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Abstract

Consider a family of random ordinary differential equatioon a manifold
driven by vector fields of the forty_, Yjau(2f(w)) whereY}, are vector fields,

€ is a positive number; is a%ﬁo diffusion process taking values in possibly a
different manifold,oy, are annihilators of keff;). Under Hormander type con-
ditions onL, we prove that, ag approaches zero, the stochastic proceg$es
converge weakly and in the Wasserstein topologies. We ithesttis limit and
give an upper bound for the rate of the convergence.

AMS classification: 60H, 60J, 60F, 60D.

1 Introduction

Let M andG be finite dimensional smooth manifolds. Dét, &k = 1,...,m, be
C* vector fields onV/, o, real valuedo™ functions onG, e a positive number, and
(zf) diffusions on a filtered probability spac@.(F, F;, P) with values inG and
infinitesimal generatof, = %EO which will be made precise later. The aim of this
paper is to study limit theorems associated to the systenndohary differential
equations onv/,

giw) = D Ve (4 (@) an(z (W) (1.1)
k=1

under the assumption that, ‘averages’ to zero. The ‘average’ is with respect
to the unique invariant probability measure 6§, in casef, satisfies strong
Hormander’s condition, and more generally the ‘averagdhe projection to a
suitable function space. We prove thatconverges as — 0 to a Markov pro-

cess whose Markov generator has an explicit expression.
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This study is motivated by problems arising from stochdstimogenization.
It turned out that in the study of randomly perturbed systents a conserved
quantity, which does not necessarily take value in a linpacs, the reduced equa-
tions for the slow variables can sometimes be transformied(3). Below, in
sectiorl 2 we illustrate this by 4 examples including one @enatthonormal frame
bundle over a Riemannian manifold. Of these examples, teeifirffrom [25]
where we did not know how to obtain a rate of convergence, bhadast three
from [26] where a family of interpolation equations on horangous manifolds
are introduced. An additional example can be found.in [24].

1.1 Ouitline of the Paper

In all the examples, which we describedsli below, the scalar functions average
to 0 with respect to a suitable probability measure(énBearing in mind that if

a Hamiltonian system approximates a physical system witlr eron a compact
time interval, over a time interval of siziethe physical orbits deviate visibly from
that of the Hamiltonian system unless the error is reducedduyllations, it is
natural and a classical problem to study ODEs whose righd bates are random
and whose averages in time are zero.

The objectives of the present article are: (1) to prove tsd,tends to zero,
the law of ()5, s < t) converges weakly to a probability measyr®n the path
space oven/ and to describe the properties of the limiting Markov semugs;

(2) to estimate the rate of convergence, especially in thes@ratein distance. For
simplicity we assume that all the equations are completsettions ¥, 15,16 and
we assume thaf, is a regularity improving Fredholm operator on a compact
manifold G, see Definitiorh.4]1. In Theorem 6.4 we assume, in additicat, £h

has Fredholm inde. But strong Hormander’s condition can be used to replace
the condition ‘regularity improving Fredholm operator nflex0’.

For simplicity, throughout the introductiony, are bounded and belong to
N+ where N is the kernel of£}, the adjoint of the unbounded operaty in
L?(G) with respect to the volume measure. In cdgés not elliptic we assume in
addition that > 3 orr > max {3, § + 1}, depending on the result. The growth
conditions onY;, are in terms of a control functioli and a controlled function
spaceBy, wherer indicates the order of the derivatives to be controlled, see
(5.1). For simplicity we assume bofii andG are compact.

In Sectior B we present two elementary lemmas, Leinnmia 3.4 amarid 3.5,
assumingC, mixes exponentially in a weighted total variation norm withight
W : G — R. In Section 4, for, a regularity improving Fredholm operator
and f a C? function, we deduce a formula fqi(y$) where the transmission of

the randomness from the fast motiosf)(to the slow motion 45) is manifested
in a martingale. This provides a platform for the uniformirasttes over large
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time intervals, weak convergences, and the study of rat®mfergence in later
sections.

In Sectiorib, we obtain uniform estimatesifor functionals ofy; over 0, 1.
Let £, be a regularity improving Fredholm operatgf,= o, andV’ aC? function
suchthad " | [Ly, V| < c+ KV, > " |Ly, Ly, V| < e+ KV for some numbers
cand K. Then, Theoremi 512, for every numbers> 1 there exists a positive
numbere, such thasup,_ ..., Esupy<,<, V?(y%) is finite and belongs t®y,, as
a function ofy,. This leads to convergence in the Wasserstein distance irimw
used later to prove a key lemma on averaging functions alomgaths ofy;, 2;).

In Section 6 £, is an operator on a compact maniféidsatisfying Hormander’s
condition and with Fredholm index M has positive injectivity radius and other
geometric restrictions. In particular we do not make anyegdion on the ergod-
icity of £,. Let ,3; denoted”, w;{a;53;, m) where{w;} is a basis of the kernel
of L, and{m} the dual basis in the kernel a¥;. Theoreni 64 states that, given
bounds ony;, and its derivatives and fax, € C” wherer > max {3, § + 1},
(ys, s < t) converges weakly, as— 0, to the Markov process with Markov gen-

eratorl = Zgzlf@LYiLyj. This follows from a tightness result, Proposition
where no assumption on the Fredholm indeX ois made, and a law of large
numbers for sub-elliptic operators on compact manifoldsnma 6.2. Conver-
gences of (y$,0 < t < T)} in the Wassersteip-distance are also obtained.

In Section¥ we study the solution flows of SDEs and their daased Kol-
mogorov equations, to be applied to the limiting operatan Section 8. Oth-
erwise this section is independent of the rest of the papetrYL Y, be C® and
C" vector fields respectively. [#/ is compact, or more generally ¥, are BC®
vector fields, the conclusions in this section holds, thyid®enote By, the set of
functions whose derivatives up to ordeare controlled by a functiolr, c.f.(5.1).
Let ®,(y) be the solution flow to

dy, = Z Yi(y) o dBf + Yo(ye)dt.
k=1

Let P, f(y) = Ef(P:(y)) andZ = £ X7, Vy, Yy + Yo. LetV € C?(M, R, ) and
sup,«, EV(¢s(y)) € By, for everyq > 1. This assumption ot is implied by
the following conditions]Ly,Ly,V| < c+ KV, |Ly,V| < c+ KV, whereC, K
are constants. Lét = 1 +1In(1+|V|). We assume, in addition, for some number
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c the following hold:

m 5 4

D D IV € Bro, Y IV@Y| € By,
Z |VYi|? < eV, sup (V. Z,u) < cV.
k=1 |ul=1

Then there is a global smooth solution fl@y), Theoreni_ Z.2. Furthermore for
f S BV,41 £f S BV’Q, £2f S BV70, andPtf S BV,4-

For M = R", an example of the control pair i§7(z) = C(1 + |z|?) and
V(z) = In(1 + |z|?). Our conditions are weaker than those commonly used in the
probability literature fowl(P, f), in two ways. Firstly we allow non-bounded first
order derivative, secondly we allow one sided conditionshandrift and its first
order derivatives. In this regard, we extend a theorem of Gtl&r, G. C. Papani-
colaou [32] where they used estimations from O. A. OleinikvERadkevic [31].
The estimates on the derivative flows, obtained in this sectire often assump-
tions in applications of Malliavin calculus to the study edchastic differential
equations. Results in this section might be of independeeatasts.

Let P, be the Markov semigroup generated By In Sectior 8, we prove the
following estimate]E f (P4 (vo)) — P.f (yo)| < C(t)v(yo)er/| log €| whereC'(t) is a
constant;y is a function inBy,, and®¢(y,) the solution to[(15) with initial value
yo. The conditions on the vector fields are similar to[(1.2), we also assume
the conditions of Theorein 5.2 and thag satisfies strong Hormander's condi-
tion. We incorporated traditional techniques on time agerg with techniques
from homogenization. The homogenization techniques wasldped from[[23]
which was inspired by the study in M. Hairer and G. Pavlidt2][ For the rate of
convergence we were particularly influenced by the foll@ypapers: W. Kohler
and G. C. Papanicolaou [32,/36] and G. C. Papanicolaou and&g S\Rradhan
[34]. Denotef?yet the probability distributions of the random variablgs and

fu the probabilify measure determined 1. The under suitable cor;ditions,
Wi(Pys , ) < C€', wherer is any positive number less or equal }oand Wi

denotes the Wasserstein 1-distance,$8ee

1.2 Main Theorems

We contrive to impose as little as possible on the vectordi€ld }, hence a few
sets of assumptions are used. For the examples we have in@isg compact

Lie group acting on a manifold/, and so for simplicityG is assumed to be
compact throughout the article, with few exceptions. Intare study, it would

be nice to provide some interesting examples in wididls not compact.
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If M is also compact, only the following two conditions are nekd@) L,
satisfies strong Hormander's condition; (b),} € C" N N+ where N is the
annihilator of the kernel of § andr is a sufficiently large number. £, is elliptic,

‘C™ can be replaced by ‘bounded measurable’. For the conveggeondition (a)
can be replaced by, satisfies Hormander’'s condition and has Fredholm index
0. If Ly has a unique invariant probability measure, no conditioveesded on the
Fredhom index oL,,.

Theorem[6.4 and Corollary[6.5. Under the conditions of Propositidn 6.1
and Assumption 6]1y() converges weakly to the Markov process determined by

m o
L=— Z OziﬁalOéijiLyj, aiﬁalaj = Zub<ai£alaj, ),
i,7=1 b=1
wheren, is the dimension of the kernel @, which, by the assumption tha},
has Fredholm indefi, equals the dimension of the kernel&f. The set of func-
tions {u,} is a basis of ket(,) and{m,} C ker(L{) its dual basis. In casg,
satisfies strong Hormander’s condition, then there is guainvariant measure
anda; L, ' is simply the average af; £, ' «; with respect to the unique invari-
ant measure. Let > 1 be a number andél” a Lyapunov type function such that
PP € By, afunction space controlled By. If furthermore Assumption5l.1 holds,
(y©) converges, on, t], in the Wassersteip-distance.

Theorem[8.2. Denote®;(-) the solution flow to[(1)5) and, the semigroup
for L. If AssumptiorL 8.1l holds then fof € By 4,

EF (9500) — Prf()| < ellog e > wo)

wherey; € By, andC(T) is a constant increasing iA. Similarly, if f € BC*,

E (22 0) = Prf)| < ellogel @) (1 +|flae) . (L3)

where~, is a function inBy, independent of andC' are increasing functions.

A complete connected Riemannian manifold is said to havaded geometry
if it has strictly positive injectivity radius, and if the &nannian curvature tensor
and its covariant derivatives are bounded.

Proposition [9.2. Suppose thaf\/ has bounded geometry? € By,, and
Assumptiorf 811 holds. Let be the limit measure an@d; = (ev;).ji. Then for
everyr < i there exist€’(T) € By andey > 0 s.t. for alle < ¢y andt < T,

dw(Law(ys), ) < C(T)e".
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Besides the fact that we work on manifolds, where there isniherited non-
linearity and the problem with cut locus, the following asjseof the paper are
perhaps new. (a) We do not assume there exists a uniqueanvarobability
measure on the noise and the effective processes are ablgiaesuitable projec-
tion, accommodating one type of degeneracy. Furthermer@dise takes value
in another manifold, accommodating ‘removable’ degener&or example the
stochastic processes in question lives in a Lie group, vihédenoise are entirely
in the directions of a sub-group. (b) We used Lyapunov fumdito control the
growth of the vector fields and their derivatives, leadingstimates uniform in
e and to the conclusion on the convergence in the Wassersigihogies. A key
step for the convergence is a law of large numbers, with rédesub-elliptic op-
erators (i.e. operators satisfying Hormander’s sulp#dliestimates). (c) Instead
of working with iterated time averages we use a solution te$tm equations to
reveal the effective operator. Functionals of the procegsesplits naturally into

the sum of a fast martingale, a finite variation term invogvinsecond order dif-
ferential operator in Hérmander form, and a term of orddfrom this we obtain
the effective diffusion, in explicit Hormander form. Itpgerhaps also new to have
an estimate for the rate of the convergence in the Wasseditance. Finally we
improved known theorems on the existence of global smodtltisns for SDEs
in [22], c.f. Theoren_7J2 below where a criterion is givenémns of a pair of
Lyapunov functions. New estimates on the moments of highgerocovariant
derivatives of the derivative flows are also given.

1.3 Classical Theorems

We review, briefly, basic ideas from existing literature andom ordinary differ-
ential equations with fast oscillating vector fields. Edt:, ¢, w, €) :== FO(z, t, w)+
eFO(z, t,w), whereF®(z, ¢, -) are measurable functions, for which a Birkhoff er-
godic theorem holds whose limit is denoted By The solutions to the equations
v = F(ys, E, w, €) over a time interval(], t], can be approximated by the solution
to the averaged equation driven By If F© = 0, we should observe the solu-
tions in the next time scale and stutly= %F(:cg, %, w,€). See R. L. Stratonovich
[42,143]. Suppose for some functioas, andb; the following estimates hold uni-
formly:

L[ M o, T2y po, T _
= EF7(z, e_Q)Fk (z, E—Q)drg dry — aj (s, )

1 s+e ry a aF(O) - , 1 e . )
= / / >_E agjk (z, E—i)FzﬁO’(x, E—é) dry dry + — / EF{"(z, ) dr — by(x, 5)
5 5 k=1 R

dry dry < o(e),

< o(e).
(1.4)
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Then under a ‘strong mixing’ condition with suitable mixingte, the solutions
of the equations:; = %F(xg, E%,w,e) converge weakly on any compact inter-
val to a Markov process. This is a theorem of R. L. Stratortoy#3] and R.
Z. Khasminskii[14], further refined and explored in Khasskim[15] and A. N.
Borodin [3]. These theorems lay foundation for investigatbeyond ordinary
differential equations with a fast oscillating right handes

In our case, noise comes into the system ig-aliffusion satisfying Hormander’s
conditions, and hence we could by pass these assumptioredsmdbtain con-
vergences in the Wasserstein distances. For manifolddaloehastic processes,
some difficulties are caused by the inherited non-lineaFity example, integrat-
ing a vector field along a path makes sense only after theyaedl@l translated
back. Parallel transports of a vector field along a path, ftone ¢ to time 0,
involves the whole path up to timeand introduces extra difficulties; this is still
an unexplored territory wanting further investigationer the proof of tightness,
the non-linearity causes particular difficulty if the Riem&n distance function
is not smooth. The advantage of working on a manifold setsrtgat for some
specific physical models, the noise can be untwisted andnbes@asy to deal
with.

