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Abstract

Mechanistic home range analysis (MHRA) is a highly effective tool for understanding spacing

patterns of animal populations. It has hitherto focused on populations where animals defend

their territories by communicating indirectly, e.g. via scent marks. However, many animal

populations defend their territories using direct interactions such as ritualised aggression. To

enable application of MHRA to such populations, we construct a model of direct territorial

interactions, using linear stability analysis and energy methods to understand when territorial

patterns may form. We show that spatial memory of past interactions is vital for pattern

formation, as is memory of ‘safe’ places, where the animal has visited but not suffered recent

territorial encounters. Additionally, the spatial range over which animals make decisions to

move is key to understanding the size and shape of their resulting territories. Analysis using

energy methods, on a simplified version of our system, shows that stability in the non-linear

system corresponds well to predictions of linear analysis. We also uncover a hysteresis in the

process of territory formation, so that formation may depend crucially on initial space-use.

Our analysis, in 1D and 2D, provides mathematical groundwork required for extending MHRA

to situations where territories are defended by direct encounters.
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1 Introduction

Territorial conflicts occur in many different animal species, from birds to primates, insects

to reptiles [1–4]. They sometimes take the form of physical fights, e.g. for monkeys [5] and

humans [6, 7]. However, to avoid costly injuries, animals often eschew fighting in favour of

‘ritualised aggression’, expressing dominance through displays, vocalisations, and other non-

violent interactions [8]. For example, ritualised aggression has been observed in many bird

species, where plumages have often evolved to aid in displays of territorial dominance [9–11].

Likewise, bees have been observed to perform ‘perching and patrolling’ displays to highlight

their territories [3]. In some cases, the line between non-violent and violent can become blurred,

when ritualised displays turn into violent encounters (e.g. [2]). Nonetheless, be they violent

or ritualised, the aim of territorial conflicts is to gain and defend parts of space for exclusive

use by a select subset of the population, such as a flock, pack, tribe, nation, or mating pair.

Although aggressive interactions are sometimes non-territorial, here we focus on those that are,

so may result in patterns of spatial segregation: interlocking territories that remain relatively

stationary over time [12].

In this paper, we show mathematically how the process of territorial conflicts may give

rise to spatial segregation patterns, and under what conditions these patterns may emerge or

break down. This builds upon an established body of work on territorial pattern formation

and home range analysis in scent-marking animals [13–15], which has been fruitful for accurate

capture of home range patterns [16], predicting changes in territorial structure [17–19], and

uncovering environmental drivers of spatial patterns [19,20]. However, such ‘mechanistic home

range analysis’ (MHRA) studies all rely on there being a process of indirect interaction, whereby

individuals mark the area throughout their terrain and then other individuals react to those

marks. As noted in recent reviews [14, 21], this constraint greatly limits the potential use

of MHRA, as many populations instead use combats or ritualised aggression for territorial

defence.

Here, we remedy this shortcoming by focusing on direct interactions (which we term ‘con-
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flicts’), which of necessity can only occur at points on the borders between territories. Indeed,

although MHRA has been used for understanding spatial structures of human gangs [4], where

graffiti marking is used as a proxy for scent marking, that study also noted that direct con-

frontations between gangs may be influential in determining spatial structure. Similarly, the

study of [22] demonstrated that memory of neighbouring vocalisations in bird populations

may be modelled in an analogous way to scent-marking in canid populations. Yet, those bird

populations are also known to engage in ritualised aggression for the purposes of territorial

defense [23]. Therefore both [4] and [22] would be improved by mechanistic models of direct

territorial interactions. In general, by bringing direct interaction processes into the framework

of MHRA [13, 14], this paper expands the range of possible species and populations that may

be studied using MHRA.

2 The Model

We begin with some terminology, not intended to be definitive, but introduced purely for the

purposes of this paper. Animals may move by themselves or as clusters of individuals (e.g.

a pack or a flock), so we use the term ‘agent’ to mean either a lone-moving individual, or a

cluster of individuals moving together. By ‘territorial conflict’ we mean any direct interaction

that seeks to exclude certain agents from an area of space. For example, a territorial conflict

could mean a physical fight, or a display of ritualised aggression.

To perform mathematical analysis, we start by describing a model of two agents living on a

line segment. This analysis allows us to gain a rigorous understanding of the conditions under

which territories can form. This understanding is then carried over into the more realistic 2D

situation, where we perform simulation analysis to provide evidence that our model can give

rise to territory formation.
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Table 1. Glossary of symbols. The first column shows the symbol, the second a
definition, and the third whether it pertains to the discrete (lattice) model or the continuous
limit or both. Note that some symbols are used either as dimensional quantities or their
dimensionless equivalents, depending on the context (see section 2.1.4).

