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Abstract—The response of a resonant chain of spheres to changes 

in holder material and pre-compression is studied at ultrasonic 

frequencies. The system is found to be very sensitive to these 

parameters, with the creation of impulsive waveforms from a narrow 

bandwidth input seen only for certain chain lengths and holder 

materials. In addition, careful experiments were performed using 

known amounts of pre-compression force, using a calibrated stylus 

arrangement. At negligible pre-compression levels, impulses were 

generated within the chain, which were then suppressed by increased 

pre-compression. This was accompanied by large changes in 

propagation velocity as the system gradually changes from being 

strongly nonlinear to being more linear. Simulations using a discrete 

model for the motion of each sphere agree well with experimental 

data.  

 
Index Terms — Granular media, non-linear, spherical chains, 

solitary waves. 

 

I. INTRODUCTION 

Acoustic propagation along granular chains has been the 

subject of increased interest, because of their non-linear 

acoustic properties caused by Hertzian contact between the 

spheres, and this allows such systems to support a range of 

properties, depending on the amount of non-linearity present 

[1-6]. Such behaviour has been observed in different types of 

material that can be used in granular chains [7,8]. One of the 

key parameters which affects the dynamics of the is the 

magnitude of the applied static compression force F0 relative 

to the applied dynamic force Fm. Solitary wave propagation 

along an infinite chain of spheres has specific properties that 

can be predicted theoretically using a long-wave 

approximation, provided that there is negligible static pre-

compression (Fm >> F0 ). Under these conditions, propagation 

along the chain is in the form of a solitary wave with 

characteristics that depend upon the size and material of the 

spheres from which the chain is made. In fact, such solitary 

waves are predicted to have a constant wavelength which is a 

certain number of particles long [2]. As the levels of pre-
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compression increase, the nonlinearity reduces, and in the case 

of a strong static compression force (Fm << F0 ), the system 

becomes only weakly nonlinear. The Hertzian contact can then 

be simplified to a reduced linearized spring connection, and 

the passage of a harmonic wave through the chain can be 

investigated by a linear model in which the system behaves as 

a low-pass filter.  

The observations made in the above paragraph apply to an 

infinite chain. The situation starts to become more 

complicated once the chain is of finite length. Now, reflection 

within the chain is possible, complicating the response. One 

way is to study the Nonlinear Normal Modes (NNMs) of the 

system [9-12]. Under certain circumstances, separation 

between the spheres can occur, and the separation and 

collision of the spheres (in addition to their nonlinear Hertzian 

interaction) provides an added effect to the strong nonlinearity 

of the system. Although NNMs are usually defined as 

synchronous period particular solutions of the nonlinear 

equations of motion of dynamical systems, various authors [9-

12] have identified a time-periodic oscillation where the bead 

oscillations possess identical frequencies but are not 

necessarily synchronous, leading to nonlinear and non-smooth 

features (such as the separation of spheres). Under the correct 

conditions, an in-phase NNM results, which can be considered 

as a traveling wave propagating along the chain (as the 

spheres displace from their centre positions in sequence). 

Sphere separation becomes less likely as pre-compression is 

applied, forcing the spheres closer together. Note that in all 

these theoretical discussions, it is the motion of individual 

spheres relative to each other that causes the effects. In 

practice, this means that the frequencies present have to 

remain below an upper cut-off frequency (fc), which depends 

on the properties (size, material etc.) of the spheres used. The 

value of fc can be approximately determined by a linearised 

discrete model.  

Nonlinear systems have a distinct advantage in being able 

to transfer energy between frequencies, where sub-harmonic 

and super-harmonic frequencies may appear via sub-harmonic 

and super-harmonic bifurcations in energy transfer in the 

frequency domain, because of the presence of NNMs [11,12]. 

Previous work by the present authors [13,14] has 

demonstrated that a train of impulses can be generated within 

chains of spheres at ultrasonic frequencies because of this 

effect, provided a negligible amount of pre-compression force 

F0 was applied. These studies used high amplitude, narrow-

bandwidth inputs at 73 kHz from an ultrasonic horn, with a 

chain containing small spheres (typically 1 mm diameter) of 

different types of material held within an acrylic holder. Once 

the correct conditions needed to set up an in-phase NNM were 
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established, the time-domain response was in the form of a 

periodic set of impulses, accompanied by frequency spectra 

containing regularly-spaced maxima which were separated in 

value as a whole fraction of the input frequency. The sub-

harmonic and super-harmonic bifurcations in energy transfer 

in the frequency domain mentioned above were also exhibited 

in the experimental results. This response was able to be 

predicted by a theoretical model, the results from which were 

used to interpret the solitary wave propagation and the 

establishment of NNM behavior. This discrete model used a 

Velocity-Verlet algorithm [15] to solve the relevant equations 

numerically. Note also that sub-harmonic frequencies were 

also observed in the work of Lydon et al. [16] in shorter 

chains at lower frequencies.  

