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Abstract
Vibronic coupling between the electronic and vibrational degrees of freedom has been reported to

play an important role in charge and exciton transport in organic photovoltaic materials, molecular

aggregates and light-harvesting complexes. Explicitly accounting for effective vibrational modes

rather than treating them as a thermal environment has been shown to be crucial to describe the

effect of vibronic coupling. We present a methodology to study dissipative quantum dynamics of

vibronically coupled systems based on a surrogate Hamiltonian approach, which is in principle not

limited by Markov approximation or weak system-bath interaction, using a vibronic basis. We apply

vibronic surrogate Hamiltonian method to a linear chain system and discuss how different types

of relaxation process, intramolecular vibrational relaxation and intermolecular vibronic relaxation,

influence population dynamics of dissipative vibronic systems.

1



I. INTRODUCTION

Understanding the mechanism of charge and excitation-energy transfer in organic materi-

als and light harvesting complexes has been the focus of many experimental and theoretical

studies over the last few decades. In such photophysical processes there is often strong

mixing between the electronic and vibrational degrees of freedom (DOF) and the vibronic

coupling between the electronic and nuclear DOFs can play a significant role.1–16 It has

been reported that vibronic coupling is the origin of long-lived oscillations observed in two

dimensional (2D) electronic spectra of the light-harvesting Fenna-Matthews-Olson (FMO)

complex,1–3 the photosystem II reaction centre,4,5 an artificial molecular light harvester,6

and a homodimer system.7 Electronic resonance with vibrations has been suggested to en-

hance efficient photosynthetic energy transfer10,17,18 and charge separation rate in oxygenic

photosynthesis.5 Evidence of the importance of vibronic coupling in ultrafast singlet fission

has been recently provided by the experiments of ultrafast vibronic spectroscopy on thin

films of TIPS-pentacene11 and 2D electronic spectroscopy on pentacene and its derivatives12

and by the computational studies.13,14 Vibronic coupling was also suggested as an underly-

ing mechanism for ultrafast coherent charge transfer in organic photovoltaic (OPV) hetero-

junctions using a combined approach of high time-resolution pump-probe spectroscopy and

time-dependent density functional theory (TDDFT) simulations15 and by quantum dynam-

ics simulations.16

There have been considerable theoretical efforts to elucidate the role of vibrational DOF

in the dynamics of charge and exciton transport.1,3,16,17,19–26 It has been shown that explicitly

accounting for effective vibrational DOFs (vibronic model) rather than incorporating them

into the thermal reservoir (electronic model) can predict the system dynamics in better

agreement with the experiment.1,17,23 Christensson et al.1 predicted the long-lived oscillations

in the 2D spectra of the FMO complex with dephasing times that agree with the experimental

results using a vibronic model, whereas the electronic model predicts a much faster time

scale by an order of magnitude. Using a vibronic model Womick and Moran17 explained the

different relaxation rates observed in two cyanobacterial light-harvesting proteins despite the

almost identical structures of their pigment dimers whereas the opposite trend was predicted

using the electronic model.

In recent years quantum dynamics calculations based on a vibronic Hamiltonian have
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been carried out for a variety of systems to study photoinduced dynamics at a conical

intersection,21,22 exciton dynamics and 2D spectra of a dimer system,23,24,27,28 the effect of vi-

bronic coupling on coherences and relaxation mechanisms in light-harvesting complexes,1,2,17

and ultrafast charge transfer at the donor-acceptor interface of OPV heterojunctions.16

Works based on Redfield theory29–31 assume that the system-bath coupling is weak (to

allow a perturbative treatment) and that the time scale of the bath dynamics is much faster

than that of the system dynamics (to ignore memory effects and adopt the Markov approx-

imation). However, the Markov approximation can be problematic when system dynamics

occurs on ultrafast time scales and therefore the vibrational relaxation cannot be separated

from the electronic relaxation. A modified Redfield theory32,33 has been developed to go be-

yond weak system-bath coupling and applied to model the effect of vibronic coupling on the

electronic relaxation rates in light-harvesting proteins.17 The hierarchy equations of motion

(HEOM)34–43 method provides a computationally expensive, yet accurate way to model open

quantum systems beyond the Markovian and perturbative approximations by introducing a

set of auxiliary density operators. In recent years, the multi-configuration time-dependent

Hartree (MCTDH) method,44–46 where the multidimensional vibrational wavefunctions are

described as a linear combination of the Hartree products of single-mode wave functions, has

been used to describe e.g., the role of vibronic coupling in ultrafast charge transfer dynamics

at an OPV donor-acceptor heterojunction.16

The surrogate Hamiltonian method47–49 provides another means to study dissipative

quantum dynamics without assuming a weak system-bath coupling or Markov approxima-

tion and has been shown to successfully model quantum dynamics of a variety of physical

processes.47,48,50–58 The basic idea of the surrogate Hamiltonian approach is to construct a

finite system-bath Hamiltonian, which can reproduce the true system dynamics in the limit

of an infinite number of bath modes for a finite time interval, by using the representative

bath modes that span the typical energy range of the system.47,50 Truncation of the infinite

number of bath modes into the finite representative modes limits the description of system

dynamics to short time evolution and recurrence eventually appears. Still, the surrogate

Hamiltonian approach is advantageous to describe the vibronic relaxation process due to

its less restrictive assumption on system-bath interaction and relative time scale of system

dynamics. In addition, the construction of the bath can be done in a more controllable way

and system-bath interactions can be tailored to a particular physical process of interest as
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described in the next section.

Surrogate Hamiltonian method has been used to model nuclear/electronic relax-

ation/dephasing in photoinduced processes such as pump-probe charge transfer, pho-

todesorption, and hot injection, where the system wavefunction is described using a grid

representation.50–55 In order to model exciton and charge transport in large systems such

as photosynthetic complexes, for which the grid propagation method can be numeri-

cally expensive,56 eigen-(site-)basis set has been introduced in the surrogate Hamiltonian

method.56–58 In those studies only electronic states were accounted for in the primary system

and vibrational states were included in the bath. Herein we employ surrogate Hamiltonian

method on a vibronic basis where the effective vibrational mode is explicitly incorporated

into the primary system. In addition to the numerical advantage of a vibronic-basis de-

scription over a grid representation, the former can be also more useful for the specific

experimental problems where certain vibrational levels and their resonance/off-resonance

with electronic states are of interest12,59,60 and/or the effect of high-frequency vibrational

mode is important.7 The vibronic basis set61 has been vastly used to describe absorption

and emission spectra of molecular aggregates62–65 using the Holstein Hamiltonian66 to study

singlet fission in linear chains of molecules67 and to explain the role of vibronic coupling

in light-harvesting complexes in combination with a (modified) Redfield theory.1,17 Employ-

ing a vibronic basis within the framework of the surrogate Hamiltonian quantum dynamics

method allows us not only to go beyond weak system-bath coupling interaction and Markov

approximation but also to investigate in a systematic way different types of relaxation mech-

anism in a vibronic system as described in the next section.

