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Abstract 

Glyoxalase 1 (Glo1) of the glyoxalase system catalyses the metabolism of the 

reactive dicarbonyl metabolite, methylglyoxal, and thereby prevents potentially 

damaging glycation of protein and DNA. Glo1 is hypothesised to be a potential 

factor in the development of vascular complication of diabetes, such as diabetic 

nephropathy. The induction of diabetes in mice deficient in Glo1 provides a pre-

clinical in vivo model to test this hypothesis. Glo1 mutant mice with putative Glo1 

deficiency produced by the International Mouse Knockout Consortium (IMKC) were 

acquired from the European Mutant Mouse Archive. The initial aim of this study was 

to study the exacerbation of diabetic nephropathy by Glo1 deficiency in 

streptozotocin-induced diabetic mice, with an initial objective to confirm Glo1 

deficiency in the IMKC Glo1 mutant mouse and subsequent objectives contingent on 

this. The preliminary studies were unable to confirm Glo1 deficiency in this mouse 

model and so a revised aim was to characterise the mechanism of compensatory 

Glo1 expression in the mutant mouse and explore similar occurrence in similar 

precursor mouse embryonic stem cells (ESCs) and related clinical application.    

Genotyping of Glo1 mutant mouse offspring by PCR revealed only 

heterozygotes and wild-type (WT) littermates, and no homozygotes without Glo1 

wild-type alleles. Studies of the Glo1 mutant mouse revealed levels of Glo1 activity, 

protein and mRNA identical to those of wild-type control siblings. Other 

components of the glyoxalase system were also analysed – activity of glyoxalase 2, 

concentrations of methylglyoxal (MG) and D-lactate, and tissue protein content and 

urinary excretion of MG-derived glycation adduct MG-H1 and found no significant 

change in Glo1 mutant mice, with respect to WT controls. This suggested a 

functionally normal Glo1 and glyoxalase system in Glo1 mutant mice. Therefore, 

Glo1 mutant mice have a mutated Glo1 gene but with compensatory Glo1 expression 

identical to that of WT control. This provided a possible explanation for the 

unexpected normal phenotype of Glo1 mutant mice reported in the IMKC project. 

To explore the mechanism of compensatory Glo1 expression, Glo1 copy 

number was quantified by Taqman® method, normalizing response to transferrin 

receptor protein-1 (Tfrc). Glo1 mutant mice had 3 copies of Glo1 in all tissues 

analysed with amplification extending from 3’-end of exon 1 to the 5’-end of exon 6. 

Taqman copy number assay was established to detect and quantify mutant 
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Glo1Gt(..)Lex and WT alleles. Most mutant mice contained two copies of Glo1 and one 

mutant copy of Glo1Gt(..)Lex – Glo1(+/+)Gt(..)1Lex. In some cases, however, 2 copies of 

both Glo1 and mutated Glo1Gt(..)Lex – Glo1(+/+)Gt(..)2Lex were found. Inheritance 

studies suggested a simple Mendelian inheritance with a WT allele accompanying 

the Glo1Gt(..)Lex mutant allele on arms of chromosome 17 such that Glo1 deficiency 

was prevented. This was indeed observed throughout the all breeding of the Glo1 

mutant mice. 

I hypothesised that Glo1 copy number increase may have arisen in the mutant 

mice during gene trapping by copy number alteration (CNA) induced by increased 

methylglyoxal concentration, or dicarbonyl stress, in mouse ESCs. To explore and 

model this, mouse ESCs were cultured with exogenous 200 μM MG under 

atmospheres containing 20% oxygen - typical of most cell culture conditions, and 

3% oxygen - typical of ESCs oxygen exposure in vivo. Incubation of ESCs for 12 

days with MG induced CNV increase of Glo1 by up to 16% in both 20% and 3% 

oxygen atmospheres. Increase in Glo1 CNV at day 12 with MG treatment was 

associated with an increase in Glo1 protein. Therefore, functional low level CNA of 

Glo1 was induced by exposure to high levels of exogenous MG. No evidence was 

found for Glo1 CNA with dicarbonyl stress induced by Glo1 silencing or cell 

permeable Glo1 inhibitor.   

Finally, I hypothesised that GLO1 CNA may occur in clinical dicarbonyl 

stress, a severe example of which is patients with renal failure receiving 

haemodialysis - associated with ca. 5-fold increase in plasma MG concentration. 

DNA of peripheral mononuclear cells from healthy subjects and patients with renal 

failure receiving hemodialysis renal replacement therapy were examined. Human 

GLO1 copy number was not significantly different between the patients and the 

control subjects. This requires further investigation in this case and other examples 

of clinical dicarbonyl stress.  

From these studies I conclude that the IMKC Glo1 mutant mouse does not 

exhibit the Glo1 deficiency; rather, it maintains wild-type levels of Glo1 expression 

through Glo1 copy increase likely induced during gene trapping. Dicarbonyl stress in 

mouse ESCs in vitro induced low level Glo1 copy number increase – a model of 

Glo1 CNA in putative gene trapping associated dicarbonyl stress. It is unclear if 

GLO1 CNA occurs clinically. These findings reveal that focussed copy number 
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alternation of GLO1 may provide a protective response to dicarbonyl stress in some 

circumstances. 

Abbreviation and Symbols 

µg microgram 

µl microlitre 

µM micromolar 

17-AAG 17-allylamino-17-demethoxy-geldanamycin 

3-DG 3-deoxyglucosone 

3DG-H Nδ-[5-hydro-5-(2,3,4-trihydroxybutyl)-4-imidazolon-2-yl]ornithine 

3-NT 3-nitrotyrosine 

AASA α-aminoadipic acid semialdehyde 

aCGH array comparative genomic hybridization  

ACTB β-Actin 

AD alzheimer’s disease 

AF attachment factor 

AGEs advanced glycation endproducts 

AICAR 5-aminoimidazole-4-carboxamide ribonucleotide 

AKRs aldoketo reductases  

Akt serine/threonine-specific protein kinase (also knonw as protein kinase B) 

AMDCC animal models of diabetic complications consortium  

AMP 5'-adenosine monophosphate 

AMY1 salivary amylase gene 

ANOVA analysis of variance 

AP-2α activating enhancer binding protein 2 alpha 

ApoB apolipoprotein B 

ApoE apolipoprotein E 

APP amyloid precursor protein 

AR aldose reductase 

ARE antioxidant response element 

ARI aldose reductase inhibitor 

ATP adenosine triphosphate 

BAC bacterial artificial chromosome  

Bar bialaphos resistance gene 

bp base pair 

BrBzGSHCp2  bromobenzylglutathione cyclopentyl diester 

BSA bovine serum albumin 

BTBD9 bric-a-brac (BTB) domain containing 9  

C. elegans Caenorhabditis elegans  

C4 complement component 4A 

C57BL/6 C57BL/6 strain of laboratory mice 
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C57BL/6J C57BL/6 strain of laboratory mice genetically homogenous with the 

C57BL/6 strain stock of Jackson Laboratories (Mainem USA)  

C57BL/6-UoW C57BL/6 control strain colony maintained at University of Warwick  

C6ORF102 chromosome 6 open reading frame 102 

C6ORF64 chromosome 6 open reading frame 64 

CALBINDIN-

D9K 
vitamin-D-dependent, calcium-binding protein 

CCL3L1 chemokine (C-C motif) ligand 3-like 1 

cDNA complementary deoxyribonucleic acid 

CEL Nε-(1-carboxyethyl)lysine 

CGH comparative genomic hybridization  

CKD chronic kidney disease  

CMA Nω-carboxymethyl-arginine 
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CMT1A charcot marie tooth disease type 1A 
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CREB cAMP response element-binding protein 
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CVD cardiovascular disease 

CYP2D6 cytochrome P450, 2D6 isoform 
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DGV database of genomic variants 
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DM diabetes mellitus 
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DN diabetic nephropathy  

DNA deoxyribonucleic acid 

DNAHC8 dynein, axonemal, heavy chain 8  

dRFU/dT 
the derivative of relative fluorescence divided by the derivative of 

temperature 

dsDNA double-stranded DNA  

DT dityrosine 

dup duplication  

E2F E2 transcription factor 

E2F4 E2 transcription factor 4 

EC50 median effective concentration  
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ECL enhanced chemiluminescence  

EDTA ethylenediaminetetra -acetic acid  

ESCs embryonic stem cells 

ESRD end stage renal disease  

F3K fructosamine-3-kinase 

FA formic acid  

FBS fetal bovine serum 

FGF fibroblast growth factor-4 

FISH  fluorescence in situ hybridisation  

Fkbp5 FK506-binding protein 5 
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Glo1 glyoxalase 1 

Glo2 glyoxalase 2 

GLP1R glucagon-like peptide 1 receptor  

GLUT-1 glucose transporter -1 
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GRE glucocorticoid responsive element  
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GSK3b glycogen synthase kinase 3-beta 
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H-2 histocompatibility 2 
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HER2 human epidermal growth factor receptor 
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HIV/AIDS human immunodeficiency virus/acquired immunodeficiency syndrome 
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HMM hidden markov model  

HPLC high performance liquid chromatography 
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HRE hypoxia response element 

HSP90 heat shock protein 90 

IMKC international mouse knockout consortium  
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iRNA interfering ribonucleic acid 

kb kilobase  

KCNK16 potassium channel, subfamily, member 16 

KCNK17 potassium channel, subfamily, member 17 

KCNK5  potassium channel, subfamily, member 5 
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KSR knockout serum replacement 

LC-MS/MS liquid chromatography-tandem mass spectrometry 
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LDLR low density lipoprotein receptor 
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LPA lipoprotein-a 

LRP1b low density lipoprotein receptor-related protein 1B 
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Mb megabases 

MDR multidrug resistance  

MeCN acetonitrile 
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MRM multiple reaction monitoring  

mRNA messenger ribonucleic acid 
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NANOG homeobox transcription factor Nanog 

NCI-H522 human non-small cell lung cancer cell line 

NEAA non-essential amino acids  
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NF-κB nuclear factor-kappa β 
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NRES national research ethics service  
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nt nucleotide  
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O2
- superoxide anion 

OCT3/4 octamer-binding transcription factor-3/4 

OMIM online mendelian inheritance in man 
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SNP single nucleotide polymorphism 

SOD1 copper-zinc superoxide dismutase  
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TERT telomerase reverse transcriptase 

TFRC transferrin receptor protein1  
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1. Introduction and background   

1.1. Copy number variation  

Development of techniques for complete and detailed sequencing of 

organism genomes has revealed genetic rearrangements in many different locations 

throughout the genome within a species. Genetic rearrangements may be inversions, 

duplications, insertions and deletions. They result in changes in the physical 

arrangement of genes and chromosomes. Cytogeneticists have observed variations in 

chromosome structure when studied by light microscopy. Change in chromosome 

structure involves: aneuploidy - abnormal chromosome number, translocations – 

movement of part of a chromosome to a new chromosomal location, deletions and 

insertions, fragile sites, and Y chromosome size variation (Feuk et al., 2006). One of 

the earliest structural variations reported was the duplication of the Bar gene in 

Drosophila, which was linked to a phenotype where the eye field of affected flies 

was narrowed, compared with wild-type flies (Bridges, 1936). 

A major contribution to genetic variations comes from deletions and 

replication of DNA sequences. These genetic arrangements are called copy number 

variations (CNVs). They are a key component of genomic diversity, and may be 

compared along with single nucleotide polymorphisms (SNPs) as major causes of 

genomic diversity. Indeed, CNVs account for approximately 10-fold greater total 

nucleotide content than total SNPs (Zarrei et al., 2015). CNV was defined as a DNA 

segment of one kilobase (kb) or larger which is present at variable copy number in 

comparison with a reference genome (Redon et al., 2006). The size of CNVs is now 

typically defined as larger than 50 bp to 3 Mb (MacDonald et al., 2014). Smaller 

elements are referred to as insertions or deletions. Copy-number polymorphism is a 

term applied to a CNV that occurs in more than 1% of the population  (Feuk et al., 

2006). CNV is a source of substantial diversity of gene expression and phenotype 

(Choy et al., 2010, Schrider and Hahn, 2010). Some CNVs have not shown any 

influence on phenotype, however, many others have been linked with a characteristic 

phenotype. Host interaction with additional environmental or genetic factors may 

influence detectable phenotypic effect of CNVs (Redon et al., 2006).  
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CNVs as a genetic diversity have been found in all human populations as 

well as in many other mammalian species (Freeman et al., 2006). This genetic 

diversity is a major driving force in evolution, especially in the rapid evolution that 

has occurred, and continues to occur, within the human (Bailey and Eichler, 2006). 

A complete catalogue of 55 CNV studies of the human genome was performed by 

the Database of Genomic Variants (DGV) which has collected and curated 

2,391,408 CNVs comprising 202,431 CNV regions in the human genome 

(MacDonald et al., 2014). Among 125 distinct human populations, 14,467 autosomal 

CNVs and 545 X-linked CNVs were identified (Sudmant et al., 2015). In this study, 

deletions exhibit stronger selective pressure and were better phylogenetic markers of 

population relationships than duplication polymorphisms. In addition, 1036 

population stratified copy number variable regions were identified, 295 of which 

intersect coding regions and 199 of which exhibit extreme signatures of 

differentiation. Furthermore, there were 571 loci that segregate in the human 

population and another 2026 loci of fixed 2 copies in all human genomes (Sudmant 

et al., 2015). Analysis of CNV regions showed that they were unevenly distributed in 

the genome and among chromosomes. The susceptibility of any chromosome region 

to CNV varied from 1.1% to 16.4% for gains and from 4.3% to 19.2% for losses. For 

gains, chromosome 22 and the Y chromosome showed the highest proportion of 

variability, followed by chromosomes 16, 9 and 15. Chromosomes 3 and 18 showed 

the lowest proportion of variability. For losses, the highest proportion of variable 

sequence was in chromosomes 19 and 22 and the Y chromosome. The lowest 

proportion was found in chromosomes 5, 8 and chromosome 18. CNVs were 

unevenly distributed within the chromosomes. The pericentromeric and subtelomeric 

regions had a high proportion of CNVs (Zarrei et al., 2015). 

In the laboratory mouse genome, the copy number content was analysed to 

10 kb resolution. Over 1,300 CNV regions were identified and span 3.2% (85 Mb) of 

the genome. Most of the identified regions were less than 10 kb in length and 

presented in more than one mouse strain (Cahan et al., 2009). More recently, Pezer et 

al applied a read depth approach to genome resequencing data and bioinformatics 

analyses with experimental validation using droplet digital PCR to detect CNVs ≥1 

kb in wild-caught mice belonging to four different populations of Mus musculus 

domesticus. In total, 1863 transcription units appear to be completely encompassed 
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within CNVs in at least one individual when compared to the reference assembly. In 

addition, 179 of these CNVs show population-specific copy number differences, and 

325 are subject to complete deletion in multiple individuals (Pezer et al., 2015). 

Comparing this result with Cahan et al., the difference between both studies appears 

to be due to the depth of the analyses as Cahan et al. used 10 kb resolution whereas 

Pezer et al. used 1 kb resolution.    

CNVs typically lie outside of coding sequences and ultra-conserved 

regulatory elements. These elements are sequences of at least 200 bp that are 

conserved across mammalian species - including human, mice, and rat populations 

(Bejerano et al., 2004). The greatest enrichment areas for CNVs of the functional 

categories were those genes involved in cell adhesion, responses to chemical stimuli 

and the sensory perception of smell (Bejerano et al., 2004, Nguyen et al., 2006). The 

exons of all genes were more variable than the genome average, with exons of non-

coding genes the highest proportion of CNV sequence. Exons of many constrained 

gene sets - particularly those associated with diseases or other health-altering 

phenotypes - were less variable than the genome average (Zarrei et al., 2015). In 

agreement with this, Li et al. (2011) found significantly higher number of structural 

variants in untranslated regions. Protein-coding exon regions had fewer variants than 

introns (Li et al., 2011). 

The biological impact of changes in gene copy number depends on whether 

such changes produce related change in gene expression. There may be 

compensatory mechanisms that ensure wild-type levels of expression irrespective of 

gene copy number. These mechanisms, collectively called dosage-compensation 

mechanisms, are known and exist for sex chromosomes which vary in copy number 

between sexes (Disteche, 2006). Gene copy number proportional expression of 

whole chromosomal or segmental aneuploidies has been observed in fission yeast, 

budding yeast, arabidopsis, trisomic mouse embryonic fibroblasts, partially trisomic 

mouse tissues, and human trisomies (Pavelka et al., 2010, Huettel et al., 2008, 

Kahlem et al., 2004, Upender et al., 2004, Stingele et al., 2012). Most CNVs, 

however, result in a corresponding change in gene expression. In humans and mice, 

85% – 95% of CNVs are associated with changes in expression of the affected genes 

(Stranger et al., 2007, Henrichsen et al., 2009). In these organisms, the change in 

protein production was due to related change in mRNA levels. In human cells, 

quantitative proteomic analyses showed that changes in gene copy number result in 
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changes in protein levels in the majority of CNVs (Stranger et al., 2007, Stingele et 

al., 2012). However, some proteins do not show concomitant increase in protein 

levels with gene copy number. This is often due to the protein being a component of 

large complexes of multiple proteins without similar change of CNV. Excess 

unassembled protein subunit may be susceptible to degradation and therefore protein 

concentration does not increase with increased CNV (Stingele et al., 2012). 

Additional copies of genes may also provide redundancy that allows some copies to 

evolve new or modified functions or expression patterns while other copies maintain 

the original function (Inoue and Lupski, 2002). The non-homologous recombination 

events that underlie changes in copy number also allow generation of new 

combinations of exons between different genes by insertion, deletion or translocation 

(Zhang et al., 2009) so that proteins might acquire new domains, and hence new or 

modified activities. 

CNV changes may have adverse effects on fitness. The degree of effect 

scales with the size of the alteration. Segmental and whole chromosome aneuploidies 

lead to severe developmental abnormalities or death of the organism in all species 

analysed  (Torres et al., 2008). These types of CNVs are rare and they are under 

strong negative selection (Itsara et al., 2010). Small DNA sequence deletions and 

insertions are widespread in the human genome, indicating their likely minor impact 

on fitness (Girirajan et al., 2011). Rare CNV change in regions that are generally 

copy number stable tend to have adverse effects on fitness (Zarrei et al., 2015) . 

Copy number stable genes are typically involved in cell proliferation and cell 

signalling, as well as those involved in regulation of protein phosphorylation. These 

findings reflect the functional sensitivity of the products of these genes to dosage 

effects, particularly during embryonic development, also the potential of these genes 

as tumour suppressor genes or oncogenes (Futreal et al., 2004). 

CNVs caused by genomic rearrangements can produce phenotypic changes  

by effects of gene dosage, gene interruption, gene fusion, positional effects, 

unmasking of recessive alleles or functional polymorphism, and potential 

transvection effects (Lupski and Stankiewicz, 2005). CNVs involving dosage-

sensitive genes can alter gene expression levels and cause consequent clinical 

phenotypes. For example, PMP22, encoding peripheral myelin protein, is located 

within the 1.4 Mb CMT1A region at 17p12. The duplication of this region can lead 

to Charcot Marie Tooth disease by PMP22 overexpression, whereas deletion can 
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result in Hereditary neuropathy with pressure palsies by PMP22 under-expression 

(Lupski and Chance, 2005). When the breakpoint of an insertion, deletion, or tandem 

duplication is located within a functional gene, it may interrupt the gene. This causes 

a loss of function by inactivating a gene. For example, interruption of red-green 

opsin genes function alters the genes encoding red and green visual pigments causing 

colour blindness (Nathans et al., 1986).  

Gene fusion is caused by genomic rearrangements between different genes or 

their regulatory sequences can generate a mutation or gain of function. This 

mechanism is prominent among cancers associated with somatic chromosomal 

translocations (Lifton et al., 1992). For example, genes encoding steroid 11β-

hydroxylase and aldosterone synthase on chromosome locus 8q are candidate genes 

for glucocorticoid remediable aldosteronism. These two genes have 95% identity and 

non-allelic homologous recombination causes gene fusion between them, 

segregating with glucocorticoid remediable aldosteronism in a large extended family 

(Lifton et al., 1992). 

CNV may cause regulatory sequence removal or alteration and thereby affect 

expression or regulation of a gene beyond the CNV region. This is called a position 

effect (Kleinjan and van Heyningen, 2005). For example, mutations in SOX9 lead to 

campomelic dysplasia, but it was reported that two balanced translocations, with 

breakpoints mapping to approximately 900 kb upstream and 1.3 Mb downstream of 

SOX9 can also cause the disease (Velagaleti et al., 2005). Alteration of one allele 

may unmask another recessive allele or functional polymorphism. For example, the 

activity of the plasma coagulation factor XII (Hageman factor) in patients with the 

common Sotos syndrome deletion is predominantly determined by the functional 

polymorphism of the remaining hemizygous coagulation factor XII allele (Kurotaki 

et al., 2005). Pairing of alleles on homologous chromosomes influences the gene 

expression by a mechanism called transvection. This effect is mediated via deletion 

of regulatory elements required for communication between alleles. For example, 

studies of mouse models of Smith-Magenis syndrome showed that the penetrance of 

craniofacial anomalies (a major clinical manifestation of Smith-Magenis syndrome) 

was modified by the 590 kb genomic sequence surrounding Rai1 in which potential 

transvection may exist (Yan et al., 2007).  
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Initially CNV was thought to be pathogenic and limited to rare genomic 

disorders (Lee and Scherer, 2010, Emanuel and Shaikh, 2001). However, CNVs 

present in all phenotypically normal individuals reported to date (Sebat et al., 2004, 

Iafrate et al., 2004, Armengol et al., 2009). It has been attributed to a number of 

susceptibility of common and complex diseases (Gonzalez et al., 2005, Aitman et al., 

2006), neuropsychiatric diseases (Rovelet-Lecrux et al., 2005, Cook Jr and Scherer, 

2008), and notably, cardiovascular diseases (Norton et al., 2011, Prakash et al., 

2010).  

Changes in the copy number of specific genes can have a marked impact on 

cellular and organismal fitness. For example, human studies suggest that 15% of 

neurodevelopmental disorders and other diseases are due to large, rare CNVs 

resulting in imbalance of few genes (Malhotra and Sebat, 2012). For example, 

duplication of SNCA gene is associated with Parkinson’s disease (Singleton et al., 

2003),  duplication of GSK3b gene is associated with bipolar disorder (Lachman et 

al., 2007), and low-copy amplification of the C4 gene is associated with systemic 

lupus erythematosus (Yang et al., 2007). Deletions and amplifications of individual 

genes are major drivers of tumorigenesis. For example, amplification of the 

oncogene Myc is thought to be a driving factor in human acute myeloid leukaemia 

(Jones et al., 2010). Copy number increase of APP gene is located in chromosome 21 

and has been found to be duplicated in familial forms of early onset Alzheimer’s 

disease. This is found in Down syndrome where this is trisomy of chromosome 21 

(Kingsbury et al., 2006). 

CNVs are likely to contribute to unexplained genetic variation in metabolic 

diseases. It is probable that both rare and common CNVs contribute to susceptibility 

to metabolic diseases. For example, CNVs in the low-density lipoprotein receptor 

LDLR gene underlie a substantial portion of disease in patients with heterozygous 

familial hypercholesterolaemia (Wang et al., 2005). In addition, a common CNV in 

LPA encoding apolipoprotein-a is the primary determinant of plasma lipoprotein-a 

concentrations - a risk factor for atherosclerosis (Shia et al., 2011). Interestingly, the 

severity of phenotype found in heterozygous familial hypercholesterolaemia patients 

was significantly associated with the type of mutation. The patients with nonsense 

mutations or CNVs in LDLR had higher untreated LDL cholesterol levels than 

patients with no detected abnormality or with missense mutations in LDLR or APOB. 

This example of phenotype-genotype correlation further underlines the potential for 
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large effects due to a CNV within a gene that encodes an important metabolic protein 

(Pollex and Hegele, 2007). More examples of CNVs associated with diseases are 

given in Table 1.1. 

Table 1.1: Examples of CNVs and genomic disorders. 
Phenotype OMIM Locus CNV References 

Spinocerebellar ataxia 

type 20 
608687 11q12 dup (Knight et al., 2008) 

Adult-onset 

leukodystrophy 
169500 LMNB1 dup (Padiath et al., 2006) 

food allergy susceptibility 607667 10q21 dup (Li et al., 2015) 

food allergy susceptibility 605104 16p13.3 dup (Li et al., 2015) 

Mental retardation 300534 Xp11.22 dup (Froyen et al., 2008) 

Mental retardation 300706 HUWE1 dup (Froyen et al., 2008) 

Pelizaeus-Merzbacher 

disease 
312080 PLP1 del/dup/tri 

(Combes et al., 2006, Lee et al., 

2006) 

Progressive neurological 

symptoms (MR+SZ) 
300260 MECP2 dup (del Gaudio et al., 2006) 

Alzheimer disease 104300 APP dup (Rovelet-Lecrux et al., 2006) 

Autism 611913 16p11.2 del/dup (Weiss et al., 2008) 

Type 2 diabetes  254268 1p13.3 dup (Dajani et al., 2015) 

non-alcoholic fatty liver 

disease 
64328 13q11 dup (Zain et al., 2015) 

Hemophilia A 306700 Xq28 /F8 inv/del (Antonarakis et al., 1995) 

Ichthyosis 308100 STS del (Shapiro et al., 1989) 

Crohn disease 266600 HBD-2 
copy number 

loss 
(Fellermann et al., 2006) 

Pancreatitis 167800 PRSS1 tri (Le Maréchal et al., 2006) 

Parkinson disease 168600 SNCA dup/tri (Fuchs et al., 2007) 

Psoriasis 177900 DEFB 
copy number 

gain 
(Hollox et al., 2008) 

Schizophrenia 612001 15q13.3 Del (Stone et al., 2008) 

Systemic lupus 

erythematosus 
152700 FCGR3B 

copy number 

loss 
(Aitman et al., 2006) 

Dup; duplication, del; deletion, tri; triplication, inv; inversion, OMIM; Online Mendelian 

Inheritance in Man at http://omim.org/     

 

Maintenance of some CNVs in a subset of the human population may be due 

to selective advantage, particularly those present at relatively high minor allele 

frequency. For example, unusual high copy numbers of CYP2D6 and CCL3L1 genes 

are associated with increased drug metabolism (Eichelbaum et al., 2006) and 

decreased susceptibility to HIV/AIDS (Gonzalez et al., 2005) respectively. However, 

their frequencies suggest that most CNVs have been subject to selection leading to 

their elimination and low prevalence  (Sebat et al., 2004). Another example is 

positive selection of increased CNV of human salivary amylase (AMY1) – encoding 

the enzyme responsible for starch hydrolysis. AMY1 copy number is correlated 

positively with salivary amylase protein levels. Mean AMY1 copy number was 

increased in populations with high-starch diets, compared to those with a low-starch 

http://omim.org/
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diet. This is likely due to higher AMY1 copy number and protein improving the 

digestion of starchy foods and acting as buffer against the fitness-reducing effects of 

intestinal disease (Perry et al., 2007). 

CNV changes are more complex in cancer. The contribution of gene-dosage 

changes of many genes is increased by the variability of a changing genetic make-up 

in many cancers. However, some specific aneuploidies could be targeted in therapy. 

For example, trisomy 8 is frequently observed in patients with acute myeloid 

leukaemia and associated with poor survival rate when present together with other 

genetic aberrations (Wolman et al., 2002). Drugs that target cells with amplified 

chromosome 8 may aid in the treatment of this disease. Genomic instability in 

cancers also leads to loss or polymorphism of many genes which could provide 

additional therapeutic targets (Nijhawan et al., 2012). Compounds that specifically 

inhibit the proliferation of cell lines with aneuploidy have been found and appear to 

exaggerate the general stress phenotypes associated with whole-chromosome copy 

number changes (Tang et al., 2011). For example,  AICAR, an agonist of the stress-

activated AMP kinase, and HSP90 inhibitor 17-AAG which display antitumor 

efficacy in HER2-positive breast cancer (Tang et al., 2011). Therefore, targeting the 

cell stress associated with aneuploidy could be developed as cancer drug targets.  

Recent efforts to map CNVs in healthy populations have defined their 

distribution, frequency and size. Many of the identified CNVs overlap genes with 

important functions in metabolic pathways. The overlap of CNVs that were found in 

control datasets with functional candidate genes or genes with previous evidence of 

association with metabolic syndrome presents an important subset for future CNV 

association studies (Tang and Amon, 2013).  

1.1.1. Mechanisms producing gene copy number changes 

Mechanisms of copy number change have been studied in model organisms, 

notably Drosophila melanogaster, Escherichia coli and Saccharomyces cerevisiae. 

These findings show similar characteristics as CNVs in human and primate genomes 

and improved the understanding of the processes that lead to chromosomal structural 

change. Insights were thereby also gained into a potential major driving force of 

human evolution (Hastings et al., 2009a). Although extrapolation from one organism 

to another is not always reliable, it has proved very successfully in the study of 

processes acting on DNA. Almost all DNA repair mechanisms acting in humans 
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were first described in model organisms, particularly bacteria (Friedberg et al., 

2005). 

Changes in copy number involve changes in the structure of the 

chromosomes. These occur by two general mechanisms: homologous and non-

homologous recombination. Homologous recombination requires extensive DNA 

sequence identity of approximately 50 bp in Escherichia coli (Lovett et al., 2002) 

and up to 300 bp in mammalian cells (Liskay et al., 1987). Most of homologous 

recombination mechanisms require a strand exchange protein - recA in prokaryotes 

and rad51 in eukaryotes. The reason for this dual requirement is that an early step in 

most homologous recombination pathways is the recA/rad51-catalysed invasion of 

homologous duplex sequence by the 3' end of single strand DNA (ssDNA); that is, 

the 3' end replaces the equivalent strand of the duplex. Non-homologous 

recombination mechanisms use only microhomology or no homology (Hastings et 

al., 2009b). Mutation rates of CNVs can vary widely at different loci in the genome, 

likely reflecting the differences in CNV formation mechanism and local or regional 

genome architecture inciting genomic instability (Hastings et al., 2009b). 

CNVs can arise both somatically and meiotically, as shown by the finding 

that repeated sequences in different organs and tissues from the same individual can 

vary in copy number (Piotrowski et al., 2008) and that identical twins can have 

different CNVs, respectively (Bruder et al., 2008). Most common distribution areas 

of CNVs are three categories of genes which are enriched for structural variants 

including: genes that are involved in immunity and cell-cell signalling, genes 

encoding proteins involved in interaction with the environment, such as immune 

response and perception of smell and retrovirus and transposition related protein 

coding genes (Bejerano et al., 2004, Nguyen et al., 2006). Dosage-sensitive genes are 

under-represented in regions affected by CNVs (Schuster-Böckler et al., 2010). 

Genes which are more evolutionarily conserved appear to have fewer CNVs (Li et 

al., 2011).   

Risk for new CNVs is increased by exposures to mutagens and by inherited 

genetic predisposition. There are at least two distinct pathways involved in the 

formation of most disease-associated CNVs: unequal meiotic recombination and 

replication errors (Arlt et al., 2012). Chemical agents that stress or disrupt replication 

induce a high frequency of CNVs in human cells. These agents include the 

polymerase inhibitor aphidicolin, the ribonucleotide reductase inhibitor, and 
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hydroxyurea which are commonly used in the treatment of sickle cell disease and 

other disorders. This provides experimental evidence supporting replication error 

models for the origin of CNVs (Arlt et al., 2012).  

1.1.2. Measurement of copy number variation 

The discovery of CNVs was a consequence to the introduction of new 

genomic technologies enabling high resolution analysis of genomic DNA. CNVs can 

be detected and analysed by different technologies, both at the genome-wide scale 

and the locus specific level. The main genome-wide scale screening methods 

includes array comparative genomic hybridization (aCGH), single nucleotide 

polymorphism (SNP) array, fluorescence in situ hybridisation (FISH) and next 

generation sequencing approaches. The main locus specific approaches include 

multiplex ligation-dependent probe amplification (MLPA), quantitative polymerase 

chain reaction (qPCR) and paralogue ratio test (PRT). 

 In this work, I focus on studying copy number variation of glyoxalase 1 

(Glo1) of the glyoxalase system - specifically for Glo1 in mice, mouse embryonic 

stem cells and human GLO1 in a clinical study of healthy human subjects and 

patients with renal failure. Characteristics of the Glyoxalase system will be discussed 

in detail in section 1.4. 

1.1.3. Copy number variation of Glyoxalase 1 (Glo1)  

1.1.3.1. Mice with increased Glo1 copy number 

In the mouse,  Glo1 is located in chromosome 17 at locus 17 a3.3, ca. 3 

centimorgans from the Ss locus of the H-2 histocompatibility region (Meo et al., 

1977).  Murine Glo1 CNV was firstly reported among inbred mouse strains 

(Williams et al., 2009). They analysed gene copy number in mice strain using a 

Hidden Markov Model (HMM) approach and Affymetrix exon arrays. This assigns 

probabilities to hybridisation probes for three states: duplicated, deleted or ground, 

relative to the C57BL/6 reference strain. The use of the HMM model and a large 

number of exon-specific probes provided high power to detect large copy number 

changes of known genes but small or intergenic copy number changes were less 

likely detected. A total of 68 gene duplications and 47 deletions were identified in 71 

inbred mouse strains. A 475 kb tandem duplication on chromosome 17 (30,174,390–
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30,651,226 Mb; mouse genome build 36) that included Glo1 and complete and 

partial copies of other genes. In this duplication, Glo1 and dynein, axonemal, heavy 

chain 8 (Dnahc8) were fully duplicated. Presence of the duplication is associated 

with increased Glo1 expression. Other genes were partially duplicated – Bric-a-brac 

(BTB) domain containing 9 (Btbd9) and glucagon-like peptide 1 receptor (Glp1r). A 

PCR-based strategy was developed and used to detect the gene duplication. The 

duplication was detected in 23 strains out of 71 inbred strains tested of various 

outbred and wild-type mice. Dnahc8 expression  is confined to the principal piece of 

the sperm tail and polymorphisms may be linked to male infertility (Samant et al., 

2005). Btbd9 is known to be involved in protein-protein interactions. Polymorphisms 

at this locus have been reported to be associated with susceptibility to Restless Legs 

Syndrome and may also be associated with Tourette’s Syndrome (Moore et al., 

2013). Increased Glp1r expression and signaling potentiates glucose-dependent 

insulin secretion from pancreatic islet β-cells, regulates gastric emptying and central 

nervous system linked regulation of glucose homeostasis (Koole et al., 2013). 

Deep sequencing of chromosome-17 in C57BL/6 and A/J mice, without and 

with gene duplication, confirmed complete duplication of Glo1 and Dnahc8 and 

partial duplication of Btbd9 (1 - 7 of 13 exons) and Glp1r (1 - 5 of 13 exons). In A/J 

mice, there were 36 other gene copy increases and 10 deletions on chromosome 17 

(Sudbery et al., 2009). 

Williams et al. found the 475 kb duplication including Glo1 was associated 

with an increased anxiety phenotype. This compared with a previous report (Hovatta 

et al., 2005) where Glo1 overexpression was linked to an anxiety phenotype. This 

phenotypic association was questionable as the reverse association, decreased Glo1 

expression with an anxiety phenotype, had been found in other in-bred strains of 

mice (Kroemer et al., 2005). This suggested the finding by Hovatta and co-workers 

may have been an artefact of in-breeding in the line of mice used. These conflicting 

observations made without either group attempting to explain the discordant findings 

was noted by Thornalley (Thornalley, 2006). This association of Glo1 duplication 

and increased expression was drawn into further doubt by the inadvertent cross-

breeding the 475 kb duplication into mice in Fkbp5 knockout studies without a 

demonstrable anxiety phenotype. Glo1 protein and mRNA were elevated in 

association with Glo1 duplication in Fkbp5 -/- mouse. Fkbp5 and Glo1 are 

approximately 2 Mb apart on chromosome 17. Fkbp5 deletion was constructed in 
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129SvJ embryonic stem cells, and the resulting mice were then crossed with 

C57BL/6 animals; 129SvJ mice carry the Glo1 gene duplication but C57BL/6 mice 

do not. The wild-type Fkbp5 allele originating from C57BL/6 mice is usually co-

inherited with a single copy of Glo1, whereas the knockout Fkbp5 allele originating 

from 129SvJ mice is co-inherited with two copies of Glo1 (Kollmannsberger et al., 

2013). The duplication in this model may be a response for the deletion in a nearby 

gene, which is due to “flanking allele problem”. This is a common phenomenon in 

gene knockout via homologous recombination, especially when crossing different 

background strains. It could be avoided, for example, by genome editing with 

engineered nucleases or by using inducible gene knockout techniques (Crusio et al., 

2009). Further recent evidence came from a genome-wide study of CNV associations 

with the anxiety phenotype in mice which did not link Glo1 CNV with anxiety 

(Brenndörfer et al., 2014). Other gene copy number change within the 475 kb 

duplication may have contributed to the anxiety phenotype. Interestingly, when 

transgenic mice were produced with bacterial artificial chromosomes (BAC) with 

overexpression of Glo1 by 2, 4 and 5-fold, only mice with 4-fold and 5-fold increase 

in Glo1 expression displayed decreased time in the centre of the open-field anxiety 

test; mice with 2-fold increase in Glo1 expression did not exhibit the anxiety 

phenotype (Distler et al., 2012). Currently the link of Glo1 duplication is uncertain 

following these conflicting findings. 

In attempts to substantiate  Glo1 duplication, increased Glo1 expression and  

related decreased methylglyoxal (MG) to dysfunctional brain metabolism and 

anxiety, MG concentration in brain tissue of mice has been estimated at ca. 170 – 

360 µM (Hambsch et al., 2010) and 5 µM MG (Distler et al., 2012). Both appear to 

be overestimates as assay of mouse content of MG by interference-free assay 

methodology gave estimates of 0.3 and 1.5 μM brain stem/midbrain and cortex 

(Kurz et al., 2011). Acid stable peroxidase in brain tissue led to MG formation from 

the derivatizing agent, 1,2-diameno benzene, used in the assay if not blocked by 

sodium azide (Thornalley and Rabbani, 2014). Lower estimates also were in 

agreement of a mathematical model of MG formation in the mouse brain (Rabbani 

and Thornalley, 2014c). MG was found to agonise the GABAA receptor in primary 

cerebellar granule neurons with a median effective concentration EC50 of 10.5 μM. 

MG agonism at the GABAA receptor was proposed as mediator of sedation to 

explain increased Glo1 CNV with an anxiety phenotype (Distler et al., 2012). MG 
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concentration in mouse brain tissue is ca. 7-fold lower than this (Kurz et al., 2011) 

and only approached the EC50 value with dosing of 300 mg/kg MG (Distler et al., 

2012) – similar to doses that have previously produced acute toxicity (Conroy, 

1979). The evidence linking Glo1 duplication, increased Glo1 protein and putative 

decreased sedation effect of brain MG cannot be sustained on current evidence. 

Further investigations are required.  

Shortly after the report of Glo1 duplication by Williams et al., Glo1 CNV 

was reported as part of genome-wide CNV analysis in all sites tested including 

hematopoietic stem cells and progenitors, hypothalamus and adipose tissue. 

Analysing the CNV content with density of 10 kb resolution, over 1,300 CNV 

regions were found spanning 3.2% (85 Mb) of the murine genome. Most CNVs were 

less than 10 kb in length and mapped outside of the transcribed regions of genes. Six 

hundred CNVs were associated with gene expression. Only 3 genes were found with 

increased expression of 2 – 4 fold in all sites. One of these was Glo1. The copied 

region was from 30,172,971 - 30,654,177 (ca. 0.5 Mb) (Cahan et al., 2009), a similar 

location and size to that reported tandem duplication by Williams et al. (Williams et 

al., 2009).  

BALB/cJ mice lacked Glo1 duplication whereas BALB/cByJ mice have Glo1 

duplication and express approximately 10- fold higher levels of Glo1 protein on a 

similar genetic background. These strains were used to study development of 

diabetic neuropathy where BALB/cByJ mice showed resistance to diabetic 

neuropathy development compared to BALB/cJ mice (Jack et al., 2012). 

1.1.3.2. Human subjects with increased glyoxalase 1 copy number 

 CNV of human GLO1 was first detected by Redon et al. in constructing a 

first-generation CNV map of the human genome by studying 270 subjects from four 

populations with ancestry in Europe, Africa or Asia. A total of 1,447 CNV regions 

were found covering 12% of the genome. GLO1 was the only gene found in a copied 

region of ca. 122 kb. There were 5 copy number increases, suggesting GLO1 CNV 

prevalence of ca. 2% (Redon et al., 2006). GLO1 CNV was confirmed in the human 

population (Wong et al., 2007) and also found in other primates (Perry et al., 2008). 

Increased GLO1 copy number has recently been found in human tumour cell 

lines and primary human tumours. The minimum common copy number increase 

region was ca. 1 Mb and it contained 8 genes: GLO1, DNAH8, GLP1R, C6ORF64, 
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KCNK5, KCNK17, KCNK16 and C6ORF102. The increased copy number was 

generally functional – associated with increased GLO1 protein and activity but weak 

correlation between copy number and expression suggested that not all copies have 

normal functionality. In a survey of 520 human tumours, increased GLO1 copy 

number had a prevalence of 8%. The highest prevalence was in breast cancer (19%), 

small cell lung cancer (16%) and non-small cell lung cancer (11%)  (Santarius et al., 

2010). Increased expression of GLO1 is associated with multidrug resistance (MDR) 

in cancer chemotherapy and thereby increased GLO1 copy number is a mechanism 

by which human tumours may be MDR from the earliest stages of tumour 

carcinogenesis (Sakamoto et al., 2000). It has been previously proposed that 

increased GLO1 expression is required in tumours with high flux Embden-Meyerhof 

glycolysis for protection from the toxic challenge of associated high flux of MG 

formation (Thornalley et al., 2010). Studies on GLO1 copy number variation are 

summarised in Table 1.2. 

Table 1.2: Copy number variation of human and mouse glyoxalase 1. 

Species 
CNV 

Locus Length (bp) Reference 

Human 

6p21.2512 

(38,696,947-38,819,063) 
122,116 (Redon et al., 2006) 

6p21.2 ca. 1Mb (Santarius et al., 2010) 

6p21.2 

(38,753,034 – 

38,908,635) 

155,116 (Wong et al., 2007) 

Mouse 

17 a3.3 

(30,174,390 - 

30,651,226) 

476,836 (Williams et al., 2009) 

17 a3.3 

(30,172,971 - 

30,654,177) 

481,206 (Cahan et al., 2009) 

1.1.4. Animal models with genetically increased Glo1   

1.1.4.1. Transgenic mice and rats 

Glo1 transgenic mice and rats were produced by Inagi and co-workers. 

Human GLO1 cDNA was cloned into the pBsCAG-2 vector to be overexpressed 

under control of the cytomegalovirus enhancer/chicken β-actin promoter. The vector 

was microinjected into one pronucleus of fertilised C57BL/6 eggs and transferred 

into the oviduct of pseudopregnant mice for development. Of 96 founders, 15 had 

Glo1 transgene detected and two were successfully bred to C57BL/6. Six mice were 
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used to create two independent Glo1 transgenic mouse lines. Both lines transmitted 

the transgene to their progeny and litter sizes, haematological, biochemical and 

tissue histological characteristics were normal. Human GLO1 protein was detected 

in all tissues and GLO1 activity was increased 2 – 50 fold but unexpectedly not 

increased in red blood cells (Inagi et al., 2002). Glo1 transgenic Wistar rats were 

prepared similarly (Kumagai et al., 2009). 

Distler et al. produced Glo1 overexpression mouse by using a bacterial 

artificial chromosome (BAC). This BAC contained Glo1 gene and its cis-regulatory 

elements as well as partial copies of two additional genes, Dnahc8 and Btbd9. The 

transcriptional start sites of these flanking genes were obtained using 

recombinogenic engineering (Copeland et al., 2001) by inserting ampicillin and 

kanamycin cassettes into the first exons of each gene, respectively. Therefore, this 

BAC should express Glo1 only. Using the BAC modification method, 3 lines of 

transgenic mice on a C57BL/6J background were generated. BAC copy number was 

measured in each line using (qPCR): transgenic lines had 2, 8, and 10 copies of the 

BAC. These mice were healthy, fertile, and did not display any grossly discernible 

behavioural or physical abnormalities. In order to confirm that the BAC dose-

dependently increased Glo1 mRNA and protein in the transgenic mice, Glo1 mRNA 

expression was measured using qPCR. The transgenic mice showed a copy number–

dependent increase in Glo1 mRNA in the brain and peripheral tissues. Also, there 

was a copy number–dependent increase in Glo1 protein in the brain, which was 

measured by immunoblot. In addition, the specificity of the process was confirmed 

by using gene-expression microarrays. The microarray result showed overexpression 

of Glo1 but there were no other changes in gene expression; particularly, there was 

no increased expression of Dnahc8 or Btbd9 (Distler et al., 2012).  