Our estimates for the rate of convergence, seéfion 8 anchheaonsidered
as an extension to that in W. Kohler and G. C. Papanicolac\@&R which were
in turn developed from the following sequence of remarkgilgers: R. Coghurn
and R. Hersh [6], J.B. Keller and G. C. Papanicolaoll [35], &sH and M. Pinsky
[17], R. Hersh and G. C. Papanicolaou![16] and G. C. Papawcoand S.R.S.
Varadhan([34]. See also T. Kuriz ]21] and [33] by D. Stroocld & R. S. Varad-
han.

The condition/ = 0 needs not hold for this type of scaling and conver-
gence. IfF(z,t,w, €) = FO(z, ¢,(w)), where(, is a stationary process with val-
ues inR™, and F©® = X, the Hamiltonian vector field associated to a function
H € BC3(R?*;/R) whose level sets are closed connected curves without inter
sections, therf{(y$) converge to a Markov process, under suitable mixing and

technical assumptions. See A. N. Borodin and M. Freidlin §$o M. Freidlin

and M. Weber[[8] where a first integral replaces the Hamidonand also X.-M.
Li [25] where the value of a map from a manifold to another issgrved by the
unperturbed system.

In M. Freidlin and A. D.Wentzell[9], the following type of ag¢ral limit the-
orem is proved:ﬁ (H(z¢) — H(%,)) converges to a Markov diffusion. This for-
mulation is not suitable when the conserved quantity takdisevin a non-linear
space.

For the interested reader, we also refer to the followiniglag on limit the-
orems, averaging and Homogenization for stochastic espumtn manifolds: N.
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Enriquez, J. Franchi, Y. LeJdan|[7], |I. Gargate, P. Ruffind,[NL Ikeda, Y. Ochi
[19], Y. Kifer [20], M. Liao and L. Wangl[2F], S. Manade, Y. Oid29], Y. Ogura
[30], M. Pinsky [37], and R. Sowers [41].

1.4 Further Question.

(1) I am grateful to the associate editor for pointing outpager by C. Liverani
and S. Ollal[28], where random perturbed Harmiltonian sysia the context of
weak interacting particle systems, is studied. Their sgsgesomewhat related to
the completely integrable equation studied in [23] leadowg new problem which
we now state. Denot& ; the Hamiltonian vector field on a symplectic manifold
corresponding to a functiofi. If the symplectic manifold i&®2" with the canoni-
cal symplectic form,X; is the skew gradient of. Suppose thatH;, ..., H,}isa
completely integrable system, i.e. they are poisson conmgat every point and
their Hamiltonian vector fields are linearly independerdlatost all points. Fol-
lowing [23] we consider a completely integrable SDE pentarby a transversal
Hamiltonian vector field:

dys =Y X, (uf) 0 W] + Xy (f)dt + X ().

i=1

Suppose thak;, commutes withXy, for £ = 1,...,n, then eachd; is a first
integral of the unperturbed system. Then,|[23, Th 4.1], withe action angle
coordinates of a regular value of the energy functién= (H,,..., H,), the
energies{Hl(y%), ce Hn(y%)} converge weakly to a Markov process. When

restricted to the level sets of the energies, the fast metioe ellipitic. It would

be desirable to remove the ‘complete integrability’ in fawof Hormander's type
conditions. There is a non-standard symplectic form R with respect to

which the vector fields in [28] are Hamiltonian vector fieladslavhen restricted
to level sets of the energies the unperturbed system in E&fes Hormander’s
condition, see[[28, section 5], and therefore provides avaiitg example for
further studies. Finally note that the driving vector fieldg1.5) are in a special
form, results here would not apply to the systems in [23] mat in [28], and

hence it would be interesting to formulate and develop lim&orems for more
general random ODEs to include these two cases.

(2) It should be interesting to develop a theory for the OD&s\Ww

Giw) = Y Ve (@) @), v)) (1.5)
k=1

whereq;, depends also on thg process.
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(3) It would be nice to extend the theory to allow the noiseite in a non-
compact manifold, in whicl, should be an Ornstein-Uhlenbeck type operator
whose drift term would provide for a deformed volume measure

Notation. Throughout this pape8,(M; N), C}(M; N), andBC"(M; N) de-
note the set of functions from/ to N that are respectively bounded measurable,
C" with compact supports, and bound€@ with bounded first- derivatives. If
N = R the letter N will be suppressed. Alsé.(V;;V5) denotes the space of
bounded linear mapsg;”(I'"I" M) denote<”" vector fields on a manifold/.

2 Examples

Let {IW/}} be independent real valued Brownian motions on a givendit@rob-
ability space,o denote Stratonovich integrals. In the followiify and A, are
smooth vector fields, anfl4,, ..., A} is an orthonormal basis at each point of
the vertical tangent spaces. To be brief, we do not spec#ptoperties of the
vector fields, instead refer the interested reader to [254iébails. For any > 0,
the stochastic differential equations

n(n—1)

2
du§ = Ho(us)dt + 1 > Ap(uf) o dWF
Ve o

are degenerate and they interpolate between the geodesit@y¢e = oo) and
Brownian motions on the fibres & 0). The fast random motion is transmitted to
the horizontal direction by the action of the Lie brackét] A,]. If Hy = 0, there

is a conserved quantity to the system which is the projedtmn the orthonormal
bundle to the base manifold. This allows us to separate tdvesriable {;5) and
the fast variable f). The reduced equation fog;), once suitable ‘coordinate
maps’ are chosen, can be written in the formlofl(1.5)[ In [26]proved thaty;)

converges weakly to a rescaled horizontal Brownian mot®acently J. Anést,
I. Bailleul and C. Tardif gave this a beautiful treatment], [dsing rough path

analysis.
By theorems in this article, the above model can be genenalis include
random perturbation by hypoelliptic diffusions, i.¢A;, ..., Ax} generates all

vertical directions. In[[25] we did not know how to obtain derdor the conver-
gence. Theorem 8.2, in this article, will apply and indeechaee an upper bound
for the rate of convergence.

As a second example, we consider, on the special orthogooap$O(n),
the following equations:

n(n—1)

M

geEy, o dWF + ¢tY,dt, (2.1)
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where{ E} } is an orthonormal basis e6(n — 1), as a subspace 8#(n), andYj is
a skew symmetric matrix orthogonalsoe(n — 1). The above equation is closely
related to the following set of equations:

n(n—1)

2
dgi =7 > giEy o dWf + 5g,Yodt,
k=1
where~, ) are two positive numbers. i = 0 and~y = 1, the solutions are
Brownian motions 05O (n—1). If § = ﬁ andy = 0, the solutions are unit speed
geodesics otvO(n). These equations interpolate between a Brownian motion on
the sub-grouy'O(n — 1) and a one parameter family of subgroup$im(n). See
[26]. Taked = 1 and lety = ﬁ — o0, What could be the ‘effective limit’ if it
exists? The slow components of the solutions, which we @&ebgt(;), satisfy
equations of the forni(1.5). They are ‘horizontal lifts’ diet projections of the
solutions toS™. If m is the orthogonal complement e6(n — 1) in so(n) then
m is Adg-irreducible and Ag-invariant, noise is transmitted fromn to every
direction inm, and this in the uniform way. It is therefore plausible thaican be

approximated by a diffusion, of constant rank. The projection of to 5" is a
scaled Brownian motion with scale The scale\ is a function of the dimension
n, but is independent df; and is associated to an eigenvalue of the Laplacian on
SO(n — 1), indicating the speed of propagation.

As athird example we consider the Hopf fibration S* — S2. Let{ X, X5, X3}
be the Pauli matrices, they form an orthonormal basis(f) with respect to the
canonical bi-invariant Riemannian metric.

i 0 0 1 0 i
6o 8) e (Gg) we (o)

Denote X * the left invariant vector field generated By € su(2). By declaring
{ﬁX;‘, X35, X3} an orthonormal frame, we obtain a family of left invarianeRi

mannian metrics»€ on S3. The Berger’s spheresS{, m¢), converge in measured
Gromov-Hausdorff topology to the lower dimensional sph@?@). For further
discussions see K. Fukaya [10] and J. Cheeger and M. Gronjo\L& W, be
a one dimensional Brownian motion and takerom m := (X5, X3). The in-
finitesimal generator of the equatidp; = %Xf(gf) o dW; + Y*(g;) dt satisfies
weak Hormander's conditions. The ‘slow motions’, suitedhcled, converge to a
‘horizontal’ Brownian motion whose generator%iafstrace,n Vd, where the trace is
taken inm. A slightly different, ad hoc, example on the Hopf fibratigrdiscussed
in [24]. An analogous equations can be considered G:) where the diffusion
coefficients come from a maximal torus.

Finally we give an example where the nois¢)(in the reduced equation is
not elliptic. LetA/ = SO(4) and letE; ; be the elementary x 4 matrices and
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A= %(Eij — E;;). Fork = 1,2 and3, we consider the equations
1 * € 1 * € * N
dgi = = Aial) © db} + Noa ok db; + Aj(gp)dt.

The slow components of the solutions of these equations agéisfy an equation
of the form [1L.5).

3 Preliminary Estimates

Let £, be a diffusion operator on a manifaldand@), its transition semigroup and
transition probabilities. Lef - || denote the total variation norm of a measure,
normalized so that the total variation norm between two gbilliy measures is
less or equal t@. By the duality formulation for the total variation norm,

)

ForW € B(G;[1, 00)) denote|| f||w the weighted supremum norm afid||zv,iw
the weighted total variation norm:
frw)
G

17w = sup LU gy = sup
zeG W(x) 7

Assumption 3.1 There is an invariant probability measurefor £, a real valued

functionW € LY(G, w) with W > 1, numbers) > 0 anda > 0 such that

pllry = sup
|fI<1,feBy(G;R)

{Ifllw <1}

sup ”Qt(xa ) - 7T”TV,VV < ae_gt
el W(l‘)
If G is compact we takél’ = 1.
In the following lemma we collect some elementary estimatdsch will be

used to prove Lemma 3.4 ahd 3.5, for completeness their pavefgiven in the
appendix. WritdV = [, Wdr.

Lemma 3.1 Assume Assumptién B.1. Lty : G — R be bounded measurable
functions and let., = |f||lg|/lw. Then the following statements hold for all
s, t > 0.

(1) Let(z) be anL, diffusion. If [, gdr = 0,

‘tis / / (E{f(zm)g(zsl) F}- /G fQSlSdiw) dsyds,

a’coo

< mw(zs)-
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(2) Let(z) be anL, diffusion. If [, gdr = 0 then

. / t / e { Feae)| ) s s - /G /0 " Qg dr dr

C - CanQ —
< T 2w WY -+ %
_(t—S)(SQ(a (ZS)+a )+ 6

(3) Suppose that eitheft, f dm =0 or [, g dr = 0. Let

a _ 2a - a
Cr = @ + W) lellglh, Co = 17 lgllw ¥ + $lal I w0

Let(z;) be anL§ diffusion. Then for every > 0,

/ / 2YCRVEN

To put Assumptiof_3]1 into context, we consider Hormangpe toperators.
Let Lx denote Lie differentiation in the direction of a vector fietdand [X, Y]
the Lie bracket of two vector fieldX andY. Let{X;,i = 0,1,...,m'} be
a family of smooth vector fields on a compact smooth manifélénd £, =
: Z;Zl Lx,Lx, + Lx,. If {X;,i=1,...,m'} and their Lie brackets generate the
tangent spacé,.G at each point: we say that the operatdl, satisfies the strong
Hormander’s condition.

< 01(2%)62 + CQ(Z%)(t —3).

.7:%} dsy ds;

Lemma 3.2 Suppose thaf, satisfies the strong&mander condition on a com-
pact manifoldG and letQ,(z, -) be its family of transition probabilities. Then
Assumptiofi 3]1 holds witl identically 1. Furthermore the invariant probability
measurer has a strictly positive smooth density w.r.t. the Lebesgeasore and

|Qu(z, ) — 7()||rv < Ce™®
for all z in G and for all+ > 0.

Proof By Hormander’s theorem there are smooth functigifs, y) such that
Qi(z, dy) = q:(z, y)dy. Furthermorey(x, y) is strictly positive, see J.-M. Bony
[2] and A. Sanchez-Calle [39]. Let = inf, year ¢:(z,y) > 0. Thus Doeblin’'s
condition holds: if vol{@) denotes the volume of a Borel sdt Q;(z, A) >
a VOI(A). O

We say thatV is aC® Lyapunov function for the ergodicity problem if there
are constant # 0 andC' > 0 s.t. LW < C — ¢*W. If such a function exists, the
L diffusions are conservative. Suppose that the Lyapunostiom!” satisfies in
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addition the following conditions: there exists a numbet (0, 1) andt, > 0 s.t.
foreveryR > 0,

sup 1Q¢ (@, ) = Qu(y, )llrv < 2(1 = a),
(@) V@V <R}

Then there exists a unique invariant measuich that Assumption_3.1 holds,
see e.g. M. Hairer and J. Mattingly [13]. We mention the fweilog standard
estimates which helps to understand the estimates in Lén@ina 3

Lemma 3.3 Let IV be aC? Lyapunov function for the ergodicity problem £f,
EW (%) is uniformly bounded in for e sufficiently small. Then there exist num-
bersey, > 0 andc s.t. forallt > 0,

sup sup EW(z5) < c.

s<t e<eo

Proof By localizing (zf) if necessary, we see thIézt(zf)—W(zg)—é f(f LoW (z5)dr

is a martingale. Let # 0 andC > 0 be constant s.t£, )V < C' — 2W. Then
2

EW(25) < (EW(z§) + 1Ct) e~ 1. O

As an application we see that, under the assumption of Lem#&aH func-
tionsC; in part (3) of Lemma 3]1 satisfy thatip, . EC;(25) < oc.

