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Solar cycle variation of the statistical distribution of the solar
wind 𝜖 parameter and its constituent variables

E. Tindale1 and S. C. Chapman1

1CFSA, Physics Department, University of Warwick, Warwick, UK

Abstract We use 20 years of Wind solar wind observations to investigate the solar cycle variation of
the solar wind driving of the magnetosphere. For the first time, we use generalized quantile-quantile plots
to compare the statistical distribution of four commonly used solar wind coupling parameters, Poynting
flux, B2, the 𝜖 parameter, and vB, between the maxima and minima of solar cycles 23 and 24. We find the
distribution is multicomponent and has the same functional form at all solar cycle phases; the change in
distribution is captured by a simple transformation of variables for each component. The 𝜖 parameter is
less sensitive than its constituent variables to changes in the distribution of extreme values between
successive solar maxima. The quiet minimum of cycle 23 manifests only in lower extreme values, while
cycle 24 was less active across the full distribution range.

1. Introduction

The 11 year solar cycle is variable, with an extended minimum observed in cycle 23 and a notably quiet max-
imum in the most recent cycle 24 [Lockwood, 2013; Zerbo and Richardson, 2015]. Satellites in the solar wind
upstream of Earth provide a comprehensive data set covering several solar cycles. Variables observed in situ
are combined into solar wind parameters that aim to capture the driving of the magnetosphere by the solar
wind [e.g., Gonzales, 1990]. This letter focuses on the systematic changes in the statistical distributions of these
solar wind parameters between different phases of the solar cycle.

The Poynting flux S is the energy flux density carried by the electromagnetic fields of the solar wind plasma.
Along with S, we will consider three of the most commonly used parameters: the 𝜖 parameter [Perreault and
Akasofu, 1978], in which S is scaled to account for energy transport into the magnetosphere [Koskinen and
Tanskanen, 2002]; the westward electric field, estimated as vx Bz [Burton et al., 1975]; and finally, B2, found to
be more closely related to solar activity [Kiyani et al., 2007].

There has been extensive work on the statistics of solar wind variables. Early work [Burlaga and King, 1979]
identified an approximately lognormal probability density function (PDF) of the magnetic field strength.
Feynman and Ruzmaikin [1994] showed that the PDF of the interplanetary magnetic field (IMF) field strength
could not be exactly lognormal due to nonzero kurtosis, which was substantiated later by Burlaga and Ness
[1996] who determined the PDF to be lognormal with an exponential tail but also discussed the possibility
of a Pareto tail. Koons [2001] successfully fitted the Gumbel class of extreme value distribution to annual
maxima of the 60 MeV proton flux. Moloney and Davidsen [2010] found that the block maxima of the 𝜖 param-
eter follow the Fréchet distribution; however, this fit overestimated the highest values. Since the Fréchet class
is the limiting distribution for a variable that has a PDF with a power law tail [Schumann et al., 2012], a Fréchet
fit to block maxima of the 𝜖 parameter would support Burlaga’s earlier proposal of a lognormal PDF with a
Pareto tail. Burlaga and Lazarus [2000] also found evidence for lognormal distributions of the solar wind speed,
density, and temperature, and that these distributions vary with the phase of the cycle. They attributed this
variation to the dominance of corotating streams in the solar wind at solar minimum [Tsurutani et al., 2006].
Common to all these findings is the multicomponent nature of PDFs of solar wind variables.

A complementary approach to the statistical analysis of solar wind variables is the use of bursts. These are
defined as the integrated signal over periods where the variable continuously exceeds a given threshold; they
have been used to compare the solar wind with both solar flares [Moloney and Davidsen, 2011] and geomag-
netic indices [Freeman et al., 2000a]. The PDFs of burst lifetimes of 𝜖, (vx Bz)s, B2, and S have all been found

RESEARCH LETTER
10.1002/2016GL068920

Key Points:
• Solar wind parameter statistics

change with solar cycle phase while
preserving PDF functional form

• Solar wind 𝜖 changes in a manner
distinct from other coupling
parameters

• Results are independent of PDF
functional form

Supporting Information:
• Figure S1
• Figure S2
• Figure S3
• Supporting Information S1

Correspondence to:
E. Tindale,
l.tindale@warwick.ac.uk

Citation:
Tindale, E., and S. C. Chapman
(2016), Solar cycle variation of the
statistical distribution of the solar
wind 𝜖 parameter and its constituent
variables, Geophys. Res. Lett.,
43, doi:10.1002/2016GL068920.