Glo1 transgenic mice and rats have been employed in studies of abnormal 

physiological state and disease mechanism where dysfunctional MG metabolism is 

suspected; for example, the development of vascular complications of diabetes, renal 

senescence, anxiety and obesity – Table 1.3. 
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Table 1.3: Studies with mice and rats overexpressing glyoxalase 1. 

Study Outcome Reference 

Diabetic 

nephropathy 

Glo1 overexpression 

prevented diabetic 

nephropathy 

(Giacco et al., 2014) 

(Brouwers et al., 2014) 

Diabetic retinopathy 
Glo1 overexpression 

prevented diabetic retinopathy 
(Berner et al., 2012) 

Diabetic neuropathy 
Glo1 overexpression 

prevented diabetic neuropathy 
(Bierhaus et al., 2012) 

Diabetic 

atherosclerosis in 

apolipoprotein E 

deficient 

background 

No effect of Glo1 

overexpression on 

atherosclerotic plaque 

development 

(Geoffrion et al., 2014) 

(Hanssen et al., 2014) 

Diabetic 

angiogenesis 

Overexpression of Glo1 

corrected the diabetes 

angiogenesis deficiency 

(Ceradini et al., 2008) 

(Vulesevic et al., 2014) 

Age-related 

endothelial 

dysfunction 

Overexpression of Glo1 

decreased  age-related 

endothelial dicarbonyl and 

oxidative stress, altered 

phosphorylation of endothelial 

nitric oxide synthase, and 

attenuated endothelial 

dysfunction. 

(Jo‐Watanabe et al., 2014) 

Renal senescence 
Glo1 overexpression delays 

renal senescence 
(Ikeda et al., 2011) 

Renal ischemia-

reperfusion injury 

Glo1 overexpression exerts 

renoprotective 

effects in renal ischemia-

reperfusion injury via a 

reduction in MG accumulation 

in tubular cells 

(Kumagai et al., 2009) 

Cardiovascular 

disease – post-

myocardial 

reperfusion injury 

Glo1 overexpression protects 

against post-myocardial 

reperfusion injury 

(Blackburn et al., 2013) 

Anxiety phenotype 

Four – five fold over-

expression of Glo1 was linked 

to increased anxiety 

(Distler et al., 2012) 

1.1.5. Animal models with genetically-controlled decreased glyoxalase 1   

1.1.5.1. Glyoxalase 1 deficient mice 

Brownlee and co-workers created mice deficient in Glo1 by viral transfection 

of C57BL/6 mice to express short hairpin Glo1 iRNA. Short oligonucleotides with a 

target sequence to mouse Glo1 from nucleotide 235 to 255 in a hairpin sequence 
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with restriction enzyme cohesive end sequences prepared and cloned into the 

pSilencer 1.0-U6 vector (Ambion). Fragments, including the mouse U6 promoter 

and inserts, were subcloned into FUGW lentiviral vector. Lentiviral particles were 

produced from the recombined plasmids. shRNA lentivirus was injected into the 

perivitelline space of single-cell C57BL/6 mouse embryos. After incubation of 4 – 6 

h, embryos were implanted into pseudopregnant females and were carried to term. 

Mice whose genome contained a single copy of the insert were identified by 

Southern blotting and used to establish founder lines. Glo1 mRNA and protein levels 

were determined by qPCR and Western blotting and further confirmed by 

measurement of Glo1 activity. Heterozygous offspring of founder were 14 and had a 

45 – 65% decrease in Glo1 activity of tissue. These mice were bred and used in 

subsequent experiments (El-Osta et al., 2008). Glo1 deficient mice have been 

employed in studies of abnormal physiological state and disease mechanism where 

dysfunctional MG metabolism is suspected e.g. inflammatory signalling of the aortic 

endothelium, proteasomal activity of kidney, diabetic nephropathy and diabetic 

atherosclerosis – Table 1.4. 

Table 1.4: Studies with glyoxalase 1 deficient mice. 

Study Outcome Reference 

Inflammatory signalling 

of the aortic 

endothelium 

Glo1 deficiency produced 

increased inflammatory 

signalling by the NF-kB 

system in normoglycaemia, 

similar to that of wild-type 

mice in transient 

hyperglycaemia 

(El-Osta et al., 2008) 

Proteasomal activity of 

kidney 

Non-diabetic Glo1 deficient  

mice and STZ diabetic 

Glo1 deficient mice had 

impaired proteasomal activity 

(Queisser et al., 2010) 

Diabetic nephropathy 

Increased urinary albumin 

excretion in non-diabetic state 

which was further exacerbated 

by STZ-diabetes 

(Giacco et al., 2014)  

Diabetic atherosclerosis 

in apolipoprotein E 

deficient background 

No effect of atherosclerotic 

plaque development 

(Geoffrion et al., 

2014) 
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1.1.5.2. Glyoxalase 1 deficient human subjects 

A patient with renal failure and very low GLO1 activity had a high 

occurrence of CVD events (Miyata et al., 2001). The cause of the GLO1 deficiency 

was unknown. 

Deep sequencing of GLO1 derived from peripheral blood or post-mortem 

brain tissue was performed in 1761 patients with schizophrenia and 1921 control 

subjects. A rare frameshift mutation in the GLO1 gene was found that produced a 

truncated peptide, non-functional expression product. Only heterozygous inheritance 

was found with GLO1 activity ca. 50% of normal healthy controls. Homozygous 

inheritance of the mutation is therefore considered embryonically lethal. There was a 

high frequency of severe schizophrenia in the heterozygous GLO1 mutant 

individuals. To date, only 3 individuals with this mutation have been identified (Arai 

et al., 2010). In these subjects, decreased GLO1 activity was associated with 

decreased glomerular filtration rate (Ikeda et al., 2011). 

1.1.5.3. Lexicon Glo1 mutant mouse 

Glo1 mutant mice were produced by the International Mouse Knockout 

Consortium (IMKC). The IMKC is a consortium founded in 2007 to mutate all 

protein-coding genes in the mouse using a combination of gene trapping and gene 

targeting in C57BL/6 mouse ESCs (International-Mouse-Knockout-Consortium, 

2007). Genes to be prioritised for targeted could be proposed to the Wellcome Trust 

UK in their “Access to mutant mouse resources” programme, 2007 – 2010, who then 

made the mutant mouse available free-of-charge to the successful proposal applicant. 

Professor Paul J Thornalley and Dr Naila Rabbani applied successfully to this 

scheme in 2007 and the IKMC accordingly produced and delivered the Glo1 mutant 

mouse. The IMKC mutant mouse targeted to Glo1 was produced by gene trapping, 

with retroviral insertion of vector VICTR48 between exons-1 and -2 of Glo1 gene in 

chromosome 17 of 129SvEvBrd strain derived mouse ESCs and bred in a C57BL/6J 

background. The vector insertion site was in GST_4497_D9 OmniBank®.   

Lexicon Pharmaceuticals, Inc., USA evaluated the expression of Glo1 in 

several tissue and they claimed that mRNA of Glo1 is completely absent - Figure 

1.1. There was also the suggestion of increased blood glucose concentration in 

heterozygotes and homozygotes with respect to wild-type controls (Lexicon, 2007). 

Wild-type and heterozygotes sample sizes were small (n = 4), with homozygote 
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samples size, n = 8. Re-analysis by ANOVA indicated no significant change of 

blood glucose with genotype.  

 

Figure 1.1: Lexicon qPCR analysis of the absent transcript in the (Glo1-/-) 

mouse. (Provided by Dr Cindy Shirley, the IMKC project leader at Lexicon 

Pharmaceuticals).  

 

The Lexicon Glo1 mutant mouse is the genetically modified mouse used in 

this project. It was produced by gene trapping technique and so in the following 

section I describe the technique of gene trapping as background for later 

interpretation of the experimental results of genome analysis.  

1.1.5.3.1. The gene trapping technique for production of a gene knockout mice 

In the gene trapping technique, DNA fragments are inserted to nucleus and 

are designed to be inserted randomly to any gene. The DNA fragments prevents 

RNA splicing mechanisms, which thereby prevents expression of the encoded 

protein and achieves knockout the function of mutated gene (Kile and Hilton, 2005). 

The advantage of gene trapping is that it is a high throughput technique and many 

genes may be disrupted. A single vector can be used to mutate a large number of 

genes in a limited number of experiments – Table 1.5. Gene trapping has been 

successfully applied to create a large collection of mutant mouse ESCs over the last 

20 years - see International Gene Trap Consortium, www.genetrap.org. It is 

estimated that gene trapping can cover up to 60% of all mouse genes (Friedel et al., 

2007). 

In the gene trapping technique, mutated ESCs are grown in the laboratory for 

several days and then injected into mouse embryos. The embryos are implanted into 

a female mouse uterus and allowed to develop to term to produce mouse pups. These 

pups have the gene knockout in some tissues, which were derived from the modified 

http://www.genetrap.org/
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ESCs (Kile and Hilton, 2005). However, they also have tissues which contain 

heterozygous mutant cells. These mice are partly knockout because they have 

heterozygous knockout of the targeted gene in some tissues only. To produce 

homozygous knockout mice, crossbreeding of the deficient mice is required (Nagy, 

2000).   

Table 1.5: Advantages and disadvantages of gene trapping methods to 

produce knockout mice. Summarised from (Kile and Hilton, 2005). 

 Advantages Disadvantages 

Gene trapping 

 

No need to know the 

DNA sequence of the 

target gene. 

A single vector can be 

used in high throughput 

capacity.  

More than one gene can 

be knockout in one 

process.  

Lacks efficiency as not every successful 

insertion of DNA fragments will lead to 

gene knockout.  

Lentgthy process to find out the knockout 

genes in ESCs. 

As it is random process, it is difficult to 

target some genes due to statistics or the 

gene might be inactive in ESCs, so there 

will be no marker indicating that the target 

gene is knockout. 

 

Gene trapping and the related technique of gene targeting were the 

techniques used by the IMKC to produce knockout mice. Approximately 50,000 

alleles have now been mutated in the mouse genome by these techniques 

(Czechanski et al., 2014). These modifications have been created by the IMKC and 

by individual investigators around the world which have created null and/or 

conditional null alleles for many genes in the mouse genome (Bradley et al., 2012). 

In addition to the knockout process, ESCs are also used for basic research such as  

pluripotency and the development of therapies based on stem cell as the starting 

material for directed differentiation of defined and enriched cell types in vitro 

(Bradley et al., 2012). Mouse ESCs used in these techniques are also a valuable 

model in the studies herein when seeking to model the metabolic effects of Glo1 

knockdown in ESCs and in the production of Glo1 knockout mice by gene trapping. 

In the next section, I describe growth and metabolic characteristics of mouse ESCs 

as background to my studies. 
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1.2. Embryonic stem cells  

ESCs are pluripotent stem cells which are at the epiblast lineage of the 

blastocyst. They therefore have the developmental potential to differentiate into any 

one of the three primary germ layers including mesoderm, definitive endoderm and 

ectoderm. The main defining features of ESCs are this developmental pluripotency 

combined with a high capacity for self-renewal in vitro. Mouse ESCs are derived 

from embryo’s stage of pre-implantation (Evans and Kaufman, 1981). ESCs were 

originally derived and maintained on feeder layers. However, now it has been 

established that they could also be maintained in feeder layer free culture conditions 

in which the media are supplemented with leukaemia inhibitory factor (LIF). The 

activation of the LIF pathway appears to be required for self-renewal of ESCs 

(Williams et al., 1988). 

The progenitor cells that give rise to ESCs reside in epiblast of the late 

blastocyst at 4 – 5 days post fertilization. ESCs express several factors associated 

with pluripotency including OCT3/4 and NANOG. In addition, ESCs have the 

capacity to populate the germline after microinjection into/or combination with host 

embryos, which makes ESCs essential tools for genetic engineering (Bradley et al., 

1992).  

1.2.1. Characterization of mouse embryonic stem cells  

There are some important criteria which need to be fulfilled before a cell line 

qualifies to be an ESC line from mammals. In mouse, the criteria for validating the 

stem cell nature of ESC lines are cell morphology, expression of surface markers, 

biochemical markers, transcriptional factor expression, the ability to differentiate 

into various cell and tissue types and participation in embryonic development. 

Extended proliferative capacity and pluripotency while maintaining a normal 

karyotype are important features of ESCs (Evans and Kaufman, 1981).  

ESCs are relatively small cells, with an intracellular volume two to three fold 

smaller than that of normal mammalian cells. The rate of cell division of ESCs is 

more rapid than the fastest growing cancer cell lines and they do not develop into 

senescence (Wang et al., 2011). ESCs grow in colonies, which have a characteristic 

morphology. These cells usually proliferate in tight round shaped colonies with 

smooth edges. The morphology of ESCs has two important traits including relatively 
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small amount of cytoplasm and exhibition of faster proliferation rate in a given 

population of cells (Evans and Kaufman, 1981). Recently, there are several reports 

regarding the karyotyping of the ESCs in long term culture. This has been studied by 

G-banding with most ESCs exhibiting a normal compliment of chromosomes. 

Studying of several ESC lines reveals normal karyotype at passages ranging from 24 

- 140 (Buzzard et al., 2004). 

ESC pluripotency may be confirmed by assessing the expression of a set of 

transcriptional factors. OCT4, a Pou-domain transcription factor, was identified 

when it was expressed in unfertilized oocytes, ESCs and primordial germ cells 

(Schöler et al., 1989). More recently, it has been identified that overexpression of 

NANOG protein is capable of maintaining cytokine-independent self-renewal in 

ESCs (Mitsui et al., 2003). In addition, SOX2 is a transcription factor that forms a 

trimeric complex with OCT4 on DNA. It controls the expression of a number of 

genes involved in embryonic development such as YES1, FGF4, UTF1 and ZFP206 

and it is critical for early embryogenesis and for embryonic stem cell pluripotency 

(Masui et al., 2007). These proteins are the most wildly known markers of 

pluripotency both in vivo and in vitro. The expression of these proteins is common in 

all pluripotent cell types that can be maintained in vitro as well as across those 

species from which ESCs have been derived. 

1.2.2. Metabolic characteristics of mouse embryonic stem cells 

Metabolism of many types of stem cell shows high importance of anaerobic 

glycolysis, and regulation of stem cell function by bioenergetic signaling, the Akt–

mTOR pathway, glutamine metabolism and fatty acid metabolism (Ito and Suda, 

2014). Metabolic analyses of purified stem cells and their progeny have shown that 

the metabolic profile of the stem cells differs from that of committed progenitors. 

Unlike their progeny, the stem cells accumulate high levels of fructose-1,6- 

bisphosphate and have high pyruvate kinase activity, indicative of high flux of 

anaerobic glycolysis. They also have low levels of phosphoenolpyruvate but 

increased levels of pyruvate. Stem cells rely heavily on anaerobic glycolysis to 

support ATP production (Simsek et al., 2010) and the activity of oxidative 

phosphorylation is relatively low in cultured stem cells. ATP synthesis seems to be 

decoupled from O2 consumption by the mitochondrial electron transport chain and is 

more dependent on glycolysis. It has been suggested that mitochondrial oxidation 
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operates both to recycle NAD+ and to deploy tricarboxylic acid cycle metabolites for 

the generation of fatty acids and amino acids (Shyh‐Chang et al., 2011). 

In amino acid metabolism of ESCs, threonine has a crucial role (Wang et al., 

2009). ESCs have extremely high levels of the threonine catabolizing enzyme L-

threonine dehydrogenase relative to differentiated cells. L-Threonine dehydrogenase 

converts threonine to glycine and acetyl-coenzyme A. Glycine is then used by the 

mitochondrial enzyme glycine decarboxylase to generate the folate one-carbon pool 

to promote nucleotide synthesis and rapid proliferation of ESCs. L-Threonine 

dehydrogenase also increases the synthesis of S-adenosylmethionine, leading to a 

high ratio of S-adenosylmethionine /S-adenosylhomocysteine and high levels of 

trimethylation of histone H3 lysine 4 which is also thought to contribute to the 

maintenance of pluripotency and the proliferation of ESCs (Wang et al., 2011).  

ESCs show increased activity in the pentose phosphate pathway which 

supports high flux nucleotide synthesis for cell proliferation. Further major functions 

of the pentose phosphate pathway are to produce NADPH which is necessary for the 

regeneration of glutathione for cell protection against oxidative stress and to act as 

an alternative pathway to glycolysis (Ito and Suda, 2014). Recently, studies have 

identified a HIF1α-induced reciprocal metabolic switch between the pentose 

phosphate pathway and glycolysis. Expression of pentose phosphate pathway 

enzymes and glucose flux throughout both the pentose phosphate pathway and the 

tricarboxylic acid cycle are reduced under hypoxia, whereas glycolysis enzymes are 

upregulated (Ito and Suda, 2014).  

ESCs are remarkably resistant to potential genotoxic stress. There are 

multiple pathways that may contribute to this resistance: cellular antioxidant 

defence, the activity of a verapamil-sensitive multidrug efflux pump, DNA strand 

break repair and heat shock protein expression. In addition, the ability to maintain 

low peroxide levels and antioxidant capacity decrease very early during 

differentiation, with concomitant decreased expression of antioxidant and chaperone 

genes. This suggests that very high resistance to oxidative and proteotoxic stresses  

is maintained in pluripotent ESCs (Saretzki et al., 2004).   
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ESC survival, proliferation, maintenance of the cell phenotype and 

bioenergetics are affected by the partial pressure of oxygen, pO2, in the local 

environment. Culturing the cells at a high pO2 exposes the cells to higher 

concentrations of reactive oxygen species (ROS) which damages proteins, lipids and 

nucleic acids and can lead to senescence and cell death (Saretzki et al., 2004). Many 

cell types have a higher growth rate at pO2 < 142 mmHg, including early embryos of 

both humans and mice. In contrast, providing too little oxygen can be harmful and 

lead to apoptotic or necrotic cell death (Powers et al., 2008). Embryonic 

development takes place in a low pO2 environment, and hypoxia inducible factor-1α 

(HIF1α), a transcription factor regulating the metabolic response to low oxygen 

concentration, has been shown to play an important role in directing morphogenesis 

in the embryo and placenta (Zhou et al., 2012). Stem cell culture is often performed 

at pO2 levels much higher than that of the embryo in vivo. It is cultured typically in a 

humidified atmosphere consisting of 95% air and 5% CO2 that results in a gas phase 

pO2 of 20% of 152 mmHg. The oxygen environment of ESCs in vivo is much lower 

and with a pO2 of approximately 3% (Simon and Keith, 2008). When ESCs were 

cultured at pO2 levels similar to that experienced physiologically, they consumed 

more glucose and produced more lactate compared to those maintained at pO2 of 

20%. ESCs cultured at pO2 of 20% also express decreased functional markers, 

OCT4, SOX2 and NANOG, than those maintained at lower pO2 of 5%. This 

suggests that environmental pO2 regulates energy metabolism and is intrinsic to the 

self-renewal of ESCs (Forristal et al., 2013). Culturing ESCs at reduced pO2 favours 

self-renewal, while increased pO2 favours differentiation and maturation (Powers et 

al., 2008). In this project, I will be studying the metabolism of MG by the glyoxalase 

system. Since MG is formed mainly by the degradation of triosephosphates in 

anaerobic glycolysis, characteristics of the ESC glyoxalase pathway – particularly 

flux of MG formation - may likely depend on the pO2 of culture conditions where a 

low pO2 of 3% may model most closely the ESC conditions and metabolic status in 

vivo. 

In this project, I focus on the role of protein glycation by methylglyoxal in 

disease processes where my initial focus is on the disease setting where evidence of 

involvement is most well-developed – vascular complications of diabetes. The 

process of protein glycation in physiological systems is now described as 

background to the project.   
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1.3. Glycation 

Protein glycation is the non-enzymatic reaction of proteins with saccharides 

and saccharide derivatives to form one or more glycation adducts. It occurs by a 

series of complex sequential and parallel reactions called the Maillard reaction 

(Thornalley, 2005b). Glycation of proteins by glucose occurs by reaction between N-

terminal and lysine side chain free amino groups of proteins and the aldehyde group 

of the open chain form of glucose forming Schiff’s base (Thornalley, 2008). The 

Schiff’s base undergoes further rearrangement to form a stable Amadori product or 

fructosamine (Bookchin and Gallop, 1968). This is the early glycation stage of the 

glycation process and the early glycation adducts are Schiff’s base and fructosamine. 

The Amadori intermediate product undergoes further rearrangements to form more 

stable irreversible compounds called advanced glycation endproducts (AGEs) 

(Rabbani and Thornalley, 2012c) - Figure 1.2. 

 

Figure 1.2: Mechanisms of formation of early glycation adducts and 

advanced glycation endproducts from glucose, glycolytic intermediates and 

lipid peroxidation (Rabbani and Thornalley, 2008). 

 

The term AGE was first used in 1986 to refer to brown fluorescent pigments 

that cross link protein (Cerami, 1986). This is, however, contradictory; it is known 

that AGEs are formed in both early and advanced stages of glycation (Rabbani and 

Thornalley, 2012c). When glucose is not attached to a protein, the glucose may 

degrade to form α-oxoaldehydes. The α-oxoaldehydes are potent glycating agents 

which can form AGEs directly. In addition, the Schiff’s base intermediate may also 
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degrade through non-Amadori rearrangement pathways to form AGEs. Glycolytic 

intermediates and lipid peroxidation may also form AGEs via production of α-

oxoaldehydes. Thus, AGEs may be formed where Amadori intermediate is not a 

precursor as well as by glucose in both pre-Amadori and post-Amadori product 

reactions (Rabbani and Thornalley, 2012c). 

Important AGEs quantitatively are hydroimidazolones derived from arginine 

residues modified by MG, glyoxal and 3-deoxyglucosone (3-DG): Nδ-(5-hydro-5-

methyl-4-imidazolon-2-yl)ornithine (MG-H1),  Nδ-(5-hydro-4-imidazolon-2-

yl)ornithine (G-H1) and Nδ-[5-hydro-5-(2,3,4-trihydroxybutyl)-4-imidazolon-2-

yl]ornithine (3DG-H) and related structural isomers. Other significant AGEs are: Nε-

(1-carboxyethyl)lysine (CEL), Nε-carboxymethyl-lysine (CML), Nω-carboxymethyl-

arginine (CMA), S-carboxymethylcysteine (CMC), MG-derived lysine dimer 1,3-

di(Nε–lysino)-4-methylimidazolium salt (MOLD), glyoxal-derived lysine dimer 1,3-

di(Nε–lysino)imidazolium salt (GOLD) and the other protein cross links pentosidine 

and glucosepane (Rabbani and Thornalley, 2008). 

1.3.1. Physiological glycation of proteins 

Glycation of proteins is a continuous damaging process of the proteome in 

the living systems. Protein glycation is increased in diabetes due to increased glucose 

and other saccharides derivatives in plasma and at the sites of vascular 

complications. Metabolic dysfunction in vascular cells leads to increased formation 

of α-oxoaldehydes. This results in further damage in hyperglycaemia. AGEs have 

been found to accumulate at sites of vascular complications in vivo (Thornalley et 

al., 2003b). These AGEs may cause diabetic complications through impairment of 

protein function and protein-protein and enzyme substrate interactions by AGE 

residue formation and by increasing resistance to proteolysis of extracellular matrix 

proteins (Rabbani and Thornalley, 2012c).  

Glycation free adducts are the main form in which protein glycation adducts 

are cleared from cells. In the cultured cells, the glycation free adducts increase in the 

culture medium with time, also, in vivo they are released into plasma and other body 

fluids to be eventually excreted in the urine. Glycation free adducts are filtered from 

plasma in the kidney and have high renal clearance (Ahmed and Thornalley, 2007).  
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1.3.2. Quantitation of protein glycation, oxidation and nitration adducts 

The analysis of protein glycation, oxidation and nitration adducts requires  

the quantitation of multiple trace amounts of glycated, oxidised and nitrated amino 

acids (fmol – pmol) in the presence of 103 - 106 fold excess of related unmodified 

amino acid. This is the main challenge for any analytical methodology employed. In 

addition, the physiological samples are unstable to pre-analytic processing 

particularly under high pH and temperature. Thus, there is a possibility of the 

formation of glycation, oxidation and nitration adduct analytes during inappropriate 

sample processing. Protein glycation, oxidation and nitration adducts  have been 

assayed by fluorescence (Vishwanath et al., 1986) and immunoassay (Wu and 

Steward, 1991, Yamamoto et al., 1989). However, the current gold standard is 

quantification by stable isotopic dilution analysis liquid chromatography-tandem 

mass spectrometry (LC-MS/MS) (Thornalley et al., 2003b). 

In the LC-MS/MS methodology, protein glycation, oxidation and nitration 

adduct residues are determined after comprehensive enzymatic hydrolysis and 

filtering the protein glycation, oxidation and nitration free adducts in ultrafiltrates 

from physiological fluids using typically a 3 or 12 kDa cut-off microspin filter. 

Other techniques like immunoassay are more practicable for high sample throughput 

but the protocol and the particular sample matrix should be validated to the reference 

LC-MS/MS method before use (Thornalley et al., 2003b). 

1.3.3. Dicarbonyl glycation of protein 

There are reactive dicarbonyls in the physiological systems. The reactive 

dicarbonyls are known also as α-oxoaldehydes. They are important reactive 

intermediates of Maillard reaction and redirect minor but significant part of the flux 

of glycation reaction intermediates to form AGEs (Thornalley, 2005a). These α-

oxoaldehydes are important saccharide derivatives participating in glycation in 

physiological setting of mammalian metabolism. They are potent glycating agents 

being 200 to 20,000 times more reactive than glucose to form AGEs directly. 

(Thornalley, 2005a). The dicarbonyls physiological concentrations are 10,000 to 

50,000 times less than glucose; however, these reactive dicarbonyls remain 

important precursors of AGEs. The main dicarbonyls are MG, glyoxal and 3-DG - 

Figure 1.3. MG is an important dicarbonyl as it has relatively high glycation 
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reactivity directed mainly but not exclusively to arginine residues to form MG-H1 

which is the most quantitatively prevalent AGE (Thornalley, 2005a). 

 

 

Figure 1.3: Molecular structure of the physiologically reactive glycating 

dicarbonyls 3-DG, glyoxal and methylglyoxal (Rabbani and Thornalley, 2008). 

 

There are three forms of MG in aqueous solution under physiological 

conditions:, monohydrate CH3COCH(OH)2 (71%), dehydrate CH3C(OH)2CH(OH)2 

(28%) and the reactive unhydrated form CH3COCHO (1%) (Dobler, 2008). AGE 

formation by MG causes protein modification mainly in arginine residues. This 

modification causes loss of side chain charge, structural derangement and function 

impairment (Thornalley, 2008). Examples are human serum albumin (Ahmed et al., 

2005c), haemoglobin (Chen et al., 2005), type IV collagen (Dobler et al., 2006) and 

mitochondrial proteins (Morcos et al., 2008). 

Glyoxal is formed in the physiological systems by auto-oxidation of glucose 

and lipid peroxidation (Thornalley, 2005a). Glyoxal targets arginine and lysine 

residues of proteins to form hydroimidazolone G-H1, CML, CMA and GOLD 

(Nangia-Makker et al., 1993, Lo et al., 1994b). Glycation of proteins by glyoxal 

leads to structural modification and impaired functions.  

3-DG is a reactive glycating agent. The major source for 3-DG is degradation  

fructoselysine to 3-DG by phosphorylation of fructosamine-3-kinase (F3K) 

(Beisswenger et al., 2003). 3-DG is also formed by degradation of fructose-3-

phosphate formed by phosphorylation of fructose by F3K, and by glucose auto-

oxidation (Thornalley, 2005a, Beisswenger et al., 2003). Elevated 3-DG levels are 

found in diabetes linked diabetic nephropathy (Beisswenger et al., 2003). Increased 

concentrations of 3-DG-derived hydroimidazolone were detected in the kidneys of 

diabetic patients and animals (Niwa et al., 1996, Karachalias et al., 2010). 3-DG 

reacts with lysine and arginine residues in proteins to form hydroimidazolones and 

pyrraline (Beisswenger et al., 2003, Thornalley et al., 2003b). 
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1.3.4. Dicarbonyl glycation of DNA 

 In addition to the proteins, DNA is also susceptible to glycation by MG and 

glyoxal. Deoxyguanosine (dG) is the most reactive nucleotide under physiological 

conditions (Thornalley et al., 2010). Excessive nucleotide glycation is associated 

with mutagenesis, cytotoxicity and DNA strand breaks (Thornalley, 1999). 

Nucleotide excision repair (NER) has been shown to suppress nucleotide glycation 

and its detrimental effects (Murata-Kamiya et al., 1998, Murata-Kamiya et al., 1999, 

Pischetsrieder et al., 1999). 

1.4. Glyoxalase System 

The glyoxalase system consists of two enzymes, glyoxalase 1 (Glo1) and 

glyoxalase 2 (Glo2), and a catalytic amount of reduced glutathione (GSH). The 

major function of these enzymes is detoxification of MG to D-lactate. The 

detoxification process consists of two sequential reactions: (i) the formation of S-D-

lactoylglutathione (SLG) from the hemithioacetal formed non-enzymatically from 

MG and GSH, catalysed by Glo1; and (ii) the hydrolysis of SLG to D-lactate, 

catalysed by Glo2, with reformation of GSH consumed in the Glo1-catalysed step 

(Thornalley et al., 1989) – Figure 1.4.  

 

 

 

 

 

 

 

 

 

 

Figure 1.4: The Glyoxalase system (Rabbani and Thornalley, 2014b). 
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The glyoxalase system also catalyses the metabolism of other small, acyclic 

α-oxoaldehydes found in physiological systems: glyoxal (CHO)2 – converted to 

glycolate via S-glycolylglutathione; hydroxypyruvaldehyde HOCH2COCHO - 

converted to L-glycerate via S-L-glyceroylglutathione; and 4,5-dioxovalerate – 

converted to D-2-hydroxyglutarate via S-2-D-hydroxyglutarylglutathione (Clelland 

and Thornalley, 1991, Jerzykowski et al., 1973). MG is the Glo1 substrate of highest 

flux in physiologiocal systems and hence the major substrate of the glyoxalase 

system. 

The glyoxalase system has an important protective role found throughout 

biological life. That is, to prevent the accumulation of MG and related dicarbonyls in 

cells and body fluids to levels that potentially cause dysfunction and toxicity – the 

metabolic state of dicarbonyl stress (Xue et al., 2012, Rabbani et al., 2014b). The 

fundamental importance of this role is highlighted by the null mutation of GLO1 is 

embryonically lethal (Arai et al., 2010). GLO1 is a tumour suppressor gene - one of 

only 13 genes in genome-wide analysis (Zender et al., 2008). Inducers of GLO1 are 

prospective therapeutic agents for the prevention of cancer, dyslipidemia and 

cardiovascular disease, treatment of vascular complications of diabetes and food 

supplements for healthy ageing. Inhibitors of GLO1 are prospective anti-cancer and 

anti-microbial agents – particularly for GLO1 overexpression-linked multidrug 

resistance tumours and micro-organisms. The GLO1 gene is a hotspot of copy 

number variation in the human and mouse genomes although the prevalence is low, 1 

– 2%. Increased plasma concentration of MG associated with increased modification 

of protein and DNA is found in obesity, diabetes, renal failure and ageing, 

suggesting that dicarbonyl stress is a feature of these high prevalence abnormal 

physiological states and disease – of increasing importance in the current increased 

aged populations of Westernised countries (Rabbani et al., 2014b). Improved 

understanding of the function and regulation of the glyoxalase system may help 

characterise the role of dicarbonyl stress in disease and ageing and thereby develop 

improved therapeutics for prevention and treatment of disease and increase human 

healthspan. 
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1.4.1. History of glyoxalase system  

The glyoxalase system was discovered in the early 20th century. It was 

described in the physiological system as an enzymatic process that catalyses the 

conversion of MG to lactate (Neuberg, 1913). Concurrently Dakin and Dudley 

(Dakin and Dudley, 1913) published the discovery of glyoxalase and nine further 

papers on glyoxalase and related studies. 

 Neuberg devoted himself to strengthen the role of methylglyoxal and 

glyoxalase in mainstream glycolysis (Neuberg, 1929). Embden opposed Neuberg’s 

view because he found that glycolysis produced only the L-enantiomer of lactic acid 

whereas with addition of methylglyoxal to tissues he found both L- and D- lactic 

acid. Embden discovered and postulated alternative glycolytic intermediates and 

pathway, later confirmed by Meyerhof, which are now accepted as mainstream 

glycolysis in the pathway that bears their names – Embden-Meyerhof pathway 

(Embden et al., 1933, Meyerhof, 1933). In the 1930s – 1950s advances were made 

that characterised the essential aspects of the glyoxalase system that we know today. 

Lohmann discovered glutathione (GSH) which was a specific and essential cofactor 

for methylglyoxal metabolism by the glyoxalase system (Lohmann, 1932). Jowett 

and Quastel presented evidence that GSH and methylglyoxal combined reversibly to 

form a hemithioacetal substrate of the glyoxalase system (Jowett and Quastel, 1933) 

Yamazoye found that the hemithioacetal was converted to a novel acid-stable base-

labile intermediate – now known to be S-D-lactoylglutathione (Yamazoye, 1936) 

Gowland-Hopkins and J Morgan found wide distribution of the glyoxalase in living 

organisms (Hopkins and Morgan, 1945). In 1951, Racker discovered that there are 

two major sequential steps in the catalysis process including GLO1 and GLO2 

(Racker, 1951). In 1954, he also suggested that D-lactate was the terminal product of 

metabolism of MG by glyoxalase system rather than L-lactate (Racker, 1954). This 

was confirmed later in 1973 (Ekwall and Mannervik, 1973). In 1960, human arterial 

tissue were showed with decrease GLO1 activity with age (Kirk, 1960), which might 

be associated with increased risk of cardiovascular disease with ageing. 

With the role of MG and glyoxalase in glycolysis discounted, investigators 

speculated on the functions of the glyoxalase system. In 1963, Szent-Gyorgyi 

proposed that the conflict of MG and GLO1 controlled cell growth and could be 

exploited for treatment of cancer. MG was hypothesised to be a growth retarding 

substance or “retine” and GLO1 a counter to this growth restriction effect or 
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“promine” (Szent-Gyorgyi et al., 1963). The discovery of many other growth factors 

and change of cell responsiveness to them on malignant transformation led to the 

redundancy and demise of this hypothesis. High concentrations of MG were toxic to 

tumour cells and in 1969 Vince and Wadd suggested GLO1 inhibitors may be more 

effective anticancer agents, producing toxicity through accumulation of endogenous 

MG (Vince and Wadd, 1969). 

In the 1970s – 1990s, glyoxalase enzymes were purified and molecular, 

kinetic, mechanistic and structural characteristics identified. Distinctive molecular 

characteristics of mitochondrial matrix and cytosolic GLO2 were also identified, 

originating from one gene in mammals by mRNA splicing. This culminated with 

catalytic mechanisms of action and crystal structures of human of GLO1 and GLO2 

(Marmstal et al., 1979, Rhee et al., 1987, Allen et al., 1993, Schimandle and Vander 

Jagt, 1979, Uotila, 1973, Landro et al., 1992, Cameron et al., 1997, Cameron et al., 

1999, Cordell et al., 2004). 

In 1972, Bonsignore et al. presented the first evidence that a triosephosphate, 

glyceraldehyde-3-phosphate, degraded non-enzymatically under physiological 

conditions to form MG (Bonsignore et al., 1972). In 1977, Takahashi reported that 

MG and other dicarbonyls reacted mainly with arginine residues of proteins and a 

hydroimidazolone was one molecular structure proposed for the adducts formed 

(Takahashi, 1977). This was later found to predominant adduct, hydroimidazolone 

MG-H1 (Ahmed et al., 2002, Henle et al., 1994, Thornalley et al., 2003b).  

The glyoxalase system was linked to diabetes by Thornalley in 1988 who 

discovered the increased formation of MG in the red blood cells which were cultured 

in a high glucose medium in vitro (Thornalley, 1988). In 1989, the increased activity 

of Glo1 in red blood cells and tissues of streptozotocin (STZ)-induced diabetic and 

obese (ob/ob) mice was reported by Thornalley and Atkins (Atkins and Thornally, 

1989, Atkins and Thornalley, 1989). In the same year, the concentrations of MG, S-

D-lactoylglutathione and D-lactate in blood samples were compared between healthy 

people and patients with diabetes, and it was reported that all three components were 

higher in diabetes (Thornalley et al., 1989). In 1991, GLO1 was found to be a genetic 

factor linked to body mass index and a feature of the human obesity genome (Wilson 

et al., 1991).  
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In 1993, studies by Phillips and Thornalley indicated that the major source of 

formation of MG in mammalian metabolism is the spontaneous degradation of 

triosephosphates; ca. 0.1% glucotriose flux degraded to MG (Phillips and 

Thornalley, 1993). In 1994, it was reported that MG is one of the major glycating 

agents that forms AGEs (Lo et al., 1994b). In addition, the inhibition of MG by 

aminoguanidine was one of the solutions that reduced the formation of AGEs in 

order to prevent the development of cardio-vascular complications in diabetes (Lo et 

al., 1994a).  

In 1998, Shinohara et al reported that the overexpression of GLO1 in 

endothelial cells in vitro prevented the increase of MG accumulation and formation 

of AGEs respectively (Shinohara et al., 1998). Abordo and colleagues noticed that 

there was increased accumulation of MG in the cell culture in the presence of 

oxidative stress and reported the accumulation of α-oxoaldehydes during oxidative 

stress (Abordo et al., 1999). In the same year, it was reported that the increase of 

plasma MG concentration in patients with type 2 diabetes is less marked with 

treatment by metformin, an oral hypoglycaemic agent (Beisswenger et al., 1999). 

Furthermore, analysis of human GLO1 gene promoter was reported and revealed 

presence of an insulin response element which likely produces disturbed GLO1 

expression in the diabetic state (Ranganathan et al., 1999). 

Between the years 1989- 2003, several studies showed decrease in GLO1 and 

GLO2 activities and increase in MG- and glyoxal-derived AGEs with age in human 

tissues, mouse tissues and cells (McLellan and Thornalley, 1989, Dunn et al., 1989, 

Dunn et al., 1991, Haik Jr et al., 1994, Ahmed et al., 1997, Sharma-Luthra and Kale, 

1994). In 2003, it was reported that MG-derived AGEs were major type of protein 

damage in vivo based on high flux on urinary excretion of these adducts (Thornalley 

et al., 2003b). 

In 2006, Redon and colleagues constructed a copy number variation (CNV) 

map of the human genome and found that GLO1 was a hotspot for CNV increase 

(Redon et al., 2006). In 2008, Glo1 was presented as a vitagene for the first time by 

Morcos who demonstrated that overexpression of Glo1 in Caenorhabditis elegans 

increases median and maximum lifespan by ca. 30% (Morcos et al., 2008). In 

addition, Morcos et al. showed that silencing of Glo1 decreased the life span by ca. 

50% (Morcos et al., 2008). Cahan and colleagues showed that the non-transcribed 

region of Glo1 gene was an important site of functional increase of CNV in the 
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mouse genome resulting in 4-fold changes in expression of Glo1 (Cahan et al., 

2009). 

In 2010, Brouwers with co-workers showed that Glo1 overexpression 

prevented oxidative stress and impairment of endothelium dependent vasorelaxation 

in mesenteric arteries of diabetic rats. This implied to the increased MG in the 

diabetic state in induction of vascular dysfunction and oxidative stress (Brouwers et 

al., 2010, Brouwers et al., 2011). In the same year, it was showed that 

methylglyoxal-derived DNA imidazopurinone adducts are major markers of 

physiological damage to genome linked to DNA instability in vivo (Thornalley et al., 

2010). Santarius his colleagues showed that GLO1 gene is amplified in human 

tumours and linked to multidrug resistance (Santarius et al., 2010). 

In 2012, a functional antioxidant-response element (ARE) was identified in 

the 5’ -untranslated region of exon 1 of the mammalian GLO1 gene. Nrf2 

transcriptional factor (nuclear factor-erythroid 2 p45 subunit related factor 2) binds 

to this ARE region, increasing basal and inducible expression of GLO1. 

Furthermore, the expression of mRNA and protein of GLO1 as well as GLO1 

activity were increased by Nrf2 Activators (Xue et al., 2012).This now provides a 

strategy for design and development of GLO1 inducers from dietary bioactive 

compounds. These compounds improve health span and synthetic GLO1 inducers for 

pharmaceuticals in prevention and treatment of some diseases. 

The current era of investigation focus on regulation of the glyoxalase system 

where a role in ageing and disease, physiological stress and drug resistance and 

development of healthier foods and new pharmaceuticals are emerging. 

1.4.2. Glyoxalase 1 

1.4.2.1. Kinetic characteristics and molecular properties 

Glyoxalase 1 (EC 4.4.1.5; GLO1) catalyses the isomerisation of the 

hemithioacetal, formed spontaneously from methylglyoxal CH3COCHO and GSH to 

S-D-lactoylglutathione CH3CH(OH)CO-SG: 

 

For the MG-GSH hemithioacetal and human GLO1, the KM is 71-130 M 

and the kcat is 7-11 x 104 min-1. The major physiological substrate for GLO1 is MG 
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and this accumulates markedly when GLO1 is inhibited in situ by cell permeable 

Glo1 inhibitors and by depletion of GSH (Thornalley, 1993, Abordo et al., 1999, 

Thornalley et al., 1996). Other substrates are glyoxal – formed by lipid peroxidation 

and the fragmentation of glycated proteins, hydroxypyruvaldehyde HOCH2COCHO 

and 4,5-doxovalerate H-COCOCH2CH2CO2H (Thornalley, 1993, Thornalley, 1998).  

GLO1 and the glyoxalase system prevent the accumulation of these reactive -

oxoaldehydes in cells and body fluids in vivo and thereby suppresses -oxoaldehyde-

mediated glycation reactions (Shinohara et al., 1998). It is a key enzymatic system of 

the enzymatic defence against glycation (Thornalley, 2003b, Thornalley, 2003a). 

There is characteristic expression of GLO1 in all mammalian tissues 

(Thornalley, 1991). GLO1 activity in human tissues was 30 – 150 mU per mg 

protein; it was highest in the pancreas, lung, kidney and brain and lowest in the liver 

and adipose tissue. The specific activity of GLO1 in foetal tissue is ca. 3 times 

higher than corresponding adult tissue (Larsen et al., 1985). Glo1 activity in rat 

tissues was 42 – 165 mU per mg wet weight; it was highest in the liver and muscle, 

and lowest in the nerve and lens (Phillips et al., 1993). Glo1 activity in mouse tissues 

was 1 – 10 U per mg protein; it was highest in the liver, kidney and brain and lowest 

in the nerve and lungs (Bierhaus et al., 2012).  

Human GLO1 is a dimeric protein of molecular mass 42 kDa (by sequence, 

46 kDa by gel filtration chromatography), isoelectric point (pI) value 4.8 - 5.1 and 

contains one zinc ion per subunit. There are two active sites per protein formed by 

amino acid residues from each of the subunits such that the monomer is inactive. The 

human GLO1 gene is diallelic, which expressed in heterozygotes. The two alleles, 

GLO1 and GLO2, give two similar subunits and three dimer allozymes, GLO 1-1, 

GLO 1-2, GLO 2-2. The difference in amino acid between the expression products 

of the two GLO1 alleles is only at position 111. There is an alanine residue in 

subunit GLO1-A and a glutamic acid residue in subunit GLO1-E (Kim et al., 1995). 

All human allozymes have similar mass but different charge density and/or their 

molecular shapes. They can be resolved by non-denaturing gel electrophoresis and 

by ion exchange chromatography (Thornalley, 1993). 

The human GLO1 translation product contains 184 amino acids. In the post-

translational process, the N-terminal methionine is removed and the N-terminal 

alanine thereby produced is acetylated. Cysteine resides C19 and C20 are linked by 
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vicinal disulfide bridge. C139 may form an intra-molecular disulfide with C61. If a 

mixed disulfide with GSH forms on C139 in vitro, enzymatic activity is inhibited 

(Birkenmeier et al., 2010). GLO1 activity is not affected by the oxidation state of 

C19/C20 and N-terminal acetylation. There is also acetylation of human GLO1 at 

K148 which is likely de-acetylated by cytosolic sirtuin-2 (Lundby et al., 2012, Rauh 

et al., 2013). The modification of GLO1 by S-nitrosylation occurs by reaction with 

nitric oxide (NO) on C139. The oxidative state of C19 and C20 is influential in S-

nitrosylation process. The NO-responsive form of GLO1 is the basic, reduced form 

of GLO1 without intramolecular disulfide bonding at C19 and C20 (De Hemptinne 

et al., 2007). GLO1 is a substrate for calcium and calmodulin-dependent protein 

kinase II. It may be phosphorylated at T107 which occurred preferentially on the 

reduced and NO-responsive form (De Hemptinne et al., 2007).  

