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Abstract

We carry out the construction of some ill-posed multiplicative stochastic heat
equations on unbounded domains. The two main equations our result covers are,
on the one hand the parabolic Anderson model onR3, and on the other hand
the KPZ equation onR via the Cole-Hopf transform. To perform these construc-
tions, we adapt the theory of regularity structures to the setting of weighted Besov
spaces. One particular feature of our construction is that it allows one to start both
equations from a Dirac mass at the initial time.
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1 Introduction

In the present paper, we consider the following stochastic partial differential equa-
tion:

∂tu = ∆u+ u · ξ , u(0, ·) = u0(·) , (E)

whereu is a function oft ≥ 0, x ∈ Rd, andξ is an irregular noise process. While
large parts of our analysis are dimension-independent, a natural subcriticality con-
dition restricts the dimensions in which we can consider themost-interesting case
of delta-correlated noise. We will henceforth be mainly concerned with two in-
stances of this equation:d = 3 andξ is a white noise in space only, we refer to this
case as (PAM);d = 1 andξ is a space-time white noise, we call this case (SHE).

http://arxiv.org/abs/1504.07162v1


2 INTRODUCTION

Whenξ is a white noise in space, without dependence in time, this equation is
indeed called the parabolic Anderson model (PAM). In dimension d ≥ 2, the equa-
tion is ill-posed, due to the very singular productu · ξ. Indeed,u is expected to be
(2 + α)-Hölder where the regularity of the noiseα is strictly lower than−d/2, so
that the sum of the regularities ofu andξ is strictly negative, and therefore, the prod-
uctu · ξ does not fall in the scope of classical integration theories[BCD11, You36].
To make sense of this product, one actually needs to perform somerenormalisation
which boils down to, roughly speaking, subtracting some infinite linear term from
the equation.

When the space variable is restricted to a torus of dimension2, the solution
of a generalised version of (PAM) has been constructed independently by Gu-
binelli, Imkeller and Perkowski [GIP12] using paracontrolled distributions, and by
Hairer [Hai14b] via the theory of regularity structures. The constructionhas also
been carried out on a torus of dimension3 by Hairer and Pardoux [HP14]. The con-
struction of (PAM) on the full spaceR2 has been obtained recently [HL15], using
a simple change of unknown that spares one from requiring elaborate renormalisa-
tion theories. This is not possible anymore in dimension3: in the present paper,
we adapt the theory of regularity structures to perform the construction of (PAM)
on the full spaceR3.

Whenξ is a space-time white noise, the equation is called the multiplicative
stochastic heat equation (SHE). Already in dimensiond = 1, the productu · ξ is
ill-defined. However, in dimension1, the Itô integral allows one to make sense
of this equation: as it requires the noise to be a martingale in time and the solu-
tion u to be adapted to the filtration of the noise, this construction breaks down for
space-time regularisations of the white noise so that it does not allow for conver-
gence of space-time mollified versions of the original equation. When the space
variable is restricted to a torus of dimension1, this equation has been constructed
by Hairer and Pardoux [HP14] in the framework of regularity structures: they de-
fine the solution map on a space of noises that contains a largeclass of space-time
mollifications of the white noise. In the present paper, we lift the restriction of the
torus and perform the construction on the whole lineR.

This equation is intimately related to the KPZ equation [KPZ86]. Indeed, for-
mally, the Cole-Hopf transform sends the ill-posed KPZ equation to (SHE); Bertini
and Giacomin [BG97] exploited this fact to prove the convergence of the fluctua-
tions of the weakly asymmetric simple exclusion process to the KPZ equation onR.
A more direct interpretation of the KPZ equation itself has recently been obtained
by Hairer [Hai13], when the space variable is restricted to a torus of dimension 1.

In addition to the ill-defined productu ·ξ that needs to be renormalised for both
(PAM) and (SHE), there are two major issues that we address inthis work: first,
we construct these SPDEs on an unbounded underlying space instead of a torus;
second, we consider a Dirac mass as the initial condition.

Let us first comment on the specific difficulty arising from theunboundedness
of the underlying space, when constructing the solutions tothese SPDEs. Since
the white noise is not uniformly Hölder on an unbounded space, one cannot expect



INTRODUCTION 3

to obtain solutions that are uniformly bounded over the underlying space and one
needs to weight the Hölder spaces of functions/distributions at infinity. This is a
classical problem when dealing with stochastic PDEs in unbounded domains, see
for example [Iwa87, AR91], as well as the recent work [MW15] which is somewhat
closer in spirit to the equations considered here. A priori,these weights cause some
trouble in obtaining a fixed point for the mapu 7→ P ∗ (u · ξ) + P ∗ u0, whereP
is the heat kernel. Indeed, since the weight needed for the productu · ξ is a priori
larger than the weight ofu itself, the map would take values in a space bigger than
the oneu lives in and the fixed point argument would not apply.

There is a way of circumventing this problem by considering atime-increasing
weight and by using the averaging in time of the weight due to the time convo-
lution with the heat kernel. More precisely, the white noisecan be weighted by
a polynomial weight pa(x) = (1 + |x|)a with a as small as desired, so that, if we
weight the solution by et(x) = et(1+|x|), then

∫ t
0
Pt−s∗(ξ ·us)ds can be weighted by∫ t

0
pa(x)es(x)ds which is smaller than et(x). We refer to [HL15] for a construction

of (PAM) on R2 using this idea, and to [HPP13] where this trick already appeared.
The main difficulty is therefore to incorporate the trick outlined above into the the-
ory of regularity structures, and this will require to have an accurate control on
the weights arising along the construction. In particular,a major issue comes from
the fact that et(x)/es(y) is not bounded from above and below, uniformly over all
(t, x), (s, y) lying at distance, say,1 from each other.

Regarding the initial condition, let us point out that the Picard iterations asso-
ciated to (E) involve products of the form (P ∗ u0) · ξ. By the classical integration
theories [BCD11, You36], this product makes sense as soon as the regularity of
P ∗ u0 is strictly larger than−α, whereα is the regularity of the noise.P ∗ u0 is
smooth away fromt = 0, but its space-time regularity neart = 0 coincides with
the space regularity ofu0. Since the time regularity counts twice in the parabolic
scaling, it is possible to make sense of (P ∗ u0) · ξ as long asu0 has a regularity
better than−2−α, usingintegrableweights around time0. The Hölder regularity
of the Dirac mass being equal to−d, this would prevent us from choosingu0 = δ0
for both (PAM) and (SHE).

One way of circumventing this problem is to exploit the fact that on the other
hand the Dirac distribution is “almost” anL1 function. In particular, it belongs to
the Besov spacesBβ

p,∞ as soon asβ < −d + d/p. Since the classical integration
theories allow one to multiplyCα byBβ

p,∞ as soon asα+ β > 0, the threshold on
the regularity of the initial condition would not be modifiedupon this change of dis-
tributions spaces. Choosingp small enough, one would then be able to take a Dirac
mass as the initial condition. We now present the main steps of the construction of
the solution to (E).

First, we define aregularity structure, which is an abstract framework that al-
lows one to associate to a function/distribution somegeneralisedTaylor expansion
around any space/time point. The building blocks of this regularity structure are, on
the one hand, polynomials in the space/time indeterminates, and on the other hand,
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some abstract symbolsΞ, I(Ξ), . . ., associated with the noise. Then, one needs to
reformulate the solution map that corresponds to (E) into the abstract framework
of the regularity structure. Namely, one has to provide abstract formulations of the
multiplication with the noiseξ and the convolution with the heat kernelP .

Second, we build a so-calledmodelwhich associates to the abstract symbols
some analytical values. Actually, we start with a mollified version of the noise
ξǫ = ̺ǫ∗ξ, where̺ ǫ(t, x) = ǫ−2−d̺(tǫ−2, xǫ−1) is a smooth, compactly supported
function which is such that̺ (t, x) = ̺(t,−x), and we build a model (Πǫ, F ǫ)
which, in particular, associates to the symbolΞ the smooth functionξǫ. One im-
portant feature is that the abstract solution given by the solution map, with this
particular model, coincides (upon an operation calledreconstruction) with the clas-
sical solution of the well-posed SPDE

∂tuǫ = ∆uǫ + uǫ · ξǫ , uǫ(0, ·) = u0(·) . (Eǫ)

Third, we renormalise the model (Πǫ, F ǫ) by modifying the values associated to
some symbols: namely, those symbols that stand for ill-defined products. Roughly
speaking, the modification of these values consists in substracting some divergent
constantCǫ. The effect of this renormalisation procedure is actually very clear at
the level of the SPDE, since the abstract solution then corresponds to

∂tûǫ = ∆ûǫ + ûǫ · (ξǫ − Cǫ) , ûǫ(0, ·) = u0(·) . (Êǫ)

The final step consists in proving that the sequence of renormalised models
converges asǫ ↓ 0 in a sense that will be made clear later on. The continuity of
the solution map then ensures that the sequence of abstract solutions converge, and
furthermore, the limit is the fixed point of an abstract fixed point equation. This
yields the convergence of the sequence of renormalised solutions ûǫ to a limit u.

Let us now outline some major modifications that we bring to the original the-
ory of regularity structures [Hai14b]. First, since we want to start (E) from a Dirac
mass, we need to choose an appropriate space of distributions. As explained ear-
lier in the introduction, we are led to using (some variants of) the Bβ

p,∞ spaces.
Therefore, we present a new version of the reconstruction operator in this setting,
we refer to Definition 2.5 and Theorem 2.11. Second, our spaces of modelled dis-
tributions are weighted at infinity; therefore, the reconstruction theorem and the
abstract convolution with the heat kernel need to be modifiedin consequence, we
refer to Theorems 3.10 and 4.3. One major difficulty we run into is that one would
like to consider the same kind of weights as in [HPP13, HL15], which are of the
typew(t, x) = exp(t(1 + |x|)). Unfortunately, such weights donot satisfy the very
desirable propertyc ≤ |w(z)/w(z′)| ≤ C for some constantsc, C > 0, uniformly
over space-time pointsz, z′ with |z − z′| ≤ 1, although theydo satisfy this prop-
erty for pairs of points that are only separated in space. As aconsequence, we need
extremely fine control on the behaviour of our objects as a function of time, see
for example the bound (2.9) and the illustration of Figure 2.Note that in the case
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of (PAM), where the noise varies only in space, we could have defined our regu-
larity structure on space only and viewed the solution as a function of time with
values in a space of modelled distributions, thus substantially shortening some of
the arguments.

The main result of the present work is as follows.

Theorem 1.1 We consider either (PAM) or (SHE). Letu0 ∈ Cη,pw0
(Rd) with η >

−1/2, p ∈ [1,∞) andw0(x) = eℓ(1+|x|) for someℓ ∈ R. There exists a divergent
sequence of constantsCǫ such that, on any interval of time(0, T ], the sequence of
solutionsûǫ of (Êǫ) converges locally uniformly to a limitu, in probability.

Furthermore, the limit depends continuously on the initialconditionu0 and,
provided thatCε is chosen accordingly, it is independent of the choice of mollifier
̺. In the case of (SHE), the limit can be chosen to coincide withthe classical
solution to the multiplicative stochastic heat equation [Wal86, DPZ92].

Remark 1.2 We refer to Definition 3.8 for the precise space of distributions in
which the convergence holds. Moreover, the spaceCη,pw0

(Rd) is defined in Subsec-
tion 4.3. We would like to point out however that forp sufficiently close to1 andη
negative one hasδ0 ∈ Cη,pw0

, so that we do in particular recover convergence to the
“infinite wedge” solution to the KPZ equation.

Remark 1.3 The exponent−1
2

obtained in this result is sharp. Indeed, since the
equation is linear in the initial condition, it is sufficientto be able to takeu0 = δy,
which is allowed in our setting. Denoting the correspondingsolution byKt(x, y),
general solutions are given byu(t, x) =

∫
Kt(x, y)u0(y) dy. Furthermore, in the

case of (PAM), it is straightforward to see by an approximation argument thatKt

is symmetric in both of its arguments. (In the case of (SHE) itis only symmetric
in law.) At this stage we then note that in both cases we expectKt to inherit
the regularity of the linearised problem, namely to be of Hölder regularityCα for
α < 1

2
in both of its arguments, but no better. (In the case of (SHE) this is of course

a well-known fact.) Such functions cannot be tested againsta generic distribution
in Cη,1 if η ≤ −1/2.

Remark 1.4 In the case of (PAM), denote byKt the integral operator onL2(R3)
with kernel (x, y) 7→ Kt(x, y). ThenKt is in general an unbounded selfadjoint
operator (with a domain depending on the realisation of the underlying noise!).
Furthermore,Kt is positive definite since its kernel is obtained as a pointwise limit
of positive kernels. Finally, for any fixedt > 0, Kt does not admit anyϕ ∈ L2

with Ktϕ = 0. Indeed, since the operatorsKt satisfyKtKs = Kt+s, one would
haveKt/nϕ = 0 for every n > 0, which would contradict the fact thatKtϕ
converges toϕ weakly ast → 0. As a consequence, we can define an operator
L = 1

t logKt by functional calculus. This operator is naturally interpreted as a
suitably renormalised version of the random Schrödinger operator

Lξ = −∆+ ξ ,
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on R3. See [AC15] for more details on a similar construction in dimension 2 (and
bounded domain).

In both cases, the renormalisation constantCǫ = cǫ + c(1,1)
ǫ + c(1,2)

ǫ is given by

cǫ :=

∫
G(x)̺∗2ǫ (z)dz ,

c(1,1)
ǫ :=

∫
G(z1)G(z2)G(z3)̺∗2ǫ (z1 + z2)̺∗2ǫ (z2 + z3)

3∏

i=1

dzi , (1.1)

c(1,2)
ǫ :=

∫
G(z1)G(z2)

(
G(z3)̺∗2ǫ (z3) − cǫδ0(z3)

)
̺∗2ǫ (z1 + z2 + z3)

3∏

i=1

dzi .

In the case of (PAM),G is a compactly supported function that coincides with
the Green’s function of the3 dimensional Laplacian in a neighbourhood of the
origin, and the integration variables lie inR3. In the case of (SHE),G is taken
to be the heat kernel in dimension1, and the integration variables take values in
R2. (With the usual convention that the heat kernel takes the value 0 for negative
times.) In both cases,cǫ = cǫ−1 with a proportionality constantc that depends
on ̺ and on the equation under consideration. The other two constants behave
differently according to the equation: for (PAM),c(1,1)

ǫ = − 1
16π log ǫ + O(1) and

c(1,2)
ǫ = O(1); while for (SHE) bothc(1,1)

ǫ andc(1,2)
ǫ have finite limits asǫ → 0 as

shown in [HP14].

Let us point out that we do not provide the details on the convergence of the
models. Instead, we refer the reader to [HP14] where the convergence of the mol-
lified model associated with (SHE) on the one-dimensional torus has been proven.
Since the models are “local” objects, the renormalisation is not affected upon pass-
ing to the whole line. Regarding (PAM), the algebraic and scaling properties of the
equation coincide with those of (SHE) so that the proof worksverbatim: only the
actual values of the renormalisation constants differ.

The remainder of the article is structured as follows. We start by giving a short
introduction to the theory of regularity structures, as used in our particular exam-
ple, in Section 2.1. The reader unfamiliar with the theory may find [Hai14b] or
the shorter introductions [Hai15, Hai14a] useful. In all existing works, the spaces
of “modelled distributions” on which the theory is built arebased on the standard
Hölder spaces. In Section 2.2, we introduce new spaces of modelled distributions
that are instead based on a class of inhomogeneous Besov spaces and we prove
the reconstruction theorem in this context. In Section 3, wethen leverage the lo-
cal results of Section 2.2 to build suitable weighted spaces. Section 4 contains a
Schauder estimate for these spaces, which is the main ingredient for building local
solutions to the limiting problem. Finally, we combine all of these ingredients in
Section 5, where we give the proof of Theorem 1.1.
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1.1 Notations

From now on, we work inRd+1 whered is the dimension of space and1 the
dimension of time. We choose the parabolic scalings = (2, 1, . . . , 1), wheres0 =
2 stands for the time scaling andsi = 1, i = 1 . . . d for the scaling of each direction
of space. We let|s| = ∑d

i=0 si. We denote by‖z‖s = max(
√

|t|, |x1|, . . . , |xd|)
thes-scaled supremum norm of a vectorz = (t, x) ∈ Rd+1. We will also use the
notation|k| = ∑d

i=0 siki for any elementk ∈ Nd+1. To keep notation clear, we
restrict the letterss, t to denoting elements inR, x, y to denoting elements inRd,
while the lettersk,m, ℓ will stand for elements ofN or Nd+1. Moreover, in some
cases we will use the letterz to denote an element inRd+1.

For any smooth functionf : Rd+1 → R and anyk ∈ Nd+1, we letDkf be the
function obtained fromf by differentiatingk0 times in directiont andki times in
each directionxi, i ∈ {1, . . . , d}. For anyr > 0, we letCr be the space of functions
f on Rd+1 such thatDkf is continuous for allk ∈ Nd+1 such that|k| ≤ r. We
denote byBr the subset ofCr whose elements are supported in the unit parabolic
ball and have theirCr-norm smaller than1. For all η ∈ Cr, all (t, x) ∈ Rd+1 and
all λ > 0, we set

ηλt,x(s, y) := λ−|s|η
(s− t

λ2
,
y1 − x1
λ

, . . . ,
yd − xd
λ

)
, ∀(s, y) ∈ Rd+1 .

This rescaling preserves theL1-norm.
Finally, for all z ∈ Rd+1 and allλ > 0, we letB(z, λ) ⊂ Rd+1 be the ball of

radiusλ centred atz; here we implicitly work with thes-scaled supremum norm
‖.‖s. For x ∈ Rd, we use the same notationB(x, λ) to denote the ball inRd of
radiusλ and centerx.

