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Abstract

Consider a family of random ordinary differential equations on a manifold
driven by vector fields of the form

∑

k Ykαk(zǫt (ω)) whereYk are vector fields,
ǫ is a positive number,zǫt is a 1

ǫ
L0 diffusion process taking values in possibly a

different manifold,αk are annihilators of ker(L∗
0). Under Hörmander type con-

ditions onL0 we prove that, asǫ approaches zero, the stochastic processesyǫt
ǫ

converge weakly and in the Wasserstein topologies. We describe this limit and
give an upper bound for the rate of the convergence.

AMS classification: 60H, 60J, 60F, 60D.

1 Introduction

LetM andG be finite dimensional smooth manifolds. LetYk, k = 1, . . . , m, be
C6 vector fields onM , αk real valuedCr functions onG, ǫ a positive number, and
(zǫt ) diffusions on a filtered probability space (Ω,F ,Ft,P) with values inG and
infinitesimal generatorLǫ

0 =
1
ǫ
L0 which will be made precise later. The aim of this

paper is to study limit theorems associated to the system of ordinary differential
equations onM ,

ẏǫt (ω) =
m
∑

k=1

Yk (y
ǫ
t (ω))αk(z

ǫ
t (ω)) (1.1)

under the assumption thatαk ‘averages’ to zero. The ‘average’ is with respect
to the unique invariant probability measure ofL0, in caseL0 satisfies strong
Hörmander’s condition, and more generally the ‘average’ is the projection to a
suitable function space. We prove thatyǫt

ǫ

converges asǫ → 0 to a Markov pro-

cess whose Markov generator has an explicit expression.

http://arxiv.org/abs/1501.04793v3
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This study is motivated by problems arising from stochastichomogenization.
It turned out that in the study of randomly perturbed systemswith a conserved
quantity, which does not necessarily take value in a linear space, the reduced equa-
tions for the slow variables can sometimes be transformed into (1.5). Below, in
section 2 we illustrate this by 4 examples including one on the orthonormal frame
bundle over a Riemannian manifold. Of these examples, the first is from [25]
where we did not know how to obtain a rate of convergence, and the last three
from [26] where a family of interpolation equations on homogeneous manifolds
are introduced. An additional example can be found in [24].

1.1 Outline of the Paper

In all the examples, which we described in§2 below, the scalar functions average
to 0 with respect to a suitable probability measure onG. Bearing in mind that if
a Hamiltonian system approximates a physical system with error ǫ on a compact
time interval, over a time interval of size1

ǫ
the physical orbits deviate visibly from

that of the Hamiltonian system unless the error is reduced byoscillations, it is
natural and a classical problem to study ODEs whose right hand sides are random
and whose averages in time are zero.

The objectives of the present article are: (1) to prove that,asǫ tends to zero,
the law of (yǫs

ǫ
, s ≤ t) converges weakly to a probability measureµ̄ on the path

space overM and to describe the properties of the limiting Markov semigroups;
(2) to estimate the rate of convergence, especially in the Wasserstein distance. For
simplicity we assume that all the equations are complete. Insections 4, 5, 6 and
8 we assume thatL0 is a regularity improving Fredholm operator on a compact
manifoldG, see Definition 4.1. In Theorem 6.4 we assume, in addition, thatL0

has Fredholm index0. But strong Hörmander’s condition can be used to replace
the condition ‘regularity improving Fredholm operator of index0’.

For simplicity, throughout the introduction,αk are bounded and belong to
N⊥ whereN is the kernel ofL∗

0, the adjoint of the unbounded operatorL0 in
L2(G) with respect to the volume measure. In caseL0 is not elliptic we assume in
addition thatr ≥ 3 or r ≥ max {3, n

2
+ 1}, depending on the result. The growth

conditions onYk are in terms of a control functionV and a controlled function
spaceBV,r wherer indicates the order of the derivatives to be controlled, see
(5.1). For simplicity we assume bothM andG are compact.

In Section 3 we present two elementary lemmas, Lemma 3.4 and Lemma 3.5,
assumingL0 mixes exponentially in a weighted total variation norm withweight
W : G → R. In Section 4, forL0 a regularity improving Fredholm operator
andf a C2 function, we deduce a formula forf (yǫt

ǫ

) where the transmission of

the randomness from the fast motion (zǫt ) to the slow motion (yǫt ) is manifested
in a martingale. This provides a platform for the uniform estimates over large
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time intervals, weak convergences, and the study of rate of convergence in later
sections.

In Section 5, we obtain uniform estimates inǫ for functionals ofyǫt over [0, 1
ǫ
].

LetL0 be a regularity improving Fredholm operator,yǫ0 = y0, andV aC2 function
such that

∑m
j=1 |LYj

V | ≤ c+KV ,
∑m

i,j=1 |LYi
LYj

V | ≤ c+KV for some numbers
c andK. Then, Theorem 5.2, for every numbersp ≥ 1 there exists a positive
numberǫ0 such thatsup0<ǫ≤ǫ0

E sup0≤u≤t V
p(yǫu

ǫ
) is finite and belongs toBV,0 as

a function ofy0. This leads to convergence in the Wasserstein distance and will be
used later to prove a key lemma on averaging functions along the paths of (yǫt , z

ǫ
t ).

In Section 6,L0 is an operator on a compact manifoldG satisfying Hörmander’s
condition and with Fredholm index0; M has positive injectivity radius and other
geometric restrictions. In particular we do not make any assumption on the ergod-
icity of L0. Let αiβj denote

∑

l ul〈αiβj , πl〉 where{ul} is a basis of the kernel
of L0 and{πl} the dual basis in the kernel ofL∗

0. Theorem 6.4 states that, given
bounds onYk and its derivatives and forαk ∈ Cr wherer ≥ max {3, n

2
+ 1},

(yǫs
ǫ
, s ≤ t) converges weakly, asǫ→ 0, to the Markov process with Markov gen-

eratorL̄ =
∑m

i,j=1 αiβjLYi
LYj

. This follows from a tightness result, Proposition
6.1 where no assumption on the Fredholm index ofL0 is made, and a law of large
numbers for sub-elliptic operators on compact manifolds, Lemma 6.2. Conver-
gences of{(yǫt

ǫ

, 0 ≤ t ≤ T )} in the Wassersteinp-distance are also obtained.

In Section 7 we study the solution flows of SDEs and their associated Kol-
mogorov equations, to be applied to the limiting operatorL̄ in Section 8. Oth-
erwise this section is independent of the rest of the paper. Let Yk, Y0 beC6 and
C5 vector fields respectively. IfM is compact, or more generally ifYk areBC5

vector fields, the conclusions in this section holds, trivially. DenoteBV,4 the set of
functions whose derivatives up to orderr are controlled by a functionV , c.f.(5.1).
Let Φt(y) be the solution flow to

dyt =
m
∑

k=1

Yk(yt) ◦ dBk
t + Y0(yt)dt.

Let Ptf (y) = Ef (Φt(y)) andZ = 1
2

∑m

k=1∇Yk
Yk + Y0. Let V ∈ C2(M,R+) and

sups≤t EV q(φs(y)) ∈ BV,0 for everyq ≥ 1. This assumption onV is implied by
the following conditions:|LYi

LYj
V | ≤ c +KV , |LYj

V | ≤ c +KV , whereC,K
are constants. Let̃V = 1+ ln(1+ |V |). We assume, in addition, for some number
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c the following hold:

m
∑

k=1

5
∑

α=0

|∇(α)Yk| ∈ BV,0,

4
∑

α=0

|∇(α)Y0| ∈ BV,0,

m
∑

k=1

|∇Yk|2 ≤ cṼ , sup
|u|=1

〈∇uZ, u〉 ≤ cṼ .

(1.2)

Then there is a global smooth solution flowΦt(y), Theorem 7.2. Furthermore for
f ∈ BV,4, Lf ∈ BV,2, L2f ∈ BV,0, andPtf ∈ BV,4.

For M = R
n, an example of the control pair is:V (x) = C(1 + |x|2) and

Ṽ (x) = ln(1 + |x|2). Our conditions are weaker than those commonly used in the
probability literature ford(Ptf ), in two ways. Firstly we allow non-bounded first
order derivative, secondly we allow one sided conditions onthe drift and its first
order derivatives. In this regard, we extend a theorem of W. Kohler, G. C. Papani-
colaou [32] where they used estimations from O. A. Oleinik- E. V. Radkevič [31].
The estimates on the derivative flows, obtained in this section, are often assump-
tions in applications of Malliavin calculus to the study of stochastic differential
equations. Results in this section might be of independent interests.

Let Pt be the Markov semigroup generated byL̄. In Section 8, we prove the
following estimate:|Ef (Φǫ

t(y0))−Ptf (y0)| ≤ C(t)γ(y0)ǫ
√

| log ǫ| whereC(t) is a
constant,γ is a function inBV,0 andΦǫ

t(y0) the solution to (1.5) with initial value
y0. The conditions on the vector fieldsYk are similar to (1.2), we also assume
the conditions of Theorem 5.2 and thatL0 satisfies strong Hörmander’s condi-
tion. We incorporated traditional techniques on time averaging with techniques
from homogenization. The homogenization techniques was developed from [23]
which was inspired by the study in M. Hairer and G. Pavliotis [12]. For the rate of
convergence we were particularly influenced by the following papers: W. Kohler
and G. C. Papanicolaou [32, 36] and G. C. Papanicolaou and S.R.S. Varadhan
[34]. DenoteP̂yǫt

ǫ

the probability distributions of the random variablesyǫt
ǫ

and

µ̄t the probability measure determined byPt. The under suitable conditions,
W1(P̂yǫt

ǫ

, µ̄t) ≤ Cǫr, wherer is any positive number less or equal to1
4

andW1

denotes the Wasserstein 1-distance, see§9.

1.2 Main Theorems

We contrive to impose as little as possible on the vector fields {Yk}, hence a few
sets of assumptions are used. For the examples we have in mind, G is a compact
Lie group acting on a manifoldM , and so for simplicityG is assumed to be
compact throughout the article, with few exceptions. In a future study, it would
be nice to provide some interesting examples in whichG is not compact.
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If M is also compact, only the following two conditions are needed: (a)L0

satisfies strong Hörmander’s condition; (b){αk} ⊂ Cr ∩ N⊥ whereN is the
annihilator of the kernel ofL∗

0 andr is a sufficiently large number. IfL0 is elliptic,
‘Cr’ can be replaced by ‘bounded measurable’. For the convergence condition (a)
can be replaced by ‘L0 satisfies Hörmander’s condition and has Fredholm index
0’. If L0 has a unique invariant probability measure, no condition isneeded on the
Fredhom index ofL0.

Theorem 6.4 and Corollary 6.5. Under the conditions of Proposition 6.1
and Assumption 6.1, (yǫt

ǫ

) converges weakly to the Markov process determined by

L̄ = −
m
∑

i,j=1

αiL−1
0 αjLYi

LYj
, αiL−1

0 αj =

n0
∑

b=1

ub〈αiL−1
0 αj , πb〉,

wheren0 is the dimension of the kernel ofL0 which, by the assumption thatL0

has Fredholm index0, equals the dimension of the kernel ofL∗
0. The set of func-

tions {ub} is a basis of ker(L0) and{πb} ⊂ ker(L∗
0) its dual basis. In caseL0

satisfies strong Hörmander’s condition, then there is a unique invariant measure
andαiL−1

0 αj is simply the average ofαiL−1
0 αj with respect to the unique invari-

ant measure. Letp ≥ 1 be a number andV a Lyapunov type function such that
ρp ∈ BV,0, a function space controlled byV . If furthermore Assumption 5.1 holds,
(yǫ·

ǫ
) converges, on [0, t], in the Wassersteinp-distance.

Theorem 8.2. DenoteΦǫ
t(·) the solution flow to (1.5) andPt the semigroup

for L̄. If Assumption 8.1 holds then forf ∈ BV,4,
∣

∣

∣
Ef
(

Φǫ
T
ǫ

(y0)
)

− PTf (y0)
∣

∣

∣
≤ ǫ| log ǫ| 12C(T )γ1(y0),

whereγ1 ∈ BV,0 andC(T ) is a constant increasing inT . Similarly, if f ∈ BC4,
∣

∣

∣
Ef
(

Φǫ
T
ǫ

(y0)
)

− PTf (y0)
∣

∣

∣
≤ ǫ| log ǫ| 12 C(T )γ2(y0) (1 + |f |4,∞) . (1.3)

whereγ2 is a function inBV,0 independent off andC are increasing functions.

A complete connected Riemannian manifold is said to have bounded geometry
if it has strictly positive injectivity radius, and if the Riemannian curvature tensor
and its covariant derivatives are bounded.

Proposition 9.2. Suppose thatM has bounded geometry,ρ2o ∈ BV,0, and
Assumption 8.1 holds. Let̄µ be the limit measure and̄µt = (evt)∗µ̄. Then for
everyr < 1

4
there existsC(T ) ∈ BV,0 andǫ0 > 0 s.t. for allǫ ≤ ǫ0 andt ≤ T ,

dW (Law(yǫt
ǫ

), µ̄t) ≤ C(T )ǫr.
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Besides the fact that we work on manifolds, where there is theinherited non-
linearity and the problem with cut locus, the following aspects of the paper are
perhaps new. (a) We do not assume there exists a unique invariant probability
measure on the noise and the effective processes are obtained by a suitable projec-
tion, accommodating one type of degeneracy. Furthermore the noise takes value
in another manifold, accommodating ‘removable’ degeneracy. For example the
stochastic processes in question lives in a Lie group, whilethe noise are entirely
in the directions of a sub-group. (b) We used Lyapunov functions to control the
growth of the vector fields and their derivatives, leading toestimates uniform in
ǫ and to the conclusion on the convergence in the Wasserstein topologies. A key
step for the convergence is a law of large numbers, with rates, for sub-elliptic op-
erators (i.e. operators satisfying Hörmander’s sub-elliptic estimates). (c) Instead
of working with iterated time averages we use a solution to Poisson equations to
reveal the effective operator. Functionals of the processes yǫt

ǫ

splits naturally into

the sum of a fast martingale, a finite variation term involving a second order dif-
ferential operator in Hörmander form, and a term of orderǫ. From this we obtain
the effective diffusion, in explicit Hörmander form. It isperhaps also new to have
an estimate for the rate of the convergence in the Wasserstein distance. Finally we
improved known theorems on the existence of global smooth solutions for SDEs
in [22], c.f. Theorem 7.2 below where a criterion is given in terms of a pair of
Lyapunov functions. New estimates on the moments of higher order covariant
derivatives of the derivative flows are also given.

1.3 Classical Theorems

We review, briefly, basic ideas from existing literature on random ordinary differ-
ential equations with fast oscillating vector fields. LetF (x, t, ω, ǫ) := F (0)(x, t, ω)+
ǫF (1)(x, t, ω), whereF (i)(x, t, ·) are measurable functions, for which a Birkhoff er-
godic theorem holds whose limit is denoted byF̄ . The solutions to the equations
ẏǫt = F (yǫt ,

t
ǫ
, ω, ǫ) over a time interval [0, t], can be approximated by the solution

to the averaged equation driven bȳF . If F̄ (0) = 0, we should observe the solu-
tions in the next time scale and studyẋǫt =

1
ǫ
F (xǫt,

t
ǫ2
, ω, ǫ). See R. L. Stratonovich

[42, 43]. Suppose for some functionsāj,k andb̄j the following estimates hold uni-
formly:
∣

∣

∣

∣

1

ǫ3

∫ s+ǫ

s

∫ r1

s

EF (0)
j (x,

r2
ǫ2

)F (0)
k (x,

r1
ǫ2

) dr2 dr1 − āj,k(s, x)

∣

∣

∣

∣

dr2 dr1 ≤ o(ǫ),
∣

∣

∣

∣

∣

1

ǫ3

∫ s+ǫ

s

∫ r1

s

d
∑

k=1

E
∂F (0)

j

∂xk
(x,

r2
ǫ2

)F (0)
k (x,

r1
ǫ2

) dr2 dr1 +
1

ǫ

∫ s+ǫ

s

EF (1)
j (x,

r

ǫ2
) dr − b̄j(x, s)

∣

∣

∣

∣

∣

≤ o(ǫ).
(1.4)
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Then under a ‘strong mixing’ condition with suitable mixingrate, the solutions
of the equationṡxǫt = 1

ǫ
F (xǫt,

t
ǫ2
, ω, ǫ) converge weakly on any compact inter-

val to a Markov process. This is a theorem of R. L. Stratonovich [43] and R.
Z. Khasminskii[14], further refined and explored in Khasminskii [15] and A. N.
Borodin [3]. These theorems lay foundation for investigation beyond ordinary
differential equations with a fast oscillating right hand side.

In our case, noise comes into the system via aL0-diffusion satisfying Hörmander’s
conditions, and hence we could by pass these assumptions andalso obtain con-
vergences in the Wasserstein distances. For manifold valued stochastic processes,
some difficulties are caused by the inherited non-linearity. For example, integrat-
ing a vector field along a path makes sense only after they are parallel translated
back. Parallel transports of a vector field along a path, fromtime t to time 0,
involves the whole path up to timet and introduces extra difficulties; this is still
an unexplored territory wanting further investigations. For the proof of tightness,
the non-linearity causes particular difficulty if the Riemannian distance function
is not smooth. The advantage of working on a manifold settingis that for some
specific physical models, the noise can be untwisted and becomes easy to deal
with.

Our estimates for the rate of convergence, section 8 and 9, can be considered
as an extension to that in W. Kohler and G. C. Papanicolaou [32, 36], which were
in turn developed from the following sequence of remarkablepapers: R. Coghurn
and R. Hersh [6], J.B. Keller and G. C. Papanicolaou [35], R. Hersh and M. Pinsky
[17], R. Hersh and G. C. Papanicolaou [16] and G. C. Papanicolaou and S.R.S.
Varadhan [34]. See also T. Kurtz [21] and [33] by D. Stroock and S. R. S. Varad-
han.

The conditionF̄ = 0 needs not hold for this type of scaling and conver-
gence. IfF (x, t, ω, ǫ) = F (0)(x, ζt(ω)), whereζt is a stationary process with val-
ues inRm, andF̄ (0) = XH , the Hamiltonian vector field associated to a function
H ∈ BC3(R2;R) whose level sets are closed connected curves without inter-
sections, thenH(yǫt

ǫ

) converge to a Markov process, under suitable mixing and

technical assumptions. See A. N. Borodin and M. Freidlin [4], also M. Freidlin
and M. Weber [8] where a first integral replaces the Hamiltonian, and also X.-M.
Li [25] where the value of a map from a manifold to another is preserved by the
unperturbed system.

In M. Freidlin and A. D.Wentzell [9], the following type of central limit the-
orem is proved: 1√

ǫ
(H(xǫs) −H(x̄s)) converges to a Markov diffusion. This for-

mulation is not suitable when the conserved quantity takes value in a non-linear
space.

For the interested reader, we also refer to the following articles on limit the-
orems, averaging and Homogenization for stochastic equations on manifolds: N.
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Enriquez, J. Franchi, Y. LeJan [7], I. Gargate, P. Ruffino [11], N. Ikeda, Y. Ochi
[19], Y. Kifer [20], M. Liao and L. Wang [27], S. Manade, Y. Ochi [29], Y. Ogura
[30], M. Pinsky [37], and R. Sowers [41].