Definition 3.1 We say that a stochastic differential equation (SDE)\oms com-
plete or conservative if for each initial point € M any solution with initial
valuey exists for allt > 0. Let ®,(x) be its solution starting from. The SDE is
strongly complete if it has a unique strong solution and tfaat) — &,(z,w) is

continuous for a.sw.

From now on, by a solution we always mean a globally definedtswl. For
e € (0,1) we definely = %LO. Let Q¢ denote their transition semigroups and
transition probabilities. For each> 0, let (z;) be anL{ diffusion. Letoy €
By(G; R) and (y;) solutions to the equations

5= Yiaw(z). (3.1)
k=1

Let & , be the solution flow td(311) witk ,(y) = y. We denote by the average
of an integrable functiog : G — R with respect tar. Let

a?+a 3a

cola,6) = 5 + 5

ew = c(a, S)(W + W). (3.2)
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Lemma 3.4 Suppose that Assumptioni3.1 holds. fef € B,(G;R) andg = 0.
Suppose thaty, are bounded. Then for any € CY(M;R), 0 < s < t and
0<e<l,

< 27| gloo| floo(€® + (£ — 5)?).

‘ / 6 / E { P95 ()| Fe ) dss dsy

Here

Ye = <|F(yg> WD)+ koo / CE (L)) en () | Fe} dr) .
=1 B

Proof We first expand(y;,) at :
¢ / / T E (P0G C)IF: ) dsa dsi = €F(y5) / % / CE GG GE)|F ) ds, dsy
£3 / [ [ E1anmiea o)) F  dss dss ds
=1 © © ©
By part (3) of lemma3]1

P [ [ ELEIICENE:Y s dn] < PG elgleen () (4 4+ (= ).

It remain to estimate the summands in the second term, whissdude value is
bounded by the following

A=l [T [T BP0 )a TN ds ds ds,

Fi}d&g .

Fors; € [£, ], we apply part (3) of lemmia3.1 to bound the inner iterateegral,

€ / E {(dF)(E(y;))az(z;) / ‘ / E {9(GE) FGE) | Foy ) dsi dsy

/: / E {g(=5)f(=5,)| ey} dso dsl'

S3

/ f / CE {9 /()| F ) dsy ds,

< (€2 +t = esg) ew (25, flool 9l
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We bring this back to the previous line, the notationF' = dF'(Y;) will be used,

7
€

el

€

(62 + (t - 653)) ‘f|oo|g‘oo d53

asef e {5

Fg}dsg.

< | floolgloslauloo(t = 8)(€* + (t = 5)) cw (zg,)

Putting everything together we see that,fogiven in the Lemmag < 1,

< 29| gloo| floo (€2 + (t — 5)?) .

/ | / E {F(y:,)9(=5) ()| F2 } dss dsy

The proof is complete. O
In Sectior 5.2 we will estimate,, and give uniform, ine, moment estimates
of functionals of ¢) on [0, £].

Lemma 3.5 Assume thafz{) satisfies Assumptidn_ 3.1 ang are bounded. If
F € C*(M;R) and f € B,(G;R), then for alls < t,

€
t—

- [ E{FGDEF dr - f PG)

2

< 2l (W(z§>|F|(y§) + szmm) (t (- s))

where
| " e [
M) = ew () [Ly, FE) ) oo / E {|Lyi Ly, F(y)| ew (=) | Fs} dr.
=1 e

Proof We note that,

€
t—

;)| s =ron; = [ e

t—s

t—s

m c é s1
w3 [ AP e £ s
j=1 c e
Lettingy(r) = ae™?", it is clear that fork > 2,

E { (F(yg)t [ e g F(?Jg)) | 7 H

2 /f”’ (r=5) dr < Il es)

€

62

t—s

< [ Fllw V()

F(ys)

F(ys
P— (¥%)
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To the second term we apply Lemmal3.4 and obtain the bound

E {; t i : /‘ /;1 dF(Y;(ys, )y (z5,) f (25, )dsads]| ]:H

2

m p ¢
<23 aylalfl (725 + )
j=1

where

| m Y
3 = Ly FIG)| ew+D larker— / E {|(Lyi Ly, F))| ew(=0) | Fe } dr.
=1 c

Adding the error estimates together we conclude the proof. O

It is worth noticing that ifp : R — R is a concave function(11) is again a
Lyapunov function. Thus by usinigg I if necessary, we may assume uniform
bounds orEW?(z5) and further estimates on the conditional expectation é th
error term are exf)ected from Cauchy-Schwartz inequalitys is compact then
cw is bounded. In Corollary 5.3, we will give uniform estimatas moments of
V2

4 A Reduction

Let G be a smooth manifold of dimension with volume measurelz. Let
H?® = H*(G) denote the Sobolev space of real valued functions over #ohdud
and|| — ||; the Sobolev norm. The nornfj«||;)* := 27) " [ |a(&)|*(1 + |£]?)*dE
extends from domains ifR™ to compact manifolds, e.g. by taking supremum
over ||lul|s on charts. Ifs € N, H* is the completion of>>°()/) with the norm
Julls = 2250 [(|Viul)2dz)z whereV is usually taken as the Levi-Civita connec-
tion; when the manifold is compact this is independent olRlEmannian metric.
And u € H? if and only if for any functionp € C%, ¢u in any chart belongs to
Hs.

Let{X;,i =0,1,...,m'} be a family of smooth vector fields @r and let us
consider the Hormander form operatty = % Z;ﬁl Lx,Lx, + Lx,. Let

A = {Xl'l, [Xi17Xi2]7 [)(Z'17 [)(7;27 Xlg]] y Z] = O, 17 e ,m'}.

If the vector fields inA generatel .G at eache € G, we say that Hormander’s
condition is satisfied. By the proof in a theorem of Hormafit®; Theorem1.1],
if £, satisfies the Hormander condition theis aC function in every open set
where Lyu is a C* function. There is a number > 0 such that there is ah
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improvement in the Sobolev regularityuifis a distribution such thadyu € Hj;.,
thenu € HEt.

Suppose that is compact. Thefju|ls < C(||u||zz + || Loul|z2), the resolvents
(Lo + M)~ ! as operators froni.?(G; dx) to L*(G;dx) are compact, and, is
Fredholm on?(dz), by which we mean thaf, is a bounded linear operator from
Dom(L,) to L%(dz) and has the Fredholm property : its range is closed and of
finite co-dimension, the dimension of its kernel, k&j)is finite. The domain of
Ly is endowed with the normu|pome,) = |u|r, + [Lou|r,. Let L denote the
adjoint of £y. Then the kerneN of £j is finite dimensional and its elements are
measures o/ with smooth densities ih.?(dz). DenoteN~ the annihilator of
N, g € L*(dz)is in Nt if and only if (g,7) = 0 for all 7 € ker(}). Since
L, has closed range, (ketf))* can be identified with the range df,, and the
set of g such that the Poisson equati@gu = g is solvable is exacthyV-. We
denote byL,'g a solution. Furthermor&,'g is C" wheneverg is C". Denote
by index(,), dimkerL, — dim Cokel,, the index of a Fredholm operatdy,
where Coker= L?(dx)/rangel). If L, is self-adjoint, index(y) = 0.

Definition 4.1 We say thar, is a regularity improving Fredholm operator, if it is
a Fredholm operator and, '« is C” whenevery € C™ N N+,

Let {WF k = 1,...,m'} be a family of independent real valued Brownian
motions. We may and will often represefi{-diffusions ¢;) as solutions to the
following stochastic differential equations, in Stratemd form,

€ 1 m/ € 1 €
dzf = 7 ; X5(25) 0 dW) + —Xo(#)dt.

Lemma 4.1 Let £, be a regularity improving Fredholm operator on a compact
manifoldG, ay, € C*N N+, andB; = L, ;. Let(yc) be global solutions of(3]1)
onM. Thenforalld < s <t,e>0andf € C*(M;R),

m

P =19 + e D (AFO5WB,GE) - (Y208, 2))

m t
€

— € Y; Ly J\Yr))Qi\2,) Pj\Z.) ar (41)
> | LviLy, fu))eil) Bi(=) d

= El
1,j=1""%

VeSS [T ar e ds o) v

j=1k=1"Y¢
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Suppose that, furthermore, foreach 0,5,k = 1,...,m, ff E|df (Y;(yo) 12 |(dB;(X)(zE)|? dr
is finite. Then, )

E{FWOIF: } = f2) = fj (E{ OB EDIF: | - driwas(9))

J=1

- Z /_ E { Ly, Ly, f(y)ai(z;) Bi(z)|Fe } dr.

(4.2)

Proof Firstly, for anyC? functionf : M — R,
F00) = 169 = Y [T Ve ds
j=1"¢

Since then;'s areC? so ares;, following from the regularity improving property
of Lo. We apply I1to’s formula to the functiond (. f)3; : M x G — R. To avoid
extra regularity conditions, we apply Itd’s formula to thanctiondf(Y;), which

is C', and theC*® functions)3; separately and follow it with the product rule. This
gives:

PO = FOENHE) + 3 [ Inn f6) ) 5, dr

L3~ [ 1 [+
Ve ,;/ Ly, f(yr) dB; (Xi(zD) AW + = / Ly, J(45) LoB3j(=)dr.

Substitute this into the earlier equation, we obtainl (4PBrt [4.2) is obvious, as
we note that

2

£ (kZ [ i) (o) de) S [ s < o

and the stochastic integrals aié-martingales, sd (41.2) follows. O

Whend is compactd5(X}) is bounded and the condition becomESff df (Y;(y9))|? dr

is finite, which we discuss below. Otherwise, assumptionE|ai (X (z5))|*" is
needed.
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5 Uniform Estimates

If V' : M — R, is a locally bounded function such thh, .., V(y) = oo
we say thafl” is a pre-Lyapunov function. Let, € B,(G;R). Let {Y;} beC?
smooth vector fields o/ such that: either (a) eadh grows at most linearly; or
(b) there exist a pre-Lyapunov functidhc C'(M; R, ), positive constantsand

K such thaty_;"  |Ly,V| < ¢ + KV then the equation§ (3.1) are complete. In
case (a) leb € M anda be a constant such thgt,(x)| < a(1 + p(o, z)) wherep
denotes the Riemannian distance functioménFor x fixed, denote, = p(z, -).

By the definition of the Riemannian distance function,

t m t m t
i) < [ 1iglds =3 [ Witant:nlds < 3 Janl [ Mitdlds.
0 k=10 k=1 0

This together with the inequality(y;, 0) < p(vs, yo) + p(o, y§) implies that for all
p > 1, there exist constants;, C'; depending omp such that

sup p"(y;, 0) < (C1pP (0, y5) + Cat) ="

s<t

whereCy = a?C?(3 -, |akleo)P. When restricted td¢ < 7¢}, the first timey;
reaches the cut locus, the bounded is sindp€!. In case (b), for any > 1,

sup (V(y:))? < (Vq(yé) +etqy |ak|oo> exp (qz | oo (I + C)t>,
k=1 k=1

s<t

which followed easily from the bound
AV (Vi) = gV dV (e Ye)| < glaklso(c + (¢ + K)VY).

For the convenience of comparing the above estimates, wdretstandard
and expected, with the uniform estimatesy) {n Theoreni 5.2 below in the time
scale%, we record this in the following Lemma.

Lemma 5.1 Letay € By(G;R). Lete € (0,1),0 < s <t,w € (.

1. If {Y:} grow at most linearly theri (3.1) is complete and there exists(t)
S.t.

sup P (ys(w), 0) < (Cp(0, y5w)) + C (1)) “V.

0<s<t

2. If there exist a pre-Lyapunov functiéh € C'(M;R,), positive constants
cand K suchthat 7™ | |Ly, V| < ¢+ KV, then [3.1) is complete.
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3. If 31) is complete and there exidtsc C'(M; R, )suchthad " | [Ly, V] <
¢+ KV then there exists a constafit s.t.

sup (V(ys(@))? < (V(ysw))? + Ct) e".

0<s<t

If V€ B(M;R) is a positive function, denote kyy,,. the following classes of
functions:

By, = {f € O"(M;R) : Z | f| < ¢+ ¢V for some numbers, ¢ } . (5.1)

J=0

In particular, By, is the class of continuous functions bounded by a function of
the formc + ¢V, In R", the constant functions and the functiBir) = 1 + |z
are potential ‘control’ functions.

Assumption 5.1 Assume that (i))[(3]1) are complete for everye (0, 1), (ii)
sup, E (V(y5))? is finite for everyg > 1; and (iii) there exist a functio/ €
C?(M;R,), positive constantsand K such that

YLy VI<e+ KV, > |LyLyV|<c+ KV
j=1

ij=1

Below we assume thai, satisfies Hormander’s condition. We do not make
any assumption on the mixing rate. L&t = L; oy, a1 = Y7 |Bjlo a2 =
> [ lool Biloor az = 3200 |dBjlees @Nday = ST, | X3, We recall that
if o, and L, satisfy Assumptiof 6l1 thed is a regularity improving Fredholm
operator.

Theorem 5.2 Let £, be a regularity improving Fredholm operator on a compact
manifoldG, andoy, € C3(G;R) N N+. Assume thaY), satisfy Assumption3.1.
Then for allp > 1, there exists a constatt = C'(c, K, a;,p) s.t. forany) < s <t
and alle < ¢,

E{ sup (V(y%)) 7 ]—“} < (4v2p(yg) L O@—s)? + c) (Cl=s+1t (5 2y

s<u<t

Heree, < 1 depends om, K, p,a; andV,Y;, Y;.



UNIFORM ESTIMATES 21
Proof Let0 < s < t. We apply[(4.1) tof = V?:
VP(yE) =V () + ezdvp (YD) Bi(=0) — e > v (Y;9) B(=2)
j=1

—GZ/ Ly, Ly, V* (y;) ai(z;) Bi(zy) dr

zgl
t m

- ﬁ; I > VIO v

In the following estimates, we may firstassume thgt | |Ly,V|and} ", _, [Ly, Ly, V|
are bounded. We may then replacky ¢ A 7, wherer, is the first time that ei-
ther quantity is greater or equal to We take this point of view for proofs of
inequalities and may not repeat it each time.