It is known from previous work [17-19] that pre-

compression can cause changes to the response of a granular 

chain. Our previous work verified that the solitary wave 

impulses can be generated using harmonic excitation and a 

negligible amount of pre-compression force in a finite-length 

chain [13,14]. In this paper, we will observe the effect of 

different holder materials and an increase in pre-compression 

on this response. It will be demonstrated that end-wall 

conditions are an important factor in dissipation and reflection 

at the boundaries, leading to changes in the characteristics of 

energy transfer to sub-harmonics and super-harmonics. The 

effect of pre-compression on the resultant waveform will also 

be investigated. It will be shown that an increase in pre-

compression changes the wave regime from being strongly 

non-linear to weakly non-linear, accompanied by very 

sensitive change in propagation velocity. 

II. APPARATUS AND METHODS 

The experiments used the apparatus shown in Fig 1. An 

exponential horn was used to provide high amplitude input 

signals with a narrow bandwidth. The output displacement of 

the horn tip was approximately 1 μm at a centre frequency of 

73 kHz, when the horn/transducer assembly was driven with a 

tone-burst voltage signal. The frequency spectrum of the 

output had the expected main peak at 73 kHz, with only a 

small signal at the 2
nd

 harmonic at 146 kHz. The spheres were 

positioned within a cylindrical holder, and the output from the 

last sphere recorded using a Polytec OFV-505 vibrometer, 

whose output was a particle velocity waveform. The holders 

could be of different length to accommodate different chain 

lengths (from 3-10 mm) of 1 mm diameter chrome steel 

spheres.  Three holder materials were investigated - an acrylic 

polymer (R11, as used in micro-stereolithography, a form of 

3D-printing), aluminum and steel.  

A force of known amplitude could be applied to the last 

sphere in the chain, using a calibrated 1.5 mm diameter stylus 

acting upon a pivot. The stylus itself was part of a surface 

profiler instrument, modified to act as a mechanism of 

applying controlled pre-compression force. The control system 

for the stylus consisted of three main parts: an electromagnetic 

force actuator, a differential capacitive sensor and a leaf spring 

suspension system. Further details of this design can be found 

in the paper by Chetwynd et al. [20]. To achieve the required 

function as a controlled mode of applying pre-compression, 

the current that passed through a coil/magnet assembly was 

varied, and careful design ensured that the force on the stylus 

along its axis was proportional to the current passing through 

the coil. Using a specially designed current drive, the force 

actuator was used to provide a calibrated static contact force at 

a neutral position. The stylus and the associated control 

system were mounted onto a Rank Taylor Hobson Talysurf 5 

surface profiling instrument to ensure stability.  Note that the 

force applied to the pivot was independent of small 

displacements; therefore, small vibrations within the system 

did not couple into the measurement loop. The Talysurf 5 

instrument provided the means to carefully and accurately 

position the tip of the stylus onto a fulcrum or lever made of 

aluminum. The fulcrum was used to apply pre-compression 

directly on the chain of spheres as shown in Fig. 1, and was 

designed to be light and strong enough not to deform from the 

force exerted on it. The pre-compression system provided 

electrically selectable static force with a resolution of 1 mN. 

Note that in the absence of any applied pre-compression, a 

small force would still be exerted on the chain due to the need 

for the horn to touch the first sphere. This is discussed further 

below.  

 

 
 

Fig. 1.  Schematic diagram of the apparatus. 

 

The work in this paper adds to our previous results [13,14] 

by considering both the effect of chain length for a fixed input 

frequency, the use of different holder materials (and hence 

end-wall materials), and investigates in detail the effect of pre-

compression on these resonant systems, where the response 

varies from being highly non)linear in the case of negligible 

pre)compression (F0) to being almost linear at higher values of 

F0. 