Acknowledgements

We are grateful to Khalil Chouk for pointing out that the regularity index for the
Dirac mass is higher in Besov / Sobolev type spaces than in Hölder type spaces.
MH gratefully acknowledges financial support from the Philip Leverhulme Trust
and from the ERC.

2 Regularity structures and Besov-type spaces

In the first subsection, we recall the basic definitions of regularity structures and
models - this material is essentially taken from [Hai14b]. In the second subsection,
we adapt the definition of the spaces of modelled distributions from [Hai14b] to the
setting of Besov spaces. Then, we prove the corresponding reconstruction theorem.
In the third subsection, we introduce the weighted spaces ofmodelled distributions
by adding weights aroundt = 0 andx = ∞ in the spaces previously introduced.

2.1 Regularity structures and models

A regularity structure consists of two objects. First, a graded vector spaceT =⊕
ζ∈A Tζ whereA, called the set of homogeneities, is a subset ofR which is
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locally finite and bounded from below. Second, a groupG of continuous linear
transformations ofT whose elementsΓ ∈ G fulfil the following property

Γτ − τ ∈ T<β , ∀τ ∈ Tβ , ∀β ∈ A ,

where we wroteT<β as a shorthand for
⊕

ζ<β Tζ . A simple example of regularity
structure is given by the polynomials ind+1 indeterminatesX0, . . . ,Xd. For every
ζ ∈ N, let Tζ be the set of all formal polynomials inXi, i = 0 . . . d with s-scaled
degree equal toζ. Let us recall that thes-scaled degree ofXk =

∏d
i=0X

ki
i , for

any givenk ∈ Nd+1, is equal to|k| = ∑
siki. The set of homogeneities in this

example isA = N, while a natural structure group is the group of translations on
Rd+1.

In the case of (E), the regularity structure, together with aset of canonical basis
vectors forT , can be constructed as follows. We setα = −3

2
−κ for a givenκ > 0

and we letTα be a one-dimensional real vector space with basis vectorΞ. Then we
define two collectionsU andF of formal expressions by setting1,Xk ∈ U for all
k ∈ Nd+1 and by imposing that they are the smallest sets satisfying the following
two rules

τ ∈ U ⇐⇒ τΞ ∈ F , τ ∈ F =⇒ I(τ ) ∈ U .

(The product (Ξ, τ ) 7→ τΞ is taken to be commutative so we will also writeΞτ
instead.) Writing〈U〉 for the free real vector space generated by a setU , we then
setT (U ) = 〈U〉, T (F) = 〈F〉 andT = 〈U ∪ F〉. Moreover, we writeT̄ ⊂ T (U )
for the set of all polynomials in theXi, i = 0, . . . , d.

The homogeneity|τ | of an elementτ ∈ U ∪F is computed by setting|Ξ| = α
, |1| = 0, |Xi| = 1 and by imposing the following rules

|τ τ̄ | = |τ |+ |τ̄ | , |I(τ )| = |τ |+ 2 .

The corresponding sets of homogeneities are denotedA(U ),A(F) andA = A(U )∪
A(F). This also yields a natural decomposition ofT by Tα = 〈{τ : |τ | = α}〉. It
was shown in [Hai14b, Sec. 8] that there is a natural groupG acting onT in a way
that is compatible with the definition of an “admissible model”, see Definition 2.2
below. The precise definition ofG does not matter for the purpose of the present
article, so we refer the interested reader to [Hai14b, Sec. 8.1] and [HP14, Sec. 3.2].

The regularity structureT (U ) is the abstract framework to which the solution
u of (E) will be lifted. T (F), which is simply obtained by multiplying all the
elements inT (U ) by Ξ, will therefore allow us to liftu · ξ. It turns out that it
will suffice to restrictT (U ) to those homogeneities lower than a certain threshold
γ > 0, to be fixed later on. Similarly, we will restrictT (F) to those homogeneities
lower thanγ + α > 0. We will write T<γ(U ) and T<γ+α(F) to denote these
two subspaces, eventually we will omit these subscripts since the restriction will
be clear from the context. Finally, we letQζ : T → Tζ denote the canonical
projection onTζ and we denote by|a|ζ the norm ofQζa.
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U A(U ) F A(F)

1 0 Ξ −3
2
− κ

I(Ξ) 1
2
− κ ΞI(Ξ) −1− 2κ

I(ΞI(Ξ)) 1− 2κ ΞI(ΞI(Ξ)) −1
2
− 3κ

Xi 1 ΞXi −1
2
− κ

I(ΞI(ΞI(Ξ))) 3
2
− 3κ ΞI(ΞI(ΞI(Ξ))) −4κ

I(ΞXi) 3
2
− κ ΞI(ΞXi) −2κ

Figure 1: The canonical basis vectors for the regularity structure for (E) withγ ∈
(3/2, 2 − 4κ). Notice that herei ranges in{1, . . . , d}, whileX0 has homogeneity
2 and therefore does not appear.

Let us consider the heat kernel in dimensiond:

P (t, x) :=
1

(4πt)
d
2

e−
|x|2

4t , x ∈ Rd, t > 0 .

We will need the following decomposition ofP into a series of smooth functions,
which was already used in [Hai14b, Lem. 5.5]. Actually, there is a slight difference
here since we consider thes-scaled supremum norm inRd+1 instead of thes-scaled
Euclidean norm, but this makes no difference.

Lemma 2.1 Fix r > 0. There exist a collection of smooth functionsP−, Pn, n ≥ 0
onR+ × Rd, such that the following properties hold:

1. For everyz ∈ Rd+1\{0}, P (z) =
∑

n≥0 Pn(z) + P−(z),

2. The functionP0 is supported in the unit ball, and for everyn ≥ 0, we have

Pn(t, x) = 2ndP0(22nt, 2nx) , t ∈ R+ , x ∈ Rd ,

3. For everyn ≥ 0, we have
∫
z Pn(z)zkdz = 0 for all k ∈ Nd+1 such that

|k| ≤ r.

As a consequence, for everyk ∈ Nd+1, there existsC > 0 such that

|DkPn(z)| ≤ C2n(d+|k|) , (2.1)

uniformly over alln ≥ 0 and all z ∈ Rd+1.

We will use the notationP+ =
∑

n≥0 Pn.
From now on, we deal withT<γ for a givenγ that will be fixed later on. To

simplify notation, we will omit the subscriptγ. We now associate to our regularity
structure (T ,G) some analytical features. To that end, recalling the definition of
the sets of test functionsBr in Section 1.1, we introduce a set ofadmissible models
M.
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Definition 2.2 An admissible model is a pair (Π,Γ) that satisfies the following
assumptions:

1. The mapΠ: z 7→ Πz goes fromRd+1 into the spaceL(T ,D′(Rd+1)) of lin-
ear transformations fromT into distributions on space-timeD′(Rd+1) such
that

‖Π‖z := sup
η∈Br

sup
λ∈(0,1]

sup
ζ∈A

sup
τ∈Tζ

|(Πzτ )(ηλz )|
|τ |λζ . 1 , (2.2)

locally uniformly overz ∈ Rd+1, for some fixedr > |α|. We then define
‖Π‖B as the supremum of‖Π‖z over allz ∈ B, whereB is a given subset
of Rd+1.

2. The mapΓ: (z, z′) 7→ Γz,z′ goes fromRd+1 × Rd+1 into G. It is such that

‖Γ‖z,z′ := sup
β≤ζ

sup
τ∈Tζ

|Γz,z′τ |β
|τ | ‖z − z′‖ζ−βs

. 1 , (2.3)

locally uniformly overz, z′ ∈ Rd+1 such that‖z−z′‖s ≤ 1. We let‖Γ‖B :=
supz,z′∈B ‖Γ‖z,z′ for anyB ⊂ Rd+1.

3. For everyz, z′ ∈ Rd+1

ΠzΓz,z′ = Πz′ . (2.4)

4. For everyk ∈ Nd+1 we have the identities

(ΠzX
k)(z′) = (z′ − z)k , (2.5)

(ΠzIτ )(z′) = 〈Πzτ, P+(z
′ − ·)〉 −

∑

|k|<|Iτ |

(z′ − z)k

k!
〈Πzτ,DkP+(z − ·)〉 .

Remark 2.3 It is not clear a priori that the last point in this definition makes sense,
sinceP+ is not a smooth test function. One should interpret expressions of the
type 〈µ, P+〉 for a distributionµ as a shorthand for

∑
n≥0〈µ, Pn〉 (and similarly

for expressions involvingDkP+). The bound (2.2) then guarantees that these sums
converge absolutely.

The mere existence of non-trivial admissible models is not obvious. However,
it turns out that every smooth functionξε can be lifted in a canonical way to an
admissible model (Π(ε),Γ(ε)) by setting

(Π(ε)
z Ξ)(z′) = ξǫ(z

′) , (Π(ε)
z τ τ̄ )(z′) = (Π(ε)

z τ )(z′)(Π(ε)
z τ̄ )(z′) ,

and then imposing (2.5). Observe that all the products appearing in this definition
are well-defined sinceξǫ is a function. It was shown in [Hai14b, Prop 8.27] that
this is indeed an admissible model and we will henceforth refer to this model as
the “canonical model” associated toξε.
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Notation 2.4 From now on, instead of writingΓ(t,x),(t,y), we will simply writeΓtx,y.
Similarly, we will writeΓxt,s instead ofΓ(t,x),(s,x).

2.2 The reconstruction theorem in a Besov-type space

In order to build solution to our SPDEs, we need to introduce appropriate spaces
of distributions. For the moment, we consider un-weighted spaces for the sake of
clarity, but we will consider weighted versions later on.

Definition 2.5 Letα < 0 andp ∈ [1,∞]. We letEα,p be the space of distributions
f onRd+1 such that

sup
λ∈(0,1]

sup
t∈R

∥∥∥∥ sup
η∈Br (Rd+1)

|〈f, ηλt,x〉|
λα

∥∥∥∥
Lp(Rd,dx)

<∞ .

Observe thatEα,∞ actually coincides with the Hölder spaceCα(Rd+1). In or-
der to deal with random distributions, it is more convenientto have a countable
characterisation of the spacesEα,p. To that end, we rely on a wavelet analysis
that we briefly summarise below; we refer to the works of Meyer[Mey92] and
Daubechies [Dau88] for more details on wavelet analysis.

Wavelet analysis. For everyr > 0, there exists a compactly supported function
ϕ ∈ Cr(R) such that:

1. We have〈ϕ(·), ϕ(· − k)〉 = δk,0 for everyk ∈ Z,

2. There exist̃ak, k ∈ Z with only finitely many non-zero values, and such that
ϕ(x) =

∑
k∈Z ãkϕ(2x− k) for everyx ∈ R,

3. For every polynomialP of degree at mostr and for everyx ∈ R,

∑

k∈Z

∫
P (y)ϕ(y − k)dy ϕ(x− k) = P (x) .

Given such a functionϕ, we define for every (t, x) ∈ Rd+1 the recentered and
rescaled functionϕnt,x as follows

ϕnt,x(s, y) = 2nϕ(22n(s− t))
d∏

i=1

2
n
2 ϕ(2n(yi − xi)) .

Observe that this rescaling preserves theL2-norm. We letVn be the subspace of
L2(Rd+1) generated by{ϕnt,x : (t, x) ∈ Λn} where

Λn := {(2−2nk0, 2
−nk1, . . . , 2

−nkd) : ki ∈ Z} .
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Using the second property above, we deduce that

ϕnt,x =
∑

k

akϕ
n+1
(t,x)n,k

, (t, x)n,k = (t, x) + k2−(n+1) , (2.6)

where only finitely many of theak ’s are non-zero, and for everyk ∈ Zd+1

k2−(n+1) = (k02
−2(n+1), k12

−(n+1), . . . , kd2
−(n+1)) .

Using the third property above, we deduce that for everyn ≥ 0, Vn contains all
polynomials of scaled degree less or equal tor.

Another important property of wavelets is the existence of afinite setΨ of com-
pactly supported functions inCr such that, for everyn ≥ 0, the orthogonal comple-
ment ofVn insideVn+1 is given by the linear span of all theψnx , x ∈ Λn, ψ ∈ Ψ.
Necessarily, by the third property above, each of the functionsψ ∈ Ψ annihilates
all polynomials ofs-scaled degree less than or equal tor. Finally, for everyn ≥ 0

{ϕnt,x : (t, x) ∈ Λn} ∪ {ψmt,x : m ≥ n,ψ ∈ Ψ, (t, x) ∈ Λm} ,

forms an orthonormal basis ofL2(Rd+1).
This wavelet analysis allows one to identify a countable collection of conditions

that determine the regularity of a distribution.

Proposition 2.6 Let α < 0, p ∈ [1,∞] and r > |α|. Let ξ be a distribution on
Rd+1. Then,ξ ∈ Eα,p if and only ifξ belongs to the dual ofCr and the bounds

sup
n∈N

sup
t∈2−2nZ

( ∑

x:(t,x)∈Λn

2−nd
∣∣∣
〈
ξ, ψnt,x

〉

2−
n|s|
2

−nα

∣∣∣
p
) 1

p

. 1 ,

sup
t∈Z

( ∑

x:(x,t)∈Λ0

|〈ξ, ϕt,x〉|p
) 1

p

. 1 ,

(2.7)

hold uniformly over allψ ∈ Ψ.

Remark 2.7 More generally, ifξ is a linear form defined on the linear span of all
theψnt,x and all theϕt,x such that the bounds of Proposition 2.6 are fulfilled, then
ξ can be extended uniquely to an element ofEα,p.

Remark 2.8 As an immediate consequence of this result, we have a continuous

embedding ofEα,p into Eα−
d
p
,∞, for everyp ∈ [1,∞).

Proof. The casep = ∞ is covered by Proposition 3.20 in [Hai14b]. Let us adapt
the proof for the casep ∈ [1,∞). If ξ ∈ Eα,p, then it is immediate to see that
the bounds (2.7) are satisfied, using the simple fact that forany (s, y) lying in the
parabolic hypercube of sidelength2−n centred around (t, x) ∈ Λn, the function
ψnt,x is of the formηλs,y with λ = 2−n, up to a constant multiplicative factor of the
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order2−
n|s|
2 . This allows in particular to turn theLp norm in space into anℓp norm

at the expense of the corresponding volume factor.
Let us now prove the more difficult converse implication. Forλ ∈ (0, 1], let

n0 ≥ 0 be the largest integer such that2−n0 ≥ λ. For any test functionη ∈ Br, we
have

〈ξ, ηλt,x〉 =
∑

ψ∈Ψ

∑

n≥0

∑

(s,y)∈Λn

〈ξ, ψns,y〉〈ψns,y, ηλt,x〉+
∑

(s,y)∈Λ0

〈ξ, ϕs,y〉〈ϕs,y, ηλt,x〉 .

We need to show that the right hand side fulfils the required bound. We argue
differently according to the relative values ofn andn0.

If n ≥ n0, we use the fact thatψ kills polynomials of degreer to get the bound

sup
η∈Br

|〈ψns,y, ηλt,x〉| . 2−(n−n0)(r+ |s|
2

)+n0
|s|
2 ,

uniformly over all the parameters. Observe that the left hand side actually vanishes
as soon as‖(t − s, x − y)‖s ≥ C2−n0 , for some positive constantC that only
depends on the size of the support ofψ. For a given (t, x) ∈ Rd+1, there are at
most22(n−n0) suchs’s in 2−2nZ, and2d(n−n0) suchy’s in 2−nZd. Consequently,
using Jensen’s inequality at the third line we obtain

∥∥∥∥
∑

(s,y)∈Λn

sup
η∈Br

|〈ξ, ψns,y〉〈ψns,y, ηλt,x〉|
λα

∥∥∥∥
Lp(dx)

. sup
s∈2−2nZ

|t−s|≤C2−2n0

∥∥∥∥
∑

y:(s,y)∈Λn

|x−y|≤C2−n0

|〈ξ, ψns,y〉|
λα

2−(n−n0)(r+d)+n |s|
2

∥∥∥∥
Lp(dx)

. sup
s∈2−2nZ

( ∑

y:(s,y)∈Λn

2−nd
∣∣∣
〈ξ, ψns,y〉
2−

n|s|
2

−nα

∣∣∣
p) 1

p
2−(n−n0)(r+α) ,

uniformly over allt ∈ R and alln ≥ n0. Therefore, sincer was chosen sufficiently
large so thatr + α > 0, the sum overn ≥ n0 converges.

On the other hand, forn < n0, we have the bound

sup
η∈Br

|〈ψns,y, ηλt,x〉| . 2n
|s|
2 ,

uniformly over all the parameters. Moreover, the left hand side vanishes as soon
as‖(t − s, x − y)‖s > C2−n. Consequently, only a finite number of (s, y) ∈ Λn
yield a non-zero contribution, uniformly over all (t, x) ∈ Rd+1 and alln < n0. An
elementary computation using Jensen’s inequality gives the bound

∥∥∥∥
∑

(s,y)∈Λn

sup
η∈Br

|〈ξ, ψns,y〉〈ψns,y, ηλt,x〉|
λα

∥∥∥∥
Lp(dx)
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. sup
s∈2−2nZ

( ∑

y:(s,y)∈Λn

2−nd
∣∣∣
〈ξ, ψns,y〉
2−n

|s|
2
−nα

∣∣∣
p) 1

p
2−(n−n0)α ,

uniformly over alln < n0 and all t ∈ R. The sum over alln < n0 of the last
expression is therefore uniformly bounded inn0 andt. Finally, the contribution of
theϕs,y ’s is treated similarly as the casen < n0. �

Given a regularity structure (T ,G) and a model (Π,Γ), we now define a space of
modelled distributions which mimics the spaceEα,p.

