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Abstract

We carry out the construction of some ill-posed multiplivatstochastic heat
equations on unbounded domains. The two main equation®sult covers are,
on the one hand the parabolic Anderson modeRdn and on the other hand
the KPZ equation oR via the Cole-Hopf transform. To perform these construc-
tions, we adapt the theory of regularity structures to theéngeof weighted Besov
spaces. One particular feature of our construction is tladibiws one to start both
equations from a Dirac mass at the initial time.
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1 Introduction

In the present paper, we consider the following stochastitigh differential equa-
tion:
ou=Au+u-§, u(0, ) = uo(") , (E)

whereu is a function oft > 0, z € R?, and¢ is an irregular noise process. While
large parts of our analysis are dimension-independentiuaataubcriticality con-
dition restricts the dimensions in which we can considemtlost-interesting case
of delta-correlated noise. We will henceforth be mainly aamed with two in-
stances of this equatiod: = 3 and¢ is a white noise in space only, we refer to this
case as (PAM)/ = 1 and¢ is a space-time white noise, we call this case (SHE).


http://arxiv.org/abs/1504.07162v1

2 INTRODUCTION

When¢ is a white noise in space, without dependence in time, thiateon is
indeed called the parabolic Anderson model (PAM). In dinmmd > 2, the equa-
tion is ill-posed, due to the very singular product(. Indeed,u is expected to be
(2 + «)-Holder where the regularity of the noiseis strictly lower than—d /2, so
that the sum of the regularities efand¢ is strictly negative, and therefore, the prod-
uctwu - £ does not fall in the scope of classical integration thediB£3D11, You36).

To make sense of this product, one actually needs to perfommerenormalisation
which boils down to, roughly speaking, subtracting somenitdilinear term from
the equation.

When the space variable is restricted to a torus of dimer&idhe solution
of a generalised version of (PAM) has been constructed vdgmtly by Gu-
binelli, Imkeller and PerkowskiGIP13 using paracontrolled distributions, and by
Hairer [Hail4Q via the theory of regularity structures. The constructi@s also
been carried out on a torus of dimensibhy Hairer and Pardoux{P14. The con-
struction of (PAM) on the full spacB? has been obtained recenthdl[15], using
a simple change of unknown that spares one from requirinzgpedée renormalisa-
tion theories. This is not possible anymore in dimenslotin the present paper,
we adapt the theory of regularity structures to perform threstruction of (PAM)
on the full space?.

When¢ is a space-time white noise, the equation is called the ptighitive
stochastic heat equation (SHE). Already in dimensios 1, the productu - £ is
ill-defined. However, in dimensiom, the Itd integral allows one to make sense
of this equation: as it requires the noise to be a martingatérie and the solu-
tion u to be adapted to the filtration of the noise, this constracticeaks down for
space-time regularisations of the white noise so that isdws allow for conver-
gence of space-time mollified versions of the original eiquat When the space
variable is restricted to a torus of dimensibrthis equation has been constructed
by Hairer and Pardoux{P14 in the framework of regularity structures: they de-
fine the solution map on a space of noises that contains ad&age of space-time
mollifications of the white noise. In the present paper, VitaHie restriction of the
torus and perform the construction on the whole ke

This equation is intimately related to the KPZ equati&®86. Indeed, for-
mally, the Cole-Hopf transform sends the ill-posed KPZ ¢iguao (SHE); Bertini
and Giacomin BG97] exploited this fact to prove the convergence of the fluctua-
tions of the weakly asymmetric simple exclusion procesbaddPZ equation oR.

A more direct interpretation of the KPZ equation itself hasently been obtained
by Hairer Hail3, when the space variable is restricted to a torus of dinoenki

In addition to the ill-defined produet- £ that needs to be renormalised for both
(PAM) and (SHE), there are two major issues that we addrefisisrwork: first,
we construct these SPDEs on an unbounded underlying spsteadnof a torus;
second, we consider a Dirac mass as the initial condition.

Let us first comment on the specific difficulty arising from thiboundedness
of the underlying space, when constructing the solutionthése SPDEs. Since
the white noise is not uniformly Holder on an unbounded epane cannot expect
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to obtain solutions that are uniformly bounded over the dya®y space and one
needs to weight the Holder spaces of functions/distrimgiat infinity. This is a
classical problem when dealing with stochastic PDEs in unded domains, see
for example [wa87, AR91], as well as the recent workfW15] which is somewhat
closer in spirit to the equations considered here. A pribdse weights cause some
trouble in obtaining a fixed point for the map— P x (u - &) + P * ug, whereP

is the heat kernel. Indeed, since the weight needed for thauptw - £ is a priori
larger than the weight af itself, the map would take values in a space bigger than
the oneu lives in and the fixed point argument would not apply.

There is a way of circumventing this problem by consideririgne-increasing
weight and by using the averaging in time of the weight duehtotime convo-
lution with the heat kernel. More precisely, the white natse be weighted by
a polynomial weight p(z) = (1 4 |z[)* with a as small as desired, so that, if we
weight the solution by gz) = e!(+12D, then [ P,_*(€-u,)ds can be weighted by
fot p.(z)es(x)ds which is smaller than,&z). We refer to HL15] for a construction
of (PAM) on R? using this idea, and td{PP13 where this trick already appeared.
The main difficulty is therefore to incorporate the trick lméd above into the the-
ory of regularity structures, and this will require to have accurate control on
the weights arising along the construction. In particidamajor issue comes from
the fact that gx)/es(y) is not bounded from above and below, uniformly over all
(t, x), (s, ) lying at distance, say, from each other.

Regarding the initial condition, let us point out that thed?d iterations asso-
ciated to (E) involve products of the forn®(x ug) - £. By the classical integration
theories BCD11, You36)|, this product makes sense as soon as the regularity of
P x uy is strictly larger than—a, wherec is the regularity of the noiseP x uy is
smooth away front = 0, but its space-time regularity neae= 0 coincides with
the space regularity afy. Since the time regularity counts twice in the parabolic
scaling, it is possible to make sense &6f £ ug) - £ as long as.y has a regularity
better than-2 — «, usingintegrableweights around timé. The Holder regularity
of the Dirac mass being equal tai, this would prevent us from choosing = g
for both (PAM) and (SHE).

One way of circumventing this problem is to exploit the fdwtton the other
hand the Dirac distribution is “almost” af! function. In particular, it belongs to
the Besov spaceBﬁOO as soon ag < —d + d/p. Since the classical integration
theories allow one to multiplg® by Bﬁoo as soon a& + 5 > 0, the threshold on
the regularity of the initial condition would not be modifiadon this change of dis-
tributions spaces. Choosipgmall enough, one would then be able to take a Dirac
mass as the initial condition. We now present the main steffeeaonstruction of
the solution to (E).

First, we define aegularity structure which is an abstract framework that al-
lows one to associate to a function/distribution sayareralisedraylor expansion
around any space/time point. The building blocks of thisitagty structure are, on
the one hand, polynomials in the space/time indeterminateson the other hand,
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some abstract symboi Z(=), . . ., associated with the noise. Then, one needs to
reformulate the solution map that corresponds to (E) inéoabstract framework
of the regularity structure. Namely, one has to provideralbsformulations of the
multiplication with the nois¢ and the convolution with the heat kernel

Second, we build a so-calladodelwhich associates to the abstract symbols
some analytical values. Actually, we start with a mollifiegfsion of the noise
£ = oexE, Wherep (t, z) = e 2 %p(te =2, ze 1) is a smooth, compactly supported
function which is such thab(t,z) = o(t, —x), and we build a modell{c, F*)
which, in particular, associates to the symbothe smooth functiorg,. One im-
portant feature is that the abstract solution given by tHetism map, with this
particular model, coincides (upon an operation caltsmbnstructioh with the clas-
sical solution of the well-posed SPDE

Oe = Aue + Ue - & ue(07 ) = UO() . (Ee)

Third, we renormalise the moddlf, F'¢) by modifying the values associated to
some symbols: namely, those symbols that stand for ill-ddfpproducts. Roughly
speaking, the modification of these values consists in madisig some divergent
constantC,. The effect of this renormalisation procedure is actuaiyywclear at
the level of the SPDE, since the abstract solution then spamds to

Brlle = N + i - (€. — C), 4(0,7) = uo(") . (E)

The final step consists in proving that the sequence of realggad models
converges as | 0 in a sense that will be made clear later on. The continuity of
the solution map then ensures that the sequence of absihaiibss converge, and
furthermore, the limit is the fixed point of an abstract fixexind equation. This
yields the convergence of the sequence of renormaliseti@wui,. to a limit u.

Let us now outline some major modifications that we bring #dkhiginal the-
ory of regularity structuresHail44. First, since we want to start (E) from a Dirac
mass, we need to choose an appropriate space of distributhmexplained ear-
lier in the introduction, we are led to using (some variarfistioe B{f,oo spaces.
Therefore, we present a new version of the reconstructi@nabgr in this setting,
we refer to Definition 2.5 and Theorem 2.11. Second, our spabmodelled dis-
tributions are weighted at infinity; therefore, the reconstructionotken and the
abstract convolution with the heat kernel need to be modifiemnsequence, we
refer to Theorems 3.10 and 4.3. One major difficulty we rua istthat one would
like to consider the same kind of weights as HP[P13 HL15], which are of the
typew(t, z) = exp(1 + |x|)). Unfortunately, such weights dwt satisfy the very
desirable property < |w(z)/w(z")| < C for some constants C' > 0, uniformly
over space-time points, 2’ with |z — 2| < 1, although theydo satisfy this prop-
erty for pairs of points that are only separated in space. @&aequence, we need
extremely fine control on the behaviour of our objects as atfan of time, see
for example the bound (2.9) and the illustration of FiguréNdte that in the case
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of (PAM), where the noise varies only in space, we could hafendd our regu-
larity structure on space only and viewed the solution asation of time with
values in a space of modelled distributions, thus subsiinghortening some of
the arguments.

The main result of the present work is as follows.

Theorem 1.1 We consider either (PAM) or (SHE). Ley € CP(RY) with n >
—1/2, p € [1, ) andwg(x) = e/0+17D) for somel € R. There exists a divergent
sequence of constants such that, on any interval of tim@, 77, the sequence of
solutionst, of (E.) converges locally uniformly to a limit, in probability.

Furthermore, the limit depends continuously on the initahdition ug and,
provided thatC' is chosen accordingly, it is independent of the choice ofifieol
0. In the case of (SHE), the limit can be chosen to coincide thighclassical
solution to the multiplicative stochastic heat equatiovia]86 DPZ93.

Remark 1.2 We refer to Definition 3.8 for the precise space of distrisi in
which the convergence holds. Moreover, the spgER(R?) is defined in Subsec-
tion 4.3. We would like to point out however that fpsufficiently close ta andn
negative one hag € C,’, so that we do in particular recover convergence to the
“infinite wedge” solution to the KPZ equation.

Remark 1.3 The exponent—% obtained in this result is sharp. Indeed, since the
equation is linear in the initial condition, it is sufficiettt be able to take,y = ¢,
which is allowed in our setting. Denoting the correspondintution by K;(x, y),
general solutions are given ¢, z) = [ K;(z,y)uo(y) dy. Furthermore, in the
case of (PAM), it is straightforward to see by an approxiora@rgument thak’;
is symmetric in both of its arguments. (In the case of (SHE dnly symmetric
in law.) At this stage we then note that in both cases we exfedo inherit
the regularity of the linearised problem, namely to be ofdd® regularityC for
a < % in both of its arguments, but no better. (In the case of (SHiB)i$ of course
a well-known fact.) Such functions cannot be tested agaimggtneric distribution
incmlifn < —1/2.

Remark 1.4 In the case of (PAM), denote ki, the integral operator ofh?(R?)

with kernel ,y) — K(x,y). ThenK; is in general an unbounded selfadjoint
operator (with a domain depending on the realisation of theéetlying noise!).
Furthermore K is positive definite since its kernel is obtained as a posevimit

of positive kernels. Finally, for any fixet > 0, K; does not admit any € L?

with K;p = 0. Indeed, since the operatok§ satisfy K; K, = K4, one would
have K,,, = 0 for everyn > 0, which would contradict the fact that;p
converges tay weakly ast — 0. As a consequence, we can define an operator
L = %Iog K, by functional calculus. This operator is naturally inteted as a
suitably renormalised version of the random Schrodingerator
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onR3. See PC15] for more details on a similar construction in dimension 8da
bounded domain).

In both cases, the renormalisation cons@nt= ¢, + 'Y + 1 is given by

3
0 i= [ Ga)Ga)Glen)er?n + )G+ ) [[ s (1.1)
=1

3
A i= [ Ga)Gen) (Glan)ai? ) — edoe) ier + 22+ 29) [ [

i=1

In the case of (PAM)( is a compactly supported function that coincides with
the Green's function of th8 dimensional Laplacian in a neighbourhood of the
origin, and the integration variables lie R?. In the case of (SHE) is taken

to be the heat kernel in dimensidn and the integration variables take values in
R?. (With the usual convention that the heat kernel takes theeviafor negative
times.) In both cases, = ce~! with a proportionality constant that depends
on ¢ and on the equation under consideration. The other two aotssbehave
differently according to the equation: for (PAM§"Y = —1-loge + O(1) and
A2 = O(1); while for (SHE) bothc"? andc:? have finite limits as — 0 as
shown in HP14.