Glo1 present in other mammalian species is similar to the human GLO1. 

Mammalian, bacterial and plant Glo1 enzymes is usually dimeric. However, Glo1 of 

the yeast (Saccharomyces cerevisae and Schizosaccharomyces pombe) is a monomer 

of 32 and 37 kDa, respectively, with two copies of a segment equivalent to the 

monomer of human GLO1. The sequence identity of human GLO1 with Glo1 of 

bacterial Pseudomonas putida is 55% and with yeast Saccharomyces cerevisiae Glo1 

between residues 1-182 and 183-326 is 47% (Thornalley, 2003b). This suggests that 

GLO1 of different origins may have arisen by divergent evolution from a common 

ancestor (Xue et al., 2011). 

The structure of human GLO1 in complex with S-benzylglutathione was 

determined to 2.2 Å resolution – Figure 1.5. Each monomer consists of two, 

structurally equivalent domains. The active site is situated in the dimer interface, 

with the inhibitor and essential Zn2+ ion interacting with side chains from both 

subunits. The zinc binding site is two structurally equivalent residues from each 

domain – Gln33A, Glu99A, His126B, Glu172B and two water molecules in 

octahedral coordination (Cameron et al., 1997). 

The mechanism proposed for the reaction catalysed by GLO1 is that the 

isomerisation of MG-GSH hemithioacetal to S-D-lactoylglutathione - involves base-

catalysed shielded-proton transfer from C1 to C2 of the hemithioacetal, bound in the 

active site, to form an enediol intermediate and rapid ketonisation to the thioester 

product. Both R- and S-forms of the hemithioacetal are bound in the active site of 

GLO1 and are therein deprotonated; the subsequent reprotonation of the putative 
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enediol intermediate occurs stereospecifically to form the R-2-hydroxyacyl-

glutathione derivative. It has been proposed that Glu172 is the catalytic base for the 

S-substrate enantiomer and Glu99 the catalytic base for the R-substrate enantiomer. 

Both reaction mechanisms form cis-enediol intermediate coordinated directly to the 

Zn2+ ion: this is deprotonated to a cis-enediolate by Glu-172 which then reprotonates 

C2 stereospecifically to form the R-2-hydroxyacylglutathione product (Himo and 

Siegbahn, 2001)– Figure 1.5. Glu111 or Ala111 is not involved in the catalytic 

mechanism, consistent with the allozymes of GLO1 having similar kinetic 

characteristics. The characteristics of human GLO1 are summarised in Table 1.6.  

Table 1.6: Characteristics of human glyoxalase 1.  (Rabbani et al., 2014b) 

Characteristic Glyoxalase 1 

Molecular mass 46 kDa (gel filtration) or 42 kDa (sequence) 

No of subunits and 

structure 

Two. Monomers consists of 2 structurally equivalent 

domains with the active site in the dimer interface 

pI 4.8 - 5.1 

Prosthetic groups Zn2+ 

Reaction catalysed 

and kinetics 
CH3COCH(OH)-SG  CH3CH(OH)CO-SG 

KM  = 192 µM, kcat = 1.1 x 105 min-1 

Genetics and 

polymorphism 

GLO1. Locus: 6p21.2. Polymorphism: A/E111 - 

GLO1/GLO2 (common); frameshift mutation (rare). 

Hotspot for CNV. 

Transcriptional 

regulatory elements 
MRE, IRE, E2F4, AP-2α, ARE, HIF1α 
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Figure 1.5: Structure and catalytic mechanism of glyoxalase 1.  

a. Solid ribbon representation of the crystal structures of human glyoxalase 1  

Subunits, A (grey ribbon) and B (green ribbon), Zinc ions (yellow balls) and 

coordinating amino acid residues Gln33A, Glu 99A, His126B and Glu172B (black 

sticks) and GSH moiety binding site (Arg37, Asn103 and Arg122 – blue, pink and 

red sticks) are shown. b. Catalytic mechanism of human glyoxalase 1 for the 

isomerisation of the R-hemithioacetal – from (Thornalley, 2003b). 
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1.4.2.2. Genetics 

The GLO1 enzyme is produced by expression of the GLO1 gene. Human 

GLO1 is a diallelic gene inherited in a simple co-dominant manner. It is located in 

chromosome 6 at locus 6p21.2 (38,675,926 - 38,703,176). Gene cloning showed that 

GLO1 consists of 27,251 bp (Tripodis et al., 1998). It is comprised of five introns 

and six exons (Gale and Grant, 2004). Bioinformatics analysis of human GLO1 

showed 70 single nucleotide polymorphisms (SNPs): 6 in the 5’ UTR, 60 in introns, 

3 in the 3’ UTR and one within the coding sequence Ala111Glu phenotypic 

variation. The amino acid substitution Ala111Glu was predicted to be tolerant. A 

claimed association of this polymorphism with autism could not be confirmed 

(Junaid et al., 2004, Rehnström et al., 2008), nor association with vascular 

complications of diabetes (McCann et al., 1981, McLellan et al., 1994). There is a 

suggestion, however, that the Glu111Glu homozygote in stage 5 renal failure on 

hemodialysis is associated with increased prevalence of cardiovascular disease 

(CVD) and peripheral vascular disease (Kalousová et al., 2008). Multiple alternative 

transcription start sites and alternative 3’ UTRs were found and ubiquitous 

expression of GLO1 confirmed. Conserved regulatory regions were predicted 5‘to 

the transcription start site and in the distal promoter, and several predicted conserved 

transcription regulatory elements were suggested in the 5’UTR - Figure 1.6. Six 

different GLO1 transcripts were identified. None produced insertion or deletion of 

amino acids in the expression product. No splice variants have been reported so it is 

likely that GLO1 does not display alternative exon splicing. 

Murine Glo1 is located in chromosome 17 a3.3 and consists of 19,793 bp 

(30,592,866-30,612,659) (Meo et al., 1977). It has a similar genomic structure to 

human GLO1. 

 

Figure 1.6: Human GLO1 gene.   

The figure shows the domain structure of the human GLO1 gene (Yellow: promoter 

region, Pink: exon, Orange: untranslated region (UTR)) (Shafie et al., 2014). 
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Human and murine GLO1 genes are hotspots for functional copy number 

increase. The human GLO1 promoter region is 982 bp and contains several 

regulatory elements: 

(i) Metal responsive element (MRE) at -647 to -641 bp (TGCACTC) 

(Ranganathan et al., 1999). 

(ii) Insulin response element (IRE) at -849 to -842 bp (GAGGCGGG) – 

glyceraldehyde-3-phosphate dehydrogenase IRE-A like motif (Ranganathan 

et al., 1999, O Brien et al., 2001). 

(iii) E2F – binding to transcription factor E2F4 (Conboy et al., 2007), 

(iv) Activating enhancer binding protein 2 alpha (AP-2α) (Orso et al., 2010). 

(v) Antioxidant response element (ARE) (Xue et al., 2012). 

IRE and MRE functionalities were validated in reporter assays where insulin 

and zinc chloride exposure produced a 2-fold increased transcriptional response 

(Ranganathan et al., 1999). Similar functional activities were shown for E2F, AP-2α 

and ARE. Promoter analysis suggests also a glucocorticoid responsive element 

(GRE) at -368 to -363 bp (Ranganathan et al., 1999) and a functional GLO1 hypoxia 

response element (HRE) is at -131 to -125 bp (TGACTCA) (Xue and Thornalley, 

P.J., unpublished). Functional activity was not found for the GRE (Ranganathan et 

al., 1999) but was found for the HRE where hypoxia decreased expression of GLO1 

(Zhang et al., 2012). 

1.4.2.3. Change of glyoxalase 1 expression and activity in health and disease  

GLO1 expression and activity are modified in ageing and disease. There was 

a marked decline of Glo1 expression and activity in Caenorhabditis elegans with 

age. Overexpression of Glo1 increased median and maximum lifespan whereas Glo1 

silencing decreased median and maximum lifespan. There was little change in Glo1 

activity during the lifespan of mice, except for an increase in Glo1 activity of the 

kidney with age. Glo1 activity of rat tissues decreased with age, however, there was 

further decreased by hypoxia in young rats. Glyoxalase activity was decreased in 

arterial tissues with age and in lens, brain and age-fractioned red blood cells – Table 

1.7. 
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Table 1.7: Effect of ageing on glyoxalase 1 expression and activity. 

Species Effect on glyoxalase Reference 

Caenorhabditis 

elegans 

Decrease 90% from young (1 

day) to old (12 days). 

Overexpression of Glo1 increased 

median lifespan by 29% and 

maximum lifespan by 32% and 

Glo1 silencing decreased median 

lifespan by 52% and maximum 

lifespan by 36%. 

(Morcos et al., 2008)  

Mice 

Glo1 activity varied little (5 – 

10%) in liver and spleen and 

increased in kidney to maximum 

level at 24 months. 

(Sharma-Luthra and Kale, 

1994) 

Glo1 activity decreased in liver 

and lung of old (25 months) 

versus young (2 months) rats. 

Hypoxia decreased Glo1 activity 

in liver and lung of young rats but 

increased Glo1 activity in liver of 

old rats. Hyperoxia increased 

Glo1 activity of the liver. 

(Amicarelli et al., 1997) 

Rats 

Glo1 protein decreased in skeletal 

muscle of old (18 and 30 months) 

versus young (7 months) rats 

(Piec et al., 2005) 

Human subjects 

Glyoxalase1 activity decreased 30 

– 50% in thoracic aorta and 

pulmonary artery from age 10 – 

80 years.  

(Kirk, 1960) 

Age-dependent decrease in GLO1 

activity and protein of lens 

(Haik Jr et al., 1994, 

Mailankot et al., 2009) 

 

GLO1 activity decreased ca. 20% 

in old, high density fraction of red 

blood cells. 

(McLellan and Thornalley, 

1989) 

 

GLO1 activity tends to decrease 

>55 years old in brain. 

(Kuhla et al., 2006) 
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GLO1 has been studied most intensively in diabetes in relation to suppression 

of increased MG concentration in hyperglycaemia and the link of this to the 

development of microvascular complications of diabetes (nephropathy, retinopathy 

and neuropathy) and macrovascular complications (cardiovascular disease and 

stroke). In experimental diabetes, there is a tissue-specific decrease in Glo1 

expression and activity. In STZ induced-diabetic mice, Glo1 was down regulated in 

the sciatic nerve and kidney (Bierhaus et al., 2012). Glo1 expression was also 

decreased in the kidney of obese (db/db) diabetic mice (Barati et al., 2007) and STZ 

diabetic Wistar rats (Palsamy and Subramanian, 2011), and decreased in the kidney 

and liver of STZ diabetic Sprague-Dawley rats (Phillips et al., 1993). Glo1 

expression was also decreased ca. 50% in STZ diabetic Ren-2 rats which 

overexpressing the renin-angiotenisin system in extra renal tissues (Miller et al., 

2010). In STZ diabetic C57BL/6 mice, Glo1 protein of peripheral nerve was 

decreased ca. 70% compared to non-diabetic controls, whereas STZ diabetic A/J 

mice with higher endogenous expression of Glo1 linked to Glo1 gene duplication 

was not decreased compared to non-diabetic controls (Jack et al., 2011, Bierhaus et 

al., 2012). In contrast to this, Glo1 activity was increased 50–60% in red blood cells 

of STZ diabetic C57BL/6 mice, compared to non-diabetic controls (Atkins and 

Thornally, 1989); and Glo1 activity was increased 30 – 40% in red blood cells of 

patients with type 1 diabetes and patients with type 2 diabetes, compared to healthy 

control subjects (McLellan et al., 1994). This may suggest that red blood cell 

precursor cells respond to dicarbonyl stress in diabetes and upregulate Glo1 

expression, carried forward during maturation lineage to red blood cells, whereas in 

the kidney, retina and peripheral nerve Glo1 expression and/or stability is impaired 

and pre-disposes these tissues to dicarbonyl stress. Patients with diabetes and 

microvascular complications including nephropathy, retinopathy and neuropathy had 

significantly higher activity of the Glo1 in red blood cells compared to patients 

without complications (McLellan and Thornalley, 1994). The increased activity of 

Glo1 appears to be a response and marker of exposure to elevated cellular MG 

concentration. If so, patients with vascular complications may have had higher 

exposure to increased MG levels than uncomplicated patients.  
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Overexpression of Glo1 in transgenic rats and mice prevented the 

development of nephropathy, retinopathy and neuropathy (Giacco et al., 2014, 

Berner et al., 2012, Bierhaus et al., 2012, Brouwers et al., 2014). There are also 

limited studies on the involvement of Glo1 in diabetes development. Administration 

of cell permeable Tat peptide-Glo1 fusion protein protected against the development 

of STZ-induced diabetes in mice (Kim et al., 2013) and studies from our group 

found that Glo1 activity was unchanged but MG concentration increased ca. 30% in 

the pancreas in the high fat diet-fed mouse model of insulin resistance and type 2 

diabetes development (Tym A, 2014). Increasing Glo1 expression may have benefit 

in prevention of diabetes. 

GLO1 expression and activity has been studied in neurological disorders. In 

Alzheimer’s disease (AD), GLO1 mRNA and protein in brain cerebral cortex were 

moderately increased in early-stage disease and decreased in advanced disease of 

patients with AD, compared to age-matched controls (Kuhla et al., 2007, Chen et al., 

2004). Glo1 protein was increased in the cerebellum of the 3 x Tg AD mouse model 

of Alzheimer’s disease which expresses mutant presenelin-1-M146V, amyloid 

precursor proteinswe, and tau protein-P301L transgenes and progressively develops 

plaques and neurofibrillary tangles with a temporal- and region-specific profile that 

resembles the neuropathological progression of Alzheimer’s disease (Ciavardelli et 

al., 2010). Increased Glo1 protein was also found in the brains of the P301L mutant 

tau transgenic mice model which develops neurofibrillary tangles, a histopathologic 

hallmark of AD and frontotemporal dementia (Chen et al., 2004). In a mouse model 

exploring mechanisms of Parkinson’s disease, mice deficient in α-synuclein had 

increased Glo1 mRNA, protein and activity in the brain stem/mid brain and cortex, 

compared to wild-type controls. There was also increased MG concentration. This 

suggests that α-synuclein may have a role in regulating processes that suppress MG 

formation and deletion of this imposes dicarbonyl stress inducing stress responsive 

increased expression of Glo1 (Kurz et al., 2011). 

GLO1 has also been studied in mood-affective disorders. A rare frame shift 

mutation of GLO1 producing a non-functional truncated peptide and ca. 50% 

decreased Glo1 activity in heterozygotes was associated with sever Schizophrenia, 

although to date only 3 cases have been detected (Arai et al., 2010). GLO1 mRNA of 

peripheral blood leukocytes was decreased in major depressive and bipolar disorder 
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patients, compared with healthy control subjects patients in remission (Fujimoto et 

al., 2008). 

Glo1 expression has a bewildering link with anxiety. Independent research 

teams found decreased and increased Glo1 linked to anxiety states in mouse models 

(Hovatta et al., 2005, Kroemer et al., 2005). Anxiety was then linked to strains of 

mice with increased Glo1 expression through Glo1 gene duplication (Williams et al., 

2009) but then an independent group inadvertently introduced Glo1 duplication into 

a mouse model and found no abnormal anxiety state (Kollmannsberger et al., 2013). 

In these and related studies brain content of MG has been often overestimated – 

reviewed in (Rabbani and Thornalley, 2014c) and hence there remains uncertainty on 

the link of Glo1 with anxious states – as reviewed (Thornalley, 2006). 

There is an emerging role of GLO1 in vascular function and CVD. A large 

cohort study of over 90,000 cases and control studying gene expression associations 

genome-wide found decreased GLO1 was a driver for CVD (Mäkinen et al., 2014). 

Experimental inhibition of Glo1 increased atherosclerotic plaque development in 

ApoE deficient mice (Tikellis et al., 2014). There is an evidence that GLO1 

overexpression preserves cardiac function post-myocardial infarction through 

increase of vascularity and prevention of cardiomyocyte apoptosis (Blackburn et al., 

2013). A contributory factor to GLO1 involvement in vascular disease may be down 

regulation in hypoxia linked to tissue ischemia (Zhang et al., 2012). With decreased 

tissue oxygenation, there will also be an increased roll for anaerobic glycolysis and 

increased MG formation. Overexpression of GLO1 in bone marrow cells and in 

endothelial cells also increased angiogenesis (Ahmed et al., 2008, Vulesevic et al., 

2014). 

GLO1 has a historical link to cancer research through studies of Szent-

Gyorgyi, Vince and others – reviewed in (Thornalley and Rabbani, 2011). Contrary 

to earlier views, overall human tumour cell lines do not have higher GLO1 activity 

than non-malignant cells in vitro (Ayoub et al., 1992). Some tumour cell lines had 

high GLO1 activity and were multidrug resistant but sensitive to the GLO1 cell 

permeable inhibitor, S-p-bromobenzylglutathione cyclopentyl diester BrBzGSHCp2  

(Sakamoto et al., 2000, Sakamoto et al., 2001)- Figure 1.7. Studies by Santarius et 

al. suggested that increased GLO1 expression in some human tumours is due to 

GLO1 gene amplification (Santarius et al., 2010). GLO1 overexpression is also 
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acquired by oncogene-linked malignant transformation (Young et al., 2004) and 

chronic treatment with antitumor agents (Yang et al., 2008). 

End-stage renal disease (stage 5 chronic kidney disease (CKD)) is where 

patients suffer the most profound increase in MG concentration – up to 8-fold 

(Agalou et al., 2002, Rabbani and Thornalley, 2012b) – yet little is known of GLO1 

activity. In patients on haemodialysis, the activity of GLO1 in red blood cells was 

increased 21% (Mann et al., 1999). Decreased GLO1 activity in rare GLO1 

frameshift mutation heterozygote human subjects was associated with decreased 

glomerular filtration rate (Ikeda et al., 2011). A patient with renal failure and very 

low GLO1 activity had a high occurrence of CVD events (Miyata et al., 2001). In 

experimental studies, over expression of Glo1 in rats decreased development of renal 

senescence in ageing (Ikeda et al., 2011).  

There are other conditions that have noticeable effects on Glo1 expression. 

For example, mouse ESCs showed decreased expression of Glo1 under hypertonic 

stress (Mao et al., 2008). In the macrophages, the inflammatory signalling of 

lipopolysaccharide via the Tol-4 receptor induced increased expression of GLO1 

which is thought to be part of the anti-stress gene response to endotoxaemia (Du et 

al., 2010). This might suggest that regulation of GLO1 is part of the anti-

inflammatory, anti-stress gene response. 

In several diseases, therefore, GLO1 expression and activity is decreased. 

The mechanisms underlying this are often uncertain. The following may apply: 

(i) Down regulation by receptor for advanced glycation endproducts (RAGE) 

GLO1 down regulation was linked to activation of the receptor for advanced 

glycation endproducts (RAGE) which is involved in pro-inflammatory signalling and 

the development of vascular complications of diabetes. These findings were 

supported by using RAGE knockout mice which did not develop diabetic neuropathy 

nor neuronal deficiency of Glo1. Furthermore, when the RAGE knockout mice 

treated with BrBzGSHCp2, the cell permeable Glo1 inhibitor (Figure 1.7), the mice 

developed diabetic neuropathy (Konrade et al., 2006). Other studies in experimental 

diabetic nephropathy and liver regeneration have supported a link between RAGE 

and Glo1 down regulation (Reiniger et al., 2010, Zeng et al., 2012). 
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Figure 1.7: S-p-bromobenzylglutathione cyclopentyl diester structure  

(Thornalley and Rabbani, 2011). 

 

(ii) Increased proteolysis of GLO1 protein 

Incubation of human aortal endothelial cells in high glucose concentration 

media in vitro decreased GLO1 protein and activity without change in GLO1 

mRNA. Irshad et al. reproduced these findings and found that GLO1 decrease was 

linked to increased ubiquitination and proteolysis (Irshad Z, 2014). High glucose 

concentration increased the expression of RAGE and other inflammatory proteins. 

These elevations were normalized by GLO1 overexpression (Yao and Brownlee, 

2010).  

(iii) Down regulation of Nrf2 signalling 

Both basal and inducible expression of GLO1 are regulated by Nrf2 (Xue et 

al., 2012). Therefore, physiological and disease states that impair Nrf2 signalling 

may likely decrease GLO1 expression and disease states that increase Nrf2 

signalling may likely increase GLO1 expression. An example of decreased Nrf2 

activity is inflammatory signalling by the NF-kB system which conflicts with and 

counters Nrf2 signalling (Liu et al., 2008). This may occur through sveral 

mechanisms, one of which is competetion for CREB binding protein by the two 

signalling systems (Ahmed et al., 2014) - Figure 1.8.  
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Figure 1.8: An example of how activation of the NF-kB system via RAGE 

may conflict with the Nrf2 system to down regulate GLO1 expression 

(Ahmed et al., 2014). 

1.4.3. Glyoxalase 2 

1.4.3.1. Kinetic characteristics, molecular properties, genetics and 

polymorphisms 

Human GLO2 is a thiolesterase. It has broad substrate specificity for 

glutathione thiol esters with preference for S-2-hydroxyacylglutathione derivatives. 

The rate of hydrolysis of S-D-lactoylglutathione to GSH and D-lactate, catalysed by 

GLO2, followed Michaelis-Menten kinetics where the KM and kcat values were 146 

µM and 727 s-1  (Clelland and Thornalley, 1991, Allen et al., 1993). There are two 

major isoforms of GLO2 which are mitochondrial and cytosolic form. The molecular 

mass of mitochondrial form is 33,806 Da (sequence) and pI of 8.3 (predicted) 

whereas; the molecular mass of the cytosolic one is 28,860 Da (sequence) and pI of 

8.3  (Cordell et al., 2004) –Figure  1.9. 
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Human GLO2 gene is called hydroxyacylglutathione hydrolase (HAGH) is 

located in chromosome 16 at band 13.3. Genetic polymorphisms of GLO2 are 

extremely rare and there is usually only one phenotype expressed which is called 

HAGH1. However, it has been detected that there is another rare form of GLO2 

which is HAGH2 - reviewed by (Thornalley, 1993). GLO2 contains a Fe(II) Zn(II) 

centres which are considered as metal ion binding sites. Metal ion binding is an 

important determinant of protein structure and catalytic activity – substrate 

hydrolysis is linked to the Zn(II) site. GLO2 is acetylated at lys229 (Dragani et al., 

1999, Limphong et al., 2009, Choudhary et al., 2009). 

Human HAGH consists of 10 exons and is transcribed to two different 

mRNA species from 9 and 10 exons, respectively. The 9 exon derived transcript 

encodes both the mitochondrial and cytosolic GLO2 forms where GLO2 that targets 

mitochondria is initiated from an AUG codon in the mRNA sequence and directed to 

the mitochondrial matrix, whereas cytosolic GLO2 is initiated by internal ribosome 

entry at a downstream AUG codon. On the other hand, the transcript deriving from 

10 exons has an in-frame termination codon between the two initiating AUG codons, 

which only encodes the cytosolic GLO2 (Cordell et al., 2004). Both forms are 

acetylated at lys229 (Choudhary et al., 2009).  

There are two domains forming the structure of human cytosolic GLO2, 

which are a predominantly α-helical domain and a four-layered β-sandwich. The 

active site contains a binuclear metal ion binding site which has zinc (II) and iron (II) 

ions and a substrate binding site extending over the domain interface. In addition, 

there is a hydroxide ion coordinated to both metal ions, which is situated 2.9 Å from 

the carbonyl carbon of the substrate in a position that may act as the nucleophile 

during catalysis process (Cameron et al., 1999). 
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Figure 1.9: Structure and catalytic mechanism of glyoxalase 2.  

a. Schematic representation of GLO2. The molecule has been colour ramped 

according to residue number starting with red at the N terminus and finishing with 

blue at the C terminus. The b strands of the first domain and the helices of the second 

domain have been labelled for clarity. The metal ions and the coordinating residues 

are represented by balls and sticks. b. A reaction mechanism for GLO2 proposed on 

the basis of the position of S-(N-hydroxy-N-bromophenylcarbamoyl)glutathione 

(HBPC–GSH) in the active site. The hydroxide ion is next to the carbonyl carbon, 

zinc (I) close to the carbonyl oxygen and zinc (II) near the sulphur of the HBPC–

GSH. The hydroxide attacks the carbonyl carbon to form a negatively tetrahedral 

intermediate that may be stabilised by coordination to zinc (I). The C–S bond then 

breaks to yield the product. Presumably, in the apo enzyme, the sixth coordination 

positions of the zinc ions will be taken up by water molecules but these are not 

shown in the diagram (Cameron et al., 1999). (Reproduced with permission – see 

Appendix). 

a. 

b. 
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The role of GLO2 in mitochondria is uncertain as there is no mitochondrial 

targeting of GLO1. Mitochondrial GLO2 may be involved in delivery of GSH into 

mitochondria via S-D-lactoylglutathione but since GSH and S-D-lactoylglutathione 

had similar mitochondrial uptake kinetics and the cytosolic concentration of S-D-

lactoylglutathione is usually <1% of GSH, this appears unlikely suggested by 

Rabbani et al. They further argued that GLO2 hydrolyses other acyl-GSH derivatives 

such as S-acetyl-GSH and S-succinyl-GSH. Recent research suggests there is 

significant non-enzymatic acetyl and succinyl transfer from acetyl-CoA and 

succinyl-CoA in mitochondria and a likely acceptor is mitochondrial GSH. GLO2 

may, therefore, maintain GSH by repairing endogenous acylations where high 

concentrations of acetyl-CoA and succinyl-CoA in mitochondria require targeting of 

GLO2 to this compartment (Rabbani et al., 2014b).  

1.4.4. Glyoxalases in perspective – a transcriptome and proteome-wide 

study of expression 

The first genome-scale prediction of synthesis rates of mRNAs and proteins 

has been obtained by Selbach and colleagues. They simultaneously measured 

absolute mRNA and protein abundance and turnover by parallel metabolic pulse 

labelling for more than 5,000 genes in exponentially growing non-synchronized 

NIH3T3 mouse fibroblasts (Schwanhäusser et al., 2011). The number of copies per 

cell of mRNA and protein for Glo1 and Glo2 were: mRNA – Glo1, 22, Glo2, 16, and 

median of transcriptome 17; and protein – Glo1, ca. 584,000 and Glo2, ca. 61,000, 

and median of proteome ca. 50,000. The transcription rate (molecules per cell per 

hour) was: Glo1, 2.4, Glo2, 1.2, and median for transcription, 1.8. The translation 

rate (molecules protein per molecule mRNA per hour) was: Glo1, 750, Glo2, 117, 

and median for translation, 117. The half-lives of mRNA and protein were: mRNA – 

Glo1, 7.8 h, Glo2, 10.9 h, and median of transcriptome 9 h; and for protein, Glo1, 

179 h, Glo2, 33 h, and median of proteome ca. 46 h. The view emerging from this 

prediction is that Glo1 has protein abundance ca. 10-fold higher and half-life 4-fold 

higher than median value whereas Glo2 is a protein with expression and turnover 

similar to the median value. The quantitative level of Glo1 protein is in reasonable 

agreement with that estimated for human tissues by immunoassay of ca. 0.2 µg per 

mg protein or GLO1 is ca. 1/5000th of total protein (Larsen et al., 1985). GLO1 is a 

highly efficient enzyme and so these relatively high levels of protein probably reflect 
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a requirement for high in situ activity. GLO1 is 677 of 5028 proteins detected or in 

the top 13% of proteins detected by abundance (Xue et al., 2014).   

GLO1 has similar abundance to that of other glycolytic enzymes such as 

transketolase, but lower than enzymes involved in the prevention of oxidative 

damage such as copper-zinc superoxide dismutase (SOD1) and mitochondrial 

manganese superoxide dismutase (SOD2). This is may be because of the substrate, 

superoxide, is more reactive than MG and a higher protein concentration is required 

to compete prevention of oxidative damage successfully with other proteins. Proteins 

which metabolise low level hydrogen peroxide, peroxiredoxins, are also found at 

higher copy number but they are not true catalysts –being inactivated by the 

substrate hydrogen peroxide and subsequently reactivated by reduction by 

thioredoxin. Peroxiredoxins, therefore, require high cell copy number as they are, in 

a sense, sacrificial targets for hydrogen peroxide-induced oxidative damage 

(D'Autréaux and Toledano, 2007). 

There have been few comprehensive studies of the relationships between the 

levels of transcripts and the levels of the proteins they encode in mammals. Models 

from plants and yeast suggest a modest correlation. In a genetic approach in which 

natural variations were used to disturb both transcript levels and protein levels 

among inbred strains of mice, in quantifying levels of 7,185 most heritable 

transcripts and 486 related proteins, mRNA levels of Glo1 had one of the strongest 

correlations with Glo1 protein; r = 0.87). Only 50% of the genes tested had 

significant correlation of mRNA and protein and the average correlation was r = 0.27 

(Ghazalpour et al., 2011). This suggests that for Glo1 post-transcriptional 

mechanisms converting Glo1 mRNA into protein are relatively constant – at least in 

the liver, and the half-life of Glo1 may be little changed in good health. Studies have 

indicated that GLO1 shows a moderate increase in proteolysis on activation of 

autophagy (Kristensen et al., 2008). 
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1.4.5. Other putative glyoxalase enzymes 

A protein which converted MG to D-lactate without GSH cofactor and 

without formation of intermediate S-D-lactoylglutathione, a MG oxidoreductase, was 

purified from Escherichia coli and called “glyoxalase III” (Misra et al., 1995). This 

was confirmed by independent researchers, determining the specificity constant 

kcat/KM of 1.1 x 105 M-1min-1 (Lee et al., 2012) - ca. 7,000 fold lower than Glo1 of E. 

coli (7.4 x 108 M-1min-1) (Clugston et al., 1998). Such low specific activity casts 

doubt as if this protein has significant MG metabolizing activity in vivo. DJ-1 

isozymes were also considered as possible MG oxidoreductases, suggested by 

sequence analogy with glyoxalase III (Lee et al., 2012). Again, the kcat/KM for 

human DJ-1 was very low - ca. 10,000 fold lower than that of human GLO1. It is 

currently doubtful, therefore, that “glyoxalase III” and the DJ-1 superfamily are 

indeed glyoxalases and contribute significantly to MG metabolism in vivo (Rabbani 

et al., 2014b). 

1.4.6. Metabolism of methylglyoxal by aldoketo reductases 

MG and glyoxal is metabolised mainly by GLO1 and the glyoxalase system, 

with normally minor metabolism by aldoketo reductases (AKRs) and aldehyde 

dehydrogenases. When the glyoxalase system is impaired, AKR isozymes 1A4, 1B1 

(aldose reductase) and 1B3 may metabolise MG to mainly hydroxyacetone and AKR 

isozymes 1B1, 1B3 and 1B8 may metabolise glyoxal to glycolaldehyde. Metabolism 

by AKR 1B1 may be a major fate of MG and glyoxal in the human renal medulla 

where high expression of AKR 1B1 outcompetes GLO1. AKRs are ARE-linked 

genes with expression regulated by transcription factor Nrf2 – reviewed in (Rabbani 

and Thornalley, 2012b). Baba and colleagues suggested that aldose reductase may 

play a more important role in MG metabolism than the current understanding (Baba 

et al., 2009). Unfortunately the observed GLO1 kinetics might be underestimated by 

being rate limited by hemithioacetal formation in the assay because GLO1 activity 

should be assayed with pre-forming the hemithioacetal substrate (Thornalley, 1993). 

Comparison of rates of MG metabolised by the glyoxalase pathway and aldoketo 

reductases in vivo suggests that >97% of MG metabolism is by the glyoxalase 

pathway except in the renal medulla where there is high expression of aldose 

reductase.   
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1.4.7. Glyoxalase system metabolite  

1.4.7.1. Methylglyoxal  

MG is highly reactive and potentially toxic molecule that is produced mainly 

as a by-product of glycolysis via the spontaneous degradation of glyceraldehyde-3-

phosphate (GA3P) and dihydroxyacetonephosphate (DHAP). Other minor sources of 

MG formation are: from the oxidation of acetone in the metabolism of ketone bodies, 

the oxidation of aminoacetone in threonine catabolism and the degradation of 

proteins glycated by glucose. The whole body rate of formation of MG in human 

adults is approximately 3 mmol per day (Rabbani and Thornalley, 2012d).  MG is an 

α-oxoaldehyde which has molecular mass of 72.0 Da. MG is highly toxic, most 

likely as a result of its interaction with proteins and DNA. MG reacts with arginine 

residues in proteins to form Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine 

(MG-H1) which considered as the most significant product accounting for more than 

90% of the adducts (Rabbani and Thornalley, 2012d) - Figure 1.10. Protein contents 

of MG-derived hydroimidazolone in mammalian tissue and extracellular proteins are 

given in Table 1.8. 

 
Figure 1.10: Reaction of methylglyoxal with arginine residues to form 

hydroimidazolone MG-H1. The figure shows the reaction of MG with arginine 

residues and the formation of MG-H1. 
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Table 1.8: Concentration of methylglyoxal-derived hydroimidazolone in 

mammalian tissue and extracellular proteins (mmol/mol arg). 

Organism Protein source n [MG-H1 residue] 

Human 

plasma protein 10 0.31 ± 0.20 

red blood cells 10 3.14 ± 0.72 (%Hb) 

peripheral lymphocytes 3 7.46 ± 1.13 

mesangial cells (in vitro) 3 0.60 ± 0.05 

lens protein 55 15.0 ± 1.7 

high density lipoprotein 22 1.00±0.54 

Rat 

plasma protein 13 1.29 ± 0.47 

aortal collagen 6 0.22 ± 0.18 

heart 7 3.43 ± 1.01 

liver 13 3.34 ± 0.32 

skeletal muscle 7 1.70 ± 0.77 

brain 7 2.73 ± 0.33 

renal glomeruli 7 2.30 ± 0.25 

retina 7 1.88 ± 0.51 

sciatic nerve 7 4.74 ± 2.74 

 

In healthy adults, the urinary excretion of MG glycation protein adducts are 

ca.10 µmol/day (Rabbani and Thornalley, 2012d). This indicates that only a small 

proportion of the MG produced physiologically acts to modify the proteome, while 

the majority is metabolised by the enzymatic defence systems. In patients with 

diabetes, there is a 15-fold increase in the MG-H1 urinary excretion, when compared 

to the levels of MG-H1 adducts in healthy controls (Ahmed et al., 2005b). This 

increase might have a great effect on the proteome modification in diabetes. 

1.4.7.1.1. Measurement of dicarbonyls 

Physiological concentrations of MG and related dicarbonyls have often been 

overestimated. For adequate sensitivity, chemical derivatization of α-oxoaldehydes is 

essential. The latest and most advanced method employ derivatization with 1,2-

diaminobenzene, detection by LC-MS/MS and quantitation by stable isotopic 

dilution analysis (Rabbani and Thornalley, 2014c). Recent estimates of MG and 

glyoxal concentrations in human blood plasma are in the range 100–120 nM and 

cellular concentrations of 1–5 µM and 0.1–1 µM respectively (Dobler et al., 2006, 

Kurz et al., 2011). The estimates of 10 -1000 fold higher than these may be easily 

recorded with inadequate control of interferences during sample processing. Studies 

investigating the effects of glyoxal and MG on cultured cells and tissues using at 

concentrations of 10 folds higher than this are likely to be only of relevance for acute 
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intoxication and cytotoxicity. For example, the use of MG at millimolar 

concentrations to demonstrate the impairment of insulin signalling is unlikely to be 

physiologically relevant (Riboulet-Chavey et al., 2006).  

1.4.7.1.2. Methylglyoxal in diabetes 

Incubation of human red blood cells in short term culture in vitro with the 

presence of high glucose concentration revealed increases in the steady-state 

concentrations of MG as a consequence of increased flux of formation of MG – as 

judged by glucose concentration-dependent increase in flux of D-lactate formation. 

The cellular GSH, GLO1 and GLO2 activities did not change (Thornalley, 1988). In 

other in vitro studies, the human microvascular endothelial cell line (HMEC-1) and 

aortal endothelial cells from bovine and human were incubated in high glucose 

concentration media provided model of hyperglycaemia characteristic of diabetes. 

These studies concluded that there was decrease in the activity of GLO1 and increase 

in the steady-state concentrations and flux of formation of MG (Shinohara et al., 

1998, Dobler et al., 2006, Yao and Brownlee, 2010). Shinohara and colleagues 

showed that the increased formation of AGEs was prevented by overexpression of 

GLO1 in endothelial cells which were cultured in high glucose concentration media 

(Shinohara et al., 1998). 

The incubation of cells with GLUT1-dependent uptake of glucose in high 

glucose concentration media showed increased steady state concentrations of MG 

linked to increased MG formation and decreased GLO1 activity. Examples of these 

cells including vascular endothelial cells and lens fibre cells (Ahmed et al., 2003). 

The increased formation of MG occurs from increased concentrations of  

triosephosphates, GA3P and DHAP, with trace degradation to MG (Phillips and 

Thornalley, 1993). Formation of MG is a minor fate of triosephosphates, accounting 

for ca. 0.1% of glucotriose flux (Thornalley, 1988). MG concentration was increased 

in the blood, lens, renal medulla and cortex of diabetic rats. In the same conditions, 

there was a significant increase of D-lactate concentration in the blood and lens of 

STZ diabetic rats (Phillips et al., 1993). The concentration of MG in blood was 

increased 5-6 fold in patients with type 1 diabetes and 2-3 fold in patients with type 

2 diabetes – Table 1.9. 
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Table 1.9: Concentration of methylglyoxal in tissues from human, laboratory 

animal and plant origin and cultured mammalian cells. 

Species Sample Experimental condition 
MG content 

/concentration 

Human Plasma Healthy controls 132 ± 63 nM (n = 6) 

Rat Plasma 
Sprague Dawley 

(male, 12 wks) 
358 ± 139 nM (n = 8) 

Mouse 

 

Brain (cortex) 

 

Brain 

(stem/midbrain) 

Strain 129S6/SvEvTac 

0.30 ± 0.06 nmol/g wet 

weight (n = 6) 

[ca. 0.3 µM] 

1.47 ± 0.16 nmol/g wet 

weight (n = 6) 

[ca. 1.4 µM] 

Liver C57BL/6 

3.26 ± 0.65 nmol/g wet 

weight (n = 8) 

[ca. 3.1 µM] 

Mammalian cells in culture 

Human 

Endothelial, 

macrovascular 

(aortal, primary) 

Low glucose 

(5 mM glucose) 

2.46 ± 0.20 pmol/ per 106 

cells [ca. 1.4 µM]; and 

culture medium, 

97 ± 21 nM (n = 3) 

Endothelial, 

microvascular 

(dermal, HMEC-1 

cell line) 

Low glucose (5 mM 

glucose) 

2.36 ± 0.04 pmol/ per 106 

cells [ca. 1.3 µM]; and 

culture medium, 

121 ± 55 nM (n = 3) 

BJ fibroblast 

(primary) 

Control 

 

+ 2 µM R-sulforaphane 

(Glo1 inducer) 

3.92 ± 0.81 pmol per 106 

cells [ca. 0.8 µM]; and 

culture medium, 

155 ± 18 nM (n = 3) 

2.53 ± 0.30 pmol per 106 

cells [ca. 0.5 µM]; and 

culture medium, 

100 ± 19 nM (n = 3) 

Data are mean ± SD. Approximate MG concentrations equivalent to estimated MG 

contents of tissues were deduced assuming an organ density of 1.05 g/ml and of cells 

from established tissue densities and cell volumes, respectively. Experiments have 

been repeated at least 3 times. For related sample preparation, see Supplementary 

methods from (Rabbani and Thornalley, 2014c). 

1.4.7.2. S-D-Lactoylglutathione 

SLG is formed normally in the physiological system as an intermediate of the 

glyoxalase system from the hemithioacetal adduct of MG and GSH, in a reaction 

catalysed by GLO1 (Figure 1.4) (McLellan et al., 1993). SLG is then hydrolysed to 

GSH and D-lactate intracellularly - catalysed by GLO2. It has poor membrane 

permeability and the locus of action of SLG is normally limited to the cytosol. 

However, if there is a leakage from cells, γ-glutamyltransferase - located on the 
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external surface of plasma membrane of cells - cleaves SLG to S-D-

lactoylcysteinylglycine. S-D-lactoylcysteinylglycine then rearranges spontaneously 

to N-D-lactoylcysteinylglycine (Tate, 1975). Thornalley and co-workers 

demonstrated that SLG induced growth arrest and toxicity in human leukaemia cells 

in vitro (Thornalley and Tisdale, 1988).  

Cellular concentrations of SLG are influenced by the activities of GLO1 and 

GLO2 and by the rate of formation of MG. The modification of these rates is 

common in several disease process particularly diabetes producing concomitant 

changes in SLG concentrations in the cells (McLellan et al., 1993). In human blood 

plasma, the concentrations of SLG was significantly higher in patients with diabetes 

(54.1 nmol/ml red blood cells) when compared to normal healthy controls (41.1 

nmol/ml red blood cells) (Thornalley, 1993).  

1.4.7.3. D-Lactate 

There are two main stereoisomers of lactate formed in the human 

intermediary metabolism. The major stereoisomer is L-lactate. The other 

stereoisomer is D-lactate which is usually about 1-5% of the concentration of L-

lactate. The exogenous sources of D-lactate include fermented food such as yogurt 

and pickles. It is also absorbed from microbial fermentation in the gut (Mortensen et 

al., 1991, Hove, 1998, Ewaschuk et al., 2005, De Vrese and Barth, 1991). In 

addition, it is formed endogenously in intermediary metabolism by the glyoxalase 

pathway and metabolised by mitochondrial 2-hydroxyacid dehydrogenase to 

pyruvate in human tissues (Thornalley, 1993). D-Lactate is efficiently metabolised in 

humans and has higher fractional renal clearance than L-lactate (Connor et al., 

1983). Infusion of D-lactate at 1.0-1.3 mmol sodium D-lactate/kg/hr resulted in 

about 90% of the D-lactate being metabolised while the remaining 10% was excreted 

in urine (Oh et al., 1985). D-lactate concentration in blood plasma increased ca. 2-3 

fold after meals and exercise (Ohmori and Iwamoto, 1988, Kondoh et al., 1992b).  

D-Lactate is permeable to cell membranes through a specific lactate 

transporter, passive diffusion of the unionised conjugate acid and also by the 

inorganic anion transporter. It is excreted in urine and is reabsorbed actively from 

renal filtrate by renal tubules. In addition, it is excreted in stool and sweat (Oh et al., 

1985, Kondoh et al., 1992b, Kondoh et al., 1992a). 
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D-Lactate can be considered as a marker of flux of MG formation in tissues 

where it is not metabolised such as lens fibre cells and red blood cells (Thornalley, 

1993). Furthermore, the D-lactate concentration increases in cells which have 

glucose transporter-1 (GLUT-1) such as endothelial cells and erythrocytes when 

cultured in high glucose conditions, and in plasma and urine of STZ-induced diabetic 

rats and patients with diabetes (Thornalley, 1988, Phillips and Thornalley, 1993, 

Karachalias N, 2005, McLellan et al., 1994). The concentration of D-lactate level in 

plasma of healthy adults is in the range of 2 – 20 µM. Higher estimates may be 

achieved when the analytical method does not avoid racemisation of L-lactate which 

is typically preseent in >100 fold excess over D-lactate (De Vrese and Barth, 1991, 

McLellan et al., 1992, Ohmori and Iwamoto, 1988, Brandt et al., 1980). 

 D-Lactate is measured by fluorescent endpoint enzymatic assay with D-

lactic dehydrogenase. The concentration is determined by formation of NADH 

associated to oxidation of D-lactate to pyruvate (McLellan et al., 1992). It can also 

be measured by reverse phase high phase liquid chromatography (HPLC) by 

derivatization of the oxidation product-pyruvate with 1,2-diaminobenzene derivative 

(Ohmori and Iwamoto, 1988, Ohmori et al., 1991).  

