the Ornstein-Uhlenbeck

process. Then all of the Lyapunov exponents are negative for this process

~ and we have the cases

('i) if ”1 = 112 S teee = lln

. L, : 2 1 n
then the filtration is given by {0} = Vix,w) © v(x,w).=IR

and the stable manifold Ungw) is the whole of R" ;

(i1) suppose n = 2 and uy > ¥y » then the filtration is given by

3 2 1Rl
01 = Vixu) © Vixw) € Y (xe0) :
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and the stable manifold corresponding to the exponent Mo is

one dimensional and that corresponding to My is the whole of IRZ .

This can be compared with the compact case ([13]) where Carverhill

shows that the stable manifold is not the whole of M .

3.4 The Existence of Lyapunov Exponents for Stochastic Mechanical

Systems on Non-Compact Manifolds

We now consider a stochastic mechanical system on a simply connected,

complete, n-dimensional Riemannian manifold M . This system takes the

form

] Xi(xt)odBl +A(xg)dt ' (3.19)

Q.
>
n
no3s

.i

where xi(x) eL®GTM), 1sism, B, BM(R") and A 1is a vector

field of the form
A(x) = 3 V109l¢0(X)l2 . S (3.20)

Here once again ¢, is the normalised square integrable eigenfunction
corresponding to the ground state of a Schrodinger operator of the form
(1.19). We assume that the Stratonovich correction term

m

i 2

vx.(X.)'= 0, so the differential generator of the ground state
it
i=1

process (3.19) is given by

‘%A +'A(.).V (3.2])
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and the process Xt has invariant measure
2
p(dx) = log(x)]" dx o (3.22)

where dx denotes the Riemannian volume element.

A problem when dealing with solutions of stochastic differential
equations on non-compact manifolds is that of explosion of solutions,
however since for all the processes that we shall consider we have a
finite invariant measure (3.22) these processes will be complete i.e.

" non-explosive.

Consider the sjtuation of lemma 1.2.4, for such a system we have

Lemma 3.4.1

For a ground state stochastic methanica] system (3.19) on M, if
VX; e LZ(M,p(dx)) ~for 1 <4 <m and the form Ric-vA is uniformly

bounded over M , then for any t e [0,T]

. - ' "
sup __ Tog*[ [0 (0)(x)* (| e L(W x 2, o & P)

tel0,T] op
where II'IIop' denotes the operator norm on GL(Rm) .

Proof
1

We shall first show that sup Tog IIDEt(w)(x)llop el (Mxq,pflP).

tel0,T]
By Carverhi]]is formula (1.12) and its reformulation by Elworthy (1.14) we

have for the process gt(w)(x) on M that‘
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t
<ns(w)v,VA(ns(w)v)>ds

tm ;
tog ey (w00l | = [ T eng(ednoxngopvpoae] + |

2 2

m
-2 1 <VXi(nS(w)v),ns(w)v>

t m
+ %J { z]l[vxi(ns(dv)ll L

0 i=

- RiC(ns(w)v,ns(w)v)}ds . (3.23)

Since Ric-VA is bounded from below, by -C , say, for some C >0 , we

have

tm .
p <ns(w)v,VXi(ns(w)v)>dB;

tog|Te () (V]| = jo =
i=

tm o M 2 .
+ éj £z 9% (n (w)v)[]5-2 £ <VX. (n_(w)v)sn (w)v>" + Clds
0i=1 . j=1 13 *
where -C is a lower bound for Ric-2vA . Thus

| Tog™ w d
JMJQ sup 108" [Ty (0)(X) 1 lgp <P (&

<[] s losliTe@00lgy oL

‘ t m - .
i

< sup [Ij sup I <n (w)v,9X; (n_(w)v)>dB l

jML? tel0,T] 0 IIVH:] i=1" S 1Y s/ | S

t m 2
SR ARONIINE,
*i Jo |T$T|=1 i=1 it ‘

m A - |
+2 I |<VXi(ns(w)v);ns(w)v>2| + C}ds] dIPp(dx)

i=1
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T | m
< J B J E{ sup l Z]<ns(w)v, in(ns(w)v)>|2}ds o (dx)
M i=

T m ’ m >
+ “ %J{ 9%+ 2 5 Jux|° + Tids dIPp(dx)
M/ 0 i=] i=1

for some constant B by the Birkholder-Davis-Grundy inequality, the

positivity of the integrand in the second integral and since llns(w)vll =1,

Then by the ¢, -invariance, after application of Fubini's theorem in the

t
second integral

f J sup _ Tog”|[Te () (x) |1, dPp(dx)
M ‘atel0,T]

m m
< BT(J [z |vx1.|2 +2 z.lvxillvlejp(dx))
M i=1 #]
1,§=1 .

3Tf m 2 C
+ — L VX, dx) + =
ey 1,=]| 17 pldx) + 2
Each term on the right hand side is finite since 'Iin’ € LZ(M,p(dx)) .

1<ism, the cross terms being finite by the Cauchy-Schwarz inequality.

N
Clearly all these quantities can be extended from M to M <IR" and

hence the result.

The result for the inverse follows since by Ita's formula

t m .
- I <ng(w)v, (ns(w)v)vxi>dB;

1og||T£t(w)(X)—]V|I = JO I

t m o M 2
+ %Jo{iflllvxi(ns(w)(v))ll -2i§]<(ns(w)v)VXi,ns(w)V>
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+ Ric(ng (w)vang (w)v)-2<n ()V, (ng (w)v)vA>}ds

and using the fact that Ric-VA < C some C >0, by taking absolute

values the result then follows in the same manner as above. 0

Corollary 3.4.2

For a ground state stochastic mechanical system (3.19) on M
embedded in some Hﬁl(m > n) where the system is obtained from the
embedding (i.e. gradient Brownian flow + drift A) then if the second

fundamental form o, € LZ(M,p(dX)) and VA e L](M,p(dX)) for any t e [0,T]

n 1A
sup 1og+HD£t(m)(x)ﬂ||0p e LM xa, p8P) .
te[0,T]
Proof

For the system (3.19) obtained from the embedding ‘M IR ,» (3.23)

becomes

tm ‘ ' i t
J p <ns(w)v,VXi(ns(w)v)>st + J0<ns(w)v,VA(ns(w)v)>ds

log||Te, (w) (x)Vv]]| =
og|| t(w) 0 i<]

t : '
+3 [ T, (rg0vs)1? - 2l (ngdvung o

- Ric(ns(w)v,ns(w)v)}ds

The result follows in the same manher as lemma 3.4.1 using the fact that

. . 2
by the definition of the Ricci tensor in Theorem 2.4.1 if o, € L=(M,p(dx))

then Ric e L1(M,p(dx)) - 0
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Lemma 3.4.3
For a ground state stochastic mechanical system (3.19) on M
such that X, e L2(M,p(dx)) for 1 <1 <m and the form Ric-vA is

uniformly bounded over M , then for all t ¢ [0,T]

n n | 1,0
D w W e L X §, .
t:gg’nll (£7-4 (8 (@))) (€ (w) (x)) ]| (M x g, p(dx) &P)

Proof

Follows from (1.7), lemma 3.2.2 and the integrability of the

quantities in lemma 3.4.1.

Using these results we now have a Multiplicative Ergodic Theorem
for a stochastic mechanical process on a hon-compact, complete, simply

connected manifold M .

Theorem 3.4.4

Given a ground state stochastic mechanical system (3.19) on M
such that in e'LZ(M,p(dx)) and Ric-vA is uniformly bounded then

there exists a.s. a Lyapunov spectrum and associated filtration of the

tangent space ™ .

Proof

By lemma 3.4.1, Hypothesis 1.2.5 s satisfied. The proof then

~ follows that of Theorem 1.2.6. 0

Remarks 3.4.5

‘ As in lemma 1.2.4, by considering the system (3.19) as one defined

(i)
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n
on M cR" we are able to identify the tangent spaces of M 1in a
Borel measurable way, thus simplifying the approach originally taken
by Ruelle in [56].
(i) As' for Theorem 1.2.6 the above result still holds if only a

measurable solution flow {gt(w) ; t 20} of (3.19) exists.
(iii) As the stochastic mechanical system (3.19) 1is nondegenerate, in
fact elliptic, as in Remark 1.2.7 (iii) the spectrum is a.s. constant,

independent of (x,w) eMx@q .

We now consider the existence of Az for such a stochastic mechanical

process (3.19) on M ., We shall first require certain regularity results,

analagous to the conditions of Hypothesis 1.2.5.

Lemma 3.4.6

For a ground state stochastic mechanical system (3.19) on M, under

the conditions of lemma 3.4.1 we have for any t e [0,T]

sup_Tog*ldetTe (w)(x)*! e LM x 2, o 8 P)
tel0,T] )

Proof

For any A e GL(R")
ldet A| < n7[[A]]"

which implies that

log|det A| < 2log n + n Tog[[A]] .
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Tgt(w)(x)i] the result follows from lemma 3.4.1 since the
O

So if A=

first term on the right hand side is constant.

We are however able to weaken the conditions of the above lemma,

consider the following:

Lemma 3.4.7
For a ground state stochastic mechanical system (3.19) on M, if

div X; € L2(M,p(dx)) , 1 =1i<m,then forany t e [0,T]

sup log'|det Tat(w)(x)ﬂl e LM x a, p aP)

tel0,T]

Proof

(1.17) for the stochastic mechanical system (3.19) on M

tom oot
Tog|det Te, (w)(x)] = JO I div X;(g(w)(x))dB_ + fodiv A(E (w)(x))ds

t m 4 .
; ;J L0 Xy (g ) (0) X, (g, w) (x))>ds . (3.24)
0 i=1 ® .

Hence

tTe,w) ()] Po(d) = [ | sup  log|ete, (u) (x)] KB o(0x)
J jn ig?o,TJ]og laetTeyl M2 te[0,T] ot I

tm .
< j J sup IJ £ div X, (g (w)( X))dB;I diPp (dx)
a tef0,71 /0 i=1
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' d

! jMJQ iSEO,T] Jolmv A x))lds
t

+ éj Zl<Vd1vX (g (w)(x))sX; (g ( )(x))>|ds] dPPp(dx)
0 i=l

s YJ j E(| T div X () ) 2430 (dx)
M~“/0 i=]

o [J;ldiv A(as<w><x>>|ds'

]
. T | <rivX, (£ ) (1)) X, (5 0) (x))>] 657 8Po (%)
0 i=1

for some constant by the Birkholder-Davis-Grundy inequality for the

first integral and by the positivity of the integrands of the remaining

integrals. Then by the @t-1nvar1ance, after application of Fubini's

theorem, we have

J J sup 10g ldet Te o ( | dPp (dx)
We tel0,T] R

o 2 ) ' :
< T JM|1z] d1v X (x)|%p(dx) + T JM|d1v A(x)|p (dx)

. m
LT J 3 |<vdivK; (X):X; (x)> |p (dx)
2y i=1

. 2
The first integral is finite since divk; € L°(M,p(dx)) , the cross.
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terms IdivX#Jdivle being finite by use of the Cauchy-Schwarz inequality.
The second integral is finife as divA(x) = trace VA(x) and since

A(x) = 39T0gleg(x)|?

|38(Togleo(x)1 )]

|divA(x)|

2
[<¢ps885> = 1984]°
2
l

l4g

This is infegrab]e with respect to p(dx) by the finite energy
assumption and the fact that %9 and B¢y € LZ(M,dx) after using the
Cauchy-Schwarz inequality (or equivalently using the fact that div
and -v are formal adjoints). The third integral is finite, again by

using the fact that div and -v are adjoints and then by assumption.

The result follows for the inverse Tgt(w)(x)-] as

| SN 1, ™ 1'

detTEt(w)(X) = J ~(det Tgt(w)(x) )z diin(gs(w)(x))st
0 i=1

. | .
i J (det Te, (w)(x)™1)divA(gg () (x))ds
0

t -, 2
# 4 toettey 1007 2 (@i e (o 00

Using Ita's formula for log(det Tgt(m)(x)']) and taking absolute

values gives the required result as above. . 0
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Remark 3.4.8

We note that the integrability of divA(x)

[ lavalotan = 2 Iogx)1® ox
Mo M

is a "natural” consequence of the stochastic mechanical hypothesis
that o9 € L2(M,dx) is the normalised eigenfunction of the ground

state -ia¢, + V¢0= E0¢0 and the finite energy assumption.