Let us point out that we do not provide the details on the cayarece of the
models. Instead, we refer the readerHii’[L4 where the convergence of the mol-
lified model associated with (SHE) on the one-dimensionalsdas been proven.
Since the models are “local” objects, the renormalisatsomat affected upon pass-
ing to the whole line. Regarding (PAM), the algebraic andisgaroperties of the
equation coincide with those of (SHE) so that the proof waabatim: only the
actual values of the renormalisation constants differ.

The remainder of the article is structured as follows. W&t $tagiving a short
introduction to the theory of regularity structures, asdugeour particular exam-
ple, in Section 2.1. The reader unfamiliar with the theoryyrfiad [Hail4Q or
the shorter introductiondHail5 Hail4g useful. In all existing works, the spaces
of “modelled distributions” on which the theory is built dvased on the standard
Holder spaces. In Section 2.2, we introduce new spaces déled distributions
that are instead based on a class of inhomogeneous Besmssgad we prove
the reconstruction theorem in this context. In Section 3lvem leverage the lo-
cal results of Section 2.2 to build suitable weighted spa&extion 4 contains a
Schauder estimate for these spaces, which is the main iegtddr building local
solutions to the limiting problem. Finally, we combine alltbese ingredients in
Section 5, where we give the proof of Theorem 1.1.
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1.1 Notations

From now on, we work irR%*! whered is the dimension of space ardthe
dimension of time. We choose the parabolic scating (2,1, ...,1), wheresy =

2 stands for the time scaling aegd= 1,7 = 1. .. d for the scaling of each direction
of space. We lets| = Z?:oﬁi- We denote by|z|ls = max(/[t], |z1], ..., |zd)
the s-scaled supremum norm of a vectoe= (¢, z) € R, We will also use the
notation|k| = Z?:o s;k; for any element € N1, To keep notation clear, we
restrict the letters, ¢ to denoting elements iR, z,y to denoting elements iR¢,
while the lettersk, m, ¢ will stand for elements o or N“*!. Moreover, in some
cases we will use the letterto denote an element R?*!.

For any smooth functiorf : R™! — R and anyk € N**1, we letD* f be the
function obtained frony by differentiatingk, times in directiont andk; times in
each directionr;, i € {1,...,d}. Foranyr > 0, weletC" be the space of functions
f on R such thatD* f is continuous for alk: € N“*! such thatk| < r. We
denote byB" the subset of” whose elements are supported in the unit parabolic
ball and have thei€”-norm smaller thari. For alln € C”, all (¢, z) € R**! and
all A > 0, we set

by — sl <3—t Y- ydﬂd) dr1
= A R .
nt,x(say) n )\2 ) )\ ) ) )\ ’ V(S,y) €

This rescaling preserves tiie-norm.

Finally, for all z € R and all\ > 0, we let B(z, \) ¢ R%**! be the ball of
radius\ centred at; here we implicitly work with thes-scaled supremum norm
|.ls. Forz € R%, we use the same notatids(z, \) to denote the ball iR of
radius\ and center.

Acknowledgements

We are grateful to Khalil Chouk for pointing out that the rlgity index for the
Dirac mass is higher in Besov / Sobolev type spaces than Iddfdype spaces.
MH gratefully acknowledges financial support from the Rhllieverhulme Trust
and from the ERC.

2 Regularity structures and Besov-type spaces

In the first subsection, we recall the basic definitions ofitaty structures and
models - this material is essentially taken fradaj14H. In the second subsection,
we adapt the definition of the spaces of modelled distrilmgtivpom Hail4H to the
setting of Besov spaces. Then, we prove the correspondiogseuction theorem.
In the third subsection, we introduce the weighted spaceasodtelled distributions
by adding weights arountd= 0 andz = oo in the spaces previously introduced.

2.1 Regularity structures and models

A regularity structure consists of two objects. First, adgih vector spacg& =
EBCEATC where A, called the set of homogeneities, is a subseRoivhich is
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locally finite and bounded from below. Second, a greupf continuous linear
transformations of” whose elementE € G fulfil the following property

I'r—7e€Tc3, VreTg, VBeA,

where we wrote/ . 3 as a shorthand fc@c<6 T¢. A simple example of regularity
structure is given by the polynomialsdn-1 indeterminatesXy, . .., X4. For every

¢ € N, let7¢ be the set of all formal polynomials iX;, i = 0...d with s-scaled
degree equal tq. Let us recall that the-scaled degree ak* = H?:o Xf for
any givenk € N+ is equal tolk| = > s;k;. The set of homogeneities in this
example is4d = N, while a natural structure group is the group of translation
Rd+1.

In the case of (E), the regularity structure, together wiseteof canonical basis
vectors forT’, can be constructed as follows. We set —2 — « for a givenx > 0
and we letT,, be a one-dimensional real vector space with basis vé&ctdhen we
define two collectiong/ and F of formal expressions by settirlg X* < ¢/ for all
k € N1 and by imposing that they are the smallest sets satisfyiadafowing
two rules

TEU=TEEF, TeF=I(r)eU .

(The product €, 7) — 7Z is taken to be commutative so we will also wrife
instead.) Writing(i/) for the free real vector space generated by d{sete then
setT(U) = U), T(F) = (F) andT = (U U F). Moreover, we write] C T ()
for the set of all polynomials inth&;,i = 0,...,d.

The homogeneityr| of an element € ¢/ U F is computed by settinfg| = «
, |1] = 0, | X;| = 1 and by imposing the following rules

[rrl=lrl+17, 2@ =7+ 2.

The corresponding sets of homogeneities are dend(&d, A(F) andA = AU)U
A(F). This also yields a natural decompositionfoby 7, = ({7 : |7| = a}). It
was shown inlHail4h Sec. 8] that there is a natural grodmacting on7 in a way
that is compatible with the definition of an “admissible middsee Definition 2.2
below. The precise definition @ does not matter for the purpose of the present
article, so we refer the interested readerHaifl4h Sec. 8.1] andHlP14 Sec. 3.2].
The regularity structurd (U{) is the abstract framework to which the solution
u of (E) will be lifted. 7(F), which is simply obtained by multiplying all the
elements in7 () by =, will therefore allow us to liftu - £. It turns out that it
will suffice to restrict7 (/) to those homogeneities lower than a certain threshold
~ > 0, to be fixed later on. Similarly, we will restriGf(F) to those homogeneities
lower thany + o > 0. We will write 7 () and 7-,.(F) to denote these
two subspaces, eventually we will omit these subscriptsesthe restriction will
be clear from the context. Finally, we I&; : 7 — 7; denote the canonical
projection on7; and we denote bju|. the norm ofQ.a.
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u AUy | F A(F)

1 0 c -5k
(2) T—k | ZI(E) —1-2r
I(ZZ(Z)) 1 -2k | EI(EZ(2)) -1 -3k
X; 1 =X, —5— K
I(EI(EL(R)) 2 -3k | EI(EI(EI()) —4k
I(EX;) s—k | ZI(EXy) —2K

Figure 1: The canonical basis vectors for the regularitycstire for (E) withy €
(3/2,2 — 4k). Notice that here ranges in{1,...,d}, while X, has homogeneity
2 and therefore does not appear.

Let us consider the heat kernel in dimensibn
1 e d
P(t,x) := -e 4 , xR t>0.
(4mt)2

We will need the following decomposition @ into a series of smooth functions,
which was already used ikpil4h Lem. 5.5]. Actually, there is a slight difference
here since we consider thescaled supremum norm R"! instead of the-scaled
Euclidean norm, but this makes no difference.

Lemma 2.1 Fix r > 0. There exist a collection of smooth functiafs, P,,n > 0
onR_ x R? such that the following properties hold:

1. For everyz € R\ {0}, P(2) = > ns0 Pnlz) + P-(2),
2. The functionP; is supported in the unit ball, and for eveny> 0, we have

Pu(t,z) = 2" Py(2*"t,2"z), teR,., zeR?,

3. For everyn > 0, we have[, P,(2)2*dz = 0 for all k € N*™! such that
|k| <r.

As a consequence, for everye N4+, there exists > 0 such that
|D*P,(2)] < C2ndtikD (2.1)
uniformly over alln > 0 and all z € R*+1.

We will use the notatio?, =) -, Py.

From now on, we deal witlT_, for a given~ that will be fixed later on. To
simplify notation, we will omit the subscript. We now associate to our regularity
structure ', G) some analytical features. To that end, recalling the dafimiof
the sets of test functiorn8” in Section 1.1, we introduce a setadmissible models
M.
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Definition 2.2 An admissible model is a paill(I") that satisfies the following
assumptions:

1. The madl: z — II, goes fromR**! into the spacd.(7, D’(R%*1)) of lin-
ear transformations frorfi” into distributions on space-tin®’(R**!) such
that

A
[1L]], := sup sup Supsupw <

i<, 2.2)
neBr Ae(01] cedreTe  ITIA

locally uniformly overz € RY*!, for some fixedr > |a|. We then define
|1I|| 5 as the supremum dffl||, over allz € B, whereB is a given subset
of R4+,

2. The mafd: (z,2') = I, . goes fromR¥*1 x R into G. Itis such that

ITz27ls

=S (2.3)

T, . :== supsup -

p<crete |t ||z = 2

locally uniformly overz, 2’ € R4 such that|z—2'||; < 1. We let||T'|| 5 :=
sup. iep T, . forany B ¢ R+,

3. Foreveryz, 2/ € Rt!

.0, =1L, . (2.4)

4. For everyk € N1 we have the identities

(ILX")(E) = (7' - 2)F, (2.5)
r_ 5 k
(.Z7)(2') = (.7, Py (2 — ) — Z %(H,ﬂ, DEP (2 — 1)) .
|kI<|Z7] '

Remark 2.3 It is not clear a priori that the last point in this definitiorakes sense,
since P, is not a smooth test function. One should interpret expoassof the
type (u, P;) for a distributiony as a shorthand foy - (¢, P,) (and similarly

for expressions involving* P, ). The bound (2.2) then guarantees that these sums
converge absolutely.

The mere existence of non-trivial admissible models is meiaus. However,
it turns out that every smooth functigia can be lifted in a canonical way to an
admissible modell{®), T¢)) by setting

[OE) () =),  [O77)() = MEO)(TON(),

and then imposing (2.5). Observe that all the products apmen this definition

are well-defined sincég, is a function. It was shown irHail4h Prop 8.27] that
this is indeed an admissible model and we will henceforterred this model as
the “canonical model” associatedga
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Notation 2.4 From now on, instead of writinG . (,,;, we will simply writeT", |
Similarly, we will write I'f ; instead ofl’(; 1) (s 2)-

2.2 The reconstruction theorem in a Besov-type space

In order to build solution to our SPDEs, we need to introduggrapriate spaces
of distributions. For the moment, we consider un-weightegices for the sake of
clarity, but we will consider weighted versions later on.

Definition 2.5 Leta < 0 andp € [1, oc]. We letE*P be the space of distributions
f onR¥*! such that

[{f, ma)

sup sup Yo

Ae(0,1] teR

sup
neBr (R

< 00 .
LP(RY,dx)

Observe that®> actually coincides with the Holder spac¢g(R**'). In or-
der to deal with random distributions, it is more convenienhave a countable
characterisation of the spac&€8?. To that end, we rely on a wavelet analysis
that we briefly summarise below; we refer to the works of Meyéey92 and
Daubechiespau8g for more details on wavelet analysis.

Wavelet analysis. For everyr > 0, there exists a compactly supported function
¢ € C"(R) such that:

1. We have(p(:), (- — k)) = d o for everyk € Z,

2. There existi, k € Z with only finitely many non-zero values, and such that
(@) = > 4cz drpRr — k) for everyz € R,

3. For every polynomiaP of degree at most and for everyr € R,

/ Py — Ky ole — K) = P(a).
kez

Given such a functiorp, we define for everyt(z) € R¥*! the recentered and
rescaled functiorpy, as follows

d
o (s,y) = 2"p(2%"(s — 1) [ [ 22 (2" (Wi — ) -
=1

Observe that this rescaling preserves fifenorm. We letV,, be the subspace of
L2(R%t1!) generated by}, : (t,2) € A,} where

An = {(2_2nk0, 2_nk17 s 72_nkd) : kl € Z} :
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Using the second property above, we deduce that

D I A R () M (RO R >l (2.6)
k

where only finitely many of the;,’s are non-zero, and for evetye Z%+!
27D = (o272t o=t g0 (nt )y

Using the third property above, we deduce that for every 0, V,, contains all
polynomials of scaled degree less or equal.to

Another important property of wavelets is the existencefafite set¥ of com-
pactly supported functions @f" such that, for every, > 0, the orthogonal comple-
ment ofV, insideV,,; is given by the linear span of all the?, x € A,,,¢ € V.
Necessarily, by the third property above, each of the fonsti) € ¥ annihilates
all polynomials ofs-scaled degree less than or equat té-inally, for everyn > 0

{oiy : (tx) € Ay UYL im >n, 0 € U, (t,x) € Ap}

forms an orthonormal basis é#(R%*1).
This wavelet analysis allows one to identify a countabléectibn of conditions
that determine the regularity of a distribution.

Proposition 2.6 Leta < 0, p € [1,00] andr > |a|. Let be a distribution on
R, Then e £27 if and only if¢ belongs to the dual ai” and the bounds

1
Vi) [P\ P
sup sup ( > 2%% >p,§1,
neNte2-2n7 z:(t,x)EAR 92— 3 —ho

2.7)

=

s 3 lewal) ST,

tez z:(z,t)EAo

hold uniformly over alk) € .

