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Octupolar invariants for compact binaries on quasicircular orbits
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We extend the gravitational self-force methodology to identify and compute new O(p) tidal invariants
for a compact body of mass u on a quasicircular orbit about a black hole of mass M > u. In the octupolar
sector we find seven new degrees of freedom, made up of 3 4 3 conservative/dissipative ‘electric’
invariants and 3 + 1 ‘magnetic’ invariants, satisfying 1 4+ 1 and 1 + O trace conditions. We express the new
invariants for equatorial circular orbits on Kerr spacetime in terms of the regularized metric perturbation
and its derivatives; and we evaluate the expressions in the Schwarzschild case. We employ both Lorenz
gauge and Regge-Wheeler gauge numerical codes, and the functional series method of Mano, Suzuki and
Takasugi. We present (i) highly-accurate numerical data and (ii) high-order analytical post-Newtonian
expansions. We demonstrate consistency between numerical and analytical results, and prior work. We
explore the application of these invariants in effective one-body models and binary black hole initial-data

formulations.

DOI: 10.1103/PhysRevD.92.123008

I. INTRODUCTION

The prospect of ‘first light’ at gravitational wave
detectors has spurred much work on the gravitational
two-body problem in relativity. It is now a decade since
the first (complete) simulations of binary black hole (BH)
inspirals and mergers in numerical relativity (NR) [1]. Such
simulations have revealed strong-field phenomenology,
such as ‘superkicks’ [2], and have provided template
gravitational waveforms. Yet, it may be argued, numerical
relativity has also highlighted the ‘unreasonable effective-
ness’ of both post-Newtonian (PN) theory [3], and the
effective one-body (EOB) model [4].

BH-BH binaries, and their waveforms, are described by
parameters including the masses M, p, spins, orbital
parameters, etc. The parameter space expands for BH-
neutron star (NS) binaries—a key target for detection in
2016 [5]—as tidal interactions also play an important role
[6,7]. Semianalytic models, such as the EOB model, allow
for much finer-grained coverage of parameter space than
would be possible with (computationally expensive) NR
simulations alone. In addition, effective models can bring
physical insight [8—10]. For real-time data analysis it may
be necessary to blend effective models with surrogate/
emulator models [11-13] and careful analysis of modeling
uncertainties [14].

By design, the EOB model [15-19] incorporates under-
determined functional relationships, which are ‘calibrated’
with PN expansions and numerical data. Recently, it was
shown that invariant quantities computed via the
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gravitational self-force (GSF) methodology [20-22] can
be used for exactly this purpose [16,23-27]. In fact, as the
GSF methodology is designed to provide highly-accurate
strong-field data in the extreme mass-ratio regime [28,29],
it provides complementary constraints to PN and NR
approaches, which excel in the weak-field and comparable
mass-ratio regimes, respectively [30]. Thus, new GSF data,
nominally limited in scope to the extreme-mass ratio
regime, i/ M < 1, may immediately be applied to enhance
models of comparable-mass inspirals, required for data
analysis at, e.g., Advanced LIGO [5].

In recent years, a growing number of invariant quantities,
associated with geodesic orbits in black hole spacetimes
perturbed through linear order O(u/M), have been
extracted from GSF theory. For quasicircular orbits on
Schwarzschild, these include (i) the redshift invariant
[31,32], (ii) the shift in the innermost stable circular orbit
[33], (iii) the periastron advance (of a mildly eccentric
orbit) [33,34], (iv) the geodetic spin-precession invariant
[26,35,36], (v) tidal eigenvalues [27,37,38], (vi) certain
octupolar invariants [27,38]. Recently, (i) has been com-
puted for eccentric orbits [34,39], and (i)—(ii) have been
computed for equatorial quasi-circular orbits on Kerr
spacetime [40].

In 2008, the GSF redshift invariant at O(u/M) was
compared against a post-Newtonian series at 3PN order
(.e., O(1°/c®)) [31]. Many further PN expansions have
followed for invariants (i)—(vi) at very high PN orders
[26,27,35-37,41-43]. An “arms race” between numerical

© 2015 American Physical Society
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(GSF) and analytical (PN) approaches has developed,
enabling precise comparisons of high-order coefficients
[36,37,41-43]. Such comparisons are invaluable in quality
assurance, as they have been used to correct small errors in
both GSF calculations [37] and PN expansions [36].
Furthermore, in the “experimental mathematics” approach
[41,44], high-order PN coefficients may be extracted in
closed (transcendental) form from exquisitely-precise
numerical GSF calculations.

The purpose of this paper is to classify and compute GSF
invariants at “octupolar” order, i.e., featuring three deriv-
atives of the metric, or equivalently, first derivatives of the
Riemann tensor. This sector has been previously considered
by Johnson-McDaniel et al. [45] and Bini & Damour [27],
among others [46—49]. Our intention is to provide a
complementary analysis which extends recent GSF work
on the dipolar (spin precession) and quadrupolar (tidal)
sectors. We aim for completeness, by (i) seeking a complete
basis of octupolar invariants, (ii) providing both numerical
GSF data and high-order PN expansions at O(u/M).

In outline, the route to obtaining invariants is straightfor-
ward: (1) in the GSF formulation, the motion of a small
compact body is associated with a geodesic in a regularly-
perturbed vacuum spacetime [50,51]; (2) the electric tidal
tensor &, of the regularly-perturbed spacetime defines an
orthonormal triad at each point on the geodesic; (3) the
covariant derivative of the Riemann tensor R ;.. resolved
in this triad gives a set of well-defined scalar quantities
{xi}; (4) the functional relationships y;(Q), where Q is the
circular-orbit frequency, are free of gauge ambiguities;
(5) we define the “invariants” Ay;(Q) to be the O(u) parts
of the differences y;(Q, u) — y;(Q,u = 0).

The article is organized as follows. In Sec. II, we
introduce electric and magnetic tidal tensors of octupolar
order; decompose in the “electric quadrupole” triad; exam-
ine the “background” (u = 0) quantities; and apply per-
turbation theory to derive invariant quantities through
O(u). In Sec. II we describe various computational
approaches for obtaining the regular metric perturbation
h¥, and its associated invariants. In Sec. IV we present our
results, primarily in the form of tables of data and PN series.
In Sec. V we outline two wider applications of our work.
We conclude with a discussion of progress and future work
in Sec. VL

Conventions: We set G =c¢ =1 and use the metric
signature +2. In certain contexts where the meaning is clear
we also adopt the convention that M = 1. General coor-
dinate indices are denoted with Roman letters a, b, c, ...,
indices with respect to a triad are denoted with letters
i,j,k,..., and the index O denotes projection onto the
tangent vector. The coordinates (¢, 7,0, ¢p) denote general
polar coordinates which, on the background Kerr space-
time, correspond to Boyer-Lindquist coordinates.
Covariant derivatives are denoted using the semi-colon
notation, e.g., k,.,, with partial derivatives denoted with
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commas. Symmetrization and antisymmetrization of indi-
ces is denoted with round and square brackets, () and [],
respectively. Calligraphic tensors (e.g. &, B,,) are sym-
metric in their indices and tracefree.

II. FORMULATION

A. Fundamentals

1. Tidal tensors

We begin by considering a circular-orbit geodesic in the
equatorial plane of the regularly-perturbed vacuum Kerr
spacetime g,;, with a tangent vector #“. From the Riemann
tensor R4 (equal to the Weyl tensor C,;,., in vacuum) we
can construct electric-type and magnetic-type “‘quadrupo-
lar” tensors,

gab = Rucbducud’ (21)

By = R pquul, (2.2)

where R?,., = 3 €/ R, .q. We may also construct “octu-
polar” tensors,

(2.3)

— d,e
Eabc - Radbe;cu u-,

_ d
Babc -

R} oo U U (2.4)
The quadrupolar tensors are symmetric (€, = &y
Ba, = Bya), tracefree (B4, =0 in general, £, =0 in
vacuum) and transverse (£,,u’ = 0 = B,,u"). The octu-
polar tensors are symmetric, and traceless in the first two
indices (as R,pcq = Reqap and R, = R¢,., = 0) in vac-
uum. By contracting the Bianchi identity (or its dual)
Ripede + Rapde:c + Rapec:a = 0, we observe that the octu-
polar tensors are also traceless on the latter pair of indices,
E,’ =0=B," in vacuum. Note however that the
octupolar tensors are not symmetric in the latter pair of
indices, in general.

2. Tetrad components

Let us now introduce an orthonormal tetrad {ef = u“,e?}
on the worldline and define tetrad-resolved quantities in the
natural way, so that

_ a;b,c
Xi0j... = Xabe...€; U €.,

(2.5)
where y,,. . is any tensor and i,j,k € {1,2,3}. The
quadrupole components are spatial, £y =&y =0 =
Boi = Bgo. The octupole components are spatial in first
two indices, but not in general. We may then consider three
types of electric octupolar terms, namely,
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Eij()’ Ei[jk]’ and gijk = E(ijk)’ (26)
and similarly in the magnetic sector.

Note that &;; is real and symmetric, and thus its
eigenvalues are real and its eigenvectors are orthogonal.
Thus, we may select our triad e!, to coincide with the
electric-quadrupolar eigenbasis. In other words, we choose
the triad in which &;; is diagonal. We choose 5 to be the

vector orthogonal to the equatorial plane.

3. Equatorial symmetry

For circular equatorial orbits, the reflection-in-equatorial
plane symmetry implies that many components are iden-
tically zero. Namely,

512 = 523 = 811 = 613 = 322 = 833 =0, (2-7)
E\1n = Expp = Exz3 = Ejp3 =0, (2.8)
By = By = Bj33 = Byj3 = By = By33 =0, (2.9)

with all permutations of these indices also zero.

B. Classification of octupolar components

Now we consider the three types of terms (2.6) sepa-
rately, and show that E;jy, B;jo and Ejj), B may be
derived from dipolar and quadrupolar terms, whereas
Eijk = Eijry» Bijx = B(jjx) encode new information at
octupolar order.

1. Et](] and Bl]()

b b

For circular orbits, we have u”ef,, = we§, u’es, =0
and ubeg‘;b = —we{, where w is the precession frequency
with respect to proper time, defined by parallel transport
observed from the electric eigenbasis (cf. Refs. [35,37]).
As the quadrupolar eigenvalues are time-independent on
circular orbits, the only nontrivial components are

Ej3p = o(Ey; — Es3), Byy = —wBy3,

3230 = a)Blz. (210)
2. Ei[jk] and Bin]
By virtue of the Bianchi identity,

1
Ea[bc] == E u’ (udeabc);e’

B

(2.11)

We now (i) project onto the tetrad, (ii) use that B;; =
%€jk1R0ik1 and &;; = —%ejklRE‘)ikl, and (iii) recall that the
tetrad components in the electric frame are constants for
circular orbits. Thus all components are zero except

1
Ba[bC] = _zue(udRZabc) e

PHYSICAL REVIEW D 92, 123008 (2015)
1

Eyps = Eypy) = 560323, (2.12)
1
E3p1) = Eoqig) = —50)312» (2.13)
1
Bij19) = B3pa) = Ew(gn - &33), (2.14)

and permutations thereof.