Corollary 3.4.9

For a ground state stochastic mechanical system (3.19) on M
embedded in some R" (m>n) where the system is obtained from the

embedding, if the mean curvature vector H(-) e LZ(M,p(dX))' then for

any t e [0,T]

sup 1og+|det Tgt(w)(x)i]le L](M x Q, p 8 P)
te[0,T] B

Proof

For the system obtained from the embedding M > R" (3.24) becomes

tm i [
Tog|detT () (X)) = jo T iy (5 () ()68 jodnvA<zs(w)<x))ds

2t
5 [ e, @00 s

and the result follows in the same manner as lemma 3.4.7.
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Lemma 3.4.10

For a ground state stochastic mechanical system (3.19) on M ,

if the conditions of lemma 3.4.7 are satisfied then for any t e [0,T)

logldet T w w € 1 X
sup Tosldet Tlep_y(o()Xey)0) | « L'0h x 2.5 a7)

Proof

This is true since

i:?o,ﬂ Tog|det T(ET_t(et(w)))(Et(w)(X))l

< sup 1og+ldetT5T(w)(x)[ + sup 1og+|detTgt(w)(x)']l
te[0,T] te[0,T]

and both terms on the right hand side are integrable over M x @ by

lemma 3.4.7. 0

"Theorem 3.4.11

For a ground state stochastic mechanical system (3.19) on M , then

under the conditions of lemma 3.4.7 there exists a set rcM x @ of full
p 8 P measure such that for each (x,0) € T the limit |
% Tog|det Tgt(w)(x)l exists as t > Denote the

Timit by XE , then #f the conditions of lemma3.4.1 are also

, the sum of the exponents,

satisfied we have AZ = }2
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Proof

We again first prove the result for discrete time intervals of

length T, say. Consider the map Hy : M x @ >R defined by

HO(x,w) = det TgT(w)(x)
and set

H (xo0) = Hy(0 r(x,0))

[

det T (g4(6,7(w)))E (w)(x)

et (TE 17y (8)(X)Teyr () ()71 Te 10 (x)

and by the Chain rule and the fact that det AB = detA.detB we have
H'(x,0) = H 1 (Xs0)ow.sio Hy(x,0) = det Tg -(w)(x)

Now consider
TOQlHn(x,w)l = log|det TgnT(w)(x)l

n-1
= £ Tlog|H,(x,0)]
i=0 |

Now by lemma 3.4.7

J [ reslitgtx.o apoton) < -
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So by the Birkhoff ergodic theorem

n-1
z 1ogIIH1(x,w)|| tends to a 1imit a.s. as n-—+ =

i=0

S|—

and is some function h* e L](M x 2,0 BP) . In fact sincep QAP(T) = 1
f j h*(x;u)de(dx) = J j log| det TET(w)(x)Ide(dx)
M/ Q M/ Q

and in particular

1 n-1
12 ToglHy (x,0)|

j J lTog|det TF,'T(w)(x)l dPp (dx)
i=0 e ‘MQ

To extend to the continuous time result we again use the fact that
fgl) = Et-nT.(enT(‘.*’b))’v Enr(®)
1)1 = 8 (an) 1o (8 (0)) B lw)

- for all ﬁ‘ and all t e [nT,(n+1)T] . Thus if we set,

sup log|det Te,(w)()]

4’].()‘(’“’) =
_te[O,T]
and
Cay(xw) = sup Togldet T(Er_y(6, (0)))E, () ()] -

tel0,T]

Then as in the proof of Theorem 1.2.6 we have a.s. that
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1og|detT£(n+])T(w)(x)l - ¢5(0 1(x,0)) < Tog|detTe, (w)(x)|
s log|detTe r(w)(x)] + ¢1(2 1 (x0))

for all t e [nT,(n+1)T] . By Lemma 3.4.7 and Lemma 3.4.]0 91 and
¢, are »p RP integrable and clearly non-negative. Therefore by
Birkhoff's ergodic theorem 1/n ¢i(¢nT(x,w)) -0 as n-+>= for a.e.
(x,w) . So for these (x,w) e M x @

Vim — ]ogldetTg x)| = Tim 1-109|detT€ (w)(x)]

n-w nT t»w

and the continuous time result follows.

The fact that

11m-l 1ogldet Tgt(w) (x)| = Ay
t+w v
follows from the fact that the system is e]]iptic and hence that the

Lyapunov spectrum is a.s. constant and also using the manifold versions

of Theorem 3.2.5 and Corollary 3.2.6. o

Remark 3.4,12

As for Theofem 1.2.6 the above result holds if the system is not

(1)
strongly ¢
only a,paktia] or measurable flow exists.

omp]eté, indeed it still works if the system is complete and

The above result also provides a method for proving that

(i1)
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1im~% lTog|det Dgt(w)(x)l =2y for a ground state process on IR" as
T '

in section 3.2.

We now have the following:

Theorem 3.4.13

If (3.19) is a ground state stochastic mechanical system on a
complete Riemannian manifold M embedded in R" (m>n) of constant mean

curvature and the system is obtained from the embedding then Kz exists

a.s.

Proof

As in Corollary 3.4.9 if the system (3.19) is obtained from the
embedding M >R" then the solution flow gt(w) : M>M is the gradient

Brownian flow with dkift A and

|div Xi(x)]2=n2ﬂ(x)2 = C , some constant.

II‘M =1

i=1

So H(:) e L2(M,p(dx)) and the conditions of Corollary 3.4.9 and

Theorem 3.4.11 are sétiéfied SO iz exists a.s.. Thus by the Strong

Law of Large Numbers and (1.18)

1im % log|det Te (w)(x)] =7,

oo

j div A(x)p(dx) + C . (3.25) 0
M : X
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Corollary 3.4.14

Under the same conditions as Theorem 3.4.13,

mihima]]y embedded then Xz exists a.s. and

Proof

If M is embedded minimally in R" then H(x)

exists a.s. and by (3.25)

32 = JM div A(x)p(dx)

- [, evtamtoslag) 12 1o e

= JM <¢O(x),A¢O(x)> - |v¢0(x)|2dx

which by taking divergences yields

- 2

Ao = —ZJ [veo(x) " dx
, M

z

and hence the result.

Corollary 3.4.15

A. = - const. - (the Kinetic energy of the stochastic

if M is also

mechanical particle).

= 0 for all x_eM.' Thus 2

If (3.19) is a ground state stochastic mechanical system defined

on the orthonormal frame bundle 0(M) then iz exists and is given by

A = - const.
A 5 ’

(the Kinetic energy of the stochastic mechanical particle).

z
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Proof

For the canonical system (see for example [161, section 4)

dey(0)(u) =z X;(4(w)(u))odB] + A(E,(w)(u))dt

1

n~3
—

£y(w)(u) = u u < O(M)

we have div Xi = 0 . The proof then follows that of Corollary 3.4.14. 0O

Examples 3.4.16

(i) Consider a process defined on a parabola embedded isometrically

in R2 by the embedding f : IR %]RZ where
f(x) = (ax2,2ax) a>0
with the Riemannian metric
g = 4a2(x%+1) .

Take the stochastic mechanica] system given by

X T, 1 2 ___x
odBt + odBt dt

2

dx, =
t 2
2a(x%+1) 2a(x2+1) 122 (x%41)

2
where the drift vector A(x) = v( g—) . For this embedding the

curvature of the parabola K(x) = 1/p(x) where p(-) is the radius
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of curvature. K(x) is given by

1

K :—-2—2———
) 4a” (x +1)3

This is clearly bounded for all x ¢ R and hence lies in LZGR,p(dx)) .

Also by (3.22) the invariant probability measure for this process is

given by ce”® dx , where dx denotes the Riemannian volume element

given by-
dx = 2a vAP+1 dx ,
N I
and c = [f 22X (x2+1)2dx]

So by (1.18) the leading and only exponent is given by

) |
A= j B -—iﬁ)p(dx) + J div A(x)p(dx)
R 2 | R had

2 2
-c e -c e
= ~—— dx + j —— dx (3.26)
_-c jm [ b2 | j e—x2 dx
da | _, (x2+1)5/2 (x2+1)3/2

which is given by (see Gradshteynand Ryzhik, [361)

p r(/EH) k) IO

A= ) %h P(%) k=0 T ;

where” () denotes the Binomial coefficient.



- 113 -

Analagous to the work of Carverhill ([13]sections 3.1 and 4.3) we
consider (3.19) as a deterministic system under the action of a small
stochastic perturbation. So, for small e , (3.19) is now given by

2 .
d = /e 2 Xi(xi)odB]c + A(xg)dt ' (3.27)

i=]

which has differential generator -%é + A.v . This is equivalent to

considering (3.19) as

2 .
- i 1 .
dxt.- iflxi(xt')OdBt' f E'A(xt')dt (3.28)
where ' (3.28) is just (3.27) under the time change t = é- For
2
(3.28) the invariant probability measure is given by o(dx) = ce™™ /Edg

. o 2
where ¢ = [J 2ae”* /s(x2+1)%dxj-] and the exponent for (3.27) is

is given by
e 1 1 €11 _ qi e | 1
A% = Tim - Yog||vE]] = Tim 5 log||vee || = € 1im = Tog||vy. ||

From (3.26) and (3.28)

2 2
m Lol | - |76 Spmgtir [T S
Tim — lo ' = .
tn 't g t —o Ia (X +-|)5/2 —co zae (X +-|)3/2

Since, by the definition of the §-function

co 2

1 -x"/e

£(0) = ‘ f(x)e dx
(0) vere J-w

(3.29)
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(3.29) becomes

. 1 1

1im = logl vy || = - —, -

theo t t 8a2 43" ¢
Thus

€ L] € 1

A= ¢ Tim 5 logl v, || = - =, - —

the t 8a°  fa’

and

Tim A% = - =

e~>0. 4a

which is also the value of VA(0) = div A(0) . This concurs with the
results of Carverhill, [13], for the compact manifold case, namely that
as e tends to zero, the invariant measure p°  concentrates on the
hypérbo]ic attracting fixed point of the.flow Et(w) - the'fixed point
being the origin. '

(i) Consider the process defined on a catenoid isometrically embedded

in R3 where the embedding f : M +]R3 is defined by
f(u,v) = (u, coshu cosv , coshu sinv)

with the Riemannian metric

coshzu 0

.gij 0 coshzu
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Take the stochastic mechanical system given by

i Ut Vi
X;(ug.,vy)odB, - ( y ) dt (3.30)
L t coshzut coshzut

3

d(up,v,) = &
L

- (u2+v2))

where Xi = Vfi »(1 =i <3), and A(u,v) = v( — It is

well known that such a surface is minimal in R3 and hence H =0 for

all (u,v) e R x S] . Also the Gaussian (Ricci) curvature is given by

K =~
S

cosh'u

which clearly lies within the range -1 < K <0 with minimum value

on the circle u=0. Also VA(u,v) 1is given by

usinhu | | vsinhu
VA(u,v) = - -
’ cosh3u coshzu cosh3u
2vsinhu - vsinhu . 1'2 - ysingu
coshzu cosh3u cosh™u ' cosh u.J

which is uniformly bounded. Hence by Theorem 3.4.13 and (3.25)

o (2T 2.2
Ay ='cJ J div A(u,v) e (U7 cosh?y dvdu
—w 40 |
» o 21 2.2 )
wherew € = (J J e~ (UHV) CoshZu dvdu) 1
0! 0
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Thus

o (2w 2.2
= _ 2 —(u +v ) Y
Ay = CJ J —— . € cosh“u dvdu
- /0 cosh™u
o 2T 2 2
- ZCJ J e (VT gy
-0 O
=-c/nl/n - T(%,4n2)] < 0
where
2 © LU
P(3.407) - | du .
2

4n

As in example (i) we consider (3.30) as a deterministic system
under a small stochastic perturbatioh (i.e. (3.30) is of the form
(3.27)). The only hypérbo]ic attracting fixed point of the flow
gt(w)(u,v) of (3.30) is the origin, i.e. at (0,0) , A(0,0) =0 .
Also |
Ao = € lim 1-1og|det v,| = -2 = trace vA(0,0) .

I e T t
We now have justification in giving the following extensions of

the results given in Carverhill [13] sections 3.1 and 4.3.
Consider, on a non-compact manifold M » a stochastic perturbation

of a deterministic system, i.e.

m .
& = /5 3 xi(xi)odB; + A(xg)dt (3.31)
i=1
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where

A(x) = 37 log|gg(x) |°

as in (3.19). For (3.31) the invariant probability measure is given
by

o€ (dx) = [9g(x)]% d

We assume that as e tends to zero p° concentrates on a finite set
of hyperbolic stable fixed points of the flow gt(w)(x) of (3.31), such

a situation exists from the evidence of examples 3.4.16. We also assume

the conditions of Theorem 3.4.4 and Theorem 3.4.11 so that for (3.31)

the associated Lyapunov spectrum exists a.s.. We then have the following:

Proposition 3.4.17

If the flow gt(w) of-(3.31)‘has,a hyperbolic attracting fixed noint x,

then the invariant measure o°(dx) tends weakly to 6X0 as e >0
Also as € » Ov the sum of the Lyapunov éxponents
€ -
Ay = trace vA(xo)
Proof
See Carverhill, [13], Temma 3f1 and Proposition 3.1.2. 0

The following is also true for the non-compact case - it is

Carverhill's Theorem 4.3.
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Theorem 3.4.18

For the system (3.31) above. If,as e tends to zero the invariant
measure p° concentrates on a finite set xO,...,xp of hyperbolic
attracting fixed points of £, (v); then if e >0 is sufficiently small

the system (3.31) is Lyapunov stable, i.e. for a.e. (x,u) sup {25 }
VeSXM (Vsw)

is strictly negative where

€

= 1im L €
A(V’w),_ 112 £ 1ogl|Te  (w)v]]

Remark 3.4.19

If the flow (measurable or otherwise) of the stochastic mechanical

system (3.19) on M s Ck (k 2 2) and the conditions of Theorem 3.4.4.

are satisfied (namely VX, € LZ(M,p(dX)) and Ric - VA is uniformly
bounded) then for the negative part of the Lyapunov spectrum associated
with (3.19) we have analogues of Theorems 3.3.1 and 3.3.2 for a stochastic

mechanical process on M, that is the existence of local and global stable

manifolds.