Remark 2.7 More generally, if is a linear form defined on the linear span of all
the+y, and all they, , such that the bounds of Proposition 2.6 are fulfilled, then
¢ can be extended uniquely to an elemenf &f.

Remark 2.8 As an immediate consequence of this result, we have a cantinu
d
embedding of£*? into £% »°°°, for everyp € [1, o).

Proof. The case = ~o is covered by Proposition 3.20 ikfil4l. Let us adapt
the proof for the casg € [1,00). If £ € £P, then it is immediate to see that
the bounds (2.7) are satisfied, using the simple fact tharigr(s, y) lying in the
parabolic hypercube of sidelength™ centred around:(z) € A, the function
Yy, is of the formnﬁ’y with A = 27", up to a constant multiplicative factor of the
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orderZ‘%. This allows in particular to turn the” norm in space into aff norm
at the expense of the corresponding volume factor.

Let us now prove the more difficult converse implication. Roe (0, 1], let
ng > 0 be the largest integer such tteat™® > X. For any test functiom € B", we
have

) =D > G WE ) D (6 ey (Pays i) -

eV n>0 (s,y)EAR (s,9)€M0

We need to show that the right hand side fulfils the requireghdo We argue
differently according to the relative valuesoandn,.
If n > ng, we use the fact that kills polynomials of degree to get the bound

ls| ls|
sup I(¢?y,n§$>| 5 2—(n—n0)(r+7)+n07 ’
neBr

uniformly over all the parameters. Observe that the lefotgide actually vanishes
as soon ag(t — s,z — y)||ls > C27 "0, for some positive constart' that only
depends on the size of the supportyof For a given {,z) € R**!, there are at
most22("—"0) sychs’s in 2-2"Z, and2%"—"0) suchy’s in 2-"Z¢. Consequently,
using Jensen’s inequality at the third line we obtain

sup |<£’¢?vy><w?,y’77£:x>|
(s,y)EAR neB” A Lp(dx)
< sup H Z WQ—(TL_M)(TH) tnlsl
se2—2nz . A, a o
t=s|<C2720 \:vzigj\g)cerno
S sup Z 27" M p) %2_(”—710)(7“4—@)
- s€27nz _M—na ’
yi(s,y)EAn 2

uniformly over allt € R and alln > ng. Therefore, since was chosen sufficiently
large so that + « > 0, the sum oven > ng converges.
On the other hand, fat < ng, we have the bound

Is|

SUp [(Y8,, )| S22
neBr

uniformly over all the parameters. Moreover, the left hai# vanishes as soon
as||(t — s,z — y)||s > C2~". Consequently, only a finite number of, ) € A,
yield a non-zero contribution, uniformly over all ¢) € R4*! and alln < ng. An
elementary computation using Jensen’s inequality givedtund

(€ Ve ) (Why i)

sup e

(s,y)En, TEB”

LP(dx)
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(&, v5y)

|s

an%fna

1
< sup ( > oo p>p2_(”_”°)“,

—2
SE27IZ "y (s,y)ENn

uniformly over alln < ng and allt € R. The sum over alh < ng of the last
expression is therefore uniformly boundediinandt. Finally, the contribution of
the p, ,'s is treated similarly as the case< ny. O

Given a regularity structure/{, G) and a modell(, I'), we now define a space of
modelled distributions which mimics the spater.

Definition 2.9 Let~y > 0 andp € [1, c0). The spacé"? consists of those maps
f R — T . such that

oo

/ |f(t,y) — T8 L f(t,x)lc Ay
yEB(z,N)

_|_
LP(RY,dax) ' LP(R?,dx)

’Lf@,x)—-I@;_Azf(t—-AQ,xng
< o0,

A\7—¢

d
Lr(RY,dx)

uniformly over allt € R, all { € Aand all\ € (0,2]. We denote by f||, , the
corresponding norm.

For all B ¢ R4*! of the form [s, ] x B(zo, L), we will use the notatior f|| 3 to
denote the supremum of the terms appearing inRA€-norm of f, but with the
additional constraint that the time indices are restridtefi, t] and the LP(R%)-
norms are replaced by tHe’-norm on the balB(zq, L).

Remark 2.10 Our space®"P are theLP counterparts of the spad@”>° = D7
from [Hail4h Def. 3.1]. Notice also that, just as in the definition&sf?, we treat
space and time translations separately: this will be useftlie weighted setting
later on.

The definition of the spac®”” depends implicitly on the underlying model
throughl". In order to compare two elementss D7F and f € D7P associated to
two models I, T') and (1, T'), we introduce| f; f||,., @s the supremum of

IR (G0N o
yEB(x,N)

A€

|f(t,£6) - f_(t’x) - Fit_)@f(t - )\2,56) + ff’t_)@f_l(t - )‘Q’x)k ‘
\—¢

Lr(dx)

+

Lp(dz) |

overallt € R, all¢ € Aand allX € (0, 2].
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The following result shows that these modelled distrimgi@an actually be
reconstructednto genuine distributions. This is a modification of Theurs.12
in [Hai1l44. For any functiony : R? — R and anyz, € R?%, we use the notation

1

lalls,, = ([ la@)lrds)”
0 x€B(xzo,1)

Theorem 2.11 (Reconstruction)Let (7, G, .A) be a regularity structure. Lej >
0,p € [1,00), @ := minA < 0, > |o| and (II,T') be a model. There exists a
unigue continuous linear mag : DP — £*P such that

sup [(Rf — Iy f(t, 2), 1)
neBr

| ENCaaLh), (28)
L

zg,1

uniformly over allx € (0,1], all (¢, z9) € R, all f € D? and all admissible
modelg(IT, I"). Here the proportionality constant can be given by

27\ YA (r4a)
Croad@ )= > ()" Imlsg,, (1 +ITlsg, OIflsg, .,
2-n<\
(2.9)
with BY, = [t — 2)\%,t + A% — 272"] x B(xo, 3).

If (IT,T) is a second model fof” and if R is its associated reconstruction
operator, then one has the bound

sup (Rf —Rf —Wyuf(t, x) + Mo f(E, ), 1700) P
nes”

Ly (2.10)

x

S )\’thwo)\(l-[’ 1:[7 f7 .]E) ’

uniformly over all\ € (0,1], all f € D2, all f € DV, all (t, z9) € R and all
admissible model@I, T), (II,T). Here, the proportionality constant is obtained
from (2.9) by replacing|TI||z» (1 + |||~ )HfHBSL,t,xO by

At,xg Atz

1]l (1 + [Tl s) 1 f5 £l 5
+ (I =TI 5= (1 + [Tl 3=) + [111[| [T = L[| ) [ f | 57

with B" = BY, _ as defined above.

(2.11)

To prove this theorem, we adapt the arguments frela 4k Th 3.10]. In particu-
lar, we obtainR f as the limit of a sequenck,, f € V,,, whereV/, is the subspace
of L2(R4t1) defined by our wavelet analysis. Let us comment on the teahni
bound (2.9). Its purpose is to provide a precise control entitme-locations of
these valueg (s, y) needed to definér f, ?7?@% In the original proof of the recon-
struction theoremHail4h Th 3.10], these points were taken in a domain slightly
larger than the support of the test functiry‘j\l. In the setting with weights, this
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t+ X2

Figure 2: Reconstruction theorem. On the left, the origaggbroach and on the

right, the approach presented in our proof. The shadedrretgipicts the support of

atest functiomém, the dashed box is the domain of the evaluations of the mexiell
distribution f required to definéR,, f,7;",).

would only allow us to weighR f, 77?,;0 by a weight taken at a time slightly larger
than the maximal time of the support of the test function. ungresent approach,
the valuesf (s, y) used for the term coming froniR,, f, 77?,1> will always be such
thats < ¢t + A\ — 2727, In the setting with weights, this will allow us to weigh
(Rf, 77?,& by a weight taken at time+ \2. We refer to Figure 2 for an illustration.
The core of the proof rests on the following result. Recadl wavelet anal-
ysis introduced above. Lef, = Z(m)eAn At o1, be a sequence of elements
in V,, and defin@d A7, = (fns1 — fa>f,)- The following criterion for the con-
vergence of the sequengg is an adaptation of Theorem 3.23 iddi144, which
in turn can be viewed as a multidimensional generalisatfoBubinelli's sewing
lemma [Gub04.

Proposition 2.12 Leta < 0. Assume that there exists a constadt| such that

1
P\ p
< > <|l4],
n20t€272"Z \ 1. e,

1
p
sup sup < Z 2—nd )p < HAH .
n>0te2-2n7 z:(t,x)EAn 2

Then, the sequencg, converges inE®? for everya < « to a limit f € £%P.
Moreover, the bounds

If = Fallap S IAIZTHD L [Puf = fallap S 14127, (2.13)

n
At,:v

|s]

2—71?—77,@

sup sup g—nd

(2.12)

n
At,x

T
D) Y

hold fora € (o — 7, @).

Here,P,, denotes the orthogonal projection fram(R%') ontoV,,. We also write
V.- for the orthogonal complement &, in V;, ;1. From the wavelet analysis, we
know that this is obtained as the linear span of all ¢lfe with (¢,z) € A,, and
Y ev.
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Proof. Let us write f,, .1 — fn = gn + 6fn, Whereg, € V,, andéf, € V5. We
bound separately the contributions of these two terms. Bypddition 2.6, the
ERP norm is equivalent to the supremum owver> 0 of the %7 norms of the
projections ontd/;.- and ontal;. Therefore, the sequen@nM:0 4 f,, converges in
E¥P asM — oo to an element i€ precisely if

n"_r)noo 6 fullapy =0, sup |6 fallap < o0 . (2.14)

n—oo

We have

(Ofuntfe) = > AR ) -

(S,y)EAn+1

Observe that(o2 !, ¢7,)| < 1 uniformly over alln > 0, and that the inner
product vanishes as soon [f(¢ — s,z — y)||s < C27" for some constant’ > 0
depending on the sizes of the supportofnd+. Hence, for a giveni(z), the
number of §,y) € A,.1 with a non-zero contribution is uniformly bounded in
n > 0. Therefore, we have

AL\
i s (¥ am( Y LYY
te2=2nZ z:(t,x)EAn (5,9)EAn+1 27"
It=s,z—y)lls<C27™

ArEL NG
s Y (XX )

_plsl
€222 o 2tz N wi(t,@)EAn yi(s,y)EAnt1 27"
[t—s|<C22—27 |z—y|<C27"
1
An+1 =
< sup 2—n(a—5)< Z 2_(”+1)d‘ 5y p>p ,
s€2—2n+1)z 2*”%*"0‘

yi(s,Y)EAn+1
so that (2.14) follows from (2.12). Moreover, this yields thound
oo
1> ot
n=m
Let us now prove that the series of thgs is also summable i6¢P. We have
M
> o
n=m

where( y denotes the projection onﬁ@& and P, the projection ontdj. Since
gn € Vp,, we have

In = Z <gna Sog,y>90?,y = 5A?,y90?,y .
(S,y)GAn (Svy)EAn

S lAfzmene)
p

a,

M
S Z SUp [QnGnllap V [IPognllap -
n=m V20

a?p
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WheneverN > n, Qng, vanishes. On the other hand, we hagg? . ¢},)

9~ (=N uniformly over allN < n, and this inner product actually vanishes as
soon ag|(t — s,z — y)||s > C2~V. Consequently, using the triangle inequality on
the sum over and Jensen’s inequality on the sum oyép pass from the third to
the fourth line, we have

‘ ~

HQN.gnHa,p
1
< sup Z 2—Nd( Z |6A?,y||<s02,y?wiyx>|>l7 P
~ —2N *NmfNa
te2 z (t,x)EAN (s,y)EAR 2 2
1
S Sup ( > 2*Nd( > 2(”N)|5M>”>P
2N ENOETS
te2 z z:(t,x)EAN (s,y)EAR 2 5

[(t—s.a—y)ls<C27N

1
0AT P\ p
< —2(n—N) —nd|_ "8y
S w2 PO DR e e
te sc2-2n7 z:(t,x)EAN  yi(s.y)EAR
|t—s|<C22—2N le—y|<C2—N
Am N
S sup ( Z 2—nd \:,y )Pz—n’Y’
s€2—2nz N 9~ no —ny
y:(s,9)E€AR

uniformly over alln > N > 0. The calculation forPyg,, is very similar. Con-
sequently,|| > gnllap S |JA]|27™7 and the asserted convergence is proved.
Moreover, the bounds (2.13) follow immediately by keepirack of constants.

]

We now proceed to the proof of the reconstruction theorenenBElough the gen-
eral method of proof is quite similar to that of Theorem 3A{Hail4l, a specific
work is needed here in order to get the refined bound (2.8).

Proof of Theorem 2.11Set
M = diam suppp V {diam suppy; ¢ € U}V {|k| : ar, # 0} .

Let us introduce the following notation: for alle R, we lett!” := t — C272"
whereC = 7M? + 1. Recall the notatiom,, ;, andt,, ; introduced above (2.6). For

all n > 0, we define
Rufi= > Alef.,

where, for all ¢, z) € RH!