In the remainder of this paper, after introducing the surrogate Hamitonian method for

vibronic Hamiltonians (section II), we consider a minimal dimer model (section IIIA) and

a vibronic one-dimensional chain as a model of the OPV donor-acceptor interface (sec-

tion III B).
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II. METHODOLOGY

A. Surrogate Hamiltonian method in a vibronic basis

The total Hamiltonian of the system embedded in a bath can be written as the sum of

system, bath and system-bath interaction terms,

Ĥ = ĤS + ĤB + ĤSB, (1)

where

ĤS =
∑
i,v

∑
j,w

H
(S)
iv,jw|i,v〉〈j,w| (2)

ĤB =
∑
k

εkσ̂
†
kσ̂k (3)

ĤSB =
∑
k

∑
i,v

∑
j,w

G(k)
iv,jw(σ̂†k + σ̂k)|i,v〉〈j,w|. (4)

Here |i,v〉 = |i; v1 · · · vm · · · 〉 is a vibronic state of the primary system, which represents the

product state of an electronic state |i〉 localized on molecular site i and N vibrational states

|v〉 = |v1 · · · vN〉 each localized on one of the N sites.68,69 We adopt the site basis (diabatic

representation) instead of eigenstate basis to describe the electronic states because the former

is more convenient to describe the model Hamiltonian when the system-bath interaction is

local, which is typically the case in a disordered system such as polymer. It should be noted

that the quantum dynamics can be studied in any basis once the model Hamiltonian is

obtained (e.g., Schröter et al.70 described dissipative dynamics of an excitonic heterodimer

using both adiabatic and diabatic representations). We defer a detailed description of H(S)
iv,jw

to the next section. In the surrogate Hamiltonian approach the bath modes are described

by a finite number of non-interacting two-level systems (a so-called spin bath) and therefore

σ̂†k/σ̂k is the creation/annihilation operator of the spin bath mode k with energy εk. The

spin bath allows a particularly efficient wavefunction propagation in very large Hilbert spaces

by using a bit-ordered spinor as detailed in ref.71 Eq. 4 describes the most general form of

system-bath interaction where G(k)
iv,jw represents the system-bath coupling strength of the

mode k associated with the transition between two vibronic states |i,v〉 and |j,w〉 of the

primary system.

The Hamiltonian above is extremely general and the only approximation with respect to

the most standard system-bath Hamiltonian is that the bath is not a collection of harmonic
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FIG. 1: Schematic of the system-bath interaction where the bath mode interacts locally with the

vibronic states in its vicinity. Here Ĥ(1)
SB and Ĥ(2)

SB indicate the intramolecular and intermolecular

system-bath interaction, respectively.

oscillators but spins. However, the spin bath can be considered an approximation of the

harmonic oscillator at low bath temperature since no bath mode oscillator is highly excited

at low temperature47 and this analogy will be used to build models for realistic situations.

(In fact, Gelman et al.49 showed that the dynamics of the primary system of an anharmonic

oscillator is not very different between the spin and harmonic baths except for extremely

large system-bath coupling, which was carried out using the surrogate Hamiltonian approach

and the MCTDH method, respectively.) In particular, the operator σ̂†k + σ̂k is analogous to

the displacement qk of mode k. For the problems of exciton and charge transport we have

a collection of electronic states localized in different regions of space, and nuclear modes

of the system also localized in different regions. It is therefore appropriate to also assume

that the bath modes {k} are localized in such a way that each interacts only with a limited

number of vibronic states in its vicinity (see Figure 1), which is different from the bath

model employed in other surrogate Hamiltonian methods.102

B. 1D aggregates - The Primary system Hamiltonian

In this paper we consider for specificity the case of a one-dimensional (1D) aggregate of

molecules with nearest neighbor interaction, a model that can be adapted to a number of

interesting problems. Each molecular site is coupled to a single intramolecular vibrational

mode with the frequency ω, whereas the remaining vibrational modes and the environmental
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degrees of freedom are treated as a thermal bath. By considering a single electronic state

per site, the vibronic system Hamiltonian can be written as66,68,72,73

ĤS =
∑
i

∑
v

(
Ei + nv~ω

)
|i,v〉〈i,v|+

∑
i

∑
v,w

[
τV i,i+1

v,w |i,v〉〈i+ 1,w|+ H.c.
]
. (5)

The first term in eq. 5 represents the energy of a vibronic state |i,v〉, where Ei is the

electronic site energy and nv =
∑N

m=1 vm is the total vibrational quantum number with N

being the number of molecules. (Here zero point energy is included in Ei and vibrational

modes are assumed to be harmonic.) The second term represents the vibronic coupling,

where τ is the electronic coupling (assumed to be the same for all adjacent pairs) and V i,i+1
v,w

is the vibrational coupling between two vibronic states |i,v〉 and |i+ 1,w〉,67

V i,i+1
v,w = FCi,i+1

vi,wi
FCi,i+1

vi+1,wi+1

N∏
m 6=i,i+1

δvm,wm , (6)

where FCi,i+1
vi,wi

is the Franck-Condon factor, i.e., the overlap integral between the vibrational

states |vii〉 and |wi+1
i 〉 belonging to the electronic states |i〉 and |i+1〉, respectively. (Here |vii〉

and |vii+1〉 indicate the vibrational state localized on site i and i+ 1, respectively, belonging

to the electronic state |i〉.) The Franck-Condon factor can be obtained via the analytical

expression31 once the Huang-Rhys factor S, which describes the electron-vibrational coupling

strength, is determined.