In experimental diabetes, urinary excretion of D-lactate increased one week 

after induction of diabetes in STZ rats and reached a maximum value of ca. 5-6 fold 

which was higher than healthy control after 4 weeks and remained high thereafter 

(Dinkova-Kostova et al., 2010). In patients with diabetes, the urinary concentration 

of D-lactate increased 2–3 fold, which might be used as non-invasive marker of 

increased MG and metabolic dysfunction linked to diabetes complication 

(Talasniemi et al., 2008). 

 

 

 

 



81 

 

1.5. Aim and objectives  

1.5.1. Aim  

The initial aim of this work was to study the effect of Glo1 deficiency on the 

development of experimental diabetic nephropathy (DN) in streptozotocin (STZ)-

induced diabetic mice in a functional genomics study using Glo1 mutant mice 

deficient in Glo1 expression. The main study hypothesis was: increased exposure to 

Glo1 substrate dicarbonyls accelerates the development of diabetic nephropathy in 

STZ diabetic mice. The hypothesis would be tested by studying the effect of 

decreasing Glo1 activity by heterozygous genetic knockout in Lexicon Glo1 mutant 

mouse on the development of diabetic nephropathy in STZ-induced diabetic mice. 

Supporting evidence for this hypothesis came from observations of increased 

plasma MG concentration in clinical and experimental diabetes and with increased 

formation and accumulation of MG-derived AGEs (McLellan and Thornalley, 1994, 

Babaei-Jadidi et al., 2004, Ahmed et al., 2005a, Karachalias et al., 2010). This led to 

a widely held view that increased MG or dicarbonyl stress may be a key risk factor 

for development of microvascular complications - including diabetic nephropathy 

(Thornalley, 1994, Brownlee, 2001, Rabbani and Thornalley, 2014a). Functional 

genomics studies with Glo1 overexpression in transgenic mice have shown 

prevention of diabetic microvascular complications - including diabetic nephropathy 

(Giacco et al., 2014, Berner et al., 2012, Bierhaus et al., 2012). Experimental 

diabetes is associated with down regulation of Glo1 activity in the kidney of STZ-

induced diabetic mice and other models of experimental diabetic nephropathy – 

db/db mice and STZ-induced diabetic rats (Bierhaus et al., 2012, Barati et al., 2007, 

Palsamy and Subramanian, 2011). I reasoned, therefore, that if Glo1 and MG-

derived AGE accumulation are risk factors for the development of diabetic 

nephropathy, partial ablation in heterozygous Glo1 knockout mouse with STZ-

induced diabetes would exacerbate the development of diabetic nephropathy and 

possibly also induce nephropathy in the non-diabetic state. 

To test if increased in situ exposure to glyoxal and MG accelerates the 

development of DN, the development of DN in Glo1 knockout mouse and C57BL/6J 

wild-type control mice with STZ-induced diabetes will be studied. STZ-induced 

diabetes, a model of type 1 diabetes, does not consistently show albuminuria nor 

severe glomerular mesangial expansion in C57BL/6J mice (Qi et al., 2005, 
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Nakagawa et al., 2007). Increase in renal MG-modified mitochondrial proteins is 

expected to induce oxidative stress and metabolic dysfunction and accelerate DN 

(Rosca et al., 2005). Diabetes will be induced in Glo1 knockout and wild-type 

controls by the Animal Models of Diabetic Complications Consortium (AMDCC) 

low dose STZ protocol: 50 mg/kg on 5 consecutive days (Breyer et al., 2005). If 

plasma glucose is more than 15 mM after 4 weeks, the mouse will be included in the 

study. Samples of blood and 24 h urine samples will be collected at baseline and 1, 3 

and 5 months from all included mice in this study. Measurements made will be: 

plasma glucose, total cholesterol, HDL cholesterol, triglycerides (Hammad et al., 

2003) and urinary albumin, creatinine clearance, urinary protein glycation, oxidation 

and nitartion free adducts (Thornalley et al., 2003a). At termination, ultrastructural 

analysis of kidney sections will be performed by electron microscopy morphometry, 

reporting glomerular and tubular basement membrane thicknesses and mesangial 

volume (Hammad et al., 2003, Okada et al., 2003). Kidney, heart and muscle protein 

damage markers will be determined by quantitative proteomics. Mouse husbandry, 

blood and urine, sampling and nephropathy validation will be as per AMDCC 

protocols (Breyer et al., 2005). One kidney will be used for assay of enzyme 

activities: Glo1, and proteasome activities. Blood pressure will be measured non-

invasively by tail-cuff method. 

Following support to the host research team from the Wellcome Trust, the 

IMKC Glo1 mutant mouse was available for this project. I had concern, however, if 

this mouse model was indeed deficient in expression of Glo1. Information held on 

the genotype and phenotype of the mutant mouse line by the European Mutant 

Mouse Archive from the producer, Lexicon Pharmaceuticals Inc. (Texas, USA), 

indicated genotyping had been performed by non-standard analysis – assay of Glo1 

mRNA, and the phenotype was essentially that of healthy WT controls, including in 

putative homozygous mutants. Null mutation of Glo1 was expected to be lethal in 

homozygous inheritance given the rare precedent in the human population of 

embryonic lethality of a GLO1 frame shift mutilation leading to expression of a 

functionally inactive truncated peptide (Arai et al., 2010). An initial objective of this 

study was therefore to establish a robust method for genotyping of the IMKC Glo1 

mutant mouse and establish the required Glo1 deficiency was present. My 

implementation of studies towards this initial objective, however, were unable to 

confirm Glo1 deficiency in this mouse model and suggested compensatory Glo1 



83 

 

expression at WT level was present – see Results section. This explained the normal 

phenotype of the IMKC Glo1 mutant mouse. Proceeding with the previous aim was 

re-evaluated as both genotypes including Lexicon Glo1 mutant mouse and wild-

types have a similar phenotype which limits the benefits of using Lexicon Glo1 

mutant mouse as a Glo1 deficient mouse and a model of accelerated diabetic 

complication. In addition, it is interesting to further investigate the potential genetic 

causes behind the phenotype of Lexicon Glo1 mutant mouse, how gene trapping of 

Glo1 failed to produce a Glo1 deficient mouse and apply and explore the genetic 

causes in wider contexts.  

The project aim and objectives were redeveloped. The revised aim was to 

characterise the compensatory Glo1 expression in the IMKC mutant mouse and 

explore the mechanism producing it. The latter included imposing similar metabolic 

conditions on precursor mouse embryonic stem cells as gene trapping of Glo1 to 

model the mechanism of induction of compensatory Glo1 expression and explore 

possible clinical translation of the findings. The revised overall study hypothesis was 

that functional Glo1 deficiency in embryonic stem cells may activate a compensatory 

mechanism to maintain wild-type Glo1 expression and thereby prevent embryonic 

lethality of associated dicarbonyl stress. 

1.5.2. Objectives  

Objective 1. To develop a method for genotyping of the Lexicon Glo1 mutant 

mouse and characterise the expression of Glo1 in heterozygous and homozygous 

transmission of Glo1 mutant allele  

To achieve this objective, the sequence of the inserted DNA and genotyping 

primers used in the mouse line development was obtained from the IMKC project 

leader at Lexicon Pharmaceuticals and PCR and qPCR methods developed to detect 

and quantify WT and mutant Glo1 alleles in mouse tissue. Glo1 mutant mice were 

bred with wild-type controls and Glo1 genotype determined and Glo1 expression at 

mRNA, protein and activity levels determined in tissues. Related glyoxalase system 

analytes, tissue concentration of MG and tissue and urine concentrations of MG-

derived glycation adducts were determined to assess the functional activity of the 

glyoxalase pathway in Glo1 mutant mice.  
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Objective 2. To identify the mechanism of compensatory expression of Glo1 in 

the Lexicon Glo1 mutant mouse 

The mechanism of compensatory expression of Glo1 in the Glo1 mutant 

mouse was suggested from outcomes of Objective 1 and therefore development of 

the hypothesis to be tested and related experimental design to test it was contingent 

on this. In the event, the outcomes of objective 1 indicated a likely mechanism of 

compensatory expression of Glo1 was functional Glo1 copy number alteration. The 

related hypothesis developed was: functional Glo1 copy number increase is present 

in the Glo1 mutant mouse and the additional WT allele is co-inherited with the Glo1 

mutant allele so as to maintain WT Glo1 expression and phenotype. To tests this 

hypothesis and achieve this objective, copy number of Glo1 WT and mutant alleles 

were quantified in several mouse tissues and the inheritance of alleles studied in 

mating of mutant mouse with one and two mutant alleles with WT controls studied. 

The extent of DNA copy number increase was determined by high intensity aCGH 

DNA microarray of Glo1 mutant mouse with one and two mutant alleles and WT 

controls.  

 

  Objective 3. To model the mechanism of Glo1 copy number alteration in 

mouse embryonic stem cells 

Glo1 mutant mice were produced by gene trapping in mouse ESCs in vitro. 

The outcome of Objective 2 revealed that copy number increase of Glo1 produced 

the compensatory Glo1 expression in the Glo1 mutant mouse. I reasoned that 

mutation of the Glo1 allele induced dicarbonyl stress in ESCs and this may have 

produced increased copy number alteration. Inducible gene copy number change is a 

potential mechanism to resist cytotoxic stress through increased functional copy 

number of protective genes (Hastings, 2007). Copy number change (CNC) occurs in 

replicative stress induced by polymerase inhibitor aphidicolin and ribonuclease 

reductase inhibitor, hydroxyurea, and also occurs in response to mutation by low-

dose ionising radiation (Arlt et al., 2014, Arlt et al., 2009). Copy number changes are 

unfocused and occur across the human genome resembling CNV. There is no 

example hitherto of increased copy number change in response to exposure of high 

and toxic levels of an endogenous metabolite focussed and limited to the gene linked 

to endogenous enzymatic protection. The hypothesis developed was: dicarbonyl 

stress in ESCs induces functional copy number alteration of Glo1. To test this, ESCs 
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were cultured and exposed to exogenous MG and copy number of Glo1 determined. 

Where Glo1 copy number increase occurred, copy number of other genes close to the 

Glo1 locus (found with increased copy number in the Glo1 mutant mice studies of 

Objective 2) were assessed to determine if copy number increase in MG-induced 

dicarbonyl stress in ESCs in vitro has a similar genetic pattern as in the Glo1 mutant 

mouse. 

 

Objective 4. To study the copy number alteration of GLO1 in clinical samples 

From the previous objectives and experimental outcomes, dicarbonyl stress-

induced copy number increase of Glo1 appeared to be a viable mechanism for a 

protective response to counter potentially damaging dicarbonyl glycation. The 

occurrence of this clinically is unknown. I considered that the most likely instance of 

this occurring would be in clinical disease associated with most severe dicarbonyl 

stress. Dicarbonyl stress is most severe in patients with end stage renal disease (ESRD) 

receiving haemodialysis (HD). Plasma concentrations of MG are increased 5-fold with 

high flux of formation of dicarbonyl-derived AGEs (Rabbani and Thornalley, 2012b, 

Agalou et al., 2005). I developed the hypothesis that dicarbonyl stress in ESRD 

patients receiving HD produces Glo1 copy number alteration. To test this hypothesis I 

analysed GLO1 copy number in peripheral blood mononuclear cells of HD patients and 

healthy control subjects. I collaborated with a local clinical nephrologist, Dr Daniel 

Zehnder, who gained ethical approval to recruit HD patients and healthy controls and 

collect peripheral venous blood samples with consent for the study.  

These final series of studies provided a rigorous examination of the failure of 

gene trapping to produce a Glo1 deficient mouse and revealed a new level of stress 

response of the glyoxalase system through copy number alteration. 
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2. Materials and methods 

2.1. Materials 

2.1.1. Glyoxalase 1 mutant and wild type control mice  

Glo1 mutant mice were produced by Lexicon Pharmaceuticals Inc. (Houston, 

Texas, USA). A heterozygote breeding pair was obtained from the European Mutant 

Mouse Archive, Heidelberg, Germany. Wild-type control siblings of heterozygote 

C57BL/6 mice were produced in the Biological Services Unit, University of 

Warwick. Control mouse liver samples of strains C57BL/6J (stock number: 664) and 

DBA/1J (stock number: 670) were purchased from Jackson Laboratories (Bar 

Harbor, Maine, USA) via UK agent Charles River (Margate, Kent, UK). 

 

2.1.2. Human and murine cells  

Irradiated mouse embryonic fibroblasts (MEF) and mouse ESCs of C57BL/6 

mouse strain were purchased from Life Technologies (Paisley, UK). Human 

leukaemia 60 (HL60) cells were purchased from the European Collection of Animal 

Cell Cultures (Porton Down, UK). Human non-small cell lung adenocarcinoma 

(NCI-H522) was obtained from the National Cancer Institute (Frederick, MD, USA). 

Dulbecco’s Modified Eagle medium (D-MEM), Knockout™ D-MEM, fetal bovine 

serum-ES-cell qualified (FBS), 0.1% gelatin attachment factor (AF), knockout serum 

replacement (KSR), MEM non-essential amino acids solution (NEAA), L-glutamine, 

2-mercaptoethanol, StemProTM Accutase TM cell dissociation reagent were purchased 

from Life Technologies (Paisley, UK). Recombinant human leukaemia inhibitory 

factor (LIF) was purchased from Millipore, UK. Roswell Park Memorial Institute 

(RPMI) 1640 medium and fetal bovine serum was purchased from Invitrogen (Life 

Technologies, Paisley, UK). Phosphate buffered saline (137 mM NaCl, 2.7 mM KCl, 

10 mM Na2HPO4, 2 mM KH2PO4) was provided by the preparatory services, 

Clinical Sciences Research Laboratories, University of Warwick (University 

Hospital, Coventry, UK). 
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2.1.3. Enzymes 

Aminopeptidase, proteases, L-lactic dehydrogenase, D-lactic dehydrogenase, 

and other enzymes were purchased from Sigma-Aldrich. Leucine aminopeptidase 

(EC 3.4.11.2) was type VI from porcine kidney microsomes had a specific activity of 

22 units/mg protein (1 unit of activity hydrolysed 1.0 mol of L-leucine-p-nitroanilide 

to L-leucine and p-nitroaniline per min at pH 7.2 and 37ºC). Pepsin (EC 3.4.23.1) 

was from porcine stomach mucosa with a specific activity of 3460 units/mg protein 

(1 unit hydrolysed haemoglobin with an increase in absorbance at 280 nm of 0.001 

AU per min of trichloroacetic acid-soluble products, at pH 2 and 37ºC). Pronase E 

(EC 3.4.24.31) was type XIV from bacterial Streptomyces griseus with a specific 

activity of 4.4 units/mg protein (1 unit of activity hydrolysed casein forming 1.0 

mmol of tyrosine per min at pH 7.5 and 37ºC). Prolidase (EC 3.4.13.9) was from 

porcine kidney and had a specific activity of 145 units/mg protein, where 1 unit of 

activity hydrolyses 1.0 μmol of Gly-Pro per min, at pH 8 at 40ºC. L-Lactic 

dehydrogenase (EC 1.1.1.27) was from bovine heart, type III with activity of 

≥500 units/mg protein and D-lactic dehydrogenase (EC 1.1.1.28) was from 

Staphylococcus epidermidis and had activity of ≥80 units/mg lyophilised powder. 

SfaNI restriction enzyme was purchased from New England Biolabs, UK. 

 

2.1.4. Substrates and co-factors 

Glutathione (cat. no. G4251-10G), nicotinamide adenine dinucleotide - 

oxidised form NAD+ (cat. no. N0632-1G), β-nicotinamide adenine dinucleotide 2′-

phosphate reduced tetrasodium salt hydrate NADPH (cat. no. N7505-1G), 
aminoguanidine hydrochloride (cat. no. 396494), sodium pyruvate (cat. no. P5280), 

D-lactic acid (cat. no. L0625), L-lactic acid (cat. no. L1750) and glyoxal (40% 

aqueous solution; cat. no. G-3140) were purchased from Sigma-Aldrich (Poole, 

Dorset, UK). 
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2.1.5. Antibodies and primers 

Anti-β-actin antibody (cat. no. ab8229), anti-sex determining region Y-box 2 

(SOX2) antibody (cat. no. ab97959), anti-NANOG antibody (cat. no. ab80892) and 

anti-OCT4 antibody (cat. no. ab19857) were purchased from Abcam, UK. Rabbit 

anti-human GLO1 antibody was prepared and purified in-house by previous 

members of the host research team as described in (Allen et al., 1993). Anti-rabbit 

IgG (whole molecule)–peroxidase conjugate antibody produced in goat, and non-

immune IgG fraction of antiserum, buffered aqueous solution was purchased from 

Sigma-Aldrich, UK. 

To characterise Glo1 mutant mice and for genotyping, primers suggested by 

Lexicon Pharmaceuticals (the Glo1 mutant mice supplier) were purchased from 

Invitrogen, UK. To amplify the reference gene Rn 18s (18S ribosomal RNA) - 

primer number QT01036875 was purchased from Qiagen (Manchester, UK). Two 

other Glo1 pairs (pair 2 and pair 3) of primers were used for genotyping of the 

mutation locus in Glo1 mutant mice. Genotyping of C419A SNP of GLO1 in clinical 

subjects was performed using C419A genotyping primers, as described (Rinaldi et 

al., 2014) – see Appendix A. 

Gene expression assays were performed using Taqman gene expression assay 

and purchased from Life Technologies, UK. The following genes were examined: 

bric-a`-brac tramtrack broad complex domain containing 9 (Btbd9), Glo1, dynein - 

axonemal, heavy chain 8 (Dnah8), glucagon-like peptide-1 receptor (Glp1r), and 

vomeronasal 2, receptor 112 (Vmn2r112).  β-Actin and 18S ribosomal RNA (Rn18s) 

were used as reference genes (Appendix B). Taqman universal master mix II with 

Uracil-N glycosylase (UNG) was used in the transcription–polymerase chain 

reaction (RT-PCR) protocol. 

Copy number analysis was performed using Taqman copy number assay and 

purchased from Life Technologies, UK.  Assay of the following murine DNA was 

performed: Glo1 (exon 1), Glo1 (exon 6), Btbd9, 1700097n02rik and Dnah8. GLO1-

Vic Taqman copy number assay was designed to detect DNA straddling the inserted 

DNA vector and Glo1 to differentiate the trapped copy of Glo1 from the WT copy. 

Transferrin receptor protein1 (Tfrc) and telomerase reverse transcriptase (Tert) copy 

number assay was used as reference assay for the copy number in mouse. GLO1 

copy number assay of human DNA was referenced to RNASE P - Taqman copy 
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number reference assay – see Appendix C. The master mix was Taqman genotyping 

master mix from Life Technologies, UK. 

 

2.1.6. Other reagents and consumables 

Bovine serum albumin, sodium dihydrogen phosphate NaH2PO4, 

hydrochloric acid (analytical grade, 1 N; HCl), EDTA, Tween-20, 

diethylenetriaminepenta-acetic acid (DETAPAC), trichloroacetic acid (TCA) and β-

mercaptoethanol were purchased from Sigma-Aldrich, UK. Tris(hydroxymethyl)-

aminomethane (Tris base), Tris-HCl, perchloric acid, sodium chloride, potassium 

bicarbonate, glycine and methanol, 4-(2-hydroxyethyl) piperazine-1-ethanesulfonic 

acid (HEPES), sodium dodecyl sulphate (SDS) and 5x siRNA universal buffer were 

purchased from Fisher Scientific (Loughborough, UK). Complete lysis-M buffer was 

purchased from Roche, UK.  Hydrazine hydrate was purchased from Fluka (Poole, 

Dorset, UK). Nuclease-free water was purchased from Qiagen, UK. Oligo aCGH 

wash buffers 1 and 2 were purchased from Agilent Technologies, UK. Mouse Cot-1 

DNA was purchased from Life Technologies, UK. 

Laemmli (4x) sample buffer (277.8 mM Tris-HCl, pH 6.8, 4.4% SDS, 44.4% 

(w/v) glycerol, 0.02% bromophenol blue), 10x Tris/glycine/SDS premixed 

electrophoresis buffer (25 mM Tris, 192 mM glycine, 0.1% SDS, pH 8.3), 8–16% 

mini-PROTEAN® TGX™ gel, Trans-Blot® Turbo™ RTA midi nitrocellulose 

transfer kit, 10x Tris buffered saline,  precision plus protein™ dual colour standards 

protein ladder (10-250 kDa, for 4–20% Tris-glycine SDS-PAGE) and concentrated 

protein assay dye and reagents for Bradford assay – all purchased from Bio-Rad 

(Hemel Hempstead, UK). Photographic film was purchased from GE Healthcare 

(Little Chalfont, UK). 

OptiMEM(R) I reduced serum medium (1x) (liquid with L-glutamine, 2400 

mg/l sodium bicarbonate, HEPES, sodium pyruvate, hypoxanthine, thymidine, trace 

elements, growth factors) and Lipofectamine® 2000 transfection reagent were 

purchased from Life Technologies, UK. ON-TARGET plus Non-targeting pool and 

SMART pool: ON-TARGET plus Glo1 siRNA were purchased from Thermo Fisher 

Scientific Bioscience (Loughborough, UK). Biomix red, agarose, hyperladder 1 kb, 

bioscript reverse transcriptase, dNTP set, Oligo (dT)18, RNase inhibitor and 

SensiMix low-ROX kit were purchased from Bioline (London, UK).  
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The cell permeable Glo1 inhibitor S-p-bromobenzylglutathione cyclopentyl 

diester (BrBzGSHCp2) was available in-house prepared by previous members of the 

host research team. It was prepared by acid-catalysed esterification of S-p-

bromobenzylglutathione and purified by column chromatography as described 

(Thornalley et al., 1996). 

All other reagents, buffers, salts, bases and acids were analytical grade and 

purchased from either Fisher Scientific or Sigma-Aldrich. Microplate U bottom 

polystyrene 96-well black and clear plate, HPLC vials, inserts and plastic supports, 

caps and microspin filters “Spin-X” (0.2 µm pore size) were all purchased from 

Fisher Scientific, UK. MicroAmp® optical adhesive film and MicroAmp® optical 

96-well reaction plate were purchased from Life Technologies, UK. Amicon 

ultrafiltration microcentrifuge tubes and filter inserts (0.5 ml, 3 kDa and 10 kDa cut-

off) were purchased from Merck-Millipore (Watford, UK). Special compressed gas 

mixture of 3% oxygen, 5% carbon dioxide and 92% nitrogen purchased from CK 

Gas Products Ltd (Leicester, UK). 

 

2.1.7. Analytical kits 

DNeasy blood & tissue kit (cat. no. 69504), all Prep DNA/RNA/protein mini 

kit (cat. no. 80004), RNeasy mini kit (cat. no. 74104) were purchased from Qiagen, 

UK. The glucose assay kit - hexokinase method (GAHK20) was purchased from 

Sigma-Aldrich. Enhanced chemiluminescence (ECL) reagent kit (cat. no. 34079) 

was purchased from Fisher Scientific, UK.   

Mouse genome CNV microarray with genome-wide coverage, Agilent design 

identification no - 027414 SurePrint G3 unrestricted CGH 1x1M (cat. no. G4824A), 

SureTag DNA labelling kit (cat. no. 5190-3400), oligo aCGH/ChIP-on-chip 

hybridization kit (cat. no. 5188-5220) and hybridization gasket slide kit-1 microarray 

per slide format (cat. no. G2534-60008) were purchased from Agilent Technologies 

(Stockport, UK).  
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2.1.8. Chromatographic materials 

Analytical grade methanol, acetonitrile and tetrahydrofuran (THF) - all 

HPLC grade, were purchased from Fisher Scientific. Trifluoroacetic acid (TFA, ≥ 

99.0% HPLC grade) and formic acid (FA, ≥ 98%) were purchased from Sigma-

Aldrich. For dicarbonyl assay, the column-BEH C18, 1.7 µm particle size column 

(100 x 2.1 mm) fitted with a (5 x 2.1 mm) pre-column was purchased from Waters 

(Elstree, Herts, UK). For protein damage markers, two columns were used in series: 

HypercarbTM, 5 µm particle size columns - column 1, 2.1 x 50 mm, and column 2, 

2.1 mm x 250 mm. For Nε(γ-glutamyl)lysine analysis, the column was HypercarbTM, 

3 µm particle size, 150 mm x 2.1 mm. These were purchased from Fisher Scientific.  

 

2.1.9. Analytical standards 

2.1.9.1. Calibration standards for protein damage marker analysis 

The standards for protein damage markers were prepared by current and 

previous members of host research team, as described (Thornalley et al., 2003a, 

Ahmed et al., 2003). [guanidino-15N2]L-Arginine, 4,4,5,5-[2H4]L-lysine and [13C6]L-

lysine, [methyl-2H3]L-methionine and ring-[2H4]L-tyrosine (all >98% isotopic 

purity) were purchased from Cambridge Isotope Laboratories (Andover, MA, USA). 

[guanidino-15N2]MG-H1, [guanidino-15N2]3DG-H and [guanidino-15N2]G-H1 were 

prepared in house from [guanidino-15N2]L-arginine after conversion to the Nα-t-

butoxycarbonyl derivative (Thornalley et al., 2003a, Meldal and Kindtler, 1986). 

[2H8]MOLD was prepared from 4,4,5,5-[2H4]L-lysine after conversion to the Nα-

formyl derivative (Finot and Mauron, 1969). [13C6]CEL, [13C6]CML and 

[13C6]pentosidine were prepared from [13C6]L-lysine after conversion to the Nα-

formyl derivative. The synthetic methods for the preparation, purification and 

characterization of all AGE calibration standards were as described for their non-

isotopically substituted analogues (Ahmed et al., 2003). [methyl-2H3]MetSO was 

prepared from [methyl-2H3]L-methionine, and both [2H6]dityrosine and 3-

nitrotyrosine (3-NT) were prepared from ring-[2H4]L-tyrosine, using the methods 

described in (Lapp and Dunn, 1955, Huggins et al., 1993, Sokolovsky et al., 1966). 

2.1.9.2. Dicarbonyl calibration standards 

Glyoxal (40% aqueous solution) from Sigma-Aldrich was used without 

purification. High purity MG and 3-DG were prepared in-house by the host research 
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team. MG was prepared by the hydrolysis of MG dimethylacetal in dilute sulphuric 

acid and purified by fractional distillation under reduced pressure, as described 

(McLellan and Thornalley, 1992). 3-DG was prepared from glucose and toluidine by 

method of Madson and Feather (Madson and Feather, 1981) with modifications 

described by Henle and Bachmann (Henle and Bachmann, 1996). The concentration 

of stock solutions of dicarbonyls was calibrated by conversion to 1,2,4-triazine 

derivatives by incubation with aminoguanidine hydrochloride and 

spectrophotometric detection, deducing concentrations of the 1,2,4-triazine 

derivatives and thereby dicarbonyl precursors from known extinction coefficients 

(Thornalley et al., 2000). 

 

2.1.10. Instrumentations and software 

Fusch Rosenthal haemocytometer (cat. no. 0630410) was from Marienfeld-

superior (Lauda-Königshofen, Germany). The microplate reader used for enzymatic 

assays was a FLUOstar OPTIMA microplate reader from BMG Labtech (Aylesbury, 

UK). The LC-MS/MS systems used were an ultra high performance liquid 

chromatography (UPLC) AcquityTM system with a Quattro Premier XE or Xevo™ 

TQ-S tandem mass spectrometer (Waters, UK). Masslynx 4.1 software was used to 

integrate the data for protein damage markers. Mini-PROTEAN® tetra 

electrophoresis system (cat. no. 165-8005EDU), wide mini ready sub-cell GT cell 

(cat. no. 170-4405), Trans-Blot Turbo blotting instrument (170-4155) and 

PowerPac™ basic power supply (164-5050) were from Bio-Rad. ImageQuant 

densitometry software was from GE Healthcare. The vibra cellTM sonicator was from 

Jencons Scientific (Leighton Buzzard, UK). MULTI-GEN 7 homogenizer was from 

ProScientific (Oxford, Connecticut, USA). Hypoxia chamber (cat. no. 27310) and 

single flow meter (cat. no. 27311) were from Stemcell Technologies (Manchester, 

UK). The UVICON UV/VIS spectrophotometer was purchased from Northstar 

Scientific Limited (Leeds, UK). ChemiGenius2 software gel image analysis was from 

Syngene (Cambridge, UK). Applied BiosystemsTM 7500 real-time PCR machine and 

7500 software v2.0.6 was from Life Technologies and the Nanodrop 

spectrophotometer ND-1000 was from LabTech International (Uckfield, UK). 
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2.2. Methods 

2.2.1. Animal experimentation  

The Glo1 mutant mice are genetically-modified strain of mice derived from 

C57BL/6 mouse strain. A colony was maintained in the Biological Services Unit, 

University of Warwick, by the host research team. The mice were produced by gene 

trapping method – see section 1.1.5.3.1. The modification was in the chromosome 17 

of the mice ESCs and the trap insertion site was in GST_4497_D9 OmniBank® 

using insertion trap vector VICTR48 - Figure 2.1. In most of the experiments using 

this mouse model, two control groups were used: 

(i) Wild type siblings produced from breeding of heterozygote of Glo1 mutant 

mouse, and 

(ii) Wild type C57BL/6 mouse of the colony maintained in Biological Services 

Unit, University of Warwick. 

In addition, extracted DNA from mouse liver samples of strains C57BL/6J (2 

copies of Glo1) and DBA/1J (4 copies of Glo1) derived from reference stock of 

Jackson Laboratories (USA) were used as negative and positive control for Glo1 

duplication respectively.  

 

Figure 2.1: Insertion cassette in mouse Glo1 gene. The figure shows the exact 

location of the inserted trapping cassette edged with two long terminal repeat 

(LTR) in the first intron of Glo1 gene. 

 

The Glo1 mutant mice and the control mice were housed in an environment 

of 19 - 23ºC, 45 - 65% humidity and 12 /12 h light/dark cycle at the Biological 

Services Unit, School of Life Sciences, University of Warwick. Mice were kept 6 - 8 

per cage with free access to food and water. All animal experimentation described in 

this study was conducted under the Animals (Scientific Procedures) Act 1986, UK: 

project licence number 80/2556, title - breeding and maintenance of genetically 

altered rodents. 
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In the animal studies, the Glo1 gene mutation, copy number and inheritance 

were studied and related Glo1 mRNA, protein and activity quantified in different 

tissues of the Glo1 mutant mice, WT siblings and C57BL/6 control strain colony 

maintained at University of Warwick (C57BL/6-UoW). This is summarised in 

flowcharts below. In the initial study, Study 1, the activity of Glo1 was measured in 

7 tissues of Glo1 mutant mouse and C57BL/6-UoW control mice at age of three 

months - Figure 2.2. In the second study, Study 2, Glo1 copy number, mRNA, 

protein and activity of Glo1 in Glo1 mutant mouse and WT siblings was determined 

at age seven months - Figure 2.3. In the third study, Study 3, the copy number 

genome-wide was assessed in heterozygote siblings with 3 and 4 copies of Glo1 

(with 1 and 2 mutant Glo1 gene, respectively) and WT siblings; Glo1 mRNA, 

protein and activity and MG were also determined. Measurements were made in 

liver tissue of mice at age seven months - Figure 2.4. In study 4, the inheritance 

pattern of Glo1 mutant gene in three families of Glo1 mutant mice was characterised 

- Figure 2.5.  

 

Figure 2.2: Study1. Summary of mice and tissues analysed. Glo1 activity was 

measured in tissues (U/mg protein) and MG-derived glycation free adducts and 

related protein damage free adducts in urine (nmol/mg creatinine).  
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Figure 2.3: Study 2. Summary of mice and tissues analysed. Glo1 and Glo2 

activity was measured in tissues (U/mg protein) and protein glycation, oxidation 

and nitration adduct residues of liver protein extracts (mmol/mol corresponding 

amino acid modified). Copy number variation was analysed in Glo1 (exon 1), 

Glo1 (exon 6), Btbd9, 1700097n02rik and Dnah8 genes (5 genes). 

 

 

Figure 2.4: Study 3. Summary of mice and analysis performed. All 

measurements were made of liver tissue. 
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Figure 2.5: Study 4. Summary of mice inheritance study outcome and 

analysis performed. All measurements were made of DNA extracted from 

whole blood samples or ear punches. 

2.2.1.1. Tissue collection  

Tissues including brain, heart, liver, spleen, kidney, pancreas and skeletal 

muscle were collected from mice in each study group immediately after sacrifice by 

cervical dislocation and stored in -80ºC freezer until analysis.  

2.2.1.2. Tissue homogenisation  

Tissue samples (ca. 25 mg wet weight) were transferred to chilled 1.5 ml 

tubes. Homogenisation buffer (10 mM sodium phosphate buffer, pH 7.4 and 4 oC; 

250 μl) was added and the tissue homogenised by MULTI-GEN 7 homogenizer for 

30 s - 60 s on ice. The homogenate was then centrifuged at 20,000 x g for 30 min at 

4ºC. The supernatant was removed and retained. Protein concentration was 

determined by the Bradford assay. The cytosolic extract was used to measure 

activities of Glo1, Glo2 and methylglyoxal reductase, protein damage markers, and 

was also used for Western blotting - see below. Liver tissue samples were also 

homogenised with 4% TCA-0.9% saline for assay of dicarbonyls – see later. 
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2.2.2. Cell culture 

2.2.2.1. Mouse embryonic stem cells 

 MEF cells were cultured in high glucose D-MEM media supplemented with 

10% FBS (ESC qualified). The cells were seeded over 0.1% AF at a density of 

25,000 cells/cm2. After 2 - 4 days, the feeder layer was ready for ESCs plating. ESCs 

were seeded over the feeder layer with a density of 50,000 cells/cm2 and incubated at 

37°C in 5% CO2 and 95% air-water saturated atmosphere. The media used for ESCs 

was knockout™ D-MEM media supplemented with 15% KSR, 1% NEAA, 1% L-

glutamine, 0.001% LIF and 0.00182% 2-mercaptoethanol. ESCs were incubated at 

37°C in 5% CO2 and 95% air-water saturated atmosphere. For the experiments 

performed under low pO2 conditions, cells were incubated in hypoxia chamber 

gassed with 3% oxygen, 5% carbon dioxide and 92% nitrogen at 37°C. The ESCs 

media was changed every day and ESCs were passaged every 2 - 3 days when 80 -

90% confluent.   

When the cells were ready for passage, medium was removed and flasks 

washed with PBS. Approximately 1 ml per 25 cm2 StemPro Accutase solution was 

added to each flask and cells returned to 37°C incubator for 3 - 5 min. StemPro 

accutase solution was neutralised with supplemented D-MEM media. Cell pellets 

were diluted to required concentrations depending on cell density and added to new 

sterile polystyrene culture vessels over 0.1% AF and without a feeder layer. Unless 

otherwise mentioned, the ESCs were maintained in the conditions described above. 

In the ESCs transfection experiment, Lipofectamine® 2000 was mixed with 

OptiMEM(R) I reduced serum media (1:50). ON-TARGET plus Non-targeting pool 

or SMART pool: ON-TARGET plus Glo1 siRNA diluted with 5x siRNA universal 

buffer to different concentration for optimal Glo1 silencing and then mixed with 

OptiMEM(R) I reduced serum medium. Both media were incubated for 15 min at 

room temperature. The media were mixed together and incubated for another 15 min. 

After the incubation, the mixture was added to adherent ESCs (after the passage by 

24 h).  
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2.2.2.2. Human leukaemia 60 cells 

HL60 cells were seeded in T-175 flasks in 30 ml of  RPMI 1640 medium 

supplemented with 10% FBS with a density 1 x 106/30 ml and incubated in 37°C in 

5% CO2 and 95% air-water saturated atmosphere. Cells cultured in these conditions 

were passaged for four or more passages till exponential growth of cultures free of 

cell debris was attained. When the cells reached 80 - 90% confluence - usually 

within 5 days, they were then passaged to T-175 flasks with a density 1 x 106/30 ml 

of RPMI 1640 medium supplemented with 10% FBS. 

2.2.2.3.  Cell culture experimentation 

Cells were grown in the following conditions: 

(i) MG copy number alteration studies - with varied concentrations of 

exogenous MG for 0.25 – 12 days with varied single or repeated treatment 

protocols; 

(ii) Glo1 inhibition studies – with varied concentrations of BrBzGSHCp2 for 3 

days, replenishing BrBzGSHCp2 in fresh media every day in normoxia;  

(iii) Glo1 silencing studies – with 100 nM, 200 nM Glo1 siRNA and non-

targeting siRNA for 3 days with new dose at 36 hours, followed by 

incubation with exogenous MG.  

To avoid phenotypic drift or differentiation of ESCs in culture, batches of 

new ESCs were revived from cryostorage every 3 months and cells were not used for 

experiments after more than15 passages. In addition, stem cells markers including 

SOX2, NANOG and OCT4 were identified by Western blotting after every 

experiment to insure that the stem cells were not differentiated. All cell culture 

experiments are summarised in Figures 2.6, 2.7, 2.8.  
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Figure 2.6: Summary of in vitro experiments of Glo1 CNV induction. Glo1 

activity was measured in cells (U/mg protein). Copy number variation was 

analysed in GLO1 (exon 1), GLO1 (exon 6), BTBD9, 1700097N02RIK and 

DNAH8 genes (5 genes). 

 

 

Figure 2.7: Summary of in vitro experiments of ESCs transfection with Glo1 

siRNA. 
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Figure 2.8: Summary of in vitro experiments of embryonic stem cells grown under 3% oxygen environment. 
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2.2.2.4. Collection of cell samples 

After incubation, ESCs were removed by StemPro accutase solution, counted 

and cells sedimented by centrifugation (250 g, 5 min at room temperature). Cell 

pellets were washed thrice with PBS. Cell pellets were re-suspended in 50 - 200 μl 

complete lysis-M buffer for 10 min at room temperature or used directly for DNA or 

RNA extraction. Cells were then sonicated (100 W, 30 s) and membranes were 

sedimented by centrifugation (20,000 x g, 30 min, 4˚C). Supernatant was removed 

and stored at -80˚C. 

2.2.2.5.  Cell viability measurement 

Cell viability was assessed by Trypan blue dye exclusion technique (Strober, 

2001). Cell suspension (20 µl) containing 1 - 2 x 106 cells per ml was mixed with 

0.4% solution of Trypan blue (20 µl) in PBS. Viability was then determined using 

haemocytometer ensuring that a total count of 100 - 200 cells. The number of cells 

excluding Trypan blue gives the viable cell count (V) and the number of cells stained 

with Trypan blue gives the non-viable cell count (NV). Percentage cell viability is 

given by V/(V+NV) x 100. All experiments were performed with cell viability of 

≥92%. 

 

2.2.3. Glyoxalase 1 copy number alteration in clinical dicarbonyl 

stress - end stage renal disease 

To study Glo1 copy number in clinical exposure to increased MG of renal 

failure, GLO1 copy number was determined in peripheral blood leukocytes of 

patients with ESRD - stage 5 chronic kidney disease on haemodialysis. These 

patients suffer the most clinically severe dicarbonyl stress and increased MG 

exposure (Agalou et al., 2005, Rabbani and Thornalley, 2012b, Rabbani and 

Thornalley, 2012a). Whole blood samples were collected with EDTA as 

anticoagulant from healthy human subjects and patients with ESRD with written 

informed consent. Clinical characteristics of the participants are given - Table 2.1. 

Healthy human subjects and ESRD patients were recruited at the University 

Hospitals Coventry & Warwickshire NHS Trust (Coventry, UK). Ethical approval 

was sought and gained from the National Research Ethics Service (NRES) 
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Committee West Midlands - Coventry & Warwickshire; project number 

05/Q2802/26.  Samples were stored at -80ºC until analysis. 

Table 2.1: Characteristics of end stage renal failure patients and healthy 

controls.  

 Healthy subjects Patients with ESRD 

N 20 20 

Gender (M/F) 10/10 10/10 

Age (years) 53.7 ± 10.3 53.8 ± 9.4 

BMI (kg/m2) 26.3 ± 3.3 26.2 ± 3.3 

Ethnicity  (Caucasian/Asian) 18/2 20/0 

Alcohol consumption (Yes/No) 17/3 12/8 

Alcohol consumption (Unit) 3.5 (0 – 40) 1.0 (0 -18) 

Smoking (Ex/Current/Never) 6/4/10 4/2/14 

Systolic blood pressure 

(mmHg) 
124 ± 14 139 ± 27 

Diastolic blood pressure 

(mmHg) 
76.0 ± 8.9 77.2 ± 13.2 

Haemoglobin (g/dL)  13.5 ± 1.5 11.5 ± 1.5 

Glucose (mmol/L) 5.49 ± 1.44 6.13 ± 1.53 

HbA1c  (mmol/mol) 39.9 ± 6.8 36.3 ± 4.9 

Creatinine (μmol/L) 89.6 ± 17.1 621.9 ± 242.4 

Data are mean ± SD. For alcohol consumption (Units), data are median (minimum – 

maximum). 

 

2.2.4. Analytical Methods 

2.2.4.1. Assay of total protein by the Bradford method 

The concentration of protein in tissue extracts or cells lysate was measured 

by Bradford protein assay (Bradford, 1976, Compton and Jones, 1985). Concentrated 

standard stock solutions of bovine serum albumin (BSA) was calibrated by UV 

absorption spectrophotometry using the extinction coefficient at 279 nm for a 1% (10 

mg/ml) solution; ε279 (1%) = 6.9 cm-1 (Peters, 1962). Protein samples were diluted in 

the range 0.05 to 0.3 mg/ml. Test samples, BSA standards and blanks in triplicate 

(20 µl per well) were mixed with 200 µl of diluted Bradford reagent in a 96-well 

clear microplate. Absorbance at 595 nm was read 10 min after addition. The 

concentration of protein in test samples was deduced by interpolation of the 

calibration curve.  
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2.2.4.2. Activity of glyoxalase 1 

The activity of Glo1 was determined by measuring the initial rate of 

formation of S-D-lactoylglutathione from the MG-GSH hemithioacetal which is 

formed non-enzymatically from MG and reduced glutathione (GSH). The reaction 

was conveniently determined by following the increase in absorbance at 240 nm for 

which Δε240 = 2.86 mM−1 cm−1. 

 

 Hemithioacetal was prepared by pre-incubation of 2 mM MG with 2 mM 

GSH for 10 min in 50 mM sodium phosphate buffer, pH 6.6 and 37°C (980 μl). The 

tissue extract or cell lysate (20 μl) was added and the absorbance at 240 nm was 

monitored with time for 5 min. The activity of Glo1 is deduced from the initial 

increase in absorbance, corrected for homogenization buffer blank. Glo1 activity is 

given in units per mg protein where one unit of Glo1 activity is the amount of 

enzyme which catalyses the formation of 1 μmol SLG per min under assay 

conditions (Arai et al., 2014).  

2.2.4.3. Activity of glyoxalase 2 

The activity of Glo2 was determined by measuring the initial rate of 

hydrolysis of SLG to D-lactate and GSH, followed spectrophotometrically at 240 

nm;  Δε240 = - 3.10 mM-1cm-1 (Clelland and Thornalley, 1991, Allen et al., 1993). 

 

SLG (0.3 mM) was incubated in 50 mM Tris/HCl, pH 7.4 at 37°C and the 

tissue extract, cell lysate or lysate buffer for the blank was added at a 50-fold dilution 

to a final volume of 1 ml. The reaction was monitored for absorbance at 240 nm for 

5 min at 37°C. The initial rate of change in absorbance was deduced. One unit of 

Glo2 activity is the amount of enzyme which catalyses the hydrolysis of 1 µmol SLG 

per min under assay conditions (Allen et al., 1993). 
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2.2.4.4. Assay of methylglyoxal reductase activity  

The activity of MG reductase was determined by measuring the initial rate of 

reduction of MG to hydroxyacetone (major product) and lactaldehyde (minor 

product), conveniently followed by measuring the rate of oxidation of NADPH, 

followed spectrophotometrically at 340 nm; Δε340 = 6.2 mM-1cm-1 (Murata et al., 

1985).  

 

NADPH (0.1 mM) and MG (1 mM) was incubated in 50 mM sodium 

phosphate buffer, pH 7.4 at 37°C and the tissue extract or lysate buffer for the blank 

was added to a final volume of 1 ml. The reaction monitored for absorbance at 340 

nm for 5 min at 37°C. The initial rate of change in absorbance was deduced. One 

unit of MG reductase activity is the amount of enzyme which catalyses the 

hydrolysis of 1 µmol of NADPH per minute under assay conditions (Murata et al., 

1985). 