A?m = / 2nd<Ht¢”,yf(t¢n, y)a 30?,:13>dy ’
yEB(x,2—")

)

with (-, -) denoting the pairing between distributions and test famsti One can
write

M= 2, / 20U g, P00, 00, )
* kezd+1 EB($n7k727(n+1)) n,ksn,
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e 2 S0, L ).
u€B(x,27"™)

Observe that any two pointsandw appearing in the integral above are at distance
at most (1 + 3)2~(+1) from each other. A simple calculation thus shows that

BARIS D D / -GS En(bn 4 )y du,  (2.15)

Lezd+l CeA u€B(z,27")
ak;zéO

where the quantit;FgL is given by

Fg(t,sau) = ||H‘|su|f(5,u) - Fg,tf(t’u)k

4 / 2|1 4 £ (5 0) — T £ (5. 0)] o
vE B(u,(M+3)2—(n+1)

At this stage, it is simple to check that the conditions off@sition 2.12 are satis-
fied, so thatk can be defined as the limit &,, asn — oo.

Let us now establish (2.9). For evely € (0, 1], we let ny be the smallest
integer such tha2—"° < \. Then, we define; as the smallest integer such that

270 > G2, 2720 > (TM? 4 )27 | (2.16)

Then, we write

Rf - Ht,xf(t7 .%') = (Rnlf - Pnlnt,xf(t7 .%')) (2-17)
+ > Ruif = Raf = (Pas1 — Pl f(t,2)

whereP,, is the orthogonal projection onfig,. We bound the terms on the right
hand side separately. To that end, we introduce the set

AP = {(s,y) € Ap s [t — 8| S N+ TMP27% |2 —y| < A+ 5M27")

We claim that
X | e 219
(8,y)EA£L’I’>\ Lzo,l
—Ca—n(c—15l
< ||HHB§\L¢@0 1+ HFHBQ,t,zo)HfHB;L,t,zO Z AlslHr—=Co—n(C—73) ’
CEA

holds uniformly over all{, z) € R4, all A € (0,1] and alln > n,. We postpone
the proof of (2.18), and proceed to bounding the terms apmear (2.17). The
first term on the right hand side of (2.17) yields the follogvitontribution:

(R f = P Wea f (6, 2),m) = Y (AR = (oo f(E,2), @5 (@5 1) -
(Say)eAnl
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We have| (L, )| < 9-m1'3 \~lsl uniformly over all the parameters, and the

inner product vanishes as soon a3/ ¢ At »A Therefore, using (2.18) we obtain
that

sup
neBr

<Rn1 f - Pnlﬂt,mf(ta CC), 772?:z>

v

zQ,

S, T, O Fllgy, AT

as required. We turn to the second term on the right hand $ig&1y). As before,
we write

RnJrlf - Rnf = 5nf + gn
with 6, f € V.- andg, € V,,. We then have

(Onf = (Pt = Pu)Tleaf (), 77
= Y > (A - [ fa) e ) () W) -

(s;y)€An+1 (ru)ehn

Observe thak{? /. ¥r,)| < Tand| (4, n,) <27 w0+ A\~ +sD, uniformly
over all the parameters. For every giveny), the first inner product vanishes
except for those finitely many space-time coordinates)( € A,, such thatr —

s| < 5M?2720tD and |u — y| < 3M2-(*+D. Furthermore, the second inner
product vanishes whenever — ¢t| > A2 + M?272" or |[u — x| > X + M27",
Therefore, we have

(G f = (Prst = Pu)lia f(t,2), 1%
S Y |- W fa), erp e e e,
(s)eAsT
uniformly over all the parameters. Using (2.18), it is thasyeto get

sup
neBr

<5nf - (Pn+1 - Pn)Ht,xf(t7 .%'), 77t):x>

Lioa
—(n+1
2 (: ))rJrcu)\’y ’

as required. Finally, we treat the contributionggf= z(w)eAn OAY P35y

<
S g (@40 s Ml (

Sup |<gna77t J:>|
neBr

s
S H > 647 J2~n 5 A~
7 p
(s,y)EAn:|s—t|<A24M22-2n .,
ly—z| < M2

P
L,I

0

For all s in the sum above and for @l € 24! such that, # 0, s“”rl belongs to
[t — A2 — (5M2 4+ C)2-20HD) ¢ 4 X2 4 (5M2 — C)2-2+1], which is a subset
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of [t — 202, ¢t + A2 — 2~ (»+D] thanks to (2.16) and the definition 6f. By (2.15),
a simple calculation using Jensen’s inequality yields

sup

(Gns 1)
neBr

H S sy, , Iflsgy,, 27",
LP

Atz Atz
zqg,1

so that the asserted bound follows.
We are now left with the proof of (2.18). We splity , — (I1; . f (¢, z), ¥ )
into the sum of

In(t, xz,s, y) = / 2nd<HS¢",u(f(S¢na u) - FZfo(Sin’ $)), @?,y>du !
u€B(y,2™")
and .
In(t, @, 8,y) = <Hsi",yrgs/,x (f(sinv T) — P?ln,tf(t7 .%')), ‘~PZy> :
We start with| I, (¢, z, s, v)|, which can be bounded by

d—¢— sl in
S 2 P67 )~ T 6 )
CeA ’

For all (s,y) € AL®*, we havely — z| < A\ + 5M2~" so that using (2.16), we
can bound the integral over all € B(y,2™") by the same integral over all €

B(x,2)). This yields
H . |In<t,:c,s,y)|H DY 3 / grld—C=15)
t,z,\ Lz 1 2_2"2 CE.A UEB({L’,2)\)
(s;y)EAR 0 |s_t\§s§2+7M22*2"

in
X ||H‘|s¢”,u|f(8¢nau) - FZ f(sin,x”(du

, T

.

zQ,

S (1] By

Atz

1f1 By

Atz

3 Aslr=¢o=n(c—15)
(eA

as required. Notice that we have used the fact that the sumsoaethe second
line contains at most\2™)? elements, and that for all these we haves” ¢
[t —2)\2,t + X — 272"] thanks to (2.16) and the definition 6f.

To bound|J,,(t, z, s, )|, we distinguish two cases. #" > t, then it can be
bounded by

B _ 1s|
5 Z HHHsW,yHFsty,sinm|x_y|< B|f(5¢n,x)_Fi”,tf(t’x)|f2 e
¢,B€A
{>B
[f(s™ ) = T2, fo)
5CZB”HHSL”vyHPHSL”W% M_SC : \1—Bg—n(B+Eh)
>
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On the other hand, ¥ < ¢, then we write
Jn(t, x,8,y) = _<Hsl",yrsl"y,t:v(f(t, T) — Fzsinf(sina SC)), 90?7y> J

and, for all 6, y) € A5™, we bound J, (¢, z, s, )| by

- - Isl
S D0 I Tl sy oA F G 2) = T (577, )| 277042

¢,BeA
(=B
G S G [
D [ R o[ N \i-Bo-n(s+13)
=B

In both cases, we deduce that

| T sl
(s p)eAL L1
oLl
S HHHBQ,,&@OHPHBQWOHfHBQ,mOZ)“ﬁlﬂ Commle=2),

¢eA

This ends the proof.

The uniqueness of the reconstruction follows from the sanguenaent as intHail4b,
but for completeness, we recall it briefly. Assume thaand¢, are two candidates
for R f that both satisfy (2.8). Lep be a compactly supported, smooth function
onR%t! and lety € B” be even and integrating o We set

Ua(s) = () = / Bt (s, y)dt doe

Then, we have

(&1 —&2,90) = /1/1(15790)(51 — &,y )dt dz
We obtain

61 = &2.92)] < 9l SUB|| (61 — &2 |, S Il

Lr(dx)

so that(¢; — &2, ¥,) goes td) asA | 0. Sincey,, converges ta in theC> topology,
one hag§; — &2,v)) — (&1 — &2, v). Henceg; = & and the uniqueness follows.
To complete the proof of the theorem, it remains to consitlercase of two
models {I,I") and (I,T). The reconstruction theorem applies to bgttand f
separately, using the sequen@@sf andRR,, f associated to each of them. Then,
we observe thagb A}, — 6A{f$| satisfies the bound (2.15) wih{" (¢, s, u) replaced

by

FZ(t,5,u) = [l ul f(s,u) = Fls,u) = T f (1) + T f ()
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+ / 2|1l | £ (5, 0) = fs,0) = T3 0 fls, 1) + T35, s, 0)|cdv
B(u,(M+3)2~(n+1)

+ | = H[su f(s,u) — T2 FE, u)

4 / DM IT — Ty (5. 0) — T (5, 1)l
B(u,(M+3)2~(n+1)

Furthermore, in this context, (2.18) becomes

| - A - ) - Bt )]
(Svy)EAﬁiz’)\ Lzo,l
(2.19)

Is|
N D
(eA

wherngaCmA is given by (2.11). The proof of (2.19) follows from the sante a
guments as abovwmutatis mutandisThis being given, the proof of (2.10) follows
from exactly the same arguments as above. O

3 Weighted spaces

We would like to deal with white noise as the elementary iripubur regularity
structure, but unfortunately white noise does not live ip ahthe spaceg€*?. In
order to circumvent this problem, we choose to consider tedyversions of the
previously mentioned spaces. We first define the class ofiimcthat have good
enough properties to be used as weights.

Definition 3.1 A function w : R — R, is a weight if there exist§’ > 0 such
that for allz, y € R with |z —y| < 1
1 < w(x)

—= <C.
¢~ wly) —
All the weights considered in this article are built from telementary families:
Pa(x) := (1 + |z)*, ex) := e HlD

with a, ¢ € R. Itis easy to verify that these are indeed weights. We alseine
that the constant’ can be taken uniformly over all and/ in compact sets oR.
Given a weightw, we letC®(R!) be the set of distributiong on R*! such that

A
sup  sup sup M < o
AE(0,1] (t,2)€R4+1 neBr(RITY) U)(.%') A

Remark 3.2 Our setting may seem surprising since our weights are inespad
not in space-time; the reason for this choice is twofold.st-ithe solution map
for the SPDEs only needs to be defined on (arbitrary) bouncdiedvals of time,



24 WEIGHTED SPACES

so that it suffices to characterise the regularity of the evhitise on@, 7] x R%:
therefore, only the unboundedness of the space variabkemmaSecond, and this
is more serious, we aim at using the exponential weightsfer the solution, and
it happens that they amot space-time weights sineé(t1#)) /es(+1¥]) is not uni-
formly bounded from above and below, wheni) and (s, ) are only constrained
to be at distance at mostfrom one another.

We now characterise the regularity of white noise. ket: R — R be a
compactly supported smooth function, which is equal tn (—27', 27, and let
¢ be a white noise oR%*!. Letp : R™! — R be a compactly supported, even,
smooth function that integrates to one. We gét, z) = ¢ *lp(te 2, z¢71), and
we define the mollified noise = o, * &.

Lemma 3.3 Fix a > 0, setwy(z) := (1 + |z[)% = € RY, and leta < —|s]/2.
Then, for any arbitraryl’ > 0, £ - xp admits a modification that belongs almost
surely toCy,, » and there existé > 0 such that

Elléc-xr =& XTllawn S €
uniformly over alle € (0, 1].

Observe that, can be taken as small as desired. In the case of (PAM), the whit
noise is only in space and an immediate adaptation of thd phmovs that it admits
a modification inCy;_ for anya < —d/2.

Proof. From Proposition 2.6, it suffices to show that almost surely

supsup sup B oo, Ssup w
n>0yev (t,x)eA, WH(.%')2_n7 —na z€Ao WH(I')

< 00

We only treat the first bound, since the second is similar.apgp > 1, we write

( (€ - X1, ¥F)| >2p}

Is]
WH(x)2fn77na

E { supsup sup
n20yev (t,x)EAn

E<§ *XT, wn,x>2 P
Y Y (o)

n>0pev (t,x)eAn

where we have used the equivalence of moments of Gaussidomavariables.
Recall that the.? norm ofyf, is 1, that the cardinality of the restriction of;, to

the unit 6-scaled parabolic) ball d®®?*! is of order2/sI”, and that¥ is a finite set.
Recall also thaj is compactly supported. Thus we obtain that the last term is o
order

Z WH(I')_Qp Z olsln(p+1)+2amp

zezd n>0
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Takingp large enough, the sums overndz converge. This shows that y ad-
mits a modification that almost surely belong€§p, . We turn to||(§c — ) x7 || a,wy; -
The computation is very similar, the only difference restghe term

E((€ — €xrs ) = [Wfaxr — 0c * (Wfxr) |22 -

Whent ¢ (—2T — ¢,2T + ¢), this term vanishes. Otherwise, it can be bounded
by a term of orderl A (¢22%7) uniformly over alle € (0,1], all » > 0 and all
(t,x) € R¥!. We obtain

<|<(£ — & w;‘>|)2p}
a2 -

onls|+2partlslp) (1 A e2P92nP)
S22

zezdn>0

E [ supsup sup
n>09Yev xeA,

wir ()2

so that foraw < —|s|/2 andp large enough, the previous calculation yields the

L. gq-lslgy1y
boundE||& — &llapwy S (e loge|2r)ve 2 (+3) uniformly over alle € (0, 1].
U

Given a weight wi on R¢, we define weighted versions of the seminorm on the
model. For any subsé® ¢ R%*!, we set

|11}
[Tl == sup——"5, |Clp:= sup !
2€B wii(z) z,z'€B wi(z)
l[z=2"lls<1

T .-

wherez is the space component ofin the above expressions. We are now in a
position to introduce the natural model associated to thidifrad noise.