III. THEORY 

Use It is important for later discussions that the origin of the 

usual formula for the cut-off frequency for  granular chains is 

given; in addition, it is shown why a more detailed analysis is 

required for finite chain lengths and varied pre-compression 

forces. For a chain consisting of the identical spheres, the 

equation of motion of the n
th

 sphere based on Hertzian contact 

has the general form [1]: 

 

   𝑚�̈�𝑛 = 𝐴(𝛿0 + 𝑢𝑛−1 − 𝑢𝑛)3 2⁄ − 𝐴(𝛿0 + 𝑢𝑛 − 𝑢𝑛+1)3 2⁄ ,           

  (1) 

 

where 

    𝐴 =
𝐸√2𝑅

3(1−𝜈2)
                                           (2) 

and 
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                        𝑚 =
4

3
𝜋𝜌𝑅3                                             (3)                                                        

     

    The spheres are assumed to be made of the same material 

with a radius 𝑅; 𝑚 is mass; 𝜌 is density; 𝐸 is Young’s 

modulus and 𝜈 is Poisson’s ratio. This system is assumed to be 

in an equilibrium state under a static compression force 𝐹0. At 

static equilibrium, 𝛿0 is the distance of approach of centres of 

spheres. 𝑢𝑛 is the dynamic longitudinal displacement from the 

equilibrium position of the n
th

 sphere. When 

 |𝑢𝑛−1 − 𝑢𝑛| 𝛿0⁄ ≪ 1, (1) can be changed into a lattice model 

with quadratic nonlinearity, from which the nonlinear wave 

equation can be derived at the long wavelength limit. If the 

granular material is weakly compressed, so that 

 |𝑢𝑛−1 − 𝑢𝑛| 𝛿0⁄ ≫ 1, the wave equation for a “Sonic 

Vacuum” in an infinite chain can be derived [2]. Strongly non-

linear solitary waves then appear in the analytical solution.  

    It will be shown in this paper that use of single frequency 

(harmonic) excitation and different levels of pre-compression 

can result in the presence of both sub-harmonics and super-

harmonics, which are related to the driving frequency used. It 

is thus of interest to study the effect of a cut-off frequency on 

this process. Here we firstly explore the dispersion relation in 

a simplified discrete linear model which represents an infinite 

chain consisting of the identical spheres without dissipation. 

Under the limits |𝑢𝑛−1 − 𝑢𝑛| ≪ 𝛿0 and (𝛿0 + |𝑢𝑛−1 − 𝑢𝑛|) <
𝛿𝑚𝑎𝑥, the wave propagates in a continuum and smooth system 

(no separation between spheres occurs). It is assumed that the 

connections between spheres are springs with an elastic 

coefficient 𝜇, where 𝛿𝑚𝑎𝑥 represents the corresponding value 

of 𝛿0 in the situation of the maximum elastic deformation. 

Accordingly, the dynamic equation of the n
th

 sphere of the 

chain is simplified as a linearized equation: 

 

𝑚�̈�𝑛 = 𝜇(𝑢𝑛−1 − 𝑢𝑛) − 𝜇(𝑢𝑛 − 𝑢𝑛+1) =
𝜇(𝑢𝑛−1 − 2𝑢𝑛 + 𝑢𝑛+1).                                                      (4) 

The chain then executes a motion of the form: 

 

𝑢𝑛(𝑡) = 𝑒𝑖(𝑘𝑛𝑎−𝜔𝑡).        (5)                                                                    

   

 

This is a harmonic wave of frequency 𝜔 and wavenumber k, 

and a is the distance between the centres of neighbouring 

spheres under static equilibrium, so that 𝑎 = 2𝑅 − 𝛿0. The 

cut-off frequency 𝜔c occurs when the wavelength (2π/k) 

equals 2a. From Eqns. (4) and (5), we obtain the dispersion 

relation 

 

𝜔 = 𝜔c sin (
𝑘𝑎

2
) = 2√

𝜇

𝑚
sin (

𝑘𝑎

2
)                    (6)                                                

 

where 𝜇 can be determined by Hertzian law, i.e. 

 

  𝐹0 =
√2𝑅𝐸

3(1−𝜈2)
𝛿0

3 2⁄
, 𝜇 =

𝜕𝐹0

𝜕𝛿0
= √

𝑅

2

𝐸

1−𝜈2 𝛿0
1 2⁄

    (7) 

     

The cut off frequency 𝑓𝑐 is then given by 

 

𝑓c =
ωc

2π
=

3

4π3 2⁄

𝐹0
1 6⁄

𝜃1 3⁄ 𝑅4 3⁄ 𝜌1 2⁄ ,                (8) 

 

where 𝜃 =
3(1−𝜈2)

4𝐸
. This means that under strong pre-

compression, the chain system operates as a low-pass filter 

and waves of frequency 𝑓 > 𝑓c are strongly attenuated. 