3. gtjk and Btjk

In general, &;j; and B;; each have ten components
satisfying 3 trace conditions, i.e., seven independent
components each. For circular orbits, 4 electric and 6
magnetic components are zero, respectively, leaving 6 and
4 nontrivial quantities satisfying 2 and 1 nontrivial trace
conditions. In other words, there are 10 quantities we may
calculate (given below), satisfying 3 nontrivial trace con-
ditions; thus, 7 new independent degrees of freedom at
octupolar order.

4. Additional invariants

Other octupolar quantities may be written in terms of the
set identified above. For example, a relevant quantity in
EOB theory [see Ref. [27], Eq. (D10)] is K3, = £, £¢,
which may be expressed as

K3, = 5%11 + 5%33 + 3(5%22 + 5%33 + 5%11 + 5%22)

— 6&35. (2.15)

where 8130 = %EBO'

C. Circular orbits: Background quantities

Below we give the values of the tidal quantities for
circular equatorial geodesics on the unperturbed Kerr
spacetime, i.e., for test-masses (¢ = 0). Here, the orbital

radius is r, and the orbital frequency is Q = /M/ (rg/ *

ayv/M) where a is the Kerr spin parameter and a > 0
(a < 0) for prograde (retrograde) orbits.

The tangent vector u“ and electric-eigenbasis triad have
the components [52]

us = [U,0,0,QU], (2.16a)
ef = [0.y/Ao/r0,0,0], (2.16b)
5 =1[0,0,1/r,,0], (2.16¢)
e§ = —e“pequleses, (2.16d)

where U = VM /(Qri/*v), Ay = r2 — 2Mry + a* and
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v =1-3M/ry+2aVM/r)>. (2.17)
The spin precession rate is @ = /Mry/r}.
1. Quadrupolar components
The (nontrivial) quadrupolar components are
M 3MA,
En = , 2.18
1 e vy (2.182)
2M  3MA
Ep =5+, (2.18b)
0 vy
M
&y =73, (2.18¢)
o
3MP2\/Bo(1 — a//Mr,
b= — Og - a/VMro) (2.18d)
2
ry v
We note that 3,3 = 0 on the background.
2. Octupolar components
In the electric sector,
En = +A(6r5 —9Mry — 12a\/Mry + 15a%)  (2.19)
5122 = —A(3I"(2) - 2Mr0 - 16(1\/Mr0 + 15(12) (220)
5133 =—A(3r%—7Mr0+4a\/Mr0), (221)

where A = /A;M/(rlv?). We note that E3; = E3pp =
E333 = 0 on the Kerr background.
In the magnetic sector,

8211 = +C(4r% - 8Mr0 + 702)

- D(4r(2) —TMry + 5a?), (2.22)

8222 = —0(37% - 6M7’0 + 9a2)
+ D(3r3 — 4Mry + 5a°), (2.23)

6233 = —C(I’% - 2M7'0 - 2612)
+ D(r3 —3Mry), (2.24)

where C = 2M%/2/(r}*?) and D = 3aM/(r}p?). Note
that B,3 = 0 on the Kerr background.

The “derived” quantities E;jo, Ejjjy, etc., may be easily
calculated using Eq. (2.10), Eq. (2.12)-(2.14) and
Eq. (2.19)—(2.24). For example, in the Schwarzschild
(a = 0) case, using Eq. (2.15) yields

PHYSICAL REVIEW D 92, 123008 (2015)

~ 6M*(1—2M/ry)(15rF — 46Mry + 42M?)
T ,.(1)0(1 —3M/ry)?

(2.25)

D. Circular orbits: Perturbation theory

Here we seek expressions for the octupolar quantities in
the regular perturbed spacetime g,;, + h¥,, where g, is the
Kerr metric in Boyer-Lindquist coordinates, and h®, =
O(u) is the “regular” metric perturbation defined by
Detweiler and Whiting [50]. We work to first order in
the small mass y, neglecting all terms at O(u?), and noting
that the regular perturbed spacetime is Ricci-flat.

We take the standard two-step approach [31,32,37]. For a
given geodesic quantity y (e.g. &), we first compare y on
a circular geodesic in the perturbed spacetime with y on a
circular geodesic of the background spacetime at the same
coordinate radius r = ry. Then, noting that r itself varies
under a gauge transformation at O(u), we apply a correc-
tion to compare y on two geodesics which share the same
orbital frequency Q.

Following the convention of Ref. [37], we use an
“overbar” to denote “background” quantities, so that barred
quantities such as #“ are assigned the same coordinate
values as in Sec. II C. We use 0 to denote the difference at
O(u), i.e., de? = ef —e¢. At O(u), 5 may be applied as an
operator with a Leibniz rule §(AB) = (A)B + ASB. In
general, such differences are gauge-dependent. To obtain
an invariant difference, we introduce the “frequency-
radius” rq via

Q=VM/(r* +aVM). (2.26)
Then, we write
x(ra) = 2(rq) = Ax(ro) + O(u?). (2.27)

Here }(rqg) has the same functional form as y on the
background spacetime, with r replaced by rq. As Ay is at
O(u), we may parametrize Ay using the O(u”) background
radius rg, rather than rq, as ro — rq = O(u). Such relation-
ships, Ay(rg), are invariant within the class of gauges in
which the metric perturbation is helically symmetric
(implying that #°h%, . = 0 at the relevant order).

1. Perturbation of the tetrad

We may write the variation of the tetrad legs in the
following way,

ou = Pooit” + Poses. (2.28a)
3

def = Pioit® + Y pjes. (2.28b)
j=1

123008-4
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with the coefficients ,, = O(u) to be determined below.
First, we note that S, and fy; may be found by recalling
key relations previously established in GSF theory for
equatorial circular orbits on Kerr spacetime [31,53],
namely,

ou' 1 Q [ ~
?:§h00—51/MO(r%—&—az—Za\/Mro)F,, (2.29)
sut 1 1 )
ﬁ—¢:§ Oo—m(FO—ZMr0+a\/Mr0)Fr. (230)

Here hoy = h®,a°a”, and F, = p~'F, = O(u) is the (spe-
cific) radial self-force given by

- 1_ _ OhR
F.= Eu“uba—:b _ (2.31)
0
Hence we have Sy = 3hgo and fp; = —1 "ﬁ"f’ .. The

diagonal coefficients f;; follow from the normalization
condition, (g, + h5,)(2} + def) (e} + 8e?) = 6,;. That is,
Bii = —3hy;, where h; = hf,2¢2? (no summation over i

3 _ _
8E 1 = (8VR) (0101 + <h00 —Ehn)gm + 203 Rio131

1 - _
812 = (6VR) 1000) + (hoo - Eh“ - hzz) €122 + 2P03R10232:

1 _ _ >
6133 = (6VR)(10303) + | hoo — Eh“ — ha3 ) €133 + 2603 R0333 + §ﬂ3ow(511 - &),

2 _ _ _ _
8E113 = (8VR)(10103) +§ﬁ105)(511 = &33) + B3 + 2P13E 133,

6Ex3 = (8VR) 20203) +B3€1m,
€333 = (BVR) (30303) + 3Pa1E13,

where

(8VR) iojor) = R upeao "2, 25

> P —(b5d) S(
Riojse = Rapeao 8785 2

The magnetic components are

1 — _
(58)211 = (5VR*>20101 + (hOO - hll - §h22) 6211 + 2ﬂ03R§0131,

PHYSICAL REVIEW D 92, 123008 (2015)

implied). From orthogonality of legs O and 3, we have
B0 = Pos + hos where hgz = hR, 125, By similar reason-
ing, B0 = ho; and f3; + fi3 + hj3 = 0. To eliminate the
residual rotational freedom in the triad at O(u), we now
impose the condition that the triad is aligned with the
electric eigenbasis, i.e., that £;; is diagonal in the perturbed
spacetime (so that, e.g., £;3 = 0). From this condition it
follows that

<5R) 1030 — E‘11}113

Pz = i, (2.32)
By = —(0R) 1030 + Eszhis ’ (233)
En—Ex
where
(6R) 1030 = SRapeae{i" a5’ (2.34)

2. Perturbation of octupolar components

Here we present results for the perturbation of the
(symmetric tracefree) octupolar components &;j and
Bijx. The electric components are

(2.35a)
(2.35b)
(2.35¢)

(2.35d)

(2.35¢)

(2.35f)

(2.36)

2!, (2.37)

(2.38a)

123008-5
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3 _ _
(5‘8)222 - <5VR*)20202 + <h00 - §h22> 8222 + 216037?’;0232’
* 1 2 % 2 = 12
(58)233 - (SVR )20303 + hOO - §h22 - h33 8233 + 2ﬁ03R20333 + §ﬁ30(06|2,

_ _ 1 _
(68) 125 = (6VR*) 10003 + 138233 + 318211 + gﬁlo@Bn,

where
(5VR*)(inOk) = 5R:zbcd;eﬁbﬁdé§aé;éz)’ (239)
S % D —(b=d)=(a-c=e
Ri0j3k = Rabcd;eu(be3)el(' ejek)' (2.40)

3. Invariant relations

As noted above, the coordinate radius of the orbit,
r =rg, i1s not invariant under changes of gauge [i.e.,
coordinate changes at O(u)]. On the other hand, the orbital
frequency Q is invariant under helically symmetric gauge
transformations. Following Eq. (2.27), we may therefore
express the functional relationship between y € {&,;, ...}
and Q as follows,
x(ra) = x(rq) + Ax(ry) + O(u?), (2.41)
where rq is the frequency-radius defined in Eq. (2.26), and
Ay = O(u). Note that y(rg) denotes the “test-particle”
functions defined in Sec. II C evaluated at ro. By definition,
we have AQ = 0. At O(u),

dr() d)_(

Ay =6y —0Q——", 2.42
Y X dQ dro ( )
or, making use of Eq. (2.29) and (2.30) and
6Q/Q = du?/u? — su' /i,
1 - dy
Ay =8y — — r3v*F, 2. 2.43
A A TV (2.43)

In summary, Ay defined by Eq. (2.43), Eq. (2.35) and
Eq. (2.38) are the invariant quantities which we will
compute in the next sections.