Lemma 3.4 Setwi(z) = (1 + |z|)® for a givena > 0. Then, for any seB of the
form[0, 7] x R? the seminorm§I1©)| 5 and |IT)|| 5 are almost surely finite.

Proof. Let B = [0,7] x R? for a givenT > 0. First, we observe that the re-
quired bound orﬂfﬂ holds for polynomials, and also f& by Lemma 3.3 since
(¢.,m.) coincides with(¢, - xr,7.) for all test functionsy € B"(R**!) and all

z € B. Then, the key observation is that all the elements in thelagity structure
are built from polynomials an& by multiplication and/or application af. Ad-
ditionally, for every||z — 2’|, < 1, the definitions oflI)Zr(z’) and 1)+ 7(2")
only involve the values ofI®)7(-) andII®)7(-) in a neighourhood of, so that, for
bounding these terms, the definition of a weight allows ordigegard the precise
location at which the evaluation is taken. Since the regylatructure has finitely
many elements, a simple recursion shows that the analytmatd onII) holds
with the weight w;(x)™ for somen > 1, instead of wi(z). Given the expression of
wrr(x), it suffices to decreaseaccordingly in order to get the required statement.
Regarding the analytical bound d)‘i‘zf)z the proof follows from very similar argu-
ments, using the proof oHail4h Pfop 8.27] and the bound dfipil4h Lemma
5.21]. O
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Notation 3.5 From now on, the seminorm on the model will always be takeh wit
the setB = [0, 7] x R? and the maximal” will always be clear from the context.
Therefore, we will omit the subscrigk on this seminorm for simplicity.

Let us now introduce weighted spaces of modelled distidimsti For similar
reasons as for the model, we add weights at infinity in theegg@¢?. Moreover,
to allow for an irregular initial condition, we also weighetbe spaces near time
0. For every¢ € A andt € R, we consider two collections of weights &f,
wil(, ) and W2(-, ¢). We set

i ; (@)
wi(z) = Clgﬁuel{qg}wt (z,Q), (3.1)

and make the following assumption.

Assumption 3.6 (Weights and reconstruction)All the Weightswf)(x, ¢) are in-
creasing functions of time. Furthermore, there exists 0 such that, for any time
T > 0, there existd{ > 0 such that

(2)
K1< sup W, (z,€) <K, (W-0)

- x,y€R%:|z—y|<1 Wy(fl)(yv C) B
24p/(2)
sup (WH('%')) Wy (1', C)

sup W,@) <K@t-s)2, (W-1)

uniformly over alls < t € (—o0,T], all i € {1,2} and all¢ € A.

From now on, we také? = LP(R%,dx) and, by convention, the integration
variable is always:, so that for examplé f (z, y)|| .» really means| f(-, y)|| z»-

Definition 3.7 Letn,y € Randp € [1,00). We defineZ; " as the set of maps
f:(0,7] x R — T, such that

‘ |£t)($)|¢ §tw
Wt (x> () Lpr

—TIt x _

/ )\70{ ’ft(y(g) y,xft( )‘C dy 5 t%

veB(,\) Wi (z, Q) AT =6 v

’f(t,l’) _Fit,)\Zf(t_)‘27x)’C n—y

wi(z, ¢) A=< L

|

uniformly over allX € (0,2], all t € (2)\2, 7], and all¢ € A. If f takes values in
TU), resp. T(F), we say thatf belongs toZ;.,* (U), resp. 77" (F). Finally,
we let|| f|| denote the corresponding norm.
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Similarly as we did in the previous subsection, we need tolide 0 compare
two modelled distributiong’ and f associated to two different model (") and
(I1, ). To that end, we defingf; f|| as the supremum of

‘ |f(t,2) — ft,2)lc

w0

Lr(dx)

N ' / f(t,y) — f(t,y_) — T [t x) + Ty o f(t, )¢ ay
yEB(z,\) t'a W,(f)(x, O M—¢ LP(d)
. H [f(t, ) = f(t,x) = T7, o f(t = X 2) + Ty e f(t = N2, 2)¢
7 wi(z, ¢) A =¢ Lo(ds)

overall\ € (0,2], all t € (2)\%,T] and all¢ € A.
Observe that the space) " is actually locally identical t@* so that, for

any test functiomﬁ,x supported away from the negative times, we can use Theo-
rem 2.11 and define a local reconstruction operégof, ?7?,1>- The next theorem

shows that there is a canonical distributiBrf that coincides withR f everywhere.
First, let us define a weighted version of the sp&e¢é.

Definition 3.8 Leta < 0, p € [1,00) andT > 0. We leté&,? be the space of
distributions f on (—oo, T) x R? such that

A
wp )

sup sup —
neBr(R+1) AW, z2(2)

A€(0,1] te(—o00,T—A2)

< o0, (3.2)

Lr(dx)
where the weights wwere defined in (3.1).

We start with the following extension result.

Proposition 3.9 Leta € (—2,0), p € [1,00] andT > 0. Let f be a distribution on
the set of all) € C"(R%*!) whose support does not interset the hyperplgne 0}.
Assume thaf satisfies the bound (3.2) with the second supremum restriotall
t € (—oo, T —A2)\[-3A2,3)2]. Then,f can be uniquely extended into an element
of &7

Proof. The proof is divided into three steps. First, we show uniggsenof the
extension. Then, we build the extension but with a non-ogltivmeight. Finally,
we show that the weight can actually be improved. From nowvem,let x :
R — R be a compactly supported, smooth function such that supp[5, oo)
and), ., x(22"s) = 1 for all s € (0,00). We also lety : R — R be a smooth
function such that supp C [-1,1]and})_, _, X(z — k) = 1 forall z € R.

Step 1: uniquenesslet For everyng > 1, we setv,(t) = >, <. (x(22"t) +
x(—2%"t)). Observe that this function vanishes ing-2-2"0, 5.272"0]. We claim
that for anyf € &, andng large enough, we have

(s ol — vig))| S 27 0@ () (3.3)
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uniformly over ally € B"(R**1) and all ¢, z) € R4+, Since2+a > 0, this claim
shows that the knowledge gfaway from the hyperplané = 0} is sufficient to
characterisef. The uniqueness of the statement is then immediate. We nowve pr
the claim. We use the following partition of unity:

d
> Pngsy() =1, Pngeyl?) = X7 (20 — o) [ [ X" (2 — ) -

(8,9)€AR, i=1

Since ( — vy,) is supported in some centred interval of length of orzleto,
we deduce that there exists > 0 such thaty; (1 — vy,,)1n,,s,y IS identically
zero as soon ag — z| > C and|s| > C272%, uniformly over allp € B", all
(t,z) € R™1 allng > 0 and 6,y) € A,,. Then, for anyy € B"(R¢!) and any
(t,z) € R™1, we have

<f, SDt,m(l — Vno)> = Z <f, SDt,m(l - Vno)¢no,s,y> : (34)

(S,y)EAnO

Recall that|s| = 2 + d. For all z € B(y,27"), the function2mll, (1 —
Uno)Wno,s,y CaN be written asg;"o, for somen € B", up to some facto€', where
|C| is uniformly bounded over alp € B", all ny > 0, all (s,y) € A,, and all
z € B(y,27™). Using Jensen’s inequality, we thus get

> (el = vng)ngsy)

(s,9)€An
S sup 9—n0(2+d+a) [(f, 2n0|5‘80t,x(1 — Vno)wno,&yﬂ
- . 2—noo
€2—2n0z7 .
|;\S02*2"0 y‘(;’_y;‘eé\cno
S Sup Z / 2_n0(2+04) ‘<f7 2n0‘5|@t’$(1 - I/no)wno,s,yﬂdz
~ 562*27102 y:(s,y)EAn ZEB(y,Z_"O) 9—noa
|s|<C272m0 \y—x\gco
210 1
—no(2+a) M ) .
<270 Awr(z)  sup > / I e K
<8062Fi2no yi(s,y)EAR, ¥ ZEB,270) neB TIT
= ly—z|<C
2—"10 1
’ p
< 270 HDw(z)  sup (/ sup Lz_nl dz)p ’
sCR 2€B(x,C") neBr | Wr(x)27m0

|s|<C272n0

uniformly over allp € B", allng > 0 and all ¢,z) € R, For allng such
that C + 1)272" < T, the term on the right hand side is bounded by (3.2), thus
concluding the proof of the claim.

Step 2: existence.et us now consider a distributiofias in the statement, and let
us construct its extension. We use the following partitibthe complement of the
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hyperplane{t = 0}

d
(@ 20)+x(-2720) Y X(2*(z0—5)) H (2"(zi—wi)) =1, (3.5)

nez (s,;y)€An

for all z € R¥! with 2y # 0. Then, for alln € Z and all s, y) € A,,, we set

d

Unsy(2) = (X(27"20) + x(=22"20)) X (2% (20 — 5)) [ [ X(2"(zi = 92)) . (3.6)

=1

We need to defingf, ;) for all thosen € B" and ¢,z) € R*"! such thatt €
[—3)2,3)A%]. The uniqueness part of the statement shows frstiould not have
any contribution on the hyperplafé = 0}. This suggests to set

Fnde) = D D> (i niatnsy) - (3.7)

2=n< A (s,9)EAR

Notice that we restricted the sum to thoseuch tha2=" < A, since otherwise
the producmﬁ,an,&y is identically zero. We only need to check that the right hand
side makes sense. First, we notice that for any givethe sum oves in (3.7) can

be restricted to the set

StA = {s €M7 set—A2—272 f 4 \2 422,
B(s,272) N supp(x(22") + x(~22)) £ 0} .

The cardinality of this set is uniformly boundedsn> 0. Then, for everynh > 0
such tha=" < A, we write

A
| 3 Y f,nt,mwn,s,w(\
WEBT t/\y€2 nzd Lg ,1
< sup | sup / | gl
sesSi> I neBr ye2- ”Zd u€B(y,27™) Lgo’l

ly— m|<)\+C2 n

whereC > 0 depends on the size of the supportygfand where we have artifi-
cially added the integral over at the second line. At this point, we use Jensen’s
inequality, the bound (3.2), and the fact that the functigm,, s, can be written

C'(A\2")” ‘5|gp§ . for some functionp € B" and some constari’, where|C’| is
bounded unlformly over all, x, s, y,u,n as above. This yields

(f, 0% >‘ dU);

< sup 2‘2”)\‘2</ sup

seSH* €B(xz0,3) peB”

S22, s ()
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uniformly over all\ € (0,1], all t < A%, all zp € R% and alln € Z such that
27" < A. To get the last bound, we used the fact that forsadt Sfﬁ, we have
s>3-272" ands < t + 2\2. Using the assumption > —2, we deduce that

2.

27N

sup
neBr

YOND DI R | IEPCTAERY
L
zg,1

sesh* yea—nzd

uniformly over all the parameters. Therefore, we have addrf into a genuine
distribution overRt!, with the right regularity index but with a slightly worse
weight than desired.

Step 3: optimal boundWe now show that the weight in the last bound can be
replaced by w, \2(xo) as required. To that end, we refine the mesh of our partition
of unity near the maximal time of the support of the test fiorct We fix ¢, z, A

and assume that< 3)\2. We then introduce:

D ox@ (N =z0) Y K7 (0—9)R2" (21—y1)) - X(2"(za—ya)) = 1,
nez (s,y)EAR (3 8)

forall z € (—oo, t+\?) x R?. Taking the product of (3.5) and (3.8), we deduce the
existence of a s C R and a collection of smooth functions,  ,, compactly
supported inB((s, y),2~"), indexed by §, y) € Sh* x (27"z9), such that:

1. For allzR**! such that:y € (—o0,0) U (0,1 + \2),

Z Z Z ¢n,s,y('z) =1.

2=\ SES;’A yez—nzd

2. The number of elements é‘fﬂ is bounded uniformly over alt € Z, and it
is included into the union of{oco, —4-272"Jand 4-272", t + A\ —4.272"],

3. For allk € N4 with || < r, we have|DF4, ¢ | < 27F uniformly over
alln € Zandall 6,y) € Si* x (277Z9).
This allows us to write

VItA,x(Z) = Z Z Z nt):x(z)wn,s,y(z)f (39)

27 < e ShA yea—nzd

for all z € R4 with zo # 0. In the sum ovey, the number of elements with a
non-zero contribution is of order at most2™)?. From Step 1, we know that the
following equality holds

Foma)= D D D Fhatnsy) - (3.10)
2-n< )\ SGS;{A yGQ‘"Zd

Then, we can apply the calculations made in Step 2, the offfigreince comes
from the setS5* whose elements are at distance at ldagt~2" from ¢ + A\2. This
ensures the required weight. O
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Theorem 3.10 (Reconstruction with weights)Let(7, G, A) be a regularity struc-
ture. Lety > 0, p € [1,00), a := min A, r > |o| and(II,T") be a model with the
weightw(z) = (1 + |z[)2, z € R?. In addition to Assumption 3.6 on the weights,
we require thatt/ = n A a — ¢ > —2 andvy — ¢ > 0. Then, there exists a unique
continuous linear maR : 7,7 — é"v‘j’}p such that(R f,n) = 0 wheneven is

supported i(—oo, 0) x R%, and

sup [(Rf — Iy f(t, 2), 1)
neBr

) < ONT U T Wy e(zo),  (3.11)
L

w(),l

uniformly over all\ € (0,1], all zop € R?, all t € [3\2, T — A?], all f € 78
and all admissible mode@L, T'). HereC := || II||(1 + | T|D|| f|l. Furthermore, we
have the bound

sup [(Rf,7;,)]
neBr

RO W), (3.12)
L

zg,1

uniformly over all\ € (0,1], all zo € R%, all t € (0,7 — X?] and all f € DaP.
If (IL,T) is a second model fof” and if R is its associated reconstruction
operator, then we set

C = I + ITIDIF; A+ 000 = T+ RTDIFN + I = T

and we have the bound

Squ ’(Rf - ﬁf - Ht,a:f(tv 1’) + ﬁt@f(tﬂ 1’), némﬂ
nes”

., (3.13)
S ON= "2 Wy z2 (o)

uniformly over allx € (0,1], all zp € R, all t € (3\2,T — A?), all f € D)2?,
all f € 2)°7F and all admissible model@L, I'), (I, I'). We also have

sup [(Rf — Rf, 1)l S O W, 2 (20) | (3.14)

neBr

p
on,l

uniformly over the same parameters.