1.4 Further Question.

(1) I am grateful to the associate editor for pointing out thepaper by C. Liverani
and S. Olla [28], where random perturbed Harmiltonian system, in the context of
weak interacting particle systems, is studied. Their system is somewhat related to
the completely integrable equation studied in [23] leadingto a new problem which
we now state. DenoteXf the Hamiltonian vector field on a symplectic manifold
corresponding to a functionf . If the symplectic manifold isR2n with the canoni-
cal symplectic form,Xf is the skew gradient off . Suppose that{H1, . . . , Hn} is a
completely integrable system, i.e. they are poisson commuting at every point and
their Hamiltonian vector fields are linearly independent atalmost all points. Fol-
lowing [23] we consider a completely integrable SDE perturbed by a transversal
Hamiltonian vector field:

dyǫt =
n
∑

i=1

XHi
(yǫt ) ◦ dW i

t +XH0
(yǫt )dt + ǫXK(yǫt )dt.

Suppose thatXH0
commutes withXHk

for k = 1, . . . , n, then eachHi is a first
integral of the unperturbed system. Then, [23, Th 4.1], within the action angle
coordinates of a regular value of the energy functionH = (H1, . . . , Hn), the
energies{H1(yǫt

ǫ2

), . . . , Hn(yǫt
ǫ2

)} converge weakly to a Markov process. When

restricted to the level sets of the energies, the fast motions are ellipitic. It would
be desirable to remove the ‘complete integrability’ in favour of Hormander’s type
conditions. There is a non-standard symplectic form on (R

4)N with respect to
which the vector fields in [28] are Hamiltonian vector fields and when restricted
to level sets of the energies the unperturbed system in [28] satisfies Hörmander’s
condition, see [28, section 5], and therefore provides a motivating example for
further studies. Finally note that the driving vector fieldsin (1.5) are in a special
form, results here would not apply to the systems in [23] nor that in [28], and
hence it would be interesting to formulate and develop limittheorems for more
general random ODEs to include these two cases.

(2) It should be interesting to develop a theory for the ODEs below

ẏǫt (ω) =
m
∑

k=1

Yk (y
ǫ
t (ω))αk(zǫt (ω), yǫt)) (1.5)

whereαk depends also on theyǫ process.
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(3) It would be nice to extend the theory to allow the noise to live in a non-
compact manifold, in whichL0 should be an Ornstein-Uhlenbeck type operator
whose drift term would provide for a deformed volume measure.

Notation.Throughout this paperBb(M ;N), Cr
K(M ;N), andBCr(M ;N) de-

note the set of functions fromM toN that are respectively bounded measurable,
Cr with compact supports, and boundedCr with bounded firstr derivatives. If
N = R the letterN will be suppressed. AlsoL(V1;V2) denotes the space of
bounded linear maps;Cr(ΓTM) denotesCr vector fields on a manifoldM .

2 Examples

Let {W k
t } be independent real valued Brownian motions on a given filtered prob-

ability space,◦ denote Stratonovich integrals. In the followingH0 andAk are
smooth vector fields, and{A1, . . . , Ak} is an orthonormal basis at each point of
the vertical tangent spaces. To be brief, we do not specify the properties of the
vector fields, instead refer the interested reader to [25] for details. For anyǫ > 0,
the stochastic differential equations

duǫt = H0(u
ǫ
t)dt+

1√
ǫ

n(n−1)
2
∑

k=1

Ak(uǫt) ◦ dW k
t

are degenerate and they interpolate between the geodesic equation (ǫ = ∞) and
Brownian motions on the fibres (ǫ = 0). The fast random motion is transmitted to
the horizontal direction by the action of the Lie bracket [H0, Ak]. If H0 = 0, there
is a conserved quantity to the system which is the projectionfrom the orthonormal
bundle to the base manifold. This allows us to separate the slow variable (yǫt ) and
the fast variable (zǫt ). The reduced equation for (yǫt ), once suitable ‘coordinate
maps’ are chosen, can be written in the form of (1.5). In [25] we proved that (yǫt

ǫ

)

converges weakly to a rescaled horizontal Brownian motion.Recently J. Angst,
I. Bailleul and C. Tardif gave this a beautiful treatment, [1], using rough path
analysis.

By theorems in this article, the above model can be generalised to include
random perturbation by hypoelliptic diffusions, i.e.{A1, . . . , Ak} generates all
vertical directions. In [25] we did not know how to obtain a rate for the conver-
gence. Theorem 8.2, in this article, will apply and indeed wehave an upper bound
for the rate of convergence.

As a second example, we consider, on the special orthogonal groupSO(n),
the following equations:

dgǫt =
1√
ǫ

n(n−1)
2
∑

k=1

gǫtEk ◦ dW k
t + gǫtY0dt, (2.1)
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where{Ek} is an orthonormal basis ofso(n−1), as a subspace ofso(n), andY0 is
a skew symmetric matrix orthogonal toso(n − 1). The above equation is closely
related to the following set of equations:

dgt = γ

n(n−1)
2
∑

k=1

gtEk ◦ dW k
t + δgtY0dt,

whereγ, δ are two positive numbers. Ifδ = 0 and γ = 1, the solutions are
Brownian motions onSO(n−1). If δ = 1

|Y0| andγ = 0, the solutions are unit speed
geodesics onSO(n). These equations interpolate between a Brownian motion on
the sub-groupSO(n− 1) and a one parameter family of subgroup onSO(n). See
[26]. Takeδ = 1 and letγ = 1√

ǫ
→ ∞, what could be the ‘effective limit’ if it

exists? The slow components of the solutions, which we denote by (uǫt), satisfy
equations of the form (1.5). They are ‘horizontal lifts’ of the projections of the
solutions toSn. If m is the orthogonal complement ofso(n − 1) in so(n) then
m is AdH-irreducible and AdH-invariant, noise is transmitted fromh to every
direction inm, and this in the uniform way. It is therefore plausible thatuǫt

ǫ

can be

approximated by a diffusion̄ut of constant rank. The projection ofut to Sn is a
scaled Brownian motion with scaleλ. The scaleλ is a function of the dimension
n, but is independent ofY0 and is associated to an eigenvalue of the Laplacian on
SO(n− 1), indicating the speed of propagation.

As a third example we consider the Hopf fibrationπ : S3 → S2. Let{X1, X2, X3}
be the Pauli matrices, they form an orthonormal basis ofsu(2) with respect to the
canonical bi-invariant Riemannian metric.

X1 =

(

i 0
0 −i

)

, X2 =

(

0 1
−1 0

)

, X3 =

(

0 i
i 0

)

.

DenoteX∗ the left invariant vector field generated byX ∈ su(2). By declaring
{ 1√

ǫ
X∗

1 , X
∗
2 , X

∗
3} an orthonormal frame, we obtain a family of left invariant Rie-

mannian metricsmǫ onS3. The Berger’s spheres, (S3, mǫ), converge in measured
Gromov-Hausdorff topology to the lower dimensional sphereS2(1

2
). For further

discussions see K. Fukaya [10] and J. Cheeger and M. Gromov [5]. Let Wt be
a one dimensional Brownian motion and takeY from m := 〈X2, X3〉. The in-
finitesimal generator of the equationdgǫt =

1√
ǫ
X∗

1 (gǫt ) ◦ dWt + Y ∗(gǫt ) dt satisfies
weak Hörmander’s conditions. The ‘slow motions’, suitably sacled, converge to a
‘horizontal’ Brownian motion whose generator is1

2
c tracem∇d, where the trace is

taken inm. A slightly different, ad hoc, example on the Hopf fibration is discussed
in [24]. An analogous equations can be considered onSU(n) where the diffusion
coefficients come from a maximal torus.

Finally we give an example where the noise (zǫt ) in the reduced equation is
not elliptic. LetM = SO(4) and letEi,j be the elementary4 × 4 matrices and
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Ai,j =
1√
2
(Eij − Eji). Fork = 1, 2 and3, we consider the equations

dgǫt =
1√
ǫ
A∗

1,2(g
ǫ
t ) ◦ db1t +

1√
ǫ
A∗

1,3(g
ǫ
t ) ◦ db2t + A∗

k4(g
ǫ
t )dt.

The slow components of the solutions of these equations again satisfy an equation
of the form (1.5).

3 Preliminary Estimates

LetL0 be a diffusion operator on a manifoldG andQt its transition semigroup and
transition probabilities. Let‖ · ‖TV denote the total variation norm of a measure,
normalized so that the total variation norm between two probability measures is
less or equal to2. By the duality formulation for the total variation norm,

‖µ‖TV = sup
|f |≤1,f∈Bb(G;R)

∣

∣

∣

∣

∫

G

fdµ

∣

∣

∣

∣

.

ForW ∈ B(G; [1,∞)) denote‖f‖W the weighted supremum norm and‖µ‖TV,W

the weighted total variation norm:

‖f‖W = sup
x∈G

|f (x)|
W (x)

, ‖µ‖TV,W = sup
{‖f‖W≤1}

∣

∣

∣

∣

∫

G

fdµ

∣

∣

∣

∣

.

Assumption 3.1 There is an invariant probability measureπ for L0, a real valued
functionW ∈ L1(G, π) withW ≥ 1, numbersδ > 0 anda > 0 such that

sup
x∈G

‖Qt(x, ·) − π‖TV,W

W (x)
≤ ae−δt.

If G is compact we takeW ≡ 1.
In the following lemma we collect some elementary estimates, which will be

used to prove Lemma 3.4 and 3.5, for completeness their proofs are given in the
appendix. WriteW̄ =

∫

G
Wdπ.

Lemma 3.1 Assume Assumption 3.1. Letf, g : G → R be bounded measurable
functions and letc∞ = |f |∞‖g‖W . Then the following statements hold for all
s, t ≥ 0.

(1) Let(zt) be anL0 diffusion. If
∫

G
gdπ = 0,

∣

∣

∣

∣

1

t− s

∫ t

s

∫ s1

s

(

E
{

f (zs2)g(zs1)
∣

∣

∣
Fs

}

−
∫

G

fQs1−s2gdπ

)

ds2ds1

∣

∣

∣

∣

≤ a2c∞
(t− s)δ2

W (zs).
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(2) Let(zt) be anL0 diffusion. If
∫

G
gdπ = 0 then

∣

∣

∣

∣

1

t− s

∫ t

s

∫ s1

s

E
{

f (zs2)g(zs1)
∣

∣

∣
Fs

}

ds2 ds1 −
∫

G

∫ ∞

0

fQrg dr dπ

∣

∣

∣

∣

≤ c∞
(t− s)δ2

(a2W (zs) + aW̄ ) +
c∞a

δ
W̄ .

(3) Suppose that either
∫

G
f dπ = 0 or

∫

G
g dπ = 0. Let

C1 =
a

δ2
(aW + W̄ )|f |∞‖g‖W , C2 =

2a

δ
|f |∞‖g‖WW̄ +

a

δ
|ḡ| ‖f‖WW.

Let (zǫt ) be anLǫ
0 diffusion. Then for everyǫ > 0,

∣

∣

∣

∣

∣

∫ t
ǫ

s
ǫ

∫ s1

s
ǫ

E
{

f (zǫs2)g(zǫs1)
∣

∣

∣
F s

ǫ

}

ds2 ds1

∣

∣

∣

∣

∣

≤ C1(z
ǫ
s
ǫ
)ǫ2 + C2(z

ǫ
s
ǫ
)(t− s).

To put Assumption 3.1 into context, we consider Hörmander type operators.
Let LX denote Lie differentiation in the direction of a vector fieldX and [X, Y ]
the Lie bracket of two vector fieldsX andY . Let {Xi, i = 0, 1, . . . , m′} be
a family of smooth vector fields on a compact smooth manifoldG andL0 =
1
2

∑m′

i=1 LXi
LXi

+ LX0
. If {Xi, i = 1, . . . , m′} and their Lie brackets generate the

tangent spaceTxG at each pointx we say that the operatorL0 satisfies the strong
Hörmander’s condition.

Lemma 3.2 Suppose thatL0 satisfies the strong Ḧormander condition on a com-
pact manifoldG and letQt(x, ·) be its family of transition probabilities. Then
Assumption 3.1 holds withW identically1. Furthermore the invariant probability
measureπ has a strictly positive smooth density w.r.t. the Lebesgue measure and

‖Qt(x, ·) − π(·)‖TV ≤ Ce−δt

for all x in G and for all t > 0.

Proof By Hörmander’s theorem there are smooth functionsqt(x, y) such that
Qt(x, dy) = qt(x, y)dy. Furthermoreqt(x, y) is strictly positive, see J.-M. Bony
[2] and A. Sanchez-Calle [39]. Leta = infx,y∈M qt(x, y) > 0. Thus Döeblin’s
condition holds: if vol(A) denotes the volume of a Borel setA, Qt(x,A) ≥
a vol(A). �

We say thatW is aC3 Lyapunov function for the ergodicity problem if there
are constantc 6= 0 andC > 0 s.t.L0W ≤ C − c2W . If such a function exists, the
Lǫ

0 diffusions are conservative. Suppose that the Lyapunov functionV satisfies in
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addition the following conditions: there exists a numberα ∈ (0, 1) andt0 > 0 s.t.
for everyR > 0,

sup
{(x,y):V (x)+V (y)≤R}

‖Qt0(x, ·) −Qt0(y, ·)‖TV ≤ 2(1− α),

Then there exists a unique invariant measureπ such that Assumption 3.1 holds,
see e.g. M. Hairer and J. Mattingly [13]. We mention the following standard
estimates which helps to understand the estimates in Lemma 3.3.

Lemma 3.3 LetW be aC3 Lyapunov function for the ergodicity problem ofL0,
EW (zǫ0) is uniformly bounded inǫ for ǫ sufficiently small. Then there exist num-
bersǫ0 > 0 andc s.t. for all t > 0,

sup
s≤t

sup
ǫ≤ǫ0

EW (zǫs
ǫ
) ≤ c.

Proof By localizing (zǫt ) if necessary, we see thatW (zǫt )−W (zǫ0)−1
ǫ

∫ t

0
L0W (zǫr)dr

is a martingale. Letc 6= 0 andC > 0 be constant s.t.L0W ≤ C − c2W . Then

EW (zǫs
ǫ
) ≤

(

EW (zǫ0) +
1
ǫ
Ct
)

e−
c2

ǫ
t. �

As an application we see that, under the assumption of Lemma 3.3, the func-
tionsCi in part (3) of Lemma 3.1 satisfy thatsupǫ≤ǫ0

ECi(zǫs
ǫ
) <∞.

Definition 3.1 We say that a stochastic differential equation (SDE) onM is com-
plete or conservative if for each initial pointy ∈ M any solution with initial
valuey exists for allt ≥ 0. LetΦt(x) be its solution starting fromx. The SDE is
strongly complete if it has a unique strong solution and that(t, x) 7→ Φt(x, ω) is
continuous for a.s.ω.

From now on, by a solution we always mean a globally defined solution. For
ǫ ∈ (0, 1) we defineLǫ

0 = 1
ǫ
L0. Let Qǫ

t denote their transition semigroups and
transition probabilities. For eachǫ > 0, let (zǫt ) be anLǫ

0 diffusion. Letαk ∈
Bb(G;R) and (yǫt ) solutions to the equations

ẏǫt =

m
∑

k=1

Yk(y
ǫ
t )αk(zǫt ). (3.1)

LetΦǫ
s,t be the solution flow to (3.1) withΦǫ

s,s(y) = y. We denote bȳg the average
of an integrable functiong : G→ R with respect toπ. Let

c0(a, δ) =
a2 + a

δ2
+

3a

δ
, cW = c(a, δ)(W + W̄ ). (3.2)
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Lemma 3.4 Suppose that Assumption 3.1 holds. Letf, g ∈ Bb(G;R) and ḡ = 0.
Suppose thatαk are bounded. Then for anyF ∈ C1(M ;R), 0 ≤ s ≤ t and
0 < ǫ < 1,
∣

∣

∣

∣

∣

ǫ

∫ t
ǫ

s
ǫ

∫ s1

s
ǫ

E
{

F (yǫs2)g(zǫs2)f (zǫs1)|F s
ǫ

}

ds2 ds1

∣

∣

∣

∣

∣

≤ 2γǫ|g|∞|f |∞(ǫ2 + (t− s)2).

Here

γǫ =

(

|F (yǫs
ǫ
)| cW (zǫs

ǫ
) +

m
∑

l=1

|αl|∞
ǫ

t− s

∫ t
ǫ

s
ǫ

E
{

|(LYl
F )(yǫr)| cW (zǫr) | F s

ǫ

}

dr

)

.

Proof We first expandF (yǫs2) at s
ǫ
:

ǫ

∫ t
ǫ

s
ǫ

∫ s1

s
ǫ

E
{

F (yǫs2)g(zǫs2)f (zǫs1)|F s
ǫ

}

ds2 ds1 = ǫF (yǫs
ǫ
)
∫ t

ǫ

s
ǫ

∫ s1

s
ǫ

E
{

g(zǫs2)f (zǫs1)|F s
ǫ

}

ds2 ds1

+

m
∑

l=1

ǫ

∫ t
ǫ

s
ǫ

∫ s1

s
ǫ

∫ s2

s
ǫ

E
{

(dF )(Yl(y
ǫ
s3

))αl(z
ǫ
s3

)g(zǫs2)f (zǫs1)|F s
ǫ

}

ds3 ds2 ds1

By part (3) of lemma 3.1
∣

∣

∣

∣

∣

ǫF (yǫs
ǫ
)
∫ t

ǫ

s
ǫ

∫ s1

s
ǫ

E
{

g(zǫs2)f (zǫs1)|F s
ǫ

}

ds2 ds1

∣

∣

∣

∣

∣

≤ |F (yǫs
ǫ
)||f |∞|g|∞cW (zǫs

ǫ
)
(

ǫ3 + (t− s)ǫ
)

.

It remain to estimate the summands in the second term, whose absolute value is
bounded by the following

Al :=

∣

∣

∣

∣

∣

ǫ

∫ t
ǫ

s
ǫ

∫ s1

s
ǫ

∫ s2

s
ǫ

E
{

(dF )(Yl(y
ǫ
s3

))αl(z
ǫ
s3

)g(zǫs2)f (zǫs1)|F s
ǫ

}

ds3 ds2 ds1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

ǫ

∫ t
ǫ

s
ǫ

E

{

(dF )(Yl(y
ǫ
s3

))αl(z
ǫ
s3

)
∫ t

ǫ

s3

∫ t
ǫ

s2

E
{

g(zǫs2)f (zǫs1)|Fs3

}

ds1 ds2

∣

∣

∣
F s

ǫ

}

ds3

∣

∣

∣

∣

∣

.