Received 30 MAR 2016

Accepted 12 MAY 2016

Accepted article online 17 MAY 2016

©2016. The Authors.
This is an open access article under the
terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

TINDALE AND CHAPMAN SOLAR CYCLE VARIATION OF SOLAR WIND PDFS 1

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-8007
http://dx.doi.org/10.1002/2016GL068920
http://dx.doi.org/10.1002/2016GL068920
http://creativecommons.org/licenses/by/4.0/


Geophysical Research Letters 10.1002/2016GL068920

to be power law with an exponential roll off [Wanliss and Weygand, 2007; Freeman et al., 2000b], as has the
distribution of waiting times of bursts in Bz,S [D’Amicis et al., 2006]. Of these fits, Wanliss and Weygand [2007]
found the power law exponents of the 𝜖 and (vxBz)s distributions to be solar cycle dependent; however, when
looking at higher thresholds, Moloney and Davidsen [2014] found no such dependency. In the related studies
of geomagnetic indices, Freeman et al. [2000a] found the distribution of burst lifetimes of AU and AL to be
multicomponent, including a power law and exponential cutoff similar to 𝜖, and Hush et al. [2015] found a
multicomponent distribution of AE burst size, including a solar cycle-dependent exponential component at
extreme values.

While these studies have been successful in fitting parts of the distribution of solar wind parameters, there
are still open questions, including how the PDF changes over the solar cycle and which of the constituent
variables within a parameter such as 𝜖 drives these changes. In this paper, we address these questions, with the
first application of quantile-quantile (QQ) plots [Gilchrist, 2000] to the comparison of observed distributions
of each solar wind parameter measured at different phases of the solar cycle. We examine the changes in
the cumulative distribution functions (CDFs) of the coupling parameters S, B2, 𝜖, and (vx Bz)s in cycles 23 and
24, between each maximum and minimum, between successive maxima, and between successive minima. In
each case the distribution is multicomponent, and we find that over a broad range each subcomponent has
a functional form that remains unchanged across all phases of the solar cycle. The change in CDF, and hence
PDF, is captured by a transformation of variables for each subcomponent; this transformation takes the form
of P(x) → P(𝛼x +𝛽), independent of the underlying PDF functional form. Our results quantify the effect of the
quiet minimum of solar cycle 23 and the quiet maximum of cycle 24 on the likelihood of observed values of
these parameters. We see systematic changes in the PDFs of the constituent variables of 𝜖 and identify which
variable drives the variation in the statistics of 𝜖. We find that the statistics of 𝜖 can be less sensitive to these
changes than those of its constituent variables.

In section 2 we introduce the data set and solar wind parameters. In section 3 we describe the QQ plot method
and apply it to the solar wind Poynting flux. In section 4 we repeat this analysis for parameters B2, solar wind
𝜖, Bz and vxBz , and for all parameters across the full solar cycles. We conclude in section 5.

2. Data

Data from the Magnetic Fields Investigation and Solar Wind Experiment on the Wind spacecraft were pro-
vided by National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC’s) OMNI
data set. Data were only taken at those times when the spacecraft was situated in the upstream solar wind.
During preprocessing, the 15 s cadence interplanetary magnetic field (IMF) and 92 s ion plasma velocity are
interpolated to 1 min resolution. The plasma velocity measurements include both fast and slow streams, and
all measurements are in geocentric solar magnetospheric (GSM) coordinates. One year of data was taken
spanning each of the minima and maxima of cycle 23 and cycle 24, using inclusive dates December 1995 to
November 1996 (cycle 23 minimum), October 1999 to September 2000 (cycle 23 maximum), August 2007
to July 2008 (cycle 24 minimum), and November 2013 to October 2014 (cycle 24 maximum). Data gaps are
reasonably evenly distributed between successive maxima and minima; they typically cover∼10% of the data,
ranging from ∼5% for the minimum of solar cycle 24 to ∼26% for the maximum of cycle 23. The remaining
sample sizes are of order 400,000 samples in each data set. The Wind satellite orbits L1 and is, for our yearlong
samples at maxima and minima, within 100 RE of the Sun-Earth line. It is outside this range for ∼8% of the full
data set.

