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We revisit the definition of rotating thermal states for scalar and fermion fields in unbounded Minkowski
space-time. For scalar fields such states are ill-defined everywhere, but for fermion fields an appropri-
ate definition of the vacuum gives thermal states regular inside the speed-of-light surface. For a massless
fermion field, we derive analytic expressions for the thermal expectation values of the fermion current
and stress-energy tensor. These expressions may provide qualitative insights into the behaviour of ther-

mal rotating states on more complex space-time geometries.
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1. Introduction

In the canonical quantisation of a free field, an object of fun-
damental importance is the vacuum state, from which states con-
taining particles are constructed. For fields of all spins, the process
starts by expanding the classical field in terms of an orthonor-
mal basis of field modes, which are split into positive and neg-
ative frequency modes. The expansion coefficients are promoted
to operators, the expansion coefficients of the positive frequency
modes being particle annihilation operators.! The vacuum state is
defined as the state annihilated by all the particle annihilation op-
erators. The definition of a vacuum state is therefore dependent on
how the field modes are split into positive and negative frequency
modes. This split is restricted for a quantum scalar field by the fact
that positive frequency modes must have positive Klein-Gordon
norm. For a quantum fermion field, both positive and negative fre-
quency fermion modes have positive Dirac norm, so the split of the
field modes into positive and negative frequency is less constrained
compared with the scalar field case. There is therefore more free-
dom in how the vacuum state is defined for a fermion field, lead-
ing to more freedom in how states containing particles are defined.

In this letter we explore this difference between scalar and
fermion quantum fields by considering the definition of rotating
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! The adjoints of the expansion coefficients of the negative frequency modes are
also particle annihilation operators. For a real scalar field, these annihilation opera-
tors are the same as the expansion coefficients of the positive frequency modes; for
a fermion field they are different.
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vacuum and thermal states in Minkowski space. This toy model
reveals that there are quantum states which can be defined for a
fermion field but which have no analogue for scalar fields.

2. Rotating scalars

We consider Minkowski space in cylindrical coordinates (tpmink,
£, OMink. 2).> We wish to define quantum states which are rigidly
rotating with angular velocity 2. Choosing the z axis of the coordi-
nate system along the angular velocity vector €, the line element
of the rotating space-time can be found by making the transfor-
mation ¢ = @mink — 2tMink, £ = tmink in the usual Minkowski line
element, giving:

ds> = —(1— p22?%) dt? +2p* 2 dtdg +dp? + p? dp? + dz*.
(1)

The Killing vector d;, which defines the co-rotating Hamiltonian
H =id, becomes null on the speed-of-light surface (SOL), defined
as the surface where p = £2~1. The Klein-Gordon equation for a
scalar field of mass i on the space-time (1) is:
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where P, = —id, and L, = —id, are the z components of the mo-
mentum and angular momentum operators, respectively. The mode
solutions of (2) are:

2 Throughout this paper we use units in which c =h =kg =1.
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where J;(qp) is the Bessel function of the first kind of order m,
m is the eigenvalue of L;, k is the eigenvalue of P, q is the lon-
gitudinal component of the momentum and w = +/? + g2 + k2
gives the Minkowski energy of the mode. The eigenvalue of the
Hamiltonian, @ = w — £2m, represents the energy of the mode as
seen by a co-rotating observer. It is convenient to introduce the
shorthand j = (wj, kj, m;) and

d(wj—wj)

CoN .
8(];1)—8mjmj/8(k] ki) ]| (4)
Using the Klein-Gordon inner product:

(.8 =i [ Pxy=E (ot - g f), (5)
the norm of the modes (3) can be calculated:

. f) = 51 ). (6)

|wj]

As discussed by Letaw and Pfautsch [1], particles must be de-
scribed by modes with positive norm (w; > 0), implying the fol-
lowing expansion for the scalar field operator:

pj

Z‘ /a)]dw,/dk] [fia; + fF @], (7)

—pj

D(x) =

mij

where pj = /q?+k? is the Minkowski momentum. The one-

particle annihilation and creation operators a; and aT satisfy

the canonical commutation relations [a,,a .1 =68(j,j). The in-
duced vacuum state |0), satisfying a;|0) = O coincides with the
Minkowski vacuum [1].

