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The scheme recently proposed in [M. Scala et al., Phys Rev Lett 111, 180403 (2013)], where a
gravity-dependent phase shift is induced on the spin of a nitrogen-vacancy (NV) center in a trapped
nanodiamond by the interaction between its magnetic moment and the quantized motion of the
particle, provides a way to detect spatial quantum superpositions by means of spin measurements
only. Here, the effect of unwanted coupling with other motional degrees of freedom is considered and
we show that it does not affect the validity of the scheme. Both this coupling and the additional
error source due to misalignment between the quantization axis of the NV center spin and the
trapping axis are shown not to change the qualitative behavior of the system, so that a proof-of-
principle experiment can be neatly performed. Our analysis, which shows that the scheme retains
the important features of not requiring ground state cooling and of being resistant to thermal
fluctuations, can be useful for the several schemes which have been proposed recently for testing
macroscopic superpositions in trapped microsystems.

I. INTRODUCTION

Since its discovery more than one century ago, quan-
tum mechanics has puzzled the scientific community with
questions foundational. Indeed, while everybody agrees
on the power of quantum mechanics for the description of
microscopic systems, such as atoms and molecules, and
on its applicative power, from electronics to the most
recent developments in quantum information processing
and computing [1], there is still a lot of debate about
the transition from the microscopic to the macroscopic
world, where experience shows that quantum mechanics
does not seem to be valid and is substituted by classical
physics [2]. As an example, the näıve use of quantum
mechanics for the description of the macroscopic world
would lead to predictions contradicting our experience,
such as in the well known case of Schrödinger’s cat [3].
While it is a relatively simple task to define what the mi-
croscopic and the macroscopic worlds are, it is difficult
to draw a line separating these worlds. Finding the bor-
der between the two worlds is an important foundational
issue and, so far, many solutions have been proposed to
describe the transition from quantum to classical physics,
from more widely accepted theories based on decoher-
ence processes due to the interaction with an external
environment [2, 4], to more debated theories, which pro-
pose modifications of quantum mechanics but have not
been tested so far, such as the spontaneous localization
theories [5–8]
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In this framework, mesoscopic physics, i.e. the physics
of systems which lie somewhere in between the micro-
scopic and macroscopic worlds, plays an important role,
since one can play with parameters which are intuitively
related to the transition from quantum to classical, such
as the total mass or the total number of atoms involved
in the dynamics of the systems. Examples of experiments
with mesoscopic systems are given by double-slit inter-
ference with very large molecules [9], the production of
nonclassical states of light by means of optomechanical
systems [10–13] and the study of coherence in trapped
nanoparticles [14–18]. In all these experiments, the scien-
tific community is producing quantum superpositions of
states of larger and larger systems, and there has been a
lot of work about quantifying the macroscopicity of such
superpositions [19–21]. The generally accepted idea is
that, by taking more macroscopic regimes and by making
the interaction with the environment weaker and weaker,
we can finally reach a regime wherein alternative theo-
ries, as opposed to orthodox quantum mechanics, will
become experimentally testable [8, 22].

Usually, the experiments to test such macroscopic su-
perpositions can be quite involved, since in general they
require the possibility of cooling the system, coupling it
with cavity resonators, and also resolving the spatial ex-
tension of the particles under study [23]. Moreover in
general one will need an ensemble of identically prepared
systems. In our previous work we proposed a quantum
interference scheme for trapped nanoparticles which over-
comes these requirements and would allow for the detec-
tion of the quantum features of the motion of the particle
by spin measurements only [24]. In the proposal, we con-
sidered a conditional displacement induced by a magnetic
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field gradient on a trapped nanodiamond containing one
nitrogen-vacancy (NV) center (as shown in Fig.1). Start-
ing from a superposition of two distinct states of the spin
of the NV center and from a generic coherent state for
the motion of center of the mass (CM) of the trapped
bead, we showed that the phase difference acquired by
the different trajectories of the harmonic motion in the
presence of gravity can be completely transfered to the
spin states, so that standard Ramsey interferometry is all
we need to detect the gravity-induced phase difference.