4. Further quantities
In Sec. I B we wrote E;jo, Ejjjx), Bijo, Bijx) in terms of
quadrupolar tidal components, and the spin precession
scalar w. If required, one may deduce the variation of
these components by applying A as a Leibniz operator. For
example, starting with Eq. (2.10),

Agl30 = Aa)(g” - (2;33) + CI)(A(‘:H - Ag33). (244)

PHYSICAL REVIEW D 92, 123008 (2015)

(2.38b)

(2.38¢)

(2.384)

|
Numerical data for the variation in the quadrupolar com-
ponents A&y, ..., AB,(, ... is given in Table I of Ref. [37].
We may compute Aw from the redshift and spin-precession
invariants, AU and Ay, using
@ _
Aw :EAU_ UQ Ay, (2.45)
together with the data in Table III of Ref. [37].
Similarly, the variation AK3_, for example, can be found
by applying A in this manner to Eq. (2.15). This can then be
related to the quantity 3K3+, whose post-Newtonian expan-

sion was given to 7.5PN in Ref. [27]. Noting that K5, =
K5, and

1 1
I's == 1+Ehoo+0(ﬂ2) .

\/1—3M/r0

we then have a relation between the first-order perturbations,

(2.46)

AK N
3 = Sk + 2.
K,

(2.47)

III. COMPUTATIONAL APPROACHES

In this section we outline our methods for computing the
octupolar invariants for a particle of mass y on a circular
orbit of radius ry in Schwarzschild geometry. Our
approaches break into two broad categories: (i) numerical
integration of the linearized Einstein equation in either the
Regge-Wheeler (RW) or Lorenz gauge and (ii) analytically
solving the Regge-Wheeler field equations as a series of
special functions via the Mano-Suzuki-Takasugi (MST)
method. In both cases we decompose the linearized
Einstein equation into tensor-harmonic and Fourier modes
and solve for the resulting decoupled radial equation. In this
section, and subsections that follow, / and m are the tensor-
harmonic multipole indices, @ is the mode frequency
and we work with standard Schwarzschild coordinates
(t,7,0, ). For this section let us also define f = f(r) =
1 —2M/r. We shall also use a subscript “0” to denote a
quantity evaluated at the particle. Finally, note that for a
circular orbit about a Schwarzschild black hole the par-
ticle’s (specific) orbital energy and angular-momentum are
given by

123008-6
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r0—2M M
, Loy = roy | . (3.1)
) 0 0 r0—3M

|E0:

70(7"0 -3M

respectively.

For calculations in the RW gauge there is a single
“master” radial function, ¥,,,, to be solved for each
tensor-harmonic and Fourier mode [54,55]. For circular
orbits the Fourier spectrum is discrete and given by w =

w,, = mQ where Q = ,/M/r} is the azimuthal orbital

frequency. Consequently, we label the RW master function
with only /m subscripts hereafter. The full metric pertur-
bation can be rebuilt from the W,,’s and their derivatives
[56]. For [ > 2 the ordinary differential equation that ¥,,,
obeys takes the form
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perturbation is odd or even parity. For the odd/even parity
modes, equivalently [+ m = odd/even, the potential is
given by

U (r) :£<za+ 1)—67M>, (33)
Us(r) = % {2,12 (/1 +1 +31rw> + 18:;42 (ﬂ +Af>] :
(3.4)

respectively, where A= (I+2)(I-1)/2 and A=1+
3M/ry. The form of the source terms, S;, also differs
for the even and odd sectors. Explicitly, the odd sector
sources take the form [57]

d2
_+[w%rz_Ul(r)]>\Illm:Slé(r_r0)+825/(r_r0)’ SOZ_M)(* 0 3.5
<dr£ =y 00 (33)
(3.2)
o 2P’”0f%£0 «
where r, is the radial “tortoise” coordinate given by 2 M1+ 1) X{/,(G’, ¢)- (3.6)
dr./dr = f~! and U(r) is an effective potential. The
effective potential used depends on whether the  For the even sector, we have
|
paéo [L5 ., > > 4pL3fE(1-2)!
Ss = —feA—(AA+1 6AM 15M)\|Y; (0,¢) ———— Y5 (0,9), 3.7
P2k g oA GG D 6y 150 13, 0.9) - SRS, 0.9). (3)
¢ = (r3pq&)Y;, (0, 9), (3.8) ot = xLF (I=1,1+3,2+2Lx), (3.13)

where we have defined the following expressions for
convenience:

X,(0.) = sin00,Y,,(0. $). (3.9)
Y (0. 0) = <8¢¢ + sin @ cos 09, + W+ sin29>
X Y1, (0, P) (3.10)
_ Smu __ 13
=%, = T+ 0K (3.11)

For the radiative modes [ > 2, m # 0 we will construct
homogeneous solutions to Eq. (3.2) either numerically or as
a series of special functions, as outlined in the subsections
below. For the static (I > 2, m = 0) modes, closed-form
analytic solutions to the homogeneous RW equation are
known. In the odd sector these can be written in terms of
standard hypergeometric functions:

iy =xLF (=1 -2.-1+2,-2Lx)  (3.12)

where hereafter an overtilde denotes a homogeneous
solution, a “+” superscript denotes an outer solution
(regular at spatial infinity, divergent at the horizon), a
“~" denotes an inner solution (regular at the horizon,
divergent at spatial infinity) and x = 2M/r. In practice, we
need only solve the simpler odd sector field equations, and
construct the even sector homogeneous solutions via the
transformation [56]:

OM?*(r —2M)
r?(rd+3M)

T,0t

) \Ijlm

(3.14)

- 1
Uy = ———— (A + 22
i /1+/12ﬂ:3ia)M[(+ +

di/,”ﬂ

dr
Note this equation holds for both static and radia-
tive modes.

We construct the inhomogeneous solutions to Eq. (3.2)
via the standard variation of parameters method. As the
source contains both a delta-function and the derivative of a
delta-function the inhomogeneous solution and its radial
derivative will both be discontinuous at the particle.
Constructing the inhomogeneous solutions then becomes

+3Mf
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a “matching” procedure with the jump in the field and its
derivative across the particle governed by coefficients S;
and S,. Suppressing even/odd notation, we define match-
ing coefficients as follows:

1 S 2MS S
D, =—— [(HL > ;)w -2 \IJ,} (3.15)
Win fo r of 0 fo
with the wusual Wronskian defined as W, =
fo(9;,0,9, — U} 9,0;). Finally we construct the inho-

mogeneous solutions via

W, (r) = Dj,, Wi, (r).

where the D7 ’s are constants for all values of r.

To complete the metric perturbation in the RW gauge
we use the [ = 0 and [ = 1 results of Zerilli [58]. Detweiler
and Poisson expressed these contributions succinctly for
circular orbits [59]. For the monopole and static dipole
we have

(3.16)

Lo
hiZ0 = 2u, (- - 17
R ) L NI D)
2ulE
0 =200 (r — 1), (3.18)
R
27,3 <
gt = <utsivco{ T T (o)
1/r r>r

where ® is the Heaviside step function and all other
components are zero. The [ =1, m = 1 mode does not
contribute to our gauge invariant quantities so we will not
give the explicit expression for the nonzero 4,;, h,. and h,,
components of this mode (but as a check we use the
expressions, given as Egs. (5.1)-(5.3) in Ref. [59], to check
that the contribution from this mode to our invariants is
identically zero).

As well as working in the RW gauge we also make a
computation in the Lorenz gauge. Our code is a
|

i
2n

a, =

1
by =
" n(n-4iMo)

As discussed above we do not need to solve the even sector
field equations as we can transform from the simpler odd
sector solutions using Eq. (3.14).

For the inner homogeneous solutions, the convergence of
the series (3.21) improves with increasing n_, and in
practice we choose n_ = 35. The outer solutions require

[({(I+1)=n(n—1))a,_; +2Mw(n —3)(n —

[((1+ 1) +2n(n = 1) = 3)a,_,

PHYSICAL REVIEW D 92, 123008 (2015)

Mathematica reimplentation of that presented by Akcay
[60] and as such we refer the reader to that work for further
details.

A. Numerical computation of the retarded metric
perturbation

For our RW gauge calculation, as discussed above,
analytic solutions are known for the monopole, dipole
and static (m = 0) modes. This only leaves the radiative
modes (I > 2, m # 0) to be solved for numerically. Our
numerical routines are implemented in Mathematica which
allows us to go beyond machine precision in our calculation
with ease. Given suitable boundary conditions near the
black hole horizon and at a sufficiently large radius (we
discuss below how we choose these radii in practice), we
use Mathematica’s NDSOLVE routine to solve for the inner
and outer solutions to the homogeneous Regge-Wheeler
equation (3.2). Inhomogenous solutions are then con-
structed by imposing matching conditions of these func-
tions at the location of the orbiting particle.

1. Numerical boundary conditions

In order to construct boundary conditions, we use an
appropriate power law ansatz for Wgy in the asymptotic
regions close to spatial infinity and the horizon, given by

~ elor Z
(a)r

Iy (r (3.20)

\IIRW

NE lwr*zbnf

Recursion relations for the series coefficients can be found
by inserting our ansatz into the homogeneous RW equa-
tions, and choosing a maximum number of outer and inner
terms np,,, = ny gives us initial values for our fields at
these boundaries. Inserting (3.21) and (3.20) into (3.2) for
the odd sector, we find the following recursion relations:

(3.21)

Do), (3.22)

(n+ 1)(n = 3)a,_). (3.23)

[

more care, as the boundary at infinity is an irregular
singular point. Our expansion in Eq. (3.20) is an asymptotic
series and, as such, the series is not strictly convergent in n
for a fixed r. The ansatz will initially show power law
convergence with increasing n, but for sufficiently high n
the series will begin to diverge. At this point it is no longer
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useful to add higher order terms. Note for a fixed max value
n, the series will still converge with increasing r, as
expected. After analysing this behavior, we take n, = 100
to get the best boundary conditions. Given the boundary
expansions as a function of r, for fixed n,, we must then
choose a location for our boundary sufficiently close to
r, = *oo to give the desired accuracy. Setting the final
term in our ansatz to be of order 1079, where d is our
desired number of significant figures, we choose as our
boundaries:

Foo = (a,”lOd)l/”h (3.24)

ry = 2M + (b, 104)~1/-, (3.25)
The expansions (3.21) and (3.20) give the boundary
conditions in terms of an arbitary overall amplitude,
specified by a, and b,. As we first construct homogeneous
solutions we can set these amplitudes to any nonzero value,
and in practice we choose ay = by = 1. The amplitudes are
then fixed by the matching procedure described above.

2. Numerical algorithm

In this section we briefly outline the steps we take in our
numerical calculation in the Regge-Wheeler gauge. The
Lorenz-gauge calculation follows a very similar set of
steps [60].

(i) For each Im-mode with [ > 2 solve the odd sector
RW equation, even if / + m = even. For the radia-
tive modes (I > 2, m # 0) calculate boundary con-
ditions for the homogeneous fields at ry /o, using
Egs. (3.21) and (3.20). Using the boundary con-
ditions, numerically integrate the homogeneous field
equation (3.2) from the boundaries to the particle’s
orbit at r = r. For the static modes (I > 2, m = 0)
evaluate the static homogeneous solutions (3.12)-
(3.13) at the particle. Store the values of the inner
and outer homogeneous fields and their radial
derivatives at ry.