At finite inverse temperature 8 = T—!, Vilenkin [2] gives the
following thermal expectation value (t.e.v.):

8(j, J)
eP®i 1

(ajay), = (8)

The above expression cannot hold when @; < 0 [2], since it would

imply that the vacuum expectation value of a];.a 7, obtained by tak-
ing the limit B — oo, is non-zero, contradicting the definition of
the vacuum. Furthermore, the divergent behaviour of the thermal
weight factor of modes with @ close to O renders t.e.v.s infinite,
causing rotating thermal states for scalar fields to be ill-defined
everywhere in the space-time [2,3]. As discussed by [2,3], a resolu-
tion to these problems is to enclose the system inside a boundary
located inside or on the SOL, restricting wavelengths such that @
stays positive for all values of m.

3. Rotating fermions

In the Cartesian gauge [4], a natural frame for the metric (1)
can be chosen to be:
EE = Bt —

20y, e; = 0. 9)

In the following, hats shall be used to indicate tensor components
with respect to the tetrad, i.e. A* = A"‘eg . The Dirac equation for
fermions of mass p takes the form:

[ViH +2M;) —y -P— ]y (x) =0, (10)

where the gamma matrices are in the Dirac representation [5] and
the covariant derivatives are given by:

iD;=H+QM,,  —iD;="Pj. (11)

The momentum operators P; and angular momentum operator M,

dare:
. 1 03 0
_la¢+§< 0 03). (12)

The Dirac equation (10) admits the following solutions:

[1 L Hgn
T+ fd)Ekm

Pj=—idj, M,=

1 iFrrike
X e 13
Ekm( )= /—877,'2 2%E - ﬁ(pk (13)
[El V E PEkm
where the two-spinor ¢’E\km is defined as:
. J1+ 2™ Jn(gp)
¢Ekm(p7 (p) (14)

1
V2 \ 200, f1 - 2keimie 1 gp)

where A is the helicity [4,5], p = +/q? +k? is the magnitude of
the momentum and E = #./p2? + u? controls the sign of the
Minkowski energy of the mode. The eigenvalues of the Hamilto-
nian are E=E — 2(m + 2) representing, as in the scalar case,
the energy seen by a co-rotating observer. The notations j =
(Ej,kj,mj,kj) and

S(Ej—Ej)
|Ejl

are useful to refer to modes and their norms. The latter can be
computed using the Dirac inner product:

8(4, J") = 8x 2, 0mym , S (kj — ki) (15)

) / Ex =g v 0 x ). (16)

It can be shown that (Uj, Uy) =48(j, j) for all possible labels j, j'.
After choosing a suitable definition for particle modes (i.e. a range
for the labels in j), the anti-particle rpodes can be constructed us-
ing charge conjugation [4,5]: V= iyzujf. Hence, V; automatically
inherits the same normalisation as U, namely: (Vj, V) =8(j, j).
Therefore there is no restriction on how the split into partlcle and
anti-particle modes is performed, as long as the charge conjuga-
tion symmetry is preserved.

According to Vilenkin [2], the definition of particles for co-
rotating observers should be the same as for inertial Minkowski
observers, with the field operator written as:

=) Z /E,dEJ/dk]
Aj_i mj=-—00 —Dpj
x [Ujx)bj.v + vj(x)dj;v]. (17)

Vilenkin’s quantisation is equivalent to the one suggested by Letaw
and Pfautsch [1] for the scalar field, yielding a vacuum state equiv-
alent to the Minkowski vacuum. In contrast, Iyer [6] argues that
the modes which represent particles for a co-rotating observer
have positive frequency with respect to the co-rotating Hamilto-
nian, implying the following expression for the field operator:

UISEY Z / E]dE]/dk]

A=tz =T E 0, E > -p;
X [Ujbj;,+vj(x)dj;,], (18)

with the integral with respect to E; running over both positive and
negative values of Ej, as long as Ej > 0 and |E;| > . Both quan-
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tisatlon methods lead to the canonical anti-commutation relations
{b], jt =1{dj, d .} =38(j, j'). The ensuing quantum field theory dif-
fers in the two pictures, as the vacuum state corresponding to
Iyer’s quantisation differs from the Minkowski vacuum. This can be
seen by looking at the connection between the Iyer and Vilenkin
one-particle operators:

bj.v E; is positive,

bjir =1 omi14t (19)
R4

E; is negative,

and similarly for dj.;, where j = (—Ej, —kj, —mj—1, 1j). Thus, the
Vilenkin vacuum state (i.e. the non-rotating Minkowski vacuum)
contains particles as defined according to Iyer’s quantisation. Sim-
ilarly, the Iyer vacuum contains particles as defined according to
Vilenkin’s quantisation (i.e. relative to the Minkowski vacuum).