Definition 2.9 Let γ > 0 andp ∈ [1,∞). The spaceDγ,p consists of those maps
f : Rd+1 → T<γ such that

∥∥∥|f (t, x)|ζ
∥∥∥
Lp(Rd,dx)

+

∥∥∥∥
∫

y∈B(x,λ)

|f (t, y) − Γty,xf (t, x)|ζ
λγ−ζ

λ−ddy

∥∥∥∥
Lp(Rd,dx)

+

∥∥∥∥
|f (t, x) − Γxt,t−λ2f (t− λ2, x)|ζ

λγ−ζ

∥∥∥∥
Lp(Rd,dx)

<∞ ,

uniformly over allt ∈ R, all ζ ∈ A and allλ ∈ (0, 2]. We denote by‖f‖γ,p the
corresponding norm.

For allB ⊂ Rd+1 of the form [s, t] × B(x0, L), we will use the notation‖f‖B to
denote the supremum of the terms appearing in theDγ,p-norm of f , but with the
additional constraint that the time indices are restrictedto [s, t] and theLp(Rd)-
norms are replaced by theLp-norm on the ballB(x0, L).

Remark 2.10 Our spacesDγ,p are theLp counterparts of the spaceDγ,∞ = Dγ

from [Hai14b, Def. 3.1]. Notice also that, just as in the definition ofEα,p, we treat
space and time translations separately: this will be usefulin the weighted setting
later on.

The definition of the spaceDγ,p depends implicitly on the underlying model
throughΓ. In order to compare two elementsf ∈ Dγ,p andf̄ ∈ D̄γ,p associated to
two models (Π,Γ) and (̄Π, Γ̄), we introduce‖f ; f̄‖γ,p as the supremum of

∥∥∥|f (t, x) − f̄ (t, x)|ζ
∥∥∥
Lp(dx)

+
∥∥∥
∫

y∈B(x,λ)

|f (t, y) − f̄ (t, y) − Γty,xf (t, x) + Γ̄ty,xf̄ (t, x)|ζ
λγ−ζ

λ−ddy
∥∥∥
Lp(dx)

+
∥∥∥
|f (t, x) − f̄ (t, x) − Γxt,t−λ2f (t− λ2, x) + Γ̄xt,t−λ2 f̄ (t− λ2, x)|ζ

λγ−ζ

∥∥∥
Lp(dx)

,

over allt ∈ R, all ζ ∈ A and allλ ∈ (0, 2].
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The following result shows that these modelled distributions can actually be
reconstructedinto genuine distributions. This is a modification of Theorem 5.12
in [Hai14b]. For any functiong : Rd → R and anyx0 ∈ Rd, we use the notation

‖g‖Lp
x0,1

=
( ∫

x∈B(x0,1)
|g(x)|pdx

) 1

p
.

Theorem 2.11 (Reconstruction)Let (T ,G,A) be a regularity structure. Letγ >
0, p ∈ [1,∞), α := minA < 0, r > |α| and (Π,Γ) be a model. There exists a
unique continuous linear mapR : Dγ,p → Eα,p such that

∥∥∥∥ sup
η∈Br

|〈Rf −Πt,xf (t, x), ηλt,x〉|
∥∥∥∥
Lp
x0,1

. λγCt,x0,λ(Π, f ) , (2.8)

uniformly over allλ ∈ (0, 1], all (t, x0) ∈ Rd+1, all f ∈ Dγ,p and all admissible
models(Π,Γ). Here the proportionality constant can be given by

Ct,x0,λ(Π, f ) =
∑

2−n≤λ

(2−n
λ

)γ∧(r+α)
‖Π‖Bn

λ,t,x0
(1 + ‖Γ‖Bn

λ,t,x0
)‖f‖Bn

λ,t,x0
,

(2.9)
withBn

λ,t,x0
= [t− 2λ2, t+ λ2 − 2−2n]×B(x0, 3).

If (Π̄, Γ̄) is a second model forT and if R̄ is its associated reconstruction
operator, then one has the bound

∥∥∥∥ sup
η∈Br

|〈Rf − R̄f̄ −Πt,xf (t, x) + Π̄t,xf̄ (t, x), ηλt,x〉|p
∥∥∥∥
Lp
x0,1

. λγCt,x0,λ(Π, Π̄, f, f̄ ) ,

(2.10)

uniformly over allλ ∈ (0, 1], all f ∈ Dγ,p, all f̄ ∈ D̄γ,p, all (t, x0) ∈ Rd+1 and all
admissible models(Π,Γ), (Π̄, Γ̄). Here, the proportionality constant is obtained
from (2.9) by replacing‖Π‖Bn

λ,t,x0
(1 + ‖Γ‖Bn

λ,t,x0
)‖f‖Bn

λ,t,x0
by

‖Π‖Bn (1 + ‖Γ‖Bn )‖f ; f̄‖Bn

+ (‖Π− Π̄‖Bn(1 + ‖Γ‖Bn ) + ‖Π̄‖Bn‖Γ− Γ̄‖Bn)‖f̄‖Bn ,
(2.11)

withBn = Bn
λ,t,x0

as defined above.

To prove this theorem, we adapt the arguments from [Hai14b, Th 3.10]. In particu-
lar, we obtainRf as the limit of a sequenceRnf ∈ Vn, whereVn is the subspace
of L2(Rd+1) defined by our wavelet analysis. Let us comment on the technical
bound (2.9). Its purpose is to provide a precise control on the time-locations of
these valuesf (s, y) needed to define〈Rf, ηλt,x〉. In the original proof of the recon-
struction theorem [Hai14b, Th 3.10], these points were taken in a domain slightly
larger than the support of the test functionηλt,x. In the setting with weights, this
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×
λ

t

t+ λ2

x

×
λ

t

t+ λ2

x

2−2n

Figure 2: Reconstruction theorem. On the left, the originalapproach and on the
right, the approach presented in our proof. The shaded region depicts the support of
a test functionηλt,x, the dashed box is the domain of the evaluations of the modelled
distributionf required to define〈Rnf, η

λ
t,x〉.

would only allow us to weigh〈Rf, ηλt,x〉 by a weight taken at a time slightly larger
than the maximal time of the support of the test function. In our present approach,
the valuesf (s, y) used for the term coming from〈Rnf, η

λ
t,x〉 will always be such

that s < t + λ2 − 2−2n. In the setting with weights, this will allow us to weigh
〈Rf, ηλt,x〉 by a weight taken at timet+λ2. We refer to Figure 2 for an illustration.

The core of the proof rests on the following result. Recall the wavelet anal-
ysis introduced above. Letfn =

∑
(t,x)∈Λn

Ant,xϕ
n
t,x be a sequence of elements

in Vn and defineδAnt,x = 〈fn+1 − fn, ϕ
n
t,x〉. The following criterion for the con-

vergence of the sequencefn is an adaptation of Theorem 3.23 in [Hai14b], which
in turn can be viewed as a multidimensional generalisation of Gubinelli’s sewing
lemma [Gub04].

Proposition 2.12 Letα < 0. Assume that there exists a constant‖A‖ such that

sup
n≥0

sup
t∈2−2nZ

( ∑

x:(t,x)∈Λn

2−nd
∣∣∣

Ant,x

2−n
|s|
2
−nα

∣∣∣
p
) 1

p

≤ ‖A‖ ,

sup
n≥0

sup
t∈2−2nZ

( ∑

x:(t,x)∈Λn

2−nd
∣∣∣

δAnt,x

2−n
|s|
2
−nγ

∣∣∣
p
) 1

p

≤ ‖A‖ .
(2.12)

Then, the sequencefn converges inE ᾱ,p for every ᾱ < α to a limit f ∈ Eα,p.
Moreover, the bounds

‖f − fn‖ᾱ,p . ‖A‖2−n(α−ᾱ) , ‖Pnf − fn‖α,p . ‖A‖2−nγ , (2.13)

hold for ᾱ ∈ (α− γ, α).

Here,Pn denotes the orthogonal projection fromL2(Rd+1) ontoVn. We also write
V ⊥
n for the orthogonal complement ofVn in Vn+1. From the wavelet analysis, we

know that this is obtained as the linear span of all theψnt,x with (t, x) ∈ Λn and
ψ ∈ Ψ.
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Proof. Let us writefn+1 − fn = gn + δfn, wheregn ∈ Vn andδfn ∈ V ⊥
n . We

bound separately the contributions of these two terms. By Proposition 2.6, the
Eβ,p norm is equivalent to the supremum overn ≥ 0 of the Eβ,p norms of the
projections ontoV ⊥

n and ontoV0. Therefore, the sequence
∑M

n=0 δfn converges in
E ᾱ,p asM → ∞ to an element inEα,p precisely if

lim
n→∞

‖δfn‖ᾱ,p = 0 , sup
n→∞

‖δfn‖α,p <∞ . (2.14)

We have

〈δfn, ψnt,x〉 =
∑

(s,y)∈Λn+1

An+1
s,y 〈ϕn+1

s,y , ψ
n
t,x〉 .

Observe that|〈ϕn+1
s,y , ψ

n
t,x〉| . 1 uniformly over alln ≥ 0, and that the inner

product vanishes as soon as‖(t − s, x − y)‖s ≤ C2−n for some constantC > 0
depending on the sizes of the support ofϕ andψ. Hence, for a given (t, x), the
number of (s, y) ∈ Λn+1 with a non-zero contribution is uniformly bounded in
n ≥ 0. Therefore, we have

‖δfn‖β,p . sup
t∈2−2nZ

( ∑

x:(t,x)∈Λn

2−nd
( ∑

(s,y)∈Λn+1

‖(t−s,x−y)‖s≤C2−n

|An+1
s,y |

2−n
|s|
2
−nβ

)p) 1

p

. sup
t∈2−2nZ

∑

s∈2−2(n+1)Z
|t−s|≤C22−2n

( ∑

x:(t,x)∈Λn

∑

y:(s,y)∈Λn+1

|x−y|≤C2−n

2−nd
∣∣∣

An+1
s,y

2−n
|s|
2
−nβ

∣∣∣
p
) 1

p

. sup
s∈2−2(n+1)Z

2−n(α−β)
( ∑

y:(s,y)∈Λn+1

2−(n+1)d
∣∣∣

An+1
s,y

2−n
|s|
2
−nα

∣∣∣
p
) 1

p

,

so that (2.14) follows from (2.12). Moreover, this yields the bound

∥∥∥
∞∑

n=m

δfn

∥∥∥
ᾱ,p

. ‖A‖2−m(α−ᾱ) .

Let us now prove that the series of thegn’s is also summable inEα,p. We have
∥∥∥∥∥

M∑

n=m

gn

∥∥∥∥∥
α,p

.

M∑

n=m

sup
N≥0

‖QNgn‖α,p ∨ ‖P0gn‖α,p ,

whereQN denotes the projection ontoV ⊥
N andP0 the projection ontoV0. Since

gn ∈ Vn, we have

gn =
∑

(s,y)∈Λn

〈gn, ϕns,y〉ϕns,y =
∑

(s,y)∈Λn

δAns,yϕ
n
s,y .
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WheneverN ≥ n, QNgn vanishes. On the other hand, we have|〈ϕns,y, ψNt,x〉| .
2−(n−N ) |s|

2 uniformly over allN < n, and this inner product actually vanishes as
soon as‖(t− s, x− y)‖s > C2−N . Consequently, using the triangle inequality on
the sum overs and Jensen’s inequality on the sum overy to pass from the third to
the fourth line, we have

‖QNgn‖α,p

. sup
t∈2−2NZ

( ∑

x:(t,x)∈ΛN

2−Nd
( ∑

(s,y)∈Λn

|δAns,y||〈ϕns,y, ψNt,x〉|
2−N

|s|
2
−Nα

)p) 1

p

. sup
t∈2−2NZ

( ∑

x:(t,x)∈ΛN

2−Nd
( ∑

(s,y)∈Λn

‖(t−s,x−y)‖s≤C2−N

2−(n−N )|s| |δAns,y|
2−n

|s|
2
−Nα

)p) 1

p

. sup
t∈2−2NZ

∑

s∈2−2nZ
|t−s|≤C22−2N

2−2(n−N )
( ∑

x:(t,x)∈ΛN

∑

y:(s,y)∈Λn

|x−y|≤C2−N

2−nd
∣∣∣

δAns,y

2−n
|s|
2
−Nα

∣∣∣
p
) 1

p

. sup
s∈2−2nZ

( ∑

y:(s,y)∈Λn

2−nd
∣∣∣

δAns,y

2−n
|s|
2
−nγ

∣∣∣
p) 1

p
2−nγ ,

uniformly over alln > N ≥ 0. The calculation forP0gn is very similar. Con-
sequently,‖∑∞

n=m gn‖α,p . ‖A‖2−mγ and the asserted convergence is proved.
Moreover, the bounds (2.13) follow immediately by keeping track of constants.

�

We now proceed to the proof of the reconstruction theorem. Even though the gen-
eral method of proof is quite similar to that of Theorem 3.10 in [Hai14b], a specific
work is needed here in order to get the refined bound (2.8).

Proof of Theorem 2.11.Set

M = diam suppϕ ∨ {diam suppψ;ψ ∈ Ψ} ∨ {|k| : ak 6= 0} .
Let us introduce the following notation: for allt ∈ R, we let t↓n := t − C2−2n

whereC = 7M2+1. Recall the notationxn,k andtn,k introduced above (2.6). For
all n ≥ 0, we define

Rnf :=
∑

(t,x)∈Λn

Ant,xϕ
n
t,x ,

where, for all (t, x) ∈ Rd+1

Ant,x :=

∫

y∈B(x,2−n)
2nd〈Πt↓n,yf (t↓n, y), ϕnt,x〉dy ,

with 〈·, ·〉 denoting the pairing between distributions and test functions. One can
write

δAnt,x =
∑

k∈Zd+1

ak

( ∫

v∈B(xn,k ,2−(n+1))
2(n+1)d〈Π

t↓n+1

n,k
,v
f (t↓n+1

n,k , v), ϕn+1
tn,k ,xn,k

〉dv
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−
∫

u∈B(x,2−n)
2nd〈Πt↓n,uf (t↓n, u), ϕn+1

tn,k ,xn,k
〉du

)
.

Observe that any two pointsv andu appearing in the integral above are at distance
at most (M + 3)2−(n+1) from each other. A simple calculation thus shows that

|δAnt,x| .
∑

k∈Zd+1

ak 6=0

∑

ζ∈A

∫

u∈B(x,2−n)
2n(d−ζ− |s|

2
)Fnζ (t↓n, t↓n+1

n,k , u) du , (2.15)

where the quantityFnζ is given by

Fnζ (t, s, u) = ‖Π‖su|f (s, u) − Γus,tf (t, u)|ζ

+

∫

v∈B(u,(M+3)2−(n+1))
2nd‖Π‖sv |f (s, v) − Γsv,uf (s, u)|ζdv .

At this stage, it is simple to check that the conditions of Proposition 2.12 are satis-
fied, so thatR can be defined as the limit ofRn asn→ ∞.

Let us now establish (2.9). For everyλ ∈ (0, 1], we let n0 be the smallest
integer such that2−n0 ≤ λ. Then, we definen1 as the smallest integer such that

2−n0 ≥ 6M2−n1 , 2−2n0 ≥ (7M2 +C)2−2n1 . (2.16)

Then, we write

Rf −Πt,xf (t, x) = (Rn1
f −Pn1

Πt,xf (t, x)) (2.17)

+
∑

n≥n1

Rn+1f −Rnf − (Pn+1 − Pn)Πt,xf (t, x) ,

wherePn is the orthogonal projection ontoVn. We bound the terms on the right
hand side separately. To that end, we introduce the set

Λt,x,λn := {(s, y) ∈ Λn : |t− s| ≤ λ2 + 7M22−2n, |x− y| ≤ λ+ 5M2−n} .

We claim that
∥∥∥∥

∑

(s,y)∈Λt,x,λ
n

∣∣∣Ans,y − 〈Πt,xf (t, x), ϕns,y〉
∣∣∣
∥∥∥∥
Lp
x0,1

(2.18)

. ‖Π‖Bn
λ,t,x0

(1 + ‖Γ‖Bn
λ,t,x0

)‖f‖Bn
λ,t,x0

∑

ζ∈A
λ|s|+γ−ζ2−n(ζ− |s|

2
) ,

holds uniformly over all (t, x0) ∈ Rd+1, all λ ∈ (0, 1] and alln ≥ n1. We postpone
the proof of (2.18), and proceed to bounding the terms appearing in (2.17). The
first term on the right hand side of (2.17) yields the following contribution:

〈Rn1
f − Pn1

Πt,xf (t, x), ηλt,x〉 =
∑

(s,y)∈Λn1

(An1

s,y − 〈Πt,xf (t, x), ϕn1

s,y〉)〈ϕn1

s,y, η
λ
t,x〉 .



20 REGULARITY STRUCTURES ANDBESOV-TYPE SPACES

We have|〈ϕn1
s,y, η

λ
t,x〉| . 2−n1

|s|
2 λ−|s| uniformly over all the parameters, and the

inner product vanishes as soon as (s, y) /∈ Λt,x,λn1
. Therefore, using (2.18) we obtain

that
∥∥∥∥ sup
η∈Br

∣∣∣〈Rn1
f − Pn1

Πt,xf (t, x), ηλt,x〉
∣∣∣
∥∥∥∥
Lp
x0,1

. ‖Π‖Bn1
λ,t,x0

(1 + ‖Γ‖Bn1
λ,t,x0

)‖f‖Bn1
λ,t,x0

λγ ,

as required. We turn to the second term on the right hand side of (2.17). As before,
we write

Rn+1f −Rnf = δnf + gn ,

with δnf ∈ V ⊥
n andgn ∈ Vn. We then have

〈δnf − (Pn+1 − Pn)Πt,xf (t, x), ηλt,x〉
=

∑

(s,y)∈Λn+1

∑

(r,u)∈Λn

(
An+1
s,y − 〈Πt,xf (t, x), ϕn+1

s,y 〉
)
〈ϕn+1

s,y , ψ
n
r,u〉〈ψnr,u, ηλt,x〉 .