However, this analysis is based on the assumed linear model; 

in fact, super-harmonic frequencies can appear in the discrete 

spherical chain due to the nonlinear Hertzian contact, which 

depends on the properties of the granular chain and the input 

conditions. Thus an accurate model to describe the 

experimental system is important, and the use of (8) to denote 

the expected upper frequency generated experimentally is not 

strictly correct.  

    In addition, in a finite length chain, reflection at the end-

wall boundary and dissipation due to friction between the 

granular material and the holder materials are both essential 

factors which influence wave transmission in the chain. In our 

previous work [13,14], we presented dynamic equations of 

sphere motion which are described in (9a) – (9c), and 

investigated the characteristic of the solitary wave impulses 

using numerical calculations. These equations are still valid to 

model the motions of spheres based on the new experimental 

conditions in this paper. For the first sphere, positioned next to 

the horn, the equation is: 

 

𝑚
𝑑2𝑢1

𝑑𝑡2 =
2√𝑅

3
[2𝜃𝑙(𝛿0𝑙 + 𝑢0 − 𝑢1)3 2⁄ −

𝜃𝑚

√2
(𝛿0 + 𝑢1 −

𝑢2)3 2⁄ ] + 𝜆 (
𝑑𝑢0

𝑑𝑡
−

𝑑𝑢1

𝑑𝑡
) 𝐻(𝛿0𝑙 + 𝑢0 − 𝑢1) − 𝜆 (

𝑑𝑢1

𝑑𝑡
−

𝑑𝑢2

𝑑𝑡
) 𝐻(𝛿0 + 𝑢1 − 𝑢2),       (9a)                                                              

                   

 

where 𝑢0 is the displacement of the input signal, and 𝜆 is the 

damping coefficient. For the second sphere to the penultimate 

one, the equivalent equation of motion is: 

 

𝑚
𝑑2𝑢𝑛

𝑑𝑡2 =
√2𝑅

3
𝜃𝑚[(𝛿0+𝑢𝑛−1 − 𝑢𝑖)

3 2⁄ − (𝛿0 + 𝑢𝑛 −

𝑢𝑛+1)3 2⁄ ] + 𝜆 (
𝑑𝑢𝑛−1

𝑑𝑡
−

𝑑𝑢𝑛

𝑑𝑡
) 𝐻(𝛿0 + 𝑢𝑛−1 − 𝑢𝑛) −

𝜆 (
𝑑𝑢𝑛

𝑑𝑡
−

𝑑𝑢𝑛+1

𝑑𝑡
) 𝐻(𝛿0 + 𝑢𝑛 − 𝑢𝑛+1).       (9b)                                   

  

 

Finally, for the last (output) sphere, the relevant equation is: 

 

𝑚
𝑑2𝑢𝑛

𝑑𝑡2 =
2√𝑅

3
[

𝜃𝑚

√2
(𝛿0 + 𝑢𝑛−1 − 𝑢𝑛)3 2⁄ − 2𝜃𝑟(𝛿0𝑟 +

𝑢𝑛)3/2] + 𝜆 (
𝑑𝑢𝑛−1

𝑑𝑡
−

𝑑𝑢𝑛

𝑑𝑡
) 𝐻(𝛿0 + 𝑢𝑛−1 − 𝑢𝑛) −

𝜆
𝑑𝑢𝑛

𝑑𝑡
𝐻(𝛿0𝑟 + 𝑢𝑛).                                           (9c)                                

   

 

Here,  
1

𝜃𝑙
=

1−𝜈𝑙
2

𝐸𝑙
+

1−𝜈𝑠
2

𝐸𝑠
, 𝜃𝑚 =

𝐸𝑠

1−𝜈𝑠
2  and  

1

𝜃𝑟
=

1−𝜈𝑟
2

𝐸𝑟
+

1−𝜈𝑠
2

𝐸𝑠
.                         