(i) For [ > 2 and I + m = even transform from the odd
sector homogeneous solutions to the even sector
homogeneous solutions using Eq. (3.14).

(ii1)) For all modes with [ > 2 construct the inhomo-
geneous solutions via Eq. (3.16).

(iv) For the [ > 2 modes reconstruct the metric pertur-
bation using the formula in, e.g., Refs. [56].

(v) Complete the metric perturbation using the monop-
ole and dipole solutions given in Eqgs. (3.17)—(3.19).

(vi) Compute the retarded field /-mode (summed over m)
contributions to the octupolar invariants using the
formulas in Appendix A.

(vii) Construct the regularized /-modes using the tensor
mode-sum approach described in Ref. [61]. The
resulting contributions to the mode-sum accumulate
rather slowly as /2.

PHYSICAL REVIEW D 92, 123008 (2015)

(viii) Numerically fit for the unknown higher-order regu-
larization parameters and use these to increase the
rate of convergence of the mode-sum with /. This
procedure is common in self-force calculations and
is described in, e.g., Ref. [62].

(ix) To get the final result sum over / and make the shift
to the asymptotically flat gauge as discussed in
Appendix B.

For ry > 4M we set the maximum computed /-mode to
be [,.x = 80. This is sufficient to compute the octupolar
invariants to high accuracy—see Sec. IV for details on the
accuracy we obtain. For orbits with 3M < ry < 4M we find
we need an increasing number of /-modes to achieve good
accuracy in the final results, and for orbits near the light-
ring (located at ry = 3M) we set [,,,, = 130 in our code—
see Sec. IV C.

B. Post-Newtonian expansion

The generation of analytic post-Newtonian expansions for
the octupolar gauge invariants requires a calculation of the
homogeneous solutions of the Regge-Wheeler equation for
each £ mode. A general strategy for doing this was described
in [63]. The calculation is broken into three sections: (i) the
exact results of Zerilli give the £ = 0, 1 components of the
metric—see Eqgs. (3.17)—(3.19), (ii) certain “low-£"" values
calculated using the series solutions of Mano, Suzuki and
Takasugi and (iii) “high-¢” contributions using a post-
Newtonian ansatz. In a recent paper [43] this approach
was optimized and improved allowing extremely high PN
orders to be computed, which otherwise are only accessible
by experimental mathematics techniques [41,42,64,65]. In
the rest of this section we give a very brief overview of
our technique and refer the reader to Ref. [43] for further
details.

The analytic MST homogeneous solutions are expressed
using an infinite series of hypergeometric functions
denoted X , which satisfies the required boundary con-
ditions at the horizon, and a series of irregular confluent
hypergeometric functions, X;E’n, satisfying the boundary
conditions as r, — oo. Specifically we can write

in _, ptrans ,+ior,
Xfm Bfm ¢ ’

up trans ,—iwr,
Xfm ~ szm e ’

7, = —00

r, —> o

where BY2" and CY2" are the complex constants known as
transmission coefficients, so that, with ag = by =1 in
Egs. (3.21) and (3.20), we have the identification

Xin, = BES Wy, (3.26)

up ans \J;
Xfm = C}fm Uew.

(3.27)

For the purposes of doing a PN expansion of the
solutions for a particle on a circular orbit one finds two
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natural and related small parameters, the frequency
o = mQ and the inverse of the radius, which is related

to the orbital frequency Q by MQ = \/2GM/r’. A natural
way to deal with this double expansion is to instead expand
in #=1/c¢, and introduce two auxiliary variables
X, =GM/r, X,'? = wr, so that each instance of X,
and X, must each come with an #?> and are of the same
order in the large-r limit. Expanding these solutions to
a given PN order in this way amounts to truncating the
X/ infinite series at a finite order. However an in depth
analysis of the series coefficients and the sometimes subtle
behavior of the hypergeometric functions reveals a struc-
ture that can be exploited to optimize this truncation order
and fine tune the length of the expansion of each term in the
series.

A practical difficulty of this approach is that the MST
series becomes increasingly large with higher n-order. For
each PN order y ~ .-~ #” so that to get say 10 PN, we need

201 powers. Significant further simplifications of these
large series can be made rewriting the expansion as, for
example,

X?(MST) _ eiwinxl—f—l—z;i] agej oy (X1 Xy 1232
m

X [1+ A5 +n*AL + AL + -], (3.28)
where the A; are strictly polynomials in X;, X,. Since
2X,X,'? =2GMw, we see that y is r-independent
allowing it to be essentially ignored as it will drop out
with the Wronskian during normalization. We note that the
purely even series in x includes some odd powers that
appear at £-dependent powers, and with these we also get
extra unaccounted for log terms. For instance, for £ = 2 the
first odd term is at '3

As such, for a large-enough ¢ (dependent on the required
expansion order), the homogeneous solutions become
regular enough to instead use an ansatz of purely even
powers as the solution of the RW equation. The details of
this are described thoroughly in [43]. Once the homo-
geneous solutions of the Regge-Wheeler equation have
been obtained, the even-parity solutions can be expressed
using Eq. (3.14). This allows us to reconstruct the full
metric perturbation, and from there our gauge invariant
quantities, entirely from the Regge-Wheeler series
solutions.

IV. RESULTS

In this section we present results for the octupolar
invariants computed for circular orbits in a
Schwarzschild background. More specifically, we present
the six electric-type invariants defined in Egs. (2.35a)-
(2.35f), and the four magnetic-type invariants defined in
Egs. (2.38a2)—(2.38d). In Sec. IVA we exhibit numerical
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FIG. 1 (color online). Comparison of numerical results com-
puted in the RW and Lorenz gauges for a variety of conservative
gauge invariant quantities, Ay;, along a circular orbit at
ro = 10M. We see 22-24 significant digits agreement in the
individual tensor 1-modes of the retarded field.

data, and in Sec. IV B we supply post-Newtonian expan-
sions. In Sec. IVC we examine the behavior of the
invariants in the approach to the light-ring at r = 3M.

A. Numerical data

We have employed two independent calculations in the
Regge-Wheeler and Lorenz gauges: see Sec. I1I or Ref. [60]
for details, respectively. Both codes are implemented in
Mathematica, which allows us to go beyond machine
precision. We find that the Regge-Wheeler and Lorenz
gauge results for retarded field contribution to the invariants
agree to around 22-24 significant figures. This high level of
agreement, exemplified in Fig. 1, increases our confidence
in the validity of the numerical calculation.

In Table I we present sample numerical results for the
three conservative electric-type invariants. Table II provides
the results for the three dissipative electric-type invariants.
As the computation of the latter does not involve a
regularization step, the dissipative results are considerably
more accurate than for the conservative results. Our
numerical results for the three conservative and one
dissipative magnetic-type invariants are presented in
Table III.

B. Post-Newtonian expansions

As outlined in Sec. III B, we have made a post-
Newtonian calculation of the octupolar invariants using a
method which builds upon the work of Ref. [43]. This
method allows us to take the expansions to very high order.
Results at 15th post-Newtonian order are available in an
online repository [66]. Here, for brevity, we truncate the
displayed results at a relatively low order:
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TABLE I. Sample numerical results for the conservative electric-type octupolar invariants.

ro/M A&, A&y, A&y33

4 —6.87640142 x 1072 5.634572704 x 1072 1.24182872 x 1072
5 —1.3622429846 x 1072 9.45418747546 x 1073 4.1682423703 x 1073
6 —5.61141083923 x 1073 3.477232505498 x 1073 2.13417833373 x 1073
7 —2.925643118454 x 1073 1.701979164325 x 1073 1.223663954129 x 1073
8 —1.710986615756 x 1073 9.592475191788 x 10~* 7.517390965770 x 10~*
9 —1.075500995896 x 1073 5.890480037652 x 10~ 4.864529921306 x 10~*
10 —7.120764484958 x 1074 3.838876753995 x 10~ 3.281887730964 x 10~*
12 —3.494517915911 x 104 1.847169590917 x 10~ 1.647348324994 x 10~
14 —1.913146810405 x 10~* 9.995537359206 x 107> 9.135930744843 x 107>
16 —1.133949991793 x 1074 5.879346730837 x 107> 5.460153187097 x 107>
18 —7.141332604056 x 1072 3.682750321689 x 107> 3.458582282367 x 107>
20 —4.718352028785 x 1072 2.423514347706 x 107> 2.294837681079 x 107>
30 —9.514915883987 x 1070 4.835793521499 x 10=° 4.679122362488 x 107°
40 —3.040712519124 x 10° 1.538289606495 x 10~° 1.502422912629 x 10~°
50 —1.252723439259 x 10~° 6.321181929625 x 1077 6.206052462967 x 1077
60 —6.064208487551 x 1077 3.054930741569 x 1077 3.009277745982 x 1077
70 —3.282027079848 x 1077 1.651475883984 x 1077 1.630551195863 x 1077
80 —1.927657419028 x 1077 9.691577786310 x 1078 9.584996403967 x 1078
90 —1.205253640043 x 1077 6.055682885677 x 1078 5.996853514753 x 1078
100 —7.917190975864 x 1078 3.975890910078 x 108 3.941300065787 x 1078
500 —1.277421047615 x 10710 6.392477321681 x 107! 6.381733154472 x 1011
1000 —7.991970194046 x 10712 3.997657790884 x 10712 3.994312403162 x 10712
5000 —1.279743808249 x 1014 6.399252758926 x 10713 6.398185323566 x 1071
TABLE II. Sample numerical results for the dissipative electric-type octupolar invariants.

ro/M A& A3 A&33;

4 1.43018712098924 x 1072 —6.81363125080514 x 1073 —7.48823995908726 x 1073
5 1.69051912392376 x 1073 —6.68228419170062 x 10~ —1.02229070475370 x 1073
6 3.93615041880796 x 104 —1.40326772303052 x 10~* —2.53288269577744 x 10~*
7 1.24851076918558 x 10~* —4.16707182592131 x 1073 —8.31803586593453 x 1073
8 4.78575862364605 x 107> —1.52593581419753 x 1073 —3.25982280944852 x 107>
9 2.09252624095044 x 1075 —6.45207930480653 x 107° —1.44731831046978 x 10~>
10 1.00921765694192 x 107> —3.03317966765418 x 107° —7.05899690176504 x 10-°
12 2.90853534249746 x 10°° —8.42878520552755 x 1077 —2.06565682194470 x 107°
14 1.02905687355232 x 107° —2.90962875240999 x 1077 —7.38093998311317 x 1077
16 4.21307269886127 x 1077 —1.17032511794287 x 1077 —3.04274758091840 x 1077
18 1.92451417988312 x 1077 —5.27522804430828 x 1078 —1.39699137545229 x 1077
20 9.57423553217574 x 108 —2.59726822309717 x 1078 —6.97696730907857 x 108
30 6.63075048503344 x 107° —1.74627612621227 x 107° —4.88447435882117 x 107°
40 1.00806706036123 x 1077 —2.61810134057605 x 10710 —7.46256926303620 x 10710
50 2.34720446527898 x 10710 —6.04700459200130 x 10~ —1.74250400607885 x 10710
60 7.14698583248068 x 10! —1.83158348544703 x 107! —5.31540234703365 x 10~
70 2.61736513652863 x 10711 —6.68285229858544 x 10712 —1.94907990667008 x 10~
80 1.09692221205352 x 101 —2.79307929655166 x 10712 —8.17614282398351 x 10712
90 5.09523969822615 x 1012 —1.29465822904663 x 10712 —3.80058146917952 x 10712
100 2.56663032262918 x 1012 —6.51067248226772 x 10713 —1.91556307440241 x 10712
500 7.32252735609857 x 10~V —1.83582572460285 x 10717 —5.48670163149571 x 10717
1000 8.09167955607435 x 10~1° —2.02577720909791 x 10~1° —6.06590234697644 x 1019
5000 2.31673725041822 x 10723 —5.79347353907946 x 10724 —1.73738989651028 x 10~23
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TABLE IIL
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Sample numerical results for the magnetic-type octupolar invariants.