Symbol Definition Model

n Arbitrary lattice site Discrete
s Arbitrary time step Discrete
τ Length of a single time step Discrete
l Lattice spacing Discrete
Ki(n, s) Probability that n is in agent i’s conflict zone (CZ) at time s Discrete
K̄i(n, s) Spatially averaged CZ Discrete
Ui(n, s) The probability that agent i is at site n at time s Discrete
ρτ,l Probability that conflict occurs when agents meet Discrete
βl Rate at which CZ decays due to agents visiting without conflict Discrete
h Number of lattice sites for spatial averaging Discrete
d Perceptual radius of agent Discrete
q Strength of tendency to move away from CZ Discrete
µ Decay rate of CZ due to finite memory Both
x and t Space and time respectively Continuous
ρ Rate at which conflicts occur when animals meet Continuous
β Rate at which CZ decays due to agents visiting without conflict Continuous
ki(x, t) Probability that x is in agent i’s conflict zone at time t Continuous
k̄i(x, t) Spatially averaged conflict zone Continuous
ui(x, t) The probability density of agent i at time t Continuous
δ Perceptual radius of agent Continuous
c Magnitude of advection Continuous
D Diffusion constant Continuous
L Width of terrain in 1D model Continuous
m Composite parameter µL2/ρ Continuous
a Composite parameter D/ρ Continuous
b Composite parameter βL/ρ Continuous
γ Composite parameter c/D Continuous
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2.1 The 1D model

First we describe the model in discrete space and time, and then take the continuum limit. Let

τ be the time between consecutive time-steps and l the lattice spacing. We work on a 1D line

lattice.

2.1.1 The conflict zone

Roughly speaking, we wish say that the agent’s ‘conflict zone’ is the place where it has a

reasonably high expectation of experiencing a territorial conflict. Conflicts can only happen

if agents are in the same place at the same time. So suppose that agents 1 and 2 meet at a

lattice site n at time-step s, and that ρτ,l is the probability that a conflict occurs during this

time-step. Then n becomes part of the conflict zone during this time-step with probability ρτ,l.

As time passes without conflicts at point n, each agent gradually begins to view the point

as being a less dangerous place to venture. This is bolstered by any visits it makes to n that

do not result in a conflict. We model this by assuming that during a time-step, the probability

of site n being in the conflict zone changes by a factor of either 1 − µτ if the agent does not

visit n, or 1− (µ+ βl)τ if the agent does visit n, where µ, βl > 0. Here, µ models the memory

decay of a conflict site that it has not visited for some time, whilst βl models the increase in

expected safety incurred by visiting a site and not experiencing a conflict there. In summary,

if we let Ki(n, s) be the probability that site n is in the conflict zone of agent i at timestep s,

for i ∈ {1, 2}, then

Ki(n, s+ 1) =















































1− µτ with probability ρτ,l, if agents 1 and 2 are at

site n at time-step s,

[1− (µ+ βl)τ ]Ki(n, s) in any other situation where agent i is at site n,

(1− µτ)Ki(n, s) otherwise.

(1)
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2.1.2 A model of agent movement

As with the conflict zone, we begin by describing the agents’ movement in discrete space and

time. Each agent has a diffusive (i.e. random walk) aspect to its motion, to account for those

aspects of movement within the territory that we are not explicitly modelling, such as foraging.

It also has a tendency to move away from areas that are more likely to be part of the conflict

zone and towards areas that are less likely to be in the conflict zone, which we model by biasing

the random walk accordingly.

As an agent makes its decision to move, it will examine the area in its immediate vicinity,

according to its perceptual capabilities. In other words, it makes its decision based on an

average over certain near-by lattice sites. To be specific, we assume the probability of moving

right (resp. left) is determined by averaging the conflict zone over the 2h + 1 lattice sites

centred d lattice sites to the right (resp. left) of its location, where h ≥ 0, d ≥ 1 are integers.