3.5 The Existence of A and Az for Stochastic Mechanical Processes

Corresponding to Higher Energy Levels

In this section we again consider the differential operator

’_%A Y (3.32)

acting on functions f : R" +R with sufficiently regular potential
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V:R" >R . MWe now consider higher energy levels above the ground

state, that is eigenvalues Ep s P =1,2,3 ...... of the operator (3.32)

and the corresponding p2 orthogonal, normalised eigenfunctions ¢p

such that

(-32 + V)¢p = Ep¢p

Again since V is sufficiently regular, each ¥ is smooth and of finite

energy (i.e. v¢p € LzaRn,dx)) . As in section 1.4 associated with

this operator is the diffusion process

dxt = dBt + A(xt)dt (3.33)

where Bt € BMaRn) and

Ax) = 3vlogle ()] % . (3.34)

It is well known that for these higher energy levels, unlike the

ground state E0 , that the corrésponding eigenfunctions 4 have

zeros, called nodes, and we can consider the set
N = {xeR"; 6(x) = 0}

consisting of the nodes of ¢p . Under certain assumptions on v (see

e.g. [1]) it can be shown that if the ;orresponding stochastic mechanical

then the trajectory of the

process gt(w) st;rts at some point 'x ¢ N¢p
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process never reaches N¢ . It is also known that (see e.g. [501)

p
any solution of (3.33) is strictly positive if p =0, i.e. the

ground state. Thus for any Ep (p >0), ¢p is orthogonal to 90

and hence N¢ is non-void and divides R" into finitely many
P

disjoint connected regfons rs such that

(3.35)

Also if gt(w) starts at x e T, some i then gt(w) never

reaches N¢ and remains within ri for all time.
p

By [21] (Proposition 1D) we know that a measurable solution flow
of (3.33) exists and its derivative Dgt(w)(x) exists at least in the
L% sense. We shall show the existence of a Lyapunov spectrum and sum
of exponents. |

As in Theorem 1.2.6 "fhere is a measurable map (time shift)

<I>t:I'iX9->I‘1-><Q
defined by

2y (%0) = (B (%0),040)

- where 6, : Q> 1is the shift and Et(w) is a measurable solution

flow for (3.33) off the nodal set N¢ Again, as in section 1.4,
P

the process has invariant measure
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o(dx) = o (x)|Pax

n . .
on R" and the semigroup of transformations ®; Ppreserves the measure

o(dx) . We again require the following lemma

Lemma 3.5.1

For the stochastic mechanical system (3.33) on an\N¢ we have for
P

any t e tO,T]

(a0 +] 1, N
sup  Tog"|[Dg, (w)(x) L'(®R\N_ )xa, p 8P) .

Proof

Exactly as in lemma 3.2.1 since %t(w) is a measurable flow off
the nodal set N¢ . Also see [211. O
Theorem 3.5.2

For the stochastic mechanical system (3.33) defined on R"\N¢
. ' P

there exists a.s. a Lyapunov spectrum and associated filtration of the

connectedvcomponent of R" in which the solution flow remains.

Proof

The proof follows

a

By Temma 3.5.1, Hypothesis 1.2.5 is satisfied.

from that of Theorem 1.2.6.
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Remark 3.5.3

(i) The system is elliptic on R"\N and hence the Spectrum is

%

a.s. constant on the connected component of R" in which Et(w) remains.

(ii) By Carverhill's formula (1.12) for the system defined on IIRn\N¢ R
p
the top exponent is given by

- R ORHCERN

IyxS

where g(+) 1is given by (1.13), and u .is the invariant probability measure
on the sphere bundle to an\N¢ normalised on r. x Sn-'l

p 1 >
the sphere bundle over the connected component Iy of R" in which the

process is restricted.

To consider the sum of the exponents Ay s We have the following

Temma:

Lemma 3.5.4
For a stochastic mechanical system (3.33) on IR"\&¢ we have for

p
any t e [0,T]

+ y +1 1,00
sup log |det DE,(w)(x) e L'((R\N Q,p 8
te[0,T] t | ¢p) %0 BF)

Proof

As in Temma 3.4.6. | q
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This enables us to give the following:

Theorem 3.5.5

For the stochastic mechanical system (3.33) defined on R™MN

*

the sum of the exponents, AZ exists a.s..

Proof

By lemma 3.5.4, the analogue of Hypothesis 1.2.5- is satisfied.
The proof then follows that of Theorem 3.4.11 . or Corollary 3.2.6. O

We now have the following:

Proposition 3.5.6

For a stochastic mechanical system (3.33) on RN

*p
A = J div A(x) p(dx)
T |P1|
where -
gl = lep001% ax
T.
j
and
A. = - const. (Kinetic Energy of the stochastic mechanical

z
particle attained within the connected region r;) .
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Proof

Since

t
A = 1im-% logldet DE (u)(x)| = ]im-% J divA(Es(w)(x))dS
10 t-so0 0

and if x e T, cR"  then Et(w)(x) er; ¥t=20. Thus by the Strong

Law of Large Numbers

Ay = J div A(x) o' (dx)
T i ’

where p'(dx) 1is the invariant probability measure on Ty » thus

p'(dx) = p{dx) where |r.| is given above.
|1‘1| 1
Now since A = §v1og|¢p(x)|2

R N | 2 2
i Igivzvuoglqbp(x)l ), 1% dx

The vector field divA(x).|¢p(x)|2 on ]Rn\N¢ is just the restriction
‘ P

of the gradient of I%(x)l2 which has N as the set on which this

¢
: p
attains its absolute minimum. The vector field is therefore complete on

Rn\N¢ ~ if it is complete on B¥‘, but this is assured by the assumption
p

on the original potential V . We thus have

A = —— jr Lo (X) 80 (X)> - Iv_¢p<.x)|2}dx (3.36)

I j



- 125 -

and taking divergences in the first integrand (by completeness)

Ay = ——fl-f 76, (x)1° ax
[rsl )T
= l 4[ x (K.E. attained by the particle in ri) . B
r.

1

Remark 3.5.7

We note here that for the ground state pfocess, Theorem 3.2.7 shows
us that Az , which represents the almost sure exponential rate of change
of volume under the flow (see for example [21]), 1is given by some
negative constant times the Kinetic energy of the particle over R"
The above result is clearly analagous for stochastic mechanical processes

corresponding to higher energy levels, but this does not correspond to

standard concepts in quantum mechanics.

Examgle 3.5.8

Consider the harmonic oscillator on IR given by

2 2
d X
-3 + = (3.37) -
w2 |
Then the eigenvalue problem is given by
CHINE ST (x) (3.38)
(-3 — + =)o (X) =2 ¢ (X : : .
dx2 P PP

where the eigenvalues Ap are given by
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with corresponding eigenfunctions

2
0(x) = e 12 H ()

where Hp(x) are the Hermite Polynomials given by

2 p _,2
& (e x) .

i) = ()P &
) = (1P €

The stochastic mechanical diffusion process associated with the operator

(3.37) is given by

dx, = dB, + A(x,)dt

where
A(x) = 3logle () |? .

We consider the first few energy levels associated with the operator
(3.38). |

(1) The Ground State p =0
Ag =% and the normalised eigenfunction is given by

2
e X /2 s
¢0(x) iry-vw which is clearly never zero.

Thus by (3.36)
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1 ® n ' 2 - 2 ® )
gt | sotaego0 = g500% e = - L[ 4200

2 dx

since, from %0 given above, ¢0(x) +0 as X > * o,

So

and the Kinetic energy is given by

@ 2
K.E. = —]—J xe ™ dx .
2Vr Y-

Then A o= 3/2 and the unnormalised eigenfunction is ¢i(x) =

2
2xe ™% /2

divided up as

R = (-=,0) u {0} u (0,=)

H "

. r] _ Ty
Then
T. . _y2
AL = r J -4 (1—x2)2e X dx
z 2¢c 40

2
“* dx and lril =}

which has a zero at x =0 . Thus

N, = {0} and R s

%

for i=1,2 ,

Also the Kinetic energy
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T o ; |
K.E. ' = 1—] 4(1-x%)% e ax for §=1,2.
2¢ ‘0
(iii) p=2
Then Ao = 5/2 and the unnormalised eigenfunction is
2 -x?/2 . .= 21YE :
oo(x) = (4x 2) . This has zeros at x = 21/v2 , and R is

divided up as

= (-2,=1/Y2) vA-1/¥2} v (-1/¥2,1/¥2) v {1/VZ} u (1/V2Z,=)

R =
l".| T2 ].":3
Then
I.,T o 2
}\21 3__ 2 J . (10x-4x3) 2% X
| clr]’3| 1//2
2
) _ 2 ) ) (X)
where c =j (4x2—2)2e X dx and ll‘1 3| =j 227k
—oo _ & 1/V/2 ¢
and
r 1//2 2
2 _ -2 j (10x-4x>)%e 7% dx
z c|r, | /-1/V2
1/V2 ¢2(X) ]//?-(4x 2)2 2
where r,| = J = J dx
o 2 W2 ¢ 7o c '

Also the Kinetic energies are given by
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1

. - 2

Ke VU3 - L f C(10x-8x3)2 X" dx
2c ‘1/V2

172 2

j (10x-4x3)% ™% dx .

q/V/2

Remark 3.5.9
The situation of excited states for the time dependent case
(i.e. when the drift vector A also depends on t and the process

is no longer stationary) has been examined in [21].

From the evidence of the above results and those of sections 3.2

and 3.4 we have the following abstract result:

Theorem 3.5.10
For an Ito stochastic system given by
-

_ i
dx, = I X'(xt)dBt f A(xt)dt

(3.39)

defined on some connected region U = R" where Xi € l(Rm;TxU),
1< 1 s‘m, and- A is a vector field on U . Suppose that the measurable

solution flow '{gt(w)(x) ; t 2 0} has finite invariant probability
measure p then if
m 2 .
j (= [IDX; )" + [[DA(x)]])e(dx) < = (3.40)
U i=l :
then there exists a.s. a Lyapunov spectrum for (3.39) with associated

filtration of the tangent space to U .
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Proof
If (3.40) holds, by lemmas 3.4.1 and 3.5.1, Hypothesis 1.2.5
is satisfied. The existence of the Lyapunov spectrum then follows

from Theorem 1.2.6. : 0

We also have the fd]]owing Coro]]ary.

Corollary 3.5.11

For a stochastic mechanical system of the form (3.39) defined on
an open connected region U <R where the coefficient of the noise is
spatially homogeneous, there exists a.s. a Lyapunov spectrum_and

associated filtration of the tangent space to U .

Prbof

Since the coefficient of the noise is spatially homogeneous (i.e.
constant) and the system is of stochastic mechanical form, by ]emmas
3.2.1 and 3.5.1, condition (3.40) is satisfied and the system has a

finite invariant probability measure of the form (1.22). Hence the

result. 0
Corollary 3.5.12
For system (3.39), if instead of (3.40) we have
m 2 . ,
[z 1div 00117 + Feiv AGo De(a) < « (3.47)
U i=l v _ _

then Ay exists a.s..
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Proof

If (3.41) holds, then by lemma 3.4.7 and Theorem 3.4.17, A

exists a.s..

Remark 3.5.13

By Corollary 3.2.6, §: exists a.s. for a system of the form

given in Corollary 3.5.11.

3.6 The Existence of "Natural" Exponents on a Complete Riemannian Manifold

In this section M is an n-dimensional complete Riemannian manifold.