Fors3 ∈ [ s
ǫ
, t
ǫ
], we apply part (3) of lemma 3.1 to bound the inner iterated integral,

∣

∣

∣

∣

∣

∫ t
ǫ

s3

∫ t
ǫ

s2

E
{

g(zǫs2)f (zǫs1)|Fs3

}

ds1 ds2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ t
ǫ

s3

∫ s1

s3

E
{

g(zǫs2)f (zǫs1)|Fs3

}

ds2 ds1

∣

∣

∣

∣

∣

≤
(

ǫ2 + t− ǫs3
)

cW (zǫs3)|f |∞|g|∞.
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We bring this back to the previous line, the notationLYl
F = dF (Yl) will be used,

Al ≤ ǫ

∫ t
ǫ

s
ǫ

E
{∣

∣

∣
(dF )(Yl(y

ǫ
s3

))cW (zǫs3)αl(z
ǫ
s3

)
∣

∣

∣
F s

ǫ

}∣

∣

∣

(

ǫ2 + (t− ǫs3)
)

|f |∞|g|∞ ds3

≤ |f |∞|g|∞|αl|∞(t− s)(ǫ2 + (t− s))
ǫ

t− s

∫ t
ǫ

s
ǫ

E
{

∣

∣(LYl
F )(yǫs3)

∣

∣ cW (zǫs3)
∣

∣

∣
F s

ǫ

}

ds3.

Putting everything together we see that, forγǫ given in the Lemma,ǫ < 1,
∣

∣

∣

∣

∣

ǫ

∫ t
ǫ

s
ǫ

∫ s1

s
ǫ

E
{

F (yǫs2)g(zǫs2)f (zǫs1)|F s
ǫ

}

ds2 ds1

∣

∣

∣

∣

∣

≤ 2γǫ|g|∞|f |∞
(

ǫ2 + (t− s)2
)

.

The proof is complete. �

In Section 5.2 we will estimateγ∞ and give uniform, inǫ, moment estimates
of functionals of (yǫt ) on [0, T

ǫ
].

Lemma 3.5 Assume that(zǫt ) satisfies Assumption 3.1 andαj are bounded. If
F ∈ C2(M ;R) andf ∈ Bb(G;R), then for alls ≤ t,

∣

∣

∣

∣

∣

ǫ

t− s

∫ t
ǫ

s
ǫ

E
{

F (yǫr)f (zǫr)|F s
ǫ

}

dr − f̄ F (yǫs
ǫ
)

∣

∣

∣

∣

∣

≤ 2a

δ
|f |∞

(

W (zǫs
ǫ
)|F |(yǫs

ǫ
) +

m
∑

j=1

γjǫ |αj|∞
)

(

ǫ2

t− s
+ (t− s)

)

where

γjǫ (y) = cW (zǫs
ǫ
) |LYj

F (yǫs
ǫ
)|+

m
∑

l=1

|αl|∞
ǫ

t− s

∫ t
ǫ

s
ǫ

E
{∣

∣LYl
LYj

F (yǫr)
∣

∣ cW (zǫr) | F s
ǫ

}

dr.

Proof We note that,

ǫ

t− s

∫ t
ǫ

s
ǫ

F (yǫr)f (zǫr)dr =F (yǫs
ǫ
)
ǫ

t− s

∫ t
ǫ

s
ǫ

f (zǫr)dr

+
m
∑

j=1

ǫ

t− s

∫ t
ǫ

s
ǫ

∫ s1

s
ǫ

dF (Yj(y
ǫ
s2

))αj(z
ǫ
s2

)f (zǫs1)ds2ds1.

Lettingψ(r) = ae−δr, it is clear that fork ≥ 2,
∣

∣

∣

∣

∣

E

{(

F (yǫs
ǫ
)
ǫ

t− s

∫ t
ǫ

s
ǫ

f (zǫr)dr − f̄ F (y s
ǫ
)

)

| F s
ǫ

}∣

∣

∣

∣

∣

≤ ‖f‖WW (zǫs
ǫ
)
∣

∣

∣
F (yǫs

ǫ
)
∣

∣

∣

ǫ2

t− s

∫ t

ǫ2

s

ǫ2

ψ
(

r − s

ǫ2

)

dr ≤ a

δ
‖f‖WW (zǫs

ǫ
)
∣

∣

∣
F (yǫs

ǫ
)
∣

∣

∣

ǫ2

t− s
.
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To the second term we apply Lemma 3.4 and obtain the bound
∣

∣

∣

∣

∣

E

{

m
∑

j=1

ǫ

t− s

∫ t
ǫ

s
ǫ

∫ s1

s
ǫ

dF (Yj(y
ǫ
s2

))αj(z
ǫ
s2

)f (zǫs1)ds2ds1| F s
ǫ

}∣

∣

∣

∣

∣

≤ 2
m
∑

j=1

γ̃jǫ |αj|∞|f |∞
(

ǫ2

t− s
+ (t− s)

)

where

γjǫ = |LYj
F |(yǫs

ǫ
)| cW (zǫs

ǫ
)+

m
∑

l=1

|αl|∞
ǫ

t− s

∫ t
ǫ

s
ǫ

E
{∣

∣(LYl
LYj

F )(yǫr)
∣

∣ cW (zǫr) | F s
ǫ

}

dr.

Adding the error estimates together we conclude the proof. �

It is worth noticing that ifφ : R → R is a concave functionφ(W ) is again a
Lyapunov function. Thus by usinglogW if necessary, we may assume uniform
bounds onEW p(zǫs

ǫ
) and further estimates on the conditional expectation in the

error term are expected from Cauchy-Schwartz inequality. If G is compact then
cW is bounded. In Corollary 5.3, we will give uniform estimateson moments of
γjǫ .

4 A Reduction

Let G be a smooth manifold of dimensionn with volume measuredx. Let
Hs ≡ Hs(G) denote the Sobolev space of real valued functions over a manifold G
and‖ − ‖s the Sobolev norm. The norm (‖u‖s)2 := (2π)−n

∫

|û(ξ)|2(1 + |ξ|2)sdξ
extends from domains inRn to compact manifolds, e.g. by taking supremum
over‖u‖s on charts. Ifs ∈ N , Hs is the completion ofC∞(M) with the norm
‖u‖s =

∑s

j=0

∫

(|∇ju|)2dx)
1

2 where∇ is usually taken as the Levi-Civita connec-
tion; when the manifold is compact this is independent of theRiemannian metric.
And u ∈ Hs if and only if for any functionφ ∈ C∞

K , φu in any chart belongs to
Hs.

Let {Xi, i = 0, 1, . . . , m′} be a family of smooth vector fields onG and let us
consider the Hörmander form operatorL0 =

1
2

∑m′

i=1 LXi
LXi

+ LX0
. Let

Λ := {Xi1 , [Xi1 , Xi2], [Xi1 , [Xi2, Xi3 ]] , ij = 0, 1, . . . , m′}.

If the vector fields inΛ generateTxG at eachx ∈ G, we say that Hörmander’s
condition is satisfied. By the proof in a theorem of Hörmander[18, Theorem1.1],
if L0 satisfies the Hörmander condition thenu is aC∞ function in every open set
whereL0u is aC∞ function. There is a numberδ > 0 such that there is anδ



A REDUCTION 17

improvement in the Sobolev regularity: ifu is a distribution such thatL0u ∈ Hs
loc,

thenu ∈ Hs+δ
loc .

Suppose thatG is compact. Then‖u‖δ ≤ C(‖u‖L2 +‖L0u‖L2), the resolvents
(L0 + λI)−1 as operators fromL2(G; dx) to L2(G; dx) are compact, andL0 is
Fredholm onL2(dx), by which we mean thatL0 is a bounded linear operator from
Dom(L0) to L2(dx) and has the Fredholm property : its range is closed and of
finite co-dimension, the dimension of its kernel, ker(L0) is finite. The domain of
L0 is endowed with the norm|u|Dom(L0) = |u|L2

+ |L0u|L2
. Let L∗

0 denote the
adjoint ofL0. Then the kernelN of L∗

0 is finite dimensional and its elements are
measures onM with smooth densities inL2(dx). DenoteN⊥ the annihilator of
N , g ∈ L2(dx) is in N⊥ if and only if 〈g, π〉 = 0 for all π ∈ ker(L∗

0). Since
L0 has closed range, (ker(L∗

0))
⊥ can be identified with the range ofL0, and the

set ofg such that the Poisson equationL0u = g is solvable is exactlyN⊥. We
denote byL−1

0 g a solution. FurthermoreL−1
0 g is Cr wheneverg is Cr. Denote

by index(L0), dim kerL0 − dim CokerL0, the index of a Fredholm operatorL0,
where Coker= L2(dx)/range(L0). If L0 is self-adjoint, index(L0) = 0.

Definition 4.1 We say thatL0 is a regularity improving Fredholm operator, if it is
a Fredholm operator andL−1

0 α isCr wheneverα ∈ Cr ∩N⊥.

Let {W k
t , k = 1, . . . , m′} be a family of independent real valued Brownian

motions. We may and will often representLǫ
0-diffusions (zǫt ) as solutions to the

following stochastic differential equations, in Stratonovich form,

dzǫt =
1√
ǫ

m′
∑

k=1

Xk(zǫt ) ◦ dW k
t +

1

ǫ
X0(z

ǫ
t )dt.

Lemma 4.1 Let L0 be a regularity improving Fredholm operator on a compact
manifoldG, αk ∈ C3∩N⊥, andβj = L−1

0 αj. Let(yǫr) be global solutions of (3.1)
onM . Then for all0 ≤ s < t, ǫ > 0 andf ∈ C2(M ;R),

f (yǫt
ǫ

) =f (yǫs
ǫ
) + ǫ

m
∑

j=1

(

df (Yj(y
ǫ
t
ǫ

))βj(z
ǫ
t
ǫ

) − df (Yj(y
ǫ
s
ǫ
))βj(z

ǫ
s
ǫ
)
)

− ǫ

m
∑

i,j=1

∫ t
ǫ

s
ǫ

LYi
LYj

f (yǫr))αi(z
ǫ
r) βj(z

ǫ
r) dr

−√
ǫ

m
∑

j=1

m′
∑

k=1

∫ t
ǫ

s
ǫ

df (Yj(y
ǫ
r)) dβj(Xk(zǫr)) dW

k
r .

(4.1)
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Suppose that, furthermore, for eachǫ > 0, j, k = 1, . . . , m,
∫

t
ǫ
s
ǫ

E|df (Yj(yǫr))|2|(dβj(Xk)(zǫr)|2 dr
is finite. Then,

E
{

f (yǫt
ǫ

)|F s
ǫ

}

− f (yǫs
ǫ
) = ǫ

m
∑

j=1

(

E
{

df (Yj(y
ǫ
t
ǫ

))βj(z
ǫ
t
ǫ

)|F s
ǫ

}

− df (Yj(y
ǫ
s
ǫ
))βj(z

ǫ
s
ǫ
)
)

− ǫ
m
∑

i,j=1

∫ t
ǫ

s
ǫ

E
{

LYi
LYj

f (yǫr))αi(z
ǫ
r) βj(z

ǫ
r)|F s

ǫ

}

dr.

(4.2)

Proof Firstly, for anyC2 functionf :M → R,

f (yǫt
ǫ

) − f (yǫs
ǫ
) =

m
∑

j=1

∫ t
ǫ

s
ǫ

df (Yj(y
ǫ
s1

))αj(zs1)ds1.

Since theαj ’s areC2 so areβj , following from the regularity improving property
of L0. We apply Itô’s formula to the functions (LYj

f )βj :M ×G→ R. To avoid
extra regularity conditions, we apply Itô’s formula to thefunctiondf (Yj), which
isC1, and theC3 functionsβj separately and follow it with the product rule. This
gives:

df (Yj(y
ǫ
t
ǫ

))βj(z
ǫ
t
ǫ

) = df (Yj(y
ǫ
s
ǫ
))βj(z

ǫ
s
ǫ
) +

m
∑

j=1

∫ t
ǫ

s
ǫ

LYi
LYj

f (yǫr)αi(z
ǫ
r) βj(z

ǫ
r) dr

+
1√
ǫ

m′
∑

k=1

∫ t
ǫ

s
ǫ

LYj
f (yǫr) dβj (Xk(zǫr)) dW

k
r +

1

ǫ

∫ t
ǫ

s
ǫ

LYj
f (yǫr)L0βj(z

ǫ
r)dr.

Substitute this into the earlier equation, we obtain (4.1).Part (4.2) is obvious, as
we note that

E

(

m′
∑

k=1

∫ t
ǫ

s
ǫ

df (Yj(y
ǫ
r))(dβj) (Xk(zǫr)) dW

k
r

)2

≤
m′
∑

k=1

E
∫ t

ǫ

s
ǫ

df (Yj(y
ǫ
r))|2|dβ(Xk(z

ǫ
r))|2| dr <∞

and the stochastic integrals areL2-martingales, so (4.2) follows. �

WhenG is compact,dβ(Xk) is bounded and the condition becomes:E
∫

t
ǫ
s
ǫ
df (Yj(yǫr))|2 dr

is finite, which we discuss below. Otherwise, assumptions onE|dβ(Xk(zǫr))|2+ is
needed.
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5 Uniform Estimates

If V : M → R+ is a locally bounded function such thatlimy→∞ V (y) = ∞
we say thatV is a pre-Lyapunov function. Letαk ∈ Bb(G;R). Let {Yk} beC1

smooth vector fields onM such that: either (a) eachYk grows at most linearly; or
(b) there exist a pre-Lyapunov functionV ∈ C1(M ;R+), positive constantsc and
K such that

∑m
k=1 |LYk

V | ≤ c + KV then the equations (3.1) are complete. In
case (a) leto ∈ M anda be a constant such that|Yk(x)| ≤ a(1 + ρ(o, x)) whereρ
denotes the Riemannian distance function onM . Forx fixed, denoteρx = ρ(x, ·).
By the definition of the Riemannian distance function,

ρ(yǫt , y0) ≤
∫ t

0

|ẏǫs|ds =
m
∑

k=1

∫ t

0

|Yk(yǫs)αk(zǫs)|ds ≤
m
∑

k=1

|αk|∞
∫ t

0

|Yk(yǫs)|ds.

This together with the inequalityρ(yǫt , o) ≤ ρ(yǫt , y0)+ ρ(o, yǫ0) implies that for all
p ≥ 1, there exist constantsC1, C2 depending onp such that

sup
s≤t

ρp(yǫs, o) ≤ (C1ρ
p(o, yǫ0) + C2t) e

C2t
p

whereC2 = apC2
1 (
∑m

k=1 |αk|∞)p. When restricted to{t < τ ǫ}, the first timeyǫt
reaches the cut locus, the bounded is simpleCeCt. In case (b), for anyq ≥ 1,

sup
s≤t

(V (yǫs))
q ≤

(

V q(yǫ0) + ctq

m
∑

k=1

|αk|∞
)

exp

(

q

m
∑

k=1

|αk|∞(K + c)t

)

,

which followed easily from the bound

|dV q(αkYk)| = |qV q−1dV (αkYk)| ≤ q|αk|∞(c + (c+K)V q).

For the convenience of comparing the above estimates, whichare standard
and expected, with the uniform estimates of (yǫt ) in Theorem 5.2 below in the time
scale1

ǫ
, we record this in the following Lemma.

Lemma 5.1 Letαk ∈ Bb(G;R). Let ǫ ∈ (0, 1), 0 ≤ s ≤ t, ω ∈ Ω.

1. If {Yk} grow at most linearly then (3.1) is complete and there existsC,C(t)
s.t.

sup
0≤s≤t

ρp(yǫs(ω), o) ≤ (Cρp(o, yǫ0(ω)) + C(t)) eC(t).

2. If there exist a pre-Lyapunov functionV ∈ C1(M ;R+), positive constants
c andK such that

∑m

j=1 |LYj
V | ≤ c+KV , then (3.1) is complete.
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3. If (3.1) is complete and there existsV ∈ C1(M ;R+) such that
∑m

j=1 |LYj
V | ≤

c+KV then there exists a constantC, s.t.

sup
0≤s≤t

(V (yǫs(ω)))q ≤ ((V (yǫ0(ω)))q + Ct) eCt.

If V ∈ B(M ;R) is a positive function, denote byBV,r the following classes of
functions:

BV,r =

{

f ∈ Cr(M ;R) :
r
∑

j=0

|djf | ≤ c+ cV q for some numbersc, q

}

. (5.1)

In particular,BV,0 is the class of continuous functions bounded by a function of
the formc+ cV q. In R

n, the constant functions and the functionV (x) = 1 + |x|2
are potential ‘control’ functions.

Assumption 5.1 Assume that (i) (3.1) are complete for everyǫ ∈ (0, 1), (ii)
supǫ E (V (yǫ0))

q is finite for everyq ≥ 1; and (iii) there exist a functionV ∈
C2(M ;R+), positive constantsc andK such that

m
∑

j=1

|LYj
V | ≤ c +KV,

m
∑

i,j=1

|LYi
LYj

V | ≤ c+KV.

Below we assume thatL0 satisfies Hörmander’s condition. We do not make
any assumption on the mixing rate. Letβj = L−1

0 αj, a1 =
∑m

j=1 |βj|∞, a2 =
∑m

i,j=1 |αi|∞|βj|∞, a3 =
∑m

j=1 |dβj|∞, anda4 =
∑m

k=1 |Xk|2∞. We recall that
if αk andL0 satisfy Assumption 6.1 thenL0 is a regularity improving Fredholm
operator.

Theorem 5.2 LetL0 be a regularity improving Fredholm operator on a compact
manifoldG, andαk ∈ C3(G;R) ∩ N⊥. Assume thatYk satisfy Assumption 5.1.
Then for allp ≥ 1, there exists a constantC = C(c,K, ai, p) s.t. for any0 ≤ s ≤ t
and all ǫ ≤ ǫ0,

E
{

sup
s≤u≤t

(

V (yǫu
ǫ
)
)2p

| F s
ǫ

}

≤
(

4V 2p(yǫs
ǫ
) + C(t− s)2 + C

)

eC(t−s+1)t. (5.2)

Hereǫ0 ≤ 1 depends onc,K, p, a1 andV, Yi, Yj.
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Proof Let 0 ≤ s ≤ t. We apply (4.1) tof = V p:

V p(yǫt
ǫ

) =V p(yǫs
ǫ
) + ǫ

m
∑

j=1

dV p
(

Yj(y
ǫ
t
ǫ

)
)

βj(z
ǫ
t
ǫ

) − ǫ
m
∑

j=1

dV p
(

Yj(y
ǫ
s
ǫ
)
)

βj(z
ǫ
s
ǫ
)

− ǫ

m
∑

i,j=1

∫ t
ǫ

s
ǫ

LYi
LYj

V p (yǫr)αi(z
ǫ
r) βj(z

ǫ
r) dr

−√
ǫ

p
∑

k=1

∫ t
ǫ

s
ǫ

m
∑

j=1

dV p(Yj(y
ǫ
r))(dβj)(Xk(z

ǫ
r)) dW

k
r .

In the following estimates, we may first assume that
∑m

j=1 |LYj
V | and

∑m

i,j=1 |LYj
LYi

V |
are bounded. We may then replacet by t ∧ τn whereτn is the first time that ei-
ther quantity is greater or equal ton. We take this point of view for proofs of
inequalities and may not repeat it each time.

We take the supremum over [s, t] followed by conditional expectation of both
sides of the inequality:

E
{

sup
s≤u≤t

V p(yǫu
ǫ
) | F s

ǫ

}

≤ V p(yǫs
ǫ
) + ǫE

{

sup
s≤u≤t

m
∑

j=1

dV p
(

Yj(y
ǫ
u
ǫ
)
)

βj(z
ǫ
u
ǫ
) | F s

ǫ

}

−
m
∑

j=1

dV p
(

Yj(y
ǫ
s
ǫ
)
)

βj(z
ǫ
s
ǫ
)

+ ǫE

{

sup
s≤u≤t

∣

∣

∣

∣

∣

∫ u
ǫ

s
ǫ

m
∑

i,j=1

LYi
LYj

V p (yǫr)αi(z
ǫ
r) βj(z

ǫ
r) dr

∣

∣

∣

∣

∣

| F s
ǫ

}

+
√
ǫE

{

sup
s≤u≤t

∣

∣

∣

∣

∣

m′
∑

k=1

∫ u
ǫ

s
ǫ

m
∑

j=1

dV p(Yj(y
ǫ
r))(dβj)(Xk(zǫr))dW

k
r

∣

∣

∣

∣

∣

| F s
ǫ

}

.