We take the supremum ovex, [] followed by conditional expectation of both
sides of the inequality:

E{ sup V¥(y5) |fs} < V(s )+ee{ sup Zdvp (Vi) 8,69 | fs}

s<u<t s<u<t j=

_ Z v (Vi) 8i(:2)

+ ¢E { s<u1<)t / Z Ly, Ly, V? (y;) ci(2y) Bi(z;) dr| | FS}
+\/EE{ p |3 |3 v syt ndvy |]:§}-
ssust /8 o

By the conditional Jensen inequality and the conditionabd®inequality, there
exists a universal consta@tdepending only op s.t.,
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E{ sup V*#(ys) | f}

s<u<t

< AVE(yS) + 4E ({Z|ﬁj|oo sup |V (Y (45)) |f§}>

+4é <f} 83l )dvp(Yj(y%D))

t m 2
+ 8e(t — s)E (/ > " atiloolBjloo | Ly, Ly, V7 (3] dT) | Fe
T Q=1

2

p t
103 E / dr | F
k=1 .

€

Z AV (Y (y)(dB;) (Xi(27))

Sinced _; |Ly,V| < c+ KV and}_7._ |Ly,Ly,V| < ¢+ KV, there are con-

..........

c1 + K1VP. This leads to the following estimate:

E{ sup V?(ys) | .7-72}

s<u<t

§4V2p(y%) + 862(a1)2 (2(01)2 + (Kl)QE{ sup Vgp(y%) | f%} + (Kl)QVQP(yE))

s<u<t

+16(az)*(t — s)e / (@) + BE V) | F})dr

+Clasare [ E{(+ K@) | F} v

Letey = min{8a11Kl, 1}. Fore < €,

1
QE{ sup V#(ys) | .7:5}

s<u<t

§4V2p(y€§) + 16€%(arc1)” + 16(t — s)*(azcr)® + 4C(azase:)*(t — s)

+ (16(020)2(t = 8) + 4C(asa1)? ) € / CE{VI | ) dr
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It follows that there exists a constafitsuch that for < ¢,

E { sup V(L) | Fi} < (4v2p(y;) + C(t — s)* + c) eCli=s 1)t

s<u<t
O

Remark. If M = R", Y; are vector fields with bounded first order deriva-
tives, thenp? is a pre-Lyapunov function satisfying the conditions of @tean
[5.2, hence Theorem 5.2 holds. Let us recall tBat is defined in[(5.11).

We return to Lemma&_3l5 in Sectidh 3 to obtain a key estimatioritfe esti-
mation in Sectiofil8. Let us recall th&y, . is defined in[(5.11).

Corollary 5.3 Assumel(3]1) is complete, for everg (0, 1), and conditions of
Assumptio_3]1. LetY € B(M;R,) be a locally bounded function ang a
positive number s.t. foralf > 1 and7T > 0, there exists a locally bounded
functionC, : R, — R, areal valued polynomial, suchthatfol) < s <t <T
and for alle < ¢

sup E{ VL) |F: | < Oy + GOV (2, sup E(V(yf) < ox.

s<u<t 0<e<eg
(5.3)

Leth € By(G;R). If f € Bygisafunctions.tLy,f € BygandLy,Ly,f € By,
forall j,l=1,...,m,thenforall0 < s <t,

2

€ €

t —

t—s

< lhlan) (55 + 0 9)).

- [ ELfHGEIF ) dr = f)

Herec is a constant, seé (5.4) below, and

t—s

Y= F1+ Y Iy fl+ > — /EE{}LYzLij(yf«)} | Fe}dr.
=1 =1 H
Forall s < tandp > 1,

p

sup sup E (fye(yi)> < 00.
s<u<t e<eg €

More explicitly, if 72, > [ Ly, Ly, f| < K + KV? wherek, q are constants,

then there exists a constafi{t) depending only on the differential equatién (3.1)

S.t.

Ye < If1+ D Ly, 1+ K + COV*.

j=1
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Proof By Lemmd3.5,

€
t—s

| ELnEIE b )

2

< il (W(zg>|f(y§)| +sz|aj|oo> (t (- s>) ,

# 3l [ E{ Ly 0 ent) | ) dr
=1 B

wherev/(y) = ew (28) | Ly, f(y%)

SincelV is bounded so iy, which is bounded bgc(a, §)|W|. Furthermore
E {| Ly Ly, f(us)| ew(z5) | Fe }dr < 2c(a, 8)|WoE {| Ly, Ly, f(y5)| | Fe} dr.
We gather all constant together,

m

2

_ 2a “

¢ = 7H/V\oo+20(a,5)|VV|OOZ || oo + 2 <Z|aj|oo> : (5.4)
j=1

ji=1

Itis clear that,

€
t —

62
< Flhle (t < - s>) |

- [ BN dr )

Sincef, Ly, and Ly, Ly, f € By, by (5.3), the following quantities are finite for
allp > 1:
p p p

sup sup E )f(y%)

e<eg s<u<t

sup sup E )Lyj fyw)

e<eg s<u<t

sup sup E ’(Ln Ly, N(y=)

e<eg s<u<t
Furthermore sinc@ 7", > /%, |Ly, Ly, f| < K + KV4,

S By s

_]=1 =1 €

| Fe}dr < K+ CHVI(yL).

Consequentlyy. < [f+ >0, [Ly, f| + K + C(t)V9, completing the proof.
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6 Convergence under Hhrmander’s Conditions

Below inj(A/) denotes the injectivity radius af/ andp, = p(y,-) is the Rie-
mannian distance function o from a pointy. Let o denote a pointin\/. The
following proposition applies to an operatf, on a compact manifold, satisfying
Hormander’s condition.

Proposition 6.1 Let M be a manifold with positive injectivity radius amgl > 0.
Suppose conditions (1-5) below or conditions (1-3), (49 &b).

(1) L, is a regularity improving Fredholm operator oh?(G) for a compact
manifoldG;

(2) {ax} Cc C3*N N
(3) Suppose that far € (0, ), (3.1) is complete anshp .., Ep(yg, 0) < oo;
(4) Suppose that there exists a locally bounded functiont. for alle < ¢,

and forany) < s <wu <t,andforallp > 1,

EVP(yy) < co, sup E { <V(y%))p | .7-"3} <K+ KVP’(y%)

s<u<t B

wherecy = co(p), K = K(p, t), andp’ = p/'(p, t) is a natural numberj, p/
are locally bounded in.

(4’) There exist a functio ¢ C?(M;R.), positive constants and K such
that

DLy VI<et+ KV, Y |LyLyV|<c+ KV.

j=1 ij=1
(5) ForV in part (4) or in part (4’), suppose that for some numbes 0,

Yj| € Bvo  sup |Ly;Ly;py(")| € By.
ply,)<d

Then there exists a distance functi@on M that is compatible with the topology
of M and there exists a number> 0 such that

p (y yi)
sup Esup | ———~

< 0
e<eg s#t |t - 3‘0{ ’

and foranyl’ > 0, {(y5,t < T),0 < e < 1} is tight.



CONVERGENCE UNDERHORMANDER'S CONDITIONS 26

Proof By Theoreni5.R, conditions (1-3) and (4’) imply condition).(4a) Let

0 < min(1, %inj(M)). Letf : R, — R, be a smooth convex function such that
f(r) = rwhenr < £ andf(r) = 1 whenr > 6. Thenj(z,y) = fopis adistance
function withp < 1. Its open sets generate the same topologybas that by
p. Let §; be a solution taCo3; = «;. For anyy, € M, |Ly,p*(yo, )| < 2|Y;()|.

SincelY}| € By, foé E|Ly, p|(yg)|*dr < co. We may apply[(4]2) in Lemnia4.1,

(i () 17)

e (B { (bs.000) 86D 1 7~ (L) 00) B(:0)

j=1

s / E {(LviLy, e, u)) aile) B0 | 2} .
ij=1"¢

In the above equation, differentiation gf)f is w.r.t. to the second variable. By
constructiory is bounded byt and|V | < |Vp| < 1. Furthermore since; are
C*® functions on a compact manifold, $pand|3;| are bounded. For any, € M,

Ly, p(yo, ) = 7' (pyo) Ly; py,- Thus

E{ (L7205, 00)) 8G9 | F: | < I81E { sy | F: }
Recallp < 1 and there are numbefs§, andp; s.t.|Y;| < K; + K;V?', so
E{IVi)l | Fe | < Kyt KGE{VP (i) | Fe | < K+ KGR (pr, VY00 (y5),
Letg, = K; + K K(p)VP'®9, itis clear thaly, € By,o. We remark that,

Ly; Ly, (5°) = (f*)"(p)(Ly: p)(Ly; p) + (f*) (p) Ly, Ly, p-

By the assumption, there exists a functigne By S.t.
E {/32 (yy) |]:§} < g2(y2)e + galys)(t — 3).

Fore > \/t — s, itis better to estimate directly frorh (3.1):
e{ (viut) 1 7} =30 B {20 (vt0t) I (v20t) ante) | 72
k=1""¢

" ‘ t—s
< 2|04k|002£ E {‘Yk(y:)‘ \ fg} dr < 93(y€§) ( )
k=1 %

€
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wheregs € By,y. We interpolate these estimates and conclude that for some
functiong, € By, and a constantthe following holdsE {/32 <y§, yé) | ]-"g} <
(t — 5)g4(y$). There is a functiory; € By S.t. ‘

€

E* (v 2 ) < Egs(i)(t — ) < clt — )

In the last step we use Assumption (4) on the initial value. K&ymogorov’'s
criterion, there exista > 0 such that

and the processesg4() are equi uniformly Holder continuous on any compact time
interval. Consequently the family of stochastic proceggesO < ¢ < 1} is tight.
‘ O

If £,y is the Laplace-Beltrami operator on a compact Riemannianifoid
andr its invariant probability measure then for any Lipschitntouous function

f:G—=R,
\/ e (L seans— [rar) <ot @D

where|| f|los. denotes the oscillation of. If £, is not elliptic we suppose it
satisfies Hormander’s conditions and has indeXhe dimension of the kernel of
L} equals the dimension of the kernel 8§. Let {u;,i = 1,...,n0} be a basis
in ker(Co) and{m;i = 1,...,ny} the dual basis for the null space 6f. For

f € L*(G;R) we definef = >, w;{f, ;) where the bracket denotes the dual
pairing betweerl.? and (L?)*.

Lemma 6.2 Suppose thdtz;) is a Markov process on a compact maniféldvith
generator £, satisfying Hbrmander’s condition and having Fredholm indéx
Then for any functiorf € C"(G;R), wherer > max {3, § + 1}, there is a con-
stantC' depending onf|x 1, S.t.

\/ e (i [ 1) scr-flp) = 62

Proof Since(f,r;) = (f,;), f — f € N+. By working with f — f we may
assume that € N+ and letg be a solutionta’,g = f. By Hormander’s theorem,
[18], there is a positive numbér such that for alk. € C'*°(M),

[ullsrs < CUILoulls + llullL,).
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The numbep = 2'~* wherek € N is related to the number of brackets needed
to generate the tangent spaces.
Furthermore every such that| Lou||; < oo mustbe inf*. If s > 2 + 1, H®
is embedded ii©'! and for some constant,
9lcron < e llgllzsive < oo ([f 1241+ 19]02) < es |l fllz4a

Recall thatl, = Zﬁl Lx,Lx, + Lx,. Let{W/,j =1,...,m'} be independent

one dimensional Brownian motions. Let)be solutions ofiz; = Z;.”:'l Xi(z) 0

dW{. Sincef is C?,
/WM=—WMM%—(/@WMW>

We apply the Sobolev estimates¢@nd use Doob’d.? inequality to see that for
t > 1 there is a constartt such that,

1 t i 4.9 8 i ' 2 2
E <§/ f(Zr)dr) < mlole+ = Z/ (Eldg(z))*| X;(z)|) dr

2]XF<Gwmum——.

(‘9|00)2

0

We remark that a self-adjoint operator satisfying Hornaisdcondition has
index zero.

Lemma 6.3 Suppose thaf, satisfies thrmander’s condition. In addition it has
Fredholm index0 or it has a unique invariant probability measure. Let>
max {3,5 +1}. Leth : M x G — R be such thati(y,-) € C" for eachy
and that|h|. + sup, |h(-, 2)|Lip + sup, [A(y, )|cr < oo. Lets < ¢ be a pair of
positive numbers, anfl € BC(C([0, s]; M) — R). For any equi -uniformly con-
tinuous subsequencg; := (ye") of (y$) that converges weakly to a continuous

processg). asn — oo, the foIIowmg coﬁvergence holds weakly:
F@ﬂ/h@nmww»mm/h%nm

whereh(y, ) = > u;(h(y, -), m;).
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Proof For simplicity we omit the subscript. The required convergence fol-
lows from Lemma 4.3 in[25] where it was assumed thafl (6.10&ahd’, has a
unique invariant measure for It is easy to check that the proof there is valid. We
take care to replacé, i(y, z)du(z) in Lemma 4.3 there by ™, u;(h(y, -), 7).
We remark that by the regularity improving property eachs smooth and there-
fore bounded. In the first part of the proof, we dividet] into sub-intervals of
sizee, freeze the slow varlabIeJi) on [tx, tx+1], and apprommatéa(yu,zu) by
h(ytk , zu) on each sub- mtervah[ ty+1]- This approximation is clear: the com-
putatlon is exactly as in Lemma 4.3 0f [25] and we use the umifcontinuity of
(yi), the fact thath|,, andsup, |A(-, 2)|up are finite. The convergence of

Th—1

T bty — A3 JUARPRS

€ =1

follows from the law of large numbers in Lemihal6.2. The cogeece of

no no t
80> uilhlf m) 3w [ (i), mda
k i=1 € i=1 s

is also clear and follows from the Lipschitz continuity/oin the first variable and
the equi continuity of thg© path. Finally denote by, ., the restriction of the path

y< to the interval ), s], the weak convergence T, u; F'(yf, ) f; (h(y%, ), m)du
to the required limit is trivial, as explained in Lemma 4/35]. ‘ O

Assumption 6.1 The generatoL, satisfies hrmander’s condition and has Fred-
holm index0 (or has a unique invariant probability measure). Foe= 1, ..., m,
o € C"(G;R) N N+ for somer > max{3, % + 1}.