The Poynting flux, S, is the characteristic energy flux carried by the solar wind. For ideal magnetohydrody-
namics, the electric field is E = −v × B, so that the component of Poynting flux along the Sun-Earth line is
approximated by

S = − 1
𝜇0

vx

(
B2

y + B2
z

)
. (1)

The 𝜖 parameter is based on the Poynting flux but is scaled to account for the interaction between the solar
wind and magnetosphere. In SI units it is

𝜖 = 4𝜋
𝜇0

vB2
S sin4

(
𝜃

2

)
l2
0, (2)
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where v is the ion plasma speed, BS is the magnitude of the IMF with southward Bz , l0 is a length scale taken
to be 7 RE , and 𝜃 = tan−1(By∕Bz) is the clock angle. The 𝜖 parameter depends on all three components of the
IMF, while the Poynting flux depends on By and Bz only.

Energy transfer between solar wind and the magnetosphere is in part ordered by the flux of southward
directed IMF (i.e., negative BZ in GSM), due to the increased rate of magnetospheric reconnection. We there-
fore calculate the solar wind parameters S and B2 for both the full data set and the subset of data where BZ < 0
and the magnetosphere coupling parameters 𝜖 and vxBz at times of southward IMF only. After removing the
northward IMF values, the southward IMF subsets of data contained approximately 200,000 data points. The
subscript S will denote the southward IMF only subsets of each parameter.

3. QQ Plots for Poynting Flux

The quantile-quantile (QQ) plot is a tool for comparing two statistical distributions. The distribution of an
independently and identically (iid) random variable X can be described both by its probability density function
(PDF), P(x), and the corresponding cumulative density function (CDF), C(x), which are related via

P(x) = dC(x)
dx

(3)

so that C(x) is the likelihood that the value of variable X will occur below a value x (X≤ x). The CDF can be
inverted, so that for any likelihood q, a value x(q) can be calculated such that the likelihood of a measurement
of X occurring below x(q) is q. The value x(q) is referred to as the qth quantile of the distribution of variable X ;
for example, the q = 0.5 quantile of the distribution, x(0.5), is the median: the value below which 50% of the
data lie.

Consider two iid random variables, X1 and X2, distributed according to PDFs P1(x1) and P2(x2)with correspond-
ing CDFs C1(x1) and C2(x2). The quantiles of the two distributions are as follows:

x1(q1) = C−1
1 (q1)

x2(q2) = C−1
2 (q2)

(4)

where C−1(q) is the inverse of CDF C(x(q)). The QQ plot then has as its coordinates the quantiles x1(q) and
x2(q), where the likelihood q is a parametric coordinate. If X1 and X2 have same distribution, their quantiles
will be the same, and so a straight “y = x” line of gradient 1 will be recovered. Any other straight line on the
QQ plot would be described by

x2(q) = 𝛼x1(q) + 𝛽, (5)

in which case the CDFs are related by a transformation of variables:

C2(x) = C1

(
x − 𝛽

𝛼

)
. (6)

With equation (3) this yields

P2(x) =
1
𝛼

P1

(
x − 𝛽

𝛼

)
, (7)

so that the corresponding PDFs are related by the same transformation of variables. The scaling parameter 𝛼
preserves the normalization, so that the integrated PDF is unity. Hence, if the QQ plot is linear, the functional
form of the underlying PDF of both variables X1 and X2 is the same, subject to a transformation of variables
from x to (x − 𝛽)∕𝛼. The parameter 𝛼 denotes a change in scale, while 𝛽 is a shift in location. A positive 𝛽 value
indicates an increase in mean, so that the likelihood of large values of X increases as the whole PDF is shifted.
If 𝛼 > 1, a given likelihood q corresponds to a larger value of X , resulting in the stretching of the PDF tail. This
in turn modifies the raw higher moments of the distribution; however, the standard measures of skewness
and kurtosis can be normalized to account for the change in scale [Gilchrist, 2000]. Both 𝛼 and 𝛽 can be found
from the data with a linear regression to the QQ plot.