Notice that in these statements we lose a fagtor compared to what one would
have expected: this is the price we pay for having added wsighour spaces
and requiring uniformity in space. However, we will see ie #equel that we can
choose the constantas small as we want.

Proof. We only need to show that there is a unique distribufiofy, on the set of
all test functions whose support does not intersect therpjaree {t = 0}, that
fulfills the requirements of the theorem for these test fimmst Then, Proposition
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3.9 yields the desired result.
First, we se{R f,n) := 0 for everyn € B" which is supported in the half-space
{t < 0}. Second, let € (0,1], 2 € R andt € [3A2,T — A\?]. By a simple
localisation argument, one can build an elemént D? such thatf coincides
with £ in[t—2)2, t+\2] x B(xz, 3) and vanishes outsidéf 3)\2, t+2\?] x B(z, 4).
Indeed, it suffices to lift into the polynomial regularitystture a smooth function
equal tol on [t — 2)\2,t + \?] x B(x,3), and vanishing outsidet [- 3)\?,t +
2X2] x B(xz,4), and to defing’ as the product of with this smooth function (this
may require to extend our original regularity structurehwttie polynomials, and
to define the canonical product between elements in theaggubtructure and
polynomials).

Using the reconstruction theorem PP, we set(Rf,n,) = (Rf,n\,).
We now show (3.11). Recall the definition 6* = BY, = from Theorem 2.11.
Notice that

n— i
T (1 WPl 5 witeo)* sup SUp Wy (20:0)
€1,

uniformly over all\ € (0,1], all o € RY, all ¢ € [3A2, T — A\?], all f € 0P
and alln > 0. Using (W-1), we deduce that the right hand side is actuailynioled
by a term of ordetﬂ%A‘WtW (z0)2™¢ uniformly over all the parameters. Therefore,
by (2.8), we deduce that (3.11) holds.

This determines the value ¢R f, ¢), for any test functionp whose support does
not intersect the hyperplarfeé = 0}. Indeed, any such function can be splitted into
afinite sum of functions of the fornn;ém, with ¢ > 32, on whichR f has already
been constructed. It is then simple to check Rdtis a well-defined distribution
on the set of test functions whose support does not intetfsetiyperplandt = 0}.
We can apply Proposition 3.9, and the statement of the thretokows.

The case of two models is handled similarly, using the bontioj from the re-
construction theorem "7, thus concluding the proof. d

4 Convolution with the heat kernel

The goal of this section is to define an operator that playsalesof the convolution
with the heat kernel, but at the level of modelled distribog. This will be carried
out separately for the singular pdtt and the smooth paft_ of the heat kernel, as
defined in Lemma 2.1. Although such an abstract operator efasad] in Section 5
of [Hail4H, the fact that we have incorporated weights in our spacess®s some
additional constraints on this map. The main difficulty ceméth the singular part
of the kernelP,, which is handled in Theorem 4.3. The smooth part is simpke,
is addressed in Proposition 4.5. We end this section witltréament of the initial
condition.
From now on, we take the following values for the parameters:
3 1 3

=———K, =—=+3K, =—+2K.
o 2f<c n 2+f<c 72—#&
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They fulfill the requirements that > —« andn — v > —2. Recall thatx is the
regularity of the noisey is the regularity of the initial condition anglis the upper
bound of the homogeneities involved in the regularity stree

We also consider, for al € R and all{ € A, two collections of weights
wl(-, ¢) and W?(,¢) on R%. Observe that it is meaningful to write{¥(:, 7) to
denote vgi)(-, |7|) foranyr € T.

Assumption 4.1 (Weights and convolution)Letc > 0 and~’ > 0. In addition to
Assumption 3.6, we impose that:

wi(z, ) < w(z, 2(r5)) , (W-2)

wi (@)W (2, 72) <wi(z, X*),  whenevetr| + a < [k| -2, (W-3)
wi (2w (z, 72) < wP(z, X*) (W-4)
wi(z, 72) = wi(z, 1), (W-5)

forall z € R% all s < t € (—o0, 7], all 7 € U, all k € N such thatk| < +/
and alli € {1,2}.

Takey = v+ a+ 2 — cwith ¢ € (0,%). Here is a possible choice of weights
satisfying Assumption 4.1.:

wii(z) = (1 + |2 =070,
Wi, Q) s= (L4 [ T3C D fOeh (4.)
Wi, €) o= (14 [a) 159 D (fCrleD)

where¢ € A/ (/) and/ is a constant which will allow us to consider an initial
condition in a weighted space.

Lemma 4.2 Suppose that € 7,7 (). Then, the mag = u - = belongs to the
spaceZ, P (F).

Proof. By construction, we havé', ./(7=) = (I', .»7)= for all 7 € ¢ and all
2,2 € RML sothat f(2)—T.. f()|¢ = [u(z) =T, u(z')|c—q for all ¢ € A(F).
Using (W-5), it is then immediate to check the statement. O

4.1 Singular part of the heat kernel

Letu be an element o := 2317 (U), and setf = u - = € 27547 *P. For any
giveny’ > 0, we define the abstract convolution map as follows:

(PY f)(t,x) = I(f(t,)) (4.2)
k
£ a0 w), D () — )

CEA(F) [k[<(C+2ny
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k
+ Z %sz - Ht,mf(t,x),DkPJr((t,x) ).

|| <~

The well-definiteness of this operator is a consequenceecofidttt result, which is
the second main technical step of the present work.

Theorem 4.3 Takec € (0,5) andsety’ = v +2+a—c¢, 7 =n+2+a -
c. We assume thaf',n’ ¢ N. Letu € 2 = 2)P(U) and setf = u-E €
P77 P(F). Then, under Assumption 4.1 on the weights, we tRivg <
9' = 27.7(U) and the bound

IP+Fllz < NI+ ATl 2 -

holds uniformly over alll" in a compact set dR,, all / in a compact set dRr, all
u € @ and all admissible model§I, T"). In addition, we have the identity

RP.f=DP, «Rf. (4.3)

Moreover, if(IT,T) is another model with the same weight; and if u belongs
to the corresponding spac# equipped with the same weight$), w?), then we
have the bound

1P+ f5 P fllor g S ITNQA + DTl @l o
+ (JI =TI+ [T + (T = Tl 2

uniformly over allT in a compact set oR,, all £ in a compact set oR, all
ILII, T, T and allu, @.

Before we proceed to the proof of the theorem, we collect aéelnical facts. Let
us denote by5” the subset o8” whose elements are supported in the half-space
{t < 0}. Using Theorem 3.10, we immediately get

(Rf.m)

< \rrese 4.4
Wy () ~ (4-4)

sup
neBr.

Lr

uniformly over allt € (0,77], all A € (0,1] and all f € 27177 as well as

<Rf - Ht—)\2,arf(t - )‘27 1’), néar
w ()

sup < Avteety (4.5)

neBL

Lp

uniformly over allt € [4)\2,T], all A € (0,1] and all f € 2.5 *""*?_ These two
bounds will be applied repeatedly to the functiBf((¢,z) — -) € B” as well as its
rescalingsP,, n > 0.
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Forallz, 2/ € R™!, all k € N1 such thatk| < +/, and alln > 0, we define

k' k (z — Z/)Z k+0 /
Bl () = DFPu(z =) — Z =D P,z ).
22|k 41| < ’

Using the classical Taylor formula, one obtains the follogvidentities:

Prlf;gm,s:v(') = Z (t - S)g

£=(£o,0,...,0)
¥ <|k|+200 <y +2 (4.6)

/ 1(1 - u)'“'gﬁ,'Dk”Pn«s +u(t — s),2) — )du,
; .

and

kA
Pn;t’;/,ta:(') = Z (y - x)[
£=(0,£1,...,Lq)
v <Ik|+f < +1 4.7)

/1(1 - u)“_l%‘DkMPn((t, z+uly —x)) — )du,
0 !

for all (t,z),(s,y) € R In these equations and later on in the proof of the
theorem, we use the notatiop{z)’ and ¢—s)* for (z—2')¢ wherez = (0,y), 2’ =
(0, z) in the first case, and = (¢,0), 2/ = (s,0) in the second case. Notice that
in the two formulae (4.6) and (4.7), we do not consider spactiane translations
simultaneously. For space-time translations, the sands slightly more involved
due to the scaling so we rely on the following result.

Lemma 4.4 (Prop 11.1 Hail4b]) Letdy' be the set of indices
{0 eNTFL 0| > o 10— emp] <7}

wheree; is the unit vector oR?*! in the directioni € {0,...,d}, andm(¢) :=
inf{i : ¢ % 0}. For all z,2’ € R¥! and allk € N¢*! such thatk| < ~/, we have

P:;,Z,z/(') = Z /d+1 D]H_gpn(z, +h— ‘)Nk—i_é('z -7, dh) .
C:k+eeoy R

Here, u*t¢(z — 2/, dh) is a signed measure dR?*!, supported in the sefz ¢
P k+2e

R : 2 € [0,z — 2]} and whose total mass is given %

For the sake of readibility, we drop the supersctipin the operatorPr.

Proof of Theorem 4.3From now on, the symbaf will be taken uniformly over
all in a given compact set & and all7" in a given compact set & .. Also, the
implicit constant associated to this symbol always dongéis#ihe constant of (W-1)
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as well as all the constants associated with Definition 3rlHe corresponding
weights. We provide a complete proof of the statement coirngra single model.
To prove the part with two different models, the argumentskvadmost verbatim
given the following two identities:

HZQCCL - ﬁzQCa = HzQ((a - C_l) + (Hz - ﬂz)Qcc_L ,
(HZ/ QCFZ/V’«' — 1L QCFZ’,Z)C_L = IL QC(FZ’,Z - Fz’,z)a + (Hz’ - Hz’)QCFZ’,zC_L .

—

Letu € Z and setf = u - =. For simplicity, we assume thdt:|| = 1. The
proof is divided into four steps. We will use repeatedly Leainl without further
mention.

Foralln > 0 and all ¢, z) € (0,7] x R?, we define

k
P NEn = Y Yy [MaQf ), DAt a) )

CEA(F) Ik\<(c+2)/w’
+Z Rf My f(t, ), D" Po((t, ) —)) -
k| <y’ '

We will make sense of (4.2) by showing that the series of thedfioients on the
monomials of(Pn f)(¢, z) is absolutely convergent.

First step: punctual terms-or all non-integer value$ € A/ (i), we have:

IZf(t 2)l¢
(n C)/\O (1)(56 C)
where we have used Condition (W-2) and the fact ifat ¢ andn’ + ¢ — ¢ have
the same sign. Therefore, the desired bound follows.

We turn to the integer levelssuch thatk| < ~'. We distinguish two sub-cases.
First, ift < 42727, we writek! Q. (P, f)(t, z) as:

(<[|k|-2

’U,(t, .%')’4727(1
4(W7C+S+Q)AOW£1)(QU,C —2—a)llLr

<1

< ‘

t

Using @.4), we get

< g—n(n'~[kl)

~

H (Rf,D*P,((t,2) - ))
L

w(z, |k])

uniformly over all the corresponding andt¢. Sincer/ ¢ N, the sum over these
~lkhno

yields a bound of ordet” , as required. We now bound the second term
of (4.8). When( = |k| — 2, this term has a zero contribution sinég kills
polynomials of degree. On the other hand, we use (W-3) to get for@k |k| —

. < an(QJrC*“f‘)tin_H;_C ,
wi(z, [k|)

Lp
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uniformly over all the corresponding and¢. Summing over all the corresponding
n yields a bound of the required order.
We now treat the case > 4 - 272", We sett, = t — 272", and write

k1 Qk(Pn ), z) as:
— > (M Qc(f(t,2) = Tfy, f(tn, 7)), D Po((t, 2) — -))dr
¢<|k|-2 (4.9)
+ Z <th,$Q<f(tnvm)7 kan((tw%') - )>d7“ .
¢>k|—2

The first and second terms can be treated easily using (4d5Ve8) respectively.
We now deal with the third term. Using (W-1), we get for@alb k| — 2

H <th,xQCf(tnvw)v DkPn((tw%') - )>
wi(a, k)

uniformly over alln such that > 4-272", Sincec < /2, we have2+-( — |k|—c >
0, so that the sum over thesgyields the required bound.