Vilenkin [2] also considered rotating thermal states for fermi-
ons. In analogy with (8), he gives the following t.e.v.s relative to
the Minkowski vacuum [2]:

_8GL)

Iy
(b75), =GR

= (d'dy) (20)
As in the scalar case, (20) is not valid when Ej < 0 [2]. However,
in contrast to the scalar case, the modes with negative E; can be
eliminated from the set of particle modes by using Iyer’s quan-
tisation, without enclosing the system within a boundary inside
the SOL. Furthermore, unlike the thermal factor for scalars (8), the
Fermi-Dirac density of states factor (20) is regular for all E;.

Eq. (20) can be used to construct the t.e.v.s of the neutrino
charge current operator and of the SET:

Tao (0 = =7 {1V ¥aDs)¥) ~ (D@ W¥s. V1. (21b)

Using the Vilenkin quantisation, we find the following t.e.v.s rela-
tive to the Minkowski vacuum:

(¥ ¥lvi), = —1Sg00: (22a)
<:];Z/5>,9 5;00’ (22b)
(Ty.48 = So0s (22¢)
(Tv.ppiip :S(J)rzo_p_]sgnv (22d)
(Tyvigpds =P~ 'Sy (22¢)
(Ty.358 = 300 — Siao — K2 Soos (22f)
(Ty.ppip = %p_]s;oo - 710_151%1 1S1X1Ov (22g)

where the fermion condensate

* X
The functions S cand S;

o0
1 & dE
abc 2 § : T
2 e 1+ef
®

(:[¥¥lv:)p vanishes when p = 0.
introduced above are defined as:

p
/dkE”qb(m—i— D In@p.  (23)
0

where * € {+, —, x} and the functions J}, are given by:

JE@=@+]20@,  I5@=2Jn@m1(2).  (24)

Except when p = 0, numerical integration must be used to cal-
culate SZbc for arbitrary values of the mass. For massless fermions,
the method outlined in Appendix A can be followed to obtain the

following exact results (¢ =1 — p2£22):

l-[_ lv: __L_'Q_z E+§ (25a)

LWV = =y ~ G2 (3 3)’ :
, Q 23

(-Jv->,3 =128 " 4878 (4 —3e). (25b)

To evaluate the massless limit of the t.e.v. of the fermion con-
densate (:[Vy]y :)g, the latter was divided by the mass factor in
Eq. (22a). In the above, the hat has been dropped from the index
of J# to indicate that the result is with respect to the coordinate
basis. For the z component, this coincides with the tetrad compo-
nent. The t.e.v. of the SET with respect to the coordinate basis has
the following components:

Toas = 2 9_2@ L)
’ 6084 ' 882¢2\3 3
4 (8 56 17 o2
+647T283<§+EE 15 )’ (25¢)
(:Tv.pp:)g = Tn* + 2 (ﬁ_lg)
Vier P = 180p42 T 24p263\3 3
4 88 17
+ To275% <8 T Eﬁ), (25d)
1 Ty = — Q{L ﬁ(ﬁ_;)
p VietIB = TR Gogar T 70873\ 13 T 13
119024 (200 64 1 2)}
——— = — ==& — =t , (25e)
960r2e4\ 119 119~ 7
l(TV ):i(4—38)+9—2(8—88+82)
p2 Ve lB T 1g0p4e3 24p2¢4
24 456 124 , 17 4
+l927‘t’285< Tt EE T )
(25f)

and (:Ty,z;:)g = (:Tv.pp:)p for any value of the mass w. The con-
nection between the tetrad and coordinate basis components is
made through:

Tee =T +20R2T;5 + p>2% Ty, (26a)
Tt(p = pT?‘Z’ 1% QT@@, (26b)
T(p(p = ,OZT@@. (26C)

The analytic results for (3[‘Zl[f]v3>/3- <:]‘2,:),3 and (:Ty.¢:)p given
by Egs. (25) reveal a number of physical features. Firstly, they
all contain contributions which are independent of the tempera-
ture (equivalently, independent of 8). These terms are unphysical
as the t.e.v.s should vanish when the temperature is set to zero
(B — 00). These temperature-independent terms are generated by
modes with E < 0 and arise because the Vilenkin quantisation
[2] has been used. If the Iyer quantisation [6] is employed, ana-
lytic expressions for the corresponding t.e.v.s for massless fermions

