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Fermionson adS

Victor E. Ambrusand Elizabeth Winstanley

Abstract We construct the Feynman propagator for Dirac fermions ¢incanSitter
space-time and present an analytic expression for theibdispf parallel transport.
We then renormalise the vacuum expectation value of thesseeergy tensor and
end by analysing its renormalised expectation value aefiginperatures.

1 Introduction

Quantum field theory (QFT) on curved spaces (CS) is a semsiclal theory for
the investigation of quantum effects in gravity. Due to imicity, the scalar field
has been the main focus of QFT on CS. However, due to the fuadi@indiffer-
ence between the quantum behaviour of fermions and bosamsnportant to also
study fermionic fields. In this paper, we consider the prapiag of Dirac fermions
on the anti de Sitter space-time (adS) background spaas-titnere the maximal
symmetry can be used to obtain analytic results.

We start this paper by presenting in Jelc. 2 an expressioméosginor parallel
propagator([[7]. Using results from geodesic theory |1, A]eaact expression for
the Feynman propagator is obtained in $éc. 3. Seltion 4 wedvo Hadamard’s
regularisation method[8], while, in Sdd. 5, the result fog tenormalised vacuum
expectation value (v.e.v.) of the stress-energy tensof (&Epresented using two
methods: the Schwinger-de Witt methad [4] and the Hadamaethaod [6]. The
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exact form of the bi-spinor of parallel transport is thenduse Sec[6 to calculate
the thermal expectation value (t.e.v.) of the SET for mass$pinors. More details
on the current work, as well as an extension to massive spinan be found iri[2].

2 Geometric structure of adS

Anti-de Sitter space-time (adS) is a vacuum solution of timstéin equation with a
negative cosmological constant, having the following Btement:

21 [—dt2+dr2+3in:)2wr(d62+sin29d¢2)]. (1)

cog wr

The time coordinateruns from—oo to o, thereby giving the covering space of adS.
The radial coordinate runs from 0 to the space-like boundaryrat2w, while 6
and ¢ are the usual elevation and azimuthal angular coordinatebe Cartesian
gauge, the line elemerfil (1) admits the following naturatfeg5]:

: dt - dxi  [sincr N N
:)t :)I
2 j ) 2

coswr coSswr [ wr <(SJ r2 ) r2 } )

such thanaﬁ wgaf =0Ouv, wherenaﬁ =diag—1,1,1,1) is the Minkowski metric.

A key role in the construction of the propagator of the Diratdfis played by the
bi-spinor of parallel transport (x,X), which satisfies the parallel transport equation
nHDyA(x,X') = 0 [7]. On adS, the explicit form oft (x,x') is [2]:

/ VIV /
A(XX) = CoYwAt/2) {cosﬂ cos™X | X ¥X ,ysinﬂ sin®
coq ws/2)+/coswr coswr’ 2 2 rr 2 2
f WAL (XY . wr ' Xy wr . or
—y‘tanT (T SiN—2- COS—- — —= COS—-sin—- }, (3)

wherey? = (yf, y) are the gamma matrices in the Dirac representatiorsasthe
geodesic distance betwerandx'.

3 Feynman propagator on adS

The Feynman propagat6&¢ (x,x) for a Dirac field of massn can be defined as the
solution of the inhomogeneous Dirac equation, with apped@moundary condi-
tions:

(iIB—mS(x.X) = (-9)"Y25*(x—x), (4)
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whereD,, denotes the spinor covariant derivative ant the determinant of the
background space-time metric. Due to the maximal symméiagl§, the Feynman
propagator can be written in the following forfd [7]:

S (x.X) = [ar (s) + HBr ()] A (X.X). (5)

The functionsar andBr can be determined using (4):

ar — f)s—jl:zcos%s{—wl%s—i-ﬂkz— 1)In‘sin%s‘2F1 (2+k2-Kk2:sit “’75)
TR —1) ni—(z“((;;ii!_ Kn (sin2 %S)"wn}, 6)
%”;(g]sfz) — (KR~ 1)In ’sin%S’ oF1 (24K 2 -k 3;sirf “’75)
NS el e (w2 o

wherea, = I" (a+n)/I" (a) is the Pochhammer symbdl(z) = [5*x*~le Xdxis the
gamma functionk = m/ w,

W= k+n+2)+@k-n—1)—yn+2)— Yn+1) 8)

andy(z) =dInrl (z)/dzis the digamma function.

4 Hadamard renor malisation

To regulariseSs, it is convenient to use the auxilliary propagatr, defined by
analogy to flat space-timgl[8]:

S (x.X) = (il + m)%e. ©)
On adS¥r can be written using the bi-spinor of parallel transport:

Ge(x,X) = “—r;/\ (%,%), (10)
wherear is given in [6).