We shall follow closely the work of Sullivan in [60]. The Laplacian of
M is by definition naturally linked with the geometry of M . We shall
consider the L2-spectrum of A and the invariant quantity uO(M) which

separates the L2-spectrum from the positive spectrum of 4 , that is

the set of u for which there is a positive wu-harmonic function ¢ ,
such that (A-u)¢ =0 . Thus a positive uo-harmonic function which is
square integrable (and complete) generalizes the constant function of a
complete finite volume manifold. Then using 90 if it exists, we may
renormalise manifolds, formerly of infinite volume, so that they have
finite-volume and if we consider, for example, Brownian motion on such a
~manifold then under this renormalisation the process considered will also
have a finite invariant measure. We would then hope to consider the

existence of a Lyapunov spectrum associated with such a process.

By the Rayleigh-Ritz argument [60],
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= -inf {J v6|2 / JM 1612} .

110 .
¢€C0(M)

Then the L2 spectrum of A is contained in the interval (-m,uol

(see Sullivan's Theorem 2).

Example 3.6.1
. jax
For M =R, ¥, = 0 , the functions e for a e R are
az-harmonic functions and {e”'**} are virtual L2 eigenfunctions

belonging to -az as a continuous spectrum.

Consider
(34 = ugleg = 0 on M (3.42)

where % is square-integrable over M , then given Brownian motion
on M we can add to this a drift term 5V]ogl¢0(x)l2 . This "biased"

random motion (the "¢O-process") has’differential generator

10 + 39l0glepl %y . . (3.43)
Note here the similarity between the above and the stochastic mechanics
discussed in Chapters 1 and 3. In this case however % is related
naturally to the geometry of M and not to some potential function on
As before (Section 1.4) the process associated with (3.43) preserves

M.

the finite measure |¢0(x)!2dx . Thus under certain regularity conditions

on the way in which the noise is introduced and if % exists then

we have the following:
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Theorem 3.6.2
Given that the square integrable function ¢, exists for (3.42)
|2

then under the conditions of Theorem 3.4.4 where A = %V]og|¢0 we

have a "natural" Lyapunov spectrum associated with the $g-Process.

Proof

As Theorem 3.4.4. 0

We now, as in Sullivan [60], restrict attention to Hyperbolic space -
Hn+] - the unique, complete, simply-connected (n+1)-diménsiona1 manifold

of constant negative curvature. Let T be any discrete group of hyperbolic

. . . + . . .
jsometries. If T has no torsion then H" ]/P is a complete Riemannian

manifold with constant negative curvature.

Definitions 3.6.3

(i) The 1imit set of T s the set of cluster points in s" of any
I orbit in W™ . |

(i1) T is geometrically finite without cusps if T has a finite sided

fundamental domain in H™! which does not touch the 1imit set.

Theorem 3.6.4 (Sullivan)

Hn+]/r has a square integrable positive uo-harmonic function if

and only if D > n/2 where D 1is the Hausdorff dimension of the Timit

set and if T 1is geometrically finite then u, = D(D-n) if D > n/2 .
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Proof

Sullivan's Theorem 7,[60].

Coro]]arz 3.6.5

Under the conditioné of Theorem 3.4.4, if M = Hn+]

/T and D > n/2

then the ¢O-process has a.s. a Lyapunov spectrum.

Remark 3.6.6
We note here that in particular if n =1, then any group of
isometries of the hyperbolic plane H2 is a union of geometrically

finite groups, thus uO(HZ) = D(D-1) if D> 4% .
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CHAPTER 4.

4.1 The Ground State Process for the Hydrogen Atom

In [44] Truman and Lewis discuss the stochastic mechanics of a
model of the ground state of the Hydrogen atom. The model is defined
by the ground state of the Schradinger operator

2 2
/A Ze
= — 8py(x) = —— ¢5(x) = E;¢4(x)
0 0 070

2m [1x]]
where the particle has mass m, K = h/2r is Planck's constant and
the nucleus has charge Ze . Here ¢0(x) : R;\{O} +R is the ground
state with corresponding ground state energy EO - (in Gaussian
units E0 = -M2/2ma2 where a = Mz/meZZ is the Bohr radius.) The

corresponding ground state process is given by

) A
dxt = (ﬁ)é dBt I dt (4.1)
m ma||xt|l 

defined on R3\{0} and B, e BMOR3) . In [44] Truman and Lewis
discussed first hitting times of the radial process corresponding to
(4.1). We shall examine the Tlong time behaviour of the process X,
using the theory developed in Chapter 3 and consider the Lyapunov
exponents associated with the process Xg o

The drift vector field in (4.1) is given by

Ay = - X B g (1.2
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and the process has finite invariant probability measure given by
p(dx) = —lg-e-zllxll/a dx . (4.3)
md

Here we are considering a process on IR3\{O} which is slightly
different from that considered in Chapter 3, Section 2, on R"

The system (4.1) is complete on IR3\{0} (see [211), that is its
trajectories from any point in IR3\{0} almost surely never hit the
origin. However it is not strongly complete; the drift vector field
is clearly not globally Lipschitz over IR3\{O} . There consequently
is no smooth version of the solution flow gt(w) :]R3\{0} +IR3\{0}

of system (4.1). However we have the following:

Proposition 4.1.1

There is no smooth flow ét(w) :ZRB\{O} e-R3\{01 for system (4.1)

defined for almost all w € @ . However there does exist, for almost

all w , a flow

(o) 1R R t

v
o

which is globally Lipschitz and such that {Et(w)(x) ; t =0} solves
(4.1) with initial point x , for each X e R3\{0} where any trajectories

reach 0 they are replaced by ones constantly at x .

Proof

As in [21].
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From (4.1) if x, € RO} with ||xg|| = & , say, then

0

v
o

let - Bt|| <8+ t/a t

Now there is a positive probability that ||Bt|| >& + t/a . Thus if a
flow existed it must have positive probability of mapping a sphere of
radius & about O dnto some disc which does not contain 0 ; this is
topologically impossible for a continuous map.

3

To obtain the Lipschitz flow on R” Tlet Xgs¥g € 1R3\{0} with

XgsYys t 2 0 the corresponding solutions to (4.1). From (4.1) using

Ito's formula, then by the Cauchy-Schwarz inequality we have

b o<Xoaye>
Hxg=yell = Tixgmyl | + 2. (—="3_  -1)ds < ||x-yq|| forall t.
070 00
ma Jo" [Ix | 1ly, |1

The smooth partial flow £ (w) defined on a dense open subset of R3\{0}

by 211, Proposition 1D, therefore has a Lipschitz extension Et(w) as

required. ' ]

These maps gt(m), t 20, need not be diffeomorphisms but we are

able to give the existence of the Lyapunov spectrum and Ay for (4.1).

For notational convenience we shall write
N ny
Xt = Et(w)(x) and Vt = Dgt(w)(X)(V)

for the solution flow and derivative flow.
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Theorem 4.1.2

For the ground state process given by (4.1) there exists a Lyapunov

spectrum a.s..

Proof

The derivative process {vt s t 20}

dvt DA(xt)(vt)dt

N TPRIETPATE

N I R

) dt

satisfies

(4.4)

By condition (3.40) of Theorem 3.5.10 for the existence of the exponents

we only need to consider the integrability of ||DA(x)|| over ]R3\{0} .

Thus as

DA(XysXysXq) = - L
1°72°73 3
ma | {x[ |

then

Y B
HDA() | = "o2 o ——
" x|

and since ¢0(x) = (a'3/“)% e'|lX||/a

| 1DA(x) | [o(dx) =

| 7
R\ 0} R3\{0} ™

2.2
2,2
-2||x||/a
V2 e dx

[ x]1
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which by changing to polar co-ordinates yields

2m w0 2 .
J J I Y2h r7sine -2r/a drdods
0 /0’0 wma r

| IDA(X) | o (dx)
R3\{0)

/?M/ma2 < ®

Thus the Lyapunov spectrum for (4.1) exists. Note also that

trace DA(x) = = -
ma||x}]

which is also clearly integrable over IRB\{O} and hence by condition

(3.41) of Corollary 3.5.12 the sum of the exponents i, alsoexistsa.s..

We also have the following:

Proposition 4.1.3

For the ground state process'given by (4.1)

Ay = - const. (mean Kinetic Energy of the particle).
Proof
By (1.18)

Ay = div A(x)p(dx)

3
R™\{0}
_ - 2H e'zllxll/a

-7

+ 3
E
3
[oY]
=
w
~
TSN
o
L
>
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which by changing to spherical polar co-ordinates yields

2w mpoo -
=~ 2 J H 1 1 2in6e7 22 4rdods
L mma’ 40 Jolo "
-
ma

The Mean Kinetic energy for the Hydrogen atom process is given by

K.E. = 3 J |v¢0(X)|2dx = —]2
R\ (0} 2
Hence
__ A .
Ag == X (mean K.E. of the particle). a

We thus have that Ag < 0 and from evidence given in the form of
computer graphics by Durran and Truman [28] it would appear that the
process is Lyapunov stable; that is the top exponent A] <0 . We shall
now show this by the following series of results.

Lemma 4.1.4

For the ground state process given by (4.1), ’Xl <0.

Proof

By Ita's formula acting on the derivative process {vt ; t 20} given

by (4.4) we have
2
Y

Tog||vyl] = Tog||vyl] + — > >
0 [Ixgll Txg 1" Hvgl|

- 1)ds  (4.5)
ma
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< Togllvyll (4.6)
by the Cauchy-Schwarz inequality. Thus

1 . ] .1
A" = Tim = Tog|{v, || < Tim - log||vsl| =0 . 0

Remark 4.1.5
We note that by the Cauchy-Schwarz inequality we have equality in

(4.6) if and only if xs and Vé are collinear, that is Vs = aX, for

some o # 0 .

To overcome this we have the following series of results.

Proposition 4.1.6

The radial process ||xt|| satisfies

dllxgl ] = &) a4 & Hl 1 e (.7)
i~ -

where bt € BM(R) and the process has finite invariant probability

measure

o(dr) = const. rle”2r/a

dr (4.8)
on (0,=) .-

Proof

“"As in Lewis and Truman [44]. Using Ito's formula we get (4.7) with
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which by the martingale characterization of Brownianmotion yields
Xy X

by € BU(R) since d<b>, =< , —F >dt = dt . The finite
Hx T x|

invariant probability measure arises from the fact that the drift term

in (4.7) is of gradient form. 0
Proposition 4.1.7
*t Yt
The process wy =< - > satisfies
[Ix 11 T
2.3 .
(T-w) W
dw, = —t db, - (— [w% -1+ — 1)dt (4.9)
[x, ] [x, 11 [1x, 1]

where B} e BM(R) and is independent of the Brownian motion bt of

Proposition 4.1.6.

Proof
X Y

tes ' t t
Writing w, = <n_,8,> = ¢ :
t ) ®
S TP TR T

>, by Ita's formula,

Al

setting ff=m=1 for convenience, we have
1 Nt Nt
dn, = dB, - db, -
t t 2
ElIx,l] Hxgd 18 1x
and
= (<n, 8,50, = <n.,0 >26 )dt :
det "' ﬂt, t Tlt t’ t t ‘ L
by 1]

Whence, again using Ito's formula
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d LIS ! d, - (I 1+ —— 7)dt
<Npsb,> = db, - <NLs0,> - <N,s0,> +
't t t 7t vt
[x, ] TENT [x, [1x, 1]
(4.10)
where
dbt = <et’dBt>
which again by the martingale characterization of Brownian motion gives
bt e BM(R) since dfb>t = <et,et>dt = Qt .
We note here that <db,, ! dBt -1 <nt,6t>dbt> =0. 3o
[x 1 %11
considering the martingale term of (4.10) and calling this Mt » Say,
then
d<M>, = ( | < - <1,,0,>n dB >)2
t t Pttt
I, 11
t
(1-wd)
= d
2
x|
Thus (4.10) can be written as (4.9) with gt independent of bt . 0
Proposition 4.1.8
Writing ry = [[x.]] , the .coupled process (ryow,) has an .invariant

probability measure u on R" x [-1,11 . Moreover the set G =R" x {-1,1}

is non-attainable, i.e.
P{(rt,wt) e G for some t>0} =0,

and p has no support on G .
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Proof

Since [-1,1] 1is compact, by the Markov-Kakutani fixed point
+ . .
theorem there exists a probability measure u on R x [-1,1]1 invariant
for the coupled Markov process (rt,wt) ,» t =0, which projects onto the

measure (4.8) on R, (see Crauel, [241).

For the non-attainability of G , note that in equation (4.9) for
. . -1
Wy s when Wy =% 1 the noise term vanishes leaving a drift + —
r
t

respectively. This drift vector points into R (-1,1) away
from G (or 3G) which is equivalent to the Fichera drift at 3G of
the coupled process {(reswe) 5 t 201 pointing into the exterior of G .
Thus by Friedman's Theorem 4.1 ([35],Vol. I,section 9.4) the set G is
non-attainable, and any process started on G will not reach G again.