The analysis performed neglected some terms in the
Hamiltonian making it effectively one-dimensional, in-
stead of genuinely three-dimensional as it would be in real
experiments with optical tweezers. The simplified model
allowed us to catch the features of the scheme proposed in
an easily understandable way. In this paper we will show
that a perturbative approach can be used to prove that
those additional terms can be neglected up to very high
values of the relevant coupling constants, which implies
that the confinement along x and y as shown in Fig.1
need not be as tight as one would naively think: this is
due to the fact that the first order correction to the en-
ergy due to the additional terms are zero and so one has
to go to second order to get corrections to the dynam-
ics. We will indeed show that, for parameters describ-
ing correctly the dynamics of a nanodiamond trapped
in an optical tweezer, the fidelity between the perturba-
tively corrected state and the state predicted by the one-
dimensional model is always larger than 99%. The same
perturbative techniques can be used to treat the effect of
misalignment between the quantization axis of the spin
of the NV center, which essentially depends on the rela-
tive direction between the color center and the diamond
lattice, and the trapping axis z. We will show that mis-
alignment does not change the qualitative behaviour of
the system dynamics and that we are still able to detect
interference fringes showing the gravitationally-induced
phase difference between the spin states. Moreover, the
most important feature of the one-dimensional scheme,
i.e., the robustness of the phase difference against ther-
mal fluctuations, is not substantially affected by the ad-
ditional terms in the Hamiltonian: therefore the more re-
alistic scheme shows that no (or a very small amount of)
cooling is required in order to get the interference fringes,
so that the simplicity of the proposal remains. The pa-
per is structured as follows. In Section II we review the
one-dimensional scheme, showing how the quantized mo-
tion of the particle leaves phase-signatures on the states
of the spin of the NV center, while the effect of the cou-
pling with the motion along the x and y directions and
the effect of misalignment are presented in Sections III
and IV respectively. In Section V the results are dis-
cussed and some concluding remarks are given.

FIG. 1. An optical trap holds a diamond bead with an NV
center with both weakest confinement and spin quantization
along the z axis. A magnetized sphere at z0 produces spin-
dependent shifts to the center of the harmonic well. An angle
θ between the vertical and the z axis places the centers of the
wells corresponding to the |+ 1〉 and | − 1〉 states in different
gravitational potentials. Starting with an arbitrary coher-
ent state, the CM of the bead oscillates as different coherent
states in the centre-shifted, spin dependent well (red solid and
dashed line), accumulating a relative gravitational phase dif-
ference due to the superpositions. At t0 = 2π/ωz this phase
can be read from Ramsey measurements on spin. The blue
shaped zone shows a generic orientation of the NV center’ s
axis z′ with respect to magnetic direction z

.

II. GRAVITATIONAL-INDUCED PHASES ON
SPIN STATES

A. The system and its dynamics

As shown in Fig.1, the setup consists of a nano-scale
diamond bead containing a single spin-1 NV center lev-
itated by an optical tweezer in ultra-high vacuum. The
motion of the bead is coupled to the S = 1 spin of the NV
center by means of a static magnetic field gradient which
can be generated by a magnetized sphere with a perma-
nent dipole moment m = (0, 0,mz) oriented along the z
direction. Defining a reference frame such that the cen-
ters of the harmonic potential and the magnetized sphere
be at (0, 0, 0) and (0, 0, z0) respectively, we can expand
the magnetic field of the sphere around (0, 0, 0), and get

Bx = −B0 x, By = −B0 y, Bz =
µ0mz

2π |z0|3
+ 2B0 z, (1)

where B0 = 3µ0mz/(4πz
4
0). Therefore the interaction

between the spin of the NV center and the vibrational
motion can be described by the Hamiltonian

Hint = −λ
[
2Sz (c+c†)−

√
ωz
ωx

Sx (a+a†)−
√
ωz
ωy

Sy (b+b†)
]
,

(2)
where

λ =
3µ0mzz0

4π|z0|5
gNV µB

√
~

2mωz
, (3)
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m being the mass of the bead, gNV the Landé factor of
the NV center, µB the Bohr magneton and a, b, c the
annihilation operator of the oscillation in x, y, z and the
corresponding frequencies are ωx, ωy, ωz, respectively.
Given the value of magnetization of a commercial mag-
netized sphere (with radius r0 = 40µm) M = 1.5 × 106

A/m, the corresponding magnitude of dipole momentum
is |m| = 4π/3 × r3

0 ×M ∼ 4 × 10−7 A·m2. Experimen-
tally the trapped particle could be possibly located at
z0 = 60µm giving a field gradient B0 ∼ 2× 104 T/m. In
this Section we will neglect the interaction between the
spin and the x and y directions in Eq. (2), whose effect
will be analyzed in the next Section, on the basis that
ωx, ωy � ωz. In support of this approximation, in Fig. 2
we present experimental data measured in our laboratory
from a nanodiamond levitated in moderate levels of vac-
uum of approximately 10 mB using 200 mW of 1064 nm
trapping power. We measure ωz