VQ/M

A8211

ABZZZ

Al‘}’,233

A8123

0NN b

=]

10
12
14
16
18
20
30
40
50
60
70
80
90

100
500
1000
5000

—6.148298254370 x 1072
—9.558323357929 x 1073
—3.155936380263 x 1073
—1.397948966284 x 1073
—7.234703923371 x 1074
—4.130973443372 x 1074
—2.528015715619 x 104
—1.095551773983 x 104
—5.444485917231 x 107
—2.980264003325 x 1073
—1.753993694654 x 1073
—1.092394842331 x 107
—1.770249199828 x 10~°
—4.868817160862 x 1077
—1.788310960062 x 1077
—7.887212354333 x 1078
—3.946891664217 x 1078
—2.166444813367 x 1078
—1.276212037585 x 1078
—7.948907544564 x 10~

—5.716760192009 x 10~12
—2.528141980419 x 1013
—1.809952182177 x 10~1¢

5.070286329453 x 1072
7.670992694990 x 10~3
2.476758241817 x 1073
1.081923065789 x 1073
5.550936330078 x 10~
3.151840931693 x 10~*
1.921517184307 x 10~*
8.288773695651 x 107>
4.108569884562 x 1075
2.245424872606 x 1073
1.320134773357 x 107>
8.215915676267 x 107°
1.329249843091 x 10=°
3.653967138885 x 1077
1.341778109443 x 1077
5.917061308384 x 1078
2.960771807198 x 1078
1.625085708368 x 1078
9.572758888543 x 10~°
5.962268324527 x 10~°
4.287586670256 x 1012
1.896108307399 x 10~13
1.357464188697 x 10716

1.078011924917 x 1072
1.887330662938 x 1073
6.791781384454 x 10~
3.160259004949 x 10~*
1.683767593293 x 10~
9.791325116795 x 10~>
6.064985313116 x 107>
2.666744044177 x 1073
1.335916032669 x 1073
7.348391307187 x 10~°
4.338589212967 x 10~°
2.708032747040 x 10~°
4.409993567363 x 1077
1.214850021976 x 1077
4.465328506186 x 1078
1.970151045949 x 1078
9.861198570192 x 10~°
5.413591049991 x 10~°
3.189361487310 x 10~°
1.986639220037 x 10~°
1.429173521752 x 1012
6.320336730204 x 10714
4.524879934796 x 10~7

1.07801192491724 x 1072
1.88733066293848 x 1073
6.79178138445361 x 10~*
3.16025900494923 x 10—+
1.68376759329306 x 10~*
9.79132511679517 x 1073
6.06498531311616 x 1075
2.66674404417714 x 1073
1.33591603266878 x 1075
7.34839130718667 x 10~°
4.33858921296681 x 107°
2.70803274704046 x 10~°
4.40999356736253 x 1077
1.21485002197624 x 1077
4.46532850618555 x 1078
1.97015104594935 x 1078
9.86119857019213 x 107°
5.41359104999132 x 10~°
3.18936148731046 x 1070
1.98663922003664 x 1077
1.42917352175245 x 10712
6.32033673020413 x 1074
4.52487993479633 x 10717

1711 4681 136099 6255 , 2048 4096 1024
AE = —8y* + 8y5 4+ 30y — [t — 001 27 - 2_ - 27 8
1= T8y oy A S0y ( 512”) ( 400 10247 T 75 V775 984775 Ogy>y
1604627 6413231 , 159664 18416 4374 79832 219136
- - - - log2 log3 — 1 O - ———ay2 + O(y1?),
< 630 49152 © 105 /T 5 o8tt Ty o80 s y> 55 O
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123008-13



PATRICK NOLAN et al.
10.00

0.01

1075

1078

[1-A8355 /0,

10~

10714

FIG. 2 (color online).

PHYSICAL REVIEW D 92, 123008 (2015)

1077

1072 -

[1-AB13IABT;|

1077 -

1072

Comparison of our numerical and PN results for (left) AE|,, and (right) AB,3. For each invariant we plot the

relative difference between the numerical data and successive truncations of the relevant PN series, i.e., in the legend “xPN” means we
are comparing against the PN series with all terms up to and including (relative) xPN order. As successive PN terms are added the
agreement between the PN series and the numerical results improves. For the conservative invariants, such as A,,, the agreement
between the PN series and the numerical data saturates at a relative accuracy of 13—14 significant figures. For the dissipative invariants,
such as AB,3, the comparison saturates at 21-22 significant figures. This difference in accuracy in the numerical data stems from the
requirement to regularize the conservative invariants whereas the dissipative invariants do not require regularization.

Figure 2 shows sample comparisons of our PN and
numerical results. We observe that, as higher-order PN
terms are included in the comparison, the agreement
improves for all values of r,. For large orbital radii the
comparison saturates at the level of our (smaller than
machine precision) numerical round-off error. For
strong-field orbits, the comparison allows us to estimate
how well the PN series performs in this regime. At rq =
10M we typically find that the 15PN series recovers the
first 7-8 significant digits of the numerical result. At the
innermost stable circular orbit, at 7y = 6M, the 15PN series
successfully recovers the first 3—4 significant figures. The
excellent agreement we observe between our PN and
numerical calculations gives us further confidence in both
sets of results.

C. Behavior near the light-ring

With our numerical codes we can calculate the behavior
of the octupolar invariants as the orbit approaches the light-
ring at ry = 3M. In general, the invariants will diverge as
the light-ring is approached, and knowledge of the rate of
divergence, along with our high-order PN results and our
other numerical results, may be useful in performing global
fits for the invariants across all orbital radii. Such fits find
utility in EOB theory and already results for the redshift,
spin precession and tidal invariants have been employed in
EOB models [25-27]. In this section we discuss, and give
results for, the rate of divergence of the invariants near the
light-ring but stop short of making global fits for the
invariants.

The main challenge in computing conservative invariants
near the light-ring is the late onset of convergence of the
mode-sum in this regime (see Ref. [25] for a discussion of
this behavior). This necessitates computing a great deal
more [m-modes; typically we set [, = 130 for our
calculations in this regime. By comparison, for orbits with
ro = 4M we use [, = 80. Not only then do we need to
numerically compute an additional 8085 /m-modes, on
top of the 3239 modes required to reach [, = 80, but
these higher /m-modes are more challenging to calculate