This implies that the transition probabilities

pe((r,21), R x (-1,1)) =1 t>0
| which implies that u is not supported on R™ x {-1,1} . 0

Remark 4.1.9

We note that the Markov process {(ryw,) 5 t =0} on R* x [-1,1]

t
has differential generator

2

2, .2 :
3 E_? +3 (l;g,) 2_2 + (l - 1) 3__ ¥ (w2 -1+ l).i_ (4.11)
oar r oW r ar r o r oW

which is elliptic on R™ x (-1,1) .
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This equation does however

|
S —

appear extremely difficult to solve.
THeorem 4.1.10

For the ground state process given by (4.1)

UPE I | (4.12)

Proof
By Temma 4.,1.4 and equation (4.5) we have
)
. t <X_sV. >
i’LJ L (== -1) s
0 JxgH Tx 17 1v 1

which by the Strong Law of Large Numbers and Proposifion 4.1.8 yields

A= 1 w2 = 1) u(drydw) . (4.13)
ma R -1,11 "

This clearly shows that A] <0 Qn]ess ¥ has support in the set

{(rw); w= %1} = {(Ix],«=2, 2L5) ; x =av,some o # 0} which

x|~ vl

by Proposition 4.1.8 1is impossible. Also this set contains no subset
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invariant under the sphere bundle flow which follows from (4.5) since

x = av implies that Vi is constant for all t >0 . g

Remark 4.1.11

(i) The differential generator (4.11) can be obtained from that for

the process {(Xt’ Vt/lvt|) y t 20} on the sphere bundle R3\{0} x 52
by considering the transformation (r,w) = (]|x]], <{r;f|’frlrl>
- | , X v

the link between the above proof and that given for the same result in

[21] where invariant measures on IR3\{0} x 52 were used,

(i) By Theorem 4.1.10 it might be conjectufed that stable ménifo]ds
exist for (4.1). By (4.12) it is clear that the solution flow is !
(since l|Dg£(w)(x)|I <1 a.s.). However the flow does not appear to
be C2 due to singularities on approaching the origin and we are unable
to apply Theorems 3.3.1 and 3.3.2.‘ It might be hoped;however,that the
flow isAIVCHd (0 < d < 1) to apply Ruelle's or1g1na1 results (see [56])

‘or that a slightly weaker version of Rue]]e S resu]ts cou]d be obtained.

4.2 The First Energy level abqve the Ground State for the Hydrogen

A

Atom Model

Analagous to séétion 3.5 we now consider an excited state for the

Hydrogen atom model, namely the first excited state. We thus consider
the eigenvalue problem )

= E ‘D =
p<bp(x) p=1,2,3...
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where for notational convenience the ground state is given by p =1
and p = 2 yields the first excited state. As in section 4.1 the

associated diffusion process is given by

dx

o= B g+ Akt (4.14)

defined on R3\{0} where
2
A(x) = 3vlog|e (x)]
with invariant probability measure for X; given by
o(dx) = [0, (x)]

From Messiah [46] (Appendix B, gection 3), the f{rst excited state

has energy eigenvalue E2 = -ghgz and corresponding to this eigenvalue
m

there are four 11near1y independent eigenfunctions g1ven in terms of

spher1ca1 polar co- ord1nates by, for r>0, 0<es<n, 0<¢s<2n

45.0.0(r852) = 3;;{2.'%- e /2 (3 -4y f (4.155
¢2’]’0(r;§f¢) = 3;;{2'%-£ e /22 oso , -‘ (4;16)
651, 11(r8,0) j;?lz ; : e /%8 Sing o710 (4.17)
657 1(rs8,0) = - j;?/z %- : a /% gipg 10 (4.18)
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For each of these eigenstates we have the following:

Theorem 4.,2.1

For each ¢2£m(r,e,¢) given above (& =0,1, m = -2,..,2) the

associated diffusion process given by (4.14) has a Lyapunov spectrum.

Proof

For the connected region of R3\{0} in which the flow remains
for each $o0m by the change of variable formula for integrals and

corollary 3.5.11

[10A(r,8,0) | [r2sine|6,, (r,6,8)| drdode =

(R3\{O})\N¢
2am

DA Tog, (x)]%dx < .,
(1R3\{0})\N¢ -
2am

Hence the éxistence of the Lyapunov spectrum for each Ooom - In

particular A

5 ‘exists for each Soom * A 0

We now examine AE for the first excited states ¢2’0’0 s ¢2’],0 s

92.1,-1 aMd dp 4 -

Proposition 4.2.2

%5 0.0 is the only one of the four first excited states which has -

different values for i on the connected regions off the nodal set on

X
which the trajectories of the associated diffusion process are restricted.
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Proof

¢2’]’_1 and ¢2’]’] both have zeros at 8 =0 and ¢ =1
and the nodal set for both of these eigenfunctions is the z-axis.
So the connected region off the nodal set s (R3\{0})\{the z-axis}
and by Proposition 3.5.6 for these eigenstates AZ is associated

with the Kinetic energy of the particle attained in this connected region.

% 1.0 has a zero at 6 = n/2 and this divides ]R3\{0} into two
symmetrically equal regions (in fact IR3\{O} is cut in half by the x-y
plane). Thus for ¢ 1.0 the Kinetic energy attained in each of these

250 _ [ z<0

regions by the particle is the same (i.e. Ay AS ) .

%5 0.0 has a zero at r = 2a . Thus Rs\{O} is split into two
L
disjoint connected regions separated by,and not including, the surface of

the sphere Sg(Za) s i.e.

RA{0) = s5(2a) v (55(2a))°

(Sg = s?\{O}) and where ¢ denotes the complement. Thus
2 v 2,05 :
S~(2a) S~(2a)
Azo = J div(gv]og|¢2 1 O(P,6,¢)|2)p 0 (dr,de,ds)
. - 2 2 ' .
s5(2a)
- 3—e2
az(e2-7)
where. e 1is the exponential, and
(5(2a))" R 2 RONOI\SE(2a)
)‘Z = d1V(§V]Og|¢2’]’0(F,6,¢)| )e (dr,de,do)

Rr3\{0)
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, (R0 (2a)
; J div(vlog]e, 1 o(rs0,0)1%)p (dr,do,do)
s3(2a)
_ . (3
14a2

It can easily be verified that

s(2a) aR3\{0})\sg(2a)

As > Ay

and hence the exponential rate at which the flow changes volume (or

measure, see e.g. [21]) is greater within the sphere of radius 2a

(a = Bohr radius) than that outside. 0

Remark 4.2.3

Note the above result and observe the computer simulations of the

excited states $o0m " obtained by Durran and Truman in [281].

4.3 An example on R%\{0}

Consider the process on IRZ\{O} givén by

dB

1.2

1 - Gt . (a9

t’

2y _ _1
Xg) = ——

d(x
1,11

12

Xy~ Xt
2 1

xt xt dB

TN -

Carverhill considered this process, without the drift, iﬁ f12] and showed
that his system is strongly complete and gives Brownian motion on ]RZ\{O} .
Thus a smooth flow exists for the system without drift. By adding the above
(inward) drift which is of gradient form the process has a finite invariant

measure and we have the following: .
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Proposition 4.3.1

The system (4.19) is strongly complete.

Proof

As in [12].

let £,(w)(x) denote the solution flow of (4.19). Since the
process has a finite invariant measure the system is complete (i.e.
non-explosive). Denofe by Mt(w) the open set {x e RZ\{O};
Ct< 1(X,w) = «} where t(x,w) denotes the explosion time map (= in
this‘case). Then gt(w) is continuous a.s. on Mt(m) . Note, also

that system (4.19) is G invariant, i.e.
£ (w)(gx) = gE,(w)(x)  forall geG,x eRO\(O) (4.20)

where G is the group of rotations of IRZ\{O} about the origin. Also
the action of gt(m) on a circle SR of radius R centre the origin
is to alter its radius but not its centre. Also H’{gt(w)(x) =0, some

t > 0} =0 . Take x e S, then by (4.20)

R

P{radjus of gt(w)(SR) =0 for some t} =0

Now take y e RA\{0} s |lyll > R . Since Ey(w) s G invariant and
injective on My(w) » |lgg()W1] > Hggw)(x)]] forall t, because
gt(w)(y) cannot pass through gt(w)(SR) s SO Yy'e Mt(w) .

vTaking the seqUehce R=A{1,1/2, 1/3, .... } we cén deduce‘that_
the reachable set Mt(w) under gt(m) is the whole of ]RZ\{O} and
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gt(w) is continuous on RA\{0} a.s.; &.(w) does not however possess
the diffeomorphism property. 0

We note also that the differential generator of the process is
given by

A - (x],xz).v

which is the same as that of the Ornstein-Uhlenbeck system of example
3.2.9 (ii). We therefore have a diffusion process defined in a different
manner to that of example 3.2.9 (ii) and we shall examine the existence

of a Lyapunov spectrum for this system.

ProEosition 4,3,2

Hypothesis 1.2.5 1is not satisfied for system (4.19) on IRZ\{O} .

Proof

By Theorem 3.5.10 we need to check the integrability of
[Iox(x)[12 and ||DA(x)]| . Clearly

-1 -0
DA(x) = o

which is uniformly bounded over R\{0} . Now (4.19) is of the form

dxt = X(xt)dBt + A(xt)dt
. pl 2 _ 2
where X(x) : R +>R" ., Thus for e = (e],ez) e R
X1 201 &1
X(x)e = 1/]|x]]
Xo . Xl e

n

1/11x]| (g]e]-xzez, Xo€1+X €,)
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and
i xge] + x]xze2 -x]2e2 - x]xze] )
DXX(x)e = 3 : T
| 1x] ] [1x]]
~X, X8y T X, x%e, - XX e
17271 2°2 171 17272
|x]1 [Ix]]
Therefore, since eiej = Gij
112 2
LD X(x)|]% = —=—
o | {x]]
The invariant measure is given by
2 2
p(dx) = %-e'llxll dx = -% re”" drde

in polar co-ordinates. Hence

21 (» .2
llDX(x)l[zp(dx) = %-J ' J 22 re’" drde = 2r(0)
R2\{0}. 0 0r _

which diverges. So the integrability requirements of Hypothesis 1.2.5
are not satisfied and we cannot apply Theorem 1.2.6 to determine the

existence of a Lyapunov spectrum for (4.19).
We note also that
€
| 1x]1

hence ||div X(x)ll2 = 1/l|x||2 which by the above arguments is also

div X(x)e =
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not integrable over (RZ\{O}, p(dx)) . We are therefore also unable

to apply corollary 3.5.12 to determine the existence of A, - O

Remark 4.3.3

This again confirms the remark made in [16] (page 60), that the
Lyapunov exponents are not determined by the infinitesimal generator
~of the process but depend upon the stochastic differential equation

itself. 1In particular they depend upon the way in which the noise is

introduced into the system.

We also have the following:

Proposition 4.3.4
The radial process let|| of system (4.19) is given by

1 1
dlx, || = By + (——— = |Ix.]] )dt - (4.21
LTI PAT t @2

and the angular process X(x) = x¢/|Ix 1] s given by

2 1

X X
: t t 2 1 :
dX(x,) = (- . dBy - X(x,)dt (8.22)
¢ RN 2l [x ||
Proof
By Ito's formula for both (4.21) and (4.22). 0

Note also that for the radial process we have an invariant measure

o(dr) = cre”" dr -
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where ¢ 1is a normalising constant. Then, despite the existence of
a "radial" flow and the fact that (4.21) has a spatially homogeneous

coefficient of the noise, the integral

® 2
J |- 1. 1] cre™™ dr

[ 1oa(r) 1 lo(er)
0 0 2r

- Jw( L ])Cre_rz&r =Lr0)+ S w (4.23)

0 2_;2- 4 2 )
since T(0) diverges. So neither condition (3.40) nor condition (3.41)
are satisfied and we are unable to apply corollary 3.5.12 to determine

the existence of an exponent for (4.21).

Indeed by a simple geometrical argument it seems unlikely that a
Lyapunov spectrum will exist for (4.19). Suppose Xq € Sp for somé
R>0 (SR as in Proposition 4.3.1), then g%y € Sp also for some
g € G . Since the action of £(w) -is just to alter the radius of Sp
and not its centre we hgvg that gg ()(xy) = gf(Q)(gxo) and €, () (x,) -
t >0 ,. still lie on the same circle, but under the action of
|1gt(w)(x0)ll' this circle fluctuates (i.e. the radial process is just

a Bessel process with drift). Thus
d(gt(w)(xo) > Et(w)(gxo))

continuously increases and decreases and despite the existence of the smooth
flow there appears little hope of any stable manifold or Lyapunov spectrum.
In fact from Proposition 4.3.2 and (4.21) we see that IIDgt(w)(x)II and

|14, (w)(r)[] » where ¢,(w) denotes the radial flow, are of the form:

constant
[IEtZwSIX
discrete to continuous time as in Theorem 1.2.6 to define a "radial

)||2 , and by (4.23) we are unable to make the transition from

exponent". However the discrete time 1imit does exist and equals -« .

el .
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APPENDIX A.