< (15 9@+ lkl—0)

Lr

Second step: translation in spada/e now look at Prf)(t, y) — F§7m(Pl/f)(t, )
with |z —y| < 1. If ¢ € A.,(U)\N, then the only contribution comes framand
we have:

nyB(I,)\) Aid‘z’-(f(u y) - Pz,mf(tv 1’))’Cdy

n/77/

t 27 A=Wz, Q)
nyB(m,)\) Aid‘(u(u y) - Fg/,xu(tv 1’))‘<7Q72dy
t T a—Crar2w(z ¢ — o — 2)
where we have used (W-2) and the identjty-n = v — v = 2+ a — cwith ¢ > 0.

The required bound follows.

We turn to the integer levels with |k| < /. We first treat the cask® < t <
36 - 272", By Taylor's formula, we writés! Qy. (P, f)(t, y) — T (Pnf)t, x)) as:

Lp

~

< ‘

’
Lp

(Rf, PEY YV — (o f(t, ), PEY )

b
n;ty,tx n;ty,tx

— ) (M Qclf(t,y) — T L £(t, ), DP Po((t,y) — -)) - (4.10)

(<[k|-2
Using (4.7), we deduce that for any distributipywe have
g Pusfyea)l S sUp [{gmid™)lly = af 127200, (4.11)
neB’

uniformly over ally € B(x, \) and alln > 0, for some constant’ independent of
everything. Using (4.4), we thus get

_ k'
fyeB(l‘,)\) A dWQf? Pn;?y,txﬂdy

. < A 1= Ikg=ntr =) |
w?(z, |k|)

Lp
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uniformly over all\? < t < 36 - 272", Sincer/’ — ' < 0, the sum over all these

yields a bound of order” = A~ 1|, We turn to the second term of (4.10). Using
(W-4) and (4.11), we get for al] € A4 (F)

_ kv
fyGB(x,)\) A d| <Ht,m fo(t’ SE), Pn;;gg,tm> |dy
w (z, |k])

nta—=¢

< A 1=lklg=n+¢=[vD) 5

Lp

Since2 + ¢ < 4/, the sum over alh such that < 36 - 272" yields a bound of
the right order. Regarding the third term of (4.10), noticat tit actually vanishes
whenever = |k|—2 sinceP, kills polynomials of order. We use (W-3) to obtain
for every( < |k| — 2

‘ Sye@n ANy Qc(f(t,y) — Ty o f (¢, 2)), DX Po((t,y) — ) |dy

w(z, |k|) v
—d t
< fyeB(m,x\) A |f(§’ y) — Uy f(t 2)lcdy 9—n(2+¢—k)
w®(z, |k|) Ls

< 3 \vHa—CgmnHC—Ik])

uniformly over all the corresponding parameters. Summirgy the corresponding
n, one gets a bound of the right order.

We now turn to the cas®? < 4-272" < 36-272" < ¢, Recall tha " + )\ is
the size of the support of the test functions involved in13.We set,, =t —9 -
272" and we observe thag, > 3(27" + \)2. Then, we writek! Q. (P, f)(t,y) —
Tt (Puf)(t,2)) as:

(R =Wy o f(bns ), P o) — (o (f(E, ) — Ty, flts ), PR L)

(<[|k|-2

The first two terms can be easily bounded using (4.11), tegetlith (4.5) and
(W-4) respectively. The third term coincides with the thiedm of (4.10), and the
bound follows from the same arguments.

Inthe casd-272" < \? < ¢, we set,, = t—272" and writek! Oy (P, f)(t, y)—
T} o (Puf)t, 7)) as:

<Rf - th,yf(tna y), kan((ta y) - )>
(y —x)

— (Rf =My o f(bnya), D =DM Pu((t, ) =)
K| +[€] <~
— > My Qc(f(t,y) = TY,, f(tn, ), DPPul(t,y) — )

(<|k|-2

¢>k|—2
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— Y (W QT (f(t,2) = T, f(tn, ), DFPa((t,9) — )))

¢>1k|—2

Y.
+ <Ht,m(f(ta :U) - th,tnf(tn, $)), Z %Dkﬂrzpn((t’ $) - )> .

|k[+1e] <’

The bounds for the two first terms follow easily from (4.5).€Tthird term vanishes

when(¢ = |k| — 2 sinceP, kills polynomials of order-. On the other hand, for all
¢ < |k| — 2 we have

fyGB(:L“,)\) )‘_d|<Ht,y QC(f(t’ y) - thnf(tn, y))a DkPn((t’ y) - ))>|dy

wi (z, |k]) Ly
—d Y
< ‘ nyB(x,)\) A ‘f(t71y) - Pt,tnf(tnv y)‘gdy 27n(2+C7|k\)
wi(z, Q) L
< H ‘f(t7 .%') _ff,tnf(tnv m)‘( 27”(2+C*‘k|)
wi(z, ) L

< thzon kD

where we have used (W-4) at the second line and Jensen’sallitgcat the third
line. Summing over alh such thatt - 272" < )2, one gets a bound of the right
order. Regarding the fourth term of (4.13), we have foralla > 5 > ¢ > |k|—2

Syenny ANy QT Qs(f(tn,y) — Ty f(tn, ), DPP((t,y) — )y
w (k)
fyeB(a:,A) Aid’f(tnv y) — PZ’fwf(tn, w)‘ﬂdy
wP(z, B)
S Q*n@*‘kHﬁ*C)tﬂ%l)\“/Jrafﬁ ’

Lp

<

~

o—n(2—|k|+5—0)
Lp

where we have used (W-1) being small, we have + 3 — |k| — ¢ > 0 so that the

sum over all the correspondingyields a bound of ordek” —I*I¢*3" as desired.

The fifth term of (4.13) is treated similarly, using (W-4). &bound of the sixth
term follows easily from (W-4) as well.

Third step: translation in timeWe need to controlR, f)(t,z) — I'f (P4 f)(s, )

forallt > s > 0 such that{ — s) < s. We start with the non-integer levels
¢ € A, (), for which we have:

(t—s) = s 7wz, 0)

< H |U(t, :U) - th,su(s’ x)|<727a
y=¢+2+a n—vy
Lp

(t—s) 2 s 2 ng)(:v,C—Q—oz)

’
Lp

where we have used (W-2) and the identity-v = ' —n = 2+ a — cwith ¢ > 0.
This ensures the required bound.
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We now turn to the terms at integer levéisvith |k| < +/. Actually we need
to distinguish three sub-cases. First, we assume that < s < 36 - 272" and we

write Qr (P f)(t, ) — I'f (P f)(s, 2)) as:

<Rf’ n; t:r s:v> - <HS,:Ef(Sa SC) Prlfzgym s:v>
— Y (. Qc(f(t, ) — TF, f(s.2)), DX Pu((t,) — ) . (414)
C<|k|-2
By (4.6), we deduce that there exists> ' + ¢, such that for any distribution
we have
kv

|<g’ Pn;’tm,s:c>| ~ SUp |<g ntm i
neB

VISt — s 2 2720 (4.15)

uniformly over alls, t,n, A as above. This being given, the bounds of the two first
terms of (4.14) follow easily from (4.4) and (W-1). Regaglitme third term, we
notice that the value$ such that{ = |k| — 2 have a zero contribution, sinde,

kills polynomials of degree. On the other hand, for all < |k| — 2, we use (W-3)

to get

H <Ht,$QC(f(t7 1’) - th,sf(s7 .’L')), kan((t7 .%') - )>
w{(z, [K])
< S"—g”(t _ 8)”+§7<2—n(2+€“—|k\) )

Lp

o k|
2 as

The sum over the correspondingyields a bound of ordes 'z
required.

Second, we treat the case s < 4-272" < 36-272" < s. Sets,, = t—9-272",
notice thats,, > 3(27" + v/t — ). We writek! Q (P f)(t, ©) — I'f ((Pn f)(s, )
as:

(R = ey o f (50, 2), Phgh o) — s a(f(5,2) = T2 f(50,2)), Pl o)
B Z (M2 Qe (f(t, 2) — TF f(s,2)), D" Py ((t, x) — ) - (4.16)

(<|k|-2

The bound of the first term is a direct consequence of (4.5)(4ridb), while the
third term coincides with the third term of (4.14) and thecoddtion made above
applies. Regarding the second term, by (W-1) and (4.15) we fox all € A(F)

H <Hs,mQC(f(37w) - ss"f(snvw)) Prlft’g: sx>
wi(z, [K|)
‘ C2711(2Jrﬁ/+c|zf§) )

Lp

Since2 + v + o — ¢ < 0, the sum over the correspondingf the last expression
2 as required.
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Finally, we consider the case- 272" < t — s < 5. We sets,, = s — 2727,
tn =t — 272", and we writek! Q. (P f)(t, z) — T¥ (P f)(s, z)) as:

R
(RS M), Y D (5,0 - )

|k[+16] <"

¢< k-2 4.17)

+ 3 (W2 QT (f(tn, ) = TF, f(5,2)), D*Po((t,) — )
¢>k|—2

)
() T2 fsmn), S o pretp oy - )

|kl+lel <y’

The required bound for the first two terms follows easily fr@h®), while the third
term can be bounded using (W-3). Let us treat the fourth téfar.all 3 > ¢ >
|k| — 2, using (W-1) we have
H (t0 QY4 Qa(f(tn, 2) — T, i f(s,2)), D*Po((t,2) - ))
wi(z, [k])
< S%(t _s— 272n)7+°2‘_’8 9—n(2+B8—|k|—c)

Lp

Sincec is small, we hav@ — ¢ + 8 — |k| > 0. Therefore, the sum over all such
'~ k|

that4 - 272" < (¢t — s) is bounded by a term of orderz (t— s)WT as required.
Finally, the fifth term of (4.17) can be bounded using (W-1).

Fourth step: equality with the convolutiohet us show thaRP, f = P, xR f. By
the uniqueness of the reconstruction theorem (Theoremn),3tIfffices to show
that

’<(P+ * Rf) - Ht,x(P-i-f)(t? .YJ), 77t):x>’
sup
neBr Wy x2()

0 —

<NttT ) (4.18)

Lp

uniformly over all\ € (0,1] and allt € [3A\%, T — A\?]. Using (2.5) and (4.2), itis
elementary to get:
<(P+ * 7?'f) - Ht,x(PJrf)(t’ $), nt):x> = / 77t>:x(5, y) Z Rn(ta Z,s, y)dS dy )
Y n>0

where
Rn(ty z,s, y) = <Rf - Ht,xf(t7 .YJ), Pn((s7 y) - )>

s — —x)"
- BV R (e, DR ) — )

/!
le]<y’
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By the scaling properties of', we have

P« Rf) =11 (P t,x), >\$
sup‘« + /) t (P ), 2),miy)| (4.19)
neBr W, y2(7) p
Sl N GER
n>0 (s.9)eB((t.a)\) Wi a2 (2) Ip

uniformly over all the parameters. Then, we distinguiskedhzases. First, \? <
t < 36272 we write

Ru(t,x,5,y) = (Rf, PYL ) — (W u f(t,2), PO )

n,sy,tx n,sy,tr

By Lemma 4.4, we deduce that for any distributipwe have

A2 (g, PO Y |ds dy (4.20)

n;sy,te

/(s,y)eB((t ),\)

< sup [(g,n7 ] Y Alflameei)
neBL Ledy’

uniformly over all the parameters. Therefore, argumentg sinilar to those pre-
sented below (4.10) ensure that

nt’ 99
T el
(s.9)eB((t,2),\) Wi a2 ()

so that the sum over the correspondingields a bound of ordex”'+" 2
if 3A2 <3.272" < 36-272" <t,wesett, =t+ A2 — (27" + 2)\)2. Notice that
tn > 3(27™ 4+ 2))2. Then, we write

< 30 Al

Lr Leory!

Ru(t,x,5,9) = (Rf — Iy, o f (tn, ), PYY, 1)
(e (f(t,2) = TF, f(tn,2), PYT )

and the arguments below (4.12) can easily be adapted tanadtadund of order

5" as above. Finally, whefi - 2727 < 3)2 < ¢, the desired bound fol-
lows from the arguments presented below (4.13). This campline proof of the
theorem. O

4.2 Smooth part of the heat kernel

We now deal with the smooth paift. of the heat kernel defined in Lemma 2.1. For
anyu € 9, we setf = u - 2 and we letP_R f denote the map

Xk
t)— >, SrRADMP() =),

EENItL k| </
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which takes values in the polynomial regularity structuigne following result
shows that this is an element &f. Here we consider the weights defined in (4.1),
but the only important feature of these weights is that treypat grow faster than

2
||

eT .