ωx
≈ ωz

ωy
≈ 0.18. Due to

asymmetry in the laser focus [26], oscillation frequencies
in the radial directions are separated by approximately
ω/2π = 5 kHz. The lower axial z frequency arises from
the smaller electric field gradient along the beam axis in
comparison to x and y. The x or y frequency is revealed

a)

ω/2π (kHz)
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FIG. 2. (a) Experimental schematic of the optical dipole trap.
A 1064 nm laser beam is tightly focused by a high numerical
aperture (0.95) objective. The polarization of the trapping
light can be rotated by a half-wave plate. Scattered light from
levitated nanodiamonds is collected by a lens and sent to a
balanced photodiode in an interferometric scheme described
in reference [26], providing a position dependent signal from
the levitated nanodiamond. (b) Power spectral density (PSD)
as a function of ω at approximately 10 mB using 200 mW of
trapping power. Fourier transforming the position dependent
signal yields the PSD of the trapped nanodiamond. The axial
z frequency has been scaled by a factor of 20 for clarity.

to the balanced photodiode by rotating the polarization
of the trapping light, while z is measured on the individ-
ual photodiodes [25].

Finally, we add the free Hamiltonian of the bead and
of the NV center and the Hamiltonian describing the in-
teraction between the bead and the Earth’s gravitational
field, i.e., mgz cos θ, where θ is the angle between the z
direction (see Fig.1), so that the total Hamiltonian of the
system is given by

H = DS2
z + ~ωzc†c− 2(λSz −∆λ)(c+ c†), (4)

with

∆λ =
1

2
mg cos θ

√
~

2mωz
. (5)

The Hamiltonian above represents a harmonic oscillator
whose center depends on the eigenvalue of Sz. In its
derivation we have also assumed that the Zeeman split-
ting of |+1〉 and |−1〉 due to the zeroth order expansion
of Bz is cancelled by addition of a uniform magnetic field
along z.

It can be shown that, starting at t = 0 from the state
|β〉 |sz〉, where |β〉 is a coherent state of the center of mass
(CM) quantized motion of the bead in the harmonic well
centered at z = 0 and |sz〉 is an eigenstate of the operator
Sz with eigenvalue sz = +1, 0,−1, the system evolves at
time t to the state |β(t, sz)〉 |sz〉 where

|β(t, sz)〉 =e−
i
~ (D−~ωzu2)teiu

2 sin(ωzt)

×
∣∣(β − u)e−iωzt + u

〉
, (6)

and u = 2(sz λ − ∆λ)/~ωz. A derivation of Eq. (6) is
provided in Appendix A. It is worth noting that, at time
t0 = 2π/ωz, the oscillator state returns to its original co-
herent state β, for any β and sz. One can take advantage
of this feature to show that spin measurements at t0 will
be unaffected by any thermal randomness in the initial
motional state of the oscillator.

B. Detecting the gravitational field by Ramsey
interferometry

What we want to do now is to prepare the spin in a
superposition of states, so that when the center of mass
of the bead undergoes a conditional displacement due to
dynamics, the hybrid system evolves to a state which in-
volves superpositions of |β(t, sz)〉 |+1〉 and |β(t, sz)〉 |−1〉.
We then measure the spin at a special time t0 at which
the conditional displacements are again undone due to
the natural dynamics so that the spin state becomes un-
entangled from the vibrational one. In this way we can
perform measurements on the spin only, to reveal the
different phases acquired by the spin components, due to
the evolution for the vibrational state.

Preparing the system in the separable state |β〉 |sz = 0〉
and applying a microwave (MW) pulse corresponding to
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the Hamiltonian Hmw = ~Ω (|+1〉 〈0|+ |−1〉 〈0|+ h.c.),
with Ω much larger than any other coupling constant
and for a pulse duration tp = π/(2

√
2Ω), the spin state

becomes |Ψ(0)〉 = |β〉
(
|+1〉+|−1〉√

2

)
, which we will take as

the initial state for the interaction under the Hamiltonian
(4). After the interaction time t, the state is

|Ψ(t)〉 =

(
|β(t,+1)〉 |+1〉+ |β(t,−1)〉 |−1〉√

2

)
, (7)

which is the superposition we intend to evidence. From
the expressions of |β(t,±1)〉 in Eq.(6) we can see that
separated coherent states are involved in the above su-
perposition along with phases due to gravitational poten-
tial, which will evidence the above superposition. Up to
a global phase factor, the state after an oscillation period
t0 = 2π/ωz is

|Ψ(t0)〉 = |β〉
(
|+1〉+ ei∆φGrav |−1〉√

2

)
, (8)

with

∆φGrav =
16λ∆λ

~2ωz
t0. (9)