Computation of A]

In this section; prompted by the computer simulations of Brownian
motion on embedded surfaces obtained by Durran and Truman, [28], we
consider Brownian motion on an ellipsoid of revolution in }R3 and attempt
by computer analysis to calculate the top Lyapunov exponent associated
with this system for various values of the minor and major axes (i.e. by
increasing the eccentri&ity of the ellipsoidal nature of the surface).

To obtain the stochastic system on the ellipsoid we first take the
ellipsoid of revolution in R3 and consider the stereographic projection
onto the plane R2 “where the origin in 112 is the Tower antipodal point
of the ellipsoid (see figure (1) below and compare with Spivak [591, Vol.
4, pages 6-11). |

Fig. (1)
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If the major and minor axes are of lengths ¢ and a respectively

then the stereographic projection is given by ¢ : R3 +IR2 defined

by

2p 2cp
6(pyoPpoPs) = (—L 5 —F )
2c-p3 2c-p3

By considering the inverse of this map we have an embedding f : R » IR3

which is defined by

2
1 2 222 =1 1
fy1¥,) = el pant (A.1)
1 + 1 pX y2 1 Iy 2 1+ ! g z
422 §=1 Tl i FRaN

As in Chapter 2 we shall derive the gradient Brownian flow on this
ellipsoid of revolution via the embedding map (A.1). The gradient

Brownian flow is the solution of the S.D.E.
X.(xt)oQBt : (A.2)

where X, = Vfi; here v s taken with respect to the induced Riemannian

metric,and the fi's (1 =i < 3) are the co-ordinate functions of (A.1).

Associated with (A.2) is the derivative equation

dv, =

t in(xt)vt°d8t _ (A.3)

It ™MW

i=1

and using linear.approximations of solutions to (A.2) and (A.3) we
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shall attempt to determine the value of the top Lyapunov exponent,

which by Elworthy's reformulation of Carverhill's formula (1.16) is

given by
t
1 .1
Al = 1im _.J f(6. )ds : A.4
omy % (A.4)
vy 2
where 6, = (87 ,6, ) =( 't , t )
t ]t 2t
vl 1lv,]]

and
IV 2 2
f(o,) = é{,Z](IIVXi(et)II - 2<9%3(04):0,°) - K(y, )}, (A5)
1=

here K(-) denotes the Gaussian curvature of the ellipsoid.

In Chapter 2, Section 2.4, examb]es 2.4.2 and 2.4.4, we obtained
bounds on ¢ and a such that the top Lyapunov exponent is strietly
negative (hence Lyapunov stability). This was for the embeddfng

1 s] + R . Despite the lack of compactness of the embedded

f:S
space in (A.1) the system (A.2) will still yield Brownian motion on the
ellipsoid of revolution minus its upper antipodal poinf (since tﬁe

" stereographic projection maps this pdint to‘inffnity). The omission

of this point makes no difference since, with probability one, Brownian

motion started from another point will not hit this particu]&r point

(it is non-attainable, see e.g. Mckean [451, Friedman [35]).

By considering the noise in (A.2) and (A.3) as a set of randomly . .

generated piecewise linear controls it is possible to formulate and solve
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these S.D.E!s on a computer and achieve some estimate of the
convergence or divergence of the Timit of the integral in (A.4) -

though whether this represents the true limit is open to question.

We shall need the following formulae arising from (A.1) in order

to evaluate (A.2), (A.3) and (A.5). The computer program variable

associated with each formula is given in italics.

2
For f :.RZ +]R3 given by (A.1), throughout ¥ =1 + -l?. T y?
- 42° §=1""
2 2
P T S A |
f = 4a 4a2 » 23, a_ . (LA, LC, LE)
! 2 2 2
Y Y Y
2 2
RALL 1+ Zﬁ - Zg CYy
2 2 _
f = Za P 4a2 4a ,E R ' (LB, LD, LF)
Y2 2 2 2
Yy ¥ v
Hence the elements of the first fundamental form are given by
2 2 2,2. 2
PR A N A R R
v 12 4’ 12" ot 16aty” 1172
2 2 : '
F = iz‘(’c—az[i") 1Y ‘ | (F)
2 2 2 2 2.2
cel (el 2222, 02, 00 0L 1 ey
¥t 122 4a®  4a” a” 162yt 27172
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Then
2 2 2
f =L'y]w’y]<‘ﬁ +{g)é -‘1’+y]) -5(-‘P+y]) (L1,12,13)
Y W3 2?4l 432 242 W20 TR T 212,
2 2 2
N T S S N .27 % B
o w3\ 22 a7 4l 4a? 24 AR L4, 15, 16)
2 . 2 2 2
1 [N Yoo Yot Yo o Yy Y, y
f == [ —p (=¥ + ) 5- - (=, - L), -5 (v + 29|17,z
Yo¥p 3 (2a2 RARAPR v A v 2)|(B7:28,19)
The normal vector to the ellipsoid of revolution is given by
2 2 2 2 2
f Af = L Y2 - il (1+ Zl - fé )s - Cy?(]_ N + Y2 ) cyiyz
y1© Y, A 2% 2% 4a® 4l T g2 2 oA
2 2
( -Zl +i2_)(]+'y'|2 yg) y]z'yg
462 4a2 4% 2% 4aI
= (N1, N2, N3) .
unit normal is given by

- Thus the
N

The elements

. 1 '
= - (N,N,N),
Vo S

of the second fundamental form are given by

=N.f
- Y

=ﬂ .. fy]yz

N. f
= Y2

Sttt sy e
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and hence the Gaussian curvature

K=20° s = c” (M7)
6 - F°  a%O(EG - F4)2

The vector fields Xi (1 <i=<3) in (A.2) are given by

.. of,

1] 1
5 ' ) A.6
i 1 3 J ( )

where (913) is the inverse matrix of the first fundamental form

given by
G -F
(6") = ——
(EG - F7) | -F E
Thus
11 G 12 21 -F 22 E
g == g = ="'"? ’ g =——*—2' A.7
EG-F EG-F (A7)

‘We shall also need the following:

g | Y 2 2
T L BE LTl (4afayieh) (YiyEea(aci-a?))

8Y1 3Y1 16a¥

4 4 2.2

22 |
- 2(16a%8a y1+8y§(2c2-a2) tYy T Y, tay,) 1 (G1)

1

—— L —— 5

3y, 3y 16a” ¢

M LRE L2 r(aaeyinyd)? - 20162ty eyt sy

(t6abeybeybezy2y 2ugy2(2c202) 4 822y)]

(G2)



N2
ay] ay]
T2 _ oF
ay2 ay2
%922 _ 86
ay] ay]
922 _ a6
3y, 3y,

For equation (A.

Yy
= —g [(4a"y]4y3)

- 162 -

2_2 '
_ (c™-a%) 2 L2 2
yp (427 - Tyy +y5)

2 2
(12_6%5)“ (4a% - 742 + y2)
a :

2,2, 2.2 4 5.2 2 | ‘
- 2(16a '+8a y]+8y§(2c?-a2)+y?+yg+2¥$yg)]

16a" ¥

y 2 2 2
o (4 +y1+y2)(yf+y§+4(2c2-a2))
16a ¥
] 4022022 2. 4 4. 20
2(16a"+8a y1+8y2(2c -a )+y]+y2+2y]y2)3

< Since

3) we shall need to calculate VX, (T <is<3).

it X = (x5%))

[

vX

k
where rij'

X - OXy ’

] 1 1 1 1 1
—— 4+ Ta.X. + T'q,X —— 4+ T, X, + T, X

171 1272 :

oy, ] _ y, 21722t
XA . 90X,

2 2 2 2 2 2
— P Iy % T T Tyt TooX)
3y 3y, -

1 2 N

are the Christoffel symbols which can be calculated from (A.7)

(G3)

(G4)

(G5)

(G6)
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and €1 to 6. Also by (A.6) for each X, (1 s i = 3)

af 32f of,  a%f,

F
= 3 144 - — - F=
2,2 '—TT_
3y (EG F ) Qy] 3y 3y 3y 3Ys ay]3y2

1(EG-F?)

BX-I

of
-(6—-F -_)[ Eg+e28 _ 238 (11
'c)y] 3)’2 9Yq By] Sy-l
% g o o 3 g of, 32f
-l dee—L -8 1 p__Tgar?
3Y 5 (EG-F°) ayz Y By0¥y 3y 3y, S
of,  of, |
e —-F )2 g 4 g8 _p3F (52)
Wy Wy Wy W
. 9X X _ '
—£ “and —2 . A1l of these

‘and similar formulae follow for
: 97 Y,

'(12 in total) can be calculated from I4 to LF, II to L9, E, F and G -
anleJ to 66 to give H1 to H9, HA, HB and HC. | '

Using these formulae we shall attempt to evaluate the Timit (A.4)
in the following manner:

. t
- Consider %if f(o )ds as the sum
. -0 '

O'f(enst)dt‘

N ™M=

1
tn

where t = N.6t . So this becomes



- 164 -

1 N
- f(o_.,)
N n=0 nét

and hence the approximation to the ergodic 1imit as N increases

Below is a listing of the program used. The noise is introduced

in a standard computational manner, (see for example [551). The
program was written in the main by Neil Watling on his own COMMODORE
128 personal computer, for which the author owes his grateful thanks.

Following the 1isting are the results obtained from runs of the program

where the lengths of the major and minor axes ¢ and a are varied

the time increment 6t (DT) is altered and the number of time intervals

over which the 1imit 1is evaluated is varied.
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1 REM***********************************

2 REM**** STOCHASTIC MODEL II *HoH

3 REM********** (29/5/87)****************

10 GOSUB1000

20 GOSUB900

25 TRAP1100

30 GOSUB100

40 GOSUB1200

50 END

100 REM*** CALCULATION! !

110 FORT=1TON

112 GOSUB1500

115 Y1=Y(1,T-1):Y2=Y(2,T-1)

120 C2=2%CO*Y1:C3=2%CO*Y2:C5=4%Y1%Y1:C6=4%Y2*Y2:C7=Y1*Y2:C8=C5

/4:C9=C6/4

125 A1=CO+C8+C9:A2=C0-C8+C9:A3=CO+CB-CY : Ad=CO-C8~C9

130 B2=(A2%A2)+(4*C7%C7)+(4%C*C*C5) :B3=(A3%A3) + (4% C7*C7) + (4% C*

C*C6)

135 D=A1/C0:D0=2%C4*C5*C6:D1=1/ (CO*CO*D*D*D*D) :D2=A4—-8*C*C

140 D3=(D1*Y1)/ (A¥A*D) :D4=(D1*Y2) / (A¥A*D) :D7=(Y1*D) / (A*A) : DB~

Y2%D) / (A*RA) |

142 REM*** FIRST FUNDAMENTAL FORM

145 E=D1*B2:F=16*C4*C7*D1:G=D1*B3

147 REM*** DERIVATIVES OF FIRST FUNDMENTAL FORM

150 G1=D3* ((Al* (-D2))—(2*%B2)) :G2=D4* ( (A1*A1)— (2% . Aw

4* (A2-(3*C5/2)) )7 (27B2)) :63=4xCa*D

155 G6=D4* ( (Al* (~D2))—(2*B3)) :G5=D3* ( (A1*A1)— (2% A%

3% (A3-(3*C6/2)) )= (2¥B3)) :64=4xC4*D

160 E0=D*D:DF=SQR(E*G-F*F) :DG=CO*D/2: DH=DF*DF

ég? 89 1/ (EO*E0*2) :DA=C1¥*D1¥D:DC=D7*D9 : DD=( (C5/C0) ~D) : DE=( (C6/
-D)

167 REMx** SECOND DERIVATIVES OF EMBEDDING

170 L1=-D1*D7*CO* (DG+A2)

175 L2=D8*D9*DD '

180 L3=(-DA)*DD |

185 L4=D8*D1*CO* (DG-A2)

190 L5=DC*DE

1195 L6=—16*C*D*D1*C7

200 L7=L5

205 L8=-D1¥*D8*CO* (DG+A3)

210 L9=(~-DA)*DE

212 REM*** FIRST PARTIAL DERIVATIVES OF EMBEDDING

215 LA=A2/(CO*EOQ) |

220 LB=-(2*C7)/(CO*ED)

225 LC=LB

230 LD=A3/(CO*EOQ)

235 LE=4*C*Y1/(CO*EO)

240 LF=4*C*Y2/ (CO*EO)

242 REM*** COORDINATES OF GRADIENT VECTOR FIELDS

243 REM¥ %% (X1,X2,X3)

250 Ul=(G*LA-F*LB) /DH:U2=(E*LB-F*LA) /DH

255 Wl=(G*LC-F*LD) /DH:W2=(E*LD-F*LC) /DH

260 Z1=(G*LE-F*LF)/DH:Z2=(E*LF-F*LE) /DH

1265 E1=G1*G+E*G5—-2*G3*F : E2=G2*G+E*G6-2%G4*F

267 REM*** PARTIAL DERIVATIVES OF COORDINATES

268 REM**% OF GRADIENT VECTOR FIELDS

270 Hl=((G5*LA+G*L1-G3*LB-F*L4)-U1*E1) /DH

275 H2=((G6*LA+G*L4-G4*LB-F*L7)~U1*E2) /DH
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3%LA-F*L1)-U2*El) /DH
4*LA-F*L4)-U2*E2) /DH
3%LD-F*L5)-W1*E1l) /DH