Observe that|〈ϕn+1
s,y , ψ

n
r,u〉| . 1 and|〈ψnr,u, ηλt,x〉| . 2−n(r+ |s|

2
)λ−(r+|s|), uniformly

over all the parameters. For every given (s, y), the first inner product vanishes
except for those finitely many space-time coordinates (r, u) ∈ Λn such that|r −
s| ≤ 5M22−2(n+1) and |u − y| ≤ 3M2−(n+1). Furthermore, the second inner
product vanishes whenever|r − t| > λ2 + M22−2n or |u − x| > λ + M2−n.
Therefore, we have

|〈δnf − (Pn+1 − Pn)Πt,xf (t, x), ηλt,x〉|

.
∑

(s,y)∈Λt,x,λ
n+1

∣∣∣An+1
s,y − 〈Πt,xf (t, x), ϕn+1

s,y 〉
∣∣∣2−n(r+ |s|

2
)λ−(r+|s|) ,

uniformly over all the parameters. Using (2.18), it is then easy to get
∥∥∥∥ sup
η∈Br

∣∣∣〈δnf − (Pn+1 − Pn)Πt,xf (t, x), ηλt,x〉
∣∣∣
∥∥∥∥
Lp
x0,1

. ‖Π‖Bn+1

λ,t,x0

(1 + ‖Γ‖Bn+1

λ,t,x0

)‖f‖Bn+1

λ,t,x0

(2−(n+1)

λ

)r+α
λγ ,

as required. Finally, we treat the contribution ofgn =
∑

(s,y)∈Λn
δAns,yϕ

n
s,y:

∥∥∥∥ sup
η∈Br

|〈gn, ηλt,x〉|
∥∥∥∥
Lp
x0,1

.

∥∥∥∥
∑

(s,y)∈Λn:|s−t|≤λ2+M22−2n

|y−x|≤λ+M2−n

|δAns,y|2−n
|s|
2 λ−|s|

∥∥∥∥
Lp
x0,1

.

For alls in the sum above and for allk ∈ Zd+1 such thatak 6= 0, s↓n+1
n,k belongs to

[t − λ2 − (5M2 + C)2−2(n+1), t + λ2 + (5M2 − C)2−2(n+1)], which is a subset
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of [t− 2λ2, t+ λ2 − 2−(n+1)] thanks to (2.16) and the definition ofC. By (2.15),
a simple calculation using Jensen’s inequality yields

∥∥∥∥ sup
η∈Br

∣∣∣〈gn, ηλt,x〉
∣∣∣
∥∥∥∥
Lp
x0,1

. ‖Π‖Bn
λ,t,x0

‖f‖Bn
λ,t,x0

2−nγ ,

so that the asserted bound follows.
We are now left with the proof of (2.18). We splitAns,y − 〈Πt,xf (t, x), ϕns,y〉

into the sum of

In(t, x, s, y) =
∫

u∈B(y,2−n)
2nd〈Πs↓n,u(f (s↓n, u) − Γs

↓n

u,xf (s↓n, x)), ϕns,y〉du ,

and
Jn(t, x, s, y) = 〈Πs↓n,yΓs

↓n

y,x (f (s↓n, x) − Γxs↓n,tf (t, x)), ϕns,y〉 .
We start with|In(t, x, s, y)|, which can be bounded by

∑

ζ∈A

∫

u∈B(y,2−n)
2n(d−ζ− |s|

2
)‖Π‖s↓n,u|f (s↓n, u) − Γs

↓n

u,xf (s↓n, x)|ζdu .

For all (s, y) ∈ Λt,x,λn , we have|y − x| ≤ λ + 5M2−n so that using (2.16), we
can bound the integral over allu ∈ B(y, 2−n) by the same integral over allu ∈
B(x, 2λ). This yields
∥∥∥∥

∑

(s,y)∈Λt,x,λ
n

|In(t, x, s, y)|
∥∥∥∥
Lp
x0,1

.
∑

s∈2−2nZ
|s−t|≤λ2+7M22−2n

∥∥∥∥
∑

ζ∈A

∫

u∈B(x,2λ)
2n(d−ζ− |s|

2
)

× ‖Π‖s↓n,u|f (s↓n, u) − Γs
↓n

u,xf (s↓n, x)|ζdu
∥∥∥∥
Lp
x0,1

. ‖Π‖Bn
λ,t,x0

‖f‖Bn
λ,t,x0

∑

ζ∈A
λ|s|+γ−ζ2−n(ζ− |s|

2
) ,

as required. Notice that we have used the fact that the sum over s at the second
line contains at most (λ2n)2 elements, and that for all theses, we haves↓n ∈
[t− 2λ2, t+ λ− 2−2n] thanks to (2.16) and the definition ofC.

To bound|Jn(t, x, s, y)|, we distinguish two cases. Ifs↓n > t, then it can be
bounded by

.
∑

ζ,β∈A
ζ≥β

‖Π‖s↓n,y‖Γ‖s↓ny,s↓nx|x− y|ζ−β|f (s↓n, x) − Γxs↓n,tf (t, x)|ζ 2−n(β+ |s|
2

)

.
∑

ζ≥β
‖Π‖s↓n,y‖Γ‖s↓ny,s↓nx

|f (s↓n, x) − Γx
s↓n,t

f (t, x)|ζ
λγ−ζ

λγ−β2−n(β+ |s|
2

) .
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On the other hand, ifs↓n < t, then we write

Jn(t, x, s, y) = −〈Πs↓n,yΓs↓ny,tx(f (t, x) − Γxt,s↓nf (s↓n, x)), ϕns,y〉 ,

and, for all (s, y) ∈ Λt,x,λn , we bound|Jn(t, x, s, y)| by

.
∑

ζ,β∈A
ζ≥β

‖Π‖s↓n,y‖Γ‖s↓ny,txλζ−β|f (t, x) − Γxt,s↓nf (s↓n, x)|ζ 2−n(β+ |s|
2

)

.
∑

ζ≥β
‖Π‖s↓n,y‖Γ‖s↓ny,tx

|f (t, x) − Γx
t,s↓n

f (s↓n, x)|ζ
λγ−ζ

λγ−β2−n(β+ |s|
2

) .

In both cases, we deduce that
∥∥∥∥

∑

(s,y)∈Λt,x,λ
n

|Jn(t, x, s, y)|
∥∥∥∥
Lp
x0,1

. ‖Π‖Bn
λ,t,x0

‖Γ‖Bn
λ,t,x0

‖f‖Bn
λ,t,x0

∑

ζ∈A
λ|s|+γ−ζ2−n(ζ− |s|

2
) ,

This ends the proof.
The uniqueness of the reconstruction follows from the same argument as in [Hai14b],

but for completeness, we recall it briefly. Assume thatξ1 andξ2 are two candidates
for Rf that both satisfy (2.8). Letψ be a compactly supported, smooth function
on Rd+1 and letη ∈ Br be even and integrating to1. We set

ψλ(s, y) = 〈ηλs,y, ψ〉 =
∫
ψ(t, x)ηλt,x(s, y)dt dx .

Then, we have

〈ξ1 − ξ2, ψλ〉 =
∫
ψ(t, x)〈ξ1 − ξ2, η

λ
t,x〉dt dx .

We obtain

|〈ξ1 − ξ2, ψλ〉| . ‖ψ‖∞ sup
t

∥∥∥〈ξ1 − ξ2, η
λ
t,x〉

∥∥∥
Lp(dx)

. ‖ψ‖∞λγ ,

so that〈ξ1−ξ2, ψλ〉 goes to0 asλ ↓ 0. Sinceψλ converges toψ in theC∞ topology,
one has〈ξ1 − ξ2, ψλ〉 → 〈ξ1 − ξ2, ψ〉. Henceξ1 = ξ2 and the uniqueness follows.

To complete the proof of the theorem, it remains to consider the case of two
models (Π,Γ) and (̄Π, Γ̄). The reconstruction theorem applies to bothf and f̄
separately, using the sequencesRnf andR̄nf̄ associated to each of them. Then,
we observe that|δAnt,x− δĀnt,x| satisfies the bound (2.15) withFnζ (t, s, u) replaced
by

F̃nζ (t, s, u) = ‖Π‖su|f (s, u) − f̄ (s, u) − Γus,tf (t, u) + Γ̄us,tf̄ (t, u)|ζ
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+

∫

B(u,(M+3)2−(n+1))
2nd‖Π‖sv|f (s, v) − f̄ (s, v) − Γsv,uf (s, u) + Γ̄sv,uf̄ (s, u)|ζdv

+ ‖Π− Π̄‖su|f̄ (s, u) − Γ̄us,tf̄ (t, u)|ζ

+

∫

B(u,(M+3)2−(n+1))
2nd‖Π− Π̄‖sv|f̄ (s, v) − Γ̄sv,uf̄ (s, u)|ζdv .

Furthermore, in this context, (2.18) becomes
∥∥∥∥

∑

(s,y)∈Λt,x,λ
n

|Ans,y − Āns,y − 〈Πt,xf (t, x) − Π̄t,xf̄ (t, x), ϕns,y〉|
∥∥∥∥
Lp
x0,1

. Kn
t,x0,λ

∑

ζ∈A
λ|s|+γ−ζ2−n(ζ− |s|

2
) ,

(2.19)

whereKn
t,x0,λ

is given by (2.11). The proof of (2.19) follows from the same ar-
guments as abovemutatis mutandis. This being given, the proof of (2.10) follows
from exactly the same arguments as above. �

3 Weighted spaces

We would like to deal with white noise as the elementary inputin our regularity
structure, but unfortunately white noise does not live in any of the spacesEα,p. In
order to circumvent this problem, we choose to consider weighted versions of the
previously mentioned spaces. We first define the class of functions that have good
enough properties to be used as weights.

Definition 3.1 A function w : Rd → R+ is a weight if there existsC > 0 such
that for allx, y ∈ Rd with |x− y| ≤ 1

1

C
≤ w(x)
w(y)

≤ C .

All the weights considered in this article are built from twoelementary families:

pa(x) := (1 + |x|)a , eℓ(x) := eℓ(1+|x|) ,

with a, ℓ ∈ R. It is easy to verify that these are indeed weights. We also observe
that the constantC can be taken uniformly over alla andℓ in compact sets ofR.
Given a weightw, we letCαw(Rd+1) be the set of distributionsf on Rd+1 such that

sup
λ∈(0,1]

sup
(t,x)∈Rd+1

sup
η∈Br (Rd+1)

|〈f, ηλt,x〉|
w(x)λα

<∞ .

Remark 3.2 Our setting may seem surprising since our weights are in space and
not in space-time; the reason for this choice is twofold. First, the solution map
for the SPDEs only needs to be defined on (arbitrary) bounded intervals of time,
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so that it suffices to characterise the regularity of the white noise on (0, T ] × Rd:
therefore, only the unboundedness of the space variable matters. Second, and this
is more serious, we aim at using the exponential weights eℓ+t for the solution, and
it happens that they arenot space-time weights sinceet(1+|x|)/es(1+|y|) is not uni-
formly bounded from above and below, when (t, x) and (s, y) are only constrained
to be at distance at most1 from one another.

We now characterise the regularity of white noise. LetχT : R → R be a
compactly supported smooth function, which is equal to1 on (−2T, 2T ), and let
ξ be a white noise onRd+1. Let ̺ : Rd+1 → R be a compactly supported, even,
smooth function that integrates to one. We set̺ǫ(t, x) = ǫ−|s|̺(tǫ−2, xǫ−1), and
we define the mollified noiseξǫ = ̺ǫ ∗ ξ.

Lemma 3.3 Fix a > 0, setwΠ(x) := (1 + |x|)a, x ∈ Rd, and letα < −|s|/2.
Then, for any arbitraryT > 0, ξ · χT admits a modification that belongs almost
surely toCαwΠ

, and there existsδ > 0 such that

E‖ξǫ · χT − ξ · χT ‖α,wΠ
. ǫδ ,

uniformly over allǫ ∈ (0, 1].

Observe thata can be taken as small as desired. In the case of (PAM), the white
noise is only in space and an immediate adaptation of the proof shows that it admits
a modification inCαwΠ

for anyα < −d/2.

Proof. From Proposition 2.6, it suffices to show that almost surely

sup
n≥0

sup
ψ∈Ψ

sup
(t,x)∈Λn

|
〈
ξ · χT , ψnt,x

〉
|

wΠ(x)2−n
|s|
2
−nα

<∞ , sup
x∈Λ0

|〈ξ · χT , ϕt,x〉|
wΠ(x)

<∞ .

We only treat the first bound, since the second is similar. Foranyp ≥ 1, we write

E

[
sup
n≥0

sup
ψ∈Ψ

sup
(t,x)∈Λn

( |
〈
ξ · χT , ψnt,x

〉
|

wΠ(x)2−n
|s|
2
−nα

)2p]

.
∑

n≥0

∑

ψ∈Ψ

∑

(t,x)∈Λn

(
E
〈
ξ · χT , ψnt,x

〉2

wΠ(x)22−|s|n−2nα

)p

where we have used the equivalence of moments of Gaussian random variables.
Recall that theL2 norm ofψnt,x is 1, that the cardinality of the restriction ofΛn to
the unit (s-scaled parabolic) ball ofRd+1 is of order2|s|n, and thatΨ is a finite set.
Recall also thatχT is compactly supported. Thus we obtain that the last term is of
order

∑

x∈Zd

wΠ(x)−2p
∑

n≥0

2|s|n(p+1)+2αnp .
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Takingp large enough, the sums overn andx converge. This shows thatξ · χT ad-
mits a modification that almost surely belongs toCαwΠ

. We turn to‖(ξǫ−ξ)χT ‖α,wΠ
.

The computation is very similar, the only difference rests on the term

E
〈
(ξ − ξǫ)χT , ψ

n
t,x

〉2
= ‖ψnt,xχT − ̺ǫ ∗ (ψnt,xχT )‖2L2 .

Whent /∈ (−2T − ǫ, 2T + ǫ), this term vanishes. Otherwise, it can be bounded
by a term of order1 ∧ (ǫ222n) uniformly over all ǫ ∈ (0, 1], all n ≥ 0 and all
(t, x) ∈ Rd+1. We obtain

E

[
sup
n≥0

sup
ψ∈Ψ

sup
x∈Λn

( |〈(ξ − ξǫ)χT , ψnx 〉|
wΠ(x)2−n

|s|
2
−nα

)2p
]

.
∑

x∈Zd

∑

n≥0

2n(|s|+2pα+|s|p)(1 ∧ ǫ2p22np)
wΠ(x)2p

,

so that forα < −|s|/2 andp large enough, the previous calculation yields the

boundE‖ξǫ− ξ‖α,p,wΠ
. (ǫ| log ǫ|

1

2p )∨ ǫ−α−
|s|
2

(1+ 1

p
) uniformly over allǫ ∈ (0, 1].

�

Given a weight wΠ onRd, we define weighted versions of the seminorm on the
model. For any subsetB ⊂ Rd+1, we set

|||Π|||B := sup
z∈B

‖Π‖z
wΠ(x)

, |||Γ|||B := sup
z,z′∈B

‖z−z′‖s≤1

‖Γ‖z,z′
wΠ(x)

,

wherex is the space component ofz in the above expressions. We are now in a
position to introduce the natural model associated to the mollified noise.

Lemma 3.4 SetwΠ(x) = (1 + |x|)a for a givena > 0. Then, for any setB of the
form [0, T ] × Rd the seminorms|||Π(ε)|||B and |||Γ(ε)|||B are almost surely finite.

Proof. Let B = [0, T ] × Rd for a givenT > 0. First, we observe that the re-
quired bound onΠ(ε)

z holds for polynomials, and also forΞ by Lemma 3.3 since
〈ξǫ, ηz〉 coincides with〈ξǫ · χT , ηz〉 for all test functionsη ∈ Br(Rd+1) and all
z ∈ B. Then, the key observation is that all the elements in the regularity structure
are built from polynomials andΞ by multiplication and/or application ofI. Ad-
ditionally, for every‖z − z′‖s ≤ 1, the definitions ofΠ(ε)

z Iτ (z′) andΠ(ε)
z τ τ̄ (z′)

only involve the values ofΠ(ε)
z τ (·) andΠ(ε)

z τ̄ (·) in a neighourhood ofz, so that, for
bounding these terms, the definition of a weight allows one todisregard the precise
location at which the evaluation is taken. Since the regularity structure has finitely
many elements, a simple recursion shows that the analyticalbound onΠ(ε)

z holds
with the weight wΠ(x)n for somen ≥ 1, instead of wΠ(x). Given the expression of
wΠ(x), it suffices to decreasea accordingly in order to get the required statement.
Regarding the analytical bound onΓ(ε)

z,z′, the proof follows from very similar argu-
ments, using the proof of [Hai14b, Prop 8.27] and the bound of [Hai14b, Lemma
5.21]. �



26 WEIGHTED SPACES

Notation 3.5 From now on, the seminorm on the model will always be taken with
the setB = [0, T ] × Rd and the maximalT will always be clear from the context.
Therefore, we will omit the subscriptB on this seminorm for simplicity.