C. 1D aggregates - form of the system-bath Hamiltonian

1. Pure vibrational relaxation

This is the transition between state |i,v〉 and state |i,w〉 differing by the vibrational quan-

tum numbers. In analogy with conventional vibrational relaxation theory with a harmonic

bath we allow transitions between states only differing by one vibrational quantum number

(this would be the consequence of linear system-bath coupling in a harmonic bath). The

energy difference between initial and final states will correspond to excitation/de-excitation

of a bath mode. It is expected that different bath modes are responsible for the relaxation

process in different portions of the system. Therefore, rather than using the index k for the

modes we label them by the double index jk where j indicates the position where they are
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located (between 1 and N) and k is a mode number index. (e.g., The mode jk promotes

transitions involving the site j). Thus, ĤSB in eq. 4 takes the following form:

Ĥ
(1)
SB =

∑
i,v

∑
j

[√
vj + 1

∣∣i; v1, · · · , vj, · · ·
〉〈
i; v1, · · · , vj + 1, · · ·

∣∣+
√
vj
∣∣i; v1, · · · , vj, · · ·

〉〈
i; v1, · · · , vj − 1, · · ·

∣∣]∑
k

ck
(
σ̂†jk + σ̂jk

)
, (7)

where ck represents the strength of the interaction with mode k. In our model it does not

depend on j because we are considering identical molecules. In section IID we discuss a

suitable parameterization of ck and the mode energy.

2. Intermolecular vibronic relaxation

This is the transition between two different vibronic states |i,v〉 and |j,w〉 (i 6= j), which

can be considered as excitation energy transfer between pigment sites in the light harvesting

complexes or charge relaxation between the molecular units in the organic solar cells. To

express properly the Hamiltonian in the notation of the surrogate Hamiltonian we need to

recall that electronic transitions are also promoted by nuclear modes (inducing modes) that

modulate the electronic coupling between two states (Herzberg-Teller mechanism).69,74–76

For instance, electronic transitions between localized states in polymeric semiconductors

with (average) zero electronic coupling are promoted by inducing vibrational modes that

modulate a coupling between two states. The strength of the intermolecular interaction is

therefore also modulated by the Franck-Condon overlap between initial and final vibronic

states. This component of the system-bath interaction takes the form:

Ĥ
(2)
SB =

∑
i,v

∑
w

∣∣i,v〉〈i+ 1,w
∣∣V i,i+1

v,w

∑
k

dk
(
σ̂†ik + σ̂ik + σ̂†i+1,k + σ̂i+1,k

)
+ H.c. (8)

We have assumed that the transition between the electronic states |i〉 and |i+1〉 is modulated

by the modes localized in position i and i+1 in equal measure. The parameters dk quantifying

the strength of the interaction with the bath could in principle depend on i, but we assume

here that there is translational symmetry in the inter-molecular aggregate. Here we neglect

the coupling between the bath and electronic states that are not nearest neighbors and allow

energy relaxation between all vibronic states as long as they belong to adjacent sites. (Eq. 8

can be easily modified to simulate a particular relaxation pathway of interest if necessary.)
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It should be noted that the modulation of the site transition energy, associated with the

transition between two different vibrational levels on the same molecular site, also promotes

electronic transitions and it is accounted for in eq. 7.

Eqs. 7-8 take a slightly different form from the expression of the system-bath interaction

for the electronic relaxation process typically found in literature,56–58 where ĤSB is described

as a tensor product of the system and bath operators (meaning that system and bath

operators can be separated). In that case the system operator, which is independent of the

bath mode, defines the relaxation pathway and each bath mode is involved in any transition

equally. As we wish to study electronic states localized in different portions of space, we

have set the model in a way to allow only certain modes to promote certain transitions, i.e.,

the bath spin operator acts selectively on each transition.

D. Parameterization of the system-bath Hamiltonian

The general strategy to parameterize the system-bath Hamiltonian is to assume a stan-

dard bath spectral density J(ε). The system-bath coupling strength dk in the surrogate

Hamiltonian approach is given by47,48,50

dk =

√
J(εk)

ρ(εk)
, (9)

where ρ(εk) = [εk+1 − εk]−1 corresponds to the density of bath modes. The bath spectral

density J(ε) is in general described as a continuous function of bath energy and determined

by two parameters, the global system-bath coupling strength parameter λ and the charac-

teristic time scale ε−1
c of the bath correlation function (e.g., J(ε) = 2λεεc/(ε

2 + ε2
c) for the

Drude-Lorentz spectral density).77,78 Here the global system-bath coupling strength param-

eter λ is a measure of the off-diagonal electron-phonon coupling strength. For the simplest

case of a homodimer system with E1 = E2, λ is the reorganization energy associated with

the geometry relaxation due to the non-local electron phonon coupling. This type of bath

spectral density can be used to describe dk for the intermolecular vibronic relaxation in eq. 8,

where relaxation energies are not uniform across transitions.

However, for the specific problem of purely vibrational relaxation (eq. 7) all transitions in-

volve the same energy difference (this is a consequence of having harmonic nuclear modes).

Therefore, it is more efficient to employ a bath model with a discrete spectral density,

9



described by a δ-function, with bath mode energies distributed around the vibrational tran-

sition energy ~ω. Here we set the system-bath coupling strength independent of mode k,

i.e., ck = c.

E. Numerical approximation and wavefunction propagation

The forms chosen for the system-bath coupling are physically justified and chosen to be

dependent on a very small number of parameters. These are not critical approximations in

the sense that one can consider more general forms for the system-bath coupling without

adding much additional cost to the calculation. The critical approximations discussed in

this section are (i) setting a finite size of the system space and (ii) setting a finite size of the

bath space. These approximations are to reduce the computational cost without altering the

outcome significantly. For any problem of interest one needs to verify that the observables

are converged with respect to the increase of both sizes.

The dimension of the system Hilbert space increases exponentially with the number of

molecular sites, given by N × LN for a 1D chain model with N sites and L vibrational

levels per site. However, it may not be necessary to consider all possible vibronic states

because vibronic states with a large quantum number are not likely to play an important

role in overall system dynamics. Therefore, we introduce a scheme to restrict the number

of vibronic states {|i, v1 · · · vm · · · 〉} included in the system Hamiltonian (eq. 5). As we will

consider problems where the on-site electronic energy can be different, we consider a set of

vibronic states such that Ei + nv~ω ≤ Ecutoff . In this way a smaller number of vibrational

states are included when the electronic energy is higher.