The phase difference ∆φGrav can be revealed by applying
Hmw again. Indeed, after a time second MW pulse, the
population of the spin state with Sz = 0 is:

P (sz = 0) = cos2

(
∆φGrav

2

)
, (10)

which gives a direct connection between the value of the
phase shift and spin population. As ∆φGrav ∝ g can
never appear as a relative phase between spin states un-
less spatially separated states of CM were involved in
the superposition (|β(t,+1)〉 |+1〉+ |β(t,−1)〉 |−1〉) /

√
2

for 0 < t < t0, the detection of ∆φGrav evidences such a
superposition.

Finally, let us consider what happens if the initial
state is the product of a thermal motional state ρth
and an eigenstate of the spin operator Sz. In fact,
one can exploit the fact that the results given above
are independent of the amplitude β and that any ther-
mal state ρth of the motion can be written as ρth =∫

d2β Pth(β) |β〉 〈β|, where Pth is the Glauber P repre-
sentation for the thermal state, to show that, after the
evolution over one oscillation period, the state of the sys-
tem is again factorizable and that the phase difference
accumulated by the spin states is not affected by the
thermal motion. Basically, though a mixture of many
Schrödinger cats |β(t,+1)〉 |+1〉 + |β(t,−1)〉 |−1〉 is gen-
erated for 0 < t < t0, the interference between the com-
ponents |β(t,+1)〉 |+1〉 and |β(t,−1)〉 |−1〉 of the cat is
independent of β. This immunity of the interference to
thermal states hinges on the mass being trapped in a har-
monic potential. We assume that anharmonic effects of
the trapping potential will be avoided by feedback cool-
ing of our oscillator to mK temperatures [25–27].

III. THE EFFECT OF THE TERMS
NEGLECTED: PERTURBATIVE ANALYSIS

In the previous discussion, we restricted our analysis
to the one-dimensional case, i.e., we neglected the cou-
pling between the spin and the motion of the trapped
bead along the x and y directions on the basis that the
confinement along such directions is much tighter than
the trapping along the z directions. Since the coupling
terms neglected in Eq. (2) are proportional to

γx,y =

√
ωz
ωx,y

, (11)

it is worth analyzing the effect of such terms on the dy-
namics predicted in the previous section. In the following
we will use a perturbative approach, the main scope of
the treatment being the effect on the interference fringes
corresponding to the gravity-induced phase difference in
Eq. (9). In order to do so, we first define the appropriate
zeroth-order Hamiltonian as

H0 = DS2
z + ~ωxa†a+ ~ωyb†b+ ~ωzc†c

+2∆λx(a+ a†) + 2∆λy(b+ b†) + 2∆λ(c+ c†), (12)

which differs from the Hamiltonian in Eq. (4) for the fact
that we have added the quantized motion along the direc-
tions x and y, representing by the annihilation operators
a and b, respectively. Subsequently the extra gravita-
tional terms due to these transverse oscillation has been
included through the constants:

∆λx,y =
1

2
mg cos θx,y

√
~

2mωx,y
, (13)

where θx and θy are the angles between the direction of
the gravitational acceleration and the x and y directions
respectively.

The evolution of the system with the full Hamiltonian

H = H0 + Vx + Vy,

Vx = λγxSx (a+ a†) , Vy = λγySy (b+ b†) , (14)

can be obtained by treating the terms Vx and Vy per-
turbatively with respect to the Hamiltonian (12), whose
eigenstates are products of eigenstates of Sz and dis-
placed number states [28]:∣∣∣E(0)

n,sz

〉
= D(α) |nz, ny, nz〉 ⊗ |sz〉 , (15)

correspondingly the unperturbed eigenvalues reads:

E(0)
n,sz = ~

∑
i=x,y,z

ωini +Ds2
z − 4

(−szλ+ ∆λz)
2

~ωz
. (16)

In Eq. (15), we have n = (nx, ny, nz) and D(α) is a
three-dimensional displacement operator, i.e., D(α) =
Dx(αx)Dy(αy)Dz(αz), with

αz =
−2λsz + 2∆λz

~ωz
, αx =

2∆λx
~ωx

, αy =
2∆λy
~ωy

. (17)
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The first-order correction to the energy due to Vx, Vy
is zero since

〈sz|Vx,y |sz〉 = 0. (18)