Let us now introduce weighted spaces of modelled distributions. For similar
reasons as for the model, we add weights at infinity in the spacesDγ,p. Moreover,
to allow for an irregular initial condition, we also weigh these spaces near time
0. For everyζ ∈ A and t ∈ R, we consider two collections of weights onRd,
w(1)
t (·, ζ) and w(2)

t (·, ζ). We set

wt(x) := inf
ζ∈A

inf
i∈{1,2}

w(i)
t (x, ζ) , (3.1)

and make the following assumption.

Assumption 3.6 (Weights and reconstruction)All the weightsw(i)
t (x, ζ) are in-

creasing functions of time. Furthermore, there existsc > 0 such that, for any time
T > 0, there existsK > 0 such that

K−1 ≤ sup
x,y∈Rd:|x−y|≤1

w(i)
t (x, ζ)

w(i)
t (y, ζ)

≤ K , (W-0)

sup
x∈Rd

(wΠ(x))2w(i)
s (x, ζ)

wt(x)
≤ K(t− s)−

c
2 , (W-1)

uniformly over alls < t ∈ (−∞, T ], all i ∈ {1, 2} and all ζ ∈ A.

From now on, we takeLp = Lp(Rd, dx) and, by convention, the integration
variable is alwaysx, so that for example‖f (x, y)‖Lp really means‖f (·, y)‖Lp .

Definition 3.7 Let η, γ ∈ R andp ∈ [1,∞). We defineDγ,η,p
T,w as the set of maps

f : (0, T ] × Rd → T<γ such that

∥∥∥∥
|ft(x)|ζ

w(1)
t (x, ζ)

∥∥∥∥
Lp

. t
(η−ζ)∧0

2 ,

∥∥∥∥
∫

y∈B(x,λ)
λ−d

|ft(y) − Γty,xft(x)|ζ
w(2)
t (x, ζ)λγ−ζ

dy

∥∥∥∥
Lp

. t
η−γ
2 ,

∥∥∥∥
|f (t, x) − Γxt,t−λ2f (t− λ2, x)|ζ

w(1)
t (x, ζ)λγ−ζ

∥∥∥∥
Lp

. t
η−γ
2 ,

uniformly over allλ ∈ (0, 2], all t ∈ (2λ2, T ], and allζ ∈ A. If f takes values in
T (U ), resp.T (F), we say thatf belongs toDγ,η,p

T,w (U ), resp.Dγ,η,p
T,w (F). Finally,

we let|||f ||| denote the corresponding norm.
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Similarly as we did in the previous subsection, we need to be able to compare
two modelled distributionsf andf̄ associated to two different models (Π,Γ) and
(Π̄, Γ̄). To that end, we define|||f ; f̄ ||| as the supremum of

∥∥∥∥
|f (t, x) − f̄ (t, x)|ζ
t

(η−ζ)∧0

2 w(1)
t (x, ζ)

∥∥∥∥
Lp(dx)

+

∥∥∥∥
∫

y∈B(x,λ)

|f (t, y) − f̄ (t, y) − Γty,xf (t, x) + Γ̄y,xf̄ (t, x)|ζ
t
η−γ
2 w(2)

t (x, ζ)λγ−ζ
dy

∥∥∥∥
Lp(dx)

+

∥∥∥∥
|f (t, x) − f̄ (t, x) − Γxt,t−λ2f (t− λ2, x) + Γ̄t,t−λ2 f̄ (t− λ2, x)|ζ

t
η−γ
2 w(1)

t (x, ζ)λγ−ζ

∥∥∥∥
Lp(dx)

,

over allλ ∈ (0, 2], all t ∈ (2λ2, T ] and allζ ∈ A.
Observe that the spaceDγ,η,p

T,w is actually locally identical toDγ,p so that, for

any test functionηλt,x supported away from the negative times, we can use Theo-

rem 2.11 and define a local reconstruction operator〈R̃f, ηλt,x〉. The next theorem

shows that there is a canonical distributionRf that coincides withR̃f everywhere.
First, let us define a weighted version of the spaceEα,p.

Definition 3.8 Let α < 0, p ∈ [1,∞) andT > 0. We letE α,p
w,T be the space of

distributionsf on (−∞, T ) × Rd such that

sup
λ∈(0,1]

sup
t∈(−∞,T−λ2)

∥∥∥∥ sup
η∈Br(Rd+1)

|〈f, ηλt,x〉|
λαwt+λ2(x)

∥∥∥∥
Lp(dx)

<∞ , (3.2)

where the weights wt were defined in (3.1).

We start with the following extension result.

Proposition 3.9 Letα ∈ (−2, 0), p ∈ [1,∞] andT > 0. Letf be a distribution on
the set of allη ∈ Cr(Rd+1) whose support does not interset the hyperplane{t = 0}.
Assume thatf satisfies the bound (3.2) with the second supremum restricted to all
t ∈ (−∞, T −λ2)\[−3λ2, 3λ2]. Then,f can be uniquely extended into an element
of E α,p

w,T .

Proof. The proof is divided into three steps. First, we show uniqueness of the
extension. Then, we build the extension but with a non-optimal weight. Finally,
we show that the weight can actually be improved. From now on,we let χ :
R → R be a compactly supported, smooth function such that suppχ ⊂ [5,∞)
and

∑
n∈Z χ(22ns) = 1 for all s ∈ (0,∞). We also letχ̃ : R → R be a smooth

function such that supp̃χ ⊂ [−1, 1] and
∑

k∈Z χ̃(x− k) = 1 for all x ∈ R.

Step 1: uniqueness.Let For everyn0 ≥ 1, we setνn0
(t) =

∑
n≤n0

(χ(22nt) +
χ(−22nt)). Observe that this function vanishes in [−5 ·2−2n0 , 5 ·2−2n0 ]. We claim
that for anyf ∈ E

α,p
w,T andn0 large enough, we have

|〈f, ϕt,x(1− νn0
)〉| . 2−n0(2+α)wT (x) , (3.3)
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uniformly over allϕ ∈ Br(Rd+1) and all (t, x) ∈ Rd+1. Since2+α > 0, this claim
shows that the knowledge off away from the hyperplane{t = 0} is sufficient to
characterisef . The uniqueness of the statement is then immediate. We now prove
the claim. We use the following partition of unity:

∑

(s,y)∈Λn0

ψn0,s,y(z) = 1 , ψn0,s,y(z) = χ̃(22n0(z0 − s))
d∏

i=1

χ̃(2n0(zi − yi)) .

Since (1 − νn0
) is supported in some centred interval of length of order2−2n0 ,

we deduce that there existsC > 0 such thatϕt,x(1 − νn0
)ψn0,s,y is identically

zero as soon as|y − x| > C and |s| > C2−2n0, uniformly over allϕ ∈ Br, all
(t, x) ∈ Rd+1, all n0 ≥ 0 and (s, y) ∈ Λn0

. Then, for anyϕ ∈ Br(Rd+1) and any
(t, x) ∈ Rd+1, we have

〈f, ϕt,x(1− νn0
)〉 =

∑

(s,y)∈Λn0

〈f, ϕt,x(1− νn0
)ψn0,s,y〉 . (3.4)

Recall that|s| = 2 + d. For all z ∈ B(y, 2−n0), the function2n0|s|ϕt,x(1 −
νn0

)ψn0,s,y can be written asη2
−n0

s,z , for someη ∈ Br, up to some factorC, where
|C| is uniformly bounded over allϕ ∈ Br, all n0 ≥ 0, all (s, y) ∈ Λn0

and all
z ∈ B(y, 2−n0). Using Jensen’s inequality, we thus get
∣∣∣

∑

(s,y)∈Λn0

〈f, ϕt,x(1− νn0
)ψn0,s,y〉

∣∣∣

. sup
s∈2−2n0Z
|s|≤C2−2n0

∑

y:(s,y)∈Λn0

|y−x|≤C

2−n0(2+d+α) |〈f, 2n0|s|ϕt,x(1− νn0
)ψn0,s,y〉|

2−n0α

. sup
s∈2−2n0Z
|s|≤C2−2n0

∑

y:(s,y)∈Λn0

|y−x|≤C

∫

z∈B(y,2−n0 )
2−n0(2+α) |〈f, 2n0|s|ϕt,x(1− νn0

)ψn0,s,y〉|
2−n0α

dz

. 2−n0(2+α)wT (x) sup
s∈R

|s|≤C2−2n0

( ∑

y:(s,y)∈Λn0

|y−x|≤C

∫

z∈B(y,2−n0 )
sup
η∈Br

∣∣∣
〈f, η2−n0

s,z 〉
wT (x)2−n0α

∣∣∣
p
dz

) 1

p

. 2−n0(2+α)wT (x) sup
s∈R

|s|≤C2−2n0

(∫

z∈B(x,C′)
sup
η∈Br

∣∣∣
〈f, η2−n0

s,z 〉
wT (x)2−n0α

∣∣∣
p
dz

) 1

p

,

uniformly over allϕ ∈ Br, all n0 ≥ 0 and all (t, x) ∈ Rd+1. For all n0 such
that (C + 1)2−2n0 < T , the term on the right hand side is bounded by (3.2), thus
concluding the proof of the claim.

Step 2: existence.Let us now consider a distributionf as in the statement, and let
us construct its extension. We use the following partition of the complement of the
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hyperplane{t = 0}

∑

n∈Z

(χ(22nz0)+χ(−22nz0))
∑

(s,y)∈Λn

χ̃(22n(z0−s))
d∏

i=1

χ̃(2n(zi−yi)) = 1 , (3.5)

for all z ∈ Rd+1 with z0 6= 0. Then, for alln ∈ Z and all (s, y) ∈ Λn, we set

ψn,s,y(z) = (χ(22nz0) + χ(−22nz0))χ̃(22n(z0 − s))
d∏

i=1

χ̃(2n(zi − yi)) . (3.6)

We need to define〈f, ηλt,x〉 for all thoseη ∈ Br and (t, x) ∈ Rd+1 such thatt ∈
[−3λ2, 3λ2]. The uniqueness part of the statement shows thatf should not have
any contribution on the hyperplane{t = 0}. This suggests to set

〈f, ηλt,x〉 :=
∑

2−n<λ

∑

(s,y)∈Λn

〈f, ηλt,xψn,s,y〉 . (3.7)

Notice that we restricted the sum to thosen such that2−n < λ, since otherwise
the productηλt,xψn,s,y is identically zero. We only need to check that the right hand
side makes sense. First, we notice that for any givenn, the sum overs in (3.7) can
be restricted to the set

St,λn =
{
s ∈ 2−2nZ : s ∈ [t− λ2 − 2−2n, t+ λ2 + 2−2n] ,

B(s, 2−2n) ∩ supp(χ(22n·) + χ(−22n·)) 6= ∅
}
.

The cardinality of this set is uniformly bounded inn ≥ 0. Then, for everyn ≥ 0
such that2−n < λ, we write

∥∥∥∥ sup
η∈Br

∣∣∣
∑

s∈St,λ
n

∑

y∈2−nZd

〈f, ηλt,xψn,s,y〉
∣∣∣
∥∥∥∥
Lp
x0,1

. sup
s∈St,λ

n

∥∥∥∥ sup
η∈Br

∑

y∈2−nZd

|y−x|≤λ+C2−n

∫

u∈B(y,2−n)
2n|s||〈f, ηλt,xψn,s,y〉|du

∥∥∥∥
Lp
x0,1

,

whereC > 0 depends on the size of the support ofψ, and where we have artifi-
cially added the integral overu at the second line. At this point, we use Jensen’s
inequality, the bound (3.2), and the fact that the functionηλt,xψn,s,y can be written

C ′(λ2n)−|s|ϕ2−n

s,u for some functionϕ ∈ Br and some constantC ′, where|C ′| is
bounded uniformly over allt, x, s, y, u, n as above. This yields

. sup
s∈St,λ

n

2−2nλ−2
(∫

u∈B(x0,3)
sup
ϕ∈Br

∣∣∣〈f, ϕ2−n

s,u 〉
∣∣∣
p
du

) 1

p

. λ−22−n(2+α)wt+3λ2(x0) ,
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uniformly over allλ ∈ (0, 1], all t ≤ λ2, all x0 ∈ Rd and alln ∈ Z such that
2−n < λ. To get the last bound, we used the fact that for alls ∈ St,λn , we have
s > 3 · 2−2n ands < t+ 2λ2. Using the assumptionα > −2, we deduce that

∑

2−n<λ

∥∥∥∥ sup
η∈Br

∣∣∣
∑

s∈St,λ
n

∑

y∈2−nZd

〈f, ηλt,xψn,s,y〉
∣∣∣
∥∥∥∥
Lp
x0,1

. λαwt+3λ2(x0) ,

uniformly over all the parameters. Therefore, we have extendedf into a genuine
distribution overRd+1, with the right regularity index but with a slightly worse
weight than desired.

Step 3: optimal bound.We now show that the weight in the last bound can be
replaced by wt+λ2(x0) as required. To that end, we refine the mesh of our partition
of unity near the maximal time of the support of the test function. We fix t, x, λ
and assume thatt ≤ 3λ2. We then introduce:
∑

n∈Z

χ(22n(t+λ2−z0))
∑

(s,y)∈Λn

χ̃(22n(z0−s))χ̃(2n(z1−y1)) . . . χ̃(2n(zd−yd)) = 1 ,

(3.8)
for all z ∈ (−∞, t+λ2)×Rd. Taking the product of (3.5) and (3.8), we deduce the
existence of a setSt,λn ⊂ R and a collection of smooth functionsψn,s,y, compactly
supported inB((s, y), 2−n), indexed by (s, y) ∈ St,λn × (2−nZd), such that:

1. For allzRd+1 such thatz0 ∈ (−∞, 0) ∪ (0, t+ λ2),
∑

2−n<λ

∑

s∈St,λ
n

∑

y∈2−nZd

ψn,s,y(z) = 1 .

2. The number of elements ofSt,λn is bounded uniformly over alln ∈ Z, and it
is included into the union of (−∞,−4 ·2−2n] and [4 ·2−2n, t+λ2−4 ·2−2n],

3. For allk ∈ Nd+1 with |k| ≤ r, we have|Dkψn,s,y| . 2n|k| uniformly over
all n ∈ Z and all (s, y) ∈ St,λn × (2−nZd).

This allows us to write

ηλt,x(z) =
∑

2−n<λ

∑

s∈St,λ
n

∑

y∈2−nZd

ηλt,x(z)ψn,s,y(z) , (3.9)

for all z ∈ Rd+1 with z0 6= 0. In the sum overy, the number of elements with a
non-zero contribution is of order at most(λ2n)d. From Step 1, we know that the
following equality holds

〈f, ηλt,x〉 =
∑

2−n<λ

∑

s∈St,λ
n

∑

y∈2−nZd

〈f, ηλt,xψn,s,y〉 . (3.10)

Then, we can apply the calculations made in Step 2, the only difference comes
from the setSt,λn whose elements are at distance at least4 · 2−2n from t+ λ2. This
ensures the required weight. �
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Theorem 3.10 (Reconstruction with weights)Let(T ,G,A) be a regularity struc-
ture. Letγ > 0, p ∈ [1,∞), α := minA, r > |α| and (Π,Γ) be a model with the
weightwΠ(x) = (1 + |x|) c

2 , x ∈ Rd. In addition to Assumption 3.6 on the weights,
we require thatα′ = η ∧ α − c > −2 andγ − c > 0. Then, there exists a unique
continuous linear mapR : D

γ,η,p
w,T → E

α′,p
w,T such that〈Rf, η〉 = 0 wheneverη is

supported in(−∞, 0) × Rd, and
∥∥∥∥ sup
η∈Br

|〈Rf −Πt,xf (t, x), ηλt,x〉|
∥∥∥∥
Lp
x0,1

. Cλγ−ct
η−γ
2 wt+λ2(x0) , (3.11)

uniformly over allλ ∈ (0, 1], all x0 ∈ Rd, all t ∈ [3λ2, T − λ2], all f ∈ D
γ,η,p
w,T

and all admissible models(Π,Γ). HereC := |||Π|||(1 + |||Γ|||)|||f |||. Furthermore, we
have the bound

∥∥∥∥ sup
η∈Br

|〈Rf, ηλt,x〉|
∥∥∥∥
Lp
x0,1

. Cλα∧η−cwt+λ2(x0) , (3.12)

uniformly over allλ ∈ (0, 1], all x0 ∈ Rd, all t ∈ (0, T − λ2] and all f ∈ D
γ,η,p
w,T .

If (Π̄, Γ̄) is a second model forT and if R̄ is its associated reconstruction
operator, then we set

C̃ := |||Π|||(1 + |||Γ|||)|||f ; f̄ |||+ |||Π− Π̄|||(1 + |||Γ|||)|||f̄ |||+ |||Π̄||||||Γ− Γ̄||||||f̄ ||| ,

and we have the bound
∥∥∥∥ sup
η∈Br

|〈Rf − R̄f̄ −Πt,xf (t, x) + Π̄t,xf̄ (t, x), ηλt,x〉|
∥∥∥∥
Lp
x0,1

. C̃λγ−ct
η−γ
2 wt+λ2(x0) ,

(3.13)

uniformly over allλ ∈ (0, 1], all x0 ∈ Rd, all t ∈ (3λ2, T − λ2), all f ∈ Dγ,η,p
w,T ,

all f̄ ∈ D̄
γ,η,p
w,T and all admissible models(Π,Γ), (Π̄, Γ̄). We also have

∥∥∥∥ sup
η∈Br

|〈Rf − R̄f̄ , ηλt,x〉|
∥∥∥∥
Lp
x0,1

. C̃λα∧η−cwt+λ2(x0) , (3.14)

uniformly over the same parameters.

Notice that in these statements we lose a factorλ−c compared to what one would
have expected: this is the price we pay for having added weights to our spaces
and requiring uniformity in space. However, we will see in the sequel that we can
choose the constantc as small as we want.