The spin bath state with M bath modes is described by a 2M dimensional spinor and

its dimensionality increases rapidly with M . It has been shown that it is not necessary to

consider all possibilities of the bath mode excitations when the system-bath coupling is weak

and therefore the number of simultaneous excitations can be restricted (to a single phonon

excitation for the extreme case).47,49,50,52 When the number of simultaneous excitations is

restricted to Nexc, the dimension of the bath spinor is reduced to
∑Nexc

k=0

(
M
k

)
, where

(
M
k

)
=

M !
k!(M−k)!

denotes the binomial coefficients.

We assume that the system-bath states are not correlated at t=0, which is likely to be

the case, e.g., upon photoexcitation. We set the bath temperature to 0 K and therefore do
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not consider the random phase factor when constructing the initial bath state. Then, the

initial total wavefunction can be simply given by the tensor product of the initial system

wavefunction and the bath ground state wavefunction where no bath mode is excited. The

initial wavefunction for the total system |ψ(0)〉 is propagated by applying the time evolution

operator, |ψ(t)〉 = e−iĤt/~|ψ(0)〉, which is done by expanding the time evolution operator by a

series of Chebychev polynomials.79–81 Once the quantum dynamics of the total wavefunction

is obtained, the temporal evolution of the system observables can be evaluated from the

reduced density operator ρ̂S(t) obtained by tracing out the bath modes from the total density

operator

ρ̂S(t) = TrB{ρ̂(t)} =
∑
b

〈b|ψ(t)〉〈ψ(t)|b〉, (10)

where |b〉 is the bath eigenstate and TrB{ } denotes a partial trace over the bath states.

III. APPLICATIONS

A. Dimer system

A vibronic dimer is highly relevant to the study of exciton transfer in light harvest-

ing complexes and molecular aggregates3,9,17,23 and has been extensively used to obtain

experimental observables such as 2D electronic/vibronic spectra2,10,25,27,28,82–85 and absorp-

tion/fluorescence spectra.18,86 We consider a single electronic state per molecular site. The

system parameters are set to ∆E12 = E2 −E1=1274 cm−1 (=0.158 eV), τ=81 cm−1 (=0.01

eV), ω=1400 cm−1 (~ω=0.174 eV), and Huang-Rhys factor S=0.5. (The same parameter

values of τ, ω, and S are used in section III B unless noted otherwise.) To simplify the anal-

ysis, the maximum vibrational quantum number Li of each electronic state |i〉 is set to L1=1

and L2=0. At t=0 the wavefunction is localized on the molecular site i=2 in the vibrational

ground state, i.e., |ψ(t = 0)〉 = |2; 00〉. The number of simultaneous excitations of the bath

modes is limited to Nexc=2 in all cases. (We found that a further increase of Nexc does not

alter the system dynamics.)
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1. Intramolecular vibrational relaxation

We first consider the case where only intramolecular vibrational relaxation occurs (Ĥ(1)
SB 6=

0, Ĥ
(2)
SB = 0). We set the number of bath modes coupled to each site to M1=9 and M2=0

since L2=0. (We obtain the same population dynamics by setting M2=9.) This illustrates

the advantage of employing bath modes localized in space, by having the flexibility of using

different qualities of bath description on different sites. The bath modes are constructed

with constant energy spacing δε=32 cm−1, centered at ~ω. (Further details on construction

of the bath modes can be found in section I in supplementary material (SM).)

The time evolution of the population of site 2 is plotted in Figure 2a for different val-

ues of the system-bath coupling strength c. (The population of site i is computed by

Pi(t) =
∑

v 〈i,v|ρ̂S(t)|i,v〉.) The initial decay rate of the population (t<0.1 ps) is almost

identical in all cases because any significant effect of the dissipative environment does not

take place in this short time scale. Without the coupling to the bath (c=0), the population

dynamics exhibits a Rabi-type coherent oscillation. This coherent oscillation has vibronic

nature with most contribution coming from the vibrational excited state of site 1 (|1; 10〉)

and the vibrational ground state of site 2 (|2; 00〉), due to their close energy level alignment.

The coupling to the bath leads to a damped oscillation of the population. As c increases, the

population of site 2 decays rapidly and vibronic coherent oscillatory features become strongly

suppressed with time. We also find high-frequency oscillatory features with very small am-

plitude, which originate from the transitions between the |2; 00〉 and |1; 00〉 states. (See

section IIA and Figure S2 in SM for Fourier analysis of the population to identify the origin

of the oscillations). These electronic coherences are more pronounced after the initial decay

(t>0.1 ps) and are preserved almost independently of the system-bath coupling strength c.

To assure the assignment of the observed coherences we plot the real and imaginary parts

of the coherences between each pair of the vibronic states in Figure 2b. (The coherence

between vibronic states |i,v〉 and |j,w〉 is computed by Civ,jw(t) = 〈i,v|ρ̂S(t)|j,w〉.) As

expected, the vibronic coherences C(1;10),(2;00) are dominant over the electronic coherences

C(1;00),(2;00). Our results indicate that the vibronic surrogate Hamiltonian method can dif-

ferentiate between electronic and vibronic coherences, which is critical to understand the

underlying mechanisms of efficient charge and exciton transport.

Figure 2a also demonstrates how the bath mode energy (or bath spectral density) influ-
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FIG. 2: Intramolecular vibrational relaxation of a dimer. (a) Time evolution of the population of

site 2 with varying c for δε=32 cm−1 (dotted line indicates P2(t) for δε=16 cm−1 and c=8 cm−1).

(b) Real and imaginary parts of coherence Civ,jw for c=8 cm−1. The vibronic coherence C(1;10),(2;00)

is largest and C(1;00),(1;10) is almost negligible.

ences population dynamics. In the figure, P2(t) for δε=16 cm−1 (black dotted line) fluctuates

around 0.86, whereas it continues to decay for δε=32 cm−1. Efficient population relaxation

for the latter results from the close energy-level alignment of the bath modes to the inter-site

transition energy. (The energy levels are off by 5.6 and 0.56 cm−1 for δε=16 and 32 cm−1,

respectively.) Very different population relaxation dynamics depending on the construction

of the bath spectral density suggests that some of the phenomenology can be described

poorly by a bath that is incorrectly parameterized, i.e., the description of open quantum

dynamics in vibronic systems may need to be supported by good computational studies to

determine system-specific parameters. This sensitive behavior also indicates another possi-

bility of controlling system dynamics by modulating the system-bath interaction, which is

in line with the previous studies,56,87 in addition to controlling it by an external field.88

2. Vibronic relaxation

In this section we first consider the case where the relaxation mechanism is entirely

governed by the intermolecular vibronic relaxation (Ĥ(1)
SB =0, Ĥ(2)

SB 6=0) and then discuss the

more general case where both intramolecular and intermolecular relaxation pathways coexist

(Ĥ(1)
SB 6=0, Ĥ(2)

SB 6=0). To model intermolecular relaxation we employ the Drude-Lorentz bath
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FIG. 3: Population dynamics of site 2 of a dimer. (a) Intermolecular vibronic relaxation with

varying λ. Recurrences, which is an artifact of the method using the finite size of the bath, occur

after ∼0.8 ps for λ=5 cm−1, indicating the backflow of energy from the bath to the system. Inset

shows P2(t) using an electronic basis (solid lines) compared to using a vibronic basis (dashed line).