The first nontrivial deviation from the underperturbed
dynamics can be obtained by correcting the energies up
to second order and, accordingly, the eigenstates up to
first order. The corrected energy eigenstates and eigen-
values are therefore given by∣∣∣E(2)

n,sz

〉
= Z−1

n (
∣∣∣E(0)

n,sz

〉
+
∑

k 6=n,s′z

H ′n.sz ;k,s′z

E
(0)
n,sz − E

(0)
k,s′z

∣∣∣E(0)
k,s′z

〉
),

(19)
and

E(1)
n,sz = E(0)

n,sz +
∑

k 6=n,s′z

∣∣∣H ′n.sz ;k,s′z

∣∣∣2
E

(0)
n,sz − E

(0)
k,s′z

, (20)

where:

H ′n,sz ;k,s′z
=
〈
E(0)

n,sz

∣∣∣ (Vx + Vy)
∣∣∣E(0)

k,s′z

〉
, (21)

and Z−1
n is an appropriate normalization factor.

For any initial state, the perturbative dynamics at
any time t can be obtained by expanding it into the
basis given by Eq. (19) and multiplying each term
in the expansion by the corresponding exponential fac-

tor exp(− i
~E

(1)
n,szt). In particular we have calculated

the evolution of our system from the same initial state
as in Sec.II. As a result, the motional and spin state
will be entangled at every time instant t > 0. We
can quantify how much the perturbed evolution devi-
ates from the unpertutbed one by computing the fidelity
F =

∣∣〈Ψ(2)(t0)
∣∣Ψ(0)(t0)

〉∣∣ between the perturbed state∣∣Ψ(2)(t0)
〉

and unperturbed state
∣∣Ψ(0)(t0)

〉
after one os-

cillation period. We have computed fidelities for a very
large range of parameters, with λ ranging from zero to 0.1
and γx and γy ranging from zero to 0.4: this choice in-
cludes also the realistic experimental conditions of our
proposal, where ωx = ωy = 10ωz, corresponding to
γx = γy ' 0.32. We have found that the fidelity decreases
with increasing values of either λ, γx and γy, but only by
a very small amount in the range considered: in all cases
the value of the fidelity stays above 99%, which assures
that our treatment in Sec. II is accurate enough. This
is somehow surprising, but the reason relies on the fact
that the first-order correction in the energies is exactly
zero due to the selection rules, so that the first significant
correction to the energies is second order in γx and γy, so
that even relatively large values of these parameters have
little effect on the evolution of the spin-diamond system.

These results remain true when the initial state is ther-
mal. We have indeed found that the fidelity is still very
close to unity for coherent states whose average thermal
occupation number is up to 600. This corresponds to ro-
bustness of our schemes up to temperatures of the order
of 1mK, so that only feedback cooling is sufficient for our
scheme to work [25].

IV. THE EFFECT OF THE RANDOM
ORIENTATION

Once the nanodiamond is trapped in the potential, it is
very likely that the orientation of the NV center quanti-
zation axis, with respect to which the splitting D is com-
puted, is randomly orientated with respect to the trap
axis. Measuring the optically-detected magnetic reso-
nance spectrum of the NV electron spin in an applied
magnetic field will reveal the orientation of the NV cen-
ter with respect to the applied magnetic field and hence
the trap axis. This orientation could be controlled in x-y
plane by adjusting the linear polarization of the trapping
light because the nanodiamonds are not spherical. Us-
ing rod-shaped diamonds would increase this control [29].
Alternatively, the birefringence of diamond [30] might be
used to control the orientation with circularly polarized
light [31].

In this section, without introducing extra measure-
ments and manipulation on the NV’s orientation, we will
evaluate the systematic errors introduced by the mis-
alignment between the axes of NV center and the trap.
We will show that the visibility of the interferometry will
reduce to some degree when these two axes are perpen-
dicular, but in most cases we can get a good resolution of
the interference fringes. We will essentially use the same
perturbative methods as in the previous section.

Assuming we can neglect the coupling with the x and
y directions, the Hamiltonian we will use is

H =DS2
z + ~ωzc†c+ 2∆λ(c† + c)

− 2λ(cxSx + cySy + czSz)(c
† + c), (22)

where cx, cy and cz are the direction cosines of the NV
symmetry axis z′ with respect to the trapping axis z and
whose values are obtained by a rotation transformation
between these two axes, bounded by the condition c2x +
c2y+c2z = 1. Generally there is no exact analytical solution
for this Hamiltonian, so we divide it into two parts by
H = H0 +HI , where

H0 = DS2
z +~ωzc†c+2∆λ(c†+c)−2λczSz(c

†+c), (23)

for which we can solve analytically, and

HI = −2λ(cxSx + cySy)(c† + c), (24)

which will be treated perturbatively. The time evolution
of any state under Hamiltonian (22) and the effect on the
Ramsey scheme afterwards can be calculated numerically
by means of a perturbative expansion to the second or-
der, and based on numerical results we reconstruct the
fringes of spin zero state population over a range of an-
gles θ between the trapping axis z and the direction of
the gravitational acceleration.