Proof. We only need to show that there is a unique distributionRf , on the set of
all test functions whose support does not intersect the hyperplane{t = 0}, that
fulfills the requirements of the theorem for these test functions. Then, Proposition
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3.9 yields the desired result.
First, we set〈Rf, η〉 := 0 for everyη ∈ Br which is supported in the half-space
{t < 0}. Second, letλ ∈ (0, 1], x ∈ Rd and t ∈ [3λ2, T − λ2]. By a simple
localisation argument, one can build an elementf̃ ∈ Dγ,p such thatf̃ coincides
with f in [t−2λ2, t+λ2]×B(x, 3) and vanishes outside [t−3λ2, t+2λ2]×B(x, 4).
Indeed, it suffices to lift into the polynomial regularity structure a smooth function
equal to1 on [t − 2λ2, t + λ2] × B(x, 3), and vanishing outside [t − 3λ2, t +
2λ2] ×B(x, 4), and to definẽf as the product off with this smooth function (this
may require to extend our original regularity structure with the polynomials, and
to define the canonical product between elements in the regularity structure and
polynomials).

Using the reconstruction theorem inDγ,p, we set〈Rf, ηλt,x〉 := 〈Rf̃ , ηλt,x〉.
We now show (3.11). Recall the definition ofBn = Bn

λ,t,x0
from Theorem 2.11.

Notice that

|||Π|||Bn(1 + |||Γ|||Bn)|||f |||Bn . t
η−γ
2 wΠ(x0)

2 sup
ζ

sup
i∈{1,2}

w(i)
t+λ2−2−2n (x0, ζ) ,

uniformly over allλ ∈ (0, 1], all x0 ∈ Rd, all t ∈ [3λ2, T − λ2], all f ∈ D
γ,η,p
w,T

and alln ≥ 0. Using (W-1), we deduce that the right hand side is actually bounded
by a term of ordert

η−γ
2 wt+λ2(x0)2nc uniformly over all the parameters. Therefore,

by (2.8), we deduce that (3.11) holds.
This determines the value of〈Rf, ϕ〉, for any test functionϕ whose support does
not intersect the hyperplane{t = 0}. Indeed, any such function can be splitted into
a finite sum of functions of the formηλt,x, with t ≥ 3λ2, on whichRf has already
been constructed. It is then simple to check thatRf is a well-defined distribution
on the set of test functions whose support does not intersectthe hyperplane{t = 0}.
We can apply Proposition 3.9, and the statement of the theorem follows.
The case of two models is handled similarly, using the bound (2.10) from the re-
construction theorem inDγ,p, thus concluding the proof. �

4 Convolution with the heat kernel

The goal of this section is to define an operator that plays therole of the convolution
with the heat kernel, but at the level of modelled distributions. This will be carried
out separately for the singular partP+ and the smooth partP− of the heat kernel, as
defined in Lemma 2.1. Although such an abstract operator was defined in Section 5
of [Hai14b], the fact that we have incorporated weights in our spaces imposes some
additional constraints on this map. The main difficulty comes with the singular part
of the kernelP+, which is handled in Theorem 4.3. The smooth part is simpler,and
is addressed in Proposition 4.5. We end this section with thetreatment of the initial
condition.

From now on, we take the following values for the parameters:

α = −3

2
− κ , η = −1

2
+ 3κ , γ =

3

2
+ 2κ .
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They fulfill the requirements thatγ > −α andη − γ > −2. Recall thatα is the
regularity of the noise,η is the regularity of the initial condition andγ is the upper
bound of the homogeneities involved in the regularity structure.

We also consider, for allt ∈ R and all ζ ∈ A, two collections of weights
w(1)
t (·, ζ) and w(2)

t (·, ζ) on Rd. Observe that it is meaningful to write w(i)
t (·, τ ) to

denote w(i)
t (·, |τ |) for anyτ ∈ T .

Assumption 4.1 (Weights and convolution)Letc > 0 andγ′ > 0. In addition to
Assumption 3.6, we impose that:

w(i)
t (x, τ ) ≤ w(i)

t (x,I(τΞ)) , (W-2)

wΠ(x)w(i)
t (x, τΞ) ≤ w(i)

t (x,Xk) , whenever|τ |+ α ≤ |k| − 2 , (W-3)

wΠ(x)w(1)
t (x, τΞ) ≤ w(2)

t (x,Xk) , (W-4)

w(i)
t (x, τΞ) = w(i)

t (x, τ ) , (W-5)

for all x ∈ Rd, all s < t ∈ (−∞, T ], all τ ∈ U<γ′ , all k ∈ Nd+1 such that|k| < γ′

and all i ∈ {1, 2}.

Takeγ′ = γ + α + 2 − c with c ∈ (0, κ
2
). Here is a possible choice of weights

satisfying Assumption 4.1:

wΠ(x) := (1 + |x|) c
28

(1−κ) ,

w(1)
t (x, ζ) := (1 + |x|) c

14
ζ et(1+|x|) eℓ(1+|x|) ,

w(2)
t (x, ζ) := (1 + |x|) c

14
(ζ+3) et(1+|x|) eℓ(1+|x|) ,

(4.1)

whereζ ∈ A<γ′(U ) andℓ is a constant which will allow us to consider an initial
condition in a weighted space.

Lemma 4.2 Suppose thatu ∈ D
γ,η,p
w,T (U ). Then, the mapf = u · Ξ belongs to the

spaceDγ+α,η+α,p
w,T (F).

Proof. By construction, we haveΓz,z′(τΞ) = (Γz,z′τ )Ξ for all τ ∈ U and all
z, z′ ∈ Rd+1, so that|f (z)−Γz,z′f (z′)|ζ = |u(z)−Γz,z′u(z′)|ζ−α for all ζ ∈ A(F).
Using (W-5), it is then immediate to check the statement. �

4.1 Singular part of the heat kernel

Let u be an element ofD := D
γ,η,p
T,w (U ), and setf = u · Ξ ∈ D

γ+α,η+α,p
T,w . For any

givenγ′ > 0, we define the abstract convolution map as follows:

(Pγ′

+ f)(t, x) = I(f (t, x)) (4.2)

+
∑

ζ∈A(F )

∑

|k|<(ζ+2)∧γ′

Xk

k!
〈Πt,xQζf (t, x),DkP+((t, x) − ·)〉
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+
∑

|k|<γ′

Xk

k!
〈Rf −Πt,xf (t, x),DkP+((t, x) − ·)〉 .

The well-definiteness of this operator is a consequence of the next result, which is
the second main technical step of the present work.

Theorem 4.3 Takec ∈ (0, κ
2
) and setγ′ = γ + 2 + α − c, η′ = η + 2 + α −

c. We assume thatγ′, η′ /∈ N. Let u ∈ D = D
γ,η,p
T,w (U ) and setf = u · Ξ ∈

D
γ+α,η+α,p
T,w (F). Then, under Assumption 4.1 on the weights, we havePγ′

+ f ∈
D ′ := D

γ′,η′,p
T,w (U ) and the bound

|||P+f |||D ′ . |||Π|||(1 + |||Γ|||)|||u|||D .

holds uniformly over allT in a compact set ofR+, all ℓ in a compact set ofR, all
u ∈ D and all admissible models(Π,Γ). In addition, we have the identity

RP+f = P+ ∗ Rf . (4.3)

Moreover, if(Π̄, Γ̄) is another model with the same weightwΠ and if ū belongs
to the corresponding spacēD equipped with the same weightsw(1),w(2), then we
have the bound

|||P+f ; P̄+f̄ |||D ′,D̄ ′ . |||Π|||(1 + |||Γ|||)|||u; ū|||
D,D̄

+ (|||Π− Π̄|||(1 + |||Γ̄|||) + |||Π̄||||||Γ− Γ̄|||)|||ū|||D ,

uniformly over allT in a compact set ofR+, all ℓ in a compact set ofR, all
Π, Π̄,Γ, Γ̄ and allu, ū.

Before we proceed to the proof of the theorem, we collect a fewtechnical facts. Let
us denote byBr− the subset ofBr whose elements are supported in the half-space
{t ≤ 0}. Using Theorem 3.10, we immediately get

∥∥∥∥ sup
η∈Br

−

∣∣∣
〈Rf, ηλt,x〉

wt(x)

∣∣∣
∥∥∥∥
Lp

. λη+α−c , (4.4)

uniformly over allt ∈ (0, T ], all λ ∈ (0, 1] and allf ∈ D
γ+α,η+α,p
T,w , as well as

∥∥∥∥ sup
η∈Br

−

∣∣∣
〈Rf −Πt−λ2,xf (t− λ2, x), ηλt,x

wt(x)

∣∣∣
∥∥∥∥
Lp

. λγ+α−ct
η−γ
2 , (4.5)

uniformly over allt ∈ [4λ2, T ], all λ ∈ (0, 1] and allf ∈ D
γ+α,η+α,p
T,w . These two

bounds will be applied repeatedly to the functionP0((t, x)− ·) ∈ Br− as well as its
rescalingsPn, n ≥ 0.
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For allz, z′ ∈ Rd+1, all k ∈ Nd+1 such that|k| < γ′, and alln ≥ 0, we define

P k,γ
′

n;z,z′(·) := DkPn(z − ·) −
∑

ℓ:|k|+|ℓ|<γ′

(z − z′)ℓ

ℓ!
Dk+ℓPn(z′ − ·) .

Using the classical Taylor formula, one obtains the following identities:

P k,γ
′

n;tx,sx(·) =
∑

ℓ=(ℓ0,0,...,0)
γ′<|k|+2ℓ0<γ′+2

(t− s)ℓ

∫ 1

0

(1− u)|ℓ|−1 |ℓ|
ℓ!
Dk+ℓPn((s+ u(t− s), x) − ·)du ,

(4.6)

and

P k,γ
′

n;ty,tx(·) =
∑

ℓ=(0,ℓ1,...,ℓd)
γ′<|k|+|ℓ|<γ′+1

(y − x)ℓ

∫ 1

0

(1− u)|ℓ|−1 |ℓ|
ℓ!
Dk+ℓPn((t, x+ u(y − x)) − ·)du ,

(4.7)

for all (t, x), (s, y) ∈ Rd+1. In these equations and later on in the proof of the
theorem, we use the notation (y−x)ℓ and (t−s)ℓ for (z−z′)ℓ wherez = (0, y), z′ =
(0, x) in the first case, andz = (t, 0), z′ = (s, 0) in the second case. Notice that
in the two formulae (4.6) and (4.7), we do not consider space and time translations
simultaneously. For space-time translations, the situation is slightly more involved
due to the scalings so we rely on the following result.

Lemma 4.4 (Prop 11.1 [Hai14b]) Let∂γ′ be the set of indices

{ℓ′ ∈ Nd+1 : |ℓ′| > γ′, |ℓ′ − em(ℓ)| < γ′} ,

whereei is the unit vector ofRd+1 in the directioni ∈ {0, . . . , d}, andm(ℓ′) :=
inf{i : ℓ′i 6= 0}. For all z, z′ ∈ Rd+1 and allk ∈ Nd+1 such that|k| < γ′, we have

P k,γ
′

n;z,z′(·) =
∑

ℓ:k+ℓ∈∂γ′

∫

Rd+1

Dk+ℓPn(z′ + h− ·)µk+ℓ(z − z′, dh) .

Here,µk+ℓ(z − z′, dh) is a signed measure onRd+1, supported in the set{z̃ ∈
Rd+1 : z̃i ∈ [0, zi − z′i]} and whose total mass is given by(z−z′)k+ℓ

(k+ℓ)! .

For the sake of readibility, we drop the superscriptγ′ in the operatorPγ′

+ .

Proof of Theorem 4.3.From now on, the symbol. will be taken uniformly over
all ℓ in a given compact set ofR and allT in a given compact set ofR+. Also, the
implicit constant associated to this symbol always dominates the constant of (W-1)
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as well as all the constants associated with Definition 3.1 for the corresponding
weights. We provide a complete proof of the statement concerning a single model.
To prove the part with two different models, the arguments work almost verbatim
given the following two identities:

ΠzQζa− Π̄zQζ ā = ΠzQζ(a− ā) + (Πz − Π̄z)Qζ ā ,

(Πz′QζΓz′,z − Π̄z′Qζ Γ̄z′,z)ā = Πz′Qζ(Γz′,z − Γ̄z′,z)ā+ (Πz′ − Π̄z′)Qζ Γ̄z′,zā .

Let u ∈ D and setf = u · Ξ. For simplicity, we assume that|||u||| = 1. The
proof is divided into four steps. We will use repeatedly Lemma 2.1 without further
mention.
For alln ≥ 0 and all (t, x) ∈ (0, T ] × Rd, we define

(Pγ′

n f)(t, x) :=
∑

ζ∈A(F )

∑

|k|<(ζ+2)∧γ′

Xk

k!
〈Πt,xQζf (t, x),DkPn((t, x) − ·)〉

+
∑

|k|<γ′

Xk

k!
〈Rf −Πt,xf (t, x),DkPn((t, x) − ·)〉 .

We will make sense of (4.2) by showing that the series of the coefficients on the
monomials of(Pγ′

n f)(t, x) is absolutely convergent.

First step: punctual terms.For all non-integer valuesζ ∈ A<γ′(U ), we have:
∥∥∥∥

|If (t, x)|ζ
t

(η′−ζ)∧0

2 w(1)
t (x, ζ)

∥∥∥∥
Lp

.

∥∥∥∥
|u(t, x)|ζ−2−α

t
(η−ζ+2+α)∧0

2 w(1)
t (x, ζ − 2− α)

∥∥∥∥
Lp

≤ 1 ,

where we have used Condition (W-2) and the fact thatη′ − ζ andη′ + c − ζ have
the same sign. Therefore, the desired bound follows.

We turn to the integer levelsk such that|k| < γ′. We distinguish two sub-cases.
First, if t ≤ 4 · 2−2n, we writek!Qk(Pnf )(t, x) as:

〈Rf,DkPn((t, x) − ·)〉 −
∑

ζ≤|k|−2

〈Πt,xQζf (t, x),DkPn((t, x) − ·)〉 . (4.8)

Using (4.4), we get
∥∥∥∥
〈Rf,DkPn((t, x) − ·)〉

w(1)
t (x, |k|)

∥∥∥∥
Lp

. 2−n(η′−|k|) ,

uniformly over all the correspondingn andt. Sinceη′ /∈ N, the sum over thesen

yields a bound of ordert
(η′−|k|)∧0

2 , as required. We now bound the second term
of (4.8). Whenζ = |k| − 2, this term has a zero contribution sincePn kills
polynomials of degreer. On the other hand, we use (W-3) to get for allζ < |k|−2

∥∥∥∥
〈Πt,xQζf (t, x),DkPn((t, x) − ·)〉

w(1)
t (x, |k|)

∥∥∥∥
Lp

. 2−n(2+ζ−|k|)t
η+α−ζ

2 ,
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uniformly over all the correspondingn andt. Summing over all the corresponding
n yields a bound of the required order.

We now treat the caset ≥ 4 · 2−2n. We settn = t − 2−2n, and write
k!Qk(Pnf )(t, x) as:

〈Rf −Πtn,xf (tn, x),DkPn((t, x) − ·)〉
−

∑

ζ≤|k|−2

〈Πt,xQζ(f (t, x) − Γxt,tnf (tn, x)),DkPn((t, x) − ·)〉dr

+
∑

ζ>|k|−2

〈Πtn,xQζf (tn, x),DkPn((t, x) − ·)〉dr .
(4.9)

The first and second terms can be treated easily using (4.5) and (W-3) respectively.
We now deal with the third term. Using (W-1), we get for allζ > |k| − 2

∥∥∥∥
〈Πtn,xQζf (tn, x),DkPn((t, x) − ·)〉

w(1)
t (x, |k|)

∥∥∥∥
Lp

. t
η+α−ζ

2 2−n(2+ζ−|k|−c) ,

uniformly over alln such thatt ≥ 4·2−2n. Sincec < κ/2, we have2+ζ−|k|−c >
0, so that the sum over thesen yields the required bound.

Second step: translation in space.We now look at (Pγ′

+ f )(t, y) − Γty,x(Pγ′

+ f )(t, x)
with |x− y| ≤ 1. If ζ ∈ A<γ′(U )\N, then the only contribution comes fromI and
we have:

∥∥∥∥

∫
y∈B(x,λ) λ

−d|I(f (t, y) − Γty,xf (t, x))|ζdy

t
η′−γ′

2 λγ′−ζw(2)
t (x, ζ)

∥∥∥∥
Lp

.

∥∥∥∥

∫
y∈B(x,λ) λ

−d|(u(t, y) − Γty,xu(t, x))|ζ−α−2dy

t
η−γ
2 λγ−ζ+α+2w(2)

t (x, ζ − α− 2)

∥∥∥∥
Lp

,

where we have used (W-2) and the identityη′−η = γ′−γ = 2+α− c with c > 0.
The required bound follows.