Figure 1 shows QQ plots comparing the distributions of Poynting flux, B2, 𝜖 and vB between solar cycle phases;
in the left column we compare the minimum of cycle 23 to that of cycle 24, in the central column we compare
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Figure 1. QQ plots for (ai–aiii) solar wind Poynting flux, (bi–biii) B2, (ci–ciii) the 𝜖S parameter, (di–diii) Bz,S, and (ei–eiii)
(vx Bz)S , comparing the quantiles of the minimum of solar cycle 24 (ordinate) with the minimum of cycle 23 (abscissa)
(column i); the maximum of solar cycle 24 (ordinate) with the maximum of cycle 23 (abscissa) (column ii); and the solar
maximum (ordinate) with the solar minimum (abscissa) for both cycle 23 (red) and cycle 24 (blue) (column iii). Open
pink circles (and open light blue squares) are quantiles of the full data set, and filled red circles (filled dark blue squares)
are quantiles when the IMF is southward. Black dashed lines show least squares linear regressions with fitting ranges
shown by black solid lines. The parameters of these fits are given in Table S1 in the supporting information.
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the successive maxima, and in the right column we compare each cycle’s maximum to its minimum. In each
case we compare the 0.0001 to 0.9999 quantiles. A plot in the same format is given for additional quantities
in the supporting information, along with a discussion of uncertainties.

Figures 1ai–1aiii show the results for the solar wind Poynting flux. In each case the QQ plots are multicom-
ponent, with three approximately linear regions. A linear region of the QQ plot indicates that the functional
form of the PDF in that region does not change; thus, a transformation of variables captures how the
distribution is changing over the solar cycle, as described above. These ranges are indicated on the plots. We
perform a three-component linear-piecewise fit to these plots. The R2 statistic associated with the each linear
fit (given in Tables S1–S3 in the supporting information) exceeds 0.9 in almost all cases, indicating that the
linear transformations provide a good representation of the change in distribution.

The QQ plot of Poynting flux with southward IMF, SS, comparing successive minima (Figure 1ai) consists of
three such approximately linear regions: a “bulk component,” containing data in the 0 to 0.9637 quantiles;
a “high component” spanning the 0.9637 to 0.9993 quantiles; and an “extreme component,” which includes
values above the 0.9993 quantile. The bulk component has an 𝛼 value of 0.864(2), where the error denotes
the 95% confidence interval of the value, and a 𝛽 close to zero. This component of the distribution thus shows
a small change in scale between the two minima, so that its PDF essentially does not change. The high com-
ponent has a significant change in scale of 𝛼 = 1.90(3), as well as a shift in location of 𝛽 = −0.0237(11). Finally,
the extreme component undergoes a transformation of SS,24 = 0.197(45)SS,23 +0.118(5), showing a decrease
in the scale of these values, but a large (∼10%) increase in their mean. The high and extreme components
appear above the y = x reference line, so that the increased activity of the minimum of cycle 24 relative to
cycle 23 is manifest mainly in these extreme values, rather than in the bulk of the distribution.

Conversely, we can see that in Figure 1aii the quantiles all lie below the y = x line, so that the maximum of cycle
24 was significantly less active than the maximum of cycle 23. Again, the QQ plot can be divided into linear
regions which we denote as bulk, high, and extreme components. These linear relationships again indicate
that within each of the components of the underlying PDF, the functional form is the same at both solar
maxima. The crossover points between these regions of the CDF occur at q = 0.9800 and q = 0.9988. Unlike
the change between successive minima, the bulk component of the distribution changes scale significantly
between the successive maxima, with𝛼 = 0.545(1). The location of the bulk component does not change. The
transformation of variables for the high component was SS,24 = 0.209(2)SS,23 + 0.0231(4) and for the extreme
component was SS,24 =1.32(20)SS,23 −0.409(88). The high component of the PDF therefore decreases in scale
but slightly increases in mean, while the opposite is true for the extreme component. We repeated this analysis
comparing the full 11 year data sets of cycles 23 and 24 (see supporting information) and find that cycle 23 is
overall more active.

Between the successive maxima, the translations of the high and extreme components are sensitive to
whether the full data set or the southward IMF subset is included in the CDF. The bulk component undergoes
approximately the same transformation of variables in both cases. The change of scale 𝛼 of the high compo-
nent increases from 𝛼 = 0.209(2) for SS to 𝛼 = 0.366(5), while for the extreme component 𝛼 is roughly the
same, changing from 𝛼 = 1.32(20) to 𝛼 = 1.42(10). The shift in location 𝛽 is∼50% smaller for the high compo-
nent and ∼20% larger for the extreme component, once the northward IMF values of S are included. The QQ
plot thus has three well-defined linear components that translate according to equation (5) between phases
of the solar cycle, irrespective of whether or not northward IMF values are included. However, the changes in
scale and location (𝛼 and 𝛽) of the underlying PDF are more pronounced if we only consider the southward
IMF subset.