2.2.4.5. Western Blot 

Tissue protein extract or cell lysate (20 µg) was mixed with 4x Laemmli 

sample buffer and separated using 8–16% Mini-PROTEAN® TGX™ gel in 

Tris/glycine/SDS electrophoresis buffer. The separated proteins were transferred 

from the gel to nitrocellulose membrane by Trans-Blot® Turbo™ RTA midi 

nitrocellulose transfer kit using PowerPac™ basic power supply electrophoresis unit 

(semi-dry transfer at 2.5 Ampere and 25 volt) for 3 min. The sandwich layer of semi-

dry transfer consisted of filter paper, gel and membrane, immersed in transfer buffer. 

Membranes were blocked with 5% dried milk protein in Tris-buffered saline with 

tween-20 (TBS-T buffer; 500 mM NaCl, 20 mM Tris; pH 7.5 and 0.05% Tween-20) 

for 1 hour. Membranes were then probed with primary antibody using pre-

determined concentrations of anti-Glo1 antibody or ESCs markers including SOX2, 

NANOG and OCT4 overnight at 4ºC. After blotting with primary antibody, the 

membranes were washed with 3 x TBS-T buffer. Membranes were then probed with 

secondary antibody (anti-rabbit) at room temperature for 1 h. Membranes were 

rinsed with 3 x TBS-T and developed with ECL reagent and photographic films. 
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Glo1 blotting results were normalised to β-actin (protein loading control). 

Membranes were scanned and quantified with ImageQuant densitometry software. 

2.2.4.6. Assay of D-lactate 

The concentration of D-lactate in the media or tissue extract was assayed by 

endpoint enzymatic assay, modified for microplate techniques, with D-lactic 

dehydrogenase using fluorescence (McLellan et al., 1992).  

 

Inclusion of hydrazine in the assay cocktail removes pyruvate from the 

equilibrium as pyruvyl-hydrazone and drives the forward reaction to completion and 

endpoint. The amount of D-lactate in the sample is deduced from the amount of 

NADH formed, determined by microplate fluorimetry with fluorescence detection at 

excitation wavelength 340 nm and emission wavelength 460 nm. 

Media samples (500 µl) were deproteinsed with perchloric acid (PCA, 0.6 M; 

1.0 ml), incubated on ice for 10 min, vortex-mixed and centrifuged (7000 g, 5 min, 

4oC). The supernatant (700 µl) was neutralised with potassium bicarbonate (175 µl, 2 

M) and centrifuged to sediment the resulting potassium perchlorate precipitate. For 

the tissue extracts, tissue samples (10 mg) were homogenized with PCA (0.6 M; 250 

μl), incubated on ice for 10 min, vortex-mixed and centrifuged (4000 g, 5 min, 4oC). 

The supernatant (200 µl) was neutralised with potassium bicarbonate (80 µl, 2 M) 

and centrifuged to sediment the resulting potassium perchlorate precipitate. Solutions 

were placed in a centrifugal evaporator and vacuum applied (20 mmHg) to remove 

dissolves CO2 formed during the neutralisation. The neutralised PCA extract from 

tissue or media (100 µl, pH 7) was assayed for D-lactate by incubating with glycine-

hydrazine buffer (1.2 M glycine, 0.5 M hydrazine dihydrochloride, 2.5 mM 

DETAPAC, pH 9.2; 100 μl), NAD+ (25 µl, 4 mM) and D-lactic dehydrogenase (25 

µl, 250 U/ml) for 2 h. Control samples were run in parallel without D-lactic 

dehydrogenase. A calibration curve was constructed in the range 0 - 6 nmol D-lactate 

for media samples (Figure 2.9) and the curve was constructed in the range 0 - 3 nmol 

D-lactate for tissue samples. 
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Figure 2.9: Typical calibration curve for assay of D-lactate. Linear regression 

equation: Fluorescence (arbitrary units) = (6632 ± 508) x D-lactate (nmol); R2 = 

0.995 (data are mean ± SD; n = 3). 

2.2.4.7. Assay of L-lactate 

The concentration of L-lactate in cell culture medium was determined 

similarly as the D-lactate method described in section 2.2.4.6. A standard curve was 

constructed using L-lactate standards in range 0 - 10 nmol and L-lactate 

dehydrogenase was used instead of D-lactate dehydrogenase used for the D-lactate 

assay. Since the cellular levels of L-lactate are 50-100 fold higher than D-lactate, 

media samples were first diluted with water to ensure that concentrations measured 

were within the standard curve range. Figure 2.10 shows a calibration curve for L-

lactate. 
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Figure 2.10: Typical calibration curve for assay of L-lactate. Linear 

regression equation: Fluorescence (arbitrary units) = (683 ± 87) x L-lactate 

(nmol); R2 = 0.998 (data are mean ± SD; n = 3). 

2.2.4.8. Assay of D-glucose 

The concentration of glucose in cell culture media was determined using an 

end-point enzymatic assay using a commercial assay reagent (containing 1.5 mM 

NAD+, 1 mM ATP, 1 unit/ml hexokinase and 1 unit/ml glucose-6-phosphate (G6P) 

dehydrogenase) and 1 mg/ml D-glucose standard. The enzymatic basis of the assay 

is illustrated in Figure 2.11. 

 

Figure 2.11: The coupled enzyme reactions of the glucose assay.  

The formation of NADH was measured by spectrophotometrically at 340 nm.  

Since equimolar amounts of glucose are phosphorylated to G6P and NAD+ reduced 

to NADH in this reaction, the increase in absorbance at 340 nm is directly 

proportional to the concentration of glucose. A standard curve was constructed in the 

range of 0 - 1.5 mM D-glucose - Figure 2.12. 
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Figure 2.12: Typical calibration curve for assay of D-glucose.  Linear 

regression equation: A340 (A.U.) = (0.414 ± 0.0142) x D-glucose (mM); R2 = 

0.994 (data are mean ± SD; n = 3). 

 

Media samples at baseline and after treatment were collected and diluted with 

water appropriate for estimates to fall within the range of the calibration curve. 

Aliquot of standards and diluted samples (25 µl) was added to a clear 96-well plate 

with 225 µl of the assay reagent. The microplate was then incubated at room 

temperature for 15 min and absorbance was measured at 340 nm using FLUOstar 

optima microplate reader. The concentration of D-glucose was deduced from the 

standard curve and D-glucose levels were expressed in mM. The consumption of D-

glucose was also calculated by subtracting the D-glucose levels after experimental 

incubations from baseline media concentrations and expressed in nmol/day/106 cells. 

 

2.2.5. LC-MS/MS methods 

2.2.5.1. Protein glycation, oxidation and nitration adducts 

Protein glycation, oxidation and nitration adducts residues in the liver protein 

of Glo1 mutant mice and their WT sibling were quantified by stable isotopic dilution 

analysis LC-MS/MS after exhaustive enzymatic hydrolysis as described (Thornalley 

et al., 2003b) - see section 2.2.1.2. 
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Analytes determined were: early glycation adduct FL; AGEs – (CEL, CML, 

G-H1, MG-H1, 3DG-H, CMA and MOLD); oxidation adducts - methionine 

sulfoxide (MetSO), dityrosine (DT) and N-formylkynurenine (NFK); and nitration 

adduct 3-nitrotyrosine (3-NT).  

The liver protein was delipidified by extraction three times with an equal 

volume of water-saturated ether. Residual ether was removed by a centrifugal 

evaporator. The protein (5 mg/ml) was diluted 5-fold with water and washed by 4 

cycles of concentration to 50 μl and dilution to 500 μl with water over a microspin 

ultrafilter (10 kDa cut-off) at 4ºC. The protein content was determined by Bradford 

assay. The diluted samples were further diluted to 100 μg of protein in 20 μl to be 

used for enzymatic hydrolysis.         

An aliquot of washed protein sample containing 100 g of protein was 

diluted to 25 µl with water in a glass vial and flushed with argon in preparation for 

enzymatic hydrolysis. The reagents and test samples were placed in a robotic 

processor (PAL HTS9, CTC Analytics, Switzerland) ready for automated enzymatic 

hydrolysis. Samples and reagents were made aseptic by microspin filtration in 

aseptic microspin filters. The processor was programmed to perform series of 

additions as follows and summarised in Table 2.2: 100 mM HCl (10 µl), pepsin 

solution (2 mg/ml in 20 mM HCl; 5 µl), and thymol solution (2 mg/ml in 20 mM 

HCl; 5 µl) were added, and the samples were incubated at 37ºC for 24 h. The 

samples were then neutralized and buffered at pH 7.4 by the addition of 12.5 µl 100 

mM potassium phosphate buffer, pH 7.4, and 5 µl 260 mM KOH. Pronase E solution 

(2 mg/ml in 10 mM KH2PO4/K2HPO4, pH 7.4; 5 µl) and penicillin/streptomycin 

(1000 units/ml and 1 mg/ml respectively; 5 µl) were added, and the samples were 

incubated at 37ºC for 24 h. Finally, aminopeptidase solution (2 mg/ml in 10 mM 

KH2PO4/K2HPO4, pH 7.4; 5 µl) and prolidase solution (2 mg/ml in 10 mM 

KH2PO4/K2HPO4, pH 7.4; 5 µl) were added, and the samples were incubated at 37ºC 

for 48 h - Table 2.2. This gave the final enzymatic hydrolysate (77.5 μl) for the LC-

MS/MS assay. Hydrolysed sample (5 µl) and water (20 µl) was mixed with internal 

standard mixture (25 µl) in HPLC vials to be analysed for protein glycation, 

oxidation and nitration adducts and related amino acids by LC-MS/MS. 
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Table 2.2: Protocol for enzymatic hydrolysis using CTC-PAL automated 

sample processor. Adapted from (Rabbani et al., 2014a). 

Addition Volume added (μl) 

Day 0 

100 mM HCl 10.0 

Pepsin solution (2 mg/ ml) 5.0 

Thymol (1 mg/ml) 5.0 

Incubate for 24 h at 37ºC 

Day 1 

100 mM KH2PO4/K2HPO4 buffer, pH 7.4 12.5 

260 mM KOH 5.0 

Pronase E solution (2 mg/ml) 5.0 

Penicillin (100 units/ml) and streptomycin (1 mg/ml) 5.0 

Incubate for 24 h at 37ºC 

Day 2 

Aminopeptidase solution (2 mg/ml) 5.0 

Prolidase solution (2 mg/ml) 5.0 

Incubate for 48 h at 37ºC 

 

Standard curves for LC-MS/MS analysis were prepared as described in Table 

2.3, using a cocktail of normal and isotopic standards prepared as described in 

Tables 2.4. Figure 2.13 shows typical calibration curves for arginine and MG-H1. 

Table 2.3: Protocol for preparation of calibration standard solutions from 

cocktails of normal and stable isotopic standards for assay of protein glycation, 

oxidation and nitration adduct residues of liver protein extracts.  

Cal no 
Normal standards 

solution (µl) 

Water 

(µl) 

Stable isotopic 

standard solution (µl) 

Total volume 

(µl) 

0 0.00 25.00 25 50 

1 1.25 23.75 25 50 

2 2.50 22.75 25 50 

3 6.25 18.75 25 50 

4 12.50 12.50 25 50 

5 18.75 6.25 25 50 

6 25.00 0.00 25 50 
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Table 2.4: Analyte content of calibration standard solutions for assay of protein 

glycation, oxidation and nitration adduct residues of liver protein extracts. 

Normal standards (nmol) Internal  standard 

Cal no 0 1 2 3 4 5 6 (nmol) 

Lys  0 0.05 0.10 0.25 0.50 0.75 1.0 [13C6]Lys 0.25 

Arg  0 0.05 0.10 0.25 0.50 0.75 1.0 [15N2]Arg 0.25 

Met  0 0.05 0.10 0.25 0.50 0.75 1.0 [2H3]Met 0.25 

Tyr  0 0.01 0.02 0.05 0.10 0.15 0.2 [2H4]Tyr 0.10 

Trp  0 0.01 0.02 0.05 0.10 0.15 0.2 [15N2]Trp 0.05 

Normal standards (pmol) Internal standard 

(pmol) Cal no 0 1 2 3 4 5 6 

FL 0 0.250 0.50 1.250 2.50 3.750 5.00 [2H4]FL 0.30 

Orn 0 0.125 0.25 0.625 1.25 1.875 2.50 [2H6]Orn 2.50 

G-H1 0 0.025 0.05 0.125 0.25 0.375 0.50 [15N2]G-H1 0.25 

MG-H1 0 0.125 0.25 0.625 1.25 1.875 2.50 [15N2]MG-H1 1.25 

3DG-H 0 0.125 0.25 0.625 1.25 1.875 2.50 [15N2]3DG-H 1.25 

CML 0 0.125 0.25 0.625 1.25 1.875 2.50 [13C6]CML 0.25 

CEL 0 0.025 0.05 0.125 0.25 0.375 0.50 [13C6]CEL 0.25 

CMA 0 0.025 0.05 0.125 0.25 0.375 0.50 [13C2]CMA 0.25 

MOLD 0 0.025 0.05 0.125 0.25 0.375 0.50 [2H8]MOLD 0.25 

MetSO 0 0.125 0.25 0.625 1.25 1.875 2.50 [2H3]MetSO 1.25 

DT 0 0.025 0.05 0.125 0.25 0.375 0.50 [2H6]DT 0.25 

3-NT 0 0.025 0.05 0.125 0.25 0.375 0.50 [3H2]3-NT 0.25 

NFK 0 0.025 0.05 0.125 0.25 0.375 0.50 [15N2]NFK 0.25 

 

 

Figure 2.13: Typical calibration curves for arginine and MG-H1 in stable 

isotopic dilution analysis LC-MS/MS. a. Calibration curve of arginine. Linear 

regression equation: arg/[15N2]arg peak area ratio = (3.93 ± 0.03) x arg (nmol) + 

0.024 ± 0.013; R2 = 0.999 (n = 7). b. Calibration curve of MG-H1. Linear 

regression equation: MG-H1/[15N2]MG-H1 peak area ratio = (1.06 ± 0.03) x 

MG-H1 (pmol) + 0.073 ± 0.035; R2 = 0.994 (n = 7). 
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Protein glycation, oxidation and nitration free adducts in urine samples from 

the Glo1 mutant and WT mice were also quantified by LC-MS/MS. Analytes 

determined were: early glycation adduct FL; AGEs - CEL, CML, G-H1, MG-H1 and 

3DG-H and related structural isomers, CMA, MOLD and oxidation adducts - 

MetSO, DT and NFK; and nitration adducts 3-NT. Urine samples were collected 

from Glo1 mutant and WT mice by a metabolic cage. Ultrafiltrate was prepared from 

urine (50 μl) by microspin ultrafiltration (3 kDa cut-off, 14,000 x g, 4ºC). An aliquot 

of ultrafiltrate (5 μl) was added to 0.1% TFA (20 μl) and stable isotopic standard 

cocktail (25 μl). This was then analyzed by LC-MS/MS. Standard curve was 

prepared as described in Tables 2.5. The calibration curve was prepared as shown in 

Tables 2.6. Figure 2.13 shows typical calibration curves for arginine and MG-H1. 

Table 2.5: Protocol for preparation of calibration standard solutions from 

cocktails of normal and stable isotopic standards for assay of protein glycation, 

oxidation and nitration free adducts of urine.  

Cal no 

Normal 

standards 

solution (µl) 

Water 

(µl) 

Stable isotopic 

standard solution 

(µl) 

Total volume 

(µl) 

0 0.00 25.00 25.00 50 

1 1.25 23.75 25.00 50 

2 2.50 22.75 25.00 50 

3 6.25 18.75 25.00 50 

4 12.50 12.50 25.00 50 

5 18.75 6.25 25.00 50 

6 25.00 0.00 25.00 50 
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Table 2.6: Analyte content of calibration standard solutions for assay of protein 

glycation, oxidation and nitration free adducts of urine.  

Normal standards (nmol) 
Internal standard 

(nmol) Analyte 
Calibration no 

0 1 2 3 4 5 6 7 8 

Lys  0 1.0 2.0 5.0 10.0 15.0 20.0 40.0 - [13C6]Lys 5.0 

Arg  0 1.0 2.0 5.0 10.0 15.0 20.0 - - [15N2]Arg 5.0 

Met  0 1.0 2.0 5.0 10.0 15.0 20.0 - - [2H3]Met 5.0 

Tyr  0 0.2 0.4 1.0 2.0 3.0 4.0 20.0 30.0 [2H4]Tyr 2.0 

Trp  0 0.2 0.4 1.0 2.0 3.0 4.0 - - [15N2]Trp 1.0 

Normal standards (pmol) 
Internal standard 

(pmol) Analyte 
Calibration no 

0 1 2 3 4 5 6 

FL 0 5.00 10.0 25.0 50.0 75.0 100 [2H4]FL 6.0 

Ornithine 0 2.50 5.0 12.5 25.0 37.5 50.0 [2H6]Orn 50.0 

G-H1 0 2.50 5.0 12.5 25.0 37.5 50.0 [15N2]G-H1 5.0 

MG-H1 0 2.50 5.0 12.5 25.0 37.5 50.0 [15N2]MG-H1 25.0 

3DG-H 0 2.50 5.0 12.5 25.0 37.5 50.0 [15N2]3DG-H 25.0 

CML 0 1.25 2.5 6.25 12.50 18.75 25.0 [13C6]CML 5.0 

CEL 0 0.50 1.0 2.5 5.0 7.5 10.0 [13C6]CEL 5.0 

CMA 0 0.50 1.0 2.5 5.0 7.5 10.0 [13C2]CMA 5.0 

MOLD 0 0.50 1.0 2.5 5.0 7.5 10.0 [2H8]MOLD 5.0 

Pentosidine 0 0.05 0.10 0.25 0.50 0.75 1.00   

MetSO 0 2.50 5.0 12.5 25.0 37.5 50.0 [2H3]MetSO 25 

DT 0 0.50 1.0 2.5 5.0 7.5 10.0 [2H6]DT 5 

3-NT 0 0.50 1.0 2.5 5.0 7.5 10.0 [3H2]3-NT 5 

NFK 0 0.50 1.0 2.5 5.0 7.5 10.0 [15N2]NFK 10 

For pentosidine there was no isotopic standard as this is determined by in-line 

fluorescence detection. 

 

For chromatographic conditions in LC-MS/MS analyses, two 5 µm particle 

size Hypercarb columns were used in series (column 1: 2.1 x 50 mm; and column 2: 

2.1mm x 250 mm). The mobile phase was: solvent A - 0.1% TFA in water, and 

solvent B - 0.1% TFA in 50% acetonitrile (MeCN). Solvents for the post-run method 

for washing were: solvent A - 0.1% TFA in water, and solvent B - 0.1% TFA in 50% 

THF. The elution profiles for assay run and column washing and re-equilibration are 

given in Table 2.7. Flow from the column in the interval 4 to 35 min was directed to 

the MS/MS detector. Electrospray positive ion mass spectrometric multiple reaction 

monitoring (MRM) was used to detect all protein damage analytes. The ionisation 

source temperature and desolvation temperature were 120°C and 350°C, 

respectively. The cone gas and desolvation gas flow were 99 l/h and 901 l/h, 
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respectively. Optimised molecular ion and fragment ion masses and collision 

energies for MRM detection are given in Table 2.8. Masslynx software was used to 

integrate the chromatographic peaks. Analyte amounts in urine were normalised to 

amount of creatinine in urine. Analyte amounts in liver were normalised to amount 

of related unmodified amino acid in protein hydrolysates to deduce content of 

glycation, oxidation and nitration adduct residues in tissue protein and to creatinine 

to deduce fluxes of glycation, oxidation and nitration free adduct excretion in urine.  

Table 2.7: Elution profile for LC-MS/MS analysis of protein glycation, 

oxidation and nitration addaucts (Acquity-Xevo-TQSTM system). 

Time (min) 
Flow rate 

(ml/min) 

Solvent A 

(%) 

Solvent B 

(%) 
Gradient 

0 0.2 100 0 ---- 

5 0.2 100 0 Linear 

8 0.2 97 3 Linear 

12 0.2 97 3 Linear 

15 0.2 83 17 Linear 

18 0.2 83 17 Linear 

24 0.2 20 80 Linear 

24 0.2 97 3 Linear 

35 0.2 97 3 Linear 

Post-run 

0 0.4 0 100 ----- 

10 0.4 0 100 Isocratic 

20 0.2 0 100 Isocratic 

20 0.2 100 0 Immediate 

25 0.2 100 0 Isocratic 

40 0.4 100 0 Isocratic 

 

A similar elution profile was used for the Acquity-Quattro PremierTM  LC-

MS/MS system. 
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Table 2.8: Chromatographic retention times and MRM detection conditions for 

detection of glycation, oxidation and nitration adducts by stable isotopic 

dilution analysis tandem mass spectrometry (Acquity-Xevo-TQSTM system). 

Analyte Rt (min) Molecular ion (Da) Fragment ion (Da) 

Lys 5.6 147.1 84.1 

[13C6]Lys 5.6 153.1 89.1 

Val 8.6 117.8 72.0 

[2H8]Val 8.6 125.8 80.0 

MetSO 8.7 166.1 56.2 

[2H3]MetSO 8.7 169.1 56.2 

3DG-H 11.7 319.1 70.1 

[15N2]3DG-H 11.7 321.1 70.1 

MG-H1 11.9 229.2 114.1 

[15N2]MG-H1 11.9 231.2 116.1 

CMA 12.3 233.1 70.1 

[13C2]CMA 12.3 235.1 70.1 

G-H1 12.7 215.2 100.1 

[15N2]G-H1 12.7 217.2 102.1 

MOLD 15.0 341.2 83.9 

[2H8]MOLD 15.0 349.2 87.9 

Tyr 18.4 182.9 137.0 

[2H4]Tyr 18.4 186.9 141 

NFK 23.7 237.1 191.1 

[15N2]NFK 23.7 239.1 193.1 

3-NT 23.4 227.1 181.1 

[2H3]3-NT 23.4 230.1 184.1 

Trp  23.7 205.1 158.8 

[15N2]Trp  23.7 205.1 160.8 

CML 32.1 205.1 84.1 

[13C6]CML 32.1 211.1 89.1 

FL 32.1 291.1 84.1 

[2H4]FL 32.1 295.1 88.1 

CEL 32.2 219.2 130.0 

[13C6]CEL 32.2 225.2 136.0 

Arg 32.2 176.2 70.1 

[15N2]Arg 32.2 178.2 70.1 

Met 32.2 150.0 104.0 

[2H3]Met 32.2 153.0 107.0 
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2.2.5.2. Creatinine 

Creatinine levels of urine were determined by stable isotopic dilution analysis 

LC-MS/MS using [N-methyl-2H3] creatinine as internal standard. Creatinine stock 

solution was prepared in water and calibrated by UV spectrometry at λmax 234 nm 

with extinction coefficient of 6900 M-1cm-1 (Dawson et al., 1986, p11). Creatinine 

was detected and quantified using an Acquity-Quattro PremierTM LC-MS/MS system 

with a Hypercarb column (2.1 x 150 mm, 3 µm). The mobile phase was: solvent A - 

0.1% formic acid (FA); and solvent B1 - 0.1% FA in 50% MeCN. An additional 

solvent, solvent B2 - 0.1% FA in 50% THF, was used to wash the column in the 

post-run elution protocol. The elution profile is shown in Table 2.9. 

Table 2.9: Elution profile for creatinine assay. 

Measurement run 

Time 

(min) 

Flow rate 

(ml/min) 

Solvent A 

(%) 

Solvent B1 

(%) 

Solvent B2 

(%) 
Gradient 

Initial 0.2 100 0 - ---- 

5.0 0.2 100 0 - Linear 

20.0 0.2 100 0 - Linear 

Post-run column wash and re-equilibration 

Initial 0.2 0 - 100 ---- 

20.0 0.2 0 - 100 Isocratic 

25.0 0.2 100 - 0 Isocratic 

40.0 0.4 100 - 0 
Immediate 

change 

 

Flow from the column was directed to the MS/MS detector in the interval 5 

to 20 minutes for data collection. Electrospray positive ionisation was used for the 

MRM detection of creatinine. The ionisation source temperature and desolvation 

temperature were 120ºC and 350ºC, respectively. The cone gas and desolvation gas 

flow rate were 286 l/hr and 898 l/hr, respectively. The capillary and cone voltage 

were 1.0 kV and 15.0 V, respectively. The MRM and retention time of creatinine are 

shown in Table 2.10. 
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Table 2.10: Detection of creatinine by positive ion multiple reaction monitoring. 

Analyte 
Retention 

time (min) 

Parent 

ion (Da) 

Fragment 

ion (Da) 

Cone 

voltage 

(V) 

Collision 

energy 

(eV) 

Creatinine 11.1 114.0 44.3 29.0 12.0 

[N-methyl-2H3] 

creatinine 
11.4 117.0 47.3 29.0 12.0 

 

Creatinine standard solution (5 µM) was prepared in water. Standards were 

prepared in the range of 10 to 200 pmol, with addition of 100 pmol [N-methyl-2H3] 

creatinine as an internal standard. Ultrafiltrate of urine samples were prepared as 

described above - section 2.2.5.1, and an aliquot (5 μl) diluted 1000 fold. Each 

sample (10 µl) was mixed with 100 pmol of [N-methyl-2H3]creatinine and 0.1% FA 

added to make the final volume of 50 µl and analysed by LC-MS/MS – Table 2.11. 

Table 2.11: Preparation of calibration standards for creatinine assay. 

Cal no 
Analyte 

(pmol) 

5 µM 

Creatinine (µl) 

10 µM [N-methyl-
2H3]creatinine (µl) 

Volume of 

0.1% FA (µl) 

0 0 0 10 40 

1 10 2 10 38 

2 25 5 10 35 

3 50 10 10 30 

4 100 20 10 20 

5 150 30 10 10 

6 200 40 10 0 

 

LC-MS/MS data for creatinine assay was integrated with MassLynx 

software. The calibration curve was plotted: peak area ratio of creatinine/[N-methyl-

2H3] creatinine against the amount of creatinine standard- Figure 2.14. The amount 

of creatinine in samples was deduced accordingly with the calibration curve.     
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Figure 2.14: Calibration curve of creatinine. Linear regression equation: 

creatinine/ [2H3]creatinine peak area ratio = (0.0072 ± 0.0018) x creatinine 

(pmol); R2 = 0.998 (n = 7). 

2.2.5.3. Assay of methylglyoxal  

The concentration of methylglyoxal in liver homogenate of Glo1 mutant mice 

was determined by derivatisation with 1,2-diaminobenzene and quantification of the 

resulting quinoxaline adducts - Figure 2.15, by stable isotopic dilution analysis LC-

MS/MS.  

 

Figure 2.15: Derivatization used in the dicarbonyl assay. 

 

Tissue samples (ca. 10 mg wet weight) of each sample were homogenized in 

5 % ice-cold TCA-saline (50 μl). The tissue was homogenised by MULTI-GEN 7 

homogenizer for 30 s to 60 s on ice. Isotopic standard, 2 pmol [13C3]methylglyoxal 

(5 μl), was then added and the homogenate was mixed well. The homogenate was then 

centrifuged (20,000 g, 30 min, 4ºC) to sediment membranes and fibrous material. 

The supernatant was removed and used in the analysis. For analysis, the supernatant 

(35 μl) was mixed with 3% (w/v) sodium azide (5 μl) and vortex-mixed. Finally, 10 µl 

0.5 mM 1,2-diaminobenzene (DB) solution containing 0.5 mM DETAPAC and 0.2 M 

HCl was added to each sample. The samples were incubated in the dark for 4 h. 
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Calibration standards were prepared and derivatized concurrently containing 2 pmol 

isotopic standard and 0 - 20 pmol methylglyoxal - Tables  2.12 and 2.13. 

Table 2.12: Calibration standards for dicarbonyl assay. 

Cal no MG (pmol) Isotopic standard (pmol) 

0 0 2 

1 2 2 

2 4 2 

3 8 2 

4 12 2 

5 16 2 

6 20 2 

 

Table 2.13: Preparation of calibration standards from stock solutions. Adapted 

from (Rabbani and Thornalley, 2014c). 

Cal 

no 

5%TCA-

0.9% saline 

(µl) 

Water 

(µl) 

3% 

Sodium 

azide (µl) 

800 nM MG 

standard (µl) 

400 nM IS 

(µl) 

0.5 mM 

DB (µl) 

0 10 25.0 5.0 0.0 5.0 10.0 

1 10 22.5 5.0 2.5 5.0 10.0 

2 10 20.0 5.0 5.0 5.0 10.0 

3 10 15.0 5.0 10.0 5.0 10.0 

4 10 10.0 5.0 15.0 5.0 10.0 

5 10 5.0 5.0 20.0 5.0 10.0 

6 10 0.0 5.0 25.0 5.0 10.0 

 

Samples were assayed by LC-MS/MS using a Waters Acquity-Quattro 

PremierTM  LC-MS/MS system. The column used was a BEH C18, 1.7 µm particle 

size column (100 x 2.1 mm) fitted with a 5 x 2.1 mm pre-column. The mobile phase 

was 0.1% TFA in water with a linear gradient of 0 - 50% MeCN over 10 min. The 

flow rate was 0.2 min/ml. The elution profile is shown in Table 2.14.  

Table 2.14: Chromatographic elution profile in the MG assay. 

Method phase 
Time Flow rate Solvent A Solvent B 

Curve 
(min) (ml/min) (%) (%) 

Analysis 0 0.2 100 0 0 

 10 0.2 0 100 Linear 

Column wash 15 0.2 0 100 Isocratic 

Re-equilibration 15 0.2 100 0 
Immediate 

change 

 30 0.2 100 0 Isocratic 
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For mass spectrometric detection, the capillary voltage was 0.6 kV, ionisation 

temperature 120°C and desolvation temperature 350°C. The cone gas and 

desolvation gas flow were 149 l/h and 901 l/h, respectively. Optimised molecular ion 

and fragment ion masses and collision energies for MRM detection are given in 

Table 2.15. 

Table 2.15: Mass-spectrometric multiple reaction monitoring detection of 

dicarbonyls.  

Analyte 
Parent ion 

(Da) 

Fragment ion 

(Da) 

Cone voltage 

(V) 

Collision 

energy 

(eV) 

MG 145.1 77.1 24 24 

[13C3]MG 148.1 77.1 24 24 

 

2.2.6. Molecular biology methods 

2.2.6.1. DNA extraction and purification 

DNA extraction was performed using the Qiagen DNeasy blood & tissue kit 

according to the manufacturer’s instructions. Briefly, samples of 1 x 106 cells, ≤ 25 

mg of tissue or 200 μl of whole blood were first lysed using proteinase K. Buffering 

conditions were adjusted to provide optimal DNA binding conditions and the lysate 

was loaded onto the DNeasy mini spin column. During centrifugation, DNA was 

selectively bound to the DNeasy membrane as contaminants including cell debris, 

proteins and other nucleic acids pass through. Remaining contaminants and enzyme 

inhibitors were removed in two washing steps and DNA was then eluted in AE 

buffer from the kit.  

The quality and concentration of DNA was determined 

spectrophotometrically using a NanoDrop 1000 spectrophotometer. Extracted and 

purified DNA sample (2 µl) was used to determine the concentration of DNA at A260. 

The A260 is used to calculate the concentration of nucleic acids. At a concentration of 

1 μg/ml and a 1 cm path length, dsDNA has A260 equivalent to 50. The quality of the 

DNA was determined by ratio between A260 and A280. DNeasy purified DNA has 

A260/ A280 ratios of 1.7–1.9 and absorbance scans show a symmetric peak at 260 nm 

confirming high purity. 
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2.2.6.2. RNA extraction and purification 

Total RNA was extracted using the Qiagen RNeasy mini kit according to the 

manufacturer’s instructions. Briefly, the samples were lysed by addition of a lysis 

buffer (350 μl) containing β-mercaptoethanol and were pipetted up and down (10 

times). The lysis buffer contained high concentration of guanidine-thiocynate which 

acted as a chaotropic agent and helped in cell lysis. Lysed samples were mixed with 

70% ethanol to enhance binding conditions to the silica-based spin-column. The 

sample was washed with multiple buffers to remove impurities and finally RNA was 

eluted by addition of RNAse-free water.  

The quality and concentration of RNA was determined spectrophotometrically 

using a NanoDrop 1000 spectrophotometer. RNA sample (2 µl) was used to determine 

the concentration of RNA at A260, given that value of 1 at A260 is equivalent to 40 µg/ml 

of RNA. The quality of the RNA was determined by ratio between A260 and A280. Pure 

RNA was expected to give a ratio of 1.9 - 2.1. Each sample was diluted to 50 ng 

nucleic acid and concentration confirmed using NanoDrop 1000. 

2.2.6.3. Reverse transcription 

cDNA was synthesised from the extracted RNA using reverse transcription. 

A total of 0.2 μg RNA (11 µl in 20 µl reaction) from either animal tissue or cells was 

annealed with oligo (dT) (1 µl) at 70ºC for 5 min before chilling on ice. 

Subsequently, 8 µl of mixture containing 10 U/μl RNAse inhibitor (1 µl), 10 mM 

dNTPs (1 µl), 5x bioscript reaction buffer (4 µl) and bioscript reverse transcriptase 

(1 µl) were added to each sample. Samples were heated at 42ºC for 60 min. The 

reaction was stopped by heating to 70ºC for 10 min. cDNA formed was mixed with 

40 µl  (3x dilution) of nuclease free water and stored at -20ºC. Repeated freeze-

thawing was avoided before analysis. 

2.2.6.4. Mutant mice genotyping 

Two methods were used for genotyping of Glo1 mutant mice including 

qualitative conventional PCR and semi-quantitative real time PCR. 
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2.2.6.4.1. Polymerase chain reaction 

The PCR identifies the presence and the absence of a particular location in 

the DNA sample due to the attachment of the forward and reverse primers to the 

specific location. The PCR products were then identified by 2% agarose gel 

electrophoresis. For PCR, the primers used were that suggested by Lexicon – see 

Appendix A. Three pairs of primers were used to differentiate between wild-type, 

heterozygote and homozygote Glo1 mutant mice. First pair of primers was used to 

genotype the wild-type gene, while the second and third pairs were used to detect 

both ends of the inserted vector and the insertion loci - Figure 2.16.  

 

Figure 2.16: Genotyping of wild-type and knockout gene. The figure shows 

that the wild-type locus can be genotyped by using forward and reverse primers. 

The knockout locus can be genotyped by using forward and LTR reverse and/or 

LTR2 and reverse primer.   

 

The reaction mixture contains the extracted DNA, Biomix red, water, 

forward primer and reverse primer. Each reaction contained 1 mM: dNTPs, 1.5 mM: 

Mg+2, 0.2 pmol/µl: forward primer, 0.2 pmol/µl: reverse primer, 2 µl of 100 ng/ul 

DNA sample, Taq polymerase, stabilizer and buffer to the final volume of 20 µl. The 

protocol used for PCR is shown in Table 2.16. 

Table 2.16: PCR programme used for genotyping. 

Step Process Temperature Time (min) 

1 Initial denaturation 94°C 4:30 

2 Denaturation 94°C 0:30 

3 Annealing 58°C 0:30 

4 Elongation 72°C 0:30 

Repeat steps no 2 to 4  30 times (30 cycles) 

5 Final elongation 72°C 7:00 

6 Hold 4°C Overnight 
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Gel electrophoresis 

The PCR product (5 µl) was electrophoresed using 2% agarose gel stained 

with 0.5 μg/ml ethidium bromide. The marker used was hyperladder V. The voltage 

used in gel electrophoresis was 100 volts for 90 min. After the electrophoresis, the 

gel was photographed using ultraviolet light by Chemi Genins2. 

2.2.6.4.2. Quantitative real time PCR (qPCR) 

Three pairs of primers used for real time PCR are same as mentioned above. 

Real time PCR was used to quantify the products of each allele and to estimate 

number of copies present of each locus. 

The qPCR reaction mixture containing DNA sample (4 µl of 5 ng/ul stock 

solution), SensiMix Low-ROX (10 µl), DNase/RNase free water (5 µl), forward 

primer (0.5 µl of 10 pmol/µl stock solution, final concentration was 0.25 pmol/µl) 

and reverse primer ( 0.5 µl of 10 pmol/µl stock solution, final concentration was 0.25 

pmol/µl) were added in a clear MicroAmp® optical 96-well reaction plate and sealed 

with MicroAmp® optical adhesive film. The plate was centrifuged for few seconds 

and genotyping was performed using a 7500 Fast-Real time PCR machine. The 

protocol used for PCR is shown in Table 2.17. 

Table 2.17: qPCR protocol. 

Repetitions Temperature Time (min) 

1 95°C 10:00 

40 
95°C 00:15 

60°C 01:00 

Hold 4°C Overnight 

 

Samples with the highest DNA concentration were used to construct the 

standard curve. The DNA was used to form standards 0 – 1,000,000 pg using serial 

dilutions. The reference gene was Rn 18s, which was used for the standards and for 

the samples as a housekeeping gene to normalize any experimental variation 

between the samples. A typical standard curve is shown in Figure 2.17. 
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Figure 2.17: Typical calibration curve for qPCR. Linear regression equation: 

Cycle threshold = (-3.23 ± 0.037) x log input mRNA + 40.16 ± 0.20; R2 = 0.999 

(data are mean ± SD; n = 3). 

2.2.6.5. Analysis of gene mRNA expression 

Two methods were used for determination of gene mRNA expression 

including SYBR green and Taqman. 

2.2.6.5.1. Gene mRNA expression analysis by SYBR green 

This method was used to determine the expression of mRNA of specific 

genes and normalised to housekeeping gene. The mRNA was firstly transcript to 

cDNA as descried in 2.2.6.3. The synthesised cDNA was used for standard curve 

construction and for analyses.  

In this experiment, primers spanning exon-exon junctions were designed and 

chosen when possible; this acted as an additional quality control to avoid any 

genomic DNA contaminant which might act as a template for amplification 

(Appendix A). Dissociation plots were performed for all primers to test specificity. 

Dissociation plots were routinely performed for each PCR plate; this ensured that the 

primers perform consistently - Figure 2.18.  
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Figure 2.18: Dissociation curve of Glo1 primers. The figure shows the 

specificity of Glo1 primers represented in one peak in the curve. X axis 

represents the change in the temperature and Y axis represents the derivative of 

relative fluorescence divided by the derivative of temperature (dRFU/dT).      

2.2.6.5.2. Gene mRNA expression analysis by Taqman method 

This was performed using the Taqman gene expression assay protocol (PN 

4333458) according to the manufacturer’s instructions. Briefly, in a clear 96 well 

MicroAmp® optical 96-well reaction plate, cDNA (4 μl, 10 ng/μl) was used from 

2.2.6.3 and mixed with the target Taqman gene expression assay (1 μl of 20x), 2x 

TaqMan universal master mix II (10 μl) with UNG and 5 μl RNase-free water to 

make a total of 20 μl in a single well. Same mixture was used for the housekeeping 

gene (endogenous control) of either Actb or Rn18s using the gene specific 20x 

Taqman gene expression assay (1 μl) in another well - Table 2.18. After loading 

PCR reaction mix component for all samples, the plate was sealed with MicroAmp® 

optical adhesive film, centrifuged for few seconds, and loaded in a 7500 Fast-Real 

time PCR machine. The protocol used for PCR is shown in Table 2.19. 

Table 2.18: Taqman PCR reaction mix component. 

PCR reaction mix component 
Single 

reaction 

Three 

replicates 

20x Taqman gene expression assay 1 3 

2x Taqman universal master mix II, with UNG 10 30 

cDNA template (10 ng/μl) 4 12 

RNase-free water 5 15 
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Table 2.19: PCR protocol of Taqman gene expression assay. 

Repetitions Temperature Time (min) 

1 50°C 2:00 

1 95°C 10:00 

40 
95°C 00:15 

60°C 01:00 

Hold 4°C Overnight 

 

After the completion of the PCR reaction, the cycle threshold data was 

collected for each sample and endogenous control. Cycle threshold (Ct) is the cycle 

number at which the fluorescence for the reaction crosses the threshold value 

(definable parameter). Delta Ct is the difference in Ct between the target gene 

(Ct(t))and the endogenous control (Ct(endl)) for a given sample.  

dCt = Ct(t) - Ct(endl) 

Delta delta Ct is the difference between the dCt of a particular gene for an 

experimental sample and the dCt of that same gene for the calibrator sample (control 

sample).  

ddCt = dCt(exp) - dCt(cal) 

The linear fold change in gene expression between the experimental and calibrator 

sample is:  

Fold change =2(-ddCt) 

This fold change value was used to compare between different samples. 

2.2.6.6. Gene copy number analysis by Taqman method 

Taqman® copy number assays employed Taqman® minor groove binding 

probe chemistry to evaluate the copy number of genomic DNA targets. Taqman® 

copy cumber assays are run together with a Taqman® copy number reference assay, 

which have a pair of specific primers and specific probe to hybridize to the 

complementary sequence in the DNA sample. Both run in a duplex real-time PCR 

using 7500 Fast-Real time PCR machine and CopyCaller™ software.  

It was performed using the Taqman copy number assay protocol (PN 

4397425) according to the manufacturer’s instructions. Briefly, in a clear 96 well 

MicroAmp® optical 96-well reaction plate, 4 μl (5 ng/μl) DNA was used from 

2.2.6.1. and mixed with 20x target Taqman copy number assay (1 μl), 20x reference 

Taqman copy number assay (1 μl),  2x Taqman genotyping master Mix (10 μl) and 

RNase-free water (4 μl) to make a total of 20 μl in a single well - Table 2.20. After 
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loading the components of the PCR reaction mixture for all samples, the plate was 

sealed with MicroAmp® optical adhesive film, centrifuged for few seconds, and 

then loaded in a 7500 Fast-Real time PCR machine. The protocol used for PCR is 

shown in Table 2.21. 

Table 2.20: Component of Taqman copy number assay PCR reaction mix. 

PCR reaction mix component 
Single 

reaction 

Three 

replicates 

20x target Taqman copy number assay 1 3 

20x reference Taqman copy number assay 1 3 

2x Taqman genotyping master mix 10 30 

DNA template (5 ng/μl) 4 12 

RNase-free water 4 12 

 

Table 2.21: PCR protocol of Taqman copy number assay. 

Repetitions Temperature Time (min) 

1 95°C 10:00 

40 
95°C 00:15 

60°C 01:00 

Hold 4ºC Overnight 

 

After the completion of the PCR reaction, the cycle threshold data was 

exported for each sample and control with setting of 0.2 threshold and autobaseline. 

The result was imported in CopyCaller™ Software where the software used Ct 

values of the target gene and reference gene of the samples and compares it to the 

data of the calibrator sample to calculate the copy number of the target gene. 

2.2.6.7. Microarray-based comparative genomic hybridisation  

Array-CGH was performed using SurePrint G3 mouse CGH microarrays 

1x1M according to the manufacturer’s instructions protocol no (G4410-90010: 

version 7.2 July 2012). In array-CGH, test and reference DNAs are differentially 

fluorescent labelled and hybridized together to the array. The resulting fluorescent 

ratio is then measured, clone by clone, and plotted relative to each clone’s position in 

the genome. In this experiment, the reference samples were selected from C57BL/6 

mouse strain according to the sex of the animal whose DNA was used as a sample.   

Briefly, genomic DNA (0.5 μg in 20.2 μl AE buffer) of the samples and the 

corresponding reference derived from 2.2.6.1. were digested by BSA, Alu I and Rsa 

I enzymes from SureTaq complete DNA labelling kit according to the supplier´s 

instructions - Table 2.22. The master mix was added to each reaction tube containing 
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gDNA to make total volume of 26 μl. The tubes were loaded in a thermal cycler and 

incubated for 2 hours at 37ºC, 20 minutes at 65ºC and then at 4ºC. The digested 

DNA (2 μl) was loaded to 0.8% agarose gel to insure that most of the products were 

between 200 and 500 bp - Figure 2.19. 

Table 2.22: Components of the digestion master mix. 

Component Volume per reaction (μl) 

Nuclease free water 2.0 

10x Restriction enzyme buffer 2.6 

BSA 0.2 

Alu I 0.5 

Rsa I 0.5 

Final volume of digestion master mix 5.8 

 

Figure 2.19: Determination of the digested DNA size in 0.8% agarose gel . 

 

The digested DNA was amplified by random primers (5 μl) (supplied in 

SureTaq complete DNA labelling kit) and heated to 95ºC for 3 minutes and then at 

4ºC. The amplified DNA was labelled with labelling master mix (21 μl) (Table 2.23) 

where the test samples were labelled with cyanine 5-dUTP and the reference samples 

were labelled with cyanine 3-dUTP. Then, the tubes were loaded in a thermal cycler 

and incubated for 2 hours at 37ºC, 10 minutes at 65ºC and then at 4ºC. 

Table 2.23: Components of the labelling master mix. 