We turn to the integer levelsk with |k| < γ′. We first treat the caseλ2 ≤ t ≤
36 · 2−2n. By Taylor’s formula, we writek!Qk((Pnf )(t, y) − Γty,x(Pnf )(t, x)) as:

〈Rf, P k,γ′n;ty,tx〉 − 〈Πt,xf (t, x), P k,γ
′

n;ty,tx〉
−

∑

ζ≤|k|−2

〈Πt,yQζ(f (t, y) − Γty,xf (t, x)),DkPn((t, y) − ·)〉 . (4.10)

Using (4.7), we deduce that for any distributiong, we have

|〈g, P k,γ′n;ty,tx〉| . sup
η∈Br

−

|〈g, ηC2−n

t,x 〉||y − x|⌈γ′⌉−|k|2−n(2−⌈γ′⌉) , (4.11)

uniformly over ally ∈ B(x, λ) and alln ≥ 0, for some constantC independent of
everything. Using (4.4), we thus get

∥∥∥∥

∫
y∈B(x,λ) λ

−d|〈Rf, P k,γ′n;ty,tx〉|dy
w(2)
t (x, |k|)

∥∥∥∥
Lp

. λ⌈γ
′⌉−|k|2−n(η′−⌈γ′⌉) ,
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uniformly over allλ2 ≤ t ≤ 36 · 2−2n. Sinceη′ − γ′ < 0, the sum over all thesen

yields a bound of ordert
η′−γ′

2 λγ
′−|k|. We turn to the second term of (4.10). Using

(W-4) and (4.11), we get for allζ ∈ A<γ+α(F)

∥∥∥∥

∫
y∈B(x,λ) λ

−d|〈Πt,xQζf (t, x), P k,γ
′

n;ty,tx〉|dy
w(2)
t (x, |k|)

∥∥∥∥
Lp

. λ⌈γ
′⌉−|k|2−n(2+ζ−⌈γ′⌉)t

η+α−ζ
2 .

Since2 + ζ < γ′, the sum over alln such thatt ≤ 36 · 2−2n yields a bound of
the right order. Regarding the third term of (4.10), notice that it actually vanishes
wheneverζ = |k|−2 sincePn kills polynomials of orderr. We use (W-3) to obtain
for everyζ < |k| − 2

∥∥∥∥

∫
y∈B(x,λ) λ

−d|〈Πt,yQζ(f (t, y) − Γty,xf (t, x)),DkPn((t, y) − ·)〉|dy
w(2)
t (x, |k|)

∥∥∥∥
Lp

.

∥∥∥∥

∫
y∈B(x,λ) λ

−d|f (t, y) − Γty,xf (t, x)|ζdy
w(2)
t (x, |k|)

∥∥∥∥
Lp

2−n(2+ζ−|k|)

. t
η−γ
2 λγ+α−ζ2−n(2+ζ−|k|) ,

uniformly over all the corresponding parameters. Summing over the corresponding
n, one gets a bound of the right order.

We now turn to the caseλ2 ≤ 4 · 2−2n < 36 · 2−2n ≤ t. Recall that2−n + λ is
the size of the support of the test functions involved in (4.11). We settn = t− 9 ·
2−2n, and we observe thattn ≥ 3(2−n + λ)2. Then, we writek!Qk((Pnf )(t, y) −
Γty,x(Pnf )(t, x)) as:

〈Rf −Πtn,xf (tn, x), P k,γ
′

n;ty,tx〉 − 〈Πt,x(f (t, x) − Γxt,tnf (tn, x)), P k,γ
′

n;ty,tx〉
−

∑

ζ≤|k|−2

〈Πt,yQζ(f (t, y) − Γty,xf (t, x)),DkPn((t, y) − ·)〉 . (4.12)

The first two terms can be easily bounded using (4.11), together with (4.5) and
(W-4) respectively. The third term coincides with the thirdterm of (4.10), and the
bound follows from the same arguments.

In the case4·2−2n ≤ λ2 ≤ t, we settn = t−2−2n and writek!Qk((Pnf )(t, y)−
Γty,x(Pnf )(t, x)) as:

〈Rf −Πtn,yf (tn, y),DkPn((t, y) − ·)〉

− 〈Rf −Πtn,xf (tn, x),
∑

|k|+|ℓ|<γ′

(y − x)ℓ

ℓ!
Dk+ℓPn((t, x) − ·)〉

−
∑

ζ≤|k|−2

〈Πt,yQζ(f (t, y) − Γyt,tnf (tn, y)),DkPn((t, y) − ·))〉

+
∑

ζ>|k|−2

〈Πt,yQζΓ
y
t,tn(f (tn, y) − Γtny,xf (tn, x)),DkPn((t, y) − ·))〉 (4.13)
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−
∑

ζ>|k|−2

〈Πt,yQζΓ
t
y,x(f (t, x) − Γxt,tnf (tn, x)),DkPn((t, y) − ·))〉

+ 〈Πt,x(f (t, x) − Γxt,tnf (tn, x)),
∑

|k|+|ℓ|<γ′

(y − x)ℓ

ℓ!
Dk+ℓPn((t, x) − ·)〉 .

The bounds for the two first terms follow easily from (4.5). The third term vanishes
whenζ = |k| − 2 sincePn kills polynomials of orderr. On the other hand, for all
ζ < |k| − 2 we have

∥∥∥∥

∫
y∈B(x,λ) λ

−d|〈Πt,yQζ(f (t, y) − Γyt,tnf (tn, y)),DkPn((t, y) − ·))〉|dy
w(2)
t (x, |k|)

∥∥∥∥
Lp

.

∥∥∥∥

∫
y∈B(x,λ) λ

−d|f (t, y) − Γyt,tnf (tn, y)|ζdy
w(1)
t (x, ζ)

∥∥∥∥
Lp

2−n(2+ζ−|k|)

.

∥∥∥∥
|f (t, x) − Γxt,tnf (tn, x)|ζ

w(1)
t (x, ζ)

∥∥∥∥
Lp

2−n(2+ζ−|k|)

. t
η−γ
2 2−n(γ′−|k|) ,

where we have used (W-4) at the second line and Jensen’s inequality at the third
line. Summing over alln such that4 · 2−2n ≤ λ2, one gets a bound of the right
order. Regarding the fourth term of (4.13), we have for allγ+α > β ≥ ζ > |k|−2

∥∥∥∥

∫
y∈B(x,λ) λ

−d|〈Πt,yQζΓ
y
t,tnQβ(f (tn, y) − Γtny,xf (tn, x)),DkPn((t, y) − ·))〉|dy

w(2)
t (x, |k|)

∥∥∥∥
Lp

.

∥∥∥∥

∫
y∈B(x,λ) λ

−d|f (tn, y) − Γtny,xf (tn, x)|βdy
w(2)
tn (x, β)

∥∥∥∥
Lp

2−n(2−|k|+β−c)

. 2−n(2−|k|+β−c)t
η−γ
2 λγ+α−β ,

where we have used (W-1).c being small, we have2 + β − |k| − c > 0 so that the

sum over all the correspondingn yields a bound of orderλγ
′−|k|t

η−γ
2 as desired.

The fifth term of (4.13) is treated similarly, using (W-4). The bound of the sixth
term follows easily from (W-4) as well.

Third step: translation in time.We need to control (P+f )(t, x) − Γxt,s(P+f )(s, x)
for all t > s > 0 such that (t − s) < s. We start with the non-integer levels
ζ ∈ A<γ′(U ), for which we have:

∥∥∥∥
|I(f (t, x) − Γxt,sf (s, x))|ζ
(t− s)

γ′−ζ
2 s

η′−γ′

2 w(1)
t (x, ζ)

∥∥∥∥
Lp

.

∥∥∥∥
|u(t, x) − Γxt,su(s, x)|ζ−2−α

(t− s)
γ−ζ+2+α

2 s
η−γ
2 w(1)

t (x, ζ − 2− α)

∥∥∥∥
Lp

,

where we have used (W-2) and the identityγ′−γ = η′−η = 2+α− c with c > 0.
This ensures the required bound.
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We now turn to the terms at integer levelsk with |k| < γ′. Actually we need
to distinguish three sub-cases. First, we assume thatt− s < s ≤ 36 · 2−2n and we
writeQk((Pnf )(t, x) − Γxt,s(Pnf )(s, x)) as:

〈Rf, P k,γ′n;tx,sx〉 − 〈Πs,xf (s, x), P k,γ
′

n;tx,sx〉
−

∑

ζ≤|k|−2

〈Πt,xQζ(f (t, x) − Γxt,sf (s, x)),DkPn((t, x) − ·)〉 . (4.14)

By (4.6), we deduce that there existsδ > γ′ + c, such that for any distributiong
we have

|〈g, P k,γ′n;tx,sx〉| . sup
η∈Br

−

|〈g, η2−n+
√
t−s

t,x 〉||t− s|
δ−|k|

2 2−n(2−δ) , (4.15)

uniformly over alls, t, n, λ as above. This being given, the bounds of the two first
terms of (4.14) follow easily from (4.4) and (W-1). Regarding the third term, we
notice that the valuesζ such thatζ = |k| − 2 have a zero contribution, sincePn
kills polynomials of degreer. On the other hand, for allζ < |k| − 2, we use (W-3)
to get

∥∥∥∥
〈Πt,xQζ(f (t, x) − Γxt,sf (s, x)),DkPn((t, x) − ·)〉

w(1)
t (x, |k|)

∥∥∥∥
Lp

. s
η−γ
2 (t− s)

γ+α−ζ
2 2−n(2+ζ−|k|) .

The sum over the correspondingn yields a bound of orders
η−γ
2 (t − s)

γ′−|k|
2 as

required.
Second, we treat the caset−s ≤ 4·2−2n < 36·2−2n ≤ s. Setsn = t−9·2−2n,

notice thatsn ≥ 3(2−n+
√
t− s)2. We writek!Qk((Pnf )(t, x)−Γxt,s(Pnf )(s, x))

as:

〈Rf −Πsn,xf (sn, x), P k,γ
′

n;tx,sx〉 − 〈Πs,x(f (s, x) − Γxs,snf (sn, x)), P k,γ
′

n;tx,sx〉
−

∑

ζ≤|k|−2

〈Πt,xQζ(f (t, x) − Γxt,sf (s, x)),DkPn((t, x) − ·)〉 . (4.16)

The bound of the first term is a direct consequence of (4.5) and(4.15), while the
third term coincides with the third term of (4.14) and the calculation made above
applies. Regarding the second term, by (W-1) and (4.15) we have for all ζ ∈ A(F)

∥∥∥∥
〈Πs,xQζ(f (s, x) − Γxs,snf (sn, x)), P k,γ

′

n;tx,sx〉
w(1)
t (x, |k|)

∥∥∥∥
Lp

. s
η−γ
2 (t− s)

δ−|k|−c

2 2−n(2+γ+α−δ) .

Since2 + γ + α− δ < 0, the sum over the correspondingn of the last expression

yields a bound of orders
η−γ
2 (t− s)

γ′−|k|
2 as required.
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Finally, we consider the case4 · 2−2n ≤ t − s ≤ s. We setsn = s − 2−2n,
tn = t− 2−2n, and we writek!Qk((Pnf )(t, x) − Γxt,s(Pnf )(s, x)) as:

〈Rf −Πtn,xf (tn, x),DkPn((t, x) − ·)〉

− 〈Rf −Πsn,xf (sn, x),
∑

|k|+|ℓ|<γ′

(t− s)ℓ

ℓ!
Dk+ℓPn((s, x) − ·)〉

−
∑

ζ≤|k|−2

〈Πt,xQζ(f (t, x) − Γxt,tnf (tn, x)),DkPn((t, x) − ·)〉

+
∑

ζ>|k|−2

〈Πt,xQζΓ
x
t,tn(f (tn, x) − Γxtn,sf (s, x)),DkPn((t, x) − ·)〉

+ 〈Πs,x(f (s, x) − Γxs,snf (sn, x),
∑

|k|+|ℓ|<γ′

(t− s)ℓ

ℓ!
Dk+ℓPn((s, x) − ·)〉 .

(4.17)

The required bound for the first two terms follows easily from(4.5), while the third
term can be bounded using (W-3). Let us treat the fourth term.For all β ≥ ζ >
|k| − 2, using (W-1) we have

∥∥∥∥
〈Πt,xQζΓ

x
t,tnQβ(f (tn, x) − Γxtn,sf (s, x)),DkPn((t, x) − ·)〉

w(1)
t (x, |k|)

∥∥∥∥
Lp

. s
η−γ
2 (t− s− 2−2n)

γ+α−β
2 2−n(2+β−|k|−c) .

Sincec is small, we have2− c+ β − |k| > 0. Therefore, the sum over alln such

that4 · 2−2n ≤ (t− s) is bounded by a term of orders
η−γ
2 (t− s)

γ′−|k|
2 as required.

Finally, the fifth term of (4.17) can be bounded using (W-1).

Fourth step: equality with the convolution.Let us show thatRP+f = P+∗Rf . By
the uniqueness of the reconstruction theorem (Theorem 3.10), it suffices to show
that

∥∥∥∥ sup
η∈Br

|〈(P+ ∗ Rf ) −Πt,x(P+f )(t, x), ηλt,x〉|
wt+λ2(x)

∥∥∥∥
Lp

. λγ
′
t
η′−γ′

2 , (4.18)

uniformly over allλ ∈ (0, 1] and allt ∈ [3λ2, T − λ2]. Using (2.5) and (4.2), it is
elementary to get:

〈(P+ ∗ Rf ) −Πt,x(P+f )(t, x), ηλt,x〉 =
∫

s,y
ηλt,x(s, y)

∑

n≥0

Rn(t, x, s, y)ds dy ,

where

Rn(t, x, s, y) = 〈Rf −Πt,xf (t, x), Pn((s, y) − ·)〉

−
∑

|ℓ|<γ′

(s− t, y − x)ℓ

ℓ!
〈Rf −Πt,xf (t, x),DℓPn((t, x) − ·)〉 .
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By the scaling properties ofηλ, we have

∥∥∥∥ sup
η∈Br

|〈(P+ ∗ Rf ) −Πt,x(P+f )(t, x), ηλt,x〉|
wt+λ2(x)

∥∥∥∥
Lp

(4.19)

.
∑

n≥0

∥∥∥∥
∫

(s,y)∈B((t,x),λ)
λ−2−d |Rn(t, x, s, y)|

wt+λ2(x)
ds dy

∥∥∥∥
Lp

,

uniformly over all the parameters. Then, we distinguish three cases. First, if3λ2 ≤
t ≤ 36 · 2−2n, we write

Rn(t, x, s, y) = 〈Rf, P 0,γ′

n,sy,tx〉 − 〈Πt,xf (t, x), P 0,γ′

n,sy,tx〉 .

By Lemma 4.4, we deduce that for any distributiong we have
∫

(s,y)∈B((t,x),λ)
λ−2−d|〈g, P 0,γ′

n;sy,tx〉|ds dy (4.20)

. sup
η∈Br

−

|〈g, η2−n+2λ
t+λ2 ,x

〉|
∑

ℓ∈∂γ′
λ|ℓ|2−n(2−|ℓ|) ,

uniformly over all the parameters. Therefore, arguments very similar to those pre-
sented below (4.10) ensure that

∥∥∥∥
∫

(s,y)∈B((t,x),λ)
λ−2−d |Rn(t, x, s, y)|

wt+λ2(x)
ds dy

∥∥∥∥
Lp

.
∑

ℓ∈∂γ′
λ|ℓ|2−n(η′−|ℓ|) ,

so that the sum over the correspondingn yields a bound of orderλγ
′
t
η′−γ′

2 . Second,
if 3λ2 ≤ 3 · 2−2n < 36 · 2−2n ≤ t, we settn = t+ λ2 − (2−n + 2λ)2. Notice that
tn ≥ 3(2−n + 2λ)2. Then, we write

Rn(t, x, s, y) = 〈Rf −Πtn,xf (tn, x), P 0,γ′

n,sy,tx〉
+ 〈Πt,x(f (t, x) − Γxt,tnf (tn, x), P 0,γ′

n,sy,tx〉 ,

and the arguments below (4.12) can easily be adapted to obtain a bound of order

λγ
′
t
η′−γ′

2 as above. Finally, when3 · 2−2n ≤ 3λ2 ≤ t, the desired bound fol-
lows from the arguments presented below (4.13). This completes the proof of the
theorem. �

4.2 Smooth part of the heat kernel

We now deal with the smooth partP− of the heat kernel defined in Lemma 2.1. For
anyu ∈ D , we setf = u · Ξ and we letP−Rf denote the map

(t, x) 7→
∑

k∈Nd+1,|k|<γ′

Xk

k!
〈Rf,DkP−((t, x) − ·)〉 ,
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which takes values in the polynomial regularity structure.The following result
shows that this is an element ofD ′. Here we consider the weights defined in (4.1),
but the only important feature of these weights is that they do not grow faster than

e
|x|2

T .

Proposition 4.5 Let u ∈ D = D
γ,η
T,w(U ) and f = u · Ξ. Then,P−Rf ∈ D ′ =

D
γ′,η′,p
T,w and we have

|||P−Rf |||D ′ . |||Π|||(1 + |||Γ|||)|||u|||D (4.21)

uniformly over allT in a compact domain of(0,∞), all ℓ in a compact domain
of R, all u ∈ D and all admissible models(Π,Γ). Moreover, if(Π̄, Γ̄) is another
admissible model with the same weightwΠ and if ū belongs to the corresponding
spaceD̄ , then we have the bound

|||P−Rf ;P−R̄f̄ |||D ′,D̄ ′ . |||Π|||(1 + |||Γ|||)|||u; ū|||D,D̄ (4.22)

+ (|||Π− Π̄|||(1 + |||Γ̄|||) + |||Π̄||||||Γ− Γ̄|||)|||ū|||D ,

uniformly over allT, ℓ as above, all admissible models(Π,Γ), (Π̄, Γ̄), and allu ∈
D , ū ∈ D̄ .