Figure 1aiii compares the distribution of Poynting flux at the maximum and minimum of each cycle. Again,
the QQ plot is composed of several approximately linear regions, indicating the multicomponent and
invariant functional form of the PDF discussed above. For both solar cycles, the bulk component occurs close
to the origin, so that on this scale the QQ plots appear to show only the high and extreme components.
These components again undergo a simple translation (as in equation (5)) between solar minimum and
maximum; however, the transformations are different for the two cycles. In cycle 23, the high component has
a large change in scale of 𝛼 = 9.18(17), while the extreme component shifts in location, 𝛽 = 0.291(31) but
has a smaller change in scale (𝛼 = 1.57(32)). For cycle 24, the high component remains closer to the y = x
line (𝛼 = 0.422(46), 𝛽 = 0.0587(43)) and so shows a less pronounced change between solar maximum
and minimum. The extreme component does have a significant transformation, with both a large change of
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scale 𝛼 = 5.90 ± 1.98 and large shift in location 𝛽 = −0.618(266). Therefore, the quietness of cycle 24 is
manifest in the bulk and high components, which are the same at maximum and minimum; only the extreme
values above the q = 0.9989 quantile show increased likelihood at maximum relative to the cycle minimum.

4. QQ Plots for B2, 𝝐S, Bz,S, and (vxBz)S

Figures 1bi–1biii through 1ei–1eiii plot the above solar cycle phase comparisons for the B2, Bz,S, 𝜖S, and (vx Bz)S

parameters, with the latter three calculated using only values with southward IMF. The QQ plots can again be
split into multiple approximately linear components, with R2 values consistently above 0.9, so that the PDF
functional form is approximately invariant for all parameters; it, again, simply translates as in equation (5).

Quantiles of both the full and southward IMF only B2 data sets are shown in Figures 1bi–1biii. Qualitatively,
these panels show the same behavior as in Figures 1ai–1aiii, indicating that S simply tracks B2. In all three
plots, the transitions between components occur at similar quantiles for both B2

S and SS. However, although
the trends are the same, the𝛼 and 𝛽 parameters differ between SS and B2, suggesting that the solar wind speed
does not affect the form of the transformations but does alter the details. The comparison of the solar maxima
(Figure 1bii) also shows the same sensitivity as the Poynting flux to whether all values or the southward IMF
only subset is used.

Between successive solar minima, the QQ plot for 𝜖S (Figure 1ci) is qualitatively similar to those of SS and B2
S

(Figures 1ai and 1bi). However, when we consider how the distribution translates between successive solar
maxima (Figure 1cii) the distribution of the 𝜖S parameter transforms in a remarkably different way to the other
variables. The PDF retains its functional form and is translated by a single change in scale over the full range.
The 𝛼 value of this transformation is 0.501(1), which is similar to the 𝛼 values of the bulk components of the
SS and B2

S . The high and extreme values of 𝜖S thus do not retain the distinct changes between successive
maxima seen in SS and B2

S . Similar behavior of 𝜖S is found when comparing the maximum and minimum of
cycle 23 in Figure 1ciii; that is, the high and extreme components are indistinguishable and translate with a
single change of scale 𝛼 = 4.81(9). Now, 𝜖 depends upon all three components of magnetic field, whereas the
Poynting flux depends on the y and z components only; 𝜖 also includes a factor that depends on the clock
angle. In Figure S1, we plot, in the same format as Figure 1, the changes in B2

x and B2
yz = B2

y +B2
z , along with the

clock angle contribution to 𝜖. We see that the distribution of the clock angle contribution does not change
between the different phases of the solar cycles; therefore, this does not explain the relative insensitivity of 𝜖.
However, the distributions of B2

x and B2
yz translate in opposite directions on the plot; for example, the extreme

components have 𝛼 < 1 and 𝛼 > 1, respectively (values are 𝛼 = 0.0602(408) and 𝛼 = 1.50(20)). When these
are combined within a single parameter, they may tend to suppress these changes. We have repeated this
analysis (see supporting information) for the Milan and Newell coupling parameters [Milan et al., 2008; Newell
et al., 2007] and find that they are intermediate in sensitivity between 𝜖 and Poynting flux. In common with
the Poynting flux, they only depend on the y and z components of the IMF.