Proposition 4.5 Letu € 9 = 7 yU)and f = u-E. Then,P_Rf € 7' =
.@%:\;\7"1’ and we have

IP-Rfllz < 1T + [Tl 2 (4.21)

uniformly over all7" in a compact domain of0, c0), all £ in a compact domain
of R, all v € 2 and all admissible modeldI, I'). Moreover, if(I1, I') is another
admissible model with the same weight and if z belongs to the corresponding
spaceZ, then we have the bound

IP-RF:P-Rillyr oo S IOIC+ITDIws s (4.22)
+ (I =TI + 1) + LT — Tzl .
uniformly over allT, ¢ as above, all admissible modéH, I'), (1, T), and allu €
9,0€ 9.
Proof. Suppose that

<Rf7 DkP—((tw%') - )>
Wi(z)

sup sup
t€(0,T7 |k|<'+2

S A+ ATDlullz  (4.23)

Lr

uniformly over allT', ¢, (I1, ") andu as in the statement. We stress that this implies
(4.21). Indeed, for the punctual terms of the norm this is adrate. Regarding
the space translations, we have for every: Né+1 such that/k| < + and all
z,y € R%:

o)} (P,R flt.y) — T P_Rf(t, x)) = (Rf.P5Y 10) s

wherePf’,Z;,m is the function obtained from (4.7) upon replaciRg by P_. This

being given, a simple application of Jensen’s inequalignshthat

k, /
‘ / )\_d|<Rf’ Pf,zy,t:c>|d
y€B(z,)\)

wy(z)
S

<Rf’ DZP*((t,x) - )>
Ledy’

Lr

LR
Lp

Wy (z)

so that the desired bound holds. Concerning the time triémsjave have for every
k € N+t such thafk| < 7' and all0 < t — s < s:

o) <P_R ft,z) =TT, P_Rf(s, m)) = (R/, Pf’,Z;sﬁ )
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whereP" Zx <z IS the function obtained from (4.6) upon replacifg by P_. Simi-

larly as above a simple application of Jensen’s inequalityws that

‘ | Rf’ t:z: , ST |
Wt(w) p
D'P_ —.
< sup (Rf, ((u,z) =) s ’m k|
u€ls.t] jep Wy (z) I

and the desired bound follows.

We now prove (4.23). Lep : [—1,1] — R be a smooth function such that
forall z € R, Y,c; @(z — i) = 1. Then, we defines(t,z) = 3(t) [T, ¢(x:)
for every ¢,z) € R*™, so that we obtai}",, ;cza 0((t — i,z — j)) = 1. In
particular, we have

D*P_((t,2) =)= Y, D'P_((t,2) = )o((t—i,w—5)— ).
i€Z,jez?

SinceP_(t, z) is smooth and equals the heat kernel outside the parabutibail,
the following bound

RGO
e 8t

~ 4

HD"“P_((t,x) — ot —i,z —j) =)

cr

holds uniformly over alt € (0,77, all k£ € N**! such thatk| < 4" 4+ 2 and all
(i,7) € Z4!. The expression (4.1) of the weights yield tha{ay = e(+00+zD),
Using (3.12) and setting' = [|II[|(1 + |T[)[lu[l2, we get

H<Rf,D’fP_((t,m)—->>‘ SO S T e e =)

W (.%') Lpr Wy (1-)

Lp

i (1512 —ad)4
<C Z Ol =5
jezd
SO,

uniformly over allt € (0,77, all T in a compact domain d®_, all k € N%*! such
that|k| < 4/ + 2. This ends the proof of (4.21). To obtain (4.22), we proceed
similarly. Using (3.14), the same calculation as abovegjive

H (Rf —Rf,DFP_((t,z) —

) -
) | < ima + e o al

+ (I =TI + [T + TR — T el

uniformly over allt € (0,77, all T in a compact domain d®_, all k € N%*! such
that|k| < 4/ + 2. This ends the proof. O
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4.3 Initial condition

We take (4.1) as our choice of weights. Recall tha involved in the weight at
time 0. We defineCi;”(R?) as the space of distributionfson R? such that

[(f,02)]

sup —rTEL

sup
@EBT(Rd) )\UWO (.%')

A€(0,1]

< 00
Lr(dx)

When wy(z) = 1, this space coincides with the usual Besov srtag;g(Rd).
Givenug € CyP(RY), we definev = Puy as follows:

This is the lift into the polynomial regularity structure thie smooth mapt(z) —
(P(t,+) * uo)().

Lemma 4.6 Letug € CiiP(R?) thenv = Puy belongs taZ.

Proof. The contribution coming from the smooth part of the heat &eisthandled
similarly as in the proof of Proposition 4.5 so we do not pdevihe details. We
focus on the contribution due to the singular part of the keatel. By hypothesis,
we have

< 9—n(n—|k[) ’

Wo(x)
uniformly over allt > 0, alln > 0 and allk € N4+ such thatk| < v+ 2. Notice

that the definition of the kernelB, ensures that the left hand side actually vanishes
whenevert > 272", Therefore, summing over > 0 the latter bound yields

Lp

n—|k|
<t

H {ug, DV Py (t,x —)) ‘
Wo ()
uniformly over allt > 0. This yields the required bound for the punctual terms of

the norm, while the bounds on the time and space translafomstfollow from the
same arguments as in the proof of Proposition 4.5. O

Lp

5 Solution map and renormalisation

We are now in position to obtain a fixed point for the solutioapn

MT,U:@%.@

ur— (P +P)(u-Z)+v ®-1)

wherev is a given element i¥. In practice, we will take) = Pug with uy € Ci?
as in Lemma 4.6. Recall that the weighg depends on the parametee R. We
start with a simple lemma.
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Lemma5.1 Letu € 27" (U). Then,Ru is a function and we havRu(t, z) =

Qou(t, z) together withRu(t,-) € CF(RY). If in addition u only takes values in
the strictly positive levels of the polynomial regularityusture, thenu = 0.

Proof. Observe that uniformly over ak € (0,1], all ¢t € (2A\%2,T — A\?] and all
zo € R?, we have

H / A [u(s, y) — ult, 2)|o ds dy(
(s:)EB((.2).N)

p
Lwo,l

<  sup
SE(E—A2,t+)2)

/( . >\7d72|rz,x(u(5; ) — F;tu(t, x))|o ds dy

5Y S t,:v s

+
¢>0

< sup supwld |, (z, AP,
i=1,2 €A

[ Ao~ T s, o dy
y€B(z,))

P
Lwo,l

_|_

P
Lzo,l

‘ / ATy 0 Qcult, x)o ds dy‘
(s,9)€B((t,2),))

p
Lzo,l

where(y is the smallest non-zero element.4f/(). Then, we write

<Q0u() - Ht,wu(t7 .YJ), 77t):x> = QO (’LL(S, y) - U,(t, x))nax(sv y)dS dy
s,y
= (M, Qeult, ), m,)

¢>0

so that, taking theL’;Ovl—norm, one gets a bound of ord&f times some weight.
From the uniqueness of the reconstruction, we deduceRh#ét) = Qgu(:) on
(0,T) x R?. Itis then immediate to check th&u(t, -) belongs ta’y” (R?).

Recallthaty € (1, 2). We now assume tha(t, z) = ZkeNd-H:‘kI:l Qy(ult, z)) X*.
Lete;,i = 1...d be the unit vector in the space directiobrWe start with the fol-
lowing simple observation. There exists a constant 0 such that

d
Afd‘ Yi;
Lo 1%

uniformly over allXx € (0,1] and alla € R% This being given, we take =
Zle(Qeiu(t, z))e; and use the equivalence of norm&Rfito get

d
| > 10ut )|
1=1

dy > CMal,

d
SN[ TS - 2 Qe )]
Lioa yeB(z,)\) 121 e

SA1H/ B A)Ad\U(tvy)—FZ,mU(m)!ody‘
yeb(z,

< N (20,0)

p
Lzo,l

p
Lzo,l
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uniformly over all\ € (0,1], all t € (2A2, T — A?] and allzy € R?. Therefore, the
l.h.s. vanishes. This concludes the proof. O

Theorem 5.2 For any T > 0 and anyu, € Cy?, the equatioru = Mo, (u) ad-
mits a unique solution Y. Furthermore, the map — wu is Lipschitz continuous,
while the magv, I, I") — w is locally Lipschitz continuous.

Proof. We first introduce a shift map on the models and the modelligdilolitions.
For all s > 0, we letIT** andT'** be defined as follows

<His7', SD> = <HZ+(S,O)T, o(- + s, )> ) Ffzﬂ' = Fz+(8,0),z’+(8,0)7— .

We let QVtST'Y ""P be the space of modelled distributions associated withtitied
model (1%, I'+%) and the shifted weights W defined by setting

wr (2, ¢) = w (z,0) .

This amounts to shifting the parametdsy s, in the definition (4.1) of the weights.
Formally, one should also wri** andP+* for the convolution and reconstruction
operators associated with the shifted model, but we refram doing that for the
sake of readability.

Recall that the space® and 2’ differ by their parameters, v andr’, +'. Since
n —n =~ —~ > 0, we deduce that there exigis> 0 such thaf|- ||« < 72| - || »-
Until the end of the proof, we will be working in the spacgg:” as well as their
shifted counterparts and we will play with only two paranné,tmamelﬂ“ and/.
Recall that/ is the parameter involved in the weight at tihe We will use the
notationZr ¢ instead ofZ,) " for simplicity.

Using Theorem 4.3 and Proposition 4.5, we deduce the egistehC' > 0
such that

M) = Mrp@)ll gys = NP+ +P-)(u = DE) g < CTElu—all s
as well as
IMEu@l e, = 1P +PIWE) 0l s, < CTul s+l o (5:2)

uniformly over all s, 7" in a compact set oR, all ¢ in a compact set oR and
all u,u,v € 9%2. The constant” does however depend on the realisation of the
model through the quantities appearing in Lemma 3.4.

Fix a “target” final timeT > 0 and/{y, € R. TakingT* small enough, we
deduce thatM - ,, is a contraction or@%ﬁl uniformly over all¢ € [{y, £y + T1,

all s € [0,7] and allv € @%ij. Fix ug € Cif and letv = Puy € P+ 4. The
map M-, admits a unique fixed point* € Zp- 4. If T* > T we are done,
otherwise we take € (0, 7*) and we definé* = ¢y + s < bg+ T, us := Ru(s,-)
andv* := Pu,. By Lemma 5.1 and 4.6, we know that € Zp- ,~. The map
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M+, admits a unique fixed point™ € @%ﬁ - We then seu(t, ) = u*(t,-)
whent € (0,7*] and u(t,-) = w**(t — s,-) whent € (T*,T* + s]. It follows
in the same way as irHail4h Prop. 7.11] that: is indeed the unique solution
to the fixed point problemM -, (u) = w, and that this construction can be
iterated until one reaches the final tirile Note that the linearity of the problem
was exploited in an essential way here, since this is whaiagtees that the time
T of local well-posedness does not depend on the initial ¢immdi

Regarding the joint dependence on the model and the iniiadition, we ob-
tain similarly as above and thanks to the same results thatlf® > 0, there exists
T* > 0 such that

s @l gos gos < L =TI + T = T + llv; 0ll o s

uniformly over alls in a compact set dR ., and over all {I, '), (IT,I') andv, v €
.@ﬁ’go, such that the norms of all these elements are boundéti Byis yields the
local Lipschitz continuity of the solution map o6, (I"™*]. Iterating the argument as
above, we obtain the local Lipschitz continuity over anyitaaly interval Q, 7.
]

Letv = Pug with ug € CF. Itis easily seen from Theorems 3.10 and 4.3 that
the unique fixed point of\7, associated with the canonical mod&l(@, F©)
coincides, upon reconstruction, with the solution to théwesed SPDE (E) pre-
sented in the introduction. However, the sequence of caabmiodels (1), F())
does not converge when— 0, due to the ill-defined products involving the white
noise.

Theorem 5.3 For everye € (0, 1], there exists a renormalised mod8gl, £) such
that:

¢ the unique fixed point of1r, associated t¢l1¢, £<) coincides, upon recon-
struction, with the classical solution (ﬁ(),

e the sequenc@l¢, ) converges to an admissible moggl F), that is, there
existsC, § > 0 such that uniformly over € (0, 1] we have

i1 =TI + I — ) < Ce” .

Proof. This result is due to Hairer and PardoutH14 Th 4.5] in the case of
(SHE). The case of (PAM) is treated similanigutatis mutandis Let us briefly
explain why the solution to (5.1) yields the classical Soluto (EE) when applied
to the renormalised modell¢, 7).

We first note that, for any space-time pointthe renormalised model fulfils
the following identities:

MEE)2) = &), TEEIE)G) = —c, [ELEIEIE)N() =0,

NAIEAN o (5.3)
EIEIEIE)))(2) = -, TELEI(XE)(2) =0,
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wherec) = "D 4 19 see (1.1) for the values of these constants.

Furthermore, iterating (5.1) shows that any solutiéno M ,(U) = U will
necessarily be of the form

U(2) = u(z) IHIE)+IEIE)+IEIEIE))+ Y dhulz)(XF+I(X*E))
|k|=1

for some continuous functions andd,u. Recalling that, for fixed > 0, the re-
cgnstruction operator associated to the renormalised hwdwen by (RF)(z) =
(IIS F(2))(2), it then follows from (5.3) that

(REU)(2) = u(2)(é(2) — C%) -
Combining this with (4.3) then concludes the proof. O

We are now in position to conclude the proof of the main resithis article.

Proof of Theorem 1.1The local Lipschitz continuity of the solution map stated in
Theorem 5.2 together with the convergence of the renorathtisodels obtained in
the previous theorem ensure that the sequence of renoeaaligutions converge
to alimita € gx:z%, for any initial conditionuy € C¥. By Theorem 2.11, we de-

duce the convergence of the reconstructed soluiléir towardsR in the space
EIP.

’Finally, a simple computation shows that the Dirac mass iatesgiven point
zo belongs ta’y;’ as soon ap < #, whatever weight yone chooses. Sincg
needs to be greater thanl /2 for our result to hold, one can choose a Dirac mass
whenp = 1 for instance. This concludes the proof. O
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