rrrrrr 0.005892°52 | * A&111
----- 0.00460z%2 : * AS1z;
~~~~~~~~ 0.00129z792 ; * A&133

-~ 0.0039z2 | * BB
e DBy
Lo DBy |

z=1-3M/ry

FIG. 3 (color online). Divergence of the conservative octupolar
invariants as the orbital radius approaches the light-ring. The
electric-type invariants, A&y, A&, A& s, diverge as z7°/2
where z =1-3M/r,. Two of the magnetic-type invariants,
AB,,, and AB,,,, are observed to diverge as z~2. We are unable
to accurately deduce the rate of the divergence AB,33 but we plot
our numerical results to show that its rate of divergence is
subdominant to the other invariants.

123008-14



OCTUPOLAR INVARIANTS FOR COMPACT BINARIES ON ...

numerically owing to the stronger power-law growth near
the particle for high / and the high mode frequency (and
thus large number of oscillations that need to be resolved
far from the particle) for high m-modes. These consider-
ations mean that numerical calculations at radii near the
light-ring are substantially more computationally expensive
than our other numerical results.

Our main results are presented in Fig. 3. We are able
to infer the rate of divergence of five out of six of the
electric- and magnetic-type invariants. Defining z=
1-3M/r, we find A&, ~—0.0058977/2, Ay ~
0.00406z73/2,  A&j33 ~0.0129772, By ~ —0.0039772
and By, ~0.0039z72 as z— 0. For the remaining
conservative invariant, AB,33, our current results are not
sufficient to accurately determine the divergence rate, but
we can say that the rate is subdominant to the other
invariants.

V. APPLICATIONS

Here we briefly outline two possible applications of the
results of Sec. I'V: in informing EOB theory, and in refining
initial data for binary black hole simulations with large
mass ratios in the strong field.

A. Informing EOB theory

In EOB theory, the dynamics of binary systems are
reformulated in terms of the dynamics of a single “effec-
tive” body moving in a metric ds* = —A(u;v)dt* +
B(u;v)di? + #?(d6” + sin® Od¢p?)  (nonspinning ~ case),
where A(u;v) and B(u;v) are smooth functions of inverse
radius u= (M +p)/# and symmetric mass ratio
v = uM/(u + M)?2. For tidal interactions, it was proposed
in Ref. [67] that the metric function should take the form
A = ABBH 4 Atidal - Alidal - The Jatter terms are radial
potentials associated with tidal deformations of bodies 1
and 2, which may be decomposed into multipolar con-

tributions, Al = AP 4 AP L APT L AP from
the electric quadrupole (A(IH)), magnetic quadrupole
(A(lz_) ), electric octupole (A§3+>), magnetic octupole

(A§3_)) sectors, respectively, etc. In Ref. [67] a relationship
was established between the dynamically-significant tidal
functions Ag’ ) and kinematically-invariant functions J.(y)
formed from the tidal tensors (see Eq. (6.11) in Ref. [27]).
In the quadrupolar sector, the relevant invariants are

J 2 = & abgab’

Jbz = ngBab, Je3 = gabgbcgg’

(5.1)
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TABLE IV. Sample numerical results for the 31<3+ as defined in
Eq. (2.47).

ro/M Skt

4 —1.072402291940
5 —0.952268599881
6 —1.150905925689
7 —1.347913915585
8 —1.511472597166
9 —1.643850731891
10 —1.751437199028
12 —1.913557269058
14 —2.028682058336
16 —2.114109122984
18 —2.179795496907
20 —2.231771587180
30 —2.383995972376
40 —2.457665106706
50 —2.500976521370
60 —2.529455493583
70 —2.549596340465
80 —2.564588968234
90 —2.576181641423
100 —2.585412146067
500 —2.650685806947
1000 —2.658693616512
5000 —2.665074853918

In the electric-octupolar sector, the relevant quantities are
(see Appendix D of [27]) J;, = K5, + %JQJF, where
Ks = EupcE and J5, = €€, In the magnetic-
octupolar sector, analogous quantities may be formed.

The O(u) part of these invariants may be easily
deduced from our octupolar components A&y, .... For
example, AK;,, obtained via Eq. (2.15), is related to 3K3+
by (2.47).

Previously, Bini and Damour have given a PN expansion
of 31{3 4 to 7.5PN order (see Eq. (D10) in Ref. [27]). With
the results of Sec. IV, we are able to go a step further. First,
in Table IV we give numerical data for 5 k34 1N the strong-
field regime. The data indicates that dxs, has a local
maximum somewhat within the innermost stable circular
orbit. Second, in an online repository [66], we provide a
higher-order PN expansion of 3K3+; below, we state the
expansion at 8.5PN order (correcting a minor transcription
error in the y® term of (D10) in Ref. [27]):

123008-15



PATRICK NOLAN et al.

A 8 358
Sksv =3+ 3%

11848 3581903 4681
457 675 N

2 3
675 40500 1536 )y

PHYSICAL REVIEW D 92, 123008 (2015)

614794483 790931 , 2048 4096 1024 \
<2430000 To2160 " T 15 TS 1°g2_?1°gy)y
759123028241 431520437 , 1070704 354064 1458 . S3SI2 N
1020600000 ' 11059200 © 1575 25 8 82T 575 8V )Y
219136, | (1256990504767 _ 1903269674027 , 42147341 , 181080056 123628168
1575 * 2187000000 1769472000 © 6291456 © ' 212625 | 212625 ¢
T3 o, 90540028, y>y6 118163398 1 (52369829422440012073_4176344893416403 )
35 212625 165375 990186120000000 990904320000
351206984461 , 4143716714678 1753088 , 6124042466966 7012352
6039797760 © 245581875 1575 | 7 245581875 1575 710g2
T012352, ) 214350489, L 9765625 o 207ISSEISTI| 1708\
1575 30800 14256 245581875 1575
v log2logy + e tiogty = HERe(s)) 41 S 1
. (1234405086766291756855079 _ 20516582870304319 , _ 4004468043930067 ,
10812832430400000000 9754214400000 11596411699200
6403209826927357 819280024 ,  18668500151420029 4048635776 4434375616,
335219259375 | 165375 | | 335219259375 " 165375 11982~ Tiga37s 1082
_AISTSATSSIN0| L 02748\ D0TMAS) L IS BRITRO06DS)
196196000 49 1111968
6300230470447357 819289024 _20A3ITBE T
670438518750 165375 165375
20482056, 10678144 3)> ) (_1048639996225198903 3506176 , 375160832
165375 1575 58998589650000 4725 165375
—751063523176564 rlog2 + —1 81765583074516 rlog y) yl7/2 4 0G?). (5.2)

B. Informing initial data models

How does a black hole move through and respond to an
external environment? This question has been addressed by
Manasse [68], and others [45-47,69-75], via the method of
matched asymptotic expansions (MAE). In scenarios with
two distinct length scales (m;, m, < rj, where ry, is the
orbital separation), one may attempt to match “inner” and
“outer” expansions across a suitable “buffer” zone (m,
my, K r <K rp,) [76]. Indeed, this method was applied to
derive the equations of motion underpinning the self-force
approach [28]. Recently, much work has gone into improv-
ing initial data for simulations of binary black hole inspirals
using MAEs [45,48,49,77-80].

In a standard approach [47,69,72,73], the black hole is
tidally distorted by “external multipole moments”: spatial,
symmetric, tracefree (STF) tensors E,;, B;;, E;, B;j,
etc., related to the Riemann tensor evaluated on the

I
worldline in the regular perturbed spacetime. These STF
tensors are essentially equivalent to our tetrad-resolved
quantities; for example, Detweiler’s [72] STF moments
are given by E;=¢&;, B;=D08;, Ej=~¢&; and
B i :%Bijk, with the subtlety of the interchange of
spatial indices 2 <> 3.

Johnson-McDaniel et al. [45] have applied the MAE
method to “stitch” two tidally-perturbed Schwarzschild
black holes into an external PN metric. Implicit in
Egs. (Bla)-(B1d) of Ref. [45] is a PN expansion of
(conservative) quadrupolar and octupolar tidal quantities.
Restricting to O(u), in our notation Eqgs. (Bla)-(B1d) of
[45] imply

u
M3y = 6y* +3y° + i (—8y* + 8y%) + O(Y°, u?)
(5.3)
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U 7
ME 1y = =3y* =4y’ + " (4y4 - g)’s) +0(y°, %)

(5.4)

u 17
M3E 33 = =3y +y° +— <4y4 - §y5) + O, u?)

M
(5.5)
M*Byy, = 8y +% (=8y"2) + Oy 2, %) (5.6)
M By = =6y + 52(65°) + OO p?) - (5.7)
M By = =232 4 22(25°2) + O 2. 2). (5.8)

Note that here the O(u°) terms are leading-order terms in
the Taylor expansion of the “background” Schwarzschild
results, and the O(u') terms are consistent with the leading
terms of our PN series in Sec. IV B. This reassuring
consistency suggests that our O(u/M) results may indeed