(b) P2(t) when both relaxation pathways are accessible (λ=1 cm−1, c=12 cm−1). Inset shows

relaxation efficiency η with varying c and λ.

spectral density described in section IID with εc=106 cm−1. Nine bath modes are coupled to

eachmolecular site and total 27 bath modes are used to model both relaxation pathways. The

time evolution of the population for purely intermolecular relaxation is plotted for different

values of λ in Figure 3a. As we have seen for the intramolecular vibrational relaxation,

the initial decay rate of the population (t<0.1 ps) is very similar regardless of the system-

bath coupling strength λ because the initial population dynamics is mostly determined by

the transition between the |1; 10〉 and |2; 00〉 states. In addition, the population dynamics

exhibits coherent oscillations with a vibronic origin arising from the oscillation between the

|1; 10〉 and |2; 00〉 states (see section IIB in SM for discussions on the nature of coherences

in detail). As the λ increases, the population decay becomes stronger and the oscillatory

feature becomes weaker.103

Next, we explore the difference between using an electronic basis and using a vibronic

basis. For the electronic basis the bath has additional high-frequency intramolecular vi-

brational mode described by the δ-function spectral density with the system-bath coupling

strength dkω . (Note that dkω=0 leads to the same bath used for a vibronic basis). Inset
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in Figure 3a shows the population obtained using a vibronic basis (dashed line) and us-

ing an electronic basis (solid line) for two different values of dkω . Electronic model with

dkω=0 leads to the population dynamics very different from that of the vibronic model, i.e.,

no vibronic oscillatory features are observed and the population decays with very different

rates. On the other hand, the population of the electronic model with dkω=24 cm−1 exhibits

vibronic oscillatory features and decays with the rate similar to the vibronic model at t<0.1

ps, whereas the population starts to deviate from that of the vibronic model afterwards.

Our results suggest that electronic model may be able to describe qualitative features of the

system dynamics when high-frequency vibrational modes are explicitly accounted for in the

bath, but the rate of population relaxation can be quite different from that of the vibronic

model, which demonstrates the importance of treating effective vibrational modes explicitly

in the primary system to model vibronically coupled systems.

Next, we consider the case where the system-bath interaction includes both intramolecu-

lar and intermolecular relaxation (ĤSB = Ĥ
(1)
SB +Ĥ

(2)
SB ). The time evolution of the population

is plotted in Figure 3b for the parameters λ=1 cm−1 and c=12 cm−1, where the popula-

tion evolution for purely intramolecular vibrational relaxation (c=12 cm−1) and for purely

intermolecular vibronic relaxation (λ=1 cm−1) is also plotted for comparison. The initial

decay of the population (t<0.1 ps) is quite similar in all cases because time evolution of the

population on this time scale is mostly determined by the non-dissipative quantum dynam-

ics. Similarly to intramolecular vibrational relaxation, vibronic coherent features are almost

lost after 1 ps when both relaxation pathways are accessible. In general, population evolu-

tion under both relaxation mechanisms is largely determined by the relative strength of the

system-bath interaction of each relaxation mechanism (λ and c). One important measure

of efficiency of population relaxation is how fast the ground state gains its population. We

obtain the relaxation efficiency η by evaluating the accumulated population of the ground

state over time before recurrence occurs: η ≡ (1/τ)
´ τ

0
dt〈ψg|ρ̂S(t)|ψg〉,56,89 where |ψg〉 is the

vibronic ground state (|1; 00〉) and the time window of integration τ is set to 0.7 ps in all

cases. We note in passing that η can be sensitive to the value of τ and therefore should be

interpreted as only a qualitative measure of relaxation efficiency. As expected, η increases

as the system-bath coupling strength c or λ increases (see inset in Figure 3b). It is also

seen that η increases almost linearly with c for a given value of λ (η also exhibits a similar

behavior with λ for a given value of c − figure not shown). This trend, however, should not
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be generalized to cases where the relaxation pathway involves multiple target states.56 It

should also be noted that other bath parameters such as εc and δε may affect η. Note that

generalization to a vibronic basis improves the fidelity to the real system, but also increases

the number of parameters of the model.

B. A 1D model for charge relaxation in OPV cells

We consider a 1D vibronic chain with parameters chosen to describe the physics of charge

relaxation in OPV donor-acceptor interfaces. The electronic energy levels are given by

Ei=− e2

4πεDi
, where ε is the permittivity of the dielectric medium and D is the distance

between adjacent sites. Such a system represents a good minimal model90–93 for the process

of charge generation/recombination in OPV cells. These states can be thought as those of an

electron acceptor under the influence of a positive hole in the electron donor separated by a

distance D from the nearest electron. One is particularly interested in the relaxation from a

given energy level toward the lowest energy level E1 because this is the process preliminary

to the hole-electron recombination that technologists need to limit. As a minimal model

to describe the charge relaxation process near the donor-acceptor interface, we consider a

system of four acceptor sites. We set the initial wavefunction localized on the acceptor site 3

in the vibrational ground state (|ψ(t=0)〉=|3; 0000〉). This initial state can be considered as a

charge-transfer (CT) state with an intermediate electron-hole separation, which may evolve

into a charge-separated state or relax to a lower-energy CT state before charge recombination

occurs. In this work we focus on the charge relaxation process and the role of vibronic

coupling in that process.