   (10) 

  

In (10), 𝐸𝑙  and 𝜈𝑙  are the Young’s modulus and Poisson 

ratio of the horn, 𝐸𝑟  and 𝜈𝑟 are that of the holder, and 𝐸𝑠 and 

𝜈𝑠 those of the spheres themselves. Here, 𝛿0𝑙, 𝛿0 and 

𝛿0𝑟 denote the mutual approach caused by the static force 

between the horn and the first sphere, between intermediate 
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spheres, and between the last sphere and the end wall 

respectively. Note that the equations relating to the first and 

last sphere of the chain assume that these are in contact with 

spheres of infinite radius, thus in effect modelling a wall, and 

a Heaviside function H is incorporated to judge if the spheres 

are in contact. 

    Consider now the effect of damping. The dissipation term 𝜆 

in (8) is determined in our work from experimental results of 

each chain structure, and differs slightly in each case. In 

addition, the initial positions of spheres are determined in turn 

for a particular pre-compression force, starting from the last 

sphere. Here a boundary constraint is assumed in that the 

position of the contact point between the last sphere and the 

wall at the end of the chain is fixed. The properties of this end 

wall can be changed in the model via its effective Young’s 

modulus 𝜃𝑟 which is associated with contact interactions 

between the last sphere and the holder. The effects of 

dissipation for harmonic excitation of a statically-compressed 

chain have also been investigated by Lydon et al. [16], but in 

their dynamic model the boundary conditions were not 

explicitly stated for a finite length chain with different end-

wall conditions. They used a spring with force 𝐹0 (the initial 

compression force) to describe the experimental boundary 

condition. In our model, the 
4√𝑅

3
𝜃𝑟(𝛿0𝑟 + 𝑢𝑛)3/2 term in (9c) 

allows the reflection process due to the different holder 

materials to be modified via the value of the effective Young’s 

modulus 𝜃𝑟 . Hence the two models differ in this respect.  

Experimentally, the end-wall material has a big effect on 

response, as will be shown later in this paper.  

IV. RESULTS 

A. The Effect of Changing the Holder Material 

It was found experimentally that the resonant chains were 

very sensitive to the physical conditions in which they were 

held. One other factor that had a measurable effect was the 

material from which the cylindrical holder of the spheres was 

made. The input sphere was touching the horn tip, whereas the 

output sphere protruded through the annular end of the holder. 

To investigate this, a chain of six chrome-steel spheres of 1 

mm diameter were tested when contained within holders of 

three different materials: R11 photo-reactive acrylic polymer 

(as used for additive manufacture via micro-stereolithography 

(MSL)), steel and aluminum. Table 1 gives the relevant 

properties of these materials.  

 
TABLE I 

PROPERTIES OF END-WALL MATERIALS 

End-wall material Poisson’s ratio Young’s Modulus (GPa) 

Acrylic polymer (R11) 0.35 2.45 

Aluminum 0.33 75 

Steel 0.3 200 

The results of these experiments are shown in Fig. 2. When 

the metallic steel and aluminum holders were used, the 

dominant feature was the creation of harmonics of the input 

frequency, a feature of nonlinear behaviour; however, no 

subharmonics were present. It was only in the R11 acrylic 

material that the system truly exhibited strongly non-linear 

behaviour, with the creation of sub-harmonics and a series of 

super-harmonics of the lowest sub-harmonic peak (and not 

just harmonics of the input frequency as in the case of steel 

and aluminium holders). Note that Lydon et al. [16] also 

observed the presence of frequencies which were 

subharmonics of the input frequency in their experiments; 

however, multiple harmonics of the lowest subharmonic peak 

were not present, as is the case here. It is this difference that is 

particularly striking in the present measurements, with strong 

solitary-wave generation as impulses in time. This is thought 

to be partly due to both the increased input energy levels 

which result from the use of an ultrasonic horn at the input 

stage, but also the fact that the final sphere interacted directly 

with the end-wall, and not via a spring. The measurements 

demonstrate just how sensitive the system is to the end-wall 

material.  

 

 

 
Fig.2. (a) Experimental waveforms and (b) spectra obtained from a chain 

containing six chrome-steel spheres of 1 mm diameter, when enclosed within 

holders of various types of material. 