be used to help improve initial data for large mass-ratio
binaries in the latter stages of inspiral.

VI. DISCUSSION AND CONCLUSION

In the preceding sections we have pursued the line of
enquiry of Refs. [27,31,35,37], concerned with identifying
and calculating O(u) invariants for circular orbits, onwards
into the octupolar sector. We identified 7 independent
degrees of freedom in the octupolar sector, given by the
(symmetrized) components of the derivative of the
Riemann tensor as decomposed in the electric-quadrupole
basis. A complete set of octupolar invariants for circular
orbits is given by, e.g., A& 1, Al 22, ABsyy, AByyn, A3y,
A&35,, ABy,3. Here, the first four are conservative and the
latter three are dissipative in character. The remaining
symmetrized components A& 33, AB,3;; (conservative)
and A&s33 (dissipative) follow from trace conditions. All
additional octupolar components, AEjj, AB;jo, AEj[j; and
AB;jy, may be written in terms of the previous-known
quadrupolar tidal invariants A&y, AE,,, ABy,, ABy; [37],
the spin-precession invariant Ay [35] and the redshift
invariant AU [31]. Accurate results for the latter quantities
are provided in Tables I and IIT of Ref. [37] and PN series
are given in Ref. [43]. In passing, we should note a
relationship which was overlooked in Ref. [37]:
AB,3; = —B,Ay, where Ay is the dissipative invariant
of Table I in Ref. [37]. Also, we should recall that the
temporal and azimuthal components of the self-force
define one more dissipative invariant, F, = QF,. Taken
together, we believe we have now arrived at a complete
characterization of all circular-orbit invariants in the

PHYSICAL REVIEW D 92, 123008 (2015)

regular perturbed spacetime through O(u), up to third-
derivative order.

Highly accurate numerical results for all the octupolar
invariants are given in Tables I-IV. Our numerical calcu-
lation is performed using Mathematica and is made within
the Regge-Wheeler gauge as described in Sec. III. In
addition, as a cross-check on our results, we performed
the same calculation in the Lorenz gauge using a
Mathematica re-implementation of Ref. [60]—see Fig. 1
for an example of the excellent agreement we find between
the two calculations. To complement our numerical results,
we also calculate high-order post-Newtonian expansions
for all the invariants. Our technique is briefly described in
Sec. III B with the full details given in Ref. [43]. The lower-
order PN expansions are given in Sec. IV B with the higher-
order terms available online [66]. In Sec. V we explored
two possible applications for the octupolar invariants.

We can envisage several ways this work could be
extended. First, the high-order post-Newtonian results
and the strong-field numerical data could be combined
to produce global semianalytic fits for the various invar-
iants. Here, knowledge of the behavior at the light-ring
(Sec. IV C) should prove useful. Similar fits for other
invariants have already been applied to EOB models
[25,26,38] and freshly-calibrated EOB models have been
successfully compared against numerical relativity simu-
lations [6]. Second, we note that in Sec. II we have, in fact,
derived the form of the octupolar invariants for circular,
equatorial orbits in a rotating black hole spacetime.
Looking ahead, practical calculations on Kerr spacetime
are needed. The redshift invariant has already been calcu-
lated for circular, equatorial orbits about a Kerr black hole
[40,53]. It seems a natural extension to extend other
invariants, such as the ones we describe here, to the rotating
scenario. We believe this should be pursued with both
numerical and high-order post-Newtonian treatments.
Third, a further natural extension is to consider invariants
for noncircular orbits. This was recently explored by Akcay
et al. [39] for the redshift invariant and we expect the
calculation for other invariants to follow in time. Fourth,
looking further into the future, invariants at second order in
the mass ratio could be calculated. The necessary regu-
larization procedure is now known [81-83] and the
framework for making practical calculations is beginning
to emerge [84,85]. As with previous calculations, initial
work will focus on the redshift invariant [86] but the
calculation of other invariants will surely follow.
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APPENDIX A: GAUGE INVARIANTS IN
SCHWARZSCHILD COORDINATES

In this Appendix we give explicit expressions for the
perturbations to the octupolar invariants (as defined in
Sec. II D 2) for the case of a circular orbit in Schwarzschild
spacetime. Our expressions are written in terms of the
components of h, and its partial derivatives in
Schwarzschild coordinates, and are given by

2Ry e M(ro = 2M)"2 2h, 5 M (rg = 2M)'2

ro*(ro = 3M)2(rg = 2M)*2  2(3M — rg)ry"/* (ro — 2M) /2

9/2 3
ro/ rH

hupr M2 (SM = 210) (ro = 2M)">  hyy M (rg =2M)"2 20,y yM(6M = 1o)(ro — 2M)"/?

(3M —ry)ry

(6M — 2r0)r(3)/2

r(l)l/z(ro -3M)

_ h¢¢.rrM(1 M - 4"/.0)(’”0 - 2M>1/2 ht¢.rrrM1/2(r0 - 2M)3/2 _ hrr,rM(6M - 57'0)(7'0 - ZM)3/2

2r3/2(r0 —3M)

(3M —ry)r3

2r(9)/2(r0 —3M)

h¢¢.rrrM(r0 - 2M)3/2 htt,rrr(rO - ZM)3/2 6ht¢M3/2(r0 - 2M>1/2(4r0 - 9M)

2r(7)/2(r0 —3M) 2r(1)/2(r0 —3M)
/1,,,,(—47M2 +42Mry — Sr%)

hyy M2 (=35M% + 30Mry — 613)

ro(ro—3M)?
2h, 4 M2 (12M% — 8Mry + r3)

2(3M — ro)ry*(ro — 2M)'/2

(3M = ro)rg(ro —2M)'/?
N hypM(ro —2M)V2(2TM? = 18Mro + 4r3)  h,,M(ro —2M)"/>(66M> — T3Mr + 1813)

rg(ro —3M)(ry— 2M)1/2

r(lf/z(ro -3M)?

2hgy joM 2h.9 yoM'?

A‘9122 ==

. (14M = 9r)

, Al
2r(1)1/2(r0—3M) (A1)

h,M(20M — 9r)

2ht¢’39M1/2(7M - 47'0)

30" (rg —2M)" /2 3ri(rg = 2M)'2 61 (g

—2M)'2 " 35y (rg = 3M)2(rg — 2M)'/
5h¢¢’99M(l’0 - 2M)1/2

g oroM(ro —2M)V2 Ry 09, M (rg — 2M)"/2

a Sré(ro —3M)(ry — 2M)1/2 -

(OM — ?aro)r(l)l/2

(18M — 6r0)rg/2 (9IM — ?sro)rg/2

Ruorg(ro — 2M)'% iy gg,(ro = 2M)'V2 hggM (2M — 5r)(ro — 2M)"V? hge ,M(6M — 11r¢)(ry — 2M)'/?

(18M — 6ry)ry/ (OM = 3r)ri/?
hrgoM(6M — 5ro)(ro — 2M)"/2

ro"(rg = 3M)
2h,4 M (6M — ro)(ro — 2M)"/2

6r(1)1/2(r0 —3M)
2h, yMV2(6M — ro)(ro — 2M)'/?

3r(1)1/2(r0 - 3M)

3r(1)1/2(r0 —3M)

3r3(ro — 3M)

Pup M2 (rg = 2M)%%  hyy M(rg —=2M)3 by (rg — 2M)3% hyyM?(rg — 2M)V2(18M + ry)

(3M — ro)rg
By go(—4M + 3r0)

2rg/2(r0 - 3M)

2r(3)/2(r0 —3M)
_ h¢¢,rM(6M2 + 9Mr0 - 5}%)

3r(1)3/2(r0 -3M)?
Ry MY (18M? = 25Mry + 7r3)

+
3ry*(rg = 3M)(ro — 2M)"/2 6(3M — rg)ry'* (ry — 2M)'/2
_ 2hyyMPP(36M? = 38Mro + 11r5) h, M (ro — 2M)"*(36M* = 56Mry + 19r3)

3(3M — ro)ri(ro — 2M)'/?
hnp,araMl/z(ro - ZM)1/2

3r(5)(r0 —3M)*(ry — 2M)1/2
2ht¢,06‘rM1/2(r0 - 2M)1/2
9Mr(3) - 3r3 ’

6r(1)1/2(r0 —-3M)

IMry —3r}

(A2)

123008-18



OCTUPOLAR INVARIANTS FOR COMPACT BINARIES ON ... PHYSICAL REVIEW D 92, 123008 (2015)

hopppMM —10)  2hiygyM'>(M —10) — hygypM  hyygpM
a2 (ro — 2M )3/ ro(rg —2M)*2 6r)/*(rg —2M)2 310/ (ry — 2M)\/2
R prpM ~ 2hup.pprM'? B (23M =9ry) it rg
3r3(ro —2M)'2 3r3(ro —2M)'2 " 6132 (ry — 2M)'2 67 (ro — 2M)1/2
~ Rt gipr 2Ny M(rg =2M)'? 20y, 5, M2 (rg = 2M)'? N 2hy M32(M = ro)(rg — 2M)"/?
31”(3)/2(;”0—2M)1/2 3r3/2 3r} ry(ro —3M)?
yygM(30M = 11r)(rg = 2M)' Dy, M(SM = 1o) (ro = 2M)"/? N Ry e (TM = 310) (g — 2M)'/?
3r(])]/2(r0—3M) 6rg/2(r0—3M) 6r(3)/2(r0—3M)
2k M(rg =2M)*2  hygy(rg — M) N g M2 (rg = 2M) V2 (rg = M) hyy yM"2(6M? = TMro + 213)
3,(9)/2 rg/z(ro —2M)3/ 33M —ry)ry 3rd(ro —3M)(ro — 2M)'/?
g MV2(63M? = 53Mro + 1113) gy M(14TM? — 125Mr, + 2613)
3(3M — ro)ri(ro —2M)"/? 6(3M — ro)ry* (rog — 2M)1/2
n h M (rg —2M)V2(150M? — 125Mr + 27r3) B hy M (—66M3 + 111M?ry — 56M 13 + 9r73)
6ry"*(ry — 3M) 3ri2(ry = 3M)2(ro — 2M)*2
N hypM(=222M° + 26TM?ro — 104M 1§ + 13r3)
3r6"(rg = 3M)2(rg — 2M)'/2

A(c/‘133 ==

: (A3)

hyp M (3M = 1y) 4h g e M'*(3M = 1) By pr(3M = rg)
3rg(ro —3M)2(rg — 2M)"/2 3r8/2(ro—3M)'/2(r0—2M)1/2 r§(ro = 3M)'2(ro — 2M)'/?
2]’1,¢¢¢M(1’0 —3M)]/2 2htr.¢¢M1/2(l"0—3M)l/2 h¢¢,¢,,M(ro—2M)l/2 hlqﬁ,q‘)rer/z(rO_ZM)]/z

A8113 =

3rg(ro —2M)'2 32 (r = 2M)'/? 2rj(ro —3M)'/ ry/*(rg = 3M)1/2
Bugger(ro = 2M)V2 By yM (g = 2M)V2(=12M + Trg) by yM(=15M3 + 36M?ry — 1TM 7% 4 213)