Within Figures 1di–1diii and 1ei–1eiii, the distributions of variables Bz,S and (vx Bz)S show little change
between the two minima except at the extreme values (Figures 1di and 1ei), with less sharp transitions
between components. The comparison of the maxima for these variables (Figures 1dii and 1eii) shows three
linear components, but again with less clear transitions; this is reflected in the lower R2 values, which are
0.9722 and 0.9670 for the high component of Bz,S and (vxBz)S, respectively, compared to 0.9938 and 0.9829
for SS and B2

S . The similarity of the QQ plots for Bz,S and (vxBz)S again suggests that the magnetic field drives
the variation of the distribution of the constructed parameters. The solar wind speed also contributes to the
change in distribution between the maximum and minimum of cycle 24: compare Figures 1diii and 1eiii with
Figure S1aiii in the supporting information.

In Figures 1aiii, 1biii, and 1ciii we see similar qualitative behavior across the parameters. The bulk and high
components of the cycle 24 QQ plot are close to the y = x line in most cases, indicating that the distribu-
tion of each variable for cycle 24 was the same at maximum and minimum up to the highest quantiles. The
outstanding case is in Figure 1diii, where the bulk component of the Bz,S distribution transforms in the same
manner for both cycle 23 and 24, up to the q = 0.9800. The relatively low activity of cycle 24 is also evident;
for all variables, the quantiles of cycle 24 lie below those of cycle 23. The extreme component occurs between
q = 0.9989 and q = 0.9995 for all variables in cycle 24, and all except 𝜖S and (vx Bz)S in cycle 23, suggesting
that in all these variables (with the exception of 𝜖S) there is an extreme tail which transforms differently to the
rest of the distribution.

TINDALE AND CHAPMAN SOLAR CYCLE VARIATION OF SOLAR WIND PDFS 6
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Finally, we compared the distributions of the two full cycles; see the supporting information for QQ plots and a
detailed discussion. Overall, cycle 23 shows higher activity, despite its quiet minimum. For all four parameters,
ranges are again found over which the QQ plots are linear, suggesting that the transformation of variables in
equation (5) captures the change in the PDF.

5. Summary

We investigated how the probability density functions of four solar wind-magnetosphere coupling parame-
ters change over the two most recent solar cycles using quantile-quantile plots. The distributions for Poynting
flux, B2, 𝜖S and the westward electric field (vxBz)S were compared between cycle 23 minimum and cycle 24
minimum, between cycle 23 maximum and cycle 24 maximum, and between the maximum and minimum of
each of cycles 23 and 24.

We found that for all parameters the PDF has a multicomponent functional form which does not change over
the solar cycle or between cycles. Instead, a linear transformation of variables for each component is required
to map that region of the PDF from one solar cycle phase to another. These transformations can be found by
fitting least squares regressions to linear regions of the QQ plot. We identified three regions of the distributions
in the QQ plots; the bulk component, up to q ∼0.96, and beyond this the high and extreme components. The
bulk component undergoes a change in scale between solar maxima but is roughly the same at both minima.
The high and extreme components for S, B2 and (vxBz)S are each associated with a unique change in both
scale and location. The 𝜖S parameter behaves differently to SS, B2

S and (vxBz)S as the change in its PDF between
successive maxima is captured by a single change in scale over the full range, so the high and extreme values
are insensitive to the changes in their distribution seen in SS and B2

S .

The QQ plots for S resemble those of B2, and likewise the QQ plots for (vx Bz)S track those of Bz,S, implying that
changes in B drive changes in the PDFs of the solar wind coupling parameters. Cycle 23 exhibited a quieter
minimum than cycle 24, which is manifest in the distribution as larger amplitude (quantile) high and extreme
components at the minimum of cycle 24 than cycle 23, while the bulk component was roughly the same for
both minima. The overall activity of cycle 23 was higher than that of cycle 24, seen across the distribution at
the maximum of cycle 23 compared to the maximum of cycle 24. The changes in the distribution of S and B2

between successive maxima were also found to be more pronounced in the distribution of values when IMF
is southward.

As the functional form of the distribution of each solar wind variable does not change between extrema of
cycles 23 and 24, it could be an intrinsic property, and as such would remain the same in future cycles. This
qualitative property of the full distribution provides a benchmark for models and may support prediction of
the likelihood of extreme space weather events. However, as we have shown, this depends on the variable
chosen, as the 𝜖 parameter is less sensitive to changes in the likelihood of its large values than the S, B2 and
(vxBz)S variables.
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