280 H3=((G1*LB+E*L4-G
285 H4=((G2*LB+E*L7-G

290 H5=( (G5*LC+G*L2-G
295 H6=((G6*LC+G*L5—G4*LD—F*L8)—Wl*EZ)/DH

300 H7=((Gl*LD+E*L5—63*LC—F*L2)—W2*E1)/DH
305 H8=((GZ*LD+E*L8—G4*LC—F*L5)—WZ*EZ)/DH
310 H9=((GS*LE+G*L3—G3*LF—F*L6)—Zl*El)/DH
315 HA=((Gﬁ*LE+G*L6—G4*LF—F*L9)—Zl*EZ)/DH
320 HB=((Gl*LF+E*L6—GS*LE—F*L3)-ZZ*EI)/DH'
325 HC=((GZ*LF+E*L9—G4*LE—F*L6)~Z2*E2)/DH
327 REM*** CHRISTOFFEL SYMBOLS
330 K1=(G1*G—(2*GB—62)*F)/(Z*DH)
335 K2=(GZ*G—GS*F)/(2*DH)
. 340 K3=((2*G4~G5)*G—G6*F)/(2*DH)

345 K4=((2*G3—GZ)*E—GI*F)/(2*DH)
350 K5=(GS*E—GZ*F)/(2*DH)
385 K6=(G6*E—(2*G4—65)*F)/(Z*DH)

MATION OF SOLUTION TO

390 REM*** LINEAR APPROXI
5.D.E ON ELLIPSOID

391 REM***
200 Y(1,T)=Y(1,T-1)+(UL*NL+WI*N2+Z1¥N3)
405 Y(2.T)=Y(2,T—1)+(U2*NLI+W2¥N2+Z2NS)  ~ . .
308 REM+** INTIAL CONDITIONS FOR DERIVATIVE EQUATION

410 IFT=1THENV(1,0)=(Y(1,1)—Y(1,0))/DT:V(2,0)=(Y(2,1)—Y(2,0))/

DT

A15 J1=V(1,T-1) :J2=V(2,T-1) :GOSUBEOD

417 REM*** LINEAR APPROXIMATION OF SOLUTION TO

418 REM*** DERIVATIVE EQUATION

420 V(l,T)=V(1,T—1)+(F1*N1+F2*N2+F3*N3)

425‘V(2,T)=V(2,T—1)+(F4*N1+F5*N2+F6*N3)

457 REM*%* NORMALIZE SOLUTION TO GIVE PROCESS
ON THE SPHERE BUNDLE

428 REM***

430 NM=SQR(J1*J1+J2*J2)
1y /NM:U(2,T)=V(2,T-1) /NM

435 U(1,T)=vV(1,T-
440 J1=U(1.T):J2=U(2,T):GOSUBSOO
460 REM*** GAUSSIAN CURVATURE

470 M7=(32*C*C*D1*D9) / (DH*DH)

A Eix«» NORMS OF COVARIANT DERIVATIVES FOR INTEGRAND

ABD Pl=(F1*F1*E)+(2*F1*F4*F)+(FATFAT0) ,

568 P2-(F2*F2*E)+(2*F2*FS*F) +(FS/FO70)

00 P3- (F3*FI*E) + (2XF3*F6XE) + (FOTFOT3)

495 P EwU(1,T) *E) + (F4*U (1, T)¥F) + (F1XU(2, Ty 4T + (FAU (2 T) *6)
500 P5=(F2*U(1,T)*E)+(F5*U(1,T)*F)+(F2*U(2’T);F)+(F5*U(2'T)*G)
505 P6=(F3*U(1,T)*E)+(F6*U(1,T)*F)+(F3*U(2,T)*F)+(F6*U(2'T)*G)
200 E9-P14P2+P3:PB=(P4*P4)+(PS¥PS)+(PEXPE) TI*6)
508 REM*** INTEGRAND |

510‘I(T)=(P7—2*P8—M7)/2"
515 GOSUB700 3
520 NEXT

550 RETURN
700 REM*** APPROXIMATI

710 I=I+I(T)

ON OF INTEGRAND AND ERGODIC LIMIT

720 1T=1/T

725 OPEN4,3 ' '

730 PRINT#4,"AT TIME INTERVAL":T

740'PRINT#4,“Y(1,“;T;“) = aY(1,T) L NY(2,TY) i wY(2,T)
750 PRINT#4,“V(1,";T;"),:— WLy (1,Ty, V2, T i wvi(2,T)
Too PRINT#4,“U(1,";T;") = "UCLD. U0 o U2, D

765 PRINT#4,“CURVATURE :
= I

770 PRINT#4,"I('":T:"
780 PRINT#4,“INTEGRAL APPROX.f;IT

790 PRINT#4,CHR$(13)



792
795
800
810
820
830
840
850
860
870
300
905
910
915
3940
950
955
960
990

1000
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CLOSE4

RIVATIVES OF GRADIENT VECTOR FIELDS
YU2)) *J1) + ( (H2+ (K2*U1) + (K3+*U2) ) *J2)
)*J1)+((H6+(K2*W1)+(K3*W2))*J2)
F3=((H9+(K1*21)+(K2*22))*J1)+((HA+(K2*21)+(K3*22))*Jz)
F4=((H3+(K4*U1)+(K5*U2))*J1)+((H4+(K5*U1)+(K6*U2))*J2)
FS“((H7+(K4*W1)+(K5*W2))*J1)+((HB+(K5*W1)+(K6*W2))*J2)
F6=((HB+(K4*21)+(K5*22))*J1)+((HC+(K5*21)+(K6*22))*J2)
RETURN :

REM* * * INITIALIZATION

DIMY(Z,N),V(Z,N).U(Z,N),I(N)

DEFFNA(X)=SQR(—2*LOG(X))

DEFFNB (X) =2*m*X
Q3=5*(RND(O)—.5):Q4=5*(RND(O)—.5):IFQ3=00RQ4=0THEN940

Y(1,0)=Q3:Y(2,0)=Q4
CO=4*A*A:C1=4*C*CO:C4=C*C—A*A
T=0:DT=6E-2:1=0

RETURN
REM*** INPUT ROUTINE

RETURN

REM*** COVARIANT DE
F1=( (H1+(K1*U1) + (K2
F2=( (HS5+ (K1*W1) + (K2*W2)

1010 PRINT“(CLR)”:INPUT”A,C”;A,C
1020 IFC<ATHEN1010

1030
1040

INPUT"NUMBER OF TIME PERIODS":N
PRINT"SCREEN OR PRINTER ?"

1050 GETA$:IFA$%3"THEN105O

1060

DV=3

1070 1FA$="P"THENDV=4

1075
1080 RETURN
1099 I

PRINT"O.K."

REMX* * ERROR ROUTINE
WOVERFLOW AT TIME "*:GOTO1115

1100 I1FER=15THENAS$=
“DIVISION BY ZERO AT TIME ":G60TO1113

1105 IFER=20THENA$=

1110 PRINTERRS (ER) ;EL:GOTOSO

1115 OPEN4,DV

1120 PRINT#4,A$:T

1125 CLOSE4 |

1130 RESUME 550

1200 REM*** VARIABLE DETAILS

1205 OPEN4,DV

1910 PRINT#4, "GENERAL VARIABLES :-

123c PRINT#4," NUMBER OF TIME INTERVALS "N

1570 PRINT#4," A = “;A.“C = ':C .

1525 PRINT#4," STARTING POINT := Y(1,0),Y(2,0)"

1230 PRINT#4,Y(1,0),Y(2,0)

1535 PRINT#4," STARTING VELOCITY = V(1,0),V(2,0)"

1940 PRINT#4,V(1,0).V(2,0) :

1095 PRINT#4," TIME INTERVAL -’ DT -
GRAL APPROXIMATION :-",I(1)

1250 PRINT#4," FIRST INTE
GRAL APPROXIMATION :-",IT

1255
1260
1500

1510
1520

PRINT#4," FINAL INTE
CLOSE4

REM*** NOISE TERM
Q1=RND(0):IFQ1=OTHEN1510
Q2=RND(0):IFQ2=OTHEN1520

1530 R1=FNA(Q1):R2=FNA(Q2)

1540
1550 N1=SQR(DT)
1560
1570
1580

Sl=FNB(RND(0)):52=FNB(RND(0))-
T) *R1*COS (S1)
N2=SQR(DT)*R1*SIN(51)

_N3=SQR(DT)*R2*SIN(82)
RETURN
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GENERAL VARIABLES :-
NUMBER OF TIME INTERVALS 100

A= 1 c= 1
STARTING POINT :- Y(1,0),Y(2,0)
1.07431948 ~.0194376707
STARTING VELOCITY :— V(1,0),V(2,0)
242.48835 ~17.9879908
TIME INTERVAL :~ 6E-05

FIRST INTEGRAL APPROXIMATION :—
FINAL INTEGRAL APPROXIMATION :-

GENERAL VARIABLES :-
NUMBER OF TIME INTERVALS 100

A= 1 Cc = 2

STARTING POINT :~ Y(1,0).,Y(2,0)

.0877763533 ~2.4022311 .

STARTING VELOCITY :-= V(1,0),V(2,0)
—224.240831 101.444886

TIME INTERVAL :- 6E-05
FIRST INTEGRAL APPROXIMATION :-—

FINAL INTEGRAL APPROXIMATION :—

GENERAL VARIABLES 1=
NUMBER OF TIME INTERVALS 100

A= 1 - C =5
STARTING POINT :— Y(1,0),Y(2,0)
-1.9920668 1.56261176
STARTING VELOCITY :— V(1,0),V(2,0)
~340.074658 ~499.676587
6E-05"

TIME INTERVAL :—
FIRST INTEGRAL APPROXIMATION :-—

FINAL INTEGRAL APPROXIMATION :

GENERAL VARIABLES :— :
NUMBER OF TIME INTERVALS 100

A= 1 C 10
STARTING POINT :- Y(l 0), Y(2 0)
—-.156155825 ' -1.26944482
STARTING VELOCITY :— V(1,0),V(2,0)
238.420689 -42.6014498
6E-05

TIME INTERVAL :— - ,
FIRST INTEGRAL APPROXIMATION :—

FINAL INTEGRAL APPROXIMATION :

-.561544228
~.589452908

~-.0872294592
—.0848872563

.0322762875
.03153557

~.0104983336
~.0127566191
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GENERAL VARIABLES :-—
NUMBER OF TIME INTERVALS 100

A= 1 c= 15

STARTING POINT :—- Y(1,0),Y(2,0)

.839964151 —.273325443

STARTING VELOCITY :— V(1,0),V(2,0)
1 22.5074395 ' 124.485077

TIME INTERVAL :-— 6E-05

FIRST INTEGRAL APPROXIMATION :- —.274621375
FINAL INTEGRAL APPROXIMATION :—~ -.269859061

GENERAL VARIABLES :-
NUMBER OF TIME INTERVALS 100

A= 1 C = 100
STARTING POINT :— -Y(1,0),Y¥(2,0)
~. 605390966 1.48452014

STARTING VELOCITY :— V(1,0),V(2,0)

163.893122 70.5759973

TIME INTERVAL :-~ ~ 6E-05

FIRST INTEGRAL APPROXIMATION :-— 0502010158
FINAL INTEGRAL APPROXIMATION :-— . 0497175526

GENERAL VARIABLES :- .
NUMBER OF TIME INTERVALS 1000 - -

A= 1 C= 1
'STARTING POINT :—  Y(1,0),Y(2,0)
-1.11313939 .273516476
STARTING VELOCITY :— V(1,0),V(2,0)
39.4534475 L -123.914273
TIME INTERVAL :— = 6E-05
FIRST INTEGRAL APPROXIMATION :- - —.337750595
FINAL INTEGRAL APPROXIMATION :- ~.529715427

GENERAL VARIABLES :—
NUMBER OF TIME INTERVALS 1000

A= 1 cC= 2

STARTING POINT :— Y(1,0).,Y(2,0)