If Ly is elliptic, it is sufficient to assume, € B,(G; R), instead oly, € C".

Theorem 6.4 If L, ax, (y5) and|Y;| satisfy the conditions of Propositidbn 6.1 and
Assumptiofn 611, thefy$) converge weakly to the Markov process determined by

the Markov generator
B m _ _ no
==Y @BiLyLy,, B =Y uyoifj,m).
i,j=1 b=1

Proof By Propositiol 6.1 {(y¢,t > 0)} is tight. We prove that any conver-
gent sub-sequence converge% to the same limit.eLet> 0 be a a monotone
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sequence converging to zero such that the probabilityiligtons of (/7 ) con-
verge weakly, on(], 7], to a measur@. For notational simplicity we mgﬂ/ assume
that{(y¢,t > 0)} converges tqu.

Lets < t, {B;} the canonical filtration,Y;) the canonical process, ang
its restriction to (), s]. By the Stroock-Varadhan martingale method, itis suffitie
to provef(Y;) — f(Y;) — fst Lf(Y,) dr is a local martingale for any € C(M).
By (4.1), the following is a local martingale,

m

F02) = 12 = €3 (dFOGENBED + (Va8 (:5))

J=1

v Y [ Inn ) 56 dr

3
€

ij=1

Since the third term converges to zerocdsnds to zero, it is sufficient to prove
m t t
lim E { > / Ly, Ly, f(y)au(=5) B;(=5) drr — / Lf(ys) dr |fs} =0.
e—0 o s € €
1,)= €
This follows from Lemma 6l3, completing the proof. O

Corollary 6.5 Letp > 1 be a number and suppose th&tec By,. Then, under
the conditions of Theorem 6.4 and Assumpiioh &), converges in the Wasser-

steinp-distance orC'([0, t]; M).

Proof By Theorem{ 5.Rsup,.., Esup,<, pP(0,ys) < oco. Let W, denote the
Wassersteip distance:

W) = (nf [ supplon(s) oa(Ntor. )
MxM s<t

Here the infimum is taken over all probability measures omptta spaces'([0, t]; M)

with marginalsu; andu,. Note thatC'([0, ¢]; M) is a Banach space, a family of

probability measureg,, converges tq. in W, if and only if the following holds:

(1) it converges weakly and (&)p,, [ sup,, p*(0, 02(s))dpn(02) < co. The con-

clusion follows. - O

7 A study of the semigroups

The primary aim of the section is to study the propertieB,gffor f € By, where
P, is the semigroup for a generic stochastic differential équna These results
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will be applied to the limit equation, to provide the necegsapriori estimates.
Theoreni_Z.R should be of independent interest, it also lea@mma 7.5, which
will be used in Sectiohl8.

Throughout this sectioi/ is a complete smooth Riemannian manifold. Let
Yy be C% and{Y;,k = 1,...,m} be C® smooth vector fields od/, { BF} in-
dependent real valued Brownian motions. Lei(f;),t < ((y)) be the maximal
solution to the following equation

dy; = Z Yi(ye) o dBf + Yo(ys)dt (7.1)
k=1
with initial valuey. Its Markov generator i€ f = £ >/ | Ly, Ly, f + Ly, f. Let
Z =35>, Vv, Yi + Y, be the drift vector field, so

m

Lf= % > Vdf (Vi V) + df (2). (7.2)

k=1

If there exists aC pre-Lyapunov functiorV/, constantg: and K such thatZV <
¢+ KV then [Z.1) is complete. However we do not limit ourselvesyadunov
test for the completeness of the SDE. Let us defipte= >, _, [V#~Ddf| and
| flroo = D py IV*Ddf| . The following observation is useful.

Lemma 7.1 LetV € B(M;R) be locally bounded.

e Suppose tha} ", |Y;| € By, and|Z| € By,. Theniff € By, Lf €
Byo. If f € BC? |Lf| < |f|2.0oF1 WhereF; € By, not depending orf.

e Suppose that

D (Yl + VY| + [VOY;)) € Byo,  1Z]+|VZ| + |[VPZ| € Byg.
j=1
If f € BV74, £2f € BV,O- If f € BC4, |£2f| < |f|4,ooF2 WhereF2 is a
function inBy,, not dependent of.

Proof That Lf belongs toBy, follows from (7.2). If f € BC? |Lf] <
(1 f12)0c oy |Yi|* 4+ | Z]). For the second part we observe tif#tf involves
at most four derivatives of and two derivatives of; andZ wherej = 1,...,m.

U

Let d®,(v) denote the derivative flow in the direction ofe T, M. It is the
derivative of the functioy — ®,(y, w), in probability. Moreover, it solves the fol-
lowing stochastic covariant differential equation alohg solutions;, := ®,(y),

Du, =Y V., Yy 0dBf + V,,Yodt.
k=1
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Here DV; := //(y.)d(//; *(y.)V;) where//i(y.) : T,,M — T, M is the stochastic
parallel transport map along the path Denote|d®,|,, the norm ofd®,(yo) :
T,M — T, M. Forp >0,y € M andv € T,M, we definef,(y) € L(T,M x
T,M;R) by

H0)00) = 30 VGO + 0= 2) 30 S0 4 2w 2.0,
k=1 k=1

Let i, (y) = supy, =1y Hy(y)(v, v). Its upper bound will be used to contidk, |, .

Assumption 7.1 The equation[(7]1) is complete. Conditions (i) and (ii), By (
and (ii), below hold.

(i) There exists a locally bounded functibhe B(M;R,), s.t. forallg > 1
andt < T, there exists a numbér,(¢) and a polynomiah, such that

sup E(V(2:)]7) < Cy(t) + CoA(V (). (7.3)

(") There exists € C3(M;R.) and constants and K such that

LV<c+ KV, |LyV|<c+KV, j=1,...m,
(i) LetV =1+ In(1 4 |[V]). For some constant,

Z IVYil> < eV, sup (VZ(v),v) < V. (7.4)
k=1

lv]=1

Remark. Suppose that(7.1) is complete. Siné&? = ¢VI 1LV + q(q —
1)V9=2|Ly, V|?, (") implies (i). Infact,E sup,, (V(y.))" < (EV(y0)? + c¢°t) eletK)a’t

Recall that[(Z1) is strongly complete i, {;) — ®,;(y) is continuous almost
surely on ), t] x M for antt > 0.

Theorem 7.2 Under Assumption 7.1, the following statements hold.

1. The SDE[(7]1) is strongly complete and for every T', ®,(-) is C*. Fur-
thermore for allp > 1, there exists a positive numbéXt, p) such that

EG@w@@W)sc@m+cwva@@. (7.5)
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2. Letf € By,. Defined P,(df)) = Edf(d®.(:)). Thend(F,f) = dP,(df) and
|d(P,f)| € By,. Furthermore for a constan®'(¢, p) independent of,

< AE (df|ag) "V C(E p)(1 + VEER(y)).

3. Suppose furthermore that

m 3 2
Z Z IV@Y]| € Byy, Z IV@Y| € Buy.

7j=1 a=0 a=0

Then, (@)Esup,, [Vd®,[*(y) € By,; (b) If f € By, thenP,f € By,
and

(VAP f)(ur, ug) = EVAf(dPs(uy), dPy(u2)) + Bdf (Vu, dPi(uz)).
Furthermore, (c)£:f = P,Lf, andL(P,f) = PA(Lf).

|d(F,

4. Letr > 2. Suppose furthermore that

r+1 m
Z IVOYy| € Bro, > Y IVY;| € Byg.
a=0 k=1
ThenE sup,, (VU ~d®,|,)* belongs toBy,. If f € By,, thenP,f €

By,

Proof The statement on strong completeness follows from theuitig theorem,
see Thm. 5.1in[22]. Suppose that (7.1) is completé/ I§ a function and;, a
number such that for atl > 0, K compact, and all constanis

n m
sup E exp (A / V(cbs(y»ds) coo. SIVHP <V, b, <6pa?,
0 k=1

yeK
(7.6)
then [Z.1) is strongly complete. Furthermore for every 1 there exists a con-
stantc(p) such that

E(ssgwd@s(y)\p) < p)E (exp( g tv@s(y))ds))_ (2.7)

SinceY; are CY, then for everyt, ®,(-) is C*. Itis easy to verify that condition
(Z.8)is satlsfled In fact, by the assumptign< 6pcV. TakeV = 1+1In(1+4|V )
then forp > 1,

£ (exp (6p2 /0 V(cbs(y»ds)) < C(tp) + Ct.p) (VEEP(y)) < oo.
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This proves part (1).
For part (2) letf € C'. Theny — f(®,(y,w)) is differentiable for almost
everyw. Leto : [0,ty] — M be a geodesic segment wiil0) = y. Then

[(@uos ) = F@ly.w)) _ 1

S S

*d
|t @

SinceE|d®;(y)|? is locally bounded iny, » — E|d®:(c,,w)| is continuous and
the expectation of the right hand side convergeBdf(d®,(5(0)). The left hand
side clearly converges almost surely. Sidef(d®;(y))|? is locally bounded the
convergence is i.l. We proved thatl(P, f) = dP,(df). Furthermore, suppose

that|df| < K + KV,
APy < \JE (|df[s)*\/Elds?
< V2K? 1 2KPEVE(®(y)y/cp)C(t, p) + cp)C(E, p) (VO (y)).

The latter, as a function of, belongs taBy .
We proceed to part (3a). Letw € T,M andU; := Vd®,(w,v). ThenU,
satisfies the following equation:

DU, = 3" VOV (d®,(v), d®,(w)) o dBf + > VYi(Uy) o dBY
k=1 k=1

+ VY (dD,(v), dDy(w))dt + VYo(Uy)dt.

It follows that,

dU* =2 " (VOV(dPy(v), dD1(w)) 0 dBf + VOV (dDy(v), dDi(w))dt, Uy)

k=1

+ <Z VYi(U,) 0 dBF + VYo (Uy)dt, Ut> :

k=1

To the first term on the right hand side we apply Cauchy Sclawaequality to
split the first term in the inner product and the second terthéninner product.
This gives:C|U;|* and other terms that does not invol/e The Stratonovich cor-
rections will throw out the extra derivativé®Y;, which does not involvé/,. The
second term on the right hand side is a sum of the fdf (VY (U,), U,)d B
for which only bound onVY;| is required, and

<§: VOY(Ye, Uy) + VYo (Uy), Ut> = (VZ(Uy), U)— <zm: VY5V, Ya), Ut> :

k=1 k=1
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The second term is bounded by

m

S VYUV, Un)

k=1

< Y IVVPIUL
k=1

By the assumption, there exist> 0, ¢ > 1 such that, forevery = 1,...,m,
VY. <V, VY| < c4 eV |[VOY| < e+ V9 (V, Z,u) < (c+ KV)|ul*

There is a stochastic process which does not involvé/;, and constant€’, ¢
such that

t t
E|U,|? < E|UO|2+/ E]rdr+/ CEV(y9)|U,|*dr.
0 0

By induction/, has moments of all order which are bounded on compact ingerva
By Gronwall’s inequality, for < T,

T t
E|U* < <E|Uo|2+/ E]rdr) exp (C/ vq(y;)dr).
0 0

To obtain the supremum inside the expectation, we simplymsab’s L? in-
equality before taking expectations. With the argumenhéygroof of part (1) we
conclude thak sup, ., | Vd®,|*(y) is finite and belongs t®y.

Part (3b). Let f € By,. By part (1),d(P.f) = Edf(d®,(y)). Letu;,uy €
T, M. By an argument analogous to part (3), we may differentiegeright hand
side under the expectation to obtain that

(VAP f)(ur, ug) = EVAf (dPy(w1), dPi(uz)) + Edf (Vu, dPi(us)).

HenceP,f € By . This procedure can be iterated.
Part (3c). By Itd’s formula,

F) = )+ Y [ e+ [ L
k=1"v*$ s

Sincedf(Y;) € By, the expectations of the stochastic integrals with resgmect
the Brownian motions vanish. Singkf € By, by part (3),£ f(y,) is bounded in
L2. It follows that the function — EL f(y,) is continuous,

lim Ef(y) — Ef(ys)
t—s

t—s

=ELf(ys)

and we obtain Kolmogorov’s backward equati(g?gPsf = P,(Lf). SinceP,f €

By, we apply the above argument g f, and takel to zero inw and
obtain that%Psf = L(P,f). This leads to the required statemét, f = P,Lf.
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Part (4). For higher order derivatives d; we simply iterate the above pro-
cedure and note that the linear terms in the equatiod f8F 1 d®y(us, . . ., uy)|?
are always of the same form. O

Remark 7.3 With the assumption of part (3), we can show that for all ieteg
Esup,<, |Vd®,|) € Byp.

If we assume the additional conditions that

k=1

the conclusion of the remark follows more easily. With theussptions of part

(5) we need to work a bit more which we illustrate below. Let= Vd®,(w, v).
Instead of writing down all term if/;|? we classify the terms if(/;|? into two
classes: those involving; and those not. For the first class we must assume that
they are bounded byl” for somec. For the second class we may use induction and
hence it is sufficient to assume that they belongtg. The terms that involving

U, are:

ViU, > VOYL(Yk, U) + VYo(U)).
k=1

The essential identity to use is:

> VOV, U) + VYo(Uh) = VZ(U) = Y VY(VYi(T7)).

k=1 k=1

We do not need to assume that the second order derivati@s;||Y;| < ¢V, it
is sufficient to assume that foVY;|> andVZ for all k = 1,..., m. With a bit of
care, we check that only one sided derivativeg afre involved.