The system parameters are set to D=13 Å, which corresponds to the acceptor-acceptor

distance for fullerene derivatives, and ε = 3.5ε0, which is close to the reported experimental

value for OPV materials.94,95 (The electronic energies of the dimer system in section IIIA

correspond to the Coulombic on-site energies E1 and E2 with the electronic parameters

used here.) Since the electronic energies are site-dependent, we impose the energy threshold

to limit the number of states in the primary system as described in section II E. Due to

the large energy gap between the initial state and the vibrational excited states of site 2

(∆E=976 cm−1) and relatively small vibronic coupling (32 cm−1) it is not likely that the

vibratoinal excited states of site 2 plays a role in the population dynamics. Therefore, we
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set the energy cutoff to Ecutoff = E3 +0.5~ω (see inset on the left in Figure 4a), which results

in total eight vibronic states in the primary system. (Note that there are four degenerate

vibrational excited states with energy E1 + ~ω.) The primary system Hamiltonian is very

sparse, i.e., only 28% of ĤS elements are non-zero. It should be noted that, however, all

system states are coupled via the bath. The bath parameters are set to δε=129 cm−1 and

εc=106 cm−1. Total 25 bath modes are employed and the maximum number of simultaneous

excitations is set to Nexc=2.104

The time evolution of the population of each site is plotted in Figure 4a for c=16 cm−1

and λ=1 cm−1, where the population dynamics of a closed system is also plotted in the

figure inset. Initial population dynamics is governed by the transitions between the |3; 0000〉

and |4; 0000〉 states and the transitions between the |3; 0000〉 and |2; 0000〉 states, where the

former has larger transition probability due to closer energy level alignment (E4 − E3 =

(E3−E2)/2). Therefore, when the system is not coupled to the bath, the population of site

2 is much smaller than that of site 4 and the population of site 1 is almost negligible (see

inset in Figure 4a). As the system is coupled to the bath and the system-bath interaction

takes effect (t>0.1 ps), the population transfers from site 3 to site 2 and to site 1. As

the system-bath interaction becomes stronger, the population of site 1 increases faster as

shown in Figure 4b, where the P1 is plotted for different values of c (increasing from 8

to 48 cm−1) with λ=1 cm−1 and for different values of λ (=0.5, 1, 2, 5 cm−1) with c=16

cm−1. More specifically, an increase of the intramolecular relaxation parameter c leads to

a faster increase of P1 but a slower increase of P2. On the other hand, an increase of the

intermolecular relaxation parameter λ leads to a faster increase of both P1 and P2 and a

faster decrease of P3 accordingly (figure not shown). Different relaxation pathways modulate

the population of each site differently, but stronger system-bath interaction ultimately leads

to a faster charge relaxation to the lowest-lying CT state for both relaxation pathways. It

is generally accepted that the single most important loss mechanism in OPV cells is the

charge recombination and one of the key objectives in the field is therefore to reduce the

rate of charge recombination. We have seen in this study that the rate of forming bound

hole-electon pairs (the last intermediate before irreversible charge recombination occurs) is

controlled by the system-bath interaction. A strategy to increase the efficiency of OPV cells

is therefore to make the energy dissipation process inefficient, e.g., by first identifying the

modes that are responsible for the dissipation and then defining strategies for reducing their
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FIG. 4: Vibronic 1D chain (N=4) (a) Population of each site (Pi) for S=0.5. Inset on the top

right corner shows Pi(t) without coupling to the bath and inset on the left illustrates the energy

levels with the cutoff energy (dashed line). (b) P1 for different values of the system-bath coupling

strength (c, λ). (c) Population of each site for S=0.25.
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importance based on changing functional groups, controlling the interface energetics and

morphology, etc. (Note the stark contrast between the qualitative features of this model

and the kinetic Monte Carlo modeling of the same interface that assumes first order kinetic

rate of hopping between sites with rates not depending on their energy difference.96,97)

To see the importance of vibronic coupling in charge relaxation we obtain the population

dynamics for different values of the Huang-Rhys factor S. It should be noted that the

effect of S is more subtle because the Franck-Condon factor FCv,w associated with the

excited vibrational level, e.g., FC1,0 is not monotonic in S, whereas FC0,0 decreases with

the increase of S. The most noticeable change, when the S is reduced from 0.5 (Figure 4a)

to 0.25 (Figure 4c), is the increase of the population transition rate from site 3 to site 2

(and from site 3 to site 4) and the increase of the relaxation rate. We find the same trend,

i.e., faster decay of the P3 and faster rise of the P2, when decreasing the S from 1 to 0.5,

0.25, and 0.1 (figure not shown). This can be explained by the increase of the coupling

strength between sites 2 and 3 (V 2,3
(0000),(0000)) and between sites 3 and 4 (V 3,4

(0000),(0000)) as the

S decreases (see eq. 6 and also note that the Franck-Condon factor FCi,i+1
vi,wi

for vi=wi=0

increases as the S decreases and here vi=wi=0 for sites i>1.) In addition, an increase of the

vibrational coupling V i,i+1
v,w leads to the increase of the intermolecular system-bath coupling

strength (see eq. 8). On the other hand, the effect of the vibronic coupling strength on the

population of site 1 appears as less significant for a given simulation time as compared to

its effect on the P2 or P3. We find that the P1 increases as the S increases from 0.1 to

0.25 but decreases as the S increases further to 0.5 and 1. A complete charge relaxation

to the lowest-energy CT state, reaching an equilibrium, is expected to occur on tens of

picoseconds to nanoseconds. The valid time scale of the simulation in this work is limited

by the recurrence time (∼0.7 ps) resulting from the finite size of the bath. Nevertheless, our

model demonstrates how charge relaxation dynamics is influenced by the vibronic coupling

of the intramolecular vibrational mode to the electronic DOF.

IV. CONCLUSIONS

In this paper we presented a theoretical framework to model dissipative quantum dy-

namics of a vibronically coupled system using a vibronic basis and applied it to vibronic

linear chain systems that can be related to realistic problems. To this end, the primary
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system was assumed to be a 1D aggregate coupled to a single intramolecular vibrational

mode with a single electronic state per site and nearest-neighbor electronic interaction, and

the primary system Hamiltonian was constructed on a vibronic basis where the vibrational

mode is explicitly accounted for. The system-bath interaction Hamiltonian was constructed

to model the two main types of relaxation process, intramolecular vibrational relaxation and

intermolecular vibronic relaxation, and different types of bath models were adopted for each

relaxation process. Considering that the electronic states and nuclear modes in charge and

exciton transport problems are localized in space, we employed a bath model with localized

modes that interact with a limited number of states, which can be especially advantageous

when only a limited number of molecular sites is actively involved in the system dynamics.