We can investigate the dependence on the orientation
of the NV center by changing the parameters cx and cy.
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Since the system is rotationally invariant along the trap-
ping axis, we simplify the simulation by taking cy = 0
and consider cx varying from 0 (aligned case) to 1 (per-
pendicular case).

Fig. 3 shows how the interference fringes, given by the
population P (sz = 0) of the state |sz = 0〉, as a func-
tion of the tilting angle θ and of the direction cosine
cx (cx = 0 corresponds to the NV center being parallel
to the trapping axis, while cx = 1 corresponds to the
case in which the NV center is orthogonal to it). Fig. 3
compares the interference fringes in the case of perfect
alignment with the fringes in the orthogonal case. The
interferometry fringes turn out to be qualitatively robust
against the misalignment, i.e., the visibility of the fringes
does not change over quite a long range of values of cx
when the NV axis is deviating from the paraxial case,
and only show a limited reduction at the extreme case.
We can therefore deduce that, if we want to perform a
proof-of-principle experiment to show the existence of the
gravity-dependent phase factors in the evolution of the
components of the spin state, we do not have to worry too
much about correcting the orientation of the NV center
with respect to the trapping axis.

200
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FIG. 3. Fringes of spin zero population P (sz = 0) as a func-
tion of the orientation θ of the trapping axis, z, with respect
to the direction of the gravitational acceleration, and of the
direction cosine cx = 0 corresponds to the NV center being
parallel to the trapping axis, while cx = 1 corresponds to the
case in which the NV center is orthogonal to it. The initial
motional state has been taken equal to the vacuum state of
the quantum oscillator. The other parameters are such that
λ = 0.01 J and ∆λ/ cos θ = 11.9 J.

The result in Fig. 3 have been obtained with λ = 0.01
J and ∆λ/ cos θ = 10 J, and for a motional initial state
corresponding to the vacuum state of the quantum oscil-
lator. In order to investigate the effect of an initial ther-
mal distribution we must carry the simulation starting
from a generic initial coherent state for the oscillator. For
computational purposes we have simulated the dynamics
with the QuTip software [32], which assures faster con-
vergence than our perturbative approach, and computed
the evolution of the system with a generic coherent state.
Up to an average thermal occupation number of CM mo-

tion 〈N〉 = 600 we have not noted any visible changes in
the behaviour of our system, which assures us that the
initial thermal distribution should not affect our predic-
tions at least up to temperature of the order of 1 mK.
However going beyond such the temperature might leave
the assumption of harmonic confinement of the trapped
particle. Therefore it would be pointless to evaluate the
performance of our system for a larger number of exci-
tation. More details about the effect of temperature on
the system dynamics can be found in Appendix B.

V. DISCUSSION AND CONCLUSIVE
REMARKS

We will now give the experimental parameters neces-
sary to obtain a good visibility of the interferometric
fringes in a setup in which we are allowed to vary the
angle θ. As realistic values for the setup, we consider
ωz ∼ 100 kHz and diamond spheres whose radius R ∼
100 nm, so that, considering the density 3500 kg/m3 for
diamond, the corresponding mass is ∼ 1.25×10−17 kg. A
good visibility of interferometry fringes in the population
in Eq. (10) is given for K = 8λ∆λ t0/(~2ωz cos θ) ∼ 10,
which makes the value of the population change com-
pletely from 0 to 1 when θ varies between π/2 − π/20
and π/2 (the z axis is horizontal for θ = π/2) (see red
line in Fig. 3). Assuming that the magnetic field in
Eq. (1) is generated by a magnetized sphere with radius
r0 = 40µm and magnetization M = 1.5× 106 A/m (typ-
ical for commercial magnets), and z0 = 120µm, we get,
according to mz = M · (4π/3)r3

0 and Eqs. (3) and (5)
we have a magnetic gradient of ∂B/∂z ∼ 103 T/m and
consequently the desired value of K. All these values are
achievable experimentally and correspond to the values
of λ and ∆λ used to obtain Figs. 2 and 3.