Proof. Suppose that

sup
t∈(0,T ]

sup
|k|<γ′+2

∥∥∥∥
〈Rf,DkP−((t, x) − ·)〉

wt(x)

∥∥∥∥
Lp

. |||Π|||(1 + |||Γ|||)|||u|||D , (4.23)

uniformly over allT , ℓ, (Π,Γ) andu as in the statement. We stress that this implies
(4.21). Indeed, for the punctual terms of the norm this is immediate. Regarding
the space translations, we have for everyk ∈ Nd+1 such that|k| < γ′ and all
x, y ∈ Rd:

Qk

(
P−Rf (t, y) − Γty,xP−Rf (t, x)

)
= 〈Rf, P k,γ′−,ty,tx〉 ,

whereP k,γ
′

−,ty,tx is the function obtained from (4.7) upon replacingPn by P−. This
being given, a simple application of Jensen’s inequality shows that

∥∥∥∥
∫

y∈B(x,λ)
λ−d

|〈Rf, P k,γ′−,ty,tx〉|
wt(x)

dy

∥∥∥∥
Lp

.
∑

ℓ∈∂γ′

∥∥∥∥
〈Rf,DℓP−((t, x) − ·)〉

wt(x)

∥∥∥∥
Lp

λ|ℓ|−|k| ,

so that the desired bound holds. Concerning the time translation, we have for every
k ∈ Nd+1 such that|k| < γ′ and all0 < t− s < s:

Qk

(
P−Rf (t, x) − Γxt,sP−Rf (s, x)

)
= 〈Rf, P k,γ′−,tx,sx〉 ,
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whereP k,γ
′

−,tx,sx is the function obtained from (4.6) upon replacingPn byP−. Simi-
larly as above, a simple application of Jensen’s inequalityshows that

∥∥∥∥
|〈Rf, P k,γ′−,tx,sx〉|

wt(x)

∥∥∥∥
Lp

. sup
u∈[s,t]

∑

ℓ∈∂γ′

∥∥∥∥
〈Rf,DℓP−((u, x) − ·)〉

wt(x)

∥∥∥∥
Lp

|t− s|
|ℓ|−|k|

2 ,

and the desired bound follows.
We now prove (4.23). Let̃ϕ : [−1, 1] → R be a smooth function such that

for all x ∈ R,
∑

i∈Z ϕ̃(x − i) = 1. Then, we defineϕ(t, x) = ϕ̃(t)
∏d
i=1 ϕ̃(xi)

for every (t, x) ∈ Rd+1, so that we obtain
∑

i∈Z,j∈Zd ϕ((t − i, x − j)) = 1. In
particular, we have

DkP−((t, x) − ·) =
∑

i∈Z,j∈Zd

DkP−((t, x) − ·)ϕ((t− i, x− j) − ·) .

SinceP−(t, x) is smooth and equals the heat kernel outside the parabolic unit ball,
the following bound

∥∥∥DkP−((t, x) − ·)ϕ((t− i, x− j) − ·)
∥∥∥
Cr

. e−
(|j|2−d)+

8t ,

holds uniformly over allt ∈ (0, T ], all k ∈ Nd+1 such that|k| < γ′ + 2 and all
(i, j) ∈ Zd+1. The expression (4.1) of the weights yield that wt(x) = e(t+ℓ)(1+|x|).
Using (3.12) and settingC = |||Π|||(1 + |||Γ|||)|||u|||D , we get

∥∥∥〈Rf,D
kP−((t, x) − ·)〉
wt(x)

∥∥∥
Lp

. C

T+1∑

i=−1

∑

j∈Zd

e−
(|j|2−d)+

8t

∥∥∥wt(x− j)
wt(x)

∥∥∥
Lp

. C
∑

j∈Zd

e(t+ℓ)|j|− (|j|2−d)+
8t

. C ,

uniformly over allt ∈ (0, T ], all T in a compact domain ofR+, all k ∈ Nd+1 such
that |k| < γ′ + 2. This ends the proof of (4.21). To obtain (4.22), we proceed
similarly. Using (3.14), the same calculation as above gives

∥∥∥〈Rf − R̄f̄ ,DkP−((t, x) − ·)〉
wt(x)

∥∥∥
Lp

. |||Π|||(1 + |||Γ|||)|||u; ū|||

+ (|||Π− Π̄|||(1 + |||Γ|||) + |||Π̄||||||Γ− Γ̄|||)|||ū||| ,

uniformly over allt ∈ (0, T ], all T in a compact domain ofR+, all k ∈ Nd+1 such
that |k| < γ′ + 2. This ends the proof. �
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4.3 Initial condition

We take (4.1) as our choice of weights. Recall thatℓ is involved in the weight at
time0. We defineCη,pw0

(Rd) as the space of distributionsf on Rd such that

sup
λ∈(0,1]

∥∥∥∥ sup
ϕ∈Br(Rd)

|〈f, ϕλx〉|
ληw0(x)

∥∥∥∥
Lp(dx)

<∞ .

When w0(x) = 1, this space coincides with the usual Besov spaceBαp,∞(Rd).
Givenu0 ∈ Cη,pw0

(Rd), we definev = Pu0 as follows:

v(t, x) :=
∑

k∈Nd+1

|k|<γ′

Xk

k!
〈u0,DkP (t, x− ·)〉 .

This is the lift into the polynomial regularity structure ofthe smooth map (t, x) 7→
(P (t, ·) ∗ u0)(x).

Lemma 4.6 Letu0 ∈ Cη,pw0
(Rd) thenv = Pu0 belongs toD .

Proof. The contribution coming from the smooth part of the heat kernel is handled
similarly as in the proof of Proposition 4.5 so we do not provide the details. We
focus on the contribution due to the singular part of the heatkernel. By hypothesis,
we have ∥∥∥〈u0,D

kPn(t, x− ·)〉
w0(x)

∥∥∥
Lp

. 2−n(η−|k|) ,

uniformly over allt > 0, all n ≥ 0 and allk ∈ Nd+1 such that|k| < γ +2. Notice
that the definition of the kernelsPn ensures that the left hand side actually vanishes
whenevert > 2−2n. Therefore, summing overn ≥ 0 the latter bound yields

∥∥∥〈u0,D
kP+(t, x− ·)〉
w0(x)

∥∥∥
Lp

. t
η−|k|

2 ,

uniformly over allt > 0. This yields the required bound for the punctual terms of
the norm, while the bounds on the time and space translation terms follow from the
same arguments as in the proof of Proposition 4.5. �

5 Solution map and renormalisation

We are now in position to obtain a fixed point for the solution map:

MT,v : D → D

u 7→ (P+ + P−)(u · Ξ) + v
(5.1)

wherev is a given element inD . In practice, we will takev = Pu0 with u0 ∈ Cη,pw0

as in Lemma 4.6. Recall that the weight w0 depends on the parameterℓ ∈ R. We
start with a simple lemma.
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Lemma 5.1 Letu ∈ D
γ,η,p
w,T (U ). Then,Ru is a function and we haveRu(t, x) =

Q0u(t, x) together withRu(t, ·) ∈ Cη,pwt (Rd). If in addition u only takes values in
the strictly positive levels of the polynomial regularity structure, thenu = 0.

Proof. Observe that uniformly over allλ ∈ (0, 1], all t ∈ (2λ2, T − λ2] and all
x0 ∈ Rd, we have

∥∥∥
∫

(s,y)∈B((t,x),λ)
λ−d−2|u(s, y) − u(t, x)|0 ds dy

∥∥∥
Lp
x0,1

≤ sup
s∈(t−λ2,t+λ2)

∥∥∥
∫

y∈B(x,λ)
λ−d|u(s, y) − Γsy,xu(s, x)|0 dy

∥∥∥
Lp
x0,1

+
∥∥∥
∫

(s,y)∈B((t,x),λ)
λ−d−2|Γsy,x(u(s, x) − Γxs,tu(t, x))|0 ds dy

∥∥∥
Lp
x0,1

+
∑

ζ>0

∥∥∥
∫

(s,y)∈B((t,x),λ)
λ−d−2|Γsy,txQζu(t, x)|0 ds dy

∥∥∥
Lp
x0,1

. sup
i=1,2

sup
β∈A

w(i)
t+λ2

(x, β)λζ0 ,

whereζ0 is the smallest non-zero element ofA(U ). Then, we write

〈Q0u(·) −Πt,xu(t, x), ηλt,x〉 =
∫

s,y
Q0(u(s, y) − u(t, x))ηλt,x(s, y)ds dy

−
∑

ζ>0

〈Πt,xQζu(t, x), ηλt,x〉 ,

so that, taking theLpx0,1-norm, one gets a bound of orderλζ0 times some weight.
From the uniqueness of the reconstruction, we deduce thatRu(·) = Q0u(·) on
(0, T ) × Rd. It is then immediate to check thatRu(t, ·) belongs toCη,pwt (Rd).

Recall thatγ ∈ (1, 2). We now assume thatu(t, x) =
∑

k∈Nd+1:|k|=1Qk(u(t, x))Xk.
Let ei, i = 1 . . . d be the unit vector in the space directioni. We start with the fol-
lowing simple observation. There exists a constantC > 0 such that

∫

y∈B(0,λ)
λ−d

∣∣∣
d∑

i=1

yiai

∣∣∣dy ≥ Cλ|a| ,

uniformly over allλ ∈ (0, 1] and all a ∈ Rd. This being given, we takea =∑d
i=1(Qeiu(t, x))ei and use the equivalence of norms inRd to get

∥∥∥
d∑

i=1

|Qeiu(t, x)|
∥∥∥
Lp
x0,1

. λ−1
∥∥∥
∫

y∈B(x,λ)
λ−d

d∑

i=1

|(y − x)iQeiu(t, x)|dy
∥∥∥
Lp
x0,1

. λ−1
∥∥∥
∫

y∈B(x,λ)
λ−d|u(t, y) − Γty,xu(t, x)|0dy

∥∥∥
Lp
x0,1

. λγ−1w(2)
t (x0, 0) ,
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uniformly over allλ ∈ (0, 1], all t ∈ (2λ2, T −λ2] and allx0 ∈ Rd. Therefore, the
l.h.s. vanishes. This concludes the proof. �

Theorem 5.2 For anyT > 0 and anyu0 ∈ Cη,pw0
, the equationu = MT,v(u) ad-

mits a unique solution inD . Furthermore, the mapv 7→ u is Lipschitz continuous,
while the map(v,Π,Γ) 7→ u is locally Lipschitz continuous.

Proof. We first introduce a shift map on the models and the modelled distributions.
For all s ≥ 0, we letΠ↓s andΓ↓s be defined as follows

〈Π↓s
z τ, ϕ〉 := 〈Πz+(s,0)τ, ϕ(· + s, ·)〉 , Γ↓s

z,z′τ = Γz+(s,0),z′+(s,0)τ .

We letD↓s,γ,η,p
w,T be the space of modelled distributions associated with the shifted

model (Π↓s,Γ↓s) and the shifted weights w↓s defined by setting

w↓s,(i)
t (x, ζ) := w(i)

t+s(x, ζ) .

This amounts to shifting the parameterℓ by s, in the definition (4.1) of the weights.
Formally, one should also writeR↓s andP↓s for the convolution and reconstruction
operators associated with the shifted model, but we refrainfrom doing that for the
sake of readability.

Recall that the spacesD andD ′ differ by their parametersη, γ andη′, γ′. Since
η′−η = γ′−γ > 0, we deduce that there exists̺ > 0 such that||| · |||D ′ ≤ T ̺||| · |||D .
Until the end of the proof, we will be working in the spacesD

γ,η,p
w,T as well as their

shifted counterparts and we will play with only two parameters, namelyT andℓ.
Recall thatℓ is the parameter involved in the weight at time0. We will use the
notationDT,ℓ instead ofDγ,η,p

w,T for simplicity.
Using Theorem 4.3 and Proposition 4.5, we deduce the existence ofC > 0

such that

|||MT,v(u) −MT,v(ū)|||
D

↓s
T,ℓ

= |||(P+ +P−)((u− ū)Ξ)|||
D

↓s
T,ℓ

≤ C T ̺|||u− ū|||
D

↓s
T,ℓ

,

as well as

|||MT,v(u)|||
D

↓s
T,ℓ

= |||(P++P−)(uΞ)+v|||
D

↓s
T,ℓ

≤ C T ̺|||u|||
D

↓s
T,ℓ

+|||v|||
D

↓s
T,ℓ

, (5.2)

uniformly over alls, T in a compact set ofR+, all ℓ in a compact set ofR and
all u, ū, v ∈ D

↓s
T,ℓ. The constantC does however depend on the realisation of the

model through the quantities appearing in Lemma 3.4.
Fix a “target” final timeT > 0 and ℓ0 ∈ R. TakingT ∗ small enough, we

deduce thatMT ∗,v is a contraction onD↓s
T ∗,ℓ uniformly over allℓ ∈ [ℓ0, ℓ0 + T ],

all s ∈ [0, T ] and allv ∈ D
↓s
T ∗,ℓ. Fix u0 ∈ Cη,pw0

and letv = Pu0 ∈ DT ∗,ℓ. The
mapMT ∗,v admits a unique fixed pointu∗ ∈ DT ∗,ℓ0 . If T ∗ > T we are done,
otherwise we takes ∈ (0, T ∗) and we defineℓ∗ = ℓ0 + s < ℓ0 + T , us := Ru(s, ·)
andv∗ := Pus. By Lemma 5.1 and 4.6, we know thatv∗ ∈ DT ∗,ℓ∗. The map
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MT ∗,v∗ admits a unique fixed pointu∗∗ ∈ D
↓s
T ∗,ℓ∗ . We then setu(t, ·) = u∗(t, ·)

when t ∈ (0, T ∗] andu(t, ·) = u∗∗(t − s, ·) when t ∈ (T ∗, T ∗ + s]. It follows
in the same way as in [Hai14b, Prop. 7.11] thatu is indeed the unique solution
to the fixed point problemMT ∗+s,v(u) = u, and that this construction can be
iterated until one reaches the final timeT . Note that the linearity of the problem
was exploited in an essential way here, since this is what guarantees that the time
T ∗ of local well-posedness does not depend on the initial condition.

Regarding the joint dependence on the model and the initial condition, we ob-
tain similarly as above and thanks to the same results that for allR > 0, there exists
T ∗ > 0 such that

|||u; ū|||
D↓s,D̄↓s ≤ |||Π− Π̄|||+ |||Γ− Γ̄|||+ |||v; v̄|||

D↓s ,D̄↓s ,

uniformly over alls in a compact set ofR+, and over all (Π,Γ), (Π̄, Γ̄) andv, v̄ ∈
D

↓s
T ∗,ℓ0

, such that the norms of all these elements are bounded byR. This yields the
local Lipschitz continuity of the solution map on (0, T ∗]. Iterating the argument as
above, we obtain the local Lipschitz continuity over any arbitrary interval (0, T ].

�

Let v = Pu0 with u0 ∈ Cη,pw0
. It is easily seen from Theorems 3.10 and 4.3 that

the unique fixed point ofMT,v associated with the canonical model (Π(ε), F (ε))
coincides, upon reconstruction, with the solution to the well-posed SPDE (Eǫ) pre-
sented in the introduction. However, the sequence of canonical models (Π(ε), F (ε))
does not converge whenǫ → 0, due to the ill-defined products involving the white
noise.

Theorem 5.3 For everyǫ ∈ (0, 1], there exists a renormalised model(Π̂ǫ, F̂ ǫ) such
that:

• the unique fixed point ofMT,v associated to(Π̂ǫ, F̂ ǫ) coincides, upon recon-
struction, with the classical solution of (Êǫ),

• the sequence(Π̂ǫ, F̂ ǫ) converges to an admissible model(Π̂, F̂ ), that is, there
existsC, δ > 0 such that uniformly overǫ ∈ (0, 1] we have

|||Π̂ǫ − Π̂|||+ |||Γ̂ǫ − Γ̂||| ≤ Cǫδ .

Proof. This result is due to Hairer and Pardoux [HP14, Th 4.5] in the case of
(SHE). The case of (PAM) is treated similarlymutatis mutandis. Let us briefly
explain why the solution to (5.1) yields the classical solution to (̂Eǫ) when applied
to the renormalised model (Π̂ǫ, F̂ ǫ).

We first note that, for any space-time pointz, the renormalised model fulfils
the following identities:

Π̂ǫz(Ξ)(z) = ξǫ(z) , Π̂ǫz(ΞI(Ξ))(z) = −cǫ , Π̂ǫz(ΞI(ΞI(Ξ)))(z) = 0 ,

Π̂ǫz(ΞI(ΞI(ΞI(Ξ))))(z) = −c(1)
ǫ , Π̂ǫz(ΞI(XiΞ))(z) = 0 ,

(5.3)
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wherec(1)
ǫ = c(1,1)

ǫ + c(1,2)
ǫ , see (1.1) for the values of these constants.

Furthermore, iterating (5.1) shows that any solutionU to MT,v(U ) = U will
necessarily be of the form

U (z) = u(z)(1+I(Ξ)+I(ΞI(Ξ))+I(ΞI(ΞI(Ξ))))+
∑

|k|=1

∂ku(z)(Xk+I(XkΞ)) ,

for some continuous functionsu and∂ku. Recalling that, for fixedε > 0, the re-
construction operator associated to the renormalised model is given by (RF )(z) =
(Π̂ǫzF (z))(z), it then follows from (5.3) that

(RΞU)(z) = u(z)(ξε(z) − Cε) .

Combining this with (4.3) then concludes the proof. �

We are now in position to conclude the proof of the main resultof this article.

Proof of Theorem 1.1.The local Lipschitz continuity of the solution map stated in
Theorem 5.2 together with the convergence of the renormalised models obtained in
the previous theorem ensure that the sequence of renormalised solutions converge
to a limit û ∈ D

γ,p
w,T , for any initial conditionu0 ∈ Cη,pw0

. By Theorem 2.11, we de-

duce the convergence of the reconstructed solutionR̂ǫûǫ towardsR̂û in the space
E
η−c,p
w,T .

Finally, a simple computation shows that the Dirac mass at some given point
x0 belongs toCη,pw0

as soon asp ≤ d
d+η , whatever weight w0 one chooses. Sinceη

needs to be greater than−1/2 for our result to hold, one can choose a Dirac mass
whenp = 1 for instance. This concludes the proof. �
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