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 We report herein that 3-pinacol boronic esters undergo facile 

protodeborylation in the presence of Pd catalysts and base, and this 

contributes significantly to the generation of non-borylated indole by-

products in the B2Pin2 mediated Pd-catalysed borylative cyclization of 2-

alkynylanilides. Suginome�s reagent provides an alternative method to access 

3-borylated indoles as these compounds are less susceptible to 

protodeborylation. 

  Palladium, cyclisation, indoles, boronic ester, protodeborylation 

 

Aromatic and hetereoaromatic boronic acid derivatives are 

widely employed in synthetic chemistry because of their 

versatile reactivity,  allowing them to be successfully elaborated 

by carbon-carbon bond forming processes or by changing the C-

B bond to an alternative functional group (e.g. via oxidation  or 

azidonation  reactions).1 We have been engaged in the 

investigation of benzannulation strategies to boronic acid 

derivatives and have found that cycloaddition reactions,2 metal 

templated cyclizations3  and condensation processes4 all have 

the potential to construct the (hetero)aromatic nucleus while 

simultaneously installing the boronate moiety. In addition to 

these approaches, we became interested in a borylative 

cyclization strategy5 as we envisaged that it would allow access 

to scaffolds not easily obtained by the aforementioned methods. 

As shown in Scheme 1, we were able to prepare 3-borylated 

indoles 2 by this approach via the treatment of 2-alkynylanilides 

1 with B2Pin2 under Pd-catalysis.5(a),6 
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1 Pd-catalyzed borylative cyclization. 

A common by-product arising from the borylative cyclization 

was 3-H indole 3, and we believed that this compound arose 

from a competing Pd-catalysed hydroamination of the starting 

material.7 Moreover, the tendancy of 3 to co-elute with the 

desired boronic ester product 2 made separation quite 

challenging in some cases. In order to circumvent this side-

reaction, we wanted to explore alternative borylating agents in 

order to establish their compatibility with the borylative 

cyclization strategy. In this context, Suginome and co-workers 

described the synthesis of the diboron reagent BPin-Bdan8 

which offered the potential to generate stable indole 

boronamides as the less Lewis acidic Bdan group has a tendency  
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2 Iodocyclization of 2-alkynylanilines. 
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to transfer in preference to the Bpin in borylation reactions.9 We 

report herein the realisation of this idea and the relative 

stabilities of the respective Bpin/Bdan indoles. 

Before undertaking an investigation of the borylative cyclization 

reaction using the BPin-Bdan reagent, we wanted to establish 

that indole-Bdan compounds could be accessed and isolated 

using more traditional procedures. Accordingly, we prepared a 

small family of 3-iodoindoles following the method of Amjad 

and Knight.10 As shown in Scheme 2, the iodocyclisation 

methodology provided the requisite 3-iodoindoles in good to 

high yield under mild conditions. Moreover, this process was 

compatible with a broad selection of substituents and functional 

groups and offered adequate scope to investigate the 

subsequent borylation reaction. 

Our next step was to carry out the borylation of indole iodides 

4-11. In this respect, Xu and Li recently reported that aryl 

bromides and chlorides could be converted to the 

corresponding boronamides using the Suginome reagent.11 

Although these authors reported 1 example of an indole 

substrate, borylation was conducted at the benzene moiety (i.e. 

at C5). In the event, subjection of indoles 4-11 to BPin-Bdan in 

the presence of Pd2dba3 provided the corresponding masked 

boronates 12-19 in good to excellent yield, with the mass 

balance consisting of indole derived from 

protodeiodination/protodeborylation of the starting 

material/product, respectively. The products were isolated as 

crystalline solids and 19 was further characterised by X-ray 

crystallography (Scheme 3). 
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3 Borylation of 3-iodoindoles. 
a
Reaction run overnight using 10 mol% 

catalyst. 

We next took the opportunity to explore the relative stability of 

indole-Bdan and indole-BPin compounds towards our 

established borylative cyclization conditions, and our results are 

shown in scheme 4. In the event, subjecting 12 and the 

corresponding pinacol ester 20 to the catalyst and base under 

conditions typically used in the borylative cyclisation resulted in 

complete deborylation of 20, while 12 was returned essentially 

untouched. Notably however, subjection of 12 to these 

conditions over longer periods (> 5h) did result in significant 

protodeborylation also. 
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4 Stabilities of indole-Bdan versus �Bpin towards protodeborylation. 

Taken together, these experiments highlight the propensity for 

borylated indoles to undergo protodeborylation in the presence 

of Pd-catalysts. Pinacol esters are especially sensitive to this 

side-reaction and, with respect to the Pd-catalyzed borylative 

cyclization of 2-alkynylanilides developed in our labs (c.f. 

Scheme 1), we believe that this is the major factor in the 

generation of non-borylated indole by-products. Facile 

deborylation can also be implicated in the work of Kaila et al. 

They reported significant levels of reduction (to non-borylated 

indole by-products) in their efforts to prepare 3-borylated 

indoles from the corresponding 3-bromoindoles under Pd 

catalysis with B2Pin2.12 In this respect, the employment of 

Knight�s iodocyclization and borylation using Suginome�s 

reagent offers an alternative approach.13 

Finally, we decided to attempt the direct synthesis of indole-

Bdan 12 via borylative cyclization, and our results are shown in 

Scheme 5. Subjection of 2-phenyl(ethynyl)anilide to our optimal 

catalyst in the presence of Suginome�s reagent provided a 

mixture of three indole products 12, 20, and 21 (~4:1:1), from 

which the desired indole-Bdan 12 could be isolated in 58% 

yield. 
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5 Borylative cyclization using Suginome�s reagent. 

In conclusion, we have found that indole 3-pinacol boronic 

esters undergo facile protodeborylation in the presence of Pd 

catalysts and base, resulting in the generation of non-borylated 

indole by-products. Suginome�s reagent provides an alternative 

method to access 3-borylated indoles as these compounds are 

less susceptible to deboronation. Efforts to extend the scope of 

this chemistry, in particular with respect to borylative 

cyclization and functionalization of the C-B bond are ongoing 

and will be reported in due course. 
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