Therefore, we define the locally averaged conflict zone as follows

K̄i(n, s|h) =
1

2h+ 1

n+h
∑

n′=n−h

Ki(n
′, s). (2)

We then define the probability, fi(n|n
′, h, d), of agent i moving to a lattice site n, given that it

was at site n′ in the previous time-step, and given values of h and d, to be

fi(n|n
′, h, d) =































1
2

[

1 + qK̄i(n
′ + d, s|h)− qK̄i(n

′ − d, s|h)
]

if n = n′ − 1,

1
2

[

1− qK̄i(n
′ + d, s|h) + qK̄i(n

′ − d, s|h)
]

if n = n′ + 1,

0 otherwise,

(3)

where q ∈ (0, 1) denotes the strength of bias away from the conflict zone.
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2.1.3 The continuum limit

One way to analyse the model given in Equations (1) and (3) would be by performing stochastic

simulations of the system. To gain mathematical insight, however, it is convenient to take a

continuum limit in both space and time. This leads to the following system of partial differential

equations (PDEs), defined on an interval [0, L], for i = 1, 2 (see Supplementary Appendix A

for a derivation)

∂ui
∂t

= D
∂2ui
∂x2

+ c
∂

∂x

[

ui
∂k̄i
∂x

]

, (4)

∂ki
∂t

= ρu1u2(1− ki)− ki(µ+ uiβ). (5)

Here, ui(x, t) is the position probability density for agent i at time t, ki(x, t) is probability

that position x is part of the conflict zone at time t, ρ = limτ→0(ρτ,ll
2/τ), β = liml→0(lβl),

D = liml→0,τ→0[l
2/(2τ)], and c = 4dqD.

In Equation (4), k̄i(x, t) is a local average of ki(x, t), given as follows

k̄i(x, t) =































1
δ+x

∫ δ

−x
ki(x+ z, t)dz if 0 < x < δ,

1
2δ

∫ δ

−δ
ki(x+ z, t)dz if δ < x < L− δ,

1
δ+L−x

∫ L−x

−δ
ki(x+ z, t)dz if L− δ < x < L,

(6)

where δ = liml→0,h→∞(lh). This local averaging arises from the biological considerations

regarding the animal’s perceptual capabilities, described at the start of section 2.1.2. The

precise mathematical form emerges from the limiting process given in Supplementary Appendix

A.

Finally, we impose the following boundary and integral conditions, respectively (see Sup-
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plementary Appendix A for details)

[

D
∂ui
∂x

+ cui
∂k̄i
∂x

] ∣

∣

∣

∣

x=0

=

[

D
∂ui
∂x

+ cui
∂k̄i
∂x

] ∣

∣

∣

∣

x=L

= 0, (7)

∫ L

0
ui(x, t)dx = 1. (8)

2.1.4 A dimensionless version of the model

To reduce the number of parameters in the system, we introduce the following dimensionless

variables

x̃ =
x

L
, t̃ =

tD

L2
, ũi(x̃, t̃) = Lui(x, t), k̃i(x̃, t̃) = ki(x, t),

δ̃ =
δ

L
, m =

µL2

ρ
, a =

D

ρ
, b =

βL

ρ
, γ =

c

D
. (9)

Dropping the tildes over the letters to ease notation, we arrive at the following dimensionless

system of equations, which will be the object of 1D mathematical analysis in this paper, for

i ∈ {1, 2}

a
∂ki
∂t

= u1u2(1− ki)− ki(m+ bui), (10)

∂ui
∂t

=
∂2ui
∂x2

+ γ
∂

∂x

[

ui
∂k̄i
∂x

]

, (11)

[

∂ui
∂x

+ γui
∂k̄i
∂x

] ∣

∣

∣

∣

x=0

=

[

∂ui
∂x

+ γui
∂k̄i
∂x

] ∣

∣

∣

∣

x=1

= 0, (12)

∫ 1

0
ui(x, t)dx = 1, (13)

where the dimensionless version of k̄i(x, t) is

k̄i(x, t) =































1
δ+x

∫ δ

−x
ki(x+ z, t)dz if 0 < x < δ,

1
2δ

∫ δ

−δ
ki(x+ z, t)dz if δ < x < 1− δ,

1
δ+1−x

∫ L−x

−δ
ki(x+ z, t)dz if 1− δ < x < 1.

(14)
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Unless otherwise stated, all parameter values are assumed to be non-negative.