Component Volume per reaction (μl) 

Nuclease free water 2.0 

5x reaction buffer 10.0 

10x dNTPs 5.0 

Cyanine 3-dUTP or Cyanine 5-dUTP 3.0 

Exo (-) Klenow 1.0 

Final volume of labelling master mix 21.0 
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Labelled DNA was mixed with TE buffer (430 μl; pH 8.0) and purified with 

purification column provided in the SureTaq DNA labelling kit and spin for 10 min 

at 14,000 x g. The wash step was repeated with TE buffer (430 μl; pH 8.0) using 

same column and then the column was inverted in a new tube and spin for 1 min at 

1,000 x g to make a total of 80.5 μl. From the mixture, 1.5 μl was used for 

determination of yield, degree of labelling and specific activity by using NanoDrop 

1000 spectrophotometer and the following formulas:  

Degree of Labelling = 
340 × pmol per μl dye 

X 100 
ng per μl gDNA × 1000 

 

Specific activity (pmol dyes per μg gDNA) = 
340 × pmol per μl dye 

 
ng per μl gDNA × 1000 

 

Yield (μg) = 
DNA concentration (ng/μl) x Sample volume (μl) 

 
                               1000 ng/μg 

The result was compared with the expected values in the following Table 2.24. 

 

Table 2.24: Expected yield and specific activity after labelling and purification 

with the SureTag complete DNA labelling kit. 

Input gDNA 

 (μg) 

Yield 

 (μg) 

Specific activity of 

cyanine-3 labelled 

Sample (pmol/μg) 

Specific Activity of 

cyanine-5 labelled 

Sample (pmol/μg) 

0.2 3 to 5 20 to 25 15 to 25 

0.5 8 to 11 20 to 35 20 to 30 

1 9 to 12 25 to 40 20 to 35 

 

After insuring that all the values were fitted within the expected value range, 

the rest of the DNA sample and corresponding reference were mixed in nuclease free 

tube (158 μl). The hybridisation master mix (Table 2.25) was add to the tubes and 

heated to 95ºC for 3 min then 37ºC for 30 min. 

Table 2.25: Hybridization master mix for microarray. 

Component Volume (μl) per hybridization 

Cot-1 DNA (1.0 mg/ml) 5 

10× aCGH blocking agent 11 

2× HI-RPM hybridization buffer 55 

Final volume of hybridization master mix 71 
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The mixture was hybridized to 1M array using the Oligo aCGH/ChIP-on-

chip hybridization kit by loading 490 μl of the mixture to the gasket slide and 

covered with the active side of the microarray. The sandwich slides were loaded to 

Agilent microarray hybridization chamber which were all loaded to the hybridization 

oven heated to 60ºC and rotate at 20 rpm for 40 h.  

Following hybridization, the array was washed with Oligo aCGH/ChIP-on-

chip wash buffer 1 and 2 and scanned using Surescan microarray slide holder and 

Surescan microarray scanner. All data was processed and collected by Agilent's 

feature extraction software. Agilent's feature extraction software finds and places 

microarray grids, accurately determines feature intensities and ratios, flags outlier 

pixels and calculates statistical confidences. Data analysis was performed with 

Agilent genomic workbench edition 7.0 which is a powerful visualization tool for the 

analysis of key microarray applications. The following settings were used in the 

analysis: ADM-2, threshold 6.0, with at least 3 consecutive oligos with an absolute 

log ratio of 0.25. For amplified DNA the algorithm ADM-2, threshold 6.0 was used 

with at least 3 consecutive probes with an absolute log ratio of 0.25. 

2.2.6.8. PCR–restriction fragment length polymorphism  

PCR–restriction fragment length polymorphism (PCR–RFLP) is a classic and 

relatively inexpensive method of genotyping that is based on endonuclease cleavage. 

A SNP that alters a restriction sequence can be genotyped by PCR–RFLP. The C to 

A (C419A) substitution in exon 4 of GLO1, which changes Ala111Glu in the 

encoded protein, leads to the loss of a recognition site for the SfaNI restriction 

enzyme. 

The extracted DNA from whole blood of the clinical subject was PCR. The 

reaction mixture contains 200 ng/µl DNA sample, Biomix red, water, C419A 

genotyping forward primer and reverse primer. Each reaction contained 1 mM: 

dNTPs, 1.5 mM: Mg2+, 0.2 pmol/µl: forward primer, 0.2 pmol/µl: reverse primer, 

Taq polymerase, stabilizer and buffer to the final volume of 20 µl. The protocol used 

for PCR is shown in Table 2.26. The PCR products were digested with SfaNI 

digestive enzyme for 1 hour at 37ºC. The digested product were resolved by 2% 

agarose gel electrophoresis and the fragments were visualized under UV light after 

staining with ethidium bromide to identify the single base pair change. The 
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restriction digest reveals 453 bp and 260 bp fragments in the presence of A 111 

allele, and 713 bp fragment in the presence of E allele (Rinaldi et al., 2014). 

Table 2.26: PCR protocol for A111E genotyping. 

 Process Temp. Time (min) 

1 Initial denaturation 94°C 5:00 

2 Denaturation 94°C 0:40 

3 Annealing 55°C 0:30 

4 Elongation 72°C 0:40 

Repeat steps no. 2 to 4  30 times (30 cycles) 

5 Final elongation 72°C 10:00 

6 Hold 4°C Overnight 

 

2.2.7. Statistical analysis 

Data was tested for normality of distribution (Kolmogorov-Smirnov test). 

Parametric data of independent samples (two groups) were analysed for significance 

of difference of means by Student’s t-test with or without modification for difference 

of variance. Difference in variance was determined by the F-test. Parametric data of 

independent samples of (> 2 groups) was analysed by analysis of variance ANOVA. 

Non-parametric data were analysed using Mann Whitney-U test (2 groups) or by 

Krusckal-Wallis test (> 2 groups). Correlation analysis was performed with 

Pearson’s test for parametric data and Spearman’s test for non-parametric data. 
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3. Results  

3.1. Glyoxalase 1 mutant mice  

3.1.1. Genotyping  

Forty-four offspring of Glo1 mutant mice were genotyped according to the 

method described in section 2.2.6.4. DNA extracted from liver tissue was used in 

PCR analysis with genotyping primer pairs 1, 2 and 3. Each of these pairs was run 

with DNA in a separate reaction - Figure 3.1. The amplified DNA PCR product size 

with each primer was 237 bp, 223 bp and 241 bp respectively. The extracted DNA 

from most of the Glo1 mutant mice showed a band with all 3 primers – for example, 

Figure 3.1, Primers 1 - 3 analyses, sample no 1 – 9 and 11. This indicates that these 

mice had both WT and mutant alleles and were therefore Glo1 (+/-) hetozygotes. 

Extracted DNA from some of the mice showed a band with primer pair 1 only - 

Figure 3.1, sample no 10. This indicates the presence of only the WT alleles and 

absence of mutant allele. This mouse is a WT sibling. Analysis of 44 offspring from 

mating of Glo1 mutant mice showed that 9 mice were WT and 35 were mutant 

heterozygote Glo1 (+/-). Mutant homozygote Glo1 (-/-) mice are expected to show 

reactivity with only primers 2 and 3. On this basis, there were no homozygote Glo1 

(-/-) mouse offspring produced. 

 

Figure 3.1: Electrophoresis results for PCR analysis of Glo1 mutant and 

wild-type control mice. The figure shows three agarose gels stained with 

ethidium bromide. The first lane on the left-hand side, Hyperladder V, shows 

electrophoresis of DNA size calibrators. On the right-hand side, a positive 

control was used in primer 1 (penultimate lane, labelled “C”) and a negative 

control (last lane, PCR water, labelled “-C”). Sample no 1 - 9 and 11 gave bands 

with all three pairs of primers with the expected band size - WT and Glo1 

mutant loci. Sample no 10 gave bands with primer pair 1 only - WT locus only. 
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3.1.2. Glo1 activity of tissues of Glo1 (+/-) mutant mice and C57BL/6-UoW 

wild-type controls at 3 months of age 

C57BL/6-UoW and Glo1 mutant mice were sacrificed when 3 months old 

and Glo1 activity was measured in cytosolic extracts of tissues – as described in 

Section 2.2.4.2. Glo1 activity was highest in the liver and lowest in pancreas and 

spleen of both C57BL/6-UoW and Glo1 mutant mice. Glo1 activity of C57BL/6-

UoW and Glo1 mutant mice were not significantly different in the liver, kidney, 

heart and pancreas whereas there was increased Glo1 activity in the brain (+58%), 

skeletal muscle (+19%) and spleen (+23%) of Glo1 (+/-) versus C57BL/6-UoW 

controls - Table 3.1. 

Table 3.1: Glo1 activity in brain, heart, kidney, pancreas, skeletal muscle, 

spleen and liver tissue of C57BL/6-UoW and Glo1 (+/-) and mice.  

Tissue 
C57BL/6-UoW 

(unit/mg protein) 
Glo1(+/-) 

(unit/mg protein) 

Liver 3.45 ± 0.39 4.08 ± 0.91 

Kidney 1.19 ± 0.15 1.36 ± 0.17 

Brain 1.12 ± 0.25 1.77 ± 0.44* 

Heart 1.12 ± 0.42 1.20 ± 0.19 

Skeletal muscle 0.81 ± 0.07 0.96 ± 0.12* 

Spleen 0.53 ±  0.04 0.65 ± 0.07** 

Pancreas 0.50 ± 0.12 0.57 ± 0.07 

Mice were sacrificed at 3 months. Data are mean ± SD (n = 6). Significance: *, 

p<0.05 and **, p<0.01; Student’s t-test.  

 

3.1.3. Glo1 activity of tissues of Glo1 (+/-) mutant mice and wild-type 

controls at 7 months of age 

The activity of Glo1 was measured in the tissues of 12 Glo1 mutant and 12 

wild-type control mice at 7 months old. In this experiment, there were two types of   

WT controls: WT siblings of Glo1 mutant mice, shown as “WT” and WT C57BL/6 

mice from UoW breeding stock, shown as “C57BL/6-UoW”. 
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3.1.3.1.  Liver 

The Glo1 activity of liver of WT sibling mice of Glo1 mutant mice at 7 

months was 4.44 ± 0.80 U/mg protein (n = 7). This was decreased 13% in Glo1 

mutant (+/-) heterozygotes but not significantly. The Glo1 activity of C57BL/6-UoW 

mice was decreased 32 % with respect to WT sibling mice of Glo1 mutant mice 

(P<0.01) and 26 % with respect to Glo1 mutant (+/-) heterozygote mice (P<0.05) – 

Figure 3.2. This indicates that C57BL/6-UoW mice has significantly lower activity 

of Glo1 than Glo1 (+/-) and also than WT siblings. The WT sibling mice have the 

same origin and genetic background as the Glo1 (+/-) mice and are therefore the 

appropriate non-mutant controls for Glo1 (+/-) mice. The different origin and 

different genetic background of C57BL/6-UoW and WT mice likely explains the 

differences in Glo1 activity found. The appropriate wild-type strain origin is critical 

for correct comparisons of Glo1 activity in this study. Comparing mutant Glo1 (+/-) 

heterozygote mice and WT siblings, therefore, it can be concluded there is no change 

in Glo1 activity in the live and hence there is compensation in Glo1 activity for the 

mutant Glo1 allele. 

 

Figure 3.2: Glo1 activity of liver of Glo1 (+/-) mutant mice, wild-type sibling 

mice (WT) and wild-type “C57BL/6-UoW” mice. Data are mean ± SD (Glo1 

(+/-), n = 7; WT, n = 12; and C57BL/6-UoW, n = 5). Significance: **, p<0.01 

with respect to WT and º, p<0.05 with respect to Glo1 (+/-); Student’s t-test. 

 

3.1.3.2. Other tissues 

Glo1 activity was measured in brain, heart, kidney, pancreas and spleen of 

Glo1 (+/-) mutant heterozygote mice and wild-type siblings at 7 months old - 

Table 3.2. There was no difference in Glo1 activity in liver, brain, skeletal muscle, 

heart, kidney, pancreas and spleen of Glo1 (+/-) mutant mice and wild-type 

siblings at 7 months old. It can be concluded there is compensation in Glo1 activity 

for the mutant Glo1 allele in these tissues. 
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Table 3.2: Glo1 activity in liver, brain, skeletal muscle, heart, kidney, pancreas 

and spleen of Glo1 (+/-) mutant mice and wild-type siblings at 7 months of age. 

Mice were sacrificed at 7 months. Data are mean ± SD (Glo1 (+/-) mutant, n = 12 

and wild-type, n = 7). Significance: Student’s t-test. 

 

All tissues of Glo1 (+/-) mutant mice have normal, WT levels of Glo1 

activity. They are therefore unsuitable for a model of Glo1 deficiency in functional 

genomics studies of the role of Glo1 in diabetic neprhropathy and related diabetic 

complications. Consequently, at this point my plan of investigation changed from 

study of an experimental model of diabetic nephropathy to investigation of how and 

why the Lexicon Glo1 had maintained WT levels of Glo1 activity in all tissues 

tested. A first step in the investigation was to examine levels of Glo1 expression in 

tissues of these mice.    

3.1.4. Glo1 mRNA of kidney and liver of Glo1 (+/-) mutant mice and wild-

type sibling controls at 7 months of age 

Glo1 mRNA expression was analysed in RNA extracted from liver and 

kidney tissue samples of Glo1 (+/-) mutant mice and sibling WT control mice at 7 

months of age. The mRNA expression of Glo1 was normalized to Rn18s mRNA 

expression. There was no significant difference between these two genotypes in both 

tissues – Table 3.3. It can be concluded there is a mechanism compensating for the 

mutant Glo1 allele maintaining an unchanged level of Glo1 mRNA in these tissues 

of Glo1 (+/-) mutant mice. 

 

 

 

Tissue 
Wild-type 

 (units/mg protein) 

Glo1 (+/-) 

(units/mg protein) 

Liver 4.44 ± 0.80 3.87 ± 0.72 

Brain 1.98 ± 0.20 2.10 ± 0.43 

Skeletal muscle 1.88 ± 0.36 1.89 ±  0.33 

Heart 0.95 ± 0.12 0.95 ± 0.09 

Kidney 0.73 ± 0.10 0.77 ± 0.12 

Pancreas 0.56 ± 0.09 0.65 ± 0.06 

Spleen 0.39 ±  0.08 0.49 ± 0.14 
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Table 3.3: Relative mRNA content of Glo1 in liver and kidney tissue of Glo1  

(+/-) mutant mice and wild-type sibling controls at 7 months of age.  

Tissue WT Glo1 (+/-) 

Liver 0.406 (0.393 – 0.415) 0.432 (0.411 – 0.436) 

Kidney 0.540 (0.519 – 0.579) 0.531 (0.502 – 0.558) 

Glo1 mRNA expression was normalized to Rn18s mRNA. Data are median (lower – 

upper quartile); (Glo1 (+/-) mutant, n = 11 and WT, n = 7). Significance: Mann 

Whitney-U test. 

3.1.5. Glo1 protein of liver of Glo1 (+/-) mutant mice and wild-type sibling 

controls at 7 months of age. 

Glo1 protein in the liver cytosolic extract of Glo1 (+/-) mutant mice and WT 

sibling controls at 7 months of age was measured and normalised to actin. The 

protein expression was analysed by Western blotting. There was no significant 

difference between both genotypes - Figure 3.3. It can be concluded there is a 

mechanism compensating for the mutant Glo1 allele maintaining an unchanged level 

of Glo1 protein in these tissues of Glo1 (+/-) mutant mice. 

 

 

 

Figure 3.3: Glo1 protein in liver tissue of Glo1 (+/-) mutant mice and wild-

type controls at 7 months of age. a. Glo1 and β-actin immunoblotting bands for 

15 samples of WT and Glo1 (+/-). b. Quantification of Glo1 protein, normalised 

to housekeeping protein, β-actin. Data are mean ± SD (Glo1 (+/-), n = 8 and WT 

mice, n = 7). Significance: Student’s t-test. P>0.05 (not significant).  
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3.1.6. Glyoxalase 2 activity of liver of Glo1 (+/-) mutant mice and wild-type 

controls at 7 months of age. 

Glo2 activity in the liver cytosolic extract of Glo1 (+/-) mutant mice and WT 

controls at 7 months of age was determined – see Section 2.2.4.3. There was no 

significant difference in Glo2 activity between Glo1 (+/-) mutant mice and WT 

sibling controls - Table 3.4. It can be concluded that the activity of Glo2 has not been 

changed by mutation of Glo1 allele in Glo1 (+/-) mutant mice. 

Table 3.4: Glyoxalase 2 activity, D-lactate and MG content and methylglyoxal 

reductase activity in liver of Glo1 (+/-) mice and wild-type sibling control mice 

at 7 months of age. 

Analyte wild-type Glo1 (+/-) 

Glyoxalase 2 activity  

(U/mg protein) 
0.109 ± 0.020 0.105 ± 0.012 

Methylglyoxal reductase activity 

(mU/mg protein) 
4.34 ± 0.65 4.32 ± 1.02 

Methylglyoxal 

(pmol/mg wet weight) 
3.26 ± 0.65 2.82 ± 0.80 

D-Lactate 

(nmol/mg wet weight) 
0.343 ± 0.063 0.360 ± 0.068 

Data are mean ± SD (wild-type, n = 8 and Glo1 (+/-) mutant, n = 8 except for MG 

content for which n = 7). Significance: Student’s t-test. P>0.05 (not significant). 

3.1.7. Methylglyoxal and D-lactate contents of liver tissue of Glo1 (+/-) 

mutant mice and wild-type controls at 7 months of age. 

MG is the major physiological substrate of Glo1. Assay of MG content of 

liver samples revealed there was no significant difference of MG content between 

Glo1 (+/-) mutant mice and WT sibling controls - Table 3.4. D-Lactate content of 

liver tissue of Glo1 (+/-) mutant mice and WT controls at 7 months of age were 

measured – see Section 2.2.4.6. There was no significant difference of D-lactate 

content between Glo1 (+/-) mutant mice and WT sibling controls - Table 3.4. D-

Lactate is a surrogate marker of metabolic flux of MG formation. It can be 

concluded that the concentration and flux of MG formation in the liver is unchanged 

in Glo1 (+/-) mutant mice, with respect to WT controls. 

3.1.8. Methylglyoxal reductase activity in liver cytosolic extract of Glo1 

(+/-) mutant mice and wild-type controls at 7 months of age 

Methylglyoxal reductase provides an alternative fate for MG metabolism 

when Glo1 activity is decreased. I therefore investigated if this alternative pathway 
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had been increased in Glo1 (+/-) mutant mice to compensate for the expected 

deficiency of Glo1 activity. Methylglyoxal reductase activity was measured in the 

cytosolic extracts of liver tissues of Glo1 (+/-) mutant mice and WT controls at 7 

months of age – see section 2.2.4.4. There was no significant difference in 

methylglyoxal reductase activity between Glo1 (+/-) mutant mice and WT sibling 

controls - Table 3.4.  It can be concluded that metabolism of MG by methylglyoxal 

reductase is unchanged in Glo1 (+/-) mutant mice. 

Characterisation of glyoxalase- and MG-related variables in tissues of Glo1 

(+/-) mutant mice showed that they were unchanged with respect to WT siblings. 

This suggests there was a compensatory mechanism maintaining normal Glo1 

expression in Glo1 (+/-) mutant mice characterised by WT levels of mRNA, protein 

and activity. This suggests compensatory mechanism for the Glo1 mutant allele is at 

the transcriptional level. This was investigated further below. 

It was also of interest to assess the effect of gender on expression and activity 

of Glo1 in mice. 

3.1.9. Effect of gender on glyoxalase-related variables in pooled Glo1 (+/-) 

mutant mice and wild-type controls 

Data collected on glyoxalase-related variables of WT and Glo1 (+/-) mutant 

mice indicated no significant difference with genotype. Data were then pooled and 

re-analysed for gender effects by comparing values for male and female mice. For 

mice of age 3 months, Glo1 activity of the liver and pancreas was increased 31% and 

30%, respectively, in male mice compared to female mice; whereas, Glo1 activity of 

the heart was decreased 26% in male mice compared to female mice. For mice of age 

7 months, Glo1 activity of the liver was increased 44% in male mice compared to 

female mice; and at this age, Glo1 activity of the spleen was increased by 40% in 

male mice compared to female mice – Table 3.5. For the liver, there was no similar 

increase in Glo1 protein or mRNA in male with respect to female mice, suggesting 

that the difference in Glo1 activity may be due to functional post-translational 

modification of Glo1 protein. Conversely, there was a 10% decrease of Glo1 mRNA 

in the kidney of male mice with respect to female mice but no similar change in Glo1 

activity. Other glyoxalase-related variables of the liver - activity of Glo2 and MG 

reductase and contents of D-lactate and MG – were unchanged in male mice versus 

female mice. 



139 

 

Table 3.5: Summary of comparison between male and female mice for 

glyoxalase-related variables.  

 

Age 

(months) 

N 

(male/female) 
Tissue Male Female 

Glo1 

activity 

(U/mg 

protein) 

3 6/6 

Brain 1.53 ± 0.55 1.36 ± 0.44 

Heart 1.03 ± 0.22 1.40 ± 0.29* 

Kidney 1.25 ± 0.22 1.30 ± 0.13 

Liver 4.27 ± 0.74 3.27 ± 0.28* 

Pancreas 0.607 ± 0.056 0.467 ± 0.087** 

Skeletal 

muscle 
0.880 ± 0.154 0.881 ± 0.101 

Spleen 0.621± 0.094 0.561 ± 0.060 

7 12/8 

Brain 2.05 ±  0.29 1.91 ± 0.42 

Heart 0.969 ± 0.144 0.968 ± 0.107 

Kidney 0.796 ± 0.155 0.718 ± 0.512 

Liver 4.70 ± 0.49 3.27 ± 0.46*** 

Pancreas 0.599 ± 0.097 0.632 ± 0.058 

Skeletal 

muscle 
2.12 ± 0.49 1.73 ± 0.26 

Spleen 0.529 ± 0.143 0.379 ± 0.074* 

Glo1 mRNA 

(Glo1/18sRn) 
7 11/7 

Kidney 
0.505 

(0.499 – 0.535) 

0.570 

(0.555 – 0.579)** 

Liver 
0.416 

(0.403 – 0.432) 

0.414 

(0.410 – 0.426) 

Glo1 protein 

(Glo1/β-

actin) 

7 12/8 Liver 5.25 ± 1.89 4.74 ± 1.69 

Glo2 

activity 

(U/mg 

protein) 

7 8/8 Liver 0.111 ± 0.010 0.100 ± 0.019 

D-Lactate 

(nmol/mg 

wet weight) 

7 8/8 Liver 0.841 ± 0.133 0.861 ± 0.132 

MG 

reductase 

activity 

(mu/mg 

protein) 

7 8/8 Liver 3.46 ± 1.64 5.40 ± 1.15 

MG content   

(pmol/mg 

wet weight) 

7 8/7 Liver 3.22 ± 0.84 2.87 ± 0.60 

Data are mean ± SD. Significance: Student’s t-test except of mRNA analysis data are 

median (lower – upper quartile); Significance: Mann Whitney-U test. Significance: 

*, **, and ***, p<0.05, p<0.01 and p<0.001 respectively. 
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3.1.10. Urinary excretion of protein glycation free adducts, oxidation free 

adducts and related amino acids of Glo1 (+/-) mutant mice and wild-

type sibling controls at 3 months of age 

Urine was collected from Glo1 (+/-) mice and WT siblings and analysed for 

protein glycation and oxidation free adducts – see Sections 2.2.5.1 and 2.2.5.2. The 

flux of urinary excretion of glycation and oxidation free adducts is given in Table 

3.6. For urinary excretion of amino acids, there was a 46% decrease in urinary 

excretion of lysine in Glo1 (+/-) mutant mice, with respect to WT controls. The 

urinary excretion of glycation adducts FL, CML, CEL, MG-H1 and CMA were 

unchanged whereas the urinary excretion of G-H1 was decreased 59% in Glo1 (+/-) 

mutant mice, with respect to WT controls – Table 3.6. Lack of change in urinary 

excretion of the major glycation adducts derived from MG, MG-H1 and CEL, 

suggests there is likely no increase in total body exposure to MG in Glo1 (+/-) 

mutant mice, with respect to WT controls. 

Table 3.6: Urinary excretion of protein glycation and oxidation free adducts of 

Glo1 (+/-) mutant mice and wild-type sibling controls at 3 months of age. 

Analyte wild-type (n = 5) Glo1 (+/-) (n = 7) 

Amino acids (nmol/mg creatinine) 

Lys 0.249 (0.243 – 0.389) 0.134 (0.110 – 0.144)* 

Arg 95.7 (69.8 – 123.1) 68.1(62.9 – 96.6) 

Met 67.4 (58.3 – 71.7) 46.5 (37.6 – 66.1) 

Tyr 65.0 (51.3 – 72.9) 50.6 (46.6 – 69.8) 

Trp 8.48 (8.26 – 9.14) 5.52 (4.76 – 6.86) 

Lysine-derived glycation adducts (nmol/mg creatinine) 

FL 723 (720 – 803) 656 (545 – 748) 

CML 105.1 (79.5 – 107.2) 77.9 (75.2 – 98.2) 

CEL 53.7 (47.3 – 82.8) 49.2 (47.3 – 60.2) 

Arginine-derived glycation adducts residues (nmol/mg creatinine) 

MG-H1 47.8 (39.1 – 55.6) 17.8 (11.4 – 39.8) 

G-H1 4.07 (3.38 – 4.48) 1.66 (1.46 – 2.49)** 

CMA  6.66 (6.44 – 8.52) 7.15 (6.32 – 7.44) 

Data are median (lower – upper quartile); wild-type, n = 5 and mutant Glo1 (+/-),   

n = 7. Significance: * and **, p<0.05 and p<0.01 respectively; Mann Whitney-U 

test.  
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3.1.11. Protein glycation and oxidation adduct residue contents of cytosolic 

protein extracts of mouse liver of mutant Glo1 (+/-) mice and wild-

type sibling controls 

Liver tissues were collected and cytosolic extracts prepared and analysed for 

protein glycation and oxidation adduct residue contents – see Section 2.2.5.1. The 

glycation and oxidation adduct residue contents of liver protein extracts are given in 

Table 3.7. There was no significant difference in the liver cytosolic protein contents 

of glycation and oxidation adduct residues except for a 45% increase of DT residues 

of mutant Glo1 (+/-) mice, with respect to WT controls - Table 3.7. Lack of change 

in liver protein residue content of the major glycation adducts derived from MG, 

MG-H1 and CEL, is consistent with there being no increase in MG content of Glo1 

(+/-) mutant mice, with respect to WT controls – as determined directly (see above). 

Comparison was also made of protein glycation and oxidation adduct residue 

contents of liver protein by gender. Glucosepane, CMA and NFK residue contents 

were higher and AASA residue content was lower in female mice compared with 

male littermates – Table 3.8. In all samples, pentosidine content was lower than the 

detection limit (20 fmol, equivalent to 0.006 mmol/mol lys).  
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Table 3.7: Protein glycation and oxidation adduct residue contents of liver 

protein of mutant Glo1 (+/-) mice and wild-type sibling controls.  

Analyte wild-type Glo1 (+/-) 

Lysine-derived glycation adduct residues (mmol/mol lys) 

FL 2.97 (2.54 – 3.52) 3.03 (2.31 – 3.37) 

CML 0.134 (0.099 – 0.241) 0.096 (0.047 – 0.141) 

Glucosepane 0.086 (0.061 – 0.1321) 0.055 (0.019 – 0.072) 

Pentosidine < detection limit < detection limit 

Arginine-derived glycation adduct residues (mmol/mol arg) 

MG-H1 0.447 (0.327 – 0.507) 0.382 (0.317 – 0.423) 

3DG-H 0.132 (0.113 – 0.162) 0.073 (0.061 – 0.112) 

G-H1 0.161 ± 0.067 0.174 ± 0.066 

CMA 0.083 ± 0.024 0.077 ± 0.027 

Oxidation adduct residues (mmol/mol amino acid residue modified) 

ASAA 

(mmol/mol lys) 
0.057 (0.042 – 0.094) 0.070 (0.064 – 0.080) 

GSA  

(mmol/mol arg) 
0.039 (0.027 – 0.051) 0.050 (0.030 –0.074) 

Dityrosine 

(mmol/mol tyr) 
1.00 (0.74 – 1.24) 1.45 (1.31 – 1.68)** 

NFK  

(mmol/mol trp) 
1.97 (1.72 – 2.28) 1.99 (1.75 – 2.08) 

3-NT  

(mmol/mol tyr) 
0.031 (0.022 – 0.044) 0.051 (0.025 – 0.087) 

Data are mean ± SD or median (lower – upper quartile); n = 10. Significance: **, 

p<0.01; Mann Whitney-U test.  
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Table 3.8: Protein glycation and oxidation adduct residue contents of liver 

protein of male and female mice.  

Analyte Male Female 

Lysine-derived glycation adduct residues (mmol/mol lys) 

FL 2.97 (2.09 – 3.05) 3.14 (2.58 – 3.70) 

CML 0.111 (0.059 – 0.206) 0.109 (0.066 – 0.176) 

Glucosepane 0.061 ± 0.046 0.090 ± 0.051* 

Pentosidine < detection limit < detection limit 

Arginine-derived glycation adduct residues (mmol/mol arg) 

MG-H1 0.332 (0.316 – 0.429) 0.463 (0.371 – 0.563) 

3DG-H 0.095 (0.063 – 0.116) 0.144 (0.086 – 0.188) 

G-H1 0.151 ± 0.072 0.184 ± 0.056 

CMA 0.070 ± 0.023 0.096 ± 0.022* 

Oxidation adduct residues (mmol/mol amino acid residue modified) 

AASA (mmol/mol lys) 0.083 (0.069 – 0.094) 0.054 (0.042 – 0.064)** 

GSA 

(mmol/mol arg) 
0.051 (0.033 – 0.078) 0.035 (0.027 – 0.049) 

Dityrosine (mmol/mol 

tyr) 
1.23 (0.93 – 1.46) 1.36 (0.918 – 1.54) 

NFK  

(mmol/mol trp) 
1.72 (1.63 – 1.80) 2.27 (2.07 – 2.44)*** 

3-NT 

(mmol/mol tyr) 
0.028 (0.019 – 0.038) 0.060 (0.026 – 0.087) 

Data are mean ± SD or median (lower – upper quartile); n = 10. Significance: *, ** 

and ***, p<0.05, p<0.01 and p<0.001; Student’s t-test or Mann Whitney-U test.  
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3.1.12. Glo1 copy number of liver, kidney, brain and pancreas in Glo1 (+/-) 

mutant mice and wild-type controls at 7 months of age 

A possible mechanism for compensatory transcription of Glo1 in Glo1 (+/-) 

mutant mice is induction of increased copy number of the WT allele during mouse 

line generation by gene trapping with somatic retention of increased CNV in 

subsequent progeny to avoid embryonic dicarbonyl stress. The copy number of Glo1 

gene was measured by quantifying Glo1 DNA - see Section 2.2.6.6. Two locations 

within the murine Glo1 gene were chosen for DNA quantification by specific pairs 

of primers and Taqman probe for each location: the 3’-end of exon 1 and the 5’-end 

of exon 6. DNA of Glo1 (+/-) mutant mice and WT controls was extracted from 

tissues samples of liver, kidney, brain and pancreas and analysed for CNV - Figures 

3.4 - 3.7. WT control siblings were assumed to have two copies of Glo1. CNV of 

Glo1 was quantified by Taqman copy number assay and contents were normalized to 

Transferrin receptor protein 1 (Tfrc) as internal reference gene. Tfrc is known to be 

present in two copies in a diploid genome and located at chromosome 16 and is 

therefore at a remote genetic local from Glo1 in a duplex PCR reaction.  

 

         

 

Figure 3.4: Assay of Glo1 copy number by the Taqman method in liver 

tissue of Glo1 (+/-) mutant and sibling wild-type control mice at 7 months of 

age. a. Copy number of exon 1 of Glo1, and b. Copy number of exon 6 of Glo1. 

Data are median (lower – upper quartile); (Glo1 (+/-), n = 9; and WT, n = 7). 

Significance: ***, p<0.001; Mann Whitney-U test.  
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Figure 3.5: Assay of Glo1 copy number by the Taqman method in kidney 

tissue of Glo1 (+/-) mutant and sibling wild-type control mice at 7 months of 

age. a. Copy number of exon 1 of Glo1, and b. Copy number of exon 6 of Glo1. 

Data are median (lower – upper quartile); Glo1 (+/-), n = 9; and WT, n = 7. 

Significance: ***, p<0.001; Mann Whitney-U test.  

  

 

 

Figure 3.6: Assay of Glo1 copy number by the Taqman method in brain 

tissue of Glo1 (+/-) mutant and sibling wild-type control mice at 7 months of 

age. a. Copy number of exon 1 of Glo1, and b. Copy number of exon 6 of Glo1. 

Data are median (lower – upper quartile); Glo1 (+/-), n = 9; and WT, n = 7. 

Significance: ***, p<0.001; Mann Whitney-U test.  

 

 

  

Figure 3.7: Assay of Glo1 copy number by the Taqman method in pancreas 

tissue of Glo1 (+/-) mutant and sibling wild-type control mice at 7 months of 

age. a. Copy number of exon 1 of Glo1, and b. Copy number of exon 6 of Glo1. 

Data are median (lower – upper quartile); Glo1 (+/-), n = 9; and WT, n = 7. 

Significance: ***, p<0.001; Mann Whitney-U test.  
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The data show that all Glo1 (+/-) mice have ca. 3 copies of Glo1 in all tissues 

analysed. In addition, the increased CNV occurred at both ends of Glo1, 3’-end of 

exon 1 and at the 5’-end of exon 6. It is likely, therefore, that the increase copy 

number extends across the entire Glo1 gene. The increased copy number of Glo1 in 

Glo1 (+/-) mutant mice may explain the levels of mRNA, protein and activity of 

Glo1 being similar to that of WT siblings if the additional copy of Glo1 is of the WT 

gene. 

To investigate the transfer of increased Glo1 CNV through generations and to 

gain insight into the chromosomal location of the WT allele with respect to the 

mutant alleles of Glo1, I then investigated inheritance of mutant and WT alleles in 

genetic inheritance studies. 

3.1.13. Inheritance study of the Glo1 duplication in Glo1 (+/-) mutant mice 

and wild-type controls  

To study the inheritance pattern of Glo1 mutation, DNA was extracted from 

blood samples of offspring of mating of different 3 pairs of WT and Glo1 (+/-) 

mutant mice. Qualitative assessment of Glo1 copy number in the Glo1 (+/-) mutant 

and WT mice was made by qPCR with primers that distinguish between WT and 

mutated Glo1 alleles. The following applies: (i) copy number is integer valued and 

(ii) total copy number is known from Taqman copy number assay. qPCR detects 

DNA domains with increased copy number earlier in the PCR than of DNA in WT 

controls with the normal 2 copies. Combination of copy number assay by the 

Taqman method and qPCR genotyping enabled assessment of the number of mutant 

and non-mutant, WT copies - Figure 3.8. 
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Figure 3.8: qPCR and Taqman copy number assay for inheritance studies.  

a. qPCR results of genotyping of the wild-type mouse showing the detection of wild-

type allele and no detection of the mutant allele (P1 primer pair 1 for wild-type 

allele, P2, P3 primer pair 2 and 3 respectively for heterozygote allele detection). 

b. qPCR results of genotyping of the heterozygote mouse showing the detection of 

wild-type allele and detection of the mutant allele almost at same PCR cycle.           

c. Taqman copy number assay for Glo1 gene in blood sample of Glo1 (+/-) mutant 

mice and wild-type. Data are mean ± SD (Glo1 (+/-), n = 3; and WT, n = 3).  

Significance: ***, p<0.001; Student’s t-test. 

3.1.13.1. Inheritance study – mouse mating and family offspring, no 1 

Breeding of WT female and Glo1 (+/-) male produced four pups. Ear 

punches were collected from all family for genotyping and quantification of mutant 

and WT copies of Glo1 - Table 3.9. The analyses showed that the inheritance of 

Glo1 mutated allele, Glo1Gt(OSTGST_4497-D9)Lex – abbreviated to Glo1(+/+)Gt(..)Lex, was 

simple Mendelian inheritance as the pups were two Glo1 (+/-) and two WT. This is 

expected in simple Mendelian inheritance - Figure 3.9. The heterozygote had a non-

mutated Glo1 allele on each chromosome and a targeted mutated allele on one 

chromosome – given nomenclature Glo1 (+/+)Gt(..)1Lex. 
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2 

Table 3.9: Summary of the qPCR genotyping and Taqman copy number assays 

for mouse breading pair 1. 

Mouse 

no. 

Total Glo1 copies 

(Taqman copy 

number assay) 

Mutant 

allele 
WT allele Genotype 

1 2 0 2 Glo1(+/+) 

2 3 1 2 Glo1(+/+)Gt(..)1Lex 

3 3 1 2 Glo1(+/+)Gt(..)1Lex 

4 3 1 2 Glo1(+/+)Gt(..)1Lex 

5 2 0 2 Glo1(+/+) 

6 2 0 2 Glo1(+/+) 

 

 

Figure 3.9: Pedigree of inheritance study - mouse mating and family 

offspring, no 1. The figure shows the paternal and maternal chromosome 17 in 

each mouse. The blue band represents the WT allele of Glo1. The red band 

represents the mutant allele of Glo1. The female parent has two WT Glo1 alleles 

and no Glo1 mutant allele. The male parent has two WT Glo1 alleles and one 

Glo1 mutant allele. Two of the pups have two WT Glo1 alleles and no Glo1 

mutant allele and the other two have two WT Glo1 alleles and one Glo1 mutant 

allele. 
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3.1.13.2. Inheritance study – mouse mating and family offspring, no 2 

Breeding of Glo1(+/+)Gt(..)1Lex female and Glo1(+/+)Gt(..)1Lex male produced 

six pups. Ear punches were collected from all family for genotyping and 

quantification of mutant and WT copies of Glo1 - Table 3.10. The analyses showed 

that the inheritance of Glo1Gt(..)Lex mutant allele was simple Mendelian inheritance as 

two pups had the Glo1Gt(..)Lex mutant allele and two siblings had only non-mutated 

alleles - expected in simple Mendelian inheritance - Figure 3.10. A new genotype 

with a non-mutated and a Glo1Gt(..)Lex mutant allele on each chromosome, denoted by 

Glo1(+/+)Gt(..)2Lex, appeared in pup number 4 which had the maternal and paternal 

Glo1 mutant copy. The total copies of the new genotype were 4 copies in total - 

Figure 3.11.  

To confirm the genotype of the pup number 4, a new Taqman copy number 

assay was designed (Glo1-Vec). The assay primers and probe detect the connection 

point between the inserted vector and insertion location in Glo1. It distinguishes 

between WT allele and mutant allele by quantifying the mutant allele - Figure 3.12. 

The result of this assay confirmed that the mice which were genotyped as WT have 

no mutant allele. In addition, it was able to differentiate between the mice which 

have 1 or 2 copies of mutant Glo1 allele. 

Table 3.10: Summary of the qPCR genotyping results and Taqman copy 

number assay for the second family. 

Mouse no. 

Total Glo1 copies 
(from Taqman copy 

number assay 

results) 

Mutant 

allele 
WT allele Genotype 

1 3 1 2 Glo1(+/+)Gt(..)1Lex 

2 3 1 2 Glo1(+/+)Gt(..)1Lex 

3 3 1 2 Glo1(+/+)Gt(..)1Lex 

4 4 2 2 Glo1(+/+)Gt(..)2Lex 

5 2 0 2 Glo1(+/+) 

6 3 1 2 Glo1(+/+)Gt(..)1Lex 

7 2 0 2 Glo1(+/+) 

8 2 0 2 Glo1(+/+) 
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Figure 3.10: Taqman copy number assay for Glo1 gene in wild-type, 

Glo1(+/+)Gt(..)1Lex and Glo1(+/+)Gt(..)2Lex mutant mice. The figure shows 

quantification of Glo1 copy number in the three genotypes. Data are mean ± SD 

(n = 3; WT, n = 3; Glo1(+/+)Gt(..)1Lex and n = 3; and Glo1(+/+)Gt(..)2Lex mice). 

Significance: ***, p<0.001 compared to WT control; Student’s t-test. 

 

 

Figure 3.11: Pedigree of inheritance study - mouse mating and family 

offspring, no 2. The figure shows the paternal and maternal chromosome 17 in 

each mouse. The blue band represents the WT allele of Glo1. The red band 

represents the mutant allele of Glo1Gt(..)1Lex. Both parents have two WT Glo1 

alleles and one Glo1 mutant allele (Glo1(+/+)Gt(..)1Lex). Three of the pups have 

two WT Glo1 alleles and no Glo1 mutant allele and the two have two WT Glo1 

alleles and one Glo1 mutant allele. Pup number 4 has two chromosomes 17 and 

each chromosome has one WT Glo1 alleles and one Glo1 mutant allele. This pup 

(no. 4) is a new genotype which has in total of four copies of Glo1 gene. 
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Figure 3.12: Taqman copy number assay for Glo1 mutant allele in offspring 

of breeding of Glo1(+/+)Gt(..)1Lex mutant mice. The figure shows quantification 

of mutant Glo1 copy number in the three genotypes. Data are mean ± SD (WT,  

n = 3; Glo1(+/+)Gt(..)1Lex n = 3; and Glo1(+/+)Gt(..)2Lex, n = 3). Significance: ***, 

p<0.001 compared to WT control; Student’s t-test.  

3.1.13.3. Inheritance study – mouse mating and family offspring, no 3 

Breeding of Glo1(+/+)Gt(..)1Lex female and Glo1(+/+)Gt(..)1Lex male produced 

six pups in the second family. Pup number 4, Glo1(+/+)Gt(..)2Lex, with four copies of 

Glo1, was bred with WT male. This breeding produced 7 pups with 

Glo1(+/+)Gt(..)1Lex genotype. All pups in this family have three copies of Glo1 

including two WT Glo1 alleles and one Glo1Gt(..)Lex mutant allele - Table 3.11. 

Analyses showed that the inheritance of Glo1 mutation was simple Mendelian 

inheritance - Figure 3.13. This confirms the genotyping of the second family; 

specifically pup number 4 in the second family.    
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Table 3.11: Summary of the qPCR genotyping results and Taqman copy 

number assay for the third family. 

Mouse no. 
Total Glo1 

copies 

Mutant 

allele 

WT 

allele 
Genotype 

Grandparents 

1 3 1 2 Glo1(+/+)Gt(..)1Lex 

2 3 1 2 Glo1(+/+)Gt(..)1Lex 

Parents 

3 2 0 2 Glo1(+/+) 

4 4 2 2 Glo1(+/+)Gt(..)2Lex 

Offsping 

5 3 1 2 Glo1(+/+)Gt(..)1Lex 

6 3 1 2 Glo1(+/+)Gt(..)1Lex 

7 3 1 2 Glo1(+/+)Gt(..)1Lex 

8 3 1 2 Glo1(+/+)Gt(..)1Lex 

9 3 1 2 Glo1(+/+)Gt(..)1Lex 

10 3 1 2 Glo1(+/+)Gt(..)1Lex 

11 3 1 2 Glo1(+/+)Gt(..)1Lex 
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Figure 3:13: Pedigree of inheritance study - mouse mating and family offspring, no 3. The figure shows the paternal and 

maternal chromosome 17 in each mouse. The blue band represents the WT allele, Glo1. The red band represents the mutant 

allele, Glo1Gt(..)1Lex. Both grandparents have two WT Glo1 alleles and one mutant allele, Glo1(+/+)Gt(..)1Lex genotype. The female 

parent was Glo1(+/+)Gt(..)2Lex genotype bred with a WT mouse. This breading produced 7 pups. Each of the 7 pups had two WT 

Glo1 alleles and one Glo1 mutant, Glo1(+/+)Gt(..)1Lex genotype. 
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3.1.14. Evaluation of Taqman copy number assay for Glo1 gene 

The three genotypes including WTs, Glo1(+/+)Gt(..)1Lex and Glo1(+/+)Gt(..)2Lex 

were analysed for Glo1 copy number assay against two commercial DNA controls - 

C57BL/6 and DBA/1J strains. The C57BL/6 strain has 2 copies of Glo1 and the 

DBA/1J strain has Glo1 duplication and hence 4 copies of Glo1 (Williams et al., 

2009). In addition, the analysis includes two different reference gene assays 

including Tfrc and Tert. The quantification of Glo1 copy number was by Taqman 

copy number assay and showed: 2 copies in WT, 3 copies in Glo1(+/+)Gt(..)1Lex 

mutant mice and 4 copies in Glo1(+/+)Gt(..)2Lex mutant mice, 2 copies in C57BL/6 

mice and 4 copies in DBA/1J mice. There was no significant difference between the 

results when referenced to Tfrc or Tert - Figure 3.14. 
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Figure 3.14: Evaluation of Taqman copy number assay for Glo1 gene. 