2ry(rg —3M)'/? 3r3(rg —3M)'/? 6r5(ro — 3M)32(ry — 2M)3/?
Ry y(—1TM? + 32M%ro — 15Mr} +2r3)  hyy oMY (=8TM? + 120M?ry — 49M 1 + 613)
2r3(ro = 3M)32(ry — 2M)3/2 3r0/*(ro — 3M)32(ry — 2M)3/2

. (A4)

hyp. g0 n 2hyppeM° B 4hig M3/
2r5(ro = 3M)'2(rg = 2M)'% " 3r3(rg = 3M) 2 (rg = 2M)2 - 37972 (ry = 3M)Y2(ry — 2M)1/2
B Ry pooM'? + 4h sy e MP/? _ Rt oo
ri(ro = 3M)2(rg = 2M)V2 3¢ (ry = 3M)2(ro — 2M)V2 2r5(ro = 3M)'/2(rg — 2M)"/?
N 2hy oM _ dhoy oM (ro = 2M)'% 2hgy-M(rg =2M)'?  2h,4 09M (ro — 2M)"
3r3(ro — 3M)V2(ry — 2M)'/? 3r8(rg —3M)'/? 3r3(rg — 3M)'/? 3ry(rg —3M)'/?
4R,y M(ro = 2M)'> 2k 0. M' 2 (rg —2M)'% by, 0oM "2 (rg — 2M)"/? hgg. M (6M + ro)
3r3(ro = 3M)'/? 312 (ry — 3M)1/2 302 (rg = 3M)V2 3r§(rg —3M)"2(rg = 2M)'
Py g (—6M? = 1IM?rg + 14Mry = 3r3)  hyp 4sM(6M? + 11M*rg — 14Mr§ + 317)
6ra(ro — 3M)32(ry —2M)3/? 6r§(ro — 3M)32(ry — 2M)3/?
gy gMV2(6M3 + 11M?ry — 14M 1 + 313)

- , A5
3ry2(rg = 3M)3?(ry — 2M)3/? (A3

Alyys = —
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Ry pppM (ro = 3M)V2 Ry 4 sM'2(rg = 3M)V2 by gy (ro = 3M)Y? hyy 4 (ro — 3M)%?
2r3(ro — 2M)3/? rg/z(ro —2M)32 2r3(rg — 2M)3/? 2r3(rg — 2M)3/?

hyp oM (TM = 5r)(3M — ry) 2hygeM(ro = 3M)'2 20,y 5yM(ro = 3M)"/?
2(2M — ro)r§(ro — 3M)' /2 (ry — 2M)"/? ry(ro —2M)'/? ry(ro —2M)'/?
2hup MV (rg = 3M)V2 20y, 4y M2 (rg —3M)V2 20, ;M (rg —3M)"V2(rg — 2M)"/?
7‘8/2(r0—2M)1/2 B ;’ZJ/z(rO—ZM)l/2 - ry
hyy M2 (3M — o) (M + ry)
ro*(ro = 3M) 2 (ry — 2M)¥2’

A8333 =

+

(A6)

hir.0(TM = 21ro)(2M — 1y) hopoM™>  hgy oM RrpooM*?

3r(7)/2( ro — 3M)>3? 3r8(r0 - 3M)\/? 6r(5)(r0 —3M)'/? 6r(5)(r0 —3M)'/?

B hogp ppoM>' ~ hoo ppsM>'* N Ryr gooM ' (2M — 1y)
6(2M — ro)ry(ro —3M)'V2 6(2M — ry)rg(ro — 3M)V/? 6r3(ro —3M)1/?

_ iy pooM _ g pgpoM hir.00-(2M = 1o)

(12M — 6rg)ry/*(rg = 3M)'/? (4M = 2rg)ry/*(ro = 3M)V/? 313/ (ry — 3M)'/

B Byt pooM' ~ R0 M iy g (ro — 4M)
3(2M — ro)rg(rg —3M)'/2 6r(3)/2(r0 —3M)'/2 3ro(ro— 3M)'2 6r8/2(r0 - 3M)/?
hop.preM" 2 (ro = 2M)  hyp ggyM' 2 (rg =2M)  hygg,,(rg — 2M)

6o —3M)7 | 6r(ro—3M)7 | 33%(r, —3m)17
Byp M Y% (rg = 3M)V2(rg —=2M)  h,pyoM"/?(=13M* + 1TMry — 413)
6(3M —ro)ry 6r3(ro —3M)3/
oo prMVH(=8M? +9Mro — 2r3)  hygo(—8M? +9Mry —2r3)  2hyy sM(M* + 4Mrg — 13)
3r3(ro = 3M)*? 310/ (ry — 3M)3/2 302M — ro)rd*(ry — 3M)3/?
BgpgrM2(32M> = 13Mro + 13)  2h,oM(20M? — 19Mry + 472)  hyyM(3M3/2ry/> — M'12r)/?)
6rg(ro =3M)*? C3M =) (rg = 3MPE 3Py 332
2hyy M (ro = 3M)'% Ry ypM' > (28M° = 3TM?rg + 15M 15 = 217)
6Mr3 —3rp 6(2M — ry)rg(ro — 3M)3/?
iy gy (52M3 = STMPrg + 19M 13 — 2r3) gy yM'/2(26M3 — 36M?ry + 11Mr§ — rg)
6ry/* (ro = 3M)*(ry — 2M) - 6(2M — ro)rf(ro —3M)*?
iy gr(=100M> + 91M?rg — 25M 13 + 2r3)  hgg yM>(4MP + TM?ry — IM 1} + 2r3)

- 6(2M — ro)r)/*(ro — 3M ) - 3(2M = ro)rf(ro — 3M)*>

Brp g (68M7/21ry% — 45MO2 10> 4 4MP2 1)+ M2
6rél/2(r0 —3M)3/?
Bog g (=T2M72 1> - 100M5/2 7> = 4TMP2 102 4 6M' 21 )) iy M2 (rg — 3M)'/2

" 6r)/*(ry —3M)*2(ry — 2M)? 18Mrj — 61§

ABipy =

, (A7)
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RrogpoM* hyy gy MY (4M = 3rp) Ry yooM 2hyoorM"? g ge(ro — 8M)
6 6r) C6(BM =)y (OM = 3rg)r)> 6(3M —ro)r
6hggpM>>(2M — o) 10hgy, M>>(2M — 1ry)  16h,9gM>>(2M —ro)  hoy 4o M>? hop pprM>'*
(g =3M) 30 (ry—3M) 3ry " (ro — 3M) 6r)*(ro —3M)  3ry/*(ro — 3M)
hop. MP2(2M = 10)  2h,90,M>2(2M = 1g)  hyp ,M3/2(22M — 979)(2M — 1)
Srg/z(ro —3M) - 3r(9)/2(r0—3M) " 3r(9)/2(r0—3M)
Ry M2 (M = 1) (4M — ry) hop goM"* (M = ry)? Ry goM'?(SM — 4ry) iy prr(ro — 2M)
62 (ry — 3M) 6 P (ry = 3M)(ro —2M) 313 (ro — 3M)(ro — 2M) 313
BotrreM"?(rg = 2M) | Dy gooM'*(ro =2M)  hyy0oM?(ro = 2M)  hypgyeM'?(rg — 2M)?
(9M — 3}’0)1”(1)/2 6r(9)/2(r0 —3M) 3rg/2(r0 —3M) 3r8/2(r0 —3M)
By oM (rg — 2M)? 4hyyM**(rg —2M)(ro — M) hyy oMY (=3M + 21g)  4hyy M3/ (=8M + 3r,)
3% (ry — 3M) o2 (ro = 3M)? 3% (ry — 3M) 302 (ry — 3M)
hupoo(—9M? + 10Mro —3r3)  hggypM'>(10M> = OMro + r3)  hyy g M'>(2M* = 3Mry + 13)
6rg(ro —3M)(ro — 2M) 6r0 2 (rg = 3M)(rg —2M) 31 (ry — 3M)
hig po(31M? —26Mro +3r3)  h,y M2 (16M? = 21Mro +4r3)  hy, ,M'/2(T0M? — 5TMry + 10r3)
6r4(ro = 3M)(ro — 2M) 6r21 2 (ry — 3M) 312 (ro = 3M)(ry — 2M)
2k, MP*(94M - 83Mry + 1815) N R rer(2M? = 3Mro + 13) N iy g (=112M3 + 156M?ry — 61Mr} + 617)
3,»(')1/2(,»0_3]\/1) OMr3 —3rp 6r3(ro —3M)(ro — 2M)
N 2h, M3 (=114M3 + 189M%rg — 103M 73 + 1873)  hyyM(—120M° + 239M?>ry — 145Mrg + 281;)
312 (ro = 3M)2(r — 2M)? 3r3(ro — 3M)*(rg — 2M)
Pugoor(M —10) Ry gy (36M* = 29Mro + 5r5)  hyy,,(12M* = 1TMr + 513)
18Mr8 —6r3 18Mr(3) —6rg 18Mr(3) —6r3
hyy(136M? — 63Mr + 6r3)
18Mr} — 6713

A8211 ==

, (A8)

h0€,¢¢M1/2 hr0.¢¢0M1/2 hr¢,¢69M3/2 _ ht¢,€9 htt,HHrM1/2 ht0,¢6(r0 - 5M)
21’(1)1/2 ng/z (6M — Zr())rg/2 (3M — ro)rg (3M — ro)rg/z (3M — ro)rg
_ 8hgeM*>(2M — 1) hyp  MPI2(8M = 3rg)  4hgy M3 (2M — 1) _ 8hug oM (2M — 1)
réB/z(rO —3M) r(l)l/z(ro —3M) r(l)l/z(ro -3M) r(l)l/z(ro —3M)
N by MP2(20M = 9r0)(2M —19)  hopgorM2(2M = 1) By goMP>(2M —1g)  hyy MV (TM = 2r)
r(l)l/z(ro—3M) 2rg/2(r0—3M) rg/z(r0—3M) rg/z(ro —3M)
By e MY2(2M = 1) N Rpr M2 (rg = 2M)  hyy yMY2(rg = 2M)  hyp M3/ (rg — 2M)?

A[:”222 ==

rg/z(ro —3M) 2r8/2 2rg/2(r0 —3M) rg/z(ro —3M)
hopgoM"*(ro = M)~ 3hyyM>/*(ro =2M)(ro = M) hy0oM"/*(2ry = 3M)
ro'*(ry = 3M) re*(ry — 3M)? ro(ry = 3M)(ro — 2M)
hM2(=36M? +3TMry = 9r3) | hiyM(=6M> +TMro =3r3)  hyyg,M"/*(2M* = 3Mrg + 17)
ro/*(ry = 3M)2(ry — 2M) ro(ro —3M) 210" (ry — 3M)
hiogorM oo, (M = 10)  hir goo(4M = 10) Dy, (10M> = TMro +15) | hig r,(2M> = 3Mry + 1)
6Mr(3) — 2r‘6 6Mr(3) — 21’3 6Mr(3) — 2r‘01 6Mr(3) — ng 6Mr8 — ng
hyy(36M?* —16Mro +r3)  hy, 4(18M* — 10Mro + )
6Mry —2ry 6Mry —2ry ’

(A9)
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A8233 =

hop porM'/? vy goeM V2 hgg pprM'? g gpoM 1/2
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3/2 5/2
hrpggp™M’ hrp M

hrr,¢¢M1/2

hio.rop  Purgoo Pyt g M

6T e

2]’199M3/2(2M - ro)

(6M — 3;’0)1’(9)/2
3/2
hgg. oM

(OM — 3r0)r8/2 - 31%/2
Ry M3 (16M — Try)

3 3
2ry 2ry

2hgy M3>(2M — 1)

(6M — 3r0)r8/2 - 3r(l)3/2(r0 —3M)
B, M2 (22M — 9r0) (2M — 1)

3r(1)1/2(r0 -3M)
2h,,0:M**(2M = 1)

3r(1)1/2(r0 —-3M)
20, M2 (4M - ry)

3r(l)l/2(r0 —3M)

i eMV2(2M = 1) 2hgg ppM'*(M — 1)

3r(1)1/2(r0 —-3M)
2]’1,¢¢¢M(5M - 27‘0)

310/ (ry = 3M)
htz.96M3/2

3r8/2(r0 —3M)

31 (ry — 3M) 302 (g —2M)

hGG,rrM3/2(r0 - ZM)

3r3(ro —3M)(rg — 2M)
hrrﬂGMS/z(rO - ZM) 2hrr,rlukg/z(rO - 2M)2

htr,¢rM(2r0 - SM)

Srg/z(ro —3M) 3r(9)/2(r0 -3M)
+ h¢¢M3/2(}’0 - 2M)(5r0 - ZlM)

3rg/2(r0 - 3M)
ht9’¢9(5M2 + 8Mr0 - 31’%)

33M —ro)ry
h9¢’¢9M1/2(5M2 - 4-Mr0 + r(2))

3r(1)3/2(r0 -3M)?
N Ry oM (=32M% + 11Mro + r3)

6r3(ro —3M)(rg — 2M)
hugpgM'*(TM? = 8Mrg + 2rg)

6r(1)1/2(r0 —3M)(rg —2M)

3132 (ro = 3M)(ro — 2M)

ht(/)’90<17M2 - 14-Mr0 + 37'(2))

6r(1)1/2(r0 —3M) 3r(5)/2(r0 —3M)(ry —2M)?
By (28M3 — 42M?rg + 21Mr§ — 317)

_ hyMP2(30M? = 35Mry + 9r)

312 (ry — 3M)2(ro — 2M)

6rg(ro —3M)(ro —2M)

6ry(ro —3M)(ro —2M)

ht¢M(—12M3 + 23M2r0 - 14Mr(2) + 3}’8) ht¢¢¢rM htr,¢¢¢M ht¢,rrM2
3(2M - ro)rg(ro —-3M)? 6Mrg - 3rg 6Mr(3) - 3r3 9Mr(3) — 3r3
h,y(36M?* —23M 3r2
_ g ro+3n5) (A10)
18Mr} — 673
APPENDIX B: SHIFT TO ASYMPTOTICALLY : 20M (189M3 - 224M2r0 + 89M r(z) - 12r8)
FLAT GAUGE &&=

In order to compare our results with PN theory it is
necessary to work in an asymptotically flat gauge. In both
the Lorenz and Zerilli gauges the tf-component of the
metric perturbation does not vanish at spatial infinity and so
we make an O(u) gauge transformation to correct for this
[32]. For both gauges this correction can be made by
adding W =&, +¢&,., where & =[—a(t+r,—r),0,0,0]
and a = u/+/ro(ro — 3M). Explicitly, this can be achieved
by adding an extra term to the invariants, A, — A +
85€;j and AB;; — AB;j, + 6°B;j; where

2aM (—81M> + 111M?*ry — 51M7r3 + 8r3)
o (o = 3M)(rg = 2M) /2

655111 =

’

(Bla)

2aM (54M3 — 109M?ry + 64M 1} — 12r)
3ry/2(rg = 3M)2(r — 2M)'/2

565122 =

(B1b)

31y (rg = 3M)2(rg — 2M)'/2

5113 =0,
665223 — 0,
5E333 =0,
8 Biys =0,
’ 8aM>/?(54M?* — 43Mry + 973)
6 6211 = 9/2 )
3ry’ " (ro — 3M)
: 2aM3/?(54M?* — 43Mry + 9r3)
0 8222 == 9/2 )
ry (ro—3M)
3/2 2 _ 2
5By — _2aM (54M*> — 43Mry + 9r¢) ‘

3rg/2(r0 -3M)?
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