By the conditional Jensen inequality and the conditional Doob’s inequality, there
exists a universal constant̃C depending only onp s.t.,
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E
{

sup
s≤u≤t

V 2p(yǫu
ǫ
) | F s

ǫ

}

≤ 4V 2p(yǫs
ǫ
) + 4ǫ2E

({

m
∑

j=1

|βj|∞ sup
s≤u≤t

∣

∣

∣
dV p(Yj(y

ǫ
u
ǫ
))
∣

∣

∣
| F s

ǫ

})2

+ 4ǫ2

(

m
∑

j=1

|βj|∞
∣

∣

∣
dV p(Yj(y

ǫ
s
ǫ
))
∣

∣

∣

)2

+ 8ǫ(t− s)E







(

∫ t
ǫ

s
ǫ

m
∑

i,j=1

|αi|∞|βj|∞
∣

∣LYi
LYj

V p (yǫr)
∣

∣ dr

)2

| F s
ǫ







+ C̃

p
∑

k=1

E







ǫ

∫ t
ǫ

s
ǫ

∣

∣

∣

∣

∣

m
∑

j=1

dV p(Yj(y
ǫ
r))(dβj) (Xk(zǫr))

∣

∣

∣

∣

∣

2

dr | F s
ǫ







.

Since
∑

j |LYj
V | ≤ c+KV and

∑p
i,j=1 |LYi

LYj
V | ≤ c+KV , there are con-

stantsc1 andK1 such thatmaxj=1,...,m |LYj
V p| ≤ c1+K1V

p andmaxi,j=1,...,m |LYi
LYj

V p| ≤
c1 +K1V

p. This leads to the following estimate:

E
{

sup
s≤u≤t

V 2p(yǫu
ǫ
) | F s

ǫ

}

≤4V 2p(yǫs
ǫ
) + 8ǫ2(a1)

2

(

2(c1)
2 + (K1)

2E
{

sup
s≤u≤t

V 2p(yǫu
ǫ
) | F s

ǫ

}

+ (K1)
2V 2p(yǫs

ǫ
)

)

+ 16(a2)
2(t− s)ǫ

∫ t
ǫ

s
ǫ

(

(c1)
2 + (K1)

2E
{

V 2p(yǫr) | F s
ǫ

})

dr

+ C̃(a3a4)
2ǫ

∫ t
ǫ

s
ǫ

E
{

(c1 +K1V
p((yǫr)))

2 | F s
ǫ

}

dr.

Let ǫ0 = min{ 1
8a1K1

, 1}. Forǫ ≤ ǫ0,

1

2
E
{

sup
s≤u≤t

V 2p(yǫu
ǫ
) | F s

ǫ

}

≤4V 2p(yǫs
ǫ
) + 16ǫ2(a1c1)

2 + 16(t− s)2(a2c1)
2 + 4C̃(a3a4c1)

2(t− s)

+
(

16(a2K1)
2(t− s) + 4C̃(a3a4K1)

2
)

ǫ

∫ t
ǫ

s
ǫ

E
{

V 2p(yǫr) | F s
ǫ

}

dr.



UNIFORM ESTIMATES 23

It follows that there exists a constantC such that forǫ ≤ ǫ0,

E
{

sup
s≤u≤t

V 2p(yǫu
ǫ
) | F s

ǫ

}

≤
(

4V 2p(yǫs
ǫ
) + C(t− s)2 + C

)

eC(t−s+1)t.

�

Remark. If M = R
n, Yi are vector fields with bounded first order deriva-

tives, thenρ20 is a pre-Lyapunov function satisfying the conditions of Theorem
5.2, hence Theorem 5.2 holds. Let us recall thatBV,r is defined in (5.1).

We return to Lemma 3.5 in Section 3 to obtain a key estimation for the esti-
mation in Section 8. Let us recall thatBV,r is defined in (5.1).

Corollary 5.3 Assume (3.1) is complete, for everyǫ ∈ (0, 1), and conditions of
Assumption 3.1. LetV ∈ B(M ;R+) be a locally bounded function andǫ0 a
positive number s.t. for allq ≥ 1 and T > 0, there exists a locally bounded
functionCq : R+ → R+, a real valued polynomialλq such that for0 ≤ s ≤ t ≤ T
and for all ǫ ≤ ǫ0

sup
s≤u≤t

E
{

V q(yǫu
ǫ
) |F s

ǫ

}

≤ Cq(t) + Cq(t)λq(V (yǫs
ǫ
)), sup

0<ǫ≤ǫ0

E(V q(yǫ0)) <∞.

(5.3)
Leth ∈ Bb(G;R). If f ∈ BV,0 is a function s.t.LYj

f ∈ BV,0 andLYl
LYj

f ∈ BV,0

for all j, l = 1, . . . , m, then for all0 ≤ s ≤ t,
∣

∣

∣

∣

∣

ǫ

t− s

∫ t
ǫ

s
ǫ

E
{

f (yǫr)h(zǫr)|F s
ǫ

}

dr − h̄ f (yǫs
ǫ
)

∣

∣

∣

∣

∣

≤ c̃|h|∞γǫ(yǫs
ǫ
)

(

ǫ2

t− s
+ (t− s)

)

.

Here c̃ is a constant, see (5.4) below, and

γǫ = |f |+
m
∑

j=1

|LYj
f |+

m
∑

j,l=1

ǫ

t− s

∫ t
ǫ

s
ǫ

E
{∣

∣LYl
LYj

f (yǫr)
∣

∣ | F s
ǫ

}

dr.

For all s < t andp ≥ 1,

sup
s≤u≤t

sup
ǫ≤ǫ0

E
(

γǫ(y
ǫ
u
ǫ
)
)p

<∞.

More explicitly, if
∑m

j=1

∑m
l=1 |LYl

LYj
f | ≤ K +KV q whereK, q are constants,

then there exists a constantC(t) depending only on the differential equation (3.1)
s.t.

γǫ ≤ |f |+
m
∑

j=1

|LYj
f |+K + C(t)V q.
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Proof By Lemma 3.5,
∣

∣

∣

∣

∣

ǫ

t− s

∫ t
ǫ

s
ǫ

E
{

f (yǫr)h(zǫr)|F s
ǫ

}

dr − h̄ f (yǫs
ǫ
)

∣

∣

∣

∣

∣

≤ 2a

δ
|h|∞

(

W (zǫs
ǫ
)|f (yǫs

ǫ
)|+

m
∑

j=1

γjǫ |αj|∞
)

(

ǫ2

t− s
+ (t− s)

)

,

whereγjǫ (y) = cW (zǫs
ǫ
) |LYj

f (yǫs
ǫ
)|+

m
∑

l=1

|αl|∞
ǫ

t− s

∫ t
ǫ

s
ǫ

E
{∣

∣LYl
LYj

f (yǫr)
∣

∣ cW (zǫr) | F s
ǫ

}

dr.

SinceW is bounded so iscW , which is bounded by2c(a, δ)|W |∞. Furthermore

E
{∣

∣LYl
LYj

f (yǫr)
∣

∣ cW (zǫr) | F s
ǫ

}

dr ≤ 2c(a, δ)|W |∞E
{∣

∣LYl
LYj

f (yǫr)
∣

∣ | F s
ǫ

}

dr.

We gather all constant together,

c̃ =
2a

δ
|W |∞ + 2c(a, δ)|W |∞

m
∑

j,l=1

|αj|∞ + 2

(

m
∑

j=1

|αj|∞
)2

. (5.4)

It is clear that,
∣

∣

∣

∣

∣

ǫ

t− s

∫ t
ǫ

s
ǫ

E
{

f (yǫr)h(zǫr)|F s
ǫ

}

dr − h̄ f (yǫs
ǫ
)

∣

∣

∣

∣

∣

≤ c̃ γǫ|h|∞
(

ǫ2

t− s
+ (t− s)

)

.

Sincef , LYj
andLYl

LYj
f ∈ BV,0, by (5.3), the following quantities are finite for

all p ≥ 1:

sup
ǫ≤ǫ0

sup
s≤u≤t

E
∣

∣

∣
(LYl

LYj
f )(yǫu

ǫ
)
∣

∣

∣

p

, sup
ǫ≤ǫ0

sup
s≤u≤t

E
∣

∣

∣
LYj

f (yǫu
ǫ
)
∣

∣

∣

p

, sup
ǫ≤ǫ0

sup
s≤u≤t

E
∣

∣

∣
f (yǫu

ǫ
)
∣

∣

∣

p

.

Furthermore since
∑m

j=1

∑m
l=1 |LYl

LYj
f | ≤ K +KV q,

m
∑

j=1

m
∑

l=1

ǫ

t− s

∫ t
ǫ

s
ǫ

E
{∣

∣LYl
LYj

f (yǫr)
∣

∣ | F s
ǫ

}

dr ≤ K + C(t)V q(yǫs
ǫ
).

Consequently,γǫ ≤ |f |+∑m
j=1 |LYj

f |+K + C(t)V q, completing the proof.
�
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6 Convergence under Ḧormander’s Conditions

Below inj(M) denotes the injectivity radius ofM andρy = ρ(y, ·) is the Rie-
mannian distance function onM from a pointy. Let o denote a point inM . The
following proposition applies to an operatorL0, on a compact manifold, satisfying
Hörmander’s condition.

Proposition 6.1 LetM be a manifold with positive injectivity radius andǫ0 > 0.
Suppose conditions (1-5) below or conditions (1-3), (4’) and (5).

(1) L0 is a regularity improving Fredholm operator onL2(G) for a compact
manifoldG;

(2) {αk} ⊂ C3 ∩N⊥;

(3) Suppose that forǫ ∈ (0, ǫ0), (3.1) is complete andsupǫ≤ǫ0
Eρ(yǫ0, o) <∞;

(4) Suppose that there exists a locally bounded functionV s.t. for all ǫ ≤ ǫ0
and for any0 ≤ s ≤ u ≤ t, and for allp ≥ 1,

EV p(yǫ0) ≤ c0, sup
s≤u≤t

E
{(

V (yǫu
ǫ
)
)p

| F s
ǫ

}

≤ K +KV p′(yǫs
ǫ
)

wherec0 = c0(p),K = K(p, t), andp′ = p′(p, t) is a natural number;K, p′

are locally bounded int.

(4’) There exist a functionV ∈ C2(M ;R+), positive constantsc andK such
that

m
∑

j=1

|LYj
V | ≤ c +KV,

m
∑

i,j=1

|LYi
LYj

V | ≤ c+KV.

(5) For V in part (4) or in part (4’), suppose that for some numberδ > 0,

|Yj| ∈ BV,0 sup
ρ(y,·)≤δ

|LYi
LYj

ρy(·)| ∈ BV,0.

Then there exists a distance functionρ̃ onM that is compatible with the topology
ofM and there exists a numberα > 0 such that

sup
ǫ≤ǫ0

E sup
s 6=t





ρ̃
(

yǫs
ǫ
, yǫt

ǫ

)

|t− s|α



 <∞,

and for anyT > 0, {(yǫt
ǫ

, t ≤ T ), 0 < ǫ ≤ 1} is tight.
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Proof By Theorem 5.2, conditions (1-3) and (4’) imply condition (4). (a) Let
δ < min(1, 1

2
inj(M)). Let f : R+ → R+ be a smooth convex function such that

f (r) = r whenr ≤ δ
2

andf (r) = 1 whenr ≥ δ. Thenρ̃(x, y) = f ◦ρ is a distance
function with ρ̃ ≤ 1. Its open sets generate the same topology onM as that by
ρ. Let βj be a solution toL0βj = αj . For anyy0 ∈ M , |LYj

ρ̃2(y0, ·)| ≤ 2|Yj(·)|.
Since|Yj| ∈ BV,0,

∫ t
ǫ

0
E|LYj

ρ̃|(yǫr)|2dr <∞. We may apply (4.2) in Lemma 4.1,

E
{

ρ̃2
(

yǫs
ǫ
, yǫt

ǫ

)

| F s
ǫ

}

=ǫ

m
∑

j=1

(

E
{(

LYj
ρ̃2(yǫs

ǫ
, yǫt

ǫ

)
)

βj(z
ǫ
t
ǫ

) | F s
ǫ

}

−
(

LYj
ρ̃2(yǫs

ǫ
, ·)
)

(yǫs
ǫ
) βj(z

ǫ
s
ǫ
)
)

− ǫ
m
∑

i,j=1

∫ t
ǫ

s
ǫ

E
{(

LYi
LYj

ρ̃2(yǫs
ǫ
, yǫr)

)

αi(z
ǫ
r) βj(z

ǫ
r) | F s

ǫ

}

dr.

In the above equation, differentiation of (ρ̃)2 is w.r.t. to the second variable. By
constructioñρ is bounded by1 and|∇ρ̃| ≤ |∇ρ| ≤ 1. Furthermore sinceαj are
C3 functions on a compact manifold, soβj and|βj | are bounded. For anyy0 ∈ M ,
LYj

ρ̃(y0, ·) = γ′(ρy0)LYj
ρy0 . Thus

∣

∣

∣
E
{(

LYj
ρ̃2(yǫs

ǫ
, yǫt

ǫ

)
)

βj(z
ǫ
t
ǫ

) | F s
ǫ

}∣

∣

∣
≤ |βj|∞E

{

ρ̃(yǫs
ǫ
, yǫt

ǫ

)|Yj(yǫt
ǫ

)| | F s
ǫ

}

.

Recallρ̃ ≤ 1 and there are numbersK1 andp1 s.t. |Yj| ≤ K1 +K1V
p1 , so

E
{

|Yj(yǫt
ǫ

)| | F s
ǫ

}

≤ K1+K1E
{

V p1(yǫt
ǫ

) | F s
ǫ

}

≤ K1+K1K(p1, t)V
p′(p1,t)(yǫs

ǫ
).

Let g1 = K1 +K1K(p1)V p′(p1,t), it is clear thatg1 ∈ BV,0. We remark that,

LYi
LYj

(ρ̃2) = (f 2)′′(ρ)(LYi
ρ)(LYj

ρ) + (f 2)′(ρ)LYi
LYj

ρ.

By the assumption, there exists a functiong2 ∈ BV,0 s.t.

E
{

ρ̃2
(

yǫs
ǫ
, yǫt

ǫ

)

|F s
ǫ

}

≤ g2(y s
ǫ
)ǫ+ g2(y s

ǫ
)(t− s).

For ǫ ≥ √
t− s, it is better to estimate directly from (3.1):

E
{

ρ̃2
(

yǫs
ǫ
, yǫt

ǫ

)

| F s
ǫ

}

=

m
∑

k=1

∫ t
ǫ

s
ǫ

E
{

2ρ̃
(

yǫs
ǫ
, yǫt

ǫ

)

LYk
ρ̃
(

yǫs
ǫ
, yǫt

ǫ

)

αk(zǫr) | F s
ǫ

}

≤ 2|αk|∞
m
∑

k=1

∫ t
ǫ

s
ǫ

E
{

|Yk(yǫr)| | F s
ǫ

}

dr ≤ g3(y
ǫ
s
ǫ
)

(

t− s

ǫ

)
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whereg3 ∈ BV,0. We interpolate these estimates and conclude that for some

functiong4 ∈ BV,0 and a constantc the following holds:E
{

ρ̃2
(

yǫt
ǫ

, yǫs
ǫ

)

| F s
ǫ

}

≤
(t− s)g4(yǫs

ǫ
). There is a functiong5 ∈ BV,0 s.t.

Eρ̃2
(

yǫt
ǫ

, yǫs
ǫ

)

≤ Eg5(yǫ0)(t− s) ≤ c(t− s).

In the last step we use Assumption (4) on the initial value. ByKolmogorov’s
criterion, there existsα > 0 such that

sup
ǫ

E sup
s 6=t

(

ρ̃2(yǫs
ǫ
, yǫt

ǫ

)

|t− s|α

)

<∞,

and the processes (yǫs
ǫ
) are equi uniformly Hölder continuous on any compact time

interval. Consequently the family of stochastic processes{yǫt
ǫ

, 0 < ǫ ≤ 1} is tight.

�

If L0 is the Laplace-Beltrami operator on a compact Riemannian manifold
andπ its invariant probability measure then for any Lipschitz continuous function
f : G→ R,

√

E
(

1

t

∫ t

0

f (zs)ds−
∫

f dπ

)2

≤ C(‖f‖Osc)
1√
t
. (6.1)

where‖f‖Osc denotes the oscillation off . If L0 is not elliptic we suppose it
satisfies Hörmander’s conditions and has index0. The dimension of the kernel of
L∗

0 equals the dimension of the kernel ofL0. Let {ui, i = 1, . . . , n0} be a basis
in ker(L0) and{πi i = 1, . . . , n0} the dual basis for the null space ofL∗

0. For
f ∈ L2(G;R) we definef̄ =

∑n0

i=1 ui〈f, πi〉 where the bracket denotes the dual
pairing betweenL2 and (L2)∗.

Lemma 6.2 Suppose that(zt) is a Markov process on a compact manifoldG with
generatorL0 satisfying Ḧormander’s condition and having Fredholm index0.
Then for any functionf ∈ Cr(G;R), wherer ≥ max {3, n

2
+ 1}, there is a con-

stantC depending on|f |n
2
+1, s.t.

√

E
(

1

t− s

∫ t

s

f (zr)dr − f̄

)2

≤ C(‖f − f̄‖n
2
+1)

1√
t− s

. (6.2)

Proof Since〈f, πj〉 = 〈f, πj〉, f − f̄ ∈ N⊥. By working with f − f̄ we may
assume thatf ∈ N⊥ and letg be a solution toL0g = f . By Hörmander’s theorem,
[18], there is a positive numberδ, such that for allu ∈ C∞(M),

‖u‖s+δ ≤ C(‖L0u‖s + ‖u‖L2
).
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The numberδ = 21−k wherek ∈ N is related to the number of brackets needed
to generate the tangent spaces.

Furthermore everyu such that‖L0u‖s < ∞ must be inHs. If s > n
2
+ 1,Hs

is embedded inC1 and for some constantci,

|g|C1(M ) ≤ c1 ‖g‖n
2
+1+ǫ ≤ c2 (‖f‖n

2
+1 + |g|L2

) ≤ c3 ‖f‖n
2
+1.

Recall thatL0 =
∑m′

i=1 LXi
LXi

+ LX0
. Let {W j

t , j = 1, . . . , m′} be independent
one dimensional Brownian motions. Let (zt) be solutions ofdzt =

∑m′

j=1Xj(zt) ◦
dW j

t . Sincef isC2,

1

t− s

∫ t

s

f (zr)dr =
1

t− s
(g(zt) − g(zs))−

1

t− s

(

m′
∑

j=1

∫ t

s

(dg(Xj))(zr)dW
j
r

)

.