The figure shows Glo1 copy number results obtained from WT, Glo1Gt(..)1Lex and 

Glo1Gt(..)2Lex mutant mice, C57BL/6 and DBA/1J  mice. a. Quantification of Glo1 

copy number was referenced to Tfrc gene. b. Quantification of Glo1 copy number 

was referenced to Tert gene. Data are mean ± SD (WT, n = 3; Glo1Gt(..)1Lex n = 3; 

Glo1Gt(..)2Lex, n = 3; C57BL/6, n = 3; and DBA, n = 3).  

3.1.15. Characterization of Glo1 mutation in Glo1 mutant mice 

My previous studies showed the presence and inheritance of increased copies 

of WT and mutant Glo1 alleles in the Glo1 mutant mice and their offspring – 

assessed by qPCR. The length of the DNA of increased CNV and genes completely 

or partially within it are unknown. To characterize the sequence of the Glo1 

duplication, I next performed a quantitative assessment of the range and domains of 

DNA CNV increase by high intensity DNA microarray. CNV quantitation at the 

domains of PCR primers was known from Taqman copy number assay and qPCR 

studies.  
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3.1.15.1. Comparative genomic hybridisation microarray of Glo1 mutant 

mice and sibling wild-type controls 

High intensity DNA microarray SurePrint G3 unrestricted CGH 1x1M was 

used for three mice of each genotype of the Glo1 mutant mice. The three genotypes 

are: (i) WT control, (ii) Glo1Gt(..)1Lex, and (iii)  Glo1Gt(..)2Lex. Reference DNA was 

extracted from wild-type C57BL/6 male mouse for male samples and wild-type 

C57BL/6 female mouse for female samples. The analysis was performed according 

to the method described in Section 2.2.6.7. Data analysis was by Agilent genomic 

work bench software which showed the expected different outcomes for each study 

group (Figure 3.15): 

A. In WT controls there was no increased CNV detected at the Glo1 locus, 

confirming that these WTs have two copies of Glo1. In this DNA microarray, 

the result was referenced to the whole genome. 

B. In Glo1Gt(..)1Lex, one copy of duplicated DNA domain was found which was 

detected by 300 DNA oligomer probes covering a sequence of 473,479 bp. This 

included a partial duplication of Btbd9 and Glp1r genes and complete 

duplication of Glo1 and Dnahc8 genes. 

C. In Glo1Gt(..)2Lex, two copies of duplicated DNA domain as detected in B was 

found - also detected by 300 probes covering the same sequence of 473,479 bp 

include partial duplication of Btbd9 and Glp1r genes and complete duplication 

of Glo1 and Dnahc8 genes. 
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Figure 3.15: SurePrint G3 aCGH results of one mouse of each genotype.  

This shows 894 kb of chromosome 17 of mouse genome starting from base number 

30379127 to 31273646. The sample probes are in red and the probes of the reference 

samples are in green. The reference DNA was extracted from wild-type C57BL/6 

male mouse for male samples and wild-type C57BL/6 female mouse for female 

samples. The duplicated area in the mouse genome reacted with 300 probes covering 

an area of 473,479 bp and includes a partial duplication of Btbd9 and Glp1r genes 

and complete duplication of Glo1 and Dnahc8 genes. The results were analysed by 

Agilent genomic work bench software. Log2 R is the logarithm (base 2) of the ratio 

of the probe intensity to that of the average in reference DNA.  

 

The analysis of the other parts of the mice genome showed random 

amplifications in different areas which are not linked to Glo1 mutation genotype. 

However, two genes were duplicated only in the Glo1Gt(..)1Lex and Glo1Gt(..)2Lex mice. 

These two genes are Vmn2r111, Vmn2r112. This duplication is in chromosome 17 

from base number 22673192 to 22797105. These genes were detected by 26 DNA 

oligomer probes. 

3.1.15.2. Expression of duplicated genes in Glo1 mutant mice  

High density DNA microarray analysis revealed the extent of the DNA 

domains duplicated in Glo1 mutant mice. It was now of interest to assess if this 

increased copy number was functional and had related increased expression. Gene 

expression was assessed by quantitation of related mRNA level was analysed using 

extracted RNA from liver tissue of the three genotypes: WT control, Glo1Gt(..)1Lex and 

Glo1Gt(..)2Lex. The analysis was performed for the genes which are fully or partly 

located in the duplication area. These genes were: Btbd9, Dnahc8, and Vmn2r112. 

The data are given in Figure 3.16, A, B and C. 

Part of the Btbd9 gene was within the DNA domain duplicated in Glo1 

mutant mice. The relative mRNA level of Btbd9 showed a 36% decrease in 

Glo1Gt(..)Lex mice which just failed to reach significance and a 51% decrease in 

Glo1Gt(..)2Lex which was significant (P<0.05, t-test), with respect to WT controls. The 

relative mRNA level of Btbd9 in Glo1Gt(..)Lex and Glo1Gt(..)2Lex mutant mice was not 

significantly different. Combining expression data from Glo1Gt(..)Lex  and Glo1Gt(..)2Lex 

mutant mice, the level of Btbd9 in Glo1 mutant mice was decreased by 44% (P<0.01, 

t-test). This suggests that the presence of the DNA duplication in Glo1 mutant mice 

decreased expression of Btbd9 - Figure 3.16 A. 
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 Dnahc8 was a gene that was completely duplicated within the DNA domain 

duplicated in Glo1 mutant mice. The relative mRNA level of Dnahc8 showed an 

increase of 254% in Glo1Gt(..)1Lex  mutant mice, compared to WT controls. In 

Glo1Gt(..)2Lex mutant mice, however, the relative mRNA level of Dnahc8 returned to 

levels of WT controls - Figure 3.16 B. The expression of Dnahc8 was influenced 

differently by increased copy number of the duplicated DNA domain, increasing 

with one additional copy and then unchanged by 2 additional copies.  

Vmn2r112 is a gene increased in copy number in Glo1 mutant mice but 

outside of the main DNA duplicated domain. The relative expression of mRNA of 

Vmn2r112 was 27% in Glo1Gt(..)1Lex mutant mice and 94% in Glo1Gt(..)2Lex mutant 

mice, with respect to WT. The relative expression of mRNA of Vmn2r112 was 67% 

lower in Glo1Gt(..)2Lex mutant mice, with respect to Glo1Gt(..)1Lex mutant mice. 

Increased copy number of the duplicated DNA domain therefore decreased 

expression of Vmn2r112 progressively with increased copy number - Figure 3.16 C. 

These findings show differential expression of genes partly or completed 

duplicated with Glo1 in Glo1 mutant mice where there is increase or decrease in 

expression with increased Glo1 copy number. Similar effects have been found 

previously where increase copy number of a gene of interest has effects in 

expression of unrelated genes (Teng et al., 2013). 
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Figure 3.16: Relative mRNA level of genes duplicated in liver tissue of wild-

type mice and Glo1Gt(..)1Lex and Glo1Gt(..)2Lex genotypes. a. Btbd9. b. Dnahc8. c. 

VMN2r112. Data are mean ± SD (n = 3). Significance:  * and ***, p<0.05 and  

P<0.001 with respect to WT control; o and ooo, P<0.05 and P<0.001 with respect to 

Glo1Gt(..)1Lex mutant mice; Student’s t-test.  
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The experimental studies so far indicated how the Lexicon Glo1 mutant mice 

had maintained normal, WT expression of Glo1 – by inducing increased Glo1 CNV. 

This has occurred such that a non-mutant, normal Glo1 allele is inherited on each 

homolog of the chromosome where the Glo1 mutant allele is co-inherited and 

therefore mutant mice containing one or two copies of the mutant Glo1 allele retain 

two copies of the non-mutant, functional Glo1 allele and maintain normal Glo1 

expression in all tissue. An outstanding question is why this has occurred in response 

to Glo1 gene trapping. I hypothesised that a likely explanation is that gene trapping 

of Glo1 induces dicarbonyl stress and Glo1 copy number alteration (CNA) is an 

adaptive survival response of ESCs to counter dicarbonyl stress. To test this 

hypothesis, I initiated a series of experiments to culture mouse ESCs and impose 

dicarbonyl stress experimentally with exogenous MG or cell permeable Glo1 

inhibitor and examine if Glo1 CNA occurs.   

3.2. Mouse embryonic stem cells (ESCs) 

Mouse ESCs were obtained from a commercial supplier and grown in vitro.  

To ensure the ESCs phenotype on receipt and that it was maintained under 

undifferentiated status, a set of specific markers for mouse ESCs were identified 

after each experiment. These markers include SOX2, NANOG and OCT4 with a 

band size of 34 kDa, 35 kDa and 39 kDa respectively. All experiments were 

performed after maintaining ESCs growing without feeder layer. 

3.2.1. Characterisation of the glyoxalase system in ESCs under normal and 

low oxygen conditions 

The glyoxalase system in ESCs was characterised under conventional aerobic 

conditions and under 3% oxygen which is typical of physiologic environment of 

ESCs (Powers et al., 2008). The ESCs were cultured under low oxygen conditions 

for physiological relevance and as these conditions change the metabolic 

environment under which the glyoxalase system operates. Under 3% oxygen 

environment ESCs have increased anaerobic glycolysis (Ito and Suda, 2014) and 

thereby potential increased flux of MG formation – although this has not previously 

been measured. There is also the potential for decrease in Glo1 expression under 3% 
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oxygen environment as Glo1 expression is suppressed by activation of hypoxia-

related transcription factor, HIF1-α (Zhou et al., 2012) .  

3.2.1.1. Growth and viability of mouse ESCs in vitro 

Mouse ESCs were plated and grown under an atmosphere of 5% carbon 

dioxide, 20% or 3% oxygen and nitrogen – see Section 2.2.2. ESCs were plated with 

the same density in both conditions and cultured for 6 days. The growth and viability 

of ESCs was assessed by measuring viable cell number. ESCs maintain high cell 

viability (>95%) and increase in viable cell number was ca. 3-fold higher in 20% 

oxygen compared to 3% oxygen atmosphere - Figure 3.17. 

   

Figure 3.17: Growth of murine ESCs under 20% oxygen and 3% oxygen 

atmosphere in vitro. Data are mean ± SD (n = 3). Significance:  ***, p<0.001; 

Student’s t-test. 

 

In studies of dicarbonyl stress in murine ESCs, it is important to characterise 

the endogenous enzymatic defence provided by the glyoxalase system in murine 

ESCs. This has not been done previously and therefore I performed studies to do 

this. 

3.2.1.2. Activity and expression of glyoxalase 1 in murine ESCs in vitro 

The activity of Glo1 was assay in cytosolic extracts of murine ESCs grown 

under atmospheres of 20% and 3% oxygen. The activity of Glo1 was decreased by 

ca. 25% in ESCs grown under 3% oxygen atmosphere, with respect to 20% oxygen, 

normoxia control - Figure 3.18. There was a similar 28% decrease in Glo1 protein in 

ESCs grown under an atmosphere of 3% oxygen, compared to normoxia control 

cultures - Figure 3.19. 
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Figure 3.18: Activity of glyoxalase 1 of ESCs cultured under 20% oxygen 

and 3% oxygen atmosphere in vitro. Data are mean ± SD (n = 3). Significance:  

***, p<0.001; Student’s t-test. 

 

 
 

 

Figure 3.19: Glo1 protein content of ESCs cultured under 20% oxygen and 

3% oxygen atmosphere in vitro. a. Glo1 and β-actin protein bands for 6 

samples of ESCs under 20% oxygen and 3% oxygen atmosphere. b. Relative 

content of Glo1 protein. Data are mean ± SD (n = 3). Significance: **, p<0.01; 

Student’s t-test. 
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3.2.1.3. Flux of formation of D-lactate in ESC cultures under 20% oxygen 

and 3% oxygen atmosphere in vitro 

D-Lactate was determined in the culture media at baseline and 3 days in ESC 

cultures under 20% oxygen and 3% oxygen atmosphere. The flux of D-lactate 

formation was deduced as a surrogate measure of flux of formation of MG. The 

production of D-lactate in ESCs cultured in 3% oxygen was increased 60%, with 

respect to cultures under normoxia: 4.47 ± 0.15 versus 2.80 ± 0.12 nmol/million 

cells/day (P<0.001, Student’s t-test) - Figure 3.20. 

 

Figure 3.20: Flux of D-lactate formation by ESCs cultured under 20% 

oxygen and 3% oxygen atmosphere in vitro. Data are mean ± SD (n = 3).  

Significance: ***, p<0.001; Student’s t-test. 

3.2.1.4. Net flux of formation of L-Lactate by murine ESCs cultured under 

20% oxygen and 3% oxygen atmosphere in vitro 

L-Lactate was determined in cell culture media of ESCs cultured under 20% 

oxygen and 3% oxygen atmosphere in vitro. ESCs were cultured for 6 days. The 

media was sampled at day 4 and day 6 and the net flux of formation of L-lactate over 

days 4 – 6 deduced. Since L-lactate is efficiently metabolised in ESCs, the absolute 

flux of formation of L-lactate cannot be estimated - Figure 3.21. The net flux of L-

lactate by ESCs cultured under normoxia conditions was > 100 fold higher than the 

flux of formation of D-lactate; cf. Figures 3.20 and 3.21. The net flux of formation of 

L-lactate in ESCs cultured in 3% oxygen was ca. 3-fold higher than for cultures 

under normoxia - Figure 3.21.  
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Figure 3.21: Net formation of L-lactate by ESCs cultured under 20% 

oxygen and 3% oxygen atmosphere in vitro. Data are mean ± SD (n = 3). 

Significance: ***, P<0.001; Student’s t-test. 

3.2.1.5. Consumption of D-glucose by murine ESCs cultured under 20% 

oxygen and 3% oxygen atmosphere in vitro 

The rate of D-glucose consumption by ESCs cultured under 20% oxygen and 

3% oxygen atmosphere in vitro was determined in the culture media over day 4 – 

day 6 of a 6 day culture. The flux of D-glucose consumption by ESCs cultured under 

normoxia conditions was ca. 1000 fold higher than the flux of formation of D-

lactate; cf. Figures 3.20 and 3.22. This suggests that the rate of formation of MG in 

murine ESCs under normoxia is ca. 0.1% of glucose metabolism or ca. 0.05% of 

flux of glucotriose – which is similar in most human cells where these flux 

measurements have been made. The flux of glucose consumption in ESCs cultured 

in 3% oxygen was ca. 3-fold higher than that cultured under normoxia - Figure 3.22; 

cf. similar increase of net flux of formation of L-lactate - Figure 3.21.  
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Figure 3.22: Glucose consumption of ESCs cultured under 20% oxygen and 

3% oxygen atmosphere in vitro. Data are mean ± SD (n = 3). Significance: **, 

p<0.001; Student’s t-test. 

 

In summary, characteristics of the glyoxalase system in murine ESCs 

revealed flux of formation of MG from glucose metabolism similar to that found in 

other cells – Table 3.12 – ca. 0.1% glucose metabolism or ca. 0.05% flux of 

glucotriose (assuming flux of glucotriose formation is 2 x flux of glucose 

metabolism). The Glo1 activity was relatively high – ca. twice that found in human 

BJ fibroblasts in primary culture which was ca. 0.3 U/mg protein (Xue et al., 2012). 

Table 3.12: Characterization of ESCs under under 20% oxygen and 3% oxygen 

atmosphere in vitro. 

 20% O2 3% O2 

Cell Count 

(x1,000,000) 
29.3 ± 0.4 8.26 ± 0.56*** 

Glo1 protein expression 

(normalized to β-actin expression) 
0.701 ± 0.026 0.501 ± 0.073** 

Glo1 activity  

(unit/mg protein) 
0.579 ± 0.018 0.436 ± 0.211*** 

D-Lactate formation 

(nmol/million cells/day) 
2.80 ± 0.12 4.47 ± 0.15*** 

D-glucose  

(µmol/day/million cells) 
3.30 ± 0.50 10.20 ± 1.48*** 

Net flux of formation of L-lactate  

(nmol/million cells/day) 
538 ± 6 1660 ± 116*** 

Data are mean ± SD (n = 3) and t-test was used as statistical test. Significance: **; 

p<0.01, ***; p<0.001. 
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I next designed experiments to impose dicarbonyl stress in ESCs in vitro by: 

(i) addition of cell permeable Glo1 inhibitor, BrBzGSHCp2, which induces 

dicarbonyl stress by accumulation of endogenous MG, and (ii) addition of a high 

concentration of exogenous MG. 

3.2.2. Effect of cell permeable Glo1 inhibitor on cell growth and Glo1 copy 

number of ESCs in vitro 

3.2.2.1. Effect of cell permeable Glo1 inhibitor on ESCs growth in vitro 

ESCs were cultured for 24 h for culture flask surface attachment. Thereafter, 

the ESCs were incubated with and without 1 – 100 µM BrBzGSHCp2 and the effect 

on cell growth assessed after incubation for a further 48 h. The growth of ESCs was 

inhibited with 5 - 100 μM of BrBzGSHCp2. Viable cell number data (% of untreated 

control) were fitted to a dose response curve and solved for the median growth 

inhibitory concentration (GC50) and logistic regression coefficient n. For 

BrBzGSHCp2, GC50 = 25.5 ± 1.8, and n = 4.00 ± 0.86 (N = 21) – Figure 3.23a. Cell 

viability of ESCs decreased with increasing concentration of BrBzGSHCp2 – Figure 

3.23b, suggesting the inhibition of cell growth by BrBzGSHCp2 was likely due to 

both growth arrest and toxicity. This indicates that murine ESCs are susceptible to 

growth arrest by dicarbonyl stress induced by 20 – 50 μM BrBzGSHCp2 and also 

cytotoxicity at 50 – 100 μM; the median cytoxic concentration (TC50) was > 100 μM. 

The cytotoxicity of BrBzGSHCp2 was relatively low and murine ESCs appear 

resistant to dicarbonyl stress: cf, BrBzGSHCp2 was cytotoxic to human neutrophils 

ex vivo where the TC50 concentration was 40 μM (Lo and Thornalley, 1992).  
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Figure 3.23: Effect of BrBzGSHCp2 on ESCs growth and viability in vitro.  

a. BrBzGSHCp2 concentration – cell growth curve for 48 h treatment. For 

BrBzGSHCp2, GC50 = 25.5 ± 1.8 μM, and n = 4.00 ± 0.86 (N = 21). b. Effect of 

BrBzGSHCp2 on cell viability. Data are mean ± SD (n = 3).  Significance: *, 

p<0.05, ***, p<0.001 compared to control; Student’s t-test.  
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3.2.2.2. Effect of cell permeable Glo1 inhibitor on Glo1 copy number of 

ESCs in vitro 

ESCs were cultured for 24 h after passage and then incubated for a further 3 

days with and without 10 μM of BrBzGSHCp2. The viable cell number and Glo1 

copy number was then determined. The treatment with 10 μM BrBzGSHCp2 

decreased cell growth by ca. 50%. However, there was no effect on Glo1 copy 

number - Figure 3.24. This may be due to increase in expression of Glo1 or MG 

reductase when ESCs go into growth arrest and therefore protection against 

dicarbonyl stress and related Glo1 CNA. In addition, three days may not have been 

long enough sustained increased levels of MG to increase Glo1 copy number. 

 a.             b. 

  

Figure 3.24: Effect of BrBzGSHCp2 on murine ESCs growth and Glo1 copy 

number in vitro. a. Viable cell number. b. Glo1 copy number. Data are mean ± SD 

(n = 3). Significance:  ٭, p<0.05; Student’s t-test. 

 

Following the failure of dicarbonyl stress imposed by BrBzGSHCp2 to 

induce increased Glo1 CNV in murine ESCs in vitro, I next designed and 

implemented a series of experiments imposed dicarbonyl stress by addition of 

exogenous MG.   
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3.2.3. Effect of MG on growth and Glo1 copy number of ESCs in vitro 

3.2.3.1. Effect of MG on growth of ESCs in vitro  

ESCs were cultured for 24 h for culture flask surface attachment and then 

incubated with and without 25 – 200 µM methylglyoxal for 48 h. The median growth 

inhibitory concentration (GC50) of MG was deduced by non-linear regression of 

viable cell number, expressed as a percentage of control cultures, on MG 

concentration - fitting to a concentration-response curve and solving for GC50 and 

logistic regression coefficient n. For MG, GC50 = 831 ± 5 μM, and n = 0.635 ± 0.002 

(N = 12) – Figure 3.25. In addition, viability of ESCs decreased with increasing 

concentration of MG when cultured under 20% oxygen and 3% oxygen atmospheres 

(Figures 3.25b and 3.26) suggesting the inhibition of cell growth by MG was likely 

due to both growth arrest and toxicity. 
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Figure 3.25: Effect of MG on ESCs growth and viability in vitro cultured 

under 20% oxygen atmosphere. a. MG concentration – cell growth curve for 

48 h treatment. For MG, GC50 = 813 ± 5 μM, and n = 0.635 ± 0.002 (N = 12).         

b. Effect of MG on cell viability. Data are mean ± SD (n = 3).  Significance: **, 

P<0.01, compared to control; Student’s t-test.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.26: Effect of MG on ESCs growth and viability in vitro cultured 

under 3% oxygen atmosphere. Data are mean ± SD (n = 3). Significance: ***, 

P<0.001 compared to control; Student’s t-test.  

3.2.3.2. Effect of MG on Glo1 copy number of murine ESCs in vitro 

ESCs were cultured for 24 h for attachment to cell culture flasks and 

thereafter they were treated with and without 200 μM MG. The cells were treated 

with one dose daily over 3, 6 and 12 days. After each period, the cells were collected 

and DNA extracted for CNV analysis. The DNA was analysed for copy number of 

Btbd9, Glo1 - exon 1 and 6, 1700097n02rik and Dnahc8 by Taqman copy number 

assay. 
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After 3 days, treatment with 200 μM MG decreased the copy number of 

Btbd9 by 13.0% (P<0.01) whereas the copy number of Glo1 was increased by 5.5 % 

at exon-1 (P<0.05%) and 9.5% at exon-6 (P<0.01). There was no significant change 

in the copy number of 1700097n02rik and Dnahc8 - Figure 3.27. After 6 days, the 

treatment with 200 μM MG increased the copy number of Glo1 at exon-1 and exon-6 

by 7.5 % (P<0.01) but did not change the copy number of Btbd9, 1700097n02rik nor 

Dnahc8 - Figure 3.28. After 12 days treatment with 200 μM MG increased copy 

number of Glo1 at exon 1 and 6 by 16.0% and 8.0%, respectively (P<0.001), and 

increased copy number of 1700097n02rik by 7.0% (P<0.05). There was no change in 

copy number of Btbd9 and Dnahc8 after treatment with MG for 12 days - Figure 

3.29. A summary of all of the effect of 200 μM MG for 3, 6, 12 days on Glo1 copy 

number is given in Table 3.13. 

Table 3.13: Effect of treatment of murine ESCs with 200 μM MG for 3, 6 and 

12 days in vitro on copy number of Glo1 and surrounding genes. 

Gene 
Copy number 

Control + MG % Change 

3 Days 

Btbd9 2.00 ± 0.10 1.74 ± 0.22** -13.0 

Exon-1 of Glo1 2.00 ± 0.06 2.09 ± 0.09* 4.5 

Exon-6 of Glo1 2.00 ± 0.14 2.19 ± 0.09** 9.5 

1700097n02rik 2.00 ± 0.09 2.09 ± 0.15  

Dnahc8 2.00 ± 0.11 1.98 ± 0.12  

6 Days 

Btbd9 2.00 ± 0.06 1.79 ± 0.29  

Exon-1 of Glo1 2.00 ± 0.07 2.15 ± 0.11** 7.5 

Exon-6 of Glo1 2.00 ± 0.08 2.15 ± 0.11** 7.5 

1700097n02rik 2.00 ± 0.08 2.01 ± 0.08  

Dnahc8 2.00 ± 0.07 2.00 ± 0.06  

12 Days 

Btbd9 2.00 ± 0.10 1.94 ± 0.20  

Exon1 of Glo1 2.00 ± 0.09 2.32 ± 0.09*** 16.0 

Exon6 of Glo1 2.00 ± 0.09 2.16 ± 0.05*** 8.0 

1700097n02rik 2.00 ± 0.10 2.14 ± 0.16* 7.0 

Dnahc8 2.00 ± 0.07 2.04 ± 0.09  

Analyses were performed using Taqman copy number assay. Data are mean ± SD (n 

= 9).  Significance: *, ** and ***, P<0.05, P<0.01 and P<0.001, respectively; 

Student’s t-test. 
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Figure 3.27: Effect of treatment of 200 μM MG for 3 days on copy number 

of Glo1 and the surrounding genes in ESCs in vitro. The figure shows mouse 

chromosome 17 with amplified allele which has Glo1 gene and other 

surrounding genes. Three genes surrounding Glo1 were chosen for checking the 

stability of the Glo1 surrounding area including Btbd9, 1700097n02rik, Dnahc8 

and beginning and the end of Glo1. All experiments were performed using 

Taqman copy number assay. Data are mean ± SD (n = 9). Significance: * and **, 

P<0.05 and P<0.01, respectively; Student’s t-test.  
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Figure 3.28: Effect of treatment of 200 μM MG for 6 days on copy number 

of Glo1 and the surrounding genes in ESCs in vitro. The figure shows mouse 

chromosome 17 with amplified allele which has Glo1 gene and others. Three 

genes surrounding Glo1 were chosen for checking the stability of the Glo1 

surrounding area including Btbd9, 1700097n02rik, Dnahc8 and beginning and 

the end of Glo1. All experiments were performed using Taqman copy number 

assay. Data are mean ± SD (n = 9). Significance: **, P<0.01; Student’s t-test. 
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Figure 3.29: Effect of treatment of 200 μM MG for 12 days on copy number 

of Glo1 and the surrounding genes in ESCs in vitro. The figure shows mouse 

chromosome 17 with amplified allele which has Glo1 gene and others. Three 

genes surrounding Glo1 were chosen for checking the stability of the Glo1 

surrounding area including Btbd9, 1700097n02rik, Dnahc8 and beginning and 

the end of Glo1. All experiments were performed using Taqman copy number 

assay. Data are mean ± SD (n = 9).  Significance: * and ***, P<0.05 and P<0.001, 

respectively; Student’s t-test. 
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These studies suggest that dicarbonyl stress imposed on murine ESCs in vitro 

by exposure to exogenous MG induces increased CNV of Glo1. This may be 

increased copy number of DNA fragments of the Glo1 gene or complete replication 

of the Glo1 gene with increasing functional copy number and increased expression 

of Glo1. To examine if the increased Glo1 copy number was functional, I next 

assessed the effect of exposure of murine ESCs to exogenous MG for 3, 6 and 12 

days on Glo1 expression – judged by the level of Glo1 mRNA, Glo1 protein and 

activity. 

3.2.3.3. Effect of treatment of murine ESCs with 200 μM MG for 3, 6 and 12 

days in vitro on Glo1 mRNA 

Murine ESCs were incubated for 3, 6 and 12 days with 200 μM MG as 

described above and mRNA extracted to determine the relative Glo1 mRNA levels. 

The analysis showed that there was no significant change of Glo1 mRNA levels 

from control levels by treatment with MG - Table 3.14.  

Table 3.14: Effect of treatment of ESCs in vitro with 200 μM MG for 3, 6 and 12 

days on Glo1 mRNA content 

 Duration 

(days) 

Glo1 mRNA 

(normalized to Rn18s mRNA) 

Control 200 μM MG 

3 0.816 ± 0.023 0.816 ± 0.031 

6 0.864 ± 0.005 0.855 ± 0.015 

12 0.828 ± 0.014 0.821 ± 0.006 

Data are mean ± SD (n = 3). Significance: Student’s t-test. All comparisons of +200 

μM MG versus control gave P>0.05. 

3.2.3.4. Effect of treatment of murine ESCs with 200 μM MG for 3, 6 and 12 

days in vitro on Glo1 protein 

Murine ESCs were incubated for 3, 6 and 12 days with 200 μM MG as 

described above, cell protein extracted and Glo1 protein determined by quantitative 

immunoblotting. There was no change of Glo1 protein content of ESCs at 3 and 6 

days of treatment with 200 μM MG. After treatment of ESCs with 200 μM MG for 

12 days, however, there was 25% increase in Glo1 protein content, compared to 

controls - Figure 3.30.  
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Figure 3.30: Effect of treatment of 200 μM MG for 3, 6 and 12 days on Glo1 

protein content in ESCs in vitro. a. Immunoblotting of Glo1 and β-actin. b. 

Quantification of the blots. Key: blue bars – control, red bars – + 200 μM MG. 

Data are mean ± SD (n = 3).  Significance: **, P<0.01; Student’s t-test.  

3.2.3.5. Effect of treatment of murine ESCs with 200 μM MG for 3, 6 and 12 

days in vitro on Glo1 activity 

ESCs were incubated for 3, 6 and 12 days with 200 μM MG as described 

above, cell cystolic protein extracts prepared and Glo1 activity determined. There 

was no significant difference in Glo1 activity of ESCs treated with 200 μM MG and 

controls over 3 days. There was a significant decrease in Glo1 activity in the ESCs 

treated with 200 μM MG over 6 days when compared to the controls, but there was a 

significant increase in Glo1 activity in the ESCs treated with 200 μM MG over 12 

days, compared to the controls - Figure 3.31. 
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Figure 3.31: Effect of treatment of 200 μM MG for 3, 6 and 12 days on Glo1 

activity in ESCs in vitro. Key: blue bars – control, red bars – + 200 μM MG. 

Data are mean ± SD (n = 3).  Significance: *, P<0.05; Student’s t-test.  

 

The studies on markers of Glo1 expression in ESCs treated with exogenous 

MG gave support for functionality of Glo1 copy number increase after 12 days 

treatment from the findings of increase Glo1 protein and activity. Glo1 CNV 

increase appears to require sustained exposure to exogenous MG. This may be due to 

repair of Glo1 copy number increase in subsequent DNA replication after mitosis 

occurring during ESC proliferation. Increased functional copies of Glo1 are expected 

to give rise to increase Glo1 mRNA, Glo1 protein and Glo1 activity. The detection 

of increased levels will depend on how stable these markers of expression are. Since 

measurements were made 24 h after the last addition of exogenous MG, relatively-

short-lived markers may relax back to the control values. Estimates of the half-lives 

of Glo1 mRNA and protein are 15 h (HepG2 cells) and 63 h (MCF7 cells), 

respectively (Yang et al., 2003, Kristensen et al., 2008). Failure to detect increased 

Glo1 mRNA whereas increased Glo1 protein and Glo1 activity were detected after 

exogenous MG treatment may have been due to the relative instability of Glo1 

mRNA compared to Glo1 protein. The precision of measurement of Glo1 protein 

and activity were also relatively low compared to the precision of copy number 

measurement which also makes assessment of functionality of small changes in gene 

copy number difficult to assess. In studies of functional GLO1 copy number increase 

in human tumours, for example, the most reliable marker of copy number increase 

was GLO1 DNA (Santarius et al., 2010). 
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Glo1 copy number increase induced by exogenous MG may be corrected in 

DNA replication occurring in the S-phase of the ESC growth cycle. ESC growth 

cycle time is ca. 12 h (Li et al., 2012). Therefore, increase in Glo1 copy number may 

suffer repair between treatments with exogenous MG made only once every 24 h. 

More frequent additions of MG may avoid this and increase Glo1 copy number 

further. To test this, I designed and implemented a study where treatment with 

exogenous MG was made more frequently.  

3.2.3.6. Effect of treatment of ESCs in vitro with 200 μM MG every 6 h for 

24 h on cell viability and Glo1 copy number 

ESCs were incubated for 24 h with and without addition of 200 μM MG with 

additions made every 6 h for 24 h. At 24 h cell viability and Glo1 copy number were 

determined. There was no significant effect of MG treatment on cell viability - Table 

3.15.  Extracted DNA was analysed by Taqman copy number assay for Glo1 copy 

number. The analyses showed that there was no significant difference in the Glo1 

copy number between the ESCs treated with 200 μM MG over 24 hours and the 

control - Table 3.15.  

Table 3.15: Effect of treatment of 200 μM MG for 1 day with dose every 6 hours 

on ESCs in vitro 

 Control + 200 μM MG 

Cell viability (%) 96.1 ± 10.6 87.9 ± 7.4 

Copy number of Glo1 2.00 ± 0.06 2.07 ± 0.10 

Data are mean ± SD (n = 3). Student’s t-test. P>0.05 (not significant). 

 

These findings suggest that the frequency of additions of exogenous MG 

every 24 h in previous studies were probably not a limiting factor for induction of 

increased Glo1 copy number.  

A further factor that may influence potency of MG to increase Glo1 copy 

number in ESCs is the oxygen environment. To test this, I designed and performed a 

study where treatment with exogenous MG of ESCs was made every 24 h for 3 and 

12 days with cultures under an atmosphere of 3% oxygen. 
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3.2.3.7. Effect of treatment of ESCs in vitro with 200 μM MG for 3 and 12 

days on Glo1 copy number under 3% oxygen atmosphere 

ESCs were incubated for 3 and 12 days with 200 μM MG as described above 

but under 3% oxygen atmosphere and Glo1 copy number determined. Over three 

days, the treatment with 200 μM MG had no effect on Glo1 copy number, compared 

to control. However, there was 3% decrease of Glo1 copy number in the cells treated 

with 200 μM MG under 3% oxygen atmosphere, compared with the cells grown 

under 3% oxygen atmosphere without MG treatment - Figure 3.32. 

 

Figure 3.32: Effect of treatment of 200 μM MG for 3 days on Glo1 copy 

number of ESCs in vitro under 3% oxygen atmosphere. Data are mean ± SD 

(n = 3). Significance: *, p<0.01; Student’s t-test. 

 

Over twelve days, incubation under 3% oxygen atmosphere and under 3% 

oxygen atmosphere with 200 μM MG increased the Glo1 copy number by 8% and 

5% respectively, compared to untreated cells control in normoxia - Figure 3.33. 

 

Figure 3.33: Effect of treatment of 200 μM MG for 12 days on Glo1 copy 

number of ESCs in vitro under 3% oxygen atmosphere. Data are mean ± SD 

(n = 3). Significance: *, P<0.01; Student’s t-test. 
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These findings suggest that ESC metabolism under low, physiological 

oxygen concentration pre-disposes to Glo1 copy number increase. This may be due 

to the continual increased formation and decreased metabolism of endogenous MG 

in ESCs. The continual exposure to increased cellular MG may be the explanation as 

to why 3% oxygen atmosphere was a relatively good inducer of increased Glo1 copy 

number. 

A further strategy to increase dicarbonyl stress in ESCs is to decrease Glo1 

expression by siRNA gene silencing. Accordingly, I performed a series of 

experiments to decrease Glo1 expression in ESCs and study the effect on copy 

number of Glo1.  

3.2.4. Effect of silencing of Glo1 on the cell growth and Glo1 expression 

and activity of ESCs in vitro 

3.2.4.1. Effect of silencing of Glo1 on the cell growth of ESCs in vitro 

ESCs were cultured for 24 h after passage for attachment to culture flask 

wall. Cells were then transfected with 5 nM, 10 nM, 25 nM, 50 nM, 100 nM and 200 

nM of SMART pool: ON-TARGET plus Glo1 siRNA for two days. Controls used 

were ESCs treated with ON-TARGET plus non-targeting pool siRNA and ESCs 

treated with Lipofectamine 2000 transfection reagent only. The viability of the ESCs 

was assessed after the two days. After the two days, the cells were counted, collected 

and RNA extracted for measurement of Glo1 mRNA.  

Cell growth and viability assessment showed that there was no significant 

difference in the viability between the ESCs transfected with any of the 

concentrations of SMART pool: ON-TARGET plus Glo1 siRNA and the controls -

Figure 3.34.  
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Figure 3.34: Effect of silencing of Glo1 on the growth of ESCs in vitro. The 

figure shows the change in the ESCs viability after Glo1 knockdown by different 

concentrations of SMART pool: ON-TARGET plus Glo1 siRNA for 2 days. The 

controls used were ESCs treated with ON-TARGET plus non-targeting pool 

siRNA and ESCs treated with Lipofectamine 2000 transfection reagent only. 

Data are mean ± SD (n = 3).  

 

To assess of silencing of Glo1 had decreased Glo1 expression, the relative 

level of Glo1 mRNA in ESCs with Glo1 siRNA silencing was assessed. This showed 

that there was a significant decrease in Glo1 mRNA in all transfected cells with 

SMART pool: ON-TARGET plus Glo1 siRNA when compared to the controls - 

Figure 3.35. The use of ON-TARGET plus non-targeting pool siRNA as a control 

proved the specificity of this application, that is there was no decrease of Glo1 

mRNA in the controls.  
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Figure 3.35: Effect of silencing of Glo1 on Glo1 mRNA of ESCs in vitro. The 

figure shows the change in Glo1 mRNA expression in the ESCs after Glo1 

knockdown by different concentrations of SMART pool: ON-TARGET plus 

Glo1 siRNA for 2 days. The control used is ESCs treated with ON-TARGET 

plus non-targeting pool siRNA. Data are mean ± SD (n = 3). Significance: **, 

p<0.01; Student’s t-test. 

 

There was a lack of dose response Glo1 siRNA concentration on the level of 

Glo1 mRNA and ca. 40% residual Glo1 mRNA at the highest level of Glo1 siRNA 

used. This raises doubts on the specificity and potency of Glo1 siRNA in silencing of 

Glo1 in ESCs. To assess the effect of Glo1 silencing further, I examined the effect 

on Glo1 protein and activity. 

3.2.4.2. Effect of silencing of Glo1 on Glo1 protein of ESCs in vitro 

ESCs were cultured as described above with 100 nM and 200 nM of SMART 

pool: ON-TARGET plus Glo1 siRNA for two days. The Glo1 protein expression and 

activity of the ESCs was assessed. Glo1 protein was decreased by 85% and 88% in 

the ESCs transfected with 100 nM and 200 nM Glo1 siRNA, respectively - Figure 

3.36, a. and b. Glo1 activity was also decreased by 86% and 89% in the ESCs 

transfected with 100 nM and 200 nM Glo1 siRNA respectively - Figure 3.37. 
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Figure 3.36: Effect of silencing of Glo1 on Glo1 protein of ESCs in vitro. 

a. Western blotting of Glo1 and β-actin. b. Quantification of Glo1 protein.  The 

control used is ESCs treated with ON-TARGET plus non-targeting pool siRNA. 

Data are mean ± SD (n = 3). Significance: ***, p<0.001; Student’s t-test. 
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Figure 3.37: Effect of silencing of Glo1 on Glo1 activity of ESCs in vitro.   

The control used is ESCs treated with ON-TARGET plus non-targeting pool 

siRNA. Data are mean ± SD (n = 3). Significance: ***, p<0.001; Student’s t-

test. 

 

These findings indicate potent decrease in Glo1 protein and activity in ESCs 

by Glo1 silencing with relatively high levels of Glo1 siRNA. This would be 

expected to increase the growth inhibitory effects of exogenous MG on ESCs in 

vitro. This was now assessed. 

3.2.4.3. Effect of MG and silencing of Glo1 on the growth of ESCs in vitro 

ESCs were cultured and Glo1 silenced by incubation with 100 nM of 

SMART pool: ON-TARGET plus Glo1 siRNA for three days. The transfected cells 

were then treated with 10, 50 and 100 μM MG. The dose of MG was added on the 

fourth day and another dose was added in the fifth day. The cells were collected and 

counted on the sixth day. The control was ESCs treated with 50 nM of ON-TARGET 

plus non-targeting pool siRNA for three days and then treated without MG for two 

days. Growth of ESCs was decreased 41%, 38 % and 57% due to the silencing of 

Glo1 and subsequent treatment with 10, 50 and 100 μM of MG respectively - Figure 

3.38. This indicates that the GC50 of MG is now <100 μM and hence Glo1 silencing 

has decreased the GC50 of MG by > 8-fold; cf. Figure 3.25. 
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Figure 3.38: Effect of MG with on the growth ESCs in vitro with prior 

silencing of Glo1. Glo1 expression was knocked down by 100 nM of SMART 

pool: ON-TARGET plus Glo1 siRNA for 3 days. Then, the transfected cells 

were treated with 10, 50 and 100 μM of MG, at 0 and 24 h. Cell growth and 

viability was assessed at 48 h. The control used is ESCs treated with 50 nM ON-

TARGET plus non-targeting pool siRNA. Data are mean ± SD (n = 3). 

Significance: ***, P<0.001; Student’s t-test. 

 

Increased GLO1 copy number was found in human tumours (Santarius et al., 

2010). I assessed if this may be induced by exogenous MG using the human 

leukaemia 60 (HL60) cell line. 

3.3. Effect of MG on the growth and GLO1 copy number of 

human leukaemia cells in vitro 

HL60 cells were cultured according to method given in Section 2.2.2.2. 

HL60 cells were treated for three days with 238 μM MG – the median growth 

inhibitor concentration by single dose treatment (Kang et al., 1996). Herein, there 

were additional treatments with 238 μM MG at 24 and 48 h. This treatment regime 

decreased the growth of HL60 cells by 77%, with respect to control HL60 cells - 

Figure 3.39. Analysis of cellular DNA analysis showed a significant decrease of 

GLO1 copy number by 15% when compared to GLO1 copy number of the control - 

Figure 3.40. 
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Figure 3.39: Effect of MG on the growth of HL60 cells in vitro. HL60 cells 

were incubated with and without 238 µM MG at 0, 24 and 48 h for 3 days. Data 

are mean ± SD (n = 3). Significance: ***, P<0.001; Student’s t-test. 

 

Figure 3.40: Effect of MG on the GLO1 copy number of HL60 cells in vitro. 

HL60 cells were incubated with and without 238 µM MG at 0, 24 and 48 h for 3 

days. Data are mean ± SD (n = 3). Significance: ***, P<0.001; Student’s t-test 

 

This finding indicates that induction of dicarbonyl stress by exogenous MG 

decreased GLO1 DNA. This may be due to DNA damage induced by MG 

modification. MG modification of DNA occurs in HL60 treatment by the 

concentration of MG and induction of apoptosis (Kang et al., 1996). 

The physiological relevance of GLO1 copy number alternation may be 

assessed by examining GLO1 copy number in clinical condition of dicarbonyl stress.  

Severe dicarbonyl stress occurs in ESRD (Agalou et al., 2005, Rabbani and 

Thornalley, 2012b, Rabbani and Thornalley, 2012a). I therefore initiated a clinical 

collaboration to acquire and analyse blood samples of healthy human subjects and 

ESRD patients. GLO1 copy number can be conveniently analysed in peripheral 

blood mononuclear cells.    
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3.4. GLO1 copy number in clinical end stage renal disease 

The GLO1 gene copy number was quantified in DNA extracted from blood 

samples of healthy human subjects and patients at stage 5 of chronic kidney disease. 

GLO1 copy number was determined in peripheral blood mononuclear cells of 

patients with stage 5 chronic kidney disease and healthy controls. In addition, NCL-

H522 human lung carcinoma cells were used as positive control of increased GLO1 

copy number. These cells have ca. 6 copies of GLO1 (Santarius et al., 2010).  

There was no significant difference in GLO1 copy number of healthy 

subjects and patients with ESRD – Figure 3.41. In addition, these samples and cells 

were genotyped for C419A SNP in GLO1 gene according to method no 2.2.6.8. The 

genotyping shows 6 subjects are homozygote A/A, 18 subjects heterozygote A/E and 

13 subjects are homozygote E/E. These genotypes were equally distributed in the 

study groups. Three subjects were not genotyped due to the limitation of the DNA 

samples. Furthermore, NCL-H522 human lung carcinoma cells are heterozygote 

A/E. sample of the genotyping results is shown in Figure 3.42.  

 

Figure 3.41: Taqman copy number assay for GLO1 gene in the DNA of end 

stage renal failure patients, controls and NCL-H522 cell line. Data are mean 

± SD (controls, n = 20; RF, n = 20; and NCL-H522 cell line, n = 3). 

Significance: ***, p<0.001 compared to controls; Student’s t-test.  