For example we can convert it to the= 2 case,

d|Uf" = §(|Ut|p72) o d|Uy|* = g|Ut|p72d|Ut\p + ip(p — DIUP~Hd|U]?).
By the first term2|U, |P~2d|U,|* we mean that in place afiU,|* plug in all terms
on the right hand side of the equation fi(;|?, after formally converting the
integrals to 1td form. By(d|U;|*) we mean the bracket of the martingale term on
the right hand side of|U;|*. It is now easy to check that in all the terms that
involving U, higher order derivatives df, does not appear, except in the form of
UP=2(Vu, Z, Uy).
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Remark 7.4 Assume the SDE is complete. Suppose that for some positileenu
C,

m

5 4
SN ey <o Y IvEy <
k'=0

k=1 k=0
Then for allp > 1, there exists a constant(z, p) such that

£ (sup |dq>s(x)|p) < C(t.p).

s<t

Furthermore the statements in Theorenm 7.2 hold-fer 4.
Recall that f|, = >7,_, [V df| and| fl.e0 = > py [V VS|

Lemma 7.5 Assume Assumptién¥.1 and

4 5 m
D IV € Bro, YD IVOY| € Byg.
a=0

a=0 k=1

Then there exist constanis, ¢» > 1, ¢; andc, depending ort and f and locally
bounded irt, also functionsy; € By, A\, polynomials, such that for < ¢,

[P f (o) — Psf(yo)| < (t —s)er (1 + A, (V(%0))) s f € Bvya
|Pef (yo) — Psf(yo) — (¢t — $)PAALS)wo)| < (t — s)’c2 (1 + A, (V(¥0))) . f € Bua

|Pof (o) — Pof o)l < (t — ) (1 + | flaee) 11(w0), Vf € BC?
1P f(yo) — Pof (yo) — (t = S)PLS)wo)| < (t — 5)* (1 + | fla00) 12(w0),  Vf € BC.

Proof Denotey, = ®,(y,), the solution to[(7]1). Then fof € C?,
t m t
P f(yo) = Ps f(yo) +/ P(Lf)(yo)dr + Z E (/ df(Yk(yr))dBvlf) :
S k=1 S
Since|Ly, f| < |df|w|Yx| and|df|, Vi belong toBy,, by Assumptiori 7]1(i),

f(f E|Ly, f|2 dris finite and the last term vanishes. Hen&gf (yo) — Psf(yo)| <

fst P, (Lf)(yo)dse. By LemmalZILLf € By, if f € Bys. Let K,q be s.t.
ILf|< K+ KV,

/ P (L))l dss < / (K + KEVS (Do, (30) dso.
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By the assumption, we see easily tha}_, [V®Z| € By,. By Assumption
(7.3, sup,<; E(|V(Ps(10))|") < Cy, (1) + Cyy (1) Ag, (V (1)) and the first conclusion
holds. We repeat this procedure fbe C* to obtain:

Py f(yo) — Psf(yo)

- / (Ps(cf)(yow / PN ndss + S E / (Ly (L)) (ySQ))ng) ds;.
s 5 k=1

S

The last term also vanishes, as every terminL f belongs taBy,. Indeed
Ly, Lf =Y VOdf(V,Y,,Y) +2)  Vdf (Vy, Y, Y;) + Vdf (Vi 2)
+ ) df (VY (Y, V) + VY (Vy, Y + Vy, Y5)).

This gives, for allf € By 4,

P o) — Puf(uo) — (t — )PU(LSw0)| < / / P (L ) yo)dssds, |

(7.8)

Let ¢, K be numbers such thaf? f| < K + KV%. Then,

sup Po(L? )(o) < K + KE (V(y:))” < K + Cou(t) + KCoir (M (V (90)).

s<t

Consequently, there exist a constayit) s.t.

|P.f(yo) — P f(yo) — (¢ — $)PALS)o)| < (¢ — s)*calt, K, g2)(1 + Ao (V (0)))-

completing the proof foif € By, and By4. Next suppose that € BC?. By
LemmaZ1)Lf| < |flacoFi, @and|L2f] < | flancFo if f € BC*. Herel, F; €
By and do not depend ofi We iterate the argument above to complete the proof
for f € BC*. O

8 Rate of Convergence

If £, has a unique invariant probability measureand f ¢ LY(G,dr) denote
f=[sfdr. LetL = =37 .fB;Ly,Ly,. Let{o},i,k = 1,...,m} be the
entries in a square root of the matrixd; ;). They satisfyd ;" | a,iai = (—a;03))
and are constants. Let us consider the SDE:

dy =" (Z o—,iYi(yt)) 0 dB, (8.1)

k=1 i=1
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where{BF} are independent one dimensional Brownian motions. Let

Y=Y oiYiw). Z=) —aBVyY;.
i=1

1,j=1

The results from sectidn 7 apply. Recall thit = % Y Lx,Lx, + Lx, and
(z5) are L¢ = 1L, diffusions. Let®(y) be the solution to the SDE (1.5} =
> e ag(25)Ye(ys) with initial valuey.

Assumption 8.1 G is compactY, € C3(I'T'M), andY;,, € CS(I'TM) for k =
1,...,m. Conditions (1)-(5) below hold or Conditions (1), (2’) ar@%) hold.

(1) The SDE4 (811) and(3.1) are complete.

(2) V € B(M;R,) is alocally bounded function and a positive number s.t.
forall ¢ > 1 and7 > 0, there exists a locally bounded functiof : R, —
R, a real valued polynomiak, such that for0 < s < ¢ < T and for all
e < ¢

sup E{VI@L0) 1F: | < G0 + G0N (V@) . 82)

s<u<t

(2') There exists a functiof € C3(M;R,) s.t. foralli,j € {1,...,m},

(3) ForV defined above, lét = 1 + In(1 + |V|). Suppose that

4

5 m
D IVOY € Bry, D) IVEY;| € By,

a=0 a=0 k=1

Z VY2 <V, sup(VZ(u),u) <cV

j=1 lu|=1

(4) L, satisfies Wrmander’s conditions and has a unique invariant measure
satisfying Assumptidn 3.1.

(5) ap € C3(G;R) N N+,
We emphasize the following:

Remark 8.1 (a) If V' in (2’) is a pre-Lyapunov function, theh (8.1) is complete.
Furthermore|LV| < ¢+ KV and so[(8.11) is complete.
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(b) Under conditions (1), (2') and (4-5), (2) holds. See Theen[5.2. Also
Corollary[5.3 holds. Conditions (1-5) implies the conctuss of Theorem
[7.2.

(c) If L, satisfies strong Brmander’s condition, condition (4) is satisfied.

Let Pf be the probability semigroup associated wigh) @nd P, the Markov
semigroup forZ. Recall that f|,.. = >7_; [VY~Vdf|... We recall that opera-
tor £, on a compact manifold: satisfying strong Hormander’s condition has an
exponential mixing rate, s@, satisfy Assumption 3]1.

Theorem 8.2 Assume that,, o, and £, satisfy Assumptidn 8.1. For evefye
By 4,

EF (@5 0)) = Pri@o)| < el logel5C(T)m(wo)

wherey; € By, andC(T)) are constant increasing ifi. Similarly, if f € BC*,

EF (@500)) — Prf(uo)| < e logel? C(T)auo) (1+ | la).

where~, is a function inBy,, that does not depend ofiand C'(T') are constants
increasing inT'.

Proof Step 1.To obtain optimal estimates we work on intervals of ordect.f.
Lemmal3.4. Lety = 0 < ¢, < --- < ty = T be a partition of (), 7] with
Aty =ty — tp—1 = efor k < N andt; < e. Writey; = ®¢(yo). Then,

N
f (?/z) — Prf(yo) = (PT—tkf (W) = Pros.f (yik__l))
k=1 ¢
N
= Z <PTtkf(y§Tk) — Prog fy;, ) + Aty (PTtklﬁf(yfkl)))
k=1 c c

N
+ Z (PT—tkf(yzfu) - PT—tk_lf(yglc;l) — Aty, (PT—tk,_IZf) (?/Eu)) .

k=1

Define

It = Pro f(y%) — Pr—o flyi,_ ) + Aty (PTtklzf(yfk_l )) ;

€

le = PT*tkf - PT*tkﬂf - AtkPT*tkAZf'

Sincef € By 4, LemmdZb applies and obtain the desired estimate on tbadec
term:

Jie, )

€

< @nyam (1 (u06i,) )
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wherec,(T), f) is a constant and,, a polynomial.
Let K, ¢ be constants such that, (V) < K + KV4. We apply [(8.2) from
Assumptioni 8.1 to see that for some constgy(t’) depending on\,, (V),

E (MnlV0i,_)) < K + KO+ KON )
SinceAt; < eandN ~ 1,

e

k=1

Jk(ytk )| S €T, K +1) (14 Co(T) + Co(T)A(V(w0))) - (8.3)

If f belongs toBC*, we apply Lemma7]5 to see that there exists a function
F € By, independent of s.t.

Jis, )

< (ALY (14 |flae) (F(y;k_g) .

Hence

N
Z Jk(ytk 1
k=
The rest of the proof is just as for the casefof By 4.

Step 2.Let0 < s < t. By part (3) of Theorerdi 712LP,f = P.Lf for any
t>0andPr_ Lf = LPr_; f. We will approximatePr_;,  Lf by Pr_, Lf
and estimate the error

< e+l € (705, (8.4)

ZAtk PT tkﬁf Pr_y, 1£f) (ytk 1)

k=1
By Lemmd7Z1Lf € By, and we may apply Lemnia7.5 fof. We have,
|Pr—u, Lf(yo) — Pr—s, L (Wo)| < Atci(T) (1 + Mg, (V(w0))) -

Recall that\, (V') € By,,. Summing ovek and take the expectation of the above
inequality we obtain that

Z Aty,

k=1

Pr_ tkﬁf(ytk D) = Proo  Lf(s, )] < eer(T) (14 A, (V%)) -

(8.5)
If f € BC? Lf c BC?% By LemmdZ5b,

|Pr_, Lf (o) — Pr—y, . Lf(o)] < Atcr(T) (14 A, (V(10))) -
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there exist constarit(7) and a functiony; € By, independent of, s.t.

|P, f(yo) — Psf(yo)| < (t —5) (14| f]2,00) 71(%0)-

Herey; € By,. Thus forf € BC?,

N
> At
k=1

Finally instead of estimatingg, we estimate

PT—tkEf(yfﬂ) - PT—tk_lﬁf(yfk,l) < 2€| fla,00(1 + 711(%0))- (8.6)

€

Dy, = Pry, f(y%) — Pr—o f(yi,_ ) + AtkPTfthf(ygﬁ)-
Step 3.If f € Byy, by Theorenl . 72P,f € By, for anyt. Sinceay €
N+ N C3, we may apply Lemma4.1tB;_,, f and obtain the following formula
for Dy.

Dy = Pry, fy%) — Pro, f(¥o_,) + AtkPT—thf(yfﬂ)

Y (AP SOU D) — dProa P

Yk

+ Aty Proy Lf(y;, ) —e Z / ; (Ly, Ly, Pr—o, f (7)) i) B;(27) dr

€
tr_
€

ij=1

SVEL Y [P SO B ) dv

j=1 k=1"7%

SinceYy, Y, € By, Ly, Ly, Pr_, f € By, which follows the same argument
as for Lemma_7]1. In particular, for eaBh< € < ¢,

/6 E (| Ly Ly, Pr—y f(49)|)* dr < 0.
0

The expectation of the martingale term in the above formalaishes. Foy =
1,...,mandk=1,..., N, let

A5y = dProy f (Vi) 8i(5) — dProo f (Yj(yfk__l )) B

B, = Atk(PT—thf)(ytgb) —€ Z ﬁ:l (Ly, Ly, Pr—y, ) (ye)ai(z5) B;(=5) dr.

ij=1
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Step 4. We recall thatCPr_, f = Y77, i3 Ly, Ly, Pr_, f. By Theorem
[Z2, Ly, Ly, Pr_y, f is C*. Furthermore by Assumptidn 3.1, the) diffusion has
exponential mixing rate. We apply Corollary 5.3 to each fiorc of the form
Ly, Ly, Pr_y, f and takeh = a;3; There exist a constaatand a functiony, ; . €
By such that
Tk

- € e
a;B8; Ly, Ly, Pr—y, f (yi;@__1> T AL [kl E {LYiLYjPT—tkf(y;)(aiﬁj)(Z;N]:tk_—l} d

m

|Br.| < Aty Z

ij=1

< Z C|0416j|0072j k E(ytk 1) (6 + (Atk)Q)

2,7=1

where denotingy; ; := Ly, Ly, Pr_, f,

Vijke = |ij‘ + Z ‘LYV S+ Z At / E {‘LYLLYI/ fj(y;)

'=1 L'=1

By TheoreniIlZG = Ly, Ly, Pr_,, f belong toBy,. FurthermoreG’“ and its
first two derlvatlves are bounded by a functionB%, which depends ogf only
throughzkz0 Pr_;, (|V®df|P), for somep. Thus there are numbersg such that
for all k, max; ; [yi k.| < c+ V9, for somec, g. SinceAt, < e <1, N ~ O(2),
we summing ovek,

;} dr.

Z E[By| <2e-c-¢ Z |t 35100 Co(T) sup E (1 + Vi 1)) < eC(T)¥(wo),

i,j=1
(8.7)
for some constan®'(7’) and some functiofy in By. If f € BC*, itis easy to see
that there is a function € By, notdepending offi, s.t.max; j  Evi jx (y5,_,) <

C(1)g(yo)| f 4,00
Step 5.Finally, by Lemma8H4 below, for < s <t < T andf € By, there
is a constant’ and functiony € By, depending off’, f s.t. for0 < s <t < T,

< Cv(yo)e v/ | Log e|+Cy(yo) (t—s).