Our calculations suggest that the vibronic surrogate Hamiltonian approach can capture

the effect of a dissipative environment on the dynamics of vibronically coupled systems and

therefore provide a valuable tool to investigate the effect of vibronic coupling on charge

and exciton transport in molecular systems. In addition, we have shown that the vibronic

surrogate Hamiltonian method is able to identify the origin of coherences, whether they

are vibronic or electronic. The surrogate Hamiltonian method employed in this work can

be useful especially when the system dynamics occurs on ultrafast time scales or when the

system-bath interaction cannot be assumed to be weak. Possible problems with suitable

characteristics include exciton transport in photosynthetic complexes,98 singlet fission99 and

charge separation of photogenerated excitons in OPV cells.15,100,101 Our work can be ex-

tended in the future to provide a better description of the model Hamiltonian by employing

parameters close to realistic molecular systems with the support of computational chemistry

methods to obtain system-specific parameters.

SUPPLEMENTARY MATERIAL

See supplementary material for the vibrational relaxation of a monomer and coherence

analysis of a dimer.

ACKNOWLEDGMENTS

This work was supported by ERC through Grant No. 615834. We thank Juan Aragó,

Rocco Fornari, and Haibo Ma for carefully reading the manuscript and helpful comments.

20



∗ mail to: myeong.lee@warwick.ac.uk

1 N. Christensson, H. F. Kauffmann, T. Pullerits, and T. Manc̆al, J. Phys. Chem. B 116, 7449

(2012).

2 C. Kreisbeck and T. Kramer, J. Phys. Chem. Lett. 3, 2828 (2012).

3 A. W. Chin, J. Prior, R. Rosenbach, F. Caycedo-Soler, S. F. Huelga, and M. B. Plenio, Nature

Phys. 9, 113 (2013).

4 E. Romero, R. Augulis, V. I. Novoderezhkin, M. Ferretti, J. Thieme, D. Zigmantas, and R. van

Grondelle, Nature Phys. 10, 676 (2014).

5 F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valku-

nas, D. Abramavicius, and J. P. Ogilvie, Nature Chem. 6, 706 (2014).

6 J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga,

M. B. Plenio, D. Zigmantas, and J. Hauer, Nature Commun. 6, 7755 (2015).

7 A. Halpin, P. J. M. Johnson, R. Tempelaar, R. S. Murphy, J. Knoester, T. L. C. Jansen, and

R. J. D. Miller, Nature Chem. 6, 196 (2014).

8 Y. Song, S. N. Clafton, R. D. Pensack, T. W. Kee, and G. D. Scholes, Nature Commun. 5,

4933 (2014).

9 E. J. O’Reilly and A. Olaya-Castro, Nature Commun. 5, 3012 (2014).

10 V. Tiwari, W. K. Peters, and D. M. Jonas, Proc. Natl. Acad. Sci. USA 110, 1203 (2013).

11 A. J. Musser, M. Liebel, C. Schnedermann, T. Wende, T. B. Kehoe, A. Rao, and P. Kukura,

Nature Phys. 11, 352 (2015).

12 A. A. Bakulin, S. E. Morgan, T. B. Kehoe, M. W. B. Wilson, A. W. Chin, D. Zigmantas,

D. Egorova, and A. Rao, Nature Chem. 8, 16 (2015).

13 S. Ito, T. Nagami, and M. Nakano, J. Phys. Chem. Lett. 6, 4972 (2015).

14 N. Renaud and F. C. Grozema, J. Phys. Chem. Lett. 6, 360 (2015).

15 S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. D. Sio, A. Rubio,

G. Cerullo, E. Molinari, et al., Science 344, 1001 (2014).

16 H. Tamura, R. Martinazzo, M. Ruckenbauer, and I. Burghardt, J. Chem. Phys. 137, 22A540

(2012).

17 J. M. Womick and A. M. Moran, J. Phys. Chem. B 115, 1347 (2011).

21



18 A. Kolli, E. J. O’Reilly, G. D. Scholes, and A. Olaya-Castro, J. Chem. Phys. 137, 174109

(2012).

19 O. Kühn, T. Renger, and V. May, Chem. Phys. 204, 99 (1996).

20 R. Schneider, W. Domcke, and H. Köppel, J. Chem. Phys. 92, 1045 (1990).

21 A. Kühl and W. Domcke, J. Chem. Phys. 116, 263 (2002).

22 A. Kühl and W. Domcke, Chem. Phys. 259, 227 (2000).

23 S. Polyutov, O. Kühn, and T. Pullerits, Chem. Phys. 394, 21 (2012).

24 M. F. Gelin, L. Z. Sharp, D. Egorova, and W. Domcke, J. Chem. Phys. 136, 034507 (2012).

25 J. Seibt, K. Renziehausen, D. V. Voronine, and V. Engel, J. Chem. Phys. 130, 134318 (2009).

26 A. G. Dijkstra, C. Wang, J. Cao, and G. R. Fleming, J. Phys. Chem. Lett. 6, 627 (2015).

27 L. Z. Sharp and D. Egorova, J. Chem. Phys. 139, 144304 (2013).

28 V. Butkus, L. Valkunas, and D. Abramavicius, J. Chem. Phys. 140, 034306 (2014).

29 A. G. Redfield, IBM J. Res. Dev. 1, 19 (1957).

30 A. Nitzan, Chemical Dynamics in Condensed Phases (Oxford University Press, New York,

2006).

31 V. May and O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems (Willey-

VCH, Berlin, 2011), 3rd ed.