With these values, the time necessary to have a com-
plete oscillation of the center of mass is of the order of
t0 = 50µs. This must be compared with the typical spin
dephasing times of NV centers in nanodiamond. NV cen-
ters in isotopically-purified bulk diamond can have elec-
tron spin dephasing times T2 > 1ms measured with a spin
echo sequence [33], but such long times have not been
found for nanodiamonds. The longest times have been
achieved by making nanodiamonds from pure bulk ma-
terial with a low concentration of spin defects: nitrogen
impurities must be reduced and ideally also 13C. This ma-
terial can then be milled [34] or preferably etched with re-
active ion etching (RIE) to form nanoparticles. Nanodia-
mond pillars with 300-500 nm diameter, made with RIE
have shown a spin-echo T2 time of over 300 µs [35]. Pillars
with 50 nm diameter and 150 nm length have achieved
a spin-echo T2 time of 79 µs [36]. By means of appro-
priate decoupling techniques, and by slightly changing
our Ramsey scheme in order to accumulate the gravita-
tional phase over more than one cycle, such a dephasing
time can be made larger. With T2 = 79µs we would get
perfect visibility of the interference fringes.
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The robustness to the temperatures up to 1 mK, also
shows that our proposal is promising for an experimental
realization. As we have shown, both the terms neglected
in obtaining our results in Sec. II and the misalignment
terms are not a problem if we want to perform an exper-
iment aimed at obtaining interference fringes demostrat-
ing the existence of gravity-induced phases in the spin
state.

For other applications of our scheme, such as in metrol-
ogy, we will need a perfect quantitative agreement be-
tween our predictions and the data obtained. In this
case, we will either have to measure the exact value of
cx in order to know to which slice of Fig. 3 our fringes
correspond, or we will have to correct for misalignment.
This is currently experimentally achievable, for example
by the methods shown in Ref. [31].

Finally let us stress that our perturbative approach can
be useful to study the effect of similar spurious coupling
terms in experimental proposals involving the coupling of
the motion of nanoparticles with spin degrees of freedom
[11, 15, 37].

In this paper we have studied the dynamics of an
NV center in a harmonically trapped nanodiamond,
considering the effect of unwanted coupling between the
spin and the directions orthogonal to the direction where
the conditional displacement takes place, inducing a
gravity-dependent phase which can be detected by spin
measurements only. We have shown that a perturbative
treatment of the additional terms in the Hamiltonian
proves that, for the experimental parameters charac-
terizing the setup proposed, the fidelity between the
realistic and the unperturbed state is always above 99%.
This assures that the experiment should confirm the
one-dimensional theory, which allows for a very clear
physical interpretation of the results. Moreover, also the
robustness with respect to thermal fluctuations in the
initial state is retained, which is the most important
feature of our proposal, since no ground state cooling
is required, only some feedback cooling to mK temper-
atures in order to guarantee that no anharmonic effects
come into play in the dynamics. The same perturbative
approach can be applied to treat the misalignment
between the NV center and the trapping axis. In the
case of misalignment, the quantitative agreement with
the one-dimensional model is lost, but the qualitative
behavior of the interference fringes stays valid up to
very high deviations from the perfectly aligned case.
Therefore, a proof-of-principle experiment aimed at
showing the existence of Ramsey interference fringes
induced by gravity can be performed without caring too
much about the alignment between the NV center and
the trapping axis.
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APPENDIX

A. Derivation of the unperturbed evolution

We solve the dynamics of unperturbed Hamiltonian (4)
by rotating the system to a new frame by the displaced
operator D(α) = D((−2Szλ+ 2∆)λ/~ωz), where the ex-
act dynamics for coherent state could be easily obtained
and then transforming it back to the original picture.
With the property of displacement operator, we obtain
the Hamiltonian in the new picture

H ′ =D†(α)HD(α)

=DS2
z + ~ωzD†(α)c†D(α)D†(α)cD(α)

+ (−2λSz + 2∆λ)D†(c† + c)D(α)