According to Hadamard’s theorem, the divergent @arof ¢ is state-independent,
having the form([8]:
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u(x,x)

1
%H (Xa)() = w

+v(x,X)Inp?a |, (11)
whereu(x,x) andv(x,x) are finite wherx’ approaches, o = —s?/2 is Synge’s
world function andu is an arbitrary mass scale. The functiarendv can be found
by solving the inhomogeneous Dirac equatibh (4), requittmaf the regularised
auxilliary propagatof/™® = % — % is finite in the coincidence limit:

u(x,x) = \/AXX)A(x,X), (12)
V(x,X) = ‘*’72(|<2 _1) cos%stl (2-k2+k2:sit “’;) AXX),  (13)

where the Van Vleck-Morette determinahix, x') = (ws/ sinws)® on adS.

5 Renormalised vacuum stress-ener gy tensor

To remove the traditional divergences of quantum field tihe@e employ two reg-

ularisation methods: the Schwinger—de Witt method in Betafd the Hadamard
method in Sed.5]2. Due to the symmetries of adS, the regathvi.e.v. of the SET
takes the form(T )00 = +Touv, whereT = TH, is its trace. The renormalisa-
tion process has the profound consequence of shiffirfigr the massless (hence,

conformal) Dirac field to a finite value, referred to as thefoomal anomaly.

5.1 Schwinger—de Witt regularisation

By using the Schwinger—de Witt approach to investigate ingusarity structure of

the propagator of the Dirac field in the coincidence limityi€tensen[4] calculates
a set of subtraction terms which only depend on the geométifyeobackground

space-time, using the following formula:

(Tpy) = lim tr{ié [V(uDv) — V(uwDvr] &(x,x’)} . (14)

X —X

After subtracting Christensen’s terms, we exactly recdfierresult obtained by
Camporesi and Higuchi[3] using the Pauli-Villars regudation method:

(T)SW = —4%2 {é—éw— %2 4280 - 1) [InE — (k] } (15)

wherey is an arbitrary mass scale.
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5.2 Hadamard regularisation

The Hadamard theorem presented in $éc. 4 allows the rerisatiah to be per-
formed at the level of the propagator. To preserve the coatien of the SET, the
following definition for the SET must be used [6]:

. [ 1
() = e {5 (1D~ VD] + 5w | 5@~ )~ m] | $7H00)

(16)
whereieg x,X) = (il +m)(% — %) is the regularised propagator. The coefficient
of gyv is proportional to the Lagrangian of the Dirac field and estds to zero
when applied to a solution dfl(4). Howev&¥(x,x) is not a solution of[(#). The
v.e.v. obtained from[{16) matches perfectly the result iobth by Camporesi and
Higuchi [3] using the zeta-function regularisation mettipis Euler's constant):

<T>5:Cd:_%‘2{;é+ LS 2k2(k2—1)[ He V2 >H

17)
Even though the results (15) add{17) are different for ganealues of the mass
parametek, they yield the same conformal anomaly. We would like tosstrénat
the omission of the term proportionaldg, in (I8) would increase the value of the
conformal anomaly by a factor of 3.

6 Thermal stress-energy tensor

The renormalised thermal expectation value (t.e.v.) o8B& can be written as:
(Tu) 5% = T g+ (Tuv) i (18)

wherefd = T~1is the inverse temperature and the colons :: indicate tleaiplerator
enclosed is in normal order, i.e. with its v.e.v. subtracéte bi-spinor of parallel
transport can be used to show that

<:TNV >B :diaq_papvpap)7 (19)
wherep is the energy density anglis the pressure. h= 0, we havep = p/3 and:

B 3oo4 i -cosr(JwB/Z)
PJm:O—— (cosawr) Z —sml’(JwB/Z] e

(20)

with the coordinate dependence fully contained in(th@swr )* prefactor. The first
term in the sum ovey is within 6% of the sum, while the first two terms together
are less than 1% away, for all valueswof. The small and largev 3 limits can be



6

Victor E. Ambrusand Elizabeth Winstanley

extracted:
72 W
_ 4 4
6w* (coswr)* _opltredwh2 2wp

Figureld shows a graphical representation of the abovetsesul

— Bw=08 np
2.5 — Bw=l. [ N ° Numerical
— pu=12 5[ == Small
0 —_—wls  TTel P Large §
- In Bw
1.5 -2 ..“:.“"».' 1 2
",
1.0 ~ -5 ‘\
051 -10p \
e wr E ®
0.2 0.4 0.6 0.8 1.0 7/2 —-15¢

Fig. 1 a p between the originr(= 0) and the boundary ( = 71/2) for Bow=0.8,10,12 and 14;
b Log-log plot of p in terms off3 w; comparison with the asymptotic resultsfinl(21) dnd (22)
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