32 W. M. Zhang, T. Meier, V. Chernyak, and S. Mukamel, J. Chem. Phys. 108, 7763 (1998).

33 M. Yang and G. R. Fleming, Chem. Phys. 275, 355 (2002).

34 J. Strümpfer and K. Schulten, J. Chem. Theory Comput. 8, 2808 (2012).

35 Y. Tanimura and R. Kubo, J. Phys. Soc. Japan 58, 1199 (1989).

36 Y. Tanimura, Phys. Rev. A 41, 6676 (1990).

37 Y. Tanimura, J. Phys. Soc. Japan 75, 082001 (2006).

38 C. Meier and D. J. Tannor, J. Chem. Phys. 111, 3365 (1999).

39 A. Pomyalov and D. J. Tannor, J. Chem. Phys. 123, 204111 (2005).

40 A. Pomyalov, C. Meier, and D. J. Tannor, Chem. Phys. 370, 98 (2010).

41 A. Ishizaki and Y. Tanimura, J. Phys. Soc. Japan 74, 3131 (2005).

42 Y. Yan, F. Yang, Y. Liu, and J. Shao, Chem. Phys. Lett. 395, 216 (2004).

43 R.-X. Xu and Y. Yan, Phys. Rev. E 75, 031107 (2007).

44 M. H. Beck, A. Jäckle, G. Worth, and H.-D. Meyer, Phys. Reports 324, 1 (2000).

45 M. Nest and H.-D. Meyer, J. Phys. Chem. 119, 24 (2003).

22



46 I. Burghardt, M. Nest, and G. A. Worth, J. Chem. Phys. 119, 5364 (2003).

47 R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997).

48 D. Gelman and R. Kosloff, Chem. Phys. Lett. 381, 129 (2003).

49 D. Gelman, C. P. Koch, and R. Kosloff, J. Chem. Phys. 121, 661 (2004).

50 C. P. Koch, T. Klüner, and R. Kosloff, J. Chem. Phys. 116, 7983 (2002).

51 C. P. Koch, T. Klüner, H.-J. Freund, and R. Kosloff, Phys. Rev. Lett. 90, 117601 (2003).

52 C. P. Koch, T. Klüner, H.-J. Freund, and R. Kosloff, J. Chem. Phys. 119, 1750 (2003).

53 G. Katz, M. A. Ratner, and R. Kosloff, J. Phys. Chem. C 118, 21798 (2014).

54 G. Katz, M. A. Ratner, and R. Kosloff, J. Phys. Chem. A 115, 5833 (2011).

55 S. Dittrich, H.-J. Freund, C. P. Koch, R. Kosloff, and T. Klüner, J. Chem. Phys. 124, 024702

(2006).

56 N. Renaud, M. A. Ratner, and V. Mujica, J. Chem. Phys. 135, 075102 (2011).

57 N. Renaud, D. Powell, M. Zarea, B. Movaghar, M. R. Wasielewski, and M. A. Ratner, J. Phys.

Chem. A 117, 5899 (2013).

58 N. Renaud, Y. A. Berlin, F. D. Lewis, and M. A. Ratner, J. Am. Chem. Soc. 135, 3953 (2013).

59 F. Novelli, A. Nazir, G. H. Richards, A. Roozbeh, K. E. Wilk, P. M. G. Curmi, and J. A. Davis,

J. Phys. Chem. Lett. 6, 4573 (2015).

60 J. M. Womick, S. A. Miller, and A. M. Moran, J. Chem. Phys. 133, 024507 (2010).

61 M. R. Phipott, J. Chem. Phys. 55, 2039 (1971).

62 F. C. Spano, J. Chem. Phys. 116, 5877 (2002).

63 F. C. Spano, J. Chem. Phys. 122, 234701 (2005).

64 T.-S. Ahn, A. M. Müller, R. O. Al-Kaysi, F. C. Spano, J. E. Norton, D. Beljonne, J.-L. Brédas,

and C. J. Bardeen, J. Chem. Phys. 128, 054505 (2008).

65 F. C. Spano, J. Clark, C. Silva, and R. H. Friend, J. Chem. Phys. 130, 074904 (2009).

66 T. Holstein, Ann. Phys. 8, 325 (1959).

67 F. Ambrosio and A. Troisi, J. Chem. Phys. 141, 204703 (2014).

68 A. Troisi, Phys. Rev. B 82, 245202 (2010).

69 R. P. Fornari, J. Aragó, and A. Troisi, J. Chem. Phys. 142, 184105 (2015).

70 M. Schröter, T. Pullerits, and O. Kühn, Ann. Phys. (Berlin) 527, 536 (2015).

71 C. Koch, Ph.D. thesis, Humboldt-Universität zu Berlin (2002).

72 A. S. Alexandrov and J. Devreese, Advances in Polaron Physics (Springer, Heidelberg, 2010).

23



73 A. S. Alexandrov, Polarons in Advanced Materials (Springer, Bristol, 2007).

74 G. Herzberg and E. Teller, Z. Phys. Chem. B 21, 410 (1933).

75 H. J. Kupka, Transitions in Molecular Systems (Wiley-VCH, Weinheim, 2010).

76 A. Troisi, A. Nitzan, and M. A. Ratner, J. Chem. Phys. 119, 5782 (2003).

77 S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford, New York, 1995).

78 A. Kell, X. Feng, M. Reppert, and R. Jankowiak, J. Phys. Chem. B 117, 7317 (2013).

79 H. Tal-Ezer and R. Kosloff, J. Chem. Phys. 81, 3967 (1984).

80 R. Kosloff, Annu. Rev. Phys. Chem. 45, 145 (1994).

81 C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich,

G. Jolicard, W. Karrlein, H.-D. Meyer, et al., J. Comput. Phys. 94, 59 (1991).

82 M. B. Plenio, J. Almeida, and S. F. Huelga, J. Chem. Phys. 139, 235102 (2013).

83 F. Caycedo-Soler, A. W. Chin, J. Almeida, and S. F. Huelga, J. Chem. Phys. 136, 155102

(2012).

84 A. Chenu, N. Christensson, H. F. Kauffmann, and T. Mančal, Sci. Rep. 3, 02029 (2013).

85 V. Butkus, D. Zigmantas, D. Abramavicius, and L. Valkunas, Chem. Phys. Lett. 587, 93 (2013).

86 J. Schulze, M. Torbjörnsson, O. Kühn, and T. Pullerits, New J. Phys. 16, 045010 (2014).

87 A. Perdomo, L. Vogt, A. Najmaie, and A. Aspuru-Guzik, Appl. Phys. Lett. 96, 093114 (2010).

88 E. Asplund and T. Klüner, Phys. Rev. Lett. 106, 140404 (2011).

89 P. Rebentrost, R. Chakraborty, and A. Aspuru-Guzik, J. Chem. Phys. 131, 184102 (2009).

90 S. L. Smith and A. W. Chin, Phys. Chem. Chem. Phys. 16, 20305 (2014).

91 A. Troisi, Faraday Discuss. 163, 377 (2013).

92 H. Ma and A. Troisi, Adv. Mater. 26, 6163 (2014).

93 M. H. Lee, J. Aragó, and A. Troisi, J. Phys. Chem. C 119, 14989 (2015).

94 L. J. A. Koster, V. D. Mihailetchi, and P. W. M. Blom, Appl. Phys. Lett. 88, 093511 (2006).

95 A. J. Moulé and K. Meerholz