2.2 The 2D model

In 2D, we perform our analysis using the full, individual-based, stochastic model, to verify that

territorial segregation occurs in the version of our model closest to reality. Simulations are

performed on a 25× 25 square lattice with reflecting boundary conditions, using 4 agents. At

each time-step, an agent at lattice site n′ = (n′
1, n

′
2) moves to one of the four adjacent lattice

sites with the following probabilities

fi(n|n
′, h, d) =































































min
{

0.5,max
[

0, 14
(

1 + qK̄i(n
′ + (d, 0), s|h)− qK̄i(n

′ − (d, 0), s|h)
)]}

if n = n′ − (1, 0),

min
{

0.5,max
[

0, 14
(

1− qK̄i(n
′ + (d, 0), s|h) + qK̄i(n

′ − (d, 0), s|h)
)]}

if n = n′ + (1, 0),

min
{

0.5,max
[

0, 14
(

1 + qK̄i(n
′ + (0, d), s|h)− qK̄i(n

′ − (0, d), s|h)
)]}

if n = n′ − (0, 1),

min
{

0.5,max
[

0, 14
(

1− qK̄i(n
′ + (0, d), s|h) + qK̄i(n

′ − (0, d), s|h)
)]}

if n = n′ + (0, 1),

0 otherwise,

(15)

where q > 0 and d is a positive integer. When q < 1, this is the 2D analogue of Equation

(3). We extend our model for use when q ≥ 1 for extra flexibility. Here, K̄i(n, s|h) is the 2D

analogue of Equation (2), given as follows

K̄i(n, s|h) =
1

H

∑

|n′−n|≤h

Ki(n
′, s), (16)

where H is the number of elements in the set {n′ : |n′−n| ≤ h} and Ki(n, s) is the probability

that n is in the conflict zone of animal i at time-step s. The evolution of Ki(n, s) is given by
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the following iterative equation (see Equation 1 for the 1D version)

Ki(n, s+ 1) =















































1− µτ with probability ρτ,l, if agents i and j are at

site n at time-step s, for some j 6= i,

[1− (µ+ βl)τ ]Ki(n, s) in any other situation where agent i is at site n,

(1− µτ)Ki(n, s) otherwise.

(17)

We begin simulations with Ki(n, s) = 0 for every lattice site n and place individuals uni-

formly at random on the lattice grid. We allow 100, 000 time steps “burn-in” for the conflict

zones to form, then run the simulations for a further 100, 000 time steps to obtain the agents’

utilisation distribution. It turns out that, for the parameter values we tested, running the

simulations for longer does not yield qualitatively significant change in the agents’ utilisation

distribution (Supplementary Figure 3).

3 Model analysis and results

3.1 Linear stability analysis

We use linear stability analysis to ascertain the conditions under which patterns may be ex-

pected to form in the 1D system described by Equations (10-13) (see e.g. [24, chapter 2]). Due

to the integral conditions (Equation 13), the constant steady state for ui(x, t) is ui∗(x) = 1.

The constant steady state ki∗(x) for ki(x, t) is calculated by setting Equation (10) to zero so

that

u1∗(x)u2∗(x)[1− ki∗(x)] = ki∗(x)[m+ bui∗(x)]. (18)

Plugging in the constant solution ui∗(x) = 1 into Equation (18), we find that k1∗(x) = k2∗(x) =
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Fig. 1. Dispersion relations. Here we examine the effect of each of the five parameters
a, b, γ, δ,m on the dispersion relation for the system of Equations (10-13). For panels (a-e),
unless otherwise stated in the figure legend, a = 0.01, b = 1, γ = 10, δ = 0.05, m = 0. In
panel (f) we examine the possibility of pattern formation when b = 0. Here, a = 0.1, m = 0.1,
γ = 100, and δ varies according to the figure legend. See Supplementary Appendix B for an
explanation of this choice of parameter values.
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kc, where

kc =
1

m+ b+ 1
. (19)

To linearise about this steady state, we define

w = (û1, û2, k̂1, k̂2) = (u1 − 1, u2 − 1, k1 − kc, k2 − kc). (20)

We look for solutions of the form w = (u1,0, u2,0, k1,0, k2,0) exp(σt + iκx). Then Equations

(10-11) imply the following linearised system of equations (as is standard, see e.g. [24, chapter

2])

Aw = σw (21)

A =



















−κ2 0 −γκ
δ
sin(κδ) 0

0 −κ2 0 −γκ
δ
sin(κδ)

m
(m+b+1)a

m+b
(m+b+1)a −m+b+1

a
0

m+b
(m+b+1)a

m
(m+b+1)a 0 −m+b+1

a



















. (22)

To determine whether patterns form in this system, we examine the dispersion relation. This

plots the largest real value of σ as a function of the wave-number κ, whenever det(A−σI) = 0.

If the set of κ-values for which the curve lies above the axis is non-empty then patterns may form

with period 2π/κ from small perturbations of the constant steady-state, for any κ in this set.