[¥¥li) g, (J7)p and (:Ti.qp:)p are found from (25) by subtract-
ing the temperature-independent parts, for example,
2
AN
('JI‘);S 12’3282' (27)

The temperature-independent contributions to Egs. (25) are the
expectation values of the Iyer vacuum relative to the Vilenkin
(Minkowski) vacuum. Since these are non-zero and depend on p,
we see that the Iyer vacuum is not equivalent to, and has fewer
symmetries than, the maximally symmetric Vilenkin vacuum. The
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Fig. 1. Plots of the t.e.v.s in Egs. (22) using lyer’s quantisation for fermions with mass p = 0 (thin lines) and p = 252, at inverse temperatures (from top to bottom) 0.8, 1.0,
1.25 and 2.0, in units of 271 (a) (:Tp¢e:)p against p$2, (b)-(g) log-log plots of Egs. (22), showing the polynomial nature of the divergence as the SOL is approached. It can

be seen that the massive t.e.v.s diverge at exactly the same rate as in the massless case.



300 V.E. Ambrus, E. Winstanley / Physics Letters B 734 (2014) 296-301

temperature-independent contributions to Eqgs. (25) are absent
from the t.e.v.s calculated using the Iyer quantisation.

If £2 =0, there is no rotation and the t.e.v.s (25) reduce to the
usual Minkowski t.e.v.s. If £2 # 0, on the axis of rotation we have
& =1 and the expressions in round brackets in (25) evaluate to
unity. In this case the t.e.v.s take the form of the Minkowski val-
ues plus an $2-dependent correction. A similar effect is found for
rotating thermal states for a scalar field inside a reflecting cylin-
der [3].

The te..s (25) are finite as long as ¢ > 0 but diverge as
& — 0 and the SOL is approached. Using the Iyer quantisation
(when the g-independent terms are absent), the fermion conden-
sate (:[Jw],:),g diverges as &1, the current (:J%:)g diverges as g2
and the SET components (:T;%,:)g diverge as g4,

For the case of arbitrary mass, numerical methods can be em-
ployed. In Fig. 1 we show the t.e.v.s in Egs. (22) using the Iyer
quantisation for massive fermions. As expected, increasing the
mass damps the t.e.v.s. The damping becomes more pronounced
as the temperature is decreased (B is increased). It can be seen
from the log-log plots that as the SOL is approached, the t.e.v.s in
the massive case diverge at exactly the same rate as for massless
fermions. The mass contributes corrections which diverge at sub-
leading orders, so that, close to the SOL, the quanta behave as if
they were massless.

4. Conclusions

We have studied the construction of rotating states for scalar
and fermion fields in four-dimensional Minkowski space. Our anal-
ysis has demonstrated that the definition of fermion quantum
states is less constrained than for scalar fields. This is due to more
freedom in how the split into particle and anti-particle modes
is performed for fermion fields, since all fermion modes have
positive norm (the Dirac norm is positive definite but the Klein-
Gordon norm is not). We have considered two possible quanti-
sation schemes [2,6] for rotating fermion states, which yield two
inequivalent vacuum states. We have computed thermal expecta-
tion values (t.e.v.s) for rotating states relative to these two vacua.
In the Vilenkin scheme [2], the vacuum state is equivalent to the
(non-rotating) Minkowski vacuum, and t.e.v.s for rotating states
relative to this vacuum include temperature-independent terms
which arise from low energy modes having positive frequency as
seen by a non-rotating observer but negative frequency as seen
by a rotating observer. As discussed by Vilenkin [2], these low en-
ergy modes (and hence the temperature-independent terms in the
t.e.v.s) can be removed by enclosing the system within a boundary
inside the speed-of-light surface.> Using the Iyer scheme [6], the
temperature-independent terms in the t.e.v.s are absent, without
enclosing the system in a boundary or otherwise modifying the
particle spectrum. As discussed in [6], we emphasize that the Iyer
vacuum state cannot be defined for a quantum scalar field (which
is restricted to the Minkowski vacuum). In addition, while rotating
thermal states for scalar fields are ill-defined everywhere on the
unbounded space-time [3], we have constructed fermion rotating
thermal states which are regular inside the speed-of-light surface.