We apply the Sobolev estimates tog and use Doob’sL2 inequality to see that for
t ≥ 1 there is a constantC such that,

E
(

1

t− s

∫ t

s

f (zr)dr

)2

≤ 4

t2
|g|2∞ +

8

(t− s)2

m′
∑

j=1

∫ t

s

(

E|dg(zr)|2|Xj(zr)|2
)

dr

≤ 4

(t− s)2
(|g|∞)2 +

8m′

t− s
(|dg|)2∞

m′
∑

j=1

|Xj|2∞ ≤ C(‖f‖n
2
+1)

2 1

t− s
.

�

We remark that a self-adjoint operator satisfying Hörmander’s condition has
index zero.

Lemma 6.3 Suppose thatL0 satisfies Ḧormander’s condition. In addition it has
Fredholm index0 or it has a unique invariant probability measure. Letr ≥
max {3, n

2
+ 1}. Let h : M × G → R be such thath(y, ·) ∈ Cr for eachy

and that|h|∞ + supz |h(·, z)|Lip + supy |h(y, ·)|Cr < ∞. Let s ≤ t be a pair of
positive numbers, andF ∈ BC(C([0, s];M) → R). For any equi -uniformly con-
tinuous subsequence,ỹnt := (yǫnt

ǫn

), of (yǫt
ǫ

) that converges weakly to a continuous

process̄y· asn→ ∞, the following convergence holds weakly:

F (yǫn·
ǫn

)
∫ t

s

h(yǫnu
ǫn

, zǫnu
ǫn

)du→ F (ȳ·)
∫ t

s

h(ȳu, ·)du

whereh(y, ·) =∑n0

i=1 ui〈h(y, ·), πi〉.
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Proof For simplicity we omit the subscriptn. The required convergence fol-
lows from Lemma 4.3 in [25] where it was assumed that (6.1) holds andL0 has a
unique invariant measure forµ. It is easy to check that the proof there is valid. We
take care to replace

∫

G
h(y, z)dµ(z) in Lemma 4.3 there by

∑n0

i=1 ui〈h(y, ·), πi〉.
We remark that by the regularity improving property eachui is smooth and there-
fore bounded. In the first part of the proof, we divide [s, t] into sub-intervals of
sizeǫ, freeze the slow variable (yǫu

ǫ
) on [tk, tk+1], and approximateh(yǫu

ǫ
, zǫu

ǫ
) by

h(yǫtk
ǫ

, zǫu
ǫ
) on each sub-interval [tk, tk+1]. This approximation is clear: the com-

putation is exactly as in Lemma 4.3 of [25] and we use the uniform continuity of
(yǫt ), the fact that|h|∞ andsupz |h(·, z)|Lip are finite. The convergence of

∫

tk−1

ǫ

tk−1

ǫ

h(yǫtk
ǫ

, zǫu
ǫ
)du → ∆tk

n0
∑

i=1

ui〈h(yǫtk−1

ǫ

, ·), πi〉

follows from the law of large numbers in Lemma 6.2. The convergence of

∑

k

∆tk

n0
∑

i=1

ui〈h(yǫtk−1

ǫ

, ·), πi〉 →
n0
∑

i=1

ui

∫ t

s

〈h(yǫu
ǫ
, ·), πi〉du

is also clear and follows from the Lipschitz continuity ofh in the first variable and
the equi continuity of theyǫ path. Finally denote byyǫ[0,s] the restriction of the path

yǫ· to the interval [0, s], the weak convergence of
∑n0

i=1 uiF (yǫ[0,s])
∫ t

s
〈h(yǫu

ǫ
, ·), πi〉du

to the required limit is trivial, as explained in Lemma 4.3, [25]. �

Assumption 6.1 The generatorL0 satisfies Ḧormander’s condition and has Fred-
holm index0 (or has a unique invariant probability measure). Fork = 1, . . . , m,
αk ∈ Cr(G;R) ∩N⊥ for somer ≥ max{3, n

2
+ 1}.

If L0 is elliptic, it is sufficient to assumeαk ∈ Bb(G;R), instead ofαk ∈ Cr.

Theorem 6.4 If L0, αk, (yǫ0) and|Yj| satisfy the conditions of Proposition 6.1 and
Assumption 6.1, then(yǫt

ǫ

) converge weakly to the Markov process determined by

the Markov generator

L̄ = −
m
∑

i,j=1

αiβjLYi
LYj

, αiβj =

n0
∑

b=1

ub〈αiβj, πb〉.

Proof By Proposition 6.1,{(yǫt
ǫ

, t ≥ 0)} is tight. We prove that any conver-

gent sub-sequence converges to the same limit. Letǫn → 0 be a a monotone
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sequence converging to zero such that the probability distributions of (yǫnt
ǫn

) con-

verge weakly, on [0, T ], to a measurēµ. For notational simplicity we may assume
that{(yǫt

ǫ

, t ≥ 0)} converges tōµ.

Let s < t, {Bs} the canonical filtration, (Ys) the canonical process, andY[0,s]

its restriction to [0, s]. By the Stroock-Varadhan martingale method, it is sufficient
to provef (Yt) − f (Ys) −

∫ t

s
L̄f (Yr) dr is a local martingale for anyf ∈ C∞

K (M).
By (4.1), the following is a local martingale,

f (yǫt
ǫ

) − f (yǫs
ǫ
) − ǫ

m
∑

j=1

(

df (Yj(y
ǫ
t
ǫ

))βj(z
ǫ
t
ǫ

) + df (Yj(y
ǫ
s
ǫ
))βj(z

ǫ
s
ǫ
)
)

+ ǫ
m
∑

i,j=1

∫ t
ǫ

s
ǫ

LYi
LYj

f (yǫr))αi(z
ǫ
r) βj(z

ǫ
r) dr.

Since the third term converges to zero asǫ tends to zero, it is sufficient to prove

lim
ǫ→0

E

{

ǫ

m
∑

i,j=1

∫ t
ǫ

s
ǫ

LYi
LYj

f (yǫr))αi(z
ǫ
r) βj(z

ǫ
r) dr −

∫ t

s

L̄f (yǫr
ǫ
) dr |F s

ǫ

}

= 0.

This follows from Lemma 6.3, completing the proof. �

Corollary 6.5 Let p ≥ 1 be a number and suppose thatρp ∈ BV,0. Then, under
the conditions of Theorem 6.4 and Assumption 5.1,(yǫ·

ǫ
) converges in the Wasser-

steinp-distance onC([0, t];M).

Proof By Theorem 5.2,supǫ≤ǫ0
E sups≤t ρ

p(o, yǫs
ǫ
) < ∞. Let Wp denote the

Wassersteinp distance:

Wp(µ1, µ2) =

(

inf

∫

M×M

sup
s≤t

ρ(σ1(s), σ2(s))dµ(σ1, σ2)

)
1

p

.

Here the infimum is taken over all probability measures on thepath spacesC([0, t];M)
with marginalsµ1 andµ2. Note thatC([0, t];M) is a Banach space, a family of
probability measuresµn converges toµ in Wp, if and only if the following holds:
(1) it converges weakly and (2)supn

∫

sups≤t ρ
p(o, σ2(s))dµn(σ2) <∞. The con-

clusion follows. �

7 A study of the semigroups

The primary aim of the section is to study the properties ofPtf for f ∈ BV,r where
Pt is the semigroup for a generic stochastic differential equation. These results
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will be applied to the limit equation, to provide the necessary a priori estimates.
Theorem 7.2 should be of independent interest, it also lead to Lemma 7.5, which
will be used in Section 8.

Throughout this sectionM is a complete smooth Riemannian manifold. Let
Y0 beC5 and{Yk, k = 1, . . . , m} beC6 smooth vector fields onM , {Bk

t } in-
dependent real valued Brownian motions. Let (Φt(y), t < ζ(y)) be the maximal
solution to the following equation

dyt =
m
∑

k=1

Yk(yt) ◦ dBk
t + Y0(yt)dt (7.1)

with initial valuey. Its Markov generator isLf = 1
2

∑m
k=1 LYk

LYk
f + LY0

f . Let
Z = 1

2

∑m

k=1∇Yk
Yk + Y0 be the drift vector field, so

Lf =
1

2

m
∑

k=1

∇df (Yk, Yk) + df (Z). (7.2)

If there exists aC3 pre-Lyapunov functionV , constantsc andK such thatLV ≤
c +KV then (7.1) is complete. However we do not limit ourselves to Lyapunov
test for the completeness of the SDE. Let us denote|f |r =

∑r
k=1 |∇(k−1)df | and

|f |r,∞ =
∑r

k=1 |∇(k−1)df |∞. The following observation is useful.

Lemma 7.1 LetV ∈ B(M ;R) be locally bounded.

• Suppose that
∑m

j=1 |Yj| ∈ BV,0 and |Z| ∈ BV,0. Then iff ∈ BV,2, Lf ∈
BV,0. If f ∈ BC2, |Lf | ≤ |f |2,∞F1 whereF1 ∈ BV,0, not depending onf .

• Suppose that
m
∑

j=1

(|Yj|+ |∇Yj|+ |∇(2)Yj|) ∈ BV,0, |Z|+ |∇Z|+ |∇(2)Z| ∈ BV,0.

If f ∈ BV,4, L2f ∈ BV,0. If f ∈ BC4, |L2f | ≤ |f |4,∞F2 whereF2 is a
function inBV,0, not dependent off .

Proof That Lf belongs toBV,0 follows from (7.2). If f ∈ BC2, |Lf | ≤
(|f |2)∞(

∑m
k=1 |Yk|2 + |Z|). For the second part we observe thatL2f involves

at most four derivatives off and two derivatives ofYj andZ wherej = 1, . . . , m.
�

Let dΦt(v) denote the derivative flow in the direction ofv ∈ TyM . It is the
derivative of the functiony 7→ Φt(y, ω), in probability. Moreover, it solves the fol-
lowing stochastic covariant differential equation along the solutionsyt := Φt(y0),

Dvt =
m
∑

k=1

∇vtYk ◦ dBk
t +∇vtY0dt.
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HereDVt := //t(y·)d(//−1
t (y·)Vt) where//t(y·) : Ty0M → TytM is the stochastic

parallel transport map along the pathy·. Denote|dΦt|y0 the norm ofdΦt(y0) :
Ty0M → TytM . Forp > 0, y ∈ M andv ∈ TyM , we defineHp(y) ∈ L(TyM ×
TyM ;R) by

Hp(y)(v, v) =
m
∑

k=1

|∇Yk(v)|2 + (p− 2)
m
∑

k=1

〈∇Yk(v), v〉2
|v|2 + 2〈∇Z(v), v〉.

Let hp(y) = sup|v|=1}Hp(y)(v, v). Its upper bound will be used to control|dΦt|y.

Assumption 7.1 The equation (7.1) is complete. Conditions (i) and (ii), or (i’)
and (ii), below hold.

(i) There exists a locally bounded functionV ∈ B(M ;R+), s.t. for all q ≥ 1
andt ≤ T , there exists a numberCq(t) and a polynomialλq such that

sup
s≤t

E(|V (Φs(y))|q) ≤ Cq(t) + Cq(t)λq(V (y)). (7.3)

(i’) There existsV ∈ C3(M ;R+) and constantsc andK such that

LV ≤ c+KV, |LYj
V | ≤ c+KV, j = 1, . . . , m,

(ii) Let Ṽ = 1 + ln(1 + |V |). For some constantc,

m
∑

k=1

|∇Yk|2 ≤ cṼ , sup
|v|=1

〈∇Z(v), v〉 ≤ cṼ . (7.4)

Remark. Suppose that (7.1) is complete. SinceLV q = qV q−1LV + q(q −
1)V q−2|LYj

V |2, (i’) implies (i). In fact,E sups≤t (V (ys))
q ≤ (EV (y0)q + cq2t) e(c+K)q2t.

Recall that (7.1) is strongly complete if (t, y) 7→ Φt(y) is continuous almost
surely on [0, t] ×M for antt > 0.

Theorem 7.2 Under Assumption 7.1, the following statements hold.

1. The SDE (7.1) is strongly complete and for everyt ≤ T , Φt(·) is C4. Fur-
thermore for allp ≥ 1, there exists a positive numberC(t, p) such that

E
(

sup
s≤t

|dΦs(y)|p
)

≤ C(t, p) + C(t, p)V C(t,p)(y). (7.5)
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2. Letf ∈ BV,1. DefineδPt(df )) = Edf (dΦt(·)). Thend(Ptf ) = δPt(df ) and
|d(Ptf )| ∈ BV,0. Furthermore for a constantC(t, p) independent off ,

|d(Ptf )| ≤
√

E
(

|df |Φǫ
t(y)

)2
√

C(t, p)(1 + V C(t,p)(y)).

3. Suppose furthermore that

m
∑

j=1

3
∑

α=0

|∇(α)Yj| ∈ BV,0,

2
∑

α=0

|∇(α)Y0| ∈ BV,0.

Then, (a)E sups≤t |∇dΦs|2(y) ∈ BV,0; (b) If f ∈ BV,2, thenPtf ∈ BV,2,
and

(∇dPtf )(u1, u2) = E∇df (dΦt(u1), dΦt(u2)) + Edf (∇u1
dΦt(u2)).

Furthermore, (c)dPtf

dt
= PtLf , andL(Ptf ) = Pt(Lf ).

4. Letr ≥ 2. Suppose furthermore that

r
∑

α=0

|∇(α)Y0| ∈ BV,0,

r+1
∑

α=0

m
∑

k=1

|∇(α)Yk| ∈ BV,0.

ThenE sups≤t(|∇(r−1)dΦs|y)2 belongs toBV,0. If f ∈ BV,r, thenPtf ∈
BV,r.

Proof The statement on strong completeness follows from the following theorem,
see Thm. 5.1 in [22]. Suppose that (7.1) is complete. IfṼ is a function andc0 a
number such that for allt > 0,K compact, and all constantsλ,

sup
y∈K

E exp

(

λ

∫ t

0

Ṽ (Φs(y))ds

)

<∞,
m
∑

k=1

|∇Yk|2 ≤ c0Ṽ , hp ≤ 6pc0Ṽ ,

(7.6)
then (7.1) is strongly complete. Furthermore for everyp ≥ 1 there exists a con-
stantc(p) such that

E
(

sup
s≤t

|dΦs(y)|p
)

≤ c(p)E
(

exp

(

6p2
∫ t

0

Ṽ (Φs(y))ds

))

. (7.7)

SinceYj areC6, then for everyt, Φt(·) is C4. It is easy to verify that condition
(7.6) is satisfied. In fact, by the assumptionhp ≤ 6pcṼ . TakeṼ = 1+ln(1+ |V |)
then forp ≥ 1,

E
(

exp

(

6p2
∫ t

0

Ṽ (Φs(y))ds

))

≤ C(t, p) + C(t, p)
(

V C(t,p)(y)
)

<∞.
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This proves part (1).
For part (2) letf ∈ C1. Theny 7→ f (Φt(y, ω)) is differentiable for almost

everyω. Letσ : [0, t0] →M be a geodesic segment withσ(0) = y. Then

f (Φt(σs, ω)) − f (Φt(y, ω))
s

=
1

s

∫ s

0

d

dr
f (Φt(σr, ω)) dr.

SinceE|dΦt(y)|2 is locally bounded iny, r 7→ E|dΦt(σr, ω)| is continuous and
the expectation of the right hand side converges toEdf (dΦt(σ̇(0)). The left hand
side clearly converges almost surely. SinceE|df (dΦt(y))|2 is locally bounded the
convergence is inL1. We proved thatd(Ptf ) = δPt(df ). Furthermore, suppose
that |df | ≤ K +KV q,

|d(Ptf )|y ≤
√

E
(

|df |Φǫ
t(y)

)2
√

E|dΦǫ
t|2y

≤
√

2K2 + 2K2EV 2q(Φǫ
t(y))

√

c(p)C(t, p) + c(p)C(t, p) (V C(t,p)(y)).

The latter, as a function ofy, belongs toBV,0.
We proceed to part (3a). Letv, w ∈ TyM andUt := ∇dΦt(w, v). ThenUt

satisfies the following equation:

DUt =
m
∑

k=1

∇(2)Yk(dΦt(v), dΦt(w)) ◦ dBk
t +

m
∑

k=1

∇Yk(Ut) ◦ dBk
t

+∇(2)Y0(dΦt(v), dΦt(w))dt+∇Y0(Ut)dt.

It follows that,

d|Ut|2 =2
m
∑

k=1

〈

∇(2)Yk(dΦt(v), dΦt(w)) ◦ dBk
t +∇(2)Y0(dΦt(v), dΦt(w))dt, Ut

〉

+

〈

m
∑

k=1

∇Yk(Ut) ◦ dBk
t +∇Y0(Ut)dt, Ut

〉

.

To the first term on the right hand side we apply Cauchy Schwartz inequality to
split the first term in the inner product and the second term inthe inner product.
This gives:C|Ut|2 and other terms that does not involveUt. The Stratonovich cor-
rections will throw out the extra derivative∇(3)Yk which does not involveUt. The
second term on the right hand side is a sum of the form

∑m
k=1〈∇Yk(Ut), Ut〉dBk

t

for which only bound on|∇Yk| is required, and
〈

m
∑

k=1

∇(2)Yk(Yk, Ut) +∇Y0(Ut), Ut

〉

= 〈∇Z(Ut), Ut〉−
〈

m
∑

k=1

∇Yk(∇Ut
Yk), Ut

〉

.
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The second term is bounded by
∣

∣

∣

∣

∣

m
∑

k=1

〈∇Yk(∇Ut
Yk), Ut〉

∣

∣

∣

∣

∣

≤
m
∑

k=1

|∇Yk|2|Ut|2.

By the assumption, there existc > 0, q ≥ 1 such that, for everyk = 1, . . . , m,

|∇Yk| ≤ Ṽ , |∇2Yj| ≤ c+ cV q, |∇(3)Yk| ≤ c+ cV q, 〈∇uZ, u〉 ≤ (c+KV )|u|2.

There is a stochastic processIs, which does not involveUt, and constantsC, q
such that

E|Ut|2 ≤ E|U0|2 +
∫ t

0

EIrdr +
∫ t

0

CEṼ q(yǫr)|Ur|2dr.

By inductionIr has moments of all order which are bounded on compact intervals.
By Gronwall’s inequality, fort ≤ T ,

E|Ut|2 ≤
(

E|U0|2 +
∫ T

0

EIrdr
)

exp

(

C

∫ t

0

Ṽ q(yǫr)dr

)

.

To obtain the supremum inside the expectation, we simply useDoob’s Lp in-
equality before taking expectations. With the argument in the proof of part (1) we
conclude thatE sups≤t |∇dΦs|2(y) is finite and belongs toBV,0.

Part (3b). Let f ∈ BV,2. By part (1),d(Ptf ) = Edf (dΦt(y)). Let u1, u2 ∈
TyM . By an argument analogous to part (3), we may differentiate the right hand
side under the expectation to obtain that

(∇dPtf )(u1, u2) = E∇df (dΦt(u1), dΦt(u2)) + Edf (∇u1
dΦt(u2)).

HencePtf ∈ BV,2. This procedure can be iterated.
Part (3c).By Itô’s formula,

f (yt) = f (ys) +
m
∑

k=1

∫ t

s

df (Yk(yr))dB
k
r +

∫ t

s

Lf (yr)dr.