1.79695954 -2.01161891
" STARTING VELOCITY :— V(1,0).,V(2,0)
=5.18265491. ~195.760777

TIME INTERVAL :~ 6E-05

'FIRST INTEGRAL APPROXIMATION :~ —.118288204

‘ - =.124956291

FINAL INTEGRAL APPROXIMATION :-
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GENERAL VARIABLES :- ‘
NUMBER OF TIME INTERVALS 1000

A= 1 C= 5

STARTING POINT :— Y(1,0),Y(2,0)
.937792063 -1.26930058
STARTING VELOCITY :~ V(1,0),V(2,0)
265.877275 213.349215
TIME INTERVAL :- 6E-05

FIRST INTEGRAL APPROXIMATION :-—
FINAL INTEGRAL APPROXIMATION :-

GENERAL VARIABLES :-—
NUMBER OF TIME INTERVALS 1000

A= 1 c= 10

STARTING POINT :~ Y(1,0).,Y(2,0)
-.B80060333 -2.05059022
STARTING VELOCITY :- V{(1,0),V(2,0)
608.947155 -~2035.64332
TIME INTERVAL :-— 6E~-05

FIRST INTEGRAL APPROXIMATION :~
FINAL INTEGRAL APPROXIMATION :~

GENERAL VARIABLES :-—
NUMBER OF TIME INTERVALS 1000

STARTING POINT :— ¥(1,0).,Y(2,0)
1.75791174 : -1.46472991
- 8TARTING VELOCITY :— V(1,0),V(2,0)
~147.144046 -257.859969

TIME INTERVAL :-— 6E-05
FIRST INTEGRAL APPROXIMATION :-

FINAL INTEGRAL APPROXIMATION :-

GENERAL VARIABLES :- .
NUMBER OF TIME INTERVALS 1000

A= 1 c = 100
STARTING POINT :—~ Y(1,0).,Y(2,0)
-2.12880761 2.32433051
STARTING VELOCITY :— V(1,0),V(2,0) .
-163.548024 -159.055817
6E-05

TIME INTERVAL :-
FIRST INTEGRAL APPROXIMATION :-~

FINAL INTEGRAL APPROXIMATION :

.0255964501
-025456772

.0556664844
.031734661

.0544448985
. 0428694572

.0419186189
.0390429723
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DIVISION BY ZERO AT TIME 15

GENERAL VARIABLES
NUMBER OF TIME INTERVALS 100

A= 1 C 1 -
STARTING POINT :— Y(1,0).Y(2,0)
-2.12882459 2.03139842
STARTING VELOCITY :— v(1,0),V(2,0)
20.5251469 -1.9941103
TIME INTERVAL :- .06
FIRST INTEGRAL APPROXIMATION :-— —~.460044385
FINAL INTEGRAL APPROXIMATION :-— — 469596834
GENERAL VARIABLES :—
NUMBER OF TIME INTERVALS 100
A= 1 c = 2
STARTING POINT :-— ¥(1,0).Y(2,0)
1.26962125 1.05476916
STARTING VELOCITY :— v(1,0).V{(2,0)
-4,77922491 1.42556714
TIME INTERVAL :— .06
FIRST INTEGRAL APPROXIMATION :- - 120409754
FINAL INTEGRAL APPROXIMATION :-— —-.211931778
DIVISION BY ZERO AT TIME 36
GENERAL VARIABLES :-—
NUMBER OF TIME INTERVALS 100
A= 1 : c= 5
STARTING POINT :- Y(1,0).Y(2,0)
-1.54282659 1156382918
STARTING VELOCITY :- vV(1,0).,V(2,0)
—~.271211417 13.8461709
TIME INTERVAL :- .06
FIRST INTEGRAL APPROXIMATION :— _ 0201166184
FINAL INTEGRAL APPROXIMATION :-— —- 986515392
DIVISION BY ZERO AT TIME 44
GENERAL VARIABLES :—
NUMBER OF TIME INTERVALS 100
A= 1 c = 10
STARTING POINT :— v(1,0).Y(2,0)
—2.460832 —-1.46474719
STARTING VELOCITY :~ v(1,0).V(2,0)
8.95973007 -19.5644572
TIME INTERVAL :— .06 :
FIRST INTEGRAL APPROXIMATION :- 0406869269
—1.93860695

FINAL INTEGRAL APPROXIMATION 1=
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DIVISION BY ZERO AT TIME 77

GENERAL VARIABLES :-
NUMBER OF TIME INTERVALS 100

A= 1 C= 15
STARTING POINT :— Y¥(1,0).Y(2,0)
—.488201678 .0196793675
STARTING VELOCITY :— V(1,0).,V(2,0)
.896788287 6.89067129

TIME INTERVAL :-— .06
FIRST INTEGRAL APPROXIMATION :-

FINAL INTEGRAL APPROXIMATION :-—

DIVISION BY ZERO AT TIME 44

GENERAL VARIABLES :-—
NUMBER OF TIME INTERVALS 100

A= 1 .C = 100

STARTING POINT :— Y(1,0),Y¥(2,0)
-2.40226686 -2.08969951
STARTING VELOCITY :— V(1,0),V(2,0)
1.2497664 -1.53006598

TIME INTERVAL :- .06
FIRST INTEGRAL APPROXIMATION :—

FINAL INTEGRAL APPROXIMATION :-

-1.67296568
-1.54103055

.0413001268
~8.34299817
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We see from the above results that as the ratio of the major

and minor axes ¢ and a increases the Timit considered decreases

(and becomes increasingly negative); the division by zero denotes a
very large negative result. Compare this with the result obtained in
example 2.1.3 (ii) where for the 1-dimensional ellipse the associated

Lyapunov exponent tends to -« as the eccentricity of the ellipse

increases.

We élso note that the above Timits are negative (or approach
negativity). If this Timit truly represents the top Lyapunov exponent
then we conjecture from the results of section 2.4 that the invariant
measure on the sphere bundle required for (1.12) has little or no support
on the regions where the integrand (2.48) is positive, these regions lying

away from the umbilic points. Our overall.conjecture being that the

Lyapunov spectrum for a convex hypersurface embedded in Euclidean space

is almost surely negative.
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APPENDIX B.

ANon-Attainability Result
Following Remark 4.1.5 we have the following directnon-attainability

result for the ground state system (4.1) associated with the Hydrogen atom

model of Lewis and Truman [441].

ProEosition

For the ground state process Xt given by (4.1) the submanifold

M= {(x,0x) ; a # 0} included in (RO\{0}) x (R3\{0}) is non-attainable.

Proof
We shall follow closely the method used in Friedman,Vol. II, Chapter 11

(351, Note that M is c]osed»in' (R3\{O}) x (R3\{O}) . Clearly M is
a 4-dimensional submanifold of (R3\{0}) x CRB\{O}) | We can therefore

assume that there éxist 2 Tlinearly independent vectors in

ﬂR3\{0}) x GR3\{0}) which are normal to M . Let these be denoted by
(wq505)
Ny = (ugsuy)

The equation forwthe process (xt,vt) on GR3\{O}) X 0R3\{0}) js given

by
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i

_ AT 17
dxpvy) = @ 10 00 0 ol
010 000 dBi

001 000 dsi

000 00O dBi

000 00O dBi

000 000 dsi

- Jd L .
-b Xt A B
TP TITPRTI TP
t t t

! ...,86) € BM(RG) . This equation is of the form

dv, = o(¥,)dBy + b(Y,)dt

as required by Friedman. We now verify that (4.1) satisfies Friedman's

condition (A1):

Gy letall + eIl < e+ 1xlD

for some constant C for all X € GR3\{0}) x (R3\{0}) .

This is clearly true choosing C =.3 .

(ii) For any R > 0, 3¢C > 0 such that

Ho(x) = o]+ 1p(x) = bW s Clixyll

1t |x]] <R, Iyl <R
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Since ¢ is independent of x e 0R3\{0}) x (R3\{O}) , l,o(x);c(y)ll =0 .

So we need to verify that for some CR >0

[1b0x,v) = bly.w)[| s CalI(x:v) = (yaw)]]

E X <R Iyl <R

From (4.1)
[Ib(eov) - by 12 = doptl] L = Ry Nkabn - v = oy 5 |
ma” ||yl [Ix]] X2 1t It 11yl
(A.8)
and this must be less than or equal to
cS(Hx-yHIsB+ llv-wll;3) (A.9)
CRma 2
for some Cp > 0. let Dp= (_ﬁ__)' . We first consider the first terms

in the brackets of expressions.(A.B) and (A;9). So we require that

2- 2o £ 0(IxI1Z - 2ex,ys + [1y110)
[ xl y]

- which gives

13 s 0p(lx[1% + [1yl1?) - 2

. 2<x,y>{DR -
HxI Iyl

or

oy s (IO Ix1E + (11D - 2)
20 [ 1y]] - 1
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which by the Cauchy-Schwarz inequality is true if

Dy (IxlZ+ Iyl -2 = 1 |
2 (0l IxI1 1yl - 1)

| that is

ol 12+ 1Iv11P) =2 = 2 ol Ixl1 Iyl - 2
yielding .

Dg(l1xI ] = 1lyID® = 0
which is clearly true for all R >0 .

We now consider the second terms in the brackets of (A.8) and (A.9).

We then require that for some Dp > 0

Mz 2<V,w> = 2<V, x>2+2<v,y><z,w> + Hw” + 2<X,V><X,w>= 2<Y, w>2
1P Ty 1] Hxll I T T TSR

b - 2wy + <y s D (V]2 - 2ev,us + | 0] [2)

I Py iy

. 2 .2 2 2 | |
it Ix 2 e (I[P <R and [lyl15+ JJolP<R®. (A.10)
Using the Cauchy-Schwarz inequa]ity this reduces to

<X v>(1 - <XV>) < ,w>(1 - <yaw>) s Dp([[v]]% - 2<v,00 + []u]1?) .

IIXII ‘ vl
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Rearranging this as
4 4
« 1yl exavs (v = 1) + iy <y sw (<yaw-T)

0 < ol Ix 14 Iy lv-sl 1)
(Ad1)

and <y < |lyl1%+]1e]1? . using (A.10)

and as  <X,v> S |]X||2+||Vl|2
2

2

above a  Dp > 0 can always be found such that (A.11) holds.

As condition (A.1) is satisfied, following Friedman we consider the

matrix

a(x) = o(x)a (x)

By (4.1) this is given by

where 15 is the 3x3 identity matrix. We now consider the matrix

A

‘ (aij)’ 1 < i{j 2, where

agy = <@l Ny7ps

Thus '
a5 = 'lﬂ]ll <91’93?R3

sopo7 s [ug! 15




- 179 -

So
det(a;5) = |l %] lugl 1% - < mp? > 0

by the Cauchy-Schwarz inequality and equality holds if and only if
wy = Buy for some 8 # 0 . (Note, 93 and w3 are non-zero since

they belong to IR?\{O}) . MWe now show that w3 # By for any 8 #0 .

Consider the tangent space to M ='{(xt,axt) ; a # 0} . Tangent

vectors are given by

d (ot,atot)

g = (otfdtct + atct)

t=0 t=0

where
(co,aoco) = (x,ax) .
So

T, M= {(uautyx) e PxRE ueR®, vy e® . (A12)

(X5AX)

Now suppose wy = Bwy some B #£0 , then ﬂq = (94,92)"and ﬂz = (Bg],w4)'.
If such vectors are normal to M then by (A.12)
?(w W );(u,au+yx)> = <wi,U> o + <w L QUHYX> o = 0o (A}13)
=1°=2 e 1 R3' 2 R3

and

<(B_w_] ’24)’(U’GU+YX)>]R6 = B‘Q_]’LD 3 + <24’au+YX>IR3 =40 . (A]4)
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Multiplying (A.13) by B#0 and subtracting yields
<wy - 392 , au + yx> =0

This-is true if either
(1)  wy - Bu, =0 which implies (wg.uy) = B(wju,) which contradicts
ﬂi and N, being linearly independent ' '
or

(ii) eu+yx =0 forall uce R}, yeR, ‘which is not necessarily so,

or

3

e R ’Y'GIR.. But

(iii) wy - Buy, " is orthogonal to- ou + yx for all u

N, - BNy = (0sy-8up) (A15)
and this vector cannot lie in the normal space since its first co-ordinate
~ is zero and hence ﬂz - sﬂ]‘é GR3\{O}) x (R3\{0}) . Also Sincev.ﬂ] and

N, are linearly independent (i) imp]ies wy=Bw, must be non-zero,

-2

and some u eiR? and y € R can be found such that. <wy =By saUHYX> £0.

Thus w3 # Bu for any B # 0 and hence det a i ; 0. Thus'

( ) has rank 2. We can then app]y Fr1edman s Theorem 4 2, Chapter 1],
which concludes that

P{(xt,vt) e M for some t>0}=0 -,

that is M s non-attainable.
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