(8.8)
For the partitionty < t; < --- < ty, we assumed that — ¢y < e andAt, = ¢
for k > 1. Letk > 2. SincedPr_,, f(Y;) € By,3, estimate[(8/8) holds also with
replaced byl Pr_,, f(Y;), and we have:

> B (Vi (y))8,(=5) — Bdf (¥;(y2))5;(:%)

m

D EAS,

j=1

< CH(yo)e* /| loge|, k>2 (8.9)
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Since 5; are bounded and by Theorédm|#4?r_,, f is bounded by a function
in By that does not depend dn for e < ¢y, each termE|A€k| is bounded
by a function inBy,, andsup,_.., |[EAj,| is of orderey(y,) for some function
4 € By,. We ignore a finite number of terms in the summation. In paldicwe
will not need to worry about the terms with= 1. Since the sum oveékr involves
O(%) terms the following bound follows fronh (8.9):

N

2

k=1

m

Z cEAj,

< C(yo)ev/| log el (8.10)

Herey € By, and may depend oii. The case off € BC* can be treated
similarly. The estimate is of the form(e) = (1 + | f|4,00)70 Wherey, € By, does

not depend orf. We putting togethef (8.3)[ (8.5, (8.7) arid (8.10)to sex ih
f € Bya,

EF (®40)) = Puf(0)| < CO1()ev/Togel,

wherey € By,. If f € BC%, collecting the estimates together, we see that there
is a constant’(7) s.t.

4
Ef (9400 — P lw)| < ev/Tlogel C(T) (1 2 IV |oo) o)
k=1

where? is a function inBy,, that does not depend gf By induction the finite
dimensional distributions converge and hence the requissk convergence. The
proof is complete. O

Lemma 8.3 Assume that(3l1) are complete for ak (0, ¢y), some:, > 0.

(1) L, is a regularity improving Fredholm operator on a compact nfiala G,
aE € C3N N+,

(2) There existy ¢ C?*(M;R.), constants;, K, s.t.
YLy VI <c+ KV, > |LyLyV|<c+KV.
J=1 j=1

(2") There exists a locally bounddd : M — R, such that for ally > 2 and
t > 0 there are constant§'(t) and¢’, with the property that

sup E{ Vi(ye))? |.7-"s} <cve (y )+ C. (8.11)

s<u<t
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(3) ForV inpart (2) orin part (2'),sup, EV4(y5) < oo forall ¢ > 2.

For f € C? with the property thaly, f, Ly, Ly, f € By, forall i, j, there exists a
numberey > 0 s.t. for every) < e < ¢,

E{rwn |7} -

Here 71,72 € By, and depend onf| only through|Ly, f| and |Ly, Ly, f|. In
particular there exists € By S.t. forall0 < e < ¢,

< n(ys) max |Bileo et(t—s)72(y%) max oifoo max | fyoo.

]Ef(yi) — < Sup Ev(ys)(t — s + €).
€ <e<e€p
Furthermoresup,_.., E )f(?/i) — < (e + V1t — 8)Ev(E).

Proof Since the hypothesis of Theorém15.2 holdsVifis as defined in (2), it
satisfies (2'). Sincé.y, f € By, sup,«;

4.1

E{760) 172 } = 1)+ B {(FO30NBED) - FO65ED) | 7: )
—eZ E{ / Ly Ly, fyaiC=) 8;() dr | f;}.

Let

s =2 suptZ {ILy fDI | Fe} o ) = i“%z {ILv Ly, f G | 72}

Sincely, f and Ly, Ly, f € By, 11,72 € Bv,. The required conclusion follows
for there conditioned inequality, and hence the estimat#&’gf(y;) —

To estimateE ’f(yg) — , we need to involve the diffusion term in_(4.1) and

henceyt — s appéars.

U
Lemma 8.4 Assume the conditions of Lemmal 8.3 and Assumiption 3.1 et

Yo- If f € C3iss.t. |Lyjf‘, ‘LylLyjf|, |LylLylLyjf| belong tOBV70 for all 1,7, k,
then for somey, and all0 < e < egand forall0 < e < s <t < T whereT > 0,

< C(MN(o)e/ | log e[+C(T)v(yo)(t—s),

) — Edf(Vi(us)A(z5)
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wherey € By, andC(T') is a constant. If the assumptions of Theofem 8.2 holds,
the above estimate holds for affy € Bygs; if f € BC®, we may takey =
(| fls.00 + 1) Wherey € By.

Proof Lett < T. Sincef(z$) is the highly oscillating term, we expect that

averaging in the oscillation iﬁl gains ark in the estimation. We first split the
sums:

(FCENBED ) — (FHENBED)

= dF(i(y2) (B0 — AED) + (dFOUD) — dF i) BiE) = I+ T
(8.12)
By Assumption 3.1, has mixing rate/(r) = ae~%". Lets’ < s < t,

%/_E E{al(zj)\}"%} dr

B0 (A0 - )| <E (\df (i)

)

<E ‘df (Yz(yi?/))‘ %/0 W (Tisj/) dr

2 5(s—s")

< S E |0 (Vi)

If s — s = dpc?|loge|, exp (—M> = ¢%%_ We apply Theoremi 5.2 to the

€2

functionsLy, f € By,. For a constard, > 0,

a2

< sup sup E|(df(i(y))| < Au(wo)
0<e<ep 0<s'<t €

where?y; is a function inBy,o, depending off’. Thus fors’ < s < t,

(010 (560 - 569) )| < 35 e (257, @13

Let us split the first term on the right hand side of (8.12). &teg s’ = s —

L% loge

I = Edf (i) (B9 — (=5))
= Edf((y2) (Bi(=0) — Bi2)) + E ((dfiue) — dr (i) (A=) — 4=9)) )

The first term on the right hand side is estimatedby (8.13th&second term we
take the supremum norm gf and use Lemma 8.3. For sora¥7") andy € By,

E[dr (i) — dr it )| < o) ( + e 1oge|%) . (614
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Then for some number'(T),
1
1< —=ev/Tlog e CTN () (8.15)
l

wherey € By,. Let us treat the second term on the right hand side_of |(8LER).
' =t — 1| loge|. Then

11, = E (df(¥i(y)) — dF(Vi(y))) Ai(=5)
= E (df(y)) — df iy ))) Au=2) + E (dF(Vitu) — df (Vi) ) Bi(:5).

To the first term we apply (8.14) and obtain a r%e\/@. We could assume
that g, averages to zero. Subtracting the tefndoes not changg. Alternatively
Lemmd 8.8 provides an estimate of orddor ’E (df(Yl(yg)) — df(Yl(yg))> ’ Fi-
nally, since[ Sdr = 0, f 6

E (r0ity) — (i) 10| = [E (@ (ity)) — ar(vitwe))) E {ut0) |72 })
< E[df(¥i(y2)) — (0| |8l F < )| ilac.

In the last step we used condition (2’) ands a function inBy,. We have proved
the first assertion.

If the assumptions of Theoreim 8.2 holds, for ahye By 3, the following
functions belong tdBy,: |Ly, f|, |Ly, Ly, f|, and|Ly,Ly, Ly, f|. If f € BC?, the
above mentioned functions can be obviously controlledifhy.. multiplied by a
function in By, thus completing the proof. O

9 Rate of Convergence in Wasserstein Distance

Let B(M) denotes the collection of Borel sets irC4 smooth Riemannian mani-
fold M with the Riemannian distance functipnlet P(A/) be the space of prob-
ability measures od/. Lete € (0, ¢g) wheree, is a positive number. IP. — P
weakly, we may use either the total variation distance ok¥asserstein distance,
both imply weak convergence, to measure the rate of the cgenee ofP. to P.
Let p denotes the Riemannian distance function. The Wassefst@istance is

dw (P, Q) = p(x, y)du(z, y).

inf /
(m1)* u=P,(m2)* n=Q MxM

Herer,; : M x M — M are projections to the first and the second factors respec-
tively, and the infimum are taken over probability measure&io< M that couples
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@ and P. If the diameter, diam\/), of M is finite, then the Wasserstein distance
is controlled by the total variation distanagy (P, Q) < diam()||P — Q|rv.
See C. Villani[44].

Let us assume that the manifold has bounded geometry; ileasifpositive
injectivity radius, inj(\/), the curvature tensor and the covariant derivatives of
the curvature tensor are bounded. The exponential map frball @f radiusr,

r < inj(M), at a pointr defines a chart, through a fixed orthonormal frame at
x. Coordinates that consists of the above mentioned expahehtrts are said

to be canonical. In canonical coordinates, all transitimmgtions have bounded
derivatives of all order. That is bounded inrC* can be formulated as below: for
any canonical coordinates and for any integeld” f| is bounded for any multi-
index \ up to orderk. The following types of manifolds have bounded geometry:
Lie groups, homogeneous spaces with invariant metrican&mmian covering
spaces of compact manifolds.

In the lemma below we deduce from the convergence raté o P in the
(C*)* norm a rate in the Wasserstein distance. Abe the Riemannian distance
with reference to which we speak of Lipschitz continuity aéal valued function
on M and the Wasserstein distancel®(@/). If £ is a random variable we denote
by ]55 its probability distribution. Denote byf|., the Lipschitz constant of the

functionf. Letp € M. Let|f|cx = | floo + Zf;é |V df | o

Lemma 9.1 Let&; and&, be random variables on &* manifold A/, wherek >
1, with bounded geometry. Suppose that for a reference poiet M, ¢, =
Zle Ep?(&;, p) is finite. Suppose that there exist numbets 0,a € (0,1),¢ €
(0,1] s.t. forg € BC*,

[Eg(&1) — Eg(&2)| < ce™(1 + |g]en)-

Then there is a constant, depending only on the geometry of the manifold, s.t.
dW(P&v pﬁz) < C(CO + 0)6%.

Proof If k£ =1, thisis clear. Let us take > 2 and letf : M — R be a Lipschitz
continuous function with Lipschitz constaht Since we are concerned only with
the difference of the values gfat two points|Ef(£;) — Ef(&2)|, we first shift f
so that its value at the reference point is zero. By the Lipaawontinuity of f,
lf(@)| < |flup p(z,p). We may also assume thatis bounded,; if not we define
a family of functionsf,, = (f A n) vV (—n). Then f, is Lipschitz continuous
with its Lipschitz constant bounded by| ;. Leti = 1,2. The correction term
(f — f.)(&) can be easily controlled by the second momeni(pf&;):

I/ — £ < B enn < SESEY < SEFG.6)
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Letn : R" — R be a function supported in the ba®(z,, 1) with |n|,, = 1
andns = 6-"n(5), wherej is a positive number and is the dimension of the
manifold. If M = R",

[Ef(&1) — Ef(&)]
< [E(f * mo)(€) — E(f * ms) (@) + D> [E(f * ms)(&) — EF(&)]

< ce®(1+ [ f * nslon) + 26 fLip-

In the last step we used the assumptiorEdfi+ ns(€1) — f * ns(&2)| for the BC*
function f x ns. By distributing the derivatives tg; we see that the norm of the
first & derivatives off x n; are controlled by f|.,. If f is bounded,

ce*(L+ | f xnslon) < e+ | floo + 16 flup),
wherec; is a combinatorial constant. To summarize, for all Lipstleitntinuous

fwith | flup = 1,

7€)~ EF(&)] < 20 lup + ce(L+ [ fu mslew) +

C
< 26+ ce® 4+ ce®n 4+ cpee®s TR 4 20
n

e

Lets = e+. Sincek > 2, we choose: with the propertye & < n < 2e %,
then for f with | f|p = 1,

IEf(&) — Ef (&) < 2+ 2¢+ cre+ 2cp)e.

Let o be a positive number withd < inj(M). Let B,(r) denotes the geodesic
ball centred at: with radiusr, whose Riemannian volume is denotedbfz, r).
There is a countable sequerag} in M with the following property: (1) B.,(d)}
coversiM; (2) There is a natural numbéf such that any point belongs to at most
N balls from{B,,(30)}; i.e. the covef B,,(36)} has finite multiplicity. Moreover
this numberN is independent of. See M. A. Shubin [40]. To see the indepen-
dence ofN onJ, let us choose a sequenge;,i > 1} in M with the property
that { B,,(0)} coversM and{Bxi(g)} are pairwise disjoint. Since the curvature
tensors and their derivatives are bounded, there is ay®sitimbelC' such that

1 V(z,r)
— < < 49).
C’_V(y,r)_c’ x,y € M,r € (0,46)

Lety € M be a fixed point that belongs t§¥ balls of the formBmi(g). Since
B.,(%) C B(y,45), the sum of the volume satisfieS: V(z;, 2) < V(y,45) and
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2V (y,$) < V(y,46). The ratiosup, ‘;((124%5)) depends only on the dimension of the
manifold.

Let us take aC* smooth partition of unity{;,i € A} that is subordinated to
{B:,(20)}: 1 =3",01 ¢ir ¢ > 0, ¢; is supported in3,, (26), and for any point:
there are only a finite number of non-zero summands jn, a;(z). The partition
of unity satisfies the additional propertyip, |0*a;| < Cy, a; > 0.

Let (B,,(inj(M)), ¢;) be the geodesic charts. LEt= fo; and letg = g o ¢;
denote the representation of a functipm a chart.

> Efi(671(€) - D _Efi (¢7(&) |

[Ef (&) —Ef(&) =

€A 1EA
< N Efixns (671€)) — Y Efix ms (671(6)
i€A ieA
2
+ 3 IS Efens (671€) - Y_ER (674(€))
j=1 |ieA iEA

Itis crucial to note that there are at m@étnon-zero terms in the summation. By
the assumption, for each

’Eﬁ x5 (67 (1)) — Efi % ms (sb;l(fg))’ < c€®|fixm5 0 7Y e

By constructionsup, |«;|c+ is bounded. There is a constahthat depends only
on the partition of unity, such that

\fixms 0 07 on < | fi % mslon < €| floo + erd ™| Fluip

Similarly for the second summation, we work with the repregagves off;,

Foems (7)) = £ (67 @) | < 01 filup < 8.

Since we work in the geodesic charts the Lipschitz constiyit are comparable
to that of| f|.ip. Let|f|p = 1. If fis bounded,

IEf(&1) — Ef(&)] < Nee"(L+ | floo + 6" F) + 2d0N
Letd = e®,
IEf(&) — Ef(&)] < Nee*(d|floo + 1) + Neh +2¢ Nek

On a compact manifoldf|., can be controlled byf|.,; otherwise we use the
cut off function f,, in place of f and the estimat&|(f — f.)(&)| < <. Choose
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n sufficiently large, as before, to see thaif(¢,) — Ef(&)| < Ce®. Finally we
apply the Kantorovich-Rubinstein duality theorem,

dw (P, Pe,) = sup {|Ef(&) — Ef(&)|} < Cer,

A flLip<1

to obtain the required estimate on the Wasserstein 1-aistand concluding the
proof. O

Letey, : C([0,7]; M) — M denote the evaluation map at time ev(o) =
o(t). Let P denote the probability distribution of a random variagléeto € M.