Figure 1 shows the dispersion relation for various values of the parameter space (a, b, γ, δ,m).

Though this five-dimensional space is too large to study exhaustively, we can ascertain certain

general properties by varying one parameter at a time.

Figures 1a and 1b examine the effects of varying two aspects of the conflict zones decay:

that which is proportional to the positional probability of the agent (b) and that which is

not (m). If either m is too high or b is too low then patterns cannot form. Therefore the
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Table 2. Parameter combinations from Figure 2. The first column gives a phrase
explaining each panel in Figures 2a-f, the second states the panel label, and the others give
the parameter values used in each panel.

Case Panel δ γ m b a

Base case (a) 0.05 10 0 1 0.01
Increased spatial averaging (b) 0.1 10 0 1 0.01
Less advection (c) 0.05 5 0 1 0.01
Higher memory decay rate (d) 0.05 10 0.5 1 0.01
Reduced safety from re-visits (e) 0.05 10 0 0.2 0.01
Greater diffusion/conflict-rate ratio (f) 0.05 10 0 1 0.1

agent must have some process whereby they feel safer in places they have visited and not had

territorial conflicts, so are less likely to view those places as part of the conflict zone. Moreover,

this process must be relatively strong compared to the agent’s tendency to forget about places

they have not visited for a while. In Supplementary Appendix B, we show that if b = 0

then territories cannot form for biologically realistic parameter values. Nonetheless, there are

parameter values where we observe pattern formation and some these are explored in figure 1f

(see also Supplementary Appendix C).

Figure 1c shows that as δ is decreased, the set of wavenumbers at which patterns may form

increases in size. At the limit δ → 0, where agents only react to the conflict zone at the precise

position they are located, patterns can form at arbitrarily high wavenumbers, so the problem

is ill-posed. Therefore it is necessary for territorial formation (in our model) that agents have a

non-vanishing perceptive radius which they use to make movement decisions. Similar conditions

were discovered in the studies of [25] and [26], regarding territorial scent-marking processes in

canid populations.

From Figure 1d, we see that the parameter a, measuring the relative effect of the agent’s

diffusion constant compared with the rate at which conflicts occur, appears to have no effect on

the set of wavenumbers for which patterns form. However, the rate of growth of the resulting

patterns is higher when a is lower. Lastly, Figure 1e shows that patterns will only form if γ,

the ratio of the advection rate (away from the conflict zone) to the diffusion rate, is sufficiently

high.
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Fig. 2. Numerical solutions corresponding to territories. Here, numerical
steady-state solutions to Equations (10-13) are plotted. The respective parameter values are
shown in the legends. Panel (a) can be considered as a base case, for comparison with panels
(b), (c), (d), (e), and (f), which show the effect on territorial patterns of varying parameters
δ, γ, m, b, and a respectively (also see Table 2).



15

3.2 Numerical analysis: patterns corresponding to territories

Having shown that patterns should form for certain choices of parameter values, we investi-

gate whether the sort of patterns that correspond to territories may form in our system. Such

patterns should result in u1(x) being predominantly concentrated on one side of the interval

[0, 1] with u2(x) on the other side. The steady state of Equations (10-13) is a system of (or-

dinary) integro-differential equations that is too complicated for exact mathematical analysis.

[That this is a system of integro-differential equations can be seen by expanding the k̄i term in

Equation (11) using Equation (14).] Therefore we analyse this system numerically, using the

method of false transients [27]. Details of the algorithm are in Supplementary Appendix D.

Numerical analysis reveals that patterns can form that look qualitatively like territories for

certain parameter values (Figure 2). This analysis allows us to observe the qualitative effects

of varying various parameters. By comparing Figure 2a with 2b, we see that a lower perceptual

range (δ) of the agent results in sharper territorial boundaries. Figure 2c shows that a lower

drift tendency (γ) away from the conflict zone leads to less well-defined territories, with the

position density being above about 0.1 across the whole range of the terrain (as compared with

Figure 2a where the drift tendency is higher). Similarly, comparing Figures 2d and 2a shows

that a tendency for the agents to forget about conflicts in areas they have not recently visited

(m > 0) leads to less well-defined territories.