Sincedf (Yk) ∈ BV,0, the expectations of the stochastic integrals with respectto
the Brownian motions vanish. SinceLf ∈ BV,0 by part (3),Lf (yr) is bounded in
L2. It follows that the functionr 7→ ELf (yr) is continuous,

lim
t→s

Ef (yt) − Ef (ys)
t− s

= ELf (ys)

and we obtain Kolmogorov’s backward equation,∂
∂s
Psf = Ps(Lf ). SincePsf ∈

BV,2, we apply the above argument toPsf , and taket to zero inPt(Psf )−Psf

t
and

obtain that ∂
∂s
Psf = L(Psf ). This leads to the required statementLPsf = PsLf .
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Part (4). For higher order derivatives ofΦt we simply iterate the above pro-
cedure and note that the linear terms in the equation ford

dt
|∇k−1dΦt(u1, . . . , uk)|2

are always of the same form. �

Remark 7.3 With the assumption of part (3), we can show that for all integer p,
E sups≤t |∇dΦs|py ∈ BV,0.

If we assume the additional conditions that

|∇Y0| ≤ cṼ ,

m
∑

k=1

|∇(2)Yk||Yk| ≤ cṼ ,

the conclusion of the remark follows more easily. With the assumptions of part
(5) we need to work a bit more which we illustrate below. LetUt = ∇dΦt(w, v).
Instead of writing down all term in|Ut|p we classify the terms in|Ut|p into two
classes: those involvingUt and those not. For the first class we must assume that
they are bounded bycṼ for somec. For the second class we may use induction and
hence it is sufficient to assume that they belong toBV,0. The terms that involving
Ut are:

∇Yk(Ut),
m
∑

k=1

∇(2)Yk(Yk, Ut) +∇Y0(Ut).

The essential identity to use is:

m
∑

k=1

∇(2)Yk(Yk, Ut) +∇Y0(Ut) = ∇Z(Ut) −
m
∑

k=1

∇Yk(∇Yk(Ut)).

We do not need to assume that the second order derivatives|∇(2)Yk||Yk| ≤ cṼ , it
is sufficient to assume that for|∇Yk|2 and∇Z for all k = 1, . . . , m. With a bit of
care, we check that only one sided derivatives ofZ are involved.

For example we can convert it to thep = 2 case,

d|Ut|p =
p

2
(|Ut|p−2) ◦ d|Ut|2 =

p

2
|Ut|p−2d|Ut|p +

1

4
p(p− 1)|Ut|p−4〈d|Ut|2〉.

By the first termp

2
|Ut|p−2d|Ut|p we mean that in place ofd|Ut|p plug in all terms

on the right hand side of the equation ford|Ut|2, after formally converting the
integrals to Itô form. By〈d|Ut|2〉 we mean the bracket of the martingale term on
the right hand side ofd|Ut|2. It is now easy to check that in all the terms that
involvingUt, higher order derivatives ofYk does not appear, except in the form of
|Ut|p−2〈∇Ut

Z, Ut〉.
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Remark 7.4 Assume the SDE is complete. Suppose that for some positive number
C,

m
∑

k=1

5
∑

k=0

|∇(k)Yk| ≤ C,

4
∑

k′=0

|∇(k′)Y0| ≤ C.

Then for allp ≥ 1, there exists a constantC(t, p) such that

E
(

sup
s≤t

|dΦs(x)|p
)

≤ C(t, p).

Furthermore the statements in Theorem 7.2 hold forr ≤ 4.

Recall that|f |r =
∑r

k=1 |∇(k−1)df | and|f |r,∞ =
∑r

k=1 |∇(k−1)df |∞.

Lemma 7.5 Assume Assumption 7.1 and

4
∑

α=0

|∇(α)Y0| ∈ BV,0,
5
∑

α=0

m
∑

k=1

|∇(α)Yk| ∈ BV,0.

Then there exist constantsq1, q2 ≥ 1, c1 andc2 depending ont andf and locally
bounded int, also functionsγi ∈ BV,0, λqi polynomials, such that fors ≤ t,

|Ptf (y0) − Psf (y0)| ≤ (t− s)c1 (1 + λq1(V (y0))) , f ∈ BV,2

|Ptf (y0) − Psf (y0) − (t− s)Ps(Lf )(y0)| ≤ (t− s)2c2 (1 + λq2(V (y0))) , f ∈ BV,4

|Ptf (y0) − Psf (y0)| ≤ (t− s) (1 + |f |2,∞) γ1(y0), ∀f ∈ BC2

|Ptf (y0) − Psf (y0) − (t− s)Ps(Lf )(y0)| ≤ (t− s)2 (1 + |f |4,∞) γ2(y0), ∀f ∈ BC4.

Proof Denoteyt = Φt(y0), the solution to (7.1). Then forf ∈ C2,

Ptf (y0) = Psf (y0) +
∫ t

s

Pr(Lf )(y0)dr +
m
∑

k=1

E
(
∫ t

s

df (Yk(yr))dB
k
r

)

.

Since |LYk
f | ≤ |df |∞|Yk| and |df |, Yk belong toBV,0, by Assumption 7.1(i),

∫ t

0
E|LYk

f |2yrdr is finite and the last term vanishes. Hence|Ptf (y0) − Psf (y0)| ≤
∫ t

s
Ps2(Lf )(y0)ds2. By Lemma 7.1,Lf ∈ BV,0 if f ∈ BV,2. Let K, q1 be s.t.

|Lf | ≤ K +KV q1.
∫ r

s

|Ps2(Lf )(y0)|ds2 ≤
∫ r

0

(K +KEV q1(Φs2(y0))) ds2.
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By the assumption, we see easily that
∑3

k=0 |∇(α)Z| ∈ BV,0. By Assumption
7.1,sups≤t E(|V (Φs(y0))|q1) ≤ Cq1(t) + Cq1(t)λq1(V (y0)) and the first conclusion
holds. We repeat this procedure forf ∈ C4 to obtain:

Ptf (y0) − Psf (y0)

=

∫ t

s

(

Ps(Lf )(y0) +
∫ r

s

Ps2(L2f )(y0)ds2 +
m
∑

k=1

E
∫ t

s

(LYk
(Lf )) (ys2))dB

k
s2

)

ds1.

The last term also vanishes, as every term inLYk
Lf belongs toBV,0. Indeed

LYk
Lf =

∑

i

∇(2)df (Yk, Yi, Yi) + 2
∑

i

∇df (∇Yk
Yi, Yi) +∇df (Yk, Z)

+
∑

i

df (∇(2)Yi(Yk, Yi) +∇Yi (∇Yk
Yi +∇Yk

Y0)) .

This gives, for allf ∈ BV,4,

|Ptf (y0) − Psf (y0) − (t− s)Ps(Lf )(y0)| ≤
∣

∣

∣

∣

∫ t

s

∫ s1

s

Ps2(L2f )(y0)ds2ds1

∣

∣

∣

∣

.

(7.8)
Let q2, K be numbers such that|L2f | ≤ K +KV q2 . Then,

sup
s≤t

Ps(L2f )(y0) ≤ K +KE (V (ys))
q2 ≤ K + Cq2(t) +KCq2(t)λ̃q2(V (y0)).

Consequently, there exist a constantc2(t) s.t.

|Ptf (y0) − Psf (y0) − (t− s)Ps(Lf )(y0)| ≤ (t− s)2c2(t,K, q2)(1 + λq2(V (y0))).

completing the proof forf ∈ BV,2 andBV,4. Next suppose thatf ∈ BC2. By
Lemma 7.1,|Lf | ≤ |f |2,∞F1, and|L2f | ≤ |f |4,∞F2 if f ∈ BC4. HereF1, F2 ∈
BV,0 and do not depend onf . We iterate the argument above to complete the proof
for f ∈ BC4. �

8 Rate of Convergence

If L0 has a unique invariant probability measureπ andf ∈ L1(G, dπ) denote
f̄ =

∫

G
fdπ. Let L̄ = −∑m

i,j=1 αiβjLYi
LYj

. Let {σi
k, i, k = 1, . . . , m} be the

entries in a square root of the matrix (−αiβj). They satisfy
∑m

k=1 σ
i
kσ

j
k = (−αiβj)

and are constants. Let us consider the SDE:

dyt =
m
∑

k=1

(

m
∑

i=1

σi
kYi(yt)

)

◦ dBk
t , (8.1)
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where{Bk
t } are independent one dimensional Brownian motions. Let

Ỹk =

m
∑

i=1

σi
kYi(yt), Z̃ =

m
∑

i,j=1

−αiβj∇Yi
Yj .

The results from section 7 apply. Recall thatL0 = 1
2

∑p

i=1 LXi
LXi

+ LX0
and

(zǫt ) areLǫ = 1
ǫ
L0 diffusions. LetΦǫ

t(y) be the solution to the SDE (1.5):̇yǫt =
∑m

k=1 αk(zǫt )Yk(yǫt ) with initial valuey.

Assumption 8.1 G is compact,Y0 ∈ C5(ΓTM), andYk ∈ C6(ΓTM) for k =
1, . . . , m. Conditions (1)-(5) below hold or Conditions (1), (2’) and (3-5) hold.

(1) The SDEs (8.1) and (3.1) are complete.

(2) V ∈ B(M ;R+) is a locally bounded function andǫ0 a positive number s.t.
for all q ≥ 1 andT > 0, there exists a locally bounded functionCq : R+ →
R+, a real valued polynomialλq such that for0 ≤ s ≤ t ≤ T and for all
ǫ ≤ ǫ0

sup
s≤u≤t

E
{

V q(Φǫ
u
ǫ
(y)) |F s

ǫ

}

≤ Cq(t) + Cq(t)λq
(

V (Φǫ
s
ǫ
(y)
)

. (8.2)

(2’) There exists a functionV ∈ C3(M ;R+) s.t. for all i, j ∈ {1, . . . , m},
|LYi

LYj
V | ≤ c+KV and |LYj

V | ≤ c +KV .

(3) For V defined above, let̃V = 1 + ln(1 + |V |). Suppose that

4
∑

α=0

|∇(α)Y0| ∈ BV,0,

5
∑

α=0

m
∑

k=1

|∇(α)Yk| ∈ BV,0,

m
∑

j=1

|∇Yj|2 ≤ cṼ , sup
|u|=1

〈∇Z̃(u), u〉 ≤ cṼ

(4) L0 satisfies Ḧormander’s conditions and has a unique invariant measureπ
satisfying Assumption 3.1.

(5) αk ∈ C3(G;R) ∩N⊥.

We emphasize the following:

Remark 8.1 (a) If V in (2’) is a pre-Lyapunov function, then (3.1) is complete.
Furthermore|L̄V | ≤ c+KV and so (8.1) is complete.
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(b) Under conditions (1), (2’) and (4-5), (2) holds. See Theorem 5.2. Also
Corollary 5.3 holds. Conditions (1-5) implies the conclusions of Theorem
7.2.

(c) If L0 satisfies strong Ḧormander’s condition, condition (4) is satisfied.

Let P ǫ
t be the probability semigroup associated with (yǫt ) andPt the Markov

semigroup forL̄. Recall that|f |r,∞ =
∑r

j=1 |∇(j−1)df |∞. We recall that opera-
tor L0 on a compact manifoldG satisfying strong Hörmander’s condition has an
exponential mixing rate, soL0 satisfy Assumption 3.1.

Theorem 8.2 Assume thatYk, αk andL0 satisfy Assumption 8.1. For everyf ∈
BV,4,

∣

∣

∣
Ef
(

Φǫ
T
ǫ

(y0)
)

− PTf (y0)
∣

∣

∣
≤ ǫ| log ǫ| 12C(T )γ1(y0),

whereγ1 ∈ BV,0 andC(T ) are constant increasing inT . Similarly, iff ∈ BC4,
∣

∣

∣
Ef
(

Φǫ
T
ǫ

(y0)
)

− PTf (y0)
∣

∣

∣
≤ ǫ| log ǫ| 12 C(T )γ2(y0) (1 + |f |4,∞) .

whereγ2 is a function inBV,0 that does not depend onf andC(T ) are constants
increasing inT .

Proof Step 1.To obtain optimal estimates we work on intervals of orderǫ, c.f.
Lemma 3.4. Lett0 = 0 < t1 < · · · < tN = T be a partition of [0, T ] with
∆tk = tk − tk−1 = ǫ for k < N andt1 ≤ ǫ. Write yǫt = Φǫ

t(y0). Then,

f
(

yǫT
ǫ

)

− PTf (y0) =
N
∑

k=1

(

PT−tkf (yǫtk
ǫ

) − PT−tk−1
f (yǫtk−1

ǫ

)

)

=

N
∑

k=1

(

PT−tkf (yǫtk
ǫ

) − PT−tkf (yǫtk−1

ǫ

) +∆tk

(

PT−tk−1
L̄f (yǫtk−1

ǫ

)

))

+

N
∑

k=1

(

PT−tkf (yǫtk−1

ǫ

) − PT−tk−1
f (yǫtk−1

ǫ

) −∆tk
(

PT−tk−1
L̄f
)

(yǫtk−1

ǫ

)

)

.

Define

Iǫk = PT−tkf (yǫtk
ǫ

) − PT−tkf (yǫtk−1

ǫ

) +∆tk

(

PT−tk−1
L̄f (yǫtk−1

ǫ

)

)

,

J ǫ
k = PT−tkf − PT−tk−1

f −∆tkPT−tk−1
L̄f.

Sincef ∈ BV,4, Lemma 7.5 applies and obtain the desired estimate on the second
term:

∣

∣

∣

∣

J ǫ
k(yǫtk−1

ǫ

)

∣

∣

∣

∣

≤ (∆tk)2c̃2(T, f )

(

1 +

(

λq2(V (yǫtk−1

ǫ

)

))
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wherec̃2(T, f ) is a constant andλq2 a polynomial.
Let K, q be constants such thatλq2(V ) ≤ K + KV q. We apply (8.2) from

Assumption 8.1 to see that for some constantCq(T ) depending onλq2(V ),

E
(

λq2(V (yǫtk−1

ǫ

)

)

≤ K +KCq(T ) +KCq(T )λq(V (y0)).

Since∆tk ≤ ǫ andN ∼ 1
ǫ
,

N
∑

k=1

E

∣

∣

∣

∣

J ǫ
k(yǫtk−1

ǫ

)

∣

∣

∣

∣

≤ ǫc̃2(T, f )(K + 1) (1 + Cq(T ) + Cq(T )λq(V (y0))) . (8.3)

If f belongs toBC4, we apply Lemma 7.5 to see that there exists a function
F ∈ BV,0, independent off s.t.

∣

∣

∣

∣

J ǫ
k(y

ǫ
tk−1

ǫ

)

∣

∣

∣

∣

≤ (∆tk)2 (1 + |f |4,∞)

(

F (yǫtk−1

ǫ

)

)

.

Hence
N
∑

k=1

E

∣

∣

∣

∣

J ǫ
k(yǫtk−1

ǫ

)

∣

∣

∣

∣

≤ ǫ (1 + |f |4,∞)E
(

F (yǫtk−1

ǫ

)

)

. (8.4)

The rest of the proof is just as for the case off ∈ BV,4.
Step 2.Let 0 ≤ s < t. By part (3) of Theorem 7.2,̄LPtf = PtL̄f for any

t > 0 andPT−tkL̄f = L̄PT−tkf . We will approximatePT−tk−1
L̄f by PT−tkL̄f

and estimate the error

N
∑

k=1

∆tk
(

PT−tkL̄f − PT−tk−1
L̄f
)

(yǫtk−1

ǫ

).

By Lemma 7.1,Lf ∈ BV,2, and we may apply Lemma 7.5 tōLf . We have,

|PT−tkL̄f (y0) − PT−tk−1
L̄f (y0)| ≤ ∆tkc̃1(T ) (1 + λq1(V (y0))) .

Recall thatλq1(V ) ∈ BV,0. Summing overk and take the expectation of the above
inequality we obtain that

N
∑

k=1

∆tk

∣

∣

∣

∣

PT−tkL̄f (yǫtk−1

ǫ

) − PT−tk−1
L̄f (yǫtk−1

ǫ

)

∣

∣

∣

∣

≤ ǫc1(T ) (1 + λq1(V (y0))) .

(8.5)
If f ∈ BC2, Lf ∈ BC2. By Lemma 7.5 ,

|PT−tkL̄f (y0) − PT−tk−1
L̄f (y0)| ≤ ∆tkc̃1(T ) (1 + λq1(V (y0))) .
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there exist constantC(T ) and a functionγ1 ∈ BV,0, independent off , s.t.

|Ptf (y0) − Psf (y0)| ≤ (t− s) (1 + |f |2,∞) γ1(y0).

Hereγ1 ∈ BV,0. Thus forf ∈ BC2,

N
∑

k=1

∆tk

∣

∣

∣

∣

PT−tkL̄f (yǫtk−1

ǫ

) − PT−tk−1
L̄f (yǫtk−1

ǫ

)

∣

∣

∣

∣

≤ 2ǫ|f |2,∞(1 + γ1(y0)). (8.6)

Finally instead of estimatingIǫk, we estimate

Dǫ
k := PT−tkf (yǫtk

ǫ

) − PT−tkf (yǫtk−1

ǫ

) +∆tkPT−tkL̄f (yǫtk−1

ǫ

).

Step 3. If f ∈ BV,4, by Theorem 7.2,Ptf ∈ BV,4 for any t. Sinceαk ∈
N⊥ ∩ C3, we may apply Lemma 4.1 toPT−tkf and obtain the following formula
for Dǫ

k.

Dǫ
k = PT−tkf (yǫtk

ǫ

) − PT−tkf (yǫtk−1

ǫ

) +∆tkPT−tkL̄f (yǫtk−1

ǫ

)

= ǫ

m
∑

j=1

(

dPT−tkf (Yj(y
ǫ
tk
ǫ

))βj(z
ǫ
tk
ǫ

) − dPT−tkf (Yj(y
ǫ
tk−1

ǫ

))βj(z
ǫ
tk−1

ǫ

)

)

+∆tkPT−tkL̄f (yǫtk−1

ǫ

) − ǫ

m
∑

i,j=1

∫
tk
ǫ

tk−1

ǫ

(

LYi
LYj

PT−tkf (yǫr)
)

αi(z
ǫ
r) βj(z

ǫ
r) dr

−√
ǫ

m
∑

j=1

m′
∑

k=1

∫ t
ǫ

s
ǫ

dPT−tkf (Yj(y
ǫ
r)) dβj(Xk(z

ǫ
r)) dW

k
r .

SinceY0, Yk ∈ BV,0, LYi
LYj

PT−tkf ∈ BV,0, which follows the same argument
as for Lemma 7.1. In particular, for each0 < ǫ ≤ ǫ0,

∫ t
ǫ

0

E
(∣

∣LYi
LYj

PT−tkf (yǫr)
∣

∣

)2
dr <∞.

The expectation of the martingale term in the above formula vanishes. Forj =
1, . . . , m andk = 1, . . . , N , let

Aǫ
jk = dPT−tkf

(

Yj(y
ǫ
tk
ǫ

)
)

βj(z
ǫ
tk
ǫ

) − dPT−tkf

(

Yj(y
ǫ
tk−1

ǫ

)

)

βj(z
ǫ
tk−1

ǫ

),

Bǫ
k = ∆tk(PT−tkL̄f )(yǫtk−1

ǫ

) − ǫ
m
∑

i,j=1

∫

tk
ǫ

tk−1

ǫ

(

LYi
LYj

PT−tkf
)

(yǫr)αi(z
ǫ
r) βj(z

ǫ
r) dr.