 

The predicted results from the theoretical model, using the 

known physical properties of the three different holder 

materials (Table 1) are shown in Fig. 3. The predicted 

waveforms and spectra correlate well with those observed in 

the experiments - the R11 holder material was the only one 

predicted to lead to a set of periodic impulses in the time 

domain, with a regular set of more closely-spaced frequency 

peaks. It was found that the damping coefficient used in the 

(a) 

(b) 
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theoretical model needed to be adjusted between each material 

for the end wall to get suitable correlation with the 

experimental results in each case. This is reasonable: each 

wall material will have its own damping properties, as well as 

its own elastic modulus. Both effects feed into the damping 

coefficient (λ) used theoretically for the best correlation 

between theoretical prediction and experiment. The presence 

of subharmonics is predicted theoretically by our models, but 

only once the correct end-wall conditions have been met. The 

subharmonics are some of the allowed nonlinear normal 

modes of a system which is highly nonlinear. It is difficult to 

derive a definitive value for λ based on physical properties of 

the steel spheres and the holder material – in practice, we have 

had to adjust the value for λ to obtain the best fit of theory 

with experiment. Note that the main features (such as 

subharmonics and multiples thereof) exist for a range of 

values of λ for each holder material, although subharmonics 

are never predicted for steel and aluminium, no matter what 

value of λ is chosen. 

 

     

     
Fig.3. (a) Predicted theoretical waveforms and (b) spectra for the same 

materials and excitation conditions as used in Fig. 2. 

The results thus indicate that the material from which the 

end wall is made has a direct influence on the output from the 

spherical chain. This is likely to be due to the reflection 

properties of the end wall. In particular, this creates new 

frequency components as a result of bifurcations of energy in 

the frequency domain. For a holder material with a high elastic 

modulus, e.g. steel, the smaller damping coefficient with a 

strong reflection from the boundary promotes the rapid 

propagation of the reflected signal returning to the source 

along the chain. This makes the period of the impulse close to 

the period of the input sinusoidal wave. Correspondingly, for 

the softer R11 acrylic material, the period of the impulses is 

three times that of the input sinusoidal wave, and the lowest 

peak in the spectrum is at one third of the frequency of the 

input. This is because of the larger damping effect of the 

viscoelastic R11 acrylic material, and the fact that its lower 

elastic modulus delays the transmission of the reflection wave. 

Both factors encourage the formation of a set of impulses, 

whose width in time effectively sets the envelope of the 

bandwidth in the frequency spectrum. The repetition rate of 

these impulses then fixes the frequency separation in the 

frequency domain.  

As observed in a previous publication by the authors [13], 

the length of the chain (as defined by the number of 1 mm 

diameter spheres present) determines the number and spacing 

of both the impulses in time, and the frequency peaks in the 

corresponding spectrum. Longer chains produce a set of 

impulses which are farther apart in time, as might be expected. 

This is accompanied by a greater number of equally-spaced 

frequency peaks, starting at a lower frequency (always a 

whole fraction of the input frequency of 73 kHz), and being 

closer together in frequency in longer chains. This is 

illustrated by results obtained experimentally using the R11 

acrylic holder, as presented in Fig. 4, which should be 

compared to those for the 6-sphere chain (Fig. 2).  

 

      

      

Fig.4. (a) Experimental waveforms and (b) spectra obtained for 

chains of 3 and 10 chrome-steel spheres of 1 mm diameter, when 

enclosed within an R11 acrylic holder. 

(a) 

(b) 

(a) 

(b) 
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Consider now the cut-off frequency (fc) expected for this 

system as a function of pre-compression force (F0). The 

predictions of (8) are shown in Fig. 5, where the input 

frequency of 73 kHz is also indicated. Assuming that the 

experiments are taking place at a value of F0 ≤ 0.1 mN [13], 

all three end-wall materials give outputs that exceed the 

predicted value of fc from Fig. 5 of 180 kHz. This is quite 

reasonable, because (8) was based on a linear assumption. In 

fact, the highest frequency generated by the system depends 

on the nonlinear Hertzian contact and any dissipation. The 

low-pass filter analysis provided by a linear discrete lattice 

model does not apply to the current spherical chain system of 

finite length.  