Comparing Figures 2e and 2a, we see that lowering b, the tendency for animals to feel safer

in areas that they have recently visited and not had a conflict, leads to steeper sides of the

conflict zone, and a reduced overall population density (i.e. lower u1(x) + u2(x)) in the centre

of the territory. This reduced population density is analogous to the ‘buffer zones’ observed

in [28], which can give a safe area for prey to exist between territories of predators. Finally,

comparing Figure 2f to 2a, we see that changing a (the relative effect of the agent’s diffusion

constant compared with the rate at which conflicts occur) no effect on the resulting territorial

patterns, as one would expect since a vanishes when the left-hand side of Equations (10-11)

are set to zero.
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3.3 Numerical analysis: transient dynamics

Although steady-state analysis is mathematically convenient, and gives insight into the con-

ditions under which territorial patterns may form, often natural systems are observed in a

transient state away from equilibrium [18,29]. Therefore it is important to examine the profile

of the agents’ utilisation distributions before they have had time to reach a stable state.

In the system studied here (Equations 10-13), the distributions of both the agents and

the conflict zones have an rather interesting trajectory towards the steady state (Figure 3).

As the conflict zones emerge, they are initially almost identical in shape (Figure 3a). Then

they separate as each agent becomes more familiar with its side of the terrain (Figures 3b and

3c). Eventually, patterns form that look somewhat like territories (Figure 3d), but there is a

relatively large probability of being found anywhere on the terrain compared to the eventual

steady state. Next, the agents develop a tendency to spend time close to the territory boundary

(Figure 3e) causing the borders to sharpen. Once the borders have become sufficiently steep

so that intrusion of agent 1 to the right-hand side (or agent 2 to the left-hand side) is very

unlikely, the probability density within each territory flattens out to reveal a pattern similar

to the eventual steady-state (Figure 3f). It is interesting to note that these varied dynamics

occur as an outcome of behavioural rules that are, themselves, fixed through time.

3.4 Mathematical analysis when δ → 0: an energy method

Though the results of section 3.1 suggest that patterns can form at arbitrary high wavelengths

in the limit δ → 0, in this case the system is simple enough to perform some mathematical

analysis. As δ → 0, the locally-averaged integral k̄i (Equation 14) tends to ki, so the system
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Fig. 3. Transient territorial dynamics. Time-dependent solutions to Equations (10-13)
for a = 0.01, b = 1, γ = 10, δ = 0.05, and m = 0. The value of t is given in each plot, so time
increases from panel (a) to (f). Analagous to Figure 2, in each plot u1(x, t) (resp. u2(x, t)) is
given by a red (resp. black) solid curve and k1(x, t) (resp. k2(x, t)) by a red (resp. black)
dashed curve.
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from Equations (10-13) becomes

a
∂ki
∂t

= u1u2(1− ki)− ki(m+ bui), (23)

∂ui
∂t

=
∂2ui
∂x2

+ γ
∂

∂x

[

ui
∂ki
∂x

]

, (24)

[

∂ui
∂x

+ γui
∂ki
∂x

] ∣

∣

∣

∣

x=0

=

[

∂ui
∂x

+ γui
∂ki
∂x

] ∣

∣

∣

∣

x=1

= 0, (25)

∫ 1

0
ui(x, t)dx = 1. (26)

Notice that these Equations are identical to Equations (10-13), except that the advection term

in Equation (24) contains the function ki in place of the function k̄i from Equation (11).

In this section, we analyse the system in Equations (23-26) in the particular case where

a,m = 0 and u1(x, t) + u2(x, t) = 2. Notice that a = 0 means, in essence, that the conflict

zones (ki) reach equilibrium much faster than the probability distributions of the individuals

(ui). With these assumptions in place, the problem turns out to be simple enough for analysis

of the full, time-dependent system, so we can gain some analytic insight into the features we

have so far observed by linear analysis and numerics.

Plugging a,m = 0 and u1(x, t) + u2(x, t) = 2 into Equation (23), we can write ki in terms

of ui as follows, for i = 1, 2

ki =
2− ui

b+ 2− ui
. (27)

This means that Equation (24) becomes

∂ui
∂t

=
∂

∂x

[

∂ui
∂x

+ γui
∂

∂x

(

2− ui
b+ 2− ui

)]

. (28)
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A direct calculation shows that Equation (28) is equivalent to

∂ui
∂t

=
∂2

∂x2
[φ(ui)] , (29)

φ(ui) = ui − γb ln(b+ 2− ui)−
γb(b+ 2)

b+ 2− ui
. (30)

From this, we construct an ‘energy’ functional

E(ui) =

∫ 1

0
Φ(ui)dx, (31)

where Φ(ui) is the anti-derivative of φ(ui), i.e.

dΦ

dui
(ui) = φ(ui). (32)