RATE OF CONVERGENCE 43

Step 4. We recall thatL̄PT−tkf =
∑m

i,j=1 αiβjLYi
LYj

PT−tkf . By Theorem
7.2,LYi

LYj
PT−tkf is C2. Furthermore by Assumption 3.1, the (zǫt ) diffusion has

exponential mixing rate. We apply Corollary 5.3 to each function of the form
LYi

LYj
PT−tkf and takeh = αiβj There exist a constantc̃ and a functionγi,j,,k,ǫ ∈

BV,0 such that

|Bǫ
k| ≤ ∆tk

m
∑

i,j=1

∣

∣

∣

∣

∣

αiβj LYi
LYj

PT−tkf

(

yǫtk−1

ǫ

)

− ǫ

∆tk

∫
tk
ǫ

tk−1

ǫ

E
{

LYi
LYj

PT−tkf (yǫr)(αiβj)(z
ǫ
r)|F tk−1

ǫ

}

dr

≤
m
∑

i,j=1

c̃|αiβj |∞γi,j,k,ǫ(yǫtk−1

ǫ

)
(

ǫ2 + (∆tk)2
)

,

where denotingGk
i,j := LYi

LYj
PT−tkf ,

γi,j,k,ǫ = |Gk
i,j|+

m
∑

l′=1

|LYl′
Gk

i,j|+
m
∑

l,l′=1

ǫ

∆tk

∫
tk
ǫ

tk−1

ǫ

E
{∣

∣LYl
LYl′

Gk
i,j(y

ǫ
r)
∣

∣ | F s
ǫ

}

dr.

By Theorem 7.2,Gk
i,j = LYi

LYj
PT−tkf belong toBV,2. FurthermoreGk

i,j and its
first two derivatives are bounded by a function inBV,0 which depends onf only
through

∑4

k=0 PT−tk(|∇(k)df |p), for somep. Thus there are numbersc, q such that
for all k, maxi,j |γi,j,k,ǫ| ≤ c+ cV q, for somec, q. Since∆tk ≤ ǫ ≤ 1,N ∼ O(1

ǫ
),

we summing overk,

N
∑

k=1

E|Bǫ
k| ≤ 2ǫ · c · c̃

m
∑

i,j=1

|αiβj|∞Cq(T ) sup
k

E
(

1 + V q(yǫtk−1

ǫ

)

)

≤ ǫC(T )γ̃(y0),

(8.7)
for some constantC(T ) and some functioñγ inBV,0. If f ∈ BC4, it is easy to see
that there is a functiong ∈ BV,0, not depending onf , s.t.maxi,j,k Eγi,j,k,ǫ(yǫtk−1

ǫ

) ≤
C(T )g(y0)|f |4,∞.

Step 5.Finally, by Lemma 8.4 below, forǫ ≤ s ≤ t ≤ T andf ∈ BV,3, there
is a constantC and functioñγ ∈ BV,0, depending onT, f s.t. for0 ≤ s < t ≤ T ,
∣

∣

∣

∣

∣

m
∑

j=1

Edf (Yj(y
ǫ
t
ǫ

))βj(z
ǫ
t
ǫ

) − Edf (Yj(y
ǫ
s
ǫ
))βj(z

ǫ
s
ǫ
)

∣

∣

∣

∣

∣

≤ Cγ(y0)ǫ
√

| log ǫ|+Cγ(y0)(t−s).

(8.8)
For the partitiont0 < t1 < · · · < tN , we assumed thatt1 − t0 ≤ ǫ and∆tk = ǫ
for k ≥ 1. Let k ≥ 2. SincedPT−tkf (Yj) ∈ BV,3, estimate (8.8) holds also withf
replaced bydPT−tkf (Yj), and we have:

∣

∣

∣

∣

∣

m
∑

j=1

ǫEAǫ
jk

∣

∣

∣

∣

∣

≤ Cγ̃(y0)ǫ
2
√

| log ǫ|, k ≥ 2 (8.9)
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Sinceβj are bounded and by Theorem 7.2dPT−tkf is bounded by a function
in BV,0 that does not depend onk, for ǫ ≤ ǫ0, each termE|Aǫ

jk| is bounded
by a function inBV,0 andsup0<ǫ≤ǫ0

|EAǫ
jk| is of orderǫγ̃(y0) for some function

γ̃ ∈ BV,0. We ignore a finite number of terms in the summation. In particular we
will not need to worry about the terms withk = 1. Since the sum overk involves
O(1

ǫ
) terms the following bound follows from (8.9):

N
∑

k=1

∣

∣

∣

∣

∣

m
∑

j=1

ǫEAǫ
jk

∣

∣

∣

∣

∣

≤ Cγ̃(y0)ǫ
√

| log ǫ|. (8.10)

Here γ̃ ∈ BV,0 and may depend onf . The case off ∈ BC4 can be treated
similarly. The estimate is of the form̃γ(ǫ) = (1+ |f |4,∞)γ0 whereγ0 ∈ BV,0 does
not depend onf . We putting together (8.3), (8.5), (8.7) and (8.10)to see that if
f ∈ BV,4,

∣

∣

∣
Ef
(

Φǫ
t
ǫ

(y0)
)

− Ptf (y0)
∣

∣

∣
≤ C(T )γ(y0)ǫ

√

| log ǫ|,

whereγ ∈ BV,0. If f ∈ BC4, collecting the estimates together, we see that there
is a constantC(T ) s.t.

∣

∣

∣
Ef
(

Φǫ
t
ǫ

(y0)
)

− Ptf (y0)
∣

∣

∣
≤ ǫ
√

| log ǫ|C(T )

(

1 +
4
∑

k=1

|∇(k−1)df |∞
)

γ̃(y0)

whereγ̃ is a function inBV,0 that does not depend onf . By induction the finite
dimensional distributions converge and hence the requiredweak convergence. The
proof is complete. �

Lemma 8.3 Assume that (3.1) are complete for allǫ ∈ (0, ǫ0), someǫ0 > 0.

(1) L0 is a regularity improving Fredholm operator on a compact manifold G,
αk ∈ C3 ∩N⊥.

(2) There existsV ∈ C2(M ;R+), constantsc,K, s.t.

m
∑

j=1

|LYj
V | ≤ c+KV,

m
∑

j=1

|LYi
LYj

V | ≤ c +KV.

(2’) There exists a locally boundedV : M → R+ such that for allq ≥ 2 and
t > 0 there are constantsC(t) andq′, with the property that

sup
s≤u≤t

E
{

(V (yǫu))q | F s
ǫ

}

≤ CV q′(yǫs
ǫ
) + C. (8.11)
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(3) For V in part (2) or in part (2’),supǫ EV q(yǫ0) <∞ for all q ≥ 2.

For f ∈ C2 with the property thatLYj
f, LYi

LYj
f ∈ BV,0 for all i, j, there exists a

numberǫ0 > 0 s.t. for every0 < ǫ ≤ ǫ0,
∣

∣

∣
E
{

f (yǫt
ǫ

) | F s
ǫ

}

− f (yǫs
ǫ
)
∣

∣

∣
≤ γ1(y

ǫ
s
ǫ
)max

j
|βj|∞ ǫ+(t−s)γ2(yǫs

ǫ
)max

i
|αi|∞max

j
|βj|∞.

Here γ1, γ2 ∈ BV,0 and depend on|f | only through|LYj
f | and |LYj

LYi
f |. In

particular there existsγ ∈ BV,0 s.t. for all0 < ǫ ≤ ǫ0,
∣

∣

∣
Ef (yǫt

ǫ

) − Ef (yǫs
ǫ
)
∣

∣

∣
≤ sup

0<ǫ≤ǫ0

Eγ(yǫ0)(t− s+ ǫ).

Furthermore,sup0<ǫ≤ǫ0
E
∣

∣

∣
f (yǫt

ǫ

) − f (yǫs
ǫ
)
∣

∣

∣
≤ (ǫ+

√
t− s))Eγ(yǫ0).

Proof Since the hypothesis of Theorem 5.2 holds, ifV is as defined in (2), it
satisfies (2’). SinceLYj

f ∈ BV,0, sups≤t E|LYj
f (yǫs

ǫ
)|2 is finite. We apply Lemma

4.1:

E
{

f (yǫt
ǫ

) | F s
ǫ

}

= f (yǫs
ǫ
) + ǫ

m
∑

j=1

E
{(

df (Yj(y
ǫ
t
ǫ

))βj(z
ǫ
t
ǫ

) − df (Yj(y
ǫ
s
ǫ
))βj(z

ǫ
s
ǫ
)
)

| F s
ǫ

}

− ǫ
m
∑

i,j=1

E

{

∫ t
ǫ

s
ǫ

LYi
LYj

f (yǫr))αi(z
ǫ
r) βj(z

ǫ
r) dr | F s

ǫ

}

.

Let

γ1(y
ǫ
s
ǫ
) = 2 sup

s≤r≤t

m
∑

j=1

E
{

|LYj
f (yǫr

ǫ
)| | F s

ǫ

}

, γ2(y
ǫ
s
ǫ
) = sup

s≤r≤t

m
∑

i,j=1

E
{

|LYi
LYj

f (yǫs
ǫ
))| | F s

ǫ

}

.

SinceLYj
f andLYi

LYj
f ∈ BV,0, γ1, γ2 ∈ BV,0. The required conclusion follows

for there conditioned inequality, and hence the estimate for
∣

∣

∣Ef (yǫt
ǫ

) − Ef (yǫs
ǫ
)
∣

∣

∣.

To estimateE
∣

∣

∣
f (yǫt

ǫ

) − f (yǫs
ǫ
)
∣

∣

∣
, we need to involve the diffusion term in (4.1) and

hence
√
t− s appears.

�

Lemma 8.4 Assume the conditions of Lemma 8.3 and Assumption 3.1. Letyǫ0 =
y0. If f ∈ C3 is s.t. |LYj

f |, |LYi
LYj

f |, |LYl
LYi

LYj
f | belong toBV,0 for all i, j, k,

then for someǫ0 and all0 < ǫ ≤ ǫ0 and for all0 ≤ ǫ ≤ s < t ≤ T whereT > 0,
∣

∣

∣

∣

∣

m
∑

l=1

Edf (Yl(y
ǫ
t
ǫ

))βl(z
ǫ
t
ǫ

) − Edf (Yl(y
ǫ
s
ǫ
))βl(z

ǫ
s
ǫ
)

∣

∣

∣

∣

∣

≤ C(T )γ(y0)ǫ
√

| log ǫ|+C(T )γ(y0)(t−s),
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whereγ ∈ BV,0 andC(T ) is a constant. If the assumptions of Theorem 8.2 holds,
the above estimate holds for anyf ∈ BV,3; if f ∈ BC3, we may takeγ =
(|f |3,∞ + 1)γ̃ whereγ̃ ∈ BV,0.

Proof Let t ≤ T . Sinceβl(zǫt
ǫ

) is the highly oscillating term, we expect that

averaging in the oscillation inβl gains anǫ in the estimation. We first split the
sums:
(

df (Yl(y
ǫ
t
ǫ

))βl(z
ǫ
t
ǫ

)
)

−
(

df (Yl(y
ǫ
s
ǫ
))βl(z

ǫ
s
ǫ
)
)

= df (Yl(y
ǫ
s
ǫ
))
(

βl(z
ǫ
t
ǫ

) − βl(z
ǫ
s
ǫ
)
)

+
(

df (Yl(y
ǫ
t
ǫ

)) − df (Yl(y
ǫ
s
ǫ
))
)

βl(z
ǫ
t
ǫ

) = Il + IIl.

(8.12)
By Assumption 3.1,L0 has mixing rateψ(r) = ae−δr. Let s′ < s ≤ t,

∣

∣

∣
Edf (Yl(y

ǫ
s′

ǫ

))
(

βl(z
ǫ
t
ǫ

) − βl(z
ǫ
s
ǫ
)
)∣

∣

∣
≤ E

(

∣

∣

∣
df
(

Yl(y
ǫ
s′

ǫ

)
)∣

∣

∣
·
∣

∣

∣

∣

∣

1

ǫ

∫ t
ǫ

s
ǫ

E
{

αl(z
ǫ
r)|F s′

ǫ

}

dr

∣

∣

∣

∣

∣

)

≤ E
∣

∣

∣
df
(

Yl(y
ǫ
s′

ǫ

)
)∣

∣

∣

1

ǫ

∫ t−s
ǫ

0

ψ

(

r + s−s′

ǫ

ǫ

)

dr

≤ a2

δ
e−

δ(s−s′)
ǫ2 E

∣

∣

∣
df
(

Yl(y
ǫ
s′

ǫ

)
)∣

∣

∣
.

If s − s′ = δ0ǫ
2| log ǫ|, exp

(

− δ(s−s′)
ǫ2

)

= ǫδδ0 . We apply Theorem 5.2 to the

functionsLYl
f ∈ BV,0. For a constantǫ0 > 0,

a2

δ
sup

0<ǫ≤ǫ0

sup
0≤s′≤t

E
∣

∣

∣

(

df (Yl(y
ǫ
s′

ǫ

))
)∣

∣

∣
≤ γ̃l(y0)

whereγ̃l is a function inBV,0, depending onT . Thus fors′ < s < t,
∣

∣

∣
E
(

df (Yl(y
ǫ
s′

ǫ

))
(

βl(z
ǫ
t
ǫ

) − βl(z
ǫ
s
ǫ
)
))∣

∣

∣
≤ γ̃l(y0)

a2

δ
exp

(

−δ(s− s′)
ǫ2

)

. (8.13)

Let us split the first term on the right hand side of (8.12). Denoting s′ = s −
1
δ
ǫ2| log ǫ|,

Il = Edf (Yl(y
ǫ
s
ǫ
))
(

βl(z
ǫ
t
ǫ

) − βl(z
ǫ
s
ǫ
)
)

= Edf (Yl(y
ǫ
s′

ǫ

))
(

βl(z
ǫ
t
ǫ

) − βl(z
ǫ
s
ǫ
)
)

+ E
((

df (Yl(y
ǫ
s
ǫ
)) − df (Yl(y

ǫ
s′

ǫ

))
)(

βl(z
ǫ
t
ǫ

) − βl(z
ǫ
s
ǫ
)
))

.

The first term on the right hand side is estimated by (8.13). Tothe second term we
take the supremum norm ofβl and use Lemma 8.3. For somẽC(T ) andγ ∈ BV,0,

E
∣

∣

∣
df (Yl(y

ǫ
s
ǫ
)) − df (Yl(y

ǫ
s′

ǫ

))
∣

∣

∣
≤ C̃(T )γ(y0)

(

ǫ+
1√
δ
ǫ| log ǫ| 12

)

. (8.14)
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Then for some numberC(T ),

∑

l

Il ≤
1√
δ
ǫ
√

| log ǫ|C(T )γ(y0) (8.15)

whereγ ∈ BV,0. Let us treat the second term on the right hand side of (8.12).Let
t′ = t− 1

δ
ǫ2| log ǫ|. Then

IIl = E
(

df (Yl(y
ǫ
t
ǫ

)) − df (Yl(y
ǫ
s
ǫ
))
)

βl(z
ǫ
t
ǫ

)

= E
(

df (Yl(y
ǫ
t
ǫ

)) − df (Yl(y
ǫ
t′

ǫ

))
)

βl(z
ǫ
t
ǫ

) + E
(

df (Yl(y
ǫ
t′

ǫ

)) − df (Yl(y
ǫ
s
ǫ
))
)

βl(z
ǫ
t
ǫ

).

To the first term we apply (8.14) and obtain a rate1√
δ
ǫ
√

| log ǫ|. We could assume

thatβl averages to zero. Subtracting the termβ̄l does not changeIl. Alternatively

Lemma 8.3 provides an estimate of orderǫ for
∣

∣

∣
E
(

df (Yl(yǫt
ǫ

)) − df (Yl(yǫs
ǫ
))
)∣

∣

∣
. Fi-

nally, since
∫

βdπ = 0,
∣

∣

∣
E
(

df (Yl(y
ǫ
t′

ǫ

)) − df (Yl(y
ǫ
s
ǫ
))
)

βl(z
ǫ
t
ǫ

)
∣

∣

∣
=
∣

∣

∣
E
(

df (Yl(y
ǫ
t′

ǫ

)) − df (Yl(y
ǫ
s
ǫ
))
)

E
{

βl(z
ǫ
t
ǫ

) |F t′

ǫ

}∣

∣

∣

≤ E
∣

∣

∣
df (Yl(y

ǫ
t′

ǫ

)) − df (Yl(y
ǫ
s
ǫ
))
∣

∣

∣
|βl|∞ae−δ t−t′

ǫ2 ≤ γl(y0)|βl|∞aǫ.

In the last step we used condition (2’) andγl is a function inBV,0. We have proved
the first assertion.

If the assumptions of Theorem 8.2 holds, for anyf ∈ BV,3, the following
functions belong toBV,0: |LYj

f |, |LYi
LYj

f |, and|LYl
LYi

LYj
f |. If f ∈ BC3, the

above mentioned functions can be obviously controlled by|f |3,∞ multiplied by a
function inBV,0, thus completing the proof. �

9 Rate of Convergence in Wasserstein Distance

Let B(M) denotes the collection of Borel sets in aCk smooth Riemannian mani-
fold M with the Riemannian distance functionρ; let P(M) be the space of prob-
ability measures onM . Let ǫ ∈ (0, ǫ0) whereǫ0 is a positive number. IfPǫ → P
weakly, we may use either the total variation distance or theWasserstein distance,
both imply weak convergence, to measure the rate of the convergence ofPǫ to P .
Let ρ denotes the Riemannian distance function. The Wasserstein1-distance is

dW (P,Q) = inf
(π1)∗µ=P,(π2)∗µ=Q

∫

M×M

ρ(x, y)dµ(x, y).

Hereπi :M ×M → M are projections to the first and the second factors respec-
tively, and the infimum are taken over probability measures onM×M that couples
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Q andP . If the diameter, diam(M), of M is finite, then the Wasserstein distance
is controlled by the total variation distance,dW (P,Q) ≤ diam(M)‖P − Q‖TV .
See C. Villani [44].

Let us assume that the manifold has bounded geometry; i.e. ithas positive
injectivity radius, inj(M), the curvature tensor and the covariant derivatives of
the curvature tensor are bounded. The exponential map from aball of radiusr,
r < inj(M), at a pointx defines a chart, through a fixed orthonormal frame at
x. Coordinates that consists of the above mentioned exponential charts are said
to be canonical. In canonical coordinates, all transitionsfunctions have bounded
derivatives of all order. Thatf is bounded inCk can be formulated as below: for
any canonical coordinates and for any integerk, |∂λf | is bounded for any multi-
indexλ up to orderk. The following types of manifolds have bounded geometry:
Lie groups, homogeneous spaces with invariant metrics, Riemannian covering
spaces of compact manifolds.

In the lemma below we deduce from the convergence rate ofPǫ to P in the
(Ck)∗ norm a rate in the Wasserstein distance. Letρ be the Riemannian distance
with reference to which we speak of Lipschitz continuity of areal valued function
onM and the Wasserstein distance onP(M). If ξ is a random variable we denote
by P̂ξ its probability distribution. Denote by|f |Lip the Lipschitz constant of the
functionf . Let p ∈M . Let |f |Ck = |f |∞ +

∑k−1

j=0 |∇jdf |∞.