 

 
 
Fig. 5.  Predictions of eq. (7) for the expected cut-off frequency for 

solitary waves in chains of 1 mm diameter chrome steel spheres 

 
 

It is clear from the results of Figs. 2 and 3 that the 

properties of the end-wall material have a significant effect on 

the resulting response of the chain. It is thus also interesting to 

examine the motion of the end wall. This has been measured 

experimentally for the R11 material, and the result is shown in 

Fig. 6. Note that there is some coupling of energy into the end 

wall, with two main features. The first is a resonance of the 

holder system at ~ 1.5 kHz. The second is higher frequency 

coupling of the ultrasonic signal from the sphere motion. Note 

that, compared to the motion of the steel spheres (Fig. 2), the 

end-wall moves with an amplitude of approximately 3% of 

that of the sphere itself. This would help to explain some of 

the results, in that the end-wall of the holder does move, and 

this will affect the form of the energy reflected back along the 

chain, in terms of the amplitude and phase of the reflected 

impulses, as has already been observed. It also means that 

some energy is lost to the holder material, which will affect 

the estimate of the damping coefficient. This will be different 

for each holder/end-wall material, as already discussed.  

 

 
 

Fig. 6.  Measurement of the motion of the end wall of the R11 acrylic holder 

using the vibrometer. (top)Time waveform; (bottom) corresponding spectrum. 

 
B. The Effect of Pre-compression 

Having characterised the response of the system without 

pre-compression, the stylus and fulcrum were now attached as 

shown in Fig. 1. The response of a chain of three chrome steel 

spheres of 1 mm diameter to increased levels of F0 is shown in 

Figs. 7(a) and 7(b) for waveforms and spectra respectively. It 

will be seen from the time-domain data of Fig. 7(a) that the 

periodic impulses created using the minimum F0 (estimated at 

10 mN) start to become less distinct as the pre-compression 

force increases. By 55 mN pre-compression, the impulses are 

barely visible, and by 80 mN the signal is dominated by the 

periodicity expected from the input signal at 73 kHz. Thus, it 

can be concluded that with an additional 80 mN of pre-

compression, the impulses have been damped out by the 

increasing stiffness of the chain. The spectra of Fig. 7(b) 

reinforce this view – increased pre-compression is associated 

with supression of the sub-harmonics seen when a strong 

NNM is present, and a corresponding reduction in the 

presence of harmonics. The system has thus become weakly 

non-linear, decreasing non-linearity, and suppressing the 

presence of the solitary wave impulses. 

 

 (a) 

(a) 

(b) 
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 (b) 

Fig. 7.  Output waveforms for a chain of 3 spheres excited at 73 kHz and 
using the fulcrum to vary the pre-compression (a) time waveform, and (b) 

corresponding frequency spectra obtained via an FFT. 

The model described by (9) allows both the pre-

compression force, and the amount of viscous damping 

present, to be varied, and has been used to predict the expected 

outputs for the chain of 3 spheres. The results of Fig. 8 were 

obtained using a viscous damping coefficient of 0.23 Nsm
-1

 

for the theoretical model.  

 

 

 (a) 

 

 (b) 

 

Fig.8.  Theoretical predictions for a 3-sphere chain using a tone-burst input of 

from an ultrasonic horn at 73 kHz. Waveforms (left) and Spectra (right) at 

various levels of pre-compression force F0, and assuming the maximum input 

amplitude from the ultrasonic horn (Fig. 1(c)). Results are shown in terms of 
(a) the time waveform, and (b) corresponding frequency spectra obtained via 

an FFT. 

Comparison of Figs. 7 and 8 indicates that the theoretical 

predictions have many features in common with the 

experimental results. The waveforms obtained when the chain 

was subject to a pre-compression force from 20 – 40 mN 

contained increasing amounts of the input frequency. This was 

accompanied by a reduction in the relative amplitude of the 

sub-harmonic frequency peak at 37 kHz as the pre-

compression was increased further. The theory also explores 

the response at relatively high pre-compression levels where, 

as expected, the response is dominated by the input frequency. 

There is also some first harmonic signal still present, due to 

the existence of limited non-linearity in the stiffened, weakly-

non-linear chain.  

Pre-compression is known to affect propagation delays 

along granular chains [17,18]. It was thus also interesting to 

establish a method whereby the time of flight of the signals 

along the chain could be measured, and hence the velocity of 

the signal along the chain determined. Wavelet decomposition 

provided the ability to decompose a waveform into multiple 

levels with precise information in the time and frequency 

domains [21], and allowed the time delays along the chain to 

be determined. This could be carried out for both the 

experimental data and theoretical predictions. Consider then 

the propagation velocity of the solitary wave pulses along the 

three-sphere chain, excited by a tone-burst at 73 kHz at the 

maximum input amplitude available (a particle velocity 

amplitude of 600 mm/s in this case). The results are presented 

in Fig. 9. It is interesting to correlate Fig. 9 with the 

waveforms and spectra of Figs. 7 and 8. At levels of pre-

compression below 50 mN, the spectra that resulted were 

characteristic of NNMs being present, with strong 

subharmonics (as in Figs. 7 and 8 at low pre-compression 

amplitudes). Thereafter, a transition occurred, and the sub-

harmonics started to be supressed, with the input signal 
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becoming more dominant, indicative of weakly nonlinear 

behaviour. 