The reason for constructing the function E(ui) is that it turns out to be a decreasing function

of time, whose steady-state occurs when the PDE in equation (28) is at steady-state. To see

this, observe the following calculation

dE

dt
=

∫ 1

0

∂

∂t
[Φ(ui)]dx

=

∫ 1

0

∂ui
∂t

φ(ui)dx

=

∫ 1

0
φ(ui)

∂2

∂x2
[φ(ui)]dx

=

[

φ(ui)
∂φ

∂x

]1

0

−

∫ 1

0

[

∂φ

∂x

]2

dx

= −

∫ 1

0

[

∂φ

∂x

]2

dx, (33)

where the third equality comes from Equation (29) and the fifth from the zero-flux boundary

conditions (Equation 25).

Notice that the last term in Equation (33) is always non-positive, and is zero precisely

when the flux, −∂φ
∂x

, is zero. Now, if Equation (28) is at steady-state then the flux is constant
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across space, say −∂φ
∂x

= C. However, since the flux is zero at the boundaries (x = 0, 1), C

must be zero. Thus the flux is zero if and only if Equation (28) is at steady-state. Hence,

by (33), E(ui) decreases over time unless Equation (28) is at steady-state. If the minima of

E(ui) are finite, then E(ui) is bounded below and so the system will tend towards one of the

minima as t → ∞. These minima can therefore be used to describe the eventual state of the

system in Equations (23-26). This approach is similar to that of Lyapunov’s method for partial

differential equations (see e.g. [30]).

For the purposes of this paper, we are particularly interested in minima that correspond

to territories. We show in Supplementary Appendix E that when m = 0, classical, steady-

state solutions to Equations (23-26) must be constant. Hence weak steady-state solutions to

Equations (23-26) must be constant except possibly at a set of values with measure zero. As

such, solutions that correspond to territories, i.e. with most of the density of the steady-state

u1∗ concentrated on one side and most of the density of u2∗ on the other side, are such that

u1∗(x) = η, u2∗(x) = ζ for 0 ≤ x < 1/2 and u1∗(x) = ζ, u2∗(x) = η for 1/2 < x ≤ 1.

Furthermore, by the integral condition in Equation (26), we must have ζ = 2−η. It follows

that the local minimum energy solutions occur for values of η that minimise the following

function, for 0 ≤ η ≤ 1

E(η) = E(u1∗) =
1

2

[

η2

2
+ γb(2b+ 4− η) ln(b+ 2− η)− γb(b+ 2− η)

]

+

1

2

[

(2− η)2

2
+ γb(2b+ 2 + η) ln(b+ η)− γb(b+ η)

]

. (34)

Since b ≥ 0 and 0 ≤ η ≤ 1, we have ln(b + 2 − η) > −∞ and ln(b + η) > −∞, so that E(η) is

finite. Thus E(ui) is bounded below so the system does, indeed, tend towards a finite-valued

minimum.

Analysing Equation (34) numerically for various values of b and γ, we find that minima
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occur either when η = 0 or η = 1. The minimum η = 0 gives the following (weak) solution

u1∗(x) = 0, u2∗(x) = 2, if 0 ≤ x < 1
2 ,

u1∗(x) = 2, u2∗(x) = 0, if 1
2 < x ≤ 1, (35)

which corresponds to territory formation. The η = 1 case means that u1∗(x) = u2∗(x) = 1 for

all x ∈ [0, 1], so that territories do not form.

Interestingly, for certain values of b and γ, there are minima at both η = 0 and η = 1. This

is an example of hysteresis, where territories only form if the initial conditions are sufficiently

close to those in Equation (35), but if initial conditions are close to a constant solution, then

territories are not predicted to form. The regions of (b, γ)-space where we see territories, no

territories, or both (hysteresis) are shown in Figure 4a.

In Figure 4b, these regions are compared to the regions where linear stability analysis

predicts that small perturbations from the constant steady state will grow to non-constant

patterns. Despite the various simplifying assumptions made in our energy-functional analysis,

the results correspond almost identically to those from linear stability analysis of the full

system. Furthermore, they suggest the places where the initial condition can have an effect

on the appearance of territorial patterns, and so territories may exist in situations where the

constant steady state is stable.

3.5 Simulation analysis in 2D

Figure 5 shows the results of 2D simulation analysis where ρ = 1, β = 0.1 and µ = 0. Notice

that by decreasing the parameter q, representing the strength of tendency to retreat, territories

have greater overlap (see also Supplementary Figure 4). By decreasing d and h, the scale over

which animals make movement decisions, territories become fragmented and less well-defined

(see also Supplementary Figure 5). This accords with our observation from 1D linear stability

analysis that a lower spatial averaging means the system is susceptible to instabilities at higher
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wavelengths (see Figure 1c).