Proposition 9.2 Assume the conditions and notations of Thedrem 8.2. Suppose
that M has bounded geometry and € By,. Letj be the limit measure and
fiv = (evy).fi. Then for every: < 1 there exists”(T) € By, ande, > 0 s.t. for
all e <e¢pandt < T, A
dw(Bye , i) < C(T)e".

Proof By Theoreni 8P, fof € BC*,
Ef(®%(v0)) — Prf(yo)| < C(T)(yo)ev | loge],

whereC(T)(yo) < C(T)(yo)(1 + | f|c+) for some functiorC(T") € By,. Since by
Theoreni 5.2, there exists > 0 such thasup, .., Ep2(®;(yo)) is finite, we takey
in Lemmd 9.1 to be any number less thato conclude the proposition. O

10 Appendix

We began with the proof of Lemnia 8.1, follow it with a discasson conditional
inequalities without assuming conditions on thalgebra concerned.

Proof of Lemmal[3.1
Step 1. Denote(t) = ae~?. Firstly, if f € By(G;R) andz € G,

Qef(2) =7 f| < [[fllw - (&) - W(2).
Next, by the Markov property ofx() and the assumption thétgdr = 0:

]E{f(zm)g(zsl)\fs}— [ 10wt

fs - S1—S9 d

b= [ 1Qu-dn

< (52— 8) [|F Quysatlliw W(zs) < sz — 5)sup ('f (2] Qs1-529()
zeG W(Z)

< (2 = $)¥(s1 = 52) [ floe 9llw W (25) < arh(s1 = )| f ool gl W (2)-

_ ’E {(1Qu-00) )

e
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From this we see that,
t—s / / ( f(282)9(281) _/st1—sggd7T) d52d51
< ol floe gl () — / / b (51— 5) dsy ds)

2

(t—s)d
< s oW [ e dr < st e gl Wz,

This concludes (). Step 2. For (2), we compute the foIIovvlng

1 t—s
ds; = / / fQrg(t —s—r)drdr
at—35Jo

S s S -
- (fog) arar— [ [ fagara——= [ [ Qg drdn,

We estimate the last two terms. Firstly,

/G [ 1)Qa(e) dr dn)

< [floo |Qrg(2)| dr dn(2)

o0
(e o]

<Illalw [ Wens) [ vt < 5|f\muguww e dr

(t—s)o
a _
< < flllglinW.

It remains to calculate the following:
1 t—s 1 B t—s
=[] g s—\f|ongHWW/ PG dr
— S JaJo t
< | flso w.

Gathering the estimates together we obtain the bound:

L st [ 00

a _
< g‘ﬂong”WW +

a _
WU\MHQHW 44

By adding this estimate to that in part (1), we conclude g3t (

]— / / [Ca)gea)| F / / (fQug) dr dr

| Floollgllw W+ oo llgllw WV (25).
(10.1)

< g|f‘oo”gHWW + —

(t — )52 52@— )‘f
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We conclude part (2). Step 3. We first assume ghat0, then,

+——/t/ [7G e F
§k€§/t/ {7Ge)a)

/ fQrg drdm|.
G Jo

We note that for every € G, ||Qu(z,-) — |lrvw < Y(5)W(z). In line (10.1)
we replaces, t, 6 by £, £, andg respectively to see the first term on the right hand

side is bounded by

} dss dsy

]—"s} dss dsl—// FQg dr dn
G JO

@

ol

ae’ ae -
(@W (=) + W) flosllgllw + — 5 [ lsollgliw W

0%(t — )

Next we observe that

/0 F(Q9(2) ds = /0 F()Q:(2) ds = ¢ /0 F(2)Qu9(2) ds
< clflullllat¥ |06 ds = K fllallo ¥

Q/mﬂdewhhdﬂd
GJO

This gives the estimate for the casegof 0:

e e

where

3

€
< 01(2%)t —

Fg} dss ds; s Co(25)e.

a = ! 2a 1
Cr = 5 @WO)+ Wiflllgllw, G = —flxllglwW.

If [gdr # 0, we splitg = g — g + g and estimate the remaining term. We use

the fact thatr f = 0,
‘i [ [ ety s T [ese
}SWWﬂWW%kA $)dr

s1 s
smmmwwuawpﬂ/’w«%@Q
€ s1>0 0 €

ae
= gl 1w 2)

d82 d81

< \é\
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Finally we obtain the required estimate in part (3):

€ oM
e
— S Js s

63
t—s

]:3 } dsy ds;

/(€ a, €
<) (755 ) + Caede + 1ol 171wV

thus concluding part (3).

The following conditional inequalities are elementary. Welude a proof for
a partial conditional Burkholder-Davis-Gundy inequality completeness. We
do not assume the existence of regular conditional proitiabil

Lemma 10.1 Let(),) be a continuoug.? martingale vanishing ai. Let(H,) be
an adapted stochastic process with left continuous sanmgiles@nd right limits.
If for stopping timess < ¢, E [(H,)?d(M), < cco. Then

E { (/t HTdMT)z F} —E {/St(Hr)2d<M>r

Lemma 10.2 Letp > 1 and(M,) is a right continuoug.7;) martingale or a right
continuous positive sub-martingale index by an intetvaf R, . Then,

mf < () swe{er] )

If (M,,s <wu <t)is aright continuoug.*;) martingale and > 2, there exists a
constant:(p) > 0 s.t.
p

R} <o {00}

E{wMM#

sel

E{pr@P

s<u<t

This proof is the same as the proof t6; the trivial o-algebra, c.f. D. Revuz, M.
Yor [38].

References

[1] J. Angst, I. Bailleul, and C. Tardif. Kinetic Brownian rtion on Riemannian mani-
folds. Preprint, 2014.

[2] Jean-Michel Bony. Principe du maximum, inégalite dertdek et unicité du
probleme de Cauchy pour les opérateurs elliptique®n&gs. Ann. Inst. Fourier
(Grenoble) 19(fasc. 1):277—-304 xii, 1969.



APPENDIX 55

[3] A. N. Borodin. A limit theorem for the solutions of diffential equations with a
random right-hand sideleor. Verojatnost. i Primenem22(3):498-512, 1977.

[4] A.N.Borodinand M. I. Freidlin. Fast oscillating randgeerturbations of dynamical
systems with conservation law&nn. Inst. H. Poinca& Probab. Statist.31(3):485—
525, 1995.

[5] Jeff Cheeger and Mikhael Gromov. Collapsing Riemanmniamifolds while keeping
their curvature bounded. 0. Differential Geom.23(3):309-346, 1986.

[6] R. Cogburn and R. Hersh. Two limit theorems for randonfedéntial equations.
Indiana Univ. Math. J.22:1067-1089, 1972/73.

[7] N. Enriquez, J. Franchi, and Y. Le Jan. Central limit trezo for the geodesic flow
associated with a Kleinian group, cake- d/2. J. Math. Pures Appl. (980(2):153-
175, 2001.

[8] Mark Freidlin and Matthias Weber. On stochasticity ofutimns of differential
equations with a small delagtoch. Dyn.5(3):475-486, 2005.

[9] Mark I. Freidlin and Alexander D. WentzellRandom perturbations of dynamical
systemsvolume 260 ofGrundlehren der Mathematischen Wissenschaften [Funda-
mental Principles of Mathematical Sciences$pringer, Heidelberg, third edition,
2012. Translated from the 1979 Russian original by JosefihsSz

[10] K. Fukaya. Collapsing Riemannian manifolds to onesowfdr dimensionsJ. Dif-
ferential Geom.25(1):139-156, 1987.

[11] Ivan|. Gonzales Gargate and Paulo R. Ruffino. An aveagrinciple for diffusions
in foliated spaces. http://arxiv.org/abs/1212.1587,201

[12] M. Hairer and G. A. Pavliotis. Periodic homogenization hypoelliptic diffusions.
J. Statist. Phys117(1-2):261-279, 2004.

[13] Martin Hairer and Jonathan C. Mattingly. Spectral giap&/asserstein distances and
the 2D stochastic Navier-Stokes equatioAsn. Probah. 36(6):2050-2091, 2008.

[14] R. Z. Hadminskii. A limit theorem for solutions of differential eqtiens with a
random right hand pariTeor. Verojatnost. i Primenernl1:444-462, 1966.

[15] R. Z. Hadminskii. Stochastic processes defined by differential #goa with a
small parameterTeor. Verojatnost. i Primeneni1:240-259, 1966.

[16] R.Hershand G. Papanicolaou. Non-commuting randortuggas, and an operator-
valued Feynman-Kac formul&omm. Pure Appl. Math25:337-367, 1972.

[17] R. Hersh and M. Pinsky. Random evolutions are asynqalyi GaussianComm.
Pure Appl. Math,. 25:33-44, 1972.

[18] Lars Hormander. Hypoelliptic second order diffei@hequations. Acta Math,
119:147-171, 1967.


http://arxiv.org/abs/1212.1587

APPENDIX 56

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Nobuyuki Ikeda and Yoko Ochi. Central limit theoremsdalandom currents. In
Stochastic differential systems (Bad Honnef, 1986Jume 78 ofLecture Notes in
Control and Inform. Scj.pages 195-205. Springer, Berlin, 1986.

Yuri Kifer. Averaging in dynamical systems and largevid¢ions. Invent. Math,
110(2):337-370, 1992.

Thomas G. Kurtz. A general theorem on the convergenagpefator semigroups.
Trans. Amer. Math. Socl148:23-32, 1970.

Xue-Mei Li. Strongp-completeness of stochastic differential equations aacia
istence of smooth flows on honcompact manifolBgobab. Theory Related Fields
100(4):485-511, 1994.

Xue-Mei Li. An averaging principle for a completely @grable stochastic Hamil-
tonian systemNonlinearity, 21(4):803-822, 2008.

Xue-Mei  Li. Effective  diffusions with intertwined gictures.
http://arxiv.org/abs/1204.3250, 2012.

Xue-Mei Li. Random perturbation to the geodesic equatiTo appear: Annals of
Probability, http://arxiv.org/abs/1402.5861, 2014.

Xue-Mei Li. Homogenization on homogeneous spaces.
http://arxiv.org/abs/1505.067[72, 2015.

Ming Liao and Longmin Wang. Motion of a rigid body undemdom perturbation.
Electron. Comm. Probap10:235-243 (electronic), 2005.

Carlangelo Liverani and Stefano Olla. Toward the Feulaw for a weakly interact-
ing anharmonic crystall. Amer. Math. So¢25(2):555-583, 2012.

Shojiro Manabe and Yoko Ochi. The central limit theoréancurrent-valued pro-
cesses induced by geodesic floudsaka J. Math.26(1):191-205, 1989.

Yukio Ogura. Weak convergence of laws of stochasticcpsses on Riemannian
manifolds. Probab. Theory Related Field$19(4):529-557, 2001.

O. A. Oleinik and E. V. Radkevi¢Second order equations with nonnegative charac-
teristic form Plenum Press, New York-London, 1973. Translated from th&sRin
by Paul C. Fife.

G. C. Papanicolaou and W. Kohler. Asymptotic theory @fing stochastic ordinary
differential equationsComm. Pure Appl. Math27:641-668, 1974.

G. C. Papanicolaou, D. Stroock, and S. R. S. Varadhamtiidale approach to some
limit theorems. IrPapers from the Duke Turbulence Conference (Duke Univg)197
pages ii+120 pp. Duke Univ., Durham, N.C., 1977.

G. C. Papanicolaou and S. R. S. Varadhan. A limit theongth strong mixing in
Banach space and two applications to stochastic diffedeagjuationsComm. Pure
Appl. Math, 26:497-524, 1973.


http://arxiv.org/abs/1204.3250
http://arxiv.org/abs/1402.5861
http://arxiv.org/abs/1505.06772

APPENDIX 57

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

George Papanicolaou and Joseph B. Keller. Stochastarahtial equations with
applications to random harmonic oscillators and wave grafan in random media.
SIAM J. Appl. Math.21:287-305, 1971.

George C. Papanicolaou and Werner Kohler. Asymptotadyesis of deterministic
and stochastic equations with rapidly varying componer@&@mm. Math. Phys.
45(3):217-232, 1975.

Mark A. Pinsky. Homogenization and stochastic patalisplacement. Ifstochastic
integrals (Proc. Sympos., Univ. Durham, Durham, 198@lume 851 ofLecture
Notes in Math.pages 271-284. Springer, Berlin, 1981.

D. Revuz and M. Yor.Continuous martingales and Brownian motion, 2nd edition
Springer-Verlag, 1993.

Antonio Sanchez-Calle. Fundamental solutions arahgstry of the sum of squares
of vector fields.Invent. Math, 78(1):143-160, 1984.

M. A. Shubin. Spectral theory of elliptic operators onneompact manifolds.
Astrisque (207):5, 35-108, 1992. Méthodes semi-classiques, VdNdntes,
1991).

Richard B. Sowers. On the tangent flow of a stochastifeihtial equation with
fast drift. Trans. Amer. Math. Soc353(4):1321-1334 (electronic), 2001.

R. L. Stratonovich. A limit theorem for solutions of fiifential equations with
random right-hand sidél'heory Prob. Appl,,11, 1960. In Russian.

R. L. Stratonovich. Selected problems in the theory oftflations in radio engi-
neering.Sov. Radio, Moscowl961. In Russian.

Cédric Villani. Optimal transport volume 338 ofGrundlehren der Mathematis-
chen Wissenschaften [Fundamental Principles of MatherakSciences]Springer-
Verlag, Berlin, 2009. OIld and new.



	1 Introduction
	2 Examples
	3 Preliminary Estimates
	4 A Reduction
	5 Uniform Estimates
	6 Convergence under Hörmander's Conditions
	7 A study of the semigroups
	8 Rate of Convergence
	9 Rate of Convergence in Wasserstein Distance
	10 Appendix