Lemma 9.1 Let ξ1 andξ2 be random variables on aCk manifoldM , wherek ≥
1, with bounded geometry. Suppose that for a reference pointp ∈ M , c0 :=
∑2

i=1 Eρ2(ξi, p) is finite. Suppose that there exist numbersc ≥ 0, α ∈ (0, 1), ǫ ∈
(0, 1] s.t. forg ∈ BCk,

|Eg(ξ1) − Eg(ξ2)| ≤ cǫα(1 + |g|Ck).

Then there is a constantC, depending only on the geometry of the manifold, s.t.

dW (P̂ξ1 , P̂ξ2) ≤ C(c0 + c)ǫ
α
k .

Proof If k = 1, this is clear. Let us takek ≥ 2 and letf :M → R be a Lipschitz
continuous function with Lipschitz constant1. Since we are concerned only with
the difference of the values off at two points,|Ef (ξ1) − Ef (ξ2)|, we first shiftf
so that its value at the reference point is zero. By the Lipschitz continuity off ,
|f (x)| ≤ |f |Lip ρ(x, p). We may also assume thatf is bounded; if not we define
a family of functionsfn = (f ∧ n) ∨ (−n). Thenfn is Lipschitz continuous
with its Lipschitz constant bounded by|f |Lip. Let i = 1, 2. The correction term
(f − fn)(ξi) can be easily controlled by the second moment ofρ(p, ξi):

E|(f − fn)(ξi)| ≤ E|f (ξi)|1{|f (ξi)|>n} ≤
1

n
Ef (ξi)

2 ≤ 1

n
Eρ2(p, ξi).
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Let η : Rn → R be a function supported in the ballB(x0, 1) with |η|L1
= 1

andηδ = δ−nη(x
δ
), whereδ is a positive number andn is the dimension of the

manifold. IfM = R
n,

|Ef (ξ1) − Ef (ξ2)|

≤ |E(f ∗ ηδ)(ξ1) − E(f ∗ ηδ)(ξ2)|+
2
∑

i=1

|E(f ∗ ηδ)(ξi) − Ef (ξi)|

≤ cǫα(1 + |f ∗ ηδ|Ck) + 2δ|f |Lip.

In the last step we used the assumption onE|f ∗ ηδ(ξ1) − f ∗ ηδ(ξ2)| for theBCk

functionf ∗ ηδ. By distributing the derivatives toηδ we see that the norm of the
first k derivatives off ∗ ηδ are controlled by|f |Lip. If f is bounded,

cǫα(1 + |f ∗ ηδ|Ck) ≤ cǫα(1 + |f |∞ + c1δ
−k+1|f |Lip),

wherec1 is a combinatorial constant. To summarize, for all Lipschitz continuous
f with |f |Lip = 1,

|Ef (ξ1) − Ef (ξ2)| ≤ 2δ|f |Lip + cǫα(1 + |fn ∗ ηδ|Ck) +
c0
n

≤ 2δ + cǫα + cǫαn+ c1cǫ
αδ−k+1 +

c0
n
.

Let δ = ǫ
α
k . Sincek ≥ 2, we choosen with the propertyǫ−

α
k ≤ n ≤ 2ǫ−α+α

k ,
then forf with |f |Lip = 1,

|Ef (ξ1) − Ef (ξ2)| ≤ (2 + 2c+ c1c+ 2c0)ǫ
α
k .

Let δ be a positive number with4δ < inj(M). LetBx(r) denotes the geodesic
ball centred atx with radiusr, whose Riemannian volume is denoted byV (x, r).
There is a countable sequence{xi} inM with the following property: (1){Bxi

(δ)}
coversM ; (2) There is a natural numberN such that any pointy belongs to at most
N balls from{Bxi

(3δ)}; i.e. the cover{Bxi
(3δ)} has finite multiplicity. Moreover

this numberN is independent ofδ. See M. A. Shubin [40]. To see the indepen-
dence ofN on δ, let us choose a sequence{xi, i ≥ 1} in M with the property
that{Bxi

(δ)} coversM and{Bxi
( δ
2
)} are pairwise disjoint. Since the curvature

tensors and their derivatives are bounded, there is a positive numberC such that

1

C
≤ V (x, r)
V (y, r)

≤ C, x, y ∈M, r ∈ (0, 4δ).

Let y ∈ M be a fixed point that belongs toN balls of the formBxi
( δ
2
). Since

Bxi
( δ
2
) ⊂ B(y, 4δ), the sum of the volume satisfies:

∑

V (xi, δ2 ) ≤ V (y, 4δ) and
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N
C
V (y, δ

2
) ≤ V (y, 4δ). The ratiosupy

V (y,4δ)
V (y, δ

2
)

depends only on the dimension of the

manifold.
Let us take aCk smooth partition of unity{αi, i ∈ Λ} that is subordinated to

{Bxi
(2δ)}: 1 =

∑

i∈Λ φi, φi ≥ 0, φi is supported inBxi
(2δ), and for any pointx

there are only a finite number of non-zero summands in
∑

i∈Λ αi(x). The partition
of unity satisfies the additional property:supi |∂λαi| ≤ Cλ, αi ≥ 0.

Let (Bxi
(inj(M)), φi) be the geodesic charts. Letfi = fαi and letg̃ = g ◦ φi

denote the representation of a functiong in a chart.

|Ef (ξ1) − Ef (ξ2)| =
∣

∣

∣

∣

∣

∑

i∈Λ
Ef̃i

(

φ−1
i (ξ1)

)

−
∑

i∈Λ
Ef̃i

(

φ−1
i (ξ2)

)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∑

i∈Λ
Ef̃i ∗ ηδ

(

φ−1
i (ξ1)

)

−
∑

i∈Λ
Ef̃i ∗ ηδ

(

φ−1
i (ξ2)

)

∣

∣

∣

∣

∣

+

2
∑

j=1

∣

∣

∣

∣

∣

∑

i∈Λ
Ef̃i ∗ ηδ

(

φ−1
i (ξj)

)

−
∑

i∈Λ
Ef̃i

(

φ−1
i (ξj)

)

∣

∣

∣

∣

∣

.

It is crucial to note that there are at mostN non-zero terms in the summation. By
the assumption, for eachi,

∣

∣

∣
Ef̃i ∗ ηδ

(

φ−1
i (ξ1)

)

− Ef̃i ∗ ηδ
(

φ−1
i (ξ2)

)

∣

∣

∣
≤ cǫα|f̃i ∗ ηδ ◦ φ−1

i |Ck .

By construction,supi |αi|Ck is bounded. There is a constantc′ that depends only
on the partition of unity, such that

|f̃i ∗ ηδ ◦ φ−1
i |Ck ≤ c′|f̃i ∗ ηδ|Ck ≤ c′|f̃ |∞ + c′c1δ

1−k|f̃ |Lip

Similarly for the second summation, we work with the representatives offi,
∣

∣

∣
f̃i ∗ ηδ

(

φ−1
i (y)

)

− f̃i
(

φ−1
i (y)

)

∣

∣

∣
≤ δ|f̃i|Lip ≤ c′δ.

Since we work in the geodesic charts the Lipschitz constant of f̃i are comparable
to that of|f |Lip. Let |f |Lip = 1. If f is bounded,

|Ef (ξ1) − Ef (ξ2)| ≤ Ncǫα(1 + c′|f |∞ + c′δ1−k) + 2c′δN

Let δ = ǫ
α
k ,

|Ef (ξ1) − Ef (ξ2)| ≤ Ncǫα(c′|f |∞ + 1) +Nc′ǫ
α
k + 2c′Nǫ

α
k .

On a compact manifold,|f |∞ can be controlled by|f |Lip; otherwise we use the
cut off functionfn in place off and the estimateE|(f − fn)(ξi)| ≤ c0

n
. Choose
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n sufficiently large, as before, to see that|Ef (ξ1) − Ef (ξ2)| ≤ Cǫ
α
k . Finally we

apply the Kantorovich-Rubinstein duality theorem,

dW (P̂ξ1 , P̂ξ2) = sup
f :|f |Lip≤1

{|Ef (ξ1) − Ef (ξ2)|} ≤ Cǫ
α
k ,

to obtain the required estimate on the Wasserstein 1-distance and concluding the
proof. �

Let evt : C([0, T ];M) → M denote the evaluation map at timet : ev(σ) =
σ(t). Let P̂ξ denote the probability distribution of a random variableξ. Leto ∈ M .

Proposition 9.2 Assume the conditions and notations of Theorem 8.2. Suppose
thatM has bounded geometry andρ2o ∈ BV,0. Let µ̄ be the limit measure and
µ̄t = (evt)∗µ̄. Then for everyr < 1

4
there existsC(T ) ∈ BV,0 andǫ0 > 0 s.t. for

all ǫ ≤ ǫ0 andt ≤ T ,
dW (P̂yǫt

ǫ

, µ̄t) ≤ C(T )ǫr.

Proof By Theorem 8.2, forf ∈ BC4,
∣

∣

∣
Ef (Φǫ

t
ǫ

(y0)) − Ptf (y0)
∣

∣

∣
≤ C(T )(y0)ǫ

√

| log ǫ|,

whereC(T )(y0) ≤ C̃(T )(y0)(1+ |f |C4) for some functionC̃(T ) ∈ BV,0. Since by
Theorem 5.2, there existsǫ0 > 0 such thatsupǫ≤ǫ0

Eρ2o(Φ
ǫ
t(y0)) is finite, we takeα

in Lemma 9.1 to be any number less than1 to conclude the proposition. �

10 Appendix

We began with the proof of Lemma 3.1, follow it with a discussion on conditional
inequalities without assuming conditions on theσ-algebra concerned.

Proof of Lemma 3.1

Step 1. Denoteψ(t) = ae−δt. Firstly, if f ∈ Bb(G;R) andz ∈ G,

|Qtf (z) − πf | ≤ ‖f‖W · ψ(t) ·W (z).

Next, by the Markov property of (zt) and the assumption that
∫

gdπ = 0:
∣

∣

∣

∣

E{f (zs2)g(zs1)|Fs} −
∫

G

fQs1−s2gdπ

∣

∣

∣

∣

=

∣

∣

∣

∣

E
{

(fQs1−s2g) (zs2)
∣

∣

∣
Fs

}

−
∫

G

fQs1−s2gdπ

∣

∣

∣

∣

≤ ψ(s2 − s) ‖fQs1−s2g‖W W (zs) ≤ ψ(s2 − s) sup
z∈G

( |f (z)||Qs1−s2g(z)|
W (z)

)

W (zs)

≤ ψ(s2 − s)ψ(s1 − s2)|f |∞ ‖g‖WW (zs) ≤ aψ(s1 − s)|f |∞‖g‖WW (zs).
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From this we see that,
∣

∣

∣

∣

1

t− s

∫ t

s

∫ s1

s

(

E
{

f (zs2)g(zs1)
∣

∣

∣
Fs

}

−
∫

G

fQs1−s2gdπ

)

ds2ds1

∣

∣

∣

∣

≤ a|f |∞ ‖g‖WW (zs)
1

t− s

∫ t

s

∫ s1

s

ψ (s1 − s) ds2 ds1

≤ a2

δ2(t− s)
|f |∞ ‖g‖WW (zs)

∫ (t−s)δ

0

re−r dr ≤ a2

δ2(t− s)
|f |∞ ‖g‖WW (zs).

This concludes (1). Step 2. For (2), we compute the following:

1

t− s

∫ t

s

∫ s1

s

∫

G

fQs1−s2g dπ ds2 ds1 =

∫

G

1

t− s

∫ t−s

0

fQrg(t− s− r) drdπ

=

∫

G

∫ ∞

0

(fQrg) dr dπ −
∫

G

∫ ∞

t−s

fQrg dr dπ − 1

t− s

∫

G

∫ t−s

0

rfQrg drdπ.

We estimate the last two terms. Firstly,
∣

∣

∣

∣

∫

G

∫ ∞

t−s

f (z)Qrg(z) dr dπ(z)

∣

∣

∣

∣

≤ |f |∞
∣

∣

∣

∣

∫

G

∫ ∞

t−s

|Qrg(z)| dr dπ(z)

∣

∣

∣

∣

∞

≤ |f |∞‖g‖W
∫

G

W (z)π(dz)
∫ ∞

t−s

ψ(r)dr ≤ 1

δ
|f |∞‖g‖WW̄

∫ ∞

(t−s)δ
ae−rdr

≤ a

δ
|f |∞‖g‖WW̄ .

It remains to calculate the following:
∣

∣

∣

∣

1

t− s

∫

G

∫ t−s

0

rfQrg drdπ

∣

∣

∣

∣

≤ 1

t− s
|f |∞‖g‖WW̄

∫ t−s

0

rψ(r) dr

≤ a

(t− s)δ2
|f |∞‖g‖WW̄ .

Gathering the estimates together we obtain the bound:
∣

∣

∣

∣

1

t− s

∫ t

s

∫ s1

s

∫

G

fQs1−s2g dπ ds2 ds1 −
∫

G

∫ ∞

0

(fQrg) dr dπ

∣

∣

∣

∣

≤ a

δ
|f |∞‖g‖WW̄ +

a

(t− s)δ2
|f |∞‖g‖W W̄ .

By adding this estimate to that in part (1), we conclude part (2):
∣

∣

∣

∣

1

t− s

∫ t

s

∫ s1

s

E
{

f (zs2)g(zs1)
∣

∣

∣
Fs

}

−
∫

G

∫ ∞

0

(fQrg) dr dπ

∣

∣

∣

∣

≤ a

δ
|f |∞‖g‖WW̄ +

a

(t− s)δ2
|f |∞‖g‖W W̄ +

a2

δ2(t− s)
|f |∞‖g‖WW (zs).

(10.1)
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We conclude part (2). Step 3. We first assume thatḡ = 0, then,
∣

∣

∣

∣

∣

ǫ

t− s

∫ t
ǫ

s
ǫ

∫ s1

s
ǫ

E
{

f (zǫs2)g(zǫs1)
∣

∣

∣
F s

ǫ

}

ds2 ds1

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

ǫ

t− s

∫ t
ǫ

s
ǫ

∫ s1

s
ǫ

E
{

f (zǫs2)g(zǫs1)
∣

∣

∣
F s

ǫ

}

ds2 ds1 −
∫

G

∫ ∞

0

fQǫ
rg dr dπ

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

G

∫ ∞

0

fQǫ
rg dr dπ

∣

∣

∣

∣

.

We note that for everyx ∈ G, ‖Qǫ
r(x, ·) − π‖TV,W ≤ ψ( r

ǫ
)W (x). In line (10.1)

we replaces, t, δ by s
ǫ
, t
ǫ
, andδ

ǫ
respectively to see the first term on the right hand

side is bounded by

aǫ3

δ2(t− s)
(aW (zǫs

ǫ
) + W̄ )|f |∞‖g‖W +

aǫ

δ
|f |∞‖g‖WW̄ .

Next we observe that
∫ ∞

0

f (z)Qǫ
sg(z) ds =

∫ ∞

0

f (z)Q s
ǫ
(z) ds = ǫ

∫ ∞

0

f (z)Qsg(z) ds
∣

∣

∣

∣

∫

G

∫ ∞

0

f (z)Qǫ
sg(z) ds dπ(z)

∣

∣

∣

∣

≤ ǫ |f |∞‖g‖WW̄
∫ ∞

0

ψ(s) ds =
aǫ

δ
|f |∞‖g‖WW̄ .

This gives the estimate for the case ofḡ = 0:
∣

∣

∣

∣

∣

ǫ

t− s

∫ t
ǫ

s
ǫ

∫ s1

s
ǫ

E
{

f (zǫs2)g(zǫs1)
∣

∣

∣
F s

ǫ

}

ds2 ds1

∣

∣

∣

∣

∣

≤ C1(z
ǫ
s
ǫ
)
ǫ3

t− s
+ C ′

2(z
ǫ
s
ǫ
)ǫ.

where

C1 =
a

δ2
(aW (·) + W̄ )|f |∞‖g‖W , C ′

2 =
2a

δ
|f |∞‖g‖WW̄ .

If
∫

g dπ 6= 0, we splitg = g − ḡ + ḡ and estimate the remaining term. We use
the fact thatπf = 0,
∣

∣

∣

∣

∣

ǫ

t− s

∫ t
ǫ

s
ǫ

∫ s1

s
ǫ

E
{

f (zǫs2)ḡ|F s
ǫ

}

ds2 ds1

∣

∣

∣

∣

∣

≤ |ḡ|
∣

∣

∣

∣

∣

ǫ

t− s

∫ t−s
ǫ

0

∫ s1

0

∣

∣Qǫ
s2
f (z s

ǫ
)
∣

∣ ds2 ds1

∣

∣

∣

∣

∣

≤ |ḡ‖|f‖WW (zǫs
ǫ
) sup
s1>0

{∣

∣

∣

∣

∫ s1

0

ψ(
s2
ǫ

)ds2

∣

∣

∣

∣

}

≤ |ḡ| ‖|f‖WW (zǫs
ǫ
)ǫ
∫ ∞

0

ψ(r)dr

=
aǫ

δ
|ḡ| ‖f‖WW (zǫs

ǫ
).
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Finally we obtain the required estimate in part (3):
∣

∣

∣

∣

∣

ǫ

t− s

∫ t
ǫ

s
ǫ

∫ s1

s
ǫ

E
{

f (zǫs2)g(zǫs1)
∣

∣

∣
F s

ǫ

}

ds2 ds1

∣

∣

∣

∣

∣

≤ C1(z
ǫ
s
ǫ
)

(

ǫ3

t− s

)

+ C ′
2(z

ǫ
s
ǫ
)ǫ+ ǫ

a

δ
|ḡ| ‖f‖WW (zǫs

ǫ
),

thus concluding part (3).
The following conditional inequalities are elementary. Weinclude a proof for

a partial conditional Burkholder-Davis-Gundy inequalityfor completeness. We
do not assume the existence of regular conditional probabilities.

Lemma 10.1 Let (Mt) be a continuousL2 martingale vanishing at0. Let(Ht) be
an adapted stochastic process with left continuous sample paths and right limits.
If for stopping timess < t, E

∫ t

s
(Hr)2d〈M〉r <∞. Then

E

{

(
∫ t

s

HrdMr

)2
∣

∣

∣
Fs

}

= E
{
∫ t

s

(Hr)
2d〈M〉r

∣

∣

∣
Fs

}

.

Lemma 10.2 Letp > 1 and(Mt) is a right continuous(Ft) martingale or a right
continuous positive sub-martingale index by an intervalI ofR+. Then,

E
{

sup
s∈I

|Mt|p
∣

∣

∣
Fs

}

≤
(

p

p− 1

)p

sup
s∈I

E
{

|Ms|p
∣

∣

∣
Fs

}

.

If (Mu, s ≤ u ≤ t) is a right continuous(Ft) martingale andp ≥ 2, there exists a
constantc(p) > 0 s.t.

E
{

sup
s≤u≤t

|Mu|p
∣

∣

∣
Fs

}

≤ cpE
{

〈M〉
p
2

t

∣

∣

∣
Fs

}

.

This proof is the same as the proof forFs the trivialσ-algebra, c.f. D. Revuz, M.
Yor [38].
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