4 Discussion and conclusions

The aim of this paper is to show mathematically how territorial patterns can form from pro-

cesses of direct interaction between animals. The reason behind studying this is to provide

necessary mathematical background for extending the tools of mechanistic home range analy-

sis (MHRA) [13,14] beyond the confines of scent-marking animals, for use with the many species

that use direct interactions, such as ritualised aggression, to demarcate territories. We have

shown that territories can form from such interactions if the following processes are present

• spatial memory of both past territorial conflicts (encoded in ki(x, t)) and places where

such conflicts have not recently occurred (encoded in the parameter b),

• a tendency to move away from places where territorial conflicts have recently occurred,

• a reaction to spatial location averaged over a non-vanishing area centred on the animal.

Recently, spatial memory has been hypothesized as a key process behind many behavioural

features in animal populations [31]. This is bolstered by copious studies of neurological ‘place

cells’, which have explained the physiological processes underlying spatial memory in many

animals (e.g. [32–34]). Therefore it is reasonable to expect that such memory processes are at

play in territorial formation.

Likewise, the other two above-listed process are likely to be typical in most populations

of territorial animals. The tendency to move away from the conflict zone is perhaps the most

well-established process behind territory formation. For example, [35] defines the process of

territorial defence as a “means of repulsion through overt defense or advertisement” and [12]

explains how this has become a defining idea in territorial understanding.

The requirement for spatial averaging by an animal deciding where to move is less well-

documented, perhaps because it is taken as given that animals make movement decisions based
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on their immediate surroundings, not just their exact location. Nonetheless, many continuous-

space models make the mathematical simplification that interactions only take place between

the animal and its precise current location. This can lead to reasonable results in certain

situations [17, 28, 36], but some studies have found that this simplification can dramatically

change the nature of observed patters [25, 26]. The results here provide another example of

this latter phenomenon.

We also demonstrate the possibility of a territorial hysteresis phenomenon occurring in

animal populations (e.g. Figure 4). Biologically, this means that animals need to have a

certain set of behavioural properties to form territories (encoded in the parameters b and

γ), but can relax them slightly once territories have formed and still maintain the territorial

structure. Therefore it is possible that animals exhibit slightly different territorial behaviour

when forming new territories than in situations where territorial borders have already been

established. Such a phenomenon has been observed in a system of scent-marking animals

(urban foxes), who respond to changes in territorial structures by altering their scent-marking

behaviour [18]. We are, however, unaware of any similar studies regarding animals who perform

ritualised aggression to demarcate territories.

The success of MHRA in shedding light on various spatial phenomena in ecology is well

documented (see [14] for a recent review). However, its reliance on scent-marking and analogous

processes of indirect interaction has been a severe limitation until now. The results from this

study give the framework to make this extension, by explaining what processes need to be

included in a model of territory formation from direct interactions. To apply this framework

to positional data, one would either fit the steady-state solution of the 2D model to relocation

data, using the techniques in [13], or parametrise the model from fine-scale movement, similar

to the techniques described in [22]. Since the patterns that arise from direct interactions may

be very similar to those from indirect ones, we would generally advocate using the latter, fine-

scale techniques (or similar, e.g. [37]). On the scale of behavioural decisions, the difference

between the two types of interaction (direct and indirect) is likely to be clearer than on the
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scale of long-term territorial patterns.

A programme of research that moves from mathematical analysis to data-driven studies

has been successful for understanding scent-marking animals, as evidenced by initial papers

containing 1D analysis [28,38] paving the theoretical groundwork for novel insights into real 2D

systems [16, 17, 19]. We have thus followed suit for our study of direct interactions. However,

as well as applications to real systems, there is also room for future mathematical investigation

of more complicated, multi-agent, 2D systems of direct interactions. Furthermore, the present

study assumes that all agents in the system act in the same way, but this is often not true

for real animal populations. It would be interesting for future investigations to modify the

system to incorporate unequal agents, investigating the varying strategies that may be more

or less beneficial for territorial gains, given different behavioural traits. Given the wide range

of species that use direct interactions to determine territorial segregation, together with the

well-developed statistical techniques for fitting positional data to such models, we hope that

the modelling ideas presented here will have broad application to many situations in spatial

ecology.
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