=DS2
z + ~ωzc†c−

4(−szλ+ ∆λ)2

~ωz
,

(25)

and our initial state (an arbitrary coherent state with

eigenstate of spin Ŝz) reads :

|Ψ(0)〉′ =D†(α) |β, sz〉 = D†(α)D(β) |0, sz〉
=eIm(αβ?)D(β − α) |0, sz〉 = eIm(αβ?) |β − α, sz〉 ,

the time evolution under H ′ is:

|Ψ(t)〉′ =e−
iH′
~ t |Ψ(0)〉′

=e−
iH′
~ t |β − α, sz〉

=e−
i
~ (Ds2z−

4(−szλ+∆λ)2

~ωz )t
∣∣(β − α)e−iωzt, sz

〉
Afterwards we transform back to the initial frame, and
obtain the final state after t:

|Ψ(t)〉 =D(α) |Ψ(t)〉′

=e
−−i(szλ−∆λ)2

~2ω2
z

sinωzt
e−

i
~ (Ds2z−

4(−szλ+∆λ)2

~ωz )t

×
∣∣(β − α)e−iωzt + α, sz

〉 (26)

B. Thermal dependence of the perturbation effect

In order to investigate the thermal dependence of our
perturbative analysis, we first evaluate how the fidelity
between the unperturbed and perturbed state vary given
by different magnitude of the initial coherent state of CM,
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FIG. 4. Fidelity F = |
〈

Ψ(2)(t0)
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〉
| against the the

magnitude of |βx| = |βy| = |βz| = |β0| under realistic param-
eter λ = 0.01~ωz and γx = 0.4, γy = 0.5

as shown below. Since any thermal state can be repre-
sented in a diagonal form in coherent basis, our initial
state (for a thermal particle) reads:

ρth(0) =
1

2

∫
d2~β Pth(~β)

∣∣∣~β〉〈~β∣∣∣ (|+1〉+|−1〉)(〈+1|+〈−1|),

(27)

where ~β = (βx, βy, βz) and Pth(~β) is the Glauber P rep-
resentation for the thermal state,

Pth(~β) =
∏

i=x,y,z

1

π 〈n̂i〉
e−|βi|

2/〈n̂i〉,

where 〈n̂i〉 is the average excitation number in each direc-
tion. Under the unperturbed Hamiltonian H0 Equ.(12)
the final state after a full oscillation is

ρ
(0)
th (t0) =

1

2

∫
d2~β Pth(~β)(

∣∣∣~β〉 |+1〉+
∣∣∣~β〉 |−1〉 eiφGrav )⊗

〈
~β
∣∣∣ 〈+1|+

〈
~β
∣∣∣ 〈−1| e−iφGrav )

≡1

2

∫
d2~β Pth(~β) (

∣∣∣Ψ(0)(~β,+1)
〉

+
∣∣∣Ψ(0)(~β,−1)

〉
)⊗ (

〈
Ψ(0)(~β,+1)

∣∣∣+
〈

Ψ(0)(~β,−1)
∣∣∣)

≡1

2

∫
d2~β Pth(~β)σ(0)(~β),

(28)

while the final state for the perturbed case (to the second
order correction in the perturbation analysis and here we
denoting the corresponding propagator by U (2)(t0) ) is

ρ
(2)
th (t0) =U (2)(t0)ρth(0)U†(2)(t0)

=
1

2

∫
d2~β Pth(~β)(

∣∣∣Ψ(2)(~β,+1)
〉

+
∣∣∣Ψ(2)(~β,−1)

〉
)⊗ (

〈
Ψ(2)(~β,+1)

∣∣∣+
〈

Ψ(2)(~β,−1)
∣∣∣)

≡1

2

∫
d2~β Pth(~β)σ(2)(~β),

(29)

where
∣∣∣Ψ(2)(~β,±1)

〉
= U (2)(t0)

∣∣∣~β〉 |±1〉 is obtained nu-

merically. By the virtue of the concavity of the fidelity
of two density matrix,

F (ρ
(0)
th (t0), ρ

(2)
th (t0)) ≥

∫
d2~β Pth(~β)F (σ(0)(~β), σ(2)(~β)),

the lower bound of F (σ(0)(~β), σ(2)(~β)) could be approx-
imately estimated from sampling the value of β0 from

Pth(~β) providing a sufficient sample size. However, given

the insensitivity of F = |
〈

Ψ(2)(~β,±1)
∣∣∣Ψ(0)(~β,±1)

〉
|

against the magnitude β up to 150 (to what we are capa-
ble of simulating), we conclude that for a thermal state
F (ρ

(0)
th (t0), ρ

(2)
th (t0)) is bounded by a high value within

the simulation range. Reminding that the average exci-
tation number for a coherent state is |β0〉 is 〈n〉 = |β0|2,
we conjecture that our perturbation analysis is not sen-
sitive to the initial thermal effect for the temperature (1
mK correspond to ∼ 1000 thermal occupations) we con-
sider, since going beyond such the temperature we would
encounter anharmonicity in the trap potential and inval-
idate the scheme.
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