 

 

 

Fig. 9.  Changes in propagation velocity for a three-sphere chain excited by a 

tone burst at 73 kHz at various levels of pre-compression force F0. Results are 

shown for the maximum input amplitude, with the time delay along the chain 

estimated using wavelet decomposition methods. Results are shown after 

processing waveforms from both experimental data and theoretical predictions 

for an R11 end-wall of the holder.  

It was observed that there was a general increase in 

velocity along the chain with increased pre-compression force, 

with the value increasing from 503 m/s to 843 m/s as the pre-

compression force increased from 20 to 500 mN. Note that the 

experimental and theoretical curves exhibit similar trends. In 

the strongly nonlinear regime, the velocity changes greatly 

with small changes in pre-compression force. This is expected, 

in that the system will be very sensitive to the initial 

conditions. With increased pre-compression, the system 

changes to being weakly nonlinear, and the change in velocity 

will be less marked.   

Similar trends were seen in different lengths of chains 

using the 1 mm diameter steel ball-bearings. This included the 

gradual suppression of the impulses seen at minimal pre-

compression, and the increasing dominance of the input 

frequency of 73 kHz in the signal. Fig. 10 shows an example 

for a chain containing 10 spheres. It can be seen that similar 

trends, namely that the velocity along the chain increased 

steadily with additional pre-compression. There was a period 

of instability in the experimental velocity values at low levels 

of F0 in the experimental data, not replicated theoretically. The 

reasons for this are not clear. As for the case of the three-

sphere chain, this region exhibited characteristics expected 

from the presence of NNMs, with strong subharmonics in the 

spectrum indicating a strongly-nonlinear response. At pre-

compression values above 100 mN, sub-harmonics were 

suppressed, with changing amounts of harmonics of the input 

frequency, indicative of weakly nonlinear behaviour. 

 

Fig.10.  As Fig. 9, but for a 10-sphere chain.  

V. DISCUSSION AND CONCLUSIONS 

 

The work described in this paper demonstrates that 

resonant granular chains can exhibit distinct properties. The 

chains themselves are able to generate an impulse train at high 

amplitude. This is achieved via the creation of a resonant 

chain of spheres, within which Nonlinear Normal Modes 

(NNMs) can exist at ultrasonic frequencies. However, this 

requires careful design. The spheres have to be small enough 

that the spheres can exhibit individual motion relative to each 

other at the frequencies of interest, and this has to be below a 

certain cut-off frequency. If this condition holds, then relative 

motion between spheres leads to a strongly nonlinear 

interaction at the interface between them due to Hertzian 

mechanics. Provided the input signal (in terms of a force Fm) 

is much greater than any static force holding them together 

(F0), then the spheres can even lose contact, a feature of a 

strong NNM. However, the pre-compression forces needed to 

achieve this are very small (10 mN in the present case). This 

requires care over the design of the experimental system. 

A highly non-linear system would be expected to be very 

sensitive to boundary conditions, and this is the case here. 

Thus, for example, changing the end-wall material in contact 

with the final sphere of the chain has a large effect on the 

response. In the present study, only an acrylic polymer led to 

the creation of the interesting impulse trains in the time 

domain. This indicates how sensitive such systems are to 

boundary conditions. The effect of pre-compression force was 

also studied, and it was demonstrated that an additional 100 

mN of pre-compression was enough to damp out the 

subharmonics in the frequency response of the chains. This 

was due to characteristics of the system gradually changing 

from being highly-nonlinear to being only weakly-nonlinear. 

This was accompanied by a gradual increase in propagation 

velocity along the chain. In addition to the above, the effect of 

the damping coefficient is of interest, and perhaps should be 

examined further. It has been known to be a sensitive 

parameter in theoretical modelling predictions, and it is likely 

that experimentally it is a factor in determining the nature of 

the response of the chain. This and other factors could perhaps 

be explored further, for example by using Finite element (FE) 
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models of inter-granular interactions, and the effects of end-

wall conditions [22].  
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