1

2

3

4

5

6

7

8

Controls RF Patients NCL Cells

G
L

O
1

 c
o

p
y
 n

u
m

b
e
r



189 

 

 

 

Figure 3.42: Specimen genotyping results for C419A SNP in GLO1 gene. The 

figure shows two bands reveals 453 bp and 260 bp fragments in the presence of 

A 111 allele in sample no.1. In sample no. 2, there are three bands reveals 713 

bp, 453 bp and 260 bp fragments in the presence of A 111 allele and E 111 

allele. In sample no. 3, there is one band reveals 713 bp fragment in the presence 

of E 111 allele.     
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4. Discussion   

CNV is a source of substantial diversity of gene expression and phenotype 

(Zarrei et al., 2015). It occurs at chromosomal fragile sites, with defects in DNA 

replication or telomere dysfunction. This may be linked to endogenous and 

exogenous mechanisms mediating DNA damage and endogenous mechanisms of 

DNA damage repair, particularly non-homologous repair of broken replication forks 

increasing likelihood of CNV (Hastings et al., 2009b). Genome-wide CNV increases 

were observed with chemical agents that inhibit enzymes of DNA metabolism, 

aphidicolin and hydroxyurea (Arlt et al., 2012). MG modification is a major cause of 

endogenous DNA damage and this may drive Glo1 CNA cytoprotective response 

revealed herein. It does not account for, however, how duplication of the Glo1 gene 

is selectively retained. This may be linked to the DNA damage response such that 

retention of Glo1 copy number increase is retained to dampen this response. The 

cytoprotective and survival advantage may also account for why duplication of the 

Glo1 gene is selectively retained. 

4.1. Importance of advancing understanding of the glyoxalase 

system in biomedical research 

The glyoxalase system is an important protective system found throughout 

biological life. It is the key enzymatic system protecting against glycation by 

reactive dicarbonyl metabolites (Xue et al., 2012, Rabbani et al., 2014b). Its 

fundamental importance is highlighted by its implication in many diseases such as 

diabetes, obesity, cardiovascular complications in diabetes and aging in human 

tissues, mouse tissues and cells (Thornalley, 1988, Wilson et al., 1991, Lo et al., 

1994a, McLellan and Thornalley, 1989, Dunn et al., 1989, Dunn et al., 1991, Haik Jr 

et al., 1994, Ahmed et al., 1997, Sharma-Luthra and Kale, 1994). The essential 

importance of this role is highlighted by the null mutation of GLO1 is embryonically 

lethal in humans (Arai et al., 2010). Studies of malignant transformation of liver 

progenitor cells in mice lacking p53 and overexpressing proto-oncogene Myc 

suggested Glo1 is a tumour suppressor gene- one of only 13 genes in genome-wide 

analysis (Zender et al., 2008). When malignancy is established, however, Glo1 

promotes the development of tumours (Hosoda et al., 2014) – although as Glo1 does 
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not mediate malignant transformation itself, nor is mutated into a form that does. 

This indicates GLO1 is neither an oncogene nor proto-oncogene by conventional 

definitions (Futreal et al., 2004). Increased expression of GLO1 may be permissive 

of rapid growth of some tumours, however, sustained by high glycolytic rates by 

suppressing the risk of toxicity of associated high fluxes of MG formation 

(Thornalley et al., 2010). Inhibitors of GLO1 are prospective anti-cancer drugs – 

reviewed in (Thornalley and Rabbani, 2011). GLO1 overexpression by increased 

gene amplification in tumours is associated with MDR (Santarius et al., 2010). 

GLO1 amplification, where functional, may be a marker of sensitivity to cell 

permeable GLO1 inhibitors (Santarius et al., 2010). Metabolic modelling of the 

GLO1 pathway suggests this may not be generally correct as a high flux of MG 

formation with high expression of GLO1, and absence of other pathways for MG 

metabolism (for example, aldoketo reductases) are conditions required for sensitivity 

to GLO1 inhibition through accumulation of MG to toxic levels (Rabbani et al., 

2014b).  

The regulatory promoter region of GLO1 gene is a hotspot of copy number 

variation in the human and mouse genomes although the prevalence of multiple 

GLO1 promoter copies and related increased GLO1 expression in the human 

population is unknown (Williams et al., 2009, Redon et al., 2006). In addition, there 

is increased evidence regarding the involvement of glyoxalase system in cell 

senescence and aging as the accumulation of protein glycation adducts is associated 

with enzyme inactivation, protein denaturation and a cellular mediated immune 

response (Ikeda et al., 2011). Excessive nucleotide glycation is associated with 

mutagenesis and apoptosis (Thornalley, 1999).  

The glyoxalase system was discovered in the early 20th century. Since then, 

many cellular and animal models have been developed to improve the understanding 

of this system under different physiological condition. Glo1 deficient mice and 

transgenic mice overexpressing Glo1 provide valuable models to study control of 

change in extent of dicarbonyls glycation in mammalian systems. Glo1 knockout 

might produce further understanding about the importance of the glyoxalase system 

and how the physiological system may react with increased MG. 

To date, only one Glo1 deficient mouse model has been developed and 

produced through expression of Glo1 siRNA. There was a 45–65% decrease in tissue 

Glo1 activity in the heterozygous offspring of the founder (Queisser et al., 2010). In 
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addition, Lexicon Pharmaceuticals produced a Glo1 mutant mouse from C57BL/6 

species. The mouse produced by gene trapping method and the modification was in 

the chromosome 17 of the mice embryonic stem cells. Lexicon evaluated the 

expression of Glo1 in several tissue and they claimed that mRNA of Glo1 was 

completely absent. Surprisingly and unexpectedly there was no pathogenic 

phenotype. There is requirement to understand how Glo1 in Lexicon Glo1 mutant 

mouse has apparently null mutation of Glo1 without any health effect. This 

conundrum has been addressed in this project and caused a major shift in the 

hypothesis, aim and objectives.  

The main hypothesis of this project was: the accumulation of MG in the 

glomerular endothelium in diabetes leads to cell dysfunction and development of 

diabetic nephropathy. The aim of this study was to test this hypothesis by studying 

the effect of decreasing Glo1 activity by genetic silencing in Lexicon Glo1 mutant 

mouse on the development of diabetic nephropathy. This would be achieved by 

studying the effect of Glo1 knockout on the development of nephropathy (DN) in 

STZ-induced diabetes. To test if increased in situ exposure to glyoxal and MG 

accelerates the development of DN, the development of DN in Glo1 knockout mouse 

and C57BL/6J wild-type control mice with STZ-induced diabetes would be studied. 

STZ-induced diabetes, a model of type 1 diabetes, does not consistently show 

albuminuria nor severe glomerular mesangial expansion in C57BL/6J mice (Qi et al., 

2005, Nakagawa et al., 2007). In addition, increased renal MG-modified 

mitochondrial proteins is expected to induce oxidative stress and metabolic 

dysfunction and accelerate DN (Rosca et al., 2005).   

However, the aim was redeveloped to characterise the Lexicon Glo1 mutant 

mouse after completion of the first objective where a compensatory mechanism of 

Glo1 expression in the Lexicon Glo1 mutant mouse was discovered. For this reason, 

proceeding with the previous aim was re-evaluated as both genotypes including 

Lexicon Glo1 mutant mouse and WT controls have a similar phenotype which 

negated the use of Lexicon Glo1 mutant mouse as a Glo1 deficient mouse and a 

model of accelerated diabetic complication. In addition, it is interesting and likely 

fruitful to further investigate the potential genetic causes behind the phenotype of 

Lexicon Glo1 mutant mouse. This includes examining the mechanism of escape 

from Glo1 silencing and assessing if such mechanisms are active elsewhere – 

particularly clinically. Therefore, the hypothesis of this study was redeveloped to be: 
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Gene trapping of Glo1 in ESCs leads to compensatory expression of Glo1 to counter 

dicarbonyl stress by a mechanism which may operate in other circumstances of 

dicarbonyl stress. The aim of this study is to test this hypothesis by characterising 

the mechanism of compensatory expression of Glo1 in the Lexicon mutant mouse, 

modelling similar induction of Glo1 expression in experimental dicarbonyl stress in 

murine ESCs in vitro and exploring if a similar response occurs in clinical 

dicarbonyl stress in vivo. 

Initial examination characterised compensatory expression of Glo1 in all 

tissues tested of the Lexicon Glo1 mutant mouse. In this project, I attempted to 

understand how gene targeting of Glo1 can produce precise compensatory 

expression of Glo1. 

There is a requirement still for the field of glyoxalase research to produce a 

stable Glo1 deficient mouse where Glo1 deficiency is produced in maturity onset – 

see Conclusions. My findings indicate that the commissioned requirement of 

Lexicon to produce a Glo1 deficient mouse was not fulfilled. 

4.2. Lexicon Glyoxalase 1 mutant mouse 

4.2.1. Genotyping and evidence for Glo1 copy number alteration induced 

by gene trapping 

The evaluation and characterization of Lexicon Glo1 mutant mouse was 

expected to show ablation of Glo1 expression and, as a consequence, increased tissue 

concentrations of MG and MG-modified proteins (Thornalley et al., 1989). Initially, 

Lexicon Glo1 mutant mouse colony was analysed for the inserted mutation. The 

mutation was successfully inserted in the Glo1 gene and the mutation was detected 

in mutant mice. Initial genotyping showed that of 44 offspring from Lexicon Glo1 

mutant mice colony, there was no off-spring with mutated Glo1 allele only, 79.5% 

had both mutant and wild-type alleles and 20.5% contained wild-type alleles only. 

Assuming this initial genotyping reflected homozygotes, heterozygotes and wild-

type offspring, respectively, this represented a significant disturbance from the 

Hardy Weinberg distribution. This would be consistent with embryonic lethality of 

homozygous inheritance of the Glo1 mutant allele. It seemed appropriate as lack of 

Glo1 or inhibition of Glo1 impairs cell survival and induces apoptosis (Morcos et al., 
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2008, Lo and Thornalley, 1992). A similar finding was noted in human subjects 

where the null mutation of GLO1 is embryonically lethal (Arai et al., 2010). 

In breeding of the Lexicon Glo1 mutant mice there was, however, no 

indication of decreased litter size – suggesting that the assumed embryonic lethality 

of putative homozygous Glo1 mutant mice may not be correct. It was also noted that 

Lexicon claimed to have produced viable homozygous Glo1 mutant mice with 

normal phenotype (Lexicon, 2007). This was, however, based on inappropriate 

genotyping – assessing genotype by measurement of Glo1 mRNA only. 

In the studies herein, expression of Glo1 mRNA, protein and activity in 

several tissues was not significantly different between groups containing the mutant 

allele and wild-type controls. This suggested that compensatory Glo1 regulation was 

not at the level of increased Glo1 protein stability or increased Glo1 mRNA 

translation but rather at the level of Glo1 gene transcription. Some gene expression 

compensatory mechanisms in mutant mice are at translational level: for example, in 

heterozygous knockout of cardiac troponin T (Ahmad et al., 2008) and kidney-

specific NaK2Cl cotransporter, BSC1/NKCC2 (Takahashi et al., 2002). The 

compensatory mechanism to maintain normal expression on Lexicon mutant mice 

however is at the transcriptional level and may occur through change in Glo1 copy 

number. 

I established qPCR Taqman methods to quantify copies of both the Glo1 

wild-type and mutant alleles. This revealed that Lexicon mutant mice has increased 

copy number of total Glo1 alleles and the “heterozygotes” were of two types: one 

with one copy of the mutant Glo1 allele and one with two copies of the mutant allele. 

Appropriate genotypic nomenclature was therefore Glo1Gt(OSTGST_4497-D9)1Lex and 

Glo1Gt(OSTGST_4497-D9)2Lex, respectively. All offspring had two copies of the wild-type 

Glo1 allele, explaining the normal, wild-type expression of Glo1 in all tissues. This 

explains the compensatory mechanism of Glo1 expression in Lexicon Glo1 mutant 

mice and the absence of any differences between Glo1 expressions in both groups. 

The lack of pathogenic phenotype in the Lexicon characterisation studies is 

explained by the apparent heterozygotes and homozygotes having the normal 2 wild-

type copies of the Glo1 allele. The unusual genotyping by Lexicon by measurement 

mRNA appears to have been unreliable and the additional copy number of the wild-

type allele was not detected by Lexicon. 
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The Glo1 copy number was analysed in several tissues and all analysed 

tissues showed three copies in Glo1Gt(OSTGST_4497-D9)1Lex and two copies in WTs. This 

indicates that the origin of the extra Glo1 copy is the mouse ESC where the mutation 

was induced by insertion of vector VECTOR48. The replication of wild-type Glo1 in 

the ESC mutated by gene trapping provided the founder of this colony. The produced 

Glo1Gt(OSTGST_4497-D9)1Lex mice was maintained through breeding and crossing with 

wild-type controls in the Lexicon mutant mouse colony. This was confirmed by the 

stability of the mutation and the mode of the inheritance in this colony. It is possible 

that there were Glo1 gene duplication prior to the induction of the VECTOR48, 

however, according to (Williams et al., 2009, Liang et al., 2008, Bryk and Tautz, 

2014) Glo1 duplication presents in multiple strains of mice such as  A/J, DBA/2J and 

in ESCs of 129/C57 strain but not in C57Bl/6 strain which is the background of the 

Lexicon Glo1 mutant mouse. This might exclude the possibility of the presence of 

the duplication prior to the VECTOR48 induction. 

There remains a minor possibility of de novo Glo1 duplication. It has been 

suggested that de novo germ-line CNVs can occur within mouse strains, leading to 

inter-individual variation (Liang et al., 2008). The analyses of the genome of clonal 

isolates of mouse ESCs derived from common parental lines revealed that there are 

extensive and recurrent CNVs. This variation arises during mitosis and can be co-

transmitted into the mouse germ line along with engineered alleles, contributing to 

genetic variability. The frequency and extent of these genomic changes in ESCs 

suggests that all somatic tissues in individuals will be mosaics composed of variants 

of the zygotic genome. CNV of Glo1 has not been found, however, in ESCs in 

culture but rather only associated with strain-specific Glo1 duplication  (Liang et al., 

2008). The stability of the mutation in Glo1Gt(OSTGST_4497-D9)1Lex during the mutation 

inheritance as well as the presence of constant number of Glo1 copies in all analysed 

tissues, the absence of Glo1 copy number increase in the C56BL/6 strain and ESC 

cultures suggest that Glo1 copy number increase was not present before mutation 

and was likely induced as copy number alteration in response to dicarbonyl stress 

induced by Glo1 mutation. 

The inheritance of Glo1 mutation showed that it is inherited in a simple 

Mendelian manner. In the inheritance study, each parent passes one allele in 

chromosome 17 to the offspring. In the cases of Glo1Gt(OSTGST_4497-D9)1Lex  parent, 

some offspring have the parental WTs chromosome and the remainder have the 
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parental mutated chromosome. This produces WT (Glo1Gt(OSTGST_4497-D9)0Lex) and 

mutant (Glo1Gt(OSTGST_4497-D9)1Lex) offspring, respectively. However, when two 

Glo1Gt(OSTGST_4497-D9)1Lex were crossed, a new genotype, Glo1Gt(OSTGST_4497-D9)2Lex, was 

produced. This new genotype has the mutant chromosome 17 from each 

heterozygote parent. The activity and the expression of Glo1 in this new genotype 

were similar to heterozygote and WTs siblings. In addition, there was no significant 

difference in all Glo1 analytes in these three genotypes. This confirms that 

glyoxalase system performs with same efficiency in all genotypes analysed. This 

likely explains how Lexicon where able to report “heterozygote” and “homozygote” 

mutant mice with a normal healthy phenotypes. 

Taqman copy number assay was the main analytical method used in the CNV 

quantification in this study. This assay produced an accurate and precise 

quantification. The used of controls including liver DNA from C57BL/6 and 

DBA/1J strains proved the accuracy and the specificity of this assay. C57BL/6 and 

DBA/1J  have 2 and 4 copies of Glo1 respectively (Williams et al., 2009). DNA 

from liver of each strain was used as negative and positive control for Glo1 

duplication. In addition, the PCR reaction of Taqman copy number assay is a duplex 

reaction where the signal strength of the target compared to the signal strength of the 

of the internal standard (Ponchel et al., 2003). In order to evaluate the efficiency and 

the accuracy of this duplex assay, Tfrc and Tert genes were used as internal standard. 

Tfrc and Tert genes are located on chromosome 16 and 13 respectively. These 

reference genes are located on other chromosomes not chromosome 17 where Glo1 

is located. This was to avoid using reference gene located in the duplication area, 

which will give a false negative result. However, no other locus specific 

quantification has been used as this Taqman copy number assay produced accurate, 

precise and constant results with all used controls and internal controls. Furthermore, 

this assay is a locus specific assay which does not show the extent of the duplication. 

I studied this by genome-wide microarray analysis.    

Microarray aCGH is the ideal assay for genome-wide scale identification. 

aCGH quantifies the CNV with extent of any duplication as well as provides 

information about any other duplication in the analysed genome (Carter, 2007). The 

quantification of Glo1 copy number in the liver samples from the new genotype 

(Glo1Gt(OSTGST_4497-D9)2Lex), Glo1Gt(OSTGST_4497-D9)1Lex and WT siblings using aCGH 

produced a similar quantification of Glo1 copy number as indicated in the Taqman 
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assay. This provides a supporting evidence for Glo1 copy number increase in the 

Lexicon mutant mice. In addition, the duplication of Glo1 in all analysed samples 

was 473 kbp and included a partial duplication of Btbd9 and Glp1r genes and 

complete duplication of Glo1 and Dnahc8 genes. This duplication is similar to the 

duplication reported in Fkbp5 knockout mice which carries a gene duplication of 

Glo1 with similar break point of the Glo1 duplication in Lexicon Glo1 mutant mice 

(Kollmannsberger et al., 2013). In addition, the Glo1 duplication of Lexicon Glo1 

mutant mice has a similar break point as the break points of  Glo1 duplication which 

was detected in 23 strains out of 71 inbred strains tested of various outbred and wild-

caught mice (Williams et al., 2009). Furthermore, the genome-wide CNV analyses in 

individuals from two recently diverged natural populations of the house mouse 

showed a 0.5 Mb amplification that includes Btbd9, Glo1 and Dnahc8 which is 

similar to the duplication in Lexicon Glo1 mutant mouse (Bryk and Tautz, 2014).  

This break point in mouse appears to be a hotspot for breakage and for copy number.  

Microarray aCGH data genome showed random amplifications in different 

areas which are not linked to Glo1 mutation genotype. However, in addition to Glo1 

duplication there were two genes duplicated only in Glo1Gt(OSTGST_4497-D9)1Lex and 

Glo1Gt(OSTGST_4497-D9)2Lex mice. These two genes are Vmn2r111, Vmn2r112. This 

duplication is in chromosome 17 from base number 22673192 to 22797105. This 

duplication might have arisen as a response for the deletion in a nearby gene, which 

is due to “flanking allele problem” which is a likely common phenomenon in gene 

knockout via homologous recombination (Crusio et al., 2009). By linking the 

duplication to the gene expression, it was expected to find an increased mRNA 

expression produced from the duplicated genes. However, the analyses of the mRNA 

expression for Btbd9, Dnahc8 and Vmn2r112 showed different panel of expression 

in each genotype. It was expected that this amplification results in a corresponding 

change in gene expression. In humans and mice, 85%–95% of CNVs are associated 

with changes in expression of the affected genes – reviewed by (Tang and Amon, 

2013). However, this different panel of expression is likely due to incomplete 

duplication in the case of Btbd9 and might be explained by the fact that the 

engineered CNV or mutation of single genes has previously been found to induce 

CNV of unrelated genes and mutations in secondary effect genes leading to impaired 

expression (Teng et al., 2013). This impaired mRNA expression is clearly 

demonstrated in the mRNA expression results.   
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It has been suggested that mutation of any single gene may cause a genomic 

imbalance, with consequences sufficient to drive adaptive genetic changes. This is a 

logical consequence of losing a functional unit originally acquired under pressure 

during evolution (Szamecz et al., 2014). Szamecz and colleagues showed that 

baker’s yeast genome was able to compensate the complete loss of genes during 

evolution by 68% of the total 180 haploid baker’s yeast genotypes. In addition, 68% 

of the genotypes reached near wild-type fitness through accumulation of adaptive 

mutations elsewhere in the genome (Szamecz et al., 2014). A similar acute 

adaptation to fitness or survival in ESCs when exposed to gene trapping of Glo1 may 

explain the induction of the extra WT copy of Glo1 in the Lexicon Glo1 mutant 

mouse. Furthermore, most gene knockout in yeast strains were found to have one 

additional mutant gene and independent knockouts of the same gene often evolved 

mutations in the same secondary gene (Teng et al., 2013). In mouse, knockout of an 

essential gene such as CALBINDIN-D9K and LRP1b was compensated with the 

expression of other genes from same family but may be with different splicing 

(Marschang et al., 2004, Lee et al., 2007). This might be not applicable in our case as 

the aCGH microarray result confirms the duplication of Glo1 gene. In addition, the 

data obtained from Glo1-Vic Taqman assay confirmed that there are two WT copies 

of Glo1 in all analysed genotypes. 

4.2.2. Glyoxalase pathway metabolism - evidence for normal homeostasis 

To complete the characterization of Lexicon Glo1 mutant mice, other 

components of glyoxalase system - MG, Glo2 activity and D-lactate production - 

were analysed. There was no significant difference noticed in any analyte between 

mutants and wild-type controls. A deficiency of Glo1 is expected to increase MG 

concentration and related MG-derived AGEs (McLellan and Thornalley, 1989, Dunn 

et al., 1989, Dunn et al., 1991, Haik Jr et al., 1994, Ahmed et al., 1997, Sharma-

Luthra and Kale, 1994). Glycation and oxidation adducts were analysed in liver 

tissue and urine of Lexicon Glo1 mutant mice and WTs siblings. There was no 

significant difference in AGEs directly related to the glyoxalase system. This 

provides evidence that the glyoxalase system in both groups was performing with 

normal efficiency and normal dicarbonyl metabolism was maintained. 
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There are several pathways for the detoxification of MG, based on different 

enzymes that are able to convert MG to less toxic compounds. Methylglyoxal 

reductase is the second MG detoxifier after glyoxalase enzymes (Rabbani and 

Thornalley, 2012b). Methylglyoxal reductase activity was analysed in the liver tissue 

of Lexicon Glo1 mutant mice and their WTs siblings and no significant differences 

were found. This suggests no compensatory increased in activity of other MG 

metabolising enzymes were induced by Glo1 mutation – and indeed none was 

required as the wild-type Glo1 copy number had been maintained in 

Glo1Gt(OSTGST_4497-D9)2Lex and Glo1Gt(OSTGST_4497-D9)1Lex mutant mice. 

4.2.3. Glo1 activity – effect of ageing  

The Glo1 activity for brain, skeletal muscle, spleen, heart, kidney, pancreas 

and liver of Lexicon Glo1 mutant mice at two time points (3 and 7 months) showed 

that Glo1 activity was not decreased with age in the heterozygote and wild type mice 

tissues except in the kidney tissue. In rats kidney, Glo1 activity of renal cortex lysate 

decreased in an age-dependent manner (Ikeda et al., 2011). On the other hand, the 

Glo1 activity increases with age in skeletal muscle, brain and liver when compare 

between three and seven month old mice. This changes match with the Glo1 activity 

changes which has been published by (Sharma-Luthra and Kale, 1994). Sharma-

Luthra and Kale showed the range of Glo1 activity in multiple tissues from 2 months 

to 24 months where the activity of the liver increases up to 12 months of age and 

then it starts to decline.  

At both time points of age used in this study, Glo1 activity was highest in 

liver and lowest in spleen and pancreas. The high Glo1 activity in liver comparing to 

the other tissues has been published previously by (Bierhaus et al., 2012). The Glo1 

activity of the heterozygote does not defer significantly from wild-type Glo1 activity. 

Interestingly, Glo1 activity was lower in the WTs control strain maintained at 

University of Warwick (C57BL/6-UoW) when compared with WTs siblings of Glo1 

mutant mice. Although, both mice groups are C57BL/6 strain, the origin and the 

environmental factor might have an effect (Williams et al., 2009). Importantly, Glo1 

mutant mice have distribution in their genome due to the inserted vector which might 

have an influence on Glo1 expression and activity. 
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4.3. Glyoxalase 1 copy number alteration in mouse embryonic 

stem cells 

Mouse ESCs are key tools for genetic engineering. These cells were 

employed in this project to understand the ability to induce Glo1 copy number in 

relation to increased dicarbonyl stress. There are extensive and recurrent CNVs in 

ESCs (Liang et al., 2008). This variation arises during mitosis and can be co-

transmitted into the mouse germ line contributing to genetic variability. The 

frequency and extent of these genomic changes in ESCs suggests that all somatic 

tissues in individuals will be mosaics composed of variants of the zygotic genome 

(Liang et al., 2008). However, In Lexicon Glo1 mutant mouse, the increased Glo1 

copy number was distributed equally in all analysed tissues not mosaic and hence the 

extra Glo1 copy was created more likely before the differentiation of the ESCs. 

Therefore, the cells were maintained under undifferentiated status by using LIF 

(Williams et al., 1988). It is important to start with characterisation of the 

metabolism and glyoxalase system under normal culturing condition and under 3% 

oxygen atmosphere condition. Culture of ESCs under a 3% oxygen atmosphere was 

important for relevance to physiologic oxygen concentration of embryonic 

development which takes place in a low oxygen concentration environment (Powers 

et al., 2008). The oxygen environment of ESCs in vivo is much lower and with a pO2 

of approximately 3%  (Simon and Keith, 2008). The environmental pO2 regulates 

energy metabolism and is intrinsic to the self-renewal of ESCs (Mohyeldin et al., 

2010, Forristal et al., 2013). 

ESCs were maintained in undifferentiated status using LIF and this was 

confirmed by determination of the ESCs markers (Williams et al., 1988). The 

proliferation of the cells was decreased ca. 3 fold in 3% oxygen atmosphere. In 

addition, culture under 3% oxygen atmosphere decreased Glo1 activity and 

expression. This may be due to the presence of the HRE which is known to down 

regulate the expression of Glo1 under hypoxic conditions (Zhang et al., 2012). 

However, there was an increase in the production of D-lactate and L-lactate, and D-

glucose consumption. The increased production of L-lactate and consumption of D-

glucose under 3% oxygen atmosphere in murine ESCs was reported previously by 

(Katsuda et al., 2013). This suggests that ESCs under 3% oxygen atmosphere depend 

more on anaerobic glycolysis compared to the cells under normoxia. It has been 
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published that under 3% oxygen atmosphere, stem cells have enhanced conversion of 

pyruvate to lactate by cytosolic NADH. The 3% oxygen atmosphere environment 

renders them dependent upon anaerobic glycolysis to produce ATP. The metabolic 

adaptation of stem cells from an oxidative phenotype to one dependent upon 

glycolytic metabolism represents specific advantages that promote stem cell 

homeostasis. Stem cells remain metabolically flexible, however, where they are able 

to rapidly change to an oxidative phenotype during differentiation to support the 

large amounts of ATP needed for this process (Ochocki and Simon, 2013). ESCs are 

more metabolically active under 3% oxygen atmosphere as the glucose consumption 

and L-lactate production was ca. 3.1 fold higher than the glucose consumption and 

L-lactate production in normoxia. The decreased Glo1 expression and activity under 

3% oxygen atmosphere with high metabolic activity is expected to increase AGE 

formation. This suggests that adverse effects of MG are more likely to be present 

under 3% oxygen atmosphere – and indeed, these are the lower range of usual 

oxygen concentration for ESCs in vivo (Powers et al., 2008). 

The proliferation of ESCs was decreased by treatment with Glo1 cell 

permeable inhibitor BrBzGSHCp2. This cytotoxicity effect was reported using other 

cells as some tumour sensitive to BrBzGSHCp2 (Thornalley et al., 1996, Sakamoto 

et al., 2000, Sakamoto et al., 2001). Although the Glo1 inhibitor decreased the 

proliferation of ESCs in vitro, when the ESCs were treated with BrBzGSHCp2 for 

three days there was no effect on the Glo1 copy number. This may be due to the 

short incubation period which not has been long enough to increase Glo1 copy 

number.  

To examine the direct effect of dicarbonyl stress on Glo1 copy number, a 

non-toxic but growth inhibitory concentration of exogenous MG was applied to 

ESCs for 2 days. The median growth inhibitor concentration of MG for ESCs in 

normoxia was 831 µM which is relatively high (cf. 238 µM for human leukaemia 60 

cells (Kang et al., 1996)). ESCs growth was decreased by 27% with addition of 200 

μM MG. A concentration of MG markedly higher than those in the physiological 

systems - human blood plasma, 100–120 nM, and cellular concentrations of 1–5 µM 

– was used (Dobler et al., 2006, Rabbani and Thornalley, 2014c, Kurz et al., 2011). 

Nevertheless, it was non-toxic and designed to impose dicarbonyl stress and test the 

hypothesis that such conditions induce Glo1 copy number increase. Although the 

mRNA of Glo1 was not significantly increased at any time point, there was a 
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significant increase in Glo1 copy number by 16% at 12 days. In addition, there was a 

significant increase in Glo1 activity and protein expression in 12 days of treatment. 

In addition, the increased Glo1 protein expression in ESCs treated with 200 μM MG 

over 12 days led to increased Glo1 activity in these cells. On the other hand, the 

decreased Glo1 protein expression in ESCs treated with 200 μM MG over 3 and 6 

led to decreased Glo1 activity. Although, there was an increased trend of Glo1 

protein expression with time of treatment, Glo1 activity had a decreased trend of 

Glo1 activity with time of treatment, which might be due to inactivation of Glo1 

protein with unknown mechanism. This induction indicates that Glo1 copy number 

alteration may be induced modestly by dicarbonyl stress in ESCs. Unchanged Glo1 

mRNA expression might be due to the short life of Glo1 mRNA in the cells or 

modification by MG and impaired detection (Schwanhäusser et al., 2011). The 

specificity of this induction was proven by the analyses of the copy number of the 

surrounding gene and finding that there was no significant increase of the copy 

number in of the surrounding gene in both sides.  

Stress induced CNA to date has mainly be linked to replicative stress. This 

induces a high frequency of CNVs in normal human cells that resemble non 

recurrent CNVs in humans in all aspects. These agents include the polymerase 

inhibitor aphidicolin, the ribonucleotide reductase inhibitor and hydroxyurea which 

are commonly used in the treatment of sickle cell disease and other disorders. Such 

data provides an experimental support evidence for replication error models for the 

origins of CNVs (Arlt et al., 2012). The type of stress induced by these agents is 

similar to the stress induced by MG as both cause DNA breakage and hence 

increased errors in DNA replication (Kang, 2003). However, this is the first report of 

stress inducted functional copy number increase of Glo1 gene. Moreover, unlike 

features of replicative stress and irradiation induced stress, dicarbonyl stress linked 

CNA appears localised to the Glo1 gene and not spread widely across the genome.  

Short periods of dicarbonyl stress, for example – one day, did not increase Glo1 copy 

number. This suggests that the process of the Glo1 copy number induction is not an 

acute response to high levels of MG but may be a response to high MG exposure 

during multiple consecutive cell growth cycles.  

CNA may have effects on ESC function. In future studies stability of MG-

induced CNA will be important to investigate further. It has long been known that 

changes in the copy number of specific genes can have a dramatic impact on 
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organismal and cellular fitness. For example, budding yeast cells harbouring an extra 

copy of the β-tubulin-encoding gene are inviable. Studies in humans suggest that as 

many as 15% of neurodevelopmental disorders and other diseases are due to rare, 

large CNVs resulting in the imbalance of a handful of genes. For example, 

duplication of PMP22 leads to Charcot-Marie-Tooth 1A neuropathy. Duplication of 

SNCA is associated with Parkinson’s disease, duplication of GSK3b with bipolar 

disorder, and low-copy amplification of the C4 gene with lupus. Finally, 

amplifications and deletions of individual genes are major drivers of tumorigenesis. 

Amplification of the oncogene MYC, for example, is thought to be a driving factor in 

human acute myeloid leukaemia - reviewed by (Tang and Amon, 2013). 

The treatment of ESCs with 200 μM MG under 3% oxygen atmosphere 

showed decreased Glo1 copy number within three days when compared to the cells 

grown under 3% oxygen atmosphere without treatment. This may indicate that these 

cells have lower ability to repair DNA breakage induced by MG under 3% oxygen 

atmosphere conditions and/or the continuous exposure to increased endogenous MG 

formation and decreased metabolism by Glo1 are conditions required to most 

effectively increase Glo1 copy number by CNA. Cells exposed to high MG 

concentration may be less able to repair the DNA breakage (Kang, 2003).  

Knockdown of Glo1 by ON-TARGET plus Glo1 siRNA provided evidence 

that the ESCs can survive with ca. 13% of normal Glo1 protein expression and 

activity. The specificity of the knockdown was proven by the use of ON-TARGET 

plus non-targeting pool siRNA as a control where no decrease of Glo1 mRNA 

noticed. However, the treatment with lower concentration of MG, comparing to the 

previous experiments, had a strong effect on the proliferation of the cells. In low 

oxygen atmosphere or physiological condition, low Glo1 expression and activity has 

been found (Zhang et al., 2012). This makes the cells more sensitive to increased 

MG comparing to the cells in normal cell culture condition. 

4.4. Other studies of glyoxalase 1 copy number alteration  

HL60 human leukaemia cells were used as another cells to examine the stress 

ability to induce GLO1 copy number. The proliferation of the cells was strongly 

affected by MG treatment. Interestingly, the copy number of GLO1 was decreased. 

This may be due to the decreased ability to repair DNA breakage in these cancerous 
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cells (Farzanch et al., 1987, Kang, 2003). This may suggest that ESCs have a higher 

ability to repair DNA breakage than HL60 cells. Also it may also contribute to the 

anti-proliferative effect of MG on HL60 cells in vitro. 

Clinical translational study was performed to provide further evidence that 

the induction of Glo1 copy number in the previous models was due to the increased 

concentration of MG. GLO1 copy number was determined in peripheral blood 

leukocytes of patients with stage 5 chronic kidney disease on HD – patients suffering 

the most clinically severe dicarbonyl stress and increased MG exposure (Agalou et 

al., 2005, Rabbani and Thornalley, 2012b, Rabbani and Thornalley, 2012a) and 

normal healthy controls. This analysis showed that there was no significant 

difference between this patients and control subjects. This may be due to the small 

size of the sample (20 patients and 20 controls) and/or it might be due to the sample 

type as the leukocytes in general have a shorter lifespan than many other cells. 

Strengths of this study can be summarised by in-depth characterization of 

glyoxalase system of Lexicon Glo1 mutant mouse and explanation of the change of 

Glo1 expression in this mouse. Also, it successfully characterised the compensatory 

mechanism of Glo1 expression in the Lexicon Glo1 mutant mouse, characterization 

of glyoxalase system in mouse ESCs under 20% and 3% oxygen atmosphere 

condition and induction of Glo1 copy number under methylglyoxal stress. 

Weaknesses of this study were: not addressing the mechanism of the CNV in 

Lexicon Glo1 mutant mouse as this needs further support from Lexicon by providing 

the original stem cells which were used for Glo1 knockout. Although, mimicking the 

CNA was not up to the level determined in Lexicon Glo1 mutant mouse, this is a 

novel example of stress induction of functional copy number specifically for Glo1 

gene. 
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5. Conclusion and Further work 

5.1. Conclusion 

The initial aim of this study was to study the exacerbation of diabetic 

nephropathy by Glo1 deficiency in streptozotocin-induced diabetic mice, with an 

initial objective to confirm Glo1 deficiency in the IMKC Glo1 mutant mouse and 

subsequent objectives contingent on this. Initial studies were unable to confirm Glo1 

deficiency in this mouse model and so a revised aim was to characterise the 

mechanism of compensatory Glo1 expression in the mutant mouse and explore 

similar occurrence in similar precursor mouse ESCs and related clinical application. 

Therefore, this PhD project is comprised of four parts: 

1. To evaluate the Lexicon Glo1 mutant mouse as Glo1 deficient mouse and the 

possibility of using this mouse to improve the understanding of the role of Glo1 in 

the development of diabetic nephropathy.  

2. To characterise the compensatory mechanism of Glo1 expression in the Lexicon 

Glo1 mutant mouse. 

3. To study the copy number alteration of Glo1 in mouse embryonic stem cells. 

4. To study the copy number alteration of GLO1 in clinical samples. 

The effect of gene trapping in the Lexicon Glo1 mutant mouse was 

evaluated. The mutation was successfully inserted to Glo1 gene. However, related 

CNA of Glo1 maintained the normal 2 wild-type copies of the Glo1 gene in all 

offspring and a normal phenotype throughout. This indicates that the mutant mouse 

appears to have a compensatory mechanism of Glo1 expression in the Lexicon Glo1 

mutant mouse and have been incorrectly genotyped in preliminary characterisation 

by the originator. Therefore, the normal phenotype of the Lexicon Glo1 mutant 

mouse limits the benefits of using this mouse as a Glo1 deficient mouse and a model 

of accelerated diabetic complication. Nevertheless, this phenotype directs the study 

to further investigate the potential genetic causes behind the phenotype of Lexicon 

Glo1 mutant mouse, also, applying these genetic causes in wider contests. 

The characterization of gene duplication in Lexicon Glo1 mutant mice 

confirms that the Glo1 locus with the reported break points are hotspots for DNA 

breakage and CNA as same duplicated locus has been reported previously by 
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multiple research groups. In this duplication, Glo1 was the main gene that produced 

increased protein expression. There was also increased expression of Dnahc8 in the 

Glo1Gt(OSTGST_4497-D9)1Lex genotype. Thus indicating importance of maintaining the 

expression of Glo1 to wild-type levels.  

Murine ESC studies suggest that exposure to dicarbonyl stress may induce 

CNA of Glo1 and thereby provide a precedent for the proposal that increased 

dicarbonyl stress by mutation of Glo1 in mice produced Glo1 CNA in the Lexicon 

Glo1 mutant mouse. However, further investigation is required to confirm the 

mechanism of Glo1 CNA in Lexicon Glo1 mutant mice. 

Finally, clinical translational study was performed to provide further 

evidence that the induction of Glo1 copy number in the previous models was due to 

the increased concentration of MG. This study of GLO1 copy number in peripheral 

blood leukocytes of patients with ESRD was performed but did not show a 

significant change comparing with control subject. This requires further investigation 

with bigger sample size and may be with other type of tissue. 

5.2. Further work 

In this project, characterization Lexicon Glo1 mutant mouse confirmed that 

the method used to knockout Glo1 was not successful. It is attractive to investigate 

the mechanism of Glo1 copy induction using similar methods and cells with analysis 

of the Glo1 copy number after the vector insertion. For Glo1 knockout, other 

methods might be more successful such as inducible gene deletion by Cre-lox 

system, which provides tissue specific inducible knockout, avoids developmental 

effects and bypasses embryonic lethality of some gene deletions. 

The reported finding in the murine ESC studies is a novel example of stress 

induction of functional copy number specifically for Glo1 gene in ESCs which was 

investigated under undifferentiated status of ESCs. This was done to mimic the 

increase Glo1 copy number in Lexicon Glo1 mutant mouse. It is likely to have 

different result with using the same model but in differentiated state. 

MG-induced CNA of Glo1 is an important phenomenon to be addressed, 

which might be involved in induction of GLO1 copy number due to increased MG 

concentration causing multidrug resistance in cancer chemotherapy as well as the 

resistance of bacteria to antibiotics.  
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Finally, my studies open the possibility that different types of metabolic 

stress may produce CNA and, for the first time, GLO1 may contribute to adaptive 

genomics effects in mammalian organisms. 
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Appendix 

Appendix A: Primers sequences 

Primer Sequence (Sense, Antisense) 

Glo1 Pair1 
5'-TTGCTTGCTTGGCTTTGCCATTGC-3' 

5'-GGACCACCACCTGAATGAGTCTTGC-3' 

Glo1 Pair2 
5'-TTGCTTGCTTGGCTTTGCCATTGC-3' 

5’-TAAACCCTCTTGCAGTTGCATC-3’ 

Glo1 Pair3 
5’-AAATGGCGTTACTTAAGCTAGCTTGC-3’ 

5'-GGACCACCACCTGAATGAGTCTTGC-3' 

Rn 18s Qiagen commercial stock (QT01036875)  

C419A 

genotyping 

5’-TCAGAGTGTGTGATTTCGTG-3’ 
5’-CATGGTGAGATGGTAAGTGT-3’ 

 

Appendix B: Taqman Gene expression assay 

Gene Code of Taqman Gene expression assay 

Btbd9 Mm00553921_m1 

Glo1 Mm00844954_s1 

Dnah8 Mm01299527_m1 

Glp1r Mm00445292_m1 

Vmn2r112 Mm03647522_sH 

Actb Mm00607939_s1 

Rn18s Mm03928990_g1 

 

Appendix C: TaqMan copy number assay 

Gene Code of Taqman copy number assay 

Mouse Glo1 (exon1) Mm00470198_cn 

Mouse Glo1 (exon6) Mm00470195_cn 

Mouse Btbd9 Mm00460461_cn 

Mouse 1700097N02Rik Mm00463219_cn 

Mouse Dnah8 Mm00622696_cn 

Mouse Tert Catalogue number  (4458368) 

Mouse Tfrc Catalogue number  (4458366) 

Human GLO1 Hs00127744_cn 

Human RNASE P Catalogue number  (4403326) 
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List of presentations and publications derived from this 

project 

Article 

1. Shafie, A., Xue, M., Thornalley, P. J., & Rabbani, N. (2014). Copy number 

variation of glyoxalase 1. Biochem. Soc. Trans, 42, 500-503. 

2. Shafie, A., Xue, M., Barker, G., Zehnder, D., Thornalley, P. J., & Rabbani, N. 

(2015). Metabolic stress-induced copy number alteration of glyoxalase 1. The 

Scientific Reports. Under reviwe.  

 

Oral presentation  

 

Shafie, A., “Measurement of glyoxalase 1 copy number”. Glyoxalase Centennial: 

100 Years of Glyoxalase Research and Emergence of Dicarbonyl Stress, 27-29 

November 2013, University of Warwick, UK. 

Posters 

 

1. Shafie, A., Xue, M., Thornalley, P. J., & Rabbani, N. “Glo1 copy number 

increase in the Lexicon Glyoxalase 1 mutant mouse preserved the wild type 

phenotype”. 12th International Symposium on the Maillard Reaction, 8 – 11 

September, 2015, Tokyo, Japan. 

2. Shafie, A., Xue, M., Thornalley, P. J., & Rabbani, N. “Evaluation of a 

glyoxalase 1 mutant mouse”. The Eighth Saudi Students Conference, 31 January 

– 1 February, 2015, Imperial College London, UK. 

3. Shafie, A., Xue, M., Thornalley, P. J., & Rabbani, N. “Evaluation of a 

glyoxalase 1 mutant mouse”. 50th European Association of the Study of 

Diabetes Annual Meeting, 15-19 September 2014, Vienna, Austria. 

4. Shafie, A., Xue, M., Thornalley, P. J., & Rabbani, N. “Genotypic and 

phenotypic characterisation of a glyoxalase 1 mutant mouse”. The Seventh 

Saudi Scientific International Conference, 1-2 February, 2014, Edinburgh 

International Conference Centre, Edinburgh, UK. 

5. Shafie, A., Xue, M., Thornalley, P. J., & Rabbani, N. “Difficulties in generating 

a Glo1 mutant mouse”. Glyoxalase Centennial : 100 Years of Glyoxalase 

Research and Emergence of Dicarbonyl Stress, 27-29 November 2013, 

University of Warwick, UK. 

http://www.biochemistry.org/Portals/0/Conferences/abstracts/SA158/SA158P028.pdf
http://www.biochemistry.org/Portals/0/Conferences/abstracts/SA158/SA158P028.pdf
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6. Shafie, A., Xue, M., Thornalley, P. J., & Rabbani, N. “Genotypic and 

phenotypic characterisation of a glyoxalase 1 mutant mouse”.  The Sixth Saudi 

Scientific International Conference, 11-14 October 2012, Brunel University, 

UK. 

7. Shafie, A., Xue, M., Thornalley, P. J., & Rabbani, N. “Genotypic and 

phenotypic characterisation of a glyoxalase 1 mutant mouse”. 11th International 

Symposium on the Maillard Reaction, 16 – 20 September, 2012, Nancy, France. 

Award 

 

Excellent poster award  “Shafie, A., Xue, M., Thornalley, P. J., & Rabbani, N. Glo1 

copy number increase in the Lexicon Glyoxalase 1 mutant mouse preserved the wild 

type phenotype”. 12th International Symposium on the Maillard Reaction,  

8 – 11 September, 2015, Tokyo, Japan.  
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Excellent poster award certificate  
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Permission to reuse Figure 1.9 

 

 

 