In this paper we have considered the toy model of rotating
states in Minkowski space-time. However, the main physical fea-
tures extend to curved space-times. For example, recent work on
the construction of quantum states for fermion fields on a rotating
Kerr black hole [8] has also demonstrated the existence of fermion
states which have no analogue for scalar fields. Furthermore, the

3 Enclosing relativistic fermions within a boundary presents some difficulties [2].
We will return to this issue in a future publication [7].

simplicity of our toy model has enabled us to derive analytic ex-
pressions for the thermal expectation values for massless fermions,
which could provide qualitative insights into the behaviour of ther-
mal rotating states on more complex space-time geometries, for
example, the nature of the divergence as the speed-of-light sur-
face is approached.
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Appendix A. Fermi-Dirac integrals for massless rotating states

To compute the functions S}, ., defined in Eq. (23), the Fermi-
Dirac density of states factor can be expanded about §2 = 0:

1 2, (—2)" o d 1
= m+s) —|——==), (Al
14 ePlE-Qm+1)] ng() Py (m+3) dEn<1+eﬂE> (A1)

leading to:

1 & (- 9)" v dn 1
= mr [ ()

m

p 00 n+c
X/qub > <m+%> Ji@p).
) -

(A2)

Sum over m

The sum over m in Eq. (A.2) vanishes unless n + c is even for
* =+ and odd for * € {—, x}. To perform the sum, the following
formula can be used to rewrite the product of two Bessel functions
as an infinite sum:

B 00 (—l)k
@ ]u@) = ,; KIC(+k+ DI +k+1)
F+p+2k+1) (g)mv”‘
Fr+p+k+1) '

After the sum over m is performed, the above series terminates
after a finite number of terms, as follows:

(A3)

3 2I'Gi+3)
1)2n 2) o+ 2
> (m+3) 1$(Z)=Z N (Ada)
m=—oo ] 0
3 DL+
2n+1 3) _ 5
Yo m+ ) In@ =) ——=*s, 7%, (A4b)
m=—00 j=0 W
- 2n+1 rGg+5
n .
> (m+3) J%(Z)=Z '\/_2 sy 2t (A4c)
m=—00 izo J
where snf ; can be shown to equal:
1 2n+1 5
+ _ . 1
0= QD1 A, gzt (2500 5) (A-5)

It is clear that s
erties of Jr:

nj vanishes when j > n. Using the following prop-
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L (ehh0) = emt 115,

d _
= (2] (@) =22],(2), (A6)
it can be shown that S, i and s nj are related to s through
1
X j+ 7
=(+3)st,  s= J+1”1 (A7)

Hence, s . =0 for j > n. The following values of s
for the calculatlon of the t.e.v.s in Egs. (22):

n,j are important

+
sii=1 (A.8)
1 . . :
Sii1j= 52T DEI+2Ci+3), (A.9)
+
Sj42,= 5760 @I T DRI+ Q2] +3)2j+4)
X (2j+5)(10j + 3). (A10)

The integral with respect to k

Following the steps in the previous paragraph, the sum over m
involving the Bessel functions in J;; is replaced by a sum over j
involving powers of q. The integral over k can be computed using:

p
INCET VS
/qu” = (2—])“/_ v+l (A11)
2r(4t+1

Analytic expressions in the massless case

Although the calculation of each individual function S7%, . in
Egs. (22) has its own peculiarities, the method is very much the
same. To illustrate the method, the simplest case a=b=c=0
shall be considered for the remainder of this section.

After performing the above steps, 5300 can be brought to the
following form:

st 122@52)2’29 n—HJ
!
T s ]+7 n=0(2n+2]).

o0

+ d2n+2] 1
X/d E2n+2}<1+eﬁE>'

m

(A12)

In the above, the sums over j and n have been swapped, after
which the sum over n was shifted down, i.e. Y7237 o fnj —
> 720 >onzo fn+j.j- While we do not have a method to compute
the integral over E in Eq. (A.12) for arbitrary values of the mass wu,
in the massless case, p = E and the integration can be done by
parts:

@ n42j
dE g2+ 4 _
dE2+2j \ 1 4 ePE
0

fiad _
W n= O,
=@+ g (A13)
0 n>1.
Then S, takes the form:
Z( 2y 2 ai+3) (A14)
So00 = p Gﬂz 472\ :

The sum over j can be evaluated as a geometric series, giving:

st _ L R (2 L€
000 ™ 682¢ * 872¢2\3 ' 3)’
where € =1 — p222.
The above algorithm can be applied to all other terms required
for Eqs. (22). For brevity, the individual results shall not be in-

cluded here, since the terms S}, . can be inferred from the final
results (25), together with the relation

(A15)

1 1 d
S* o =—ST 0 (A16)
110 0 101 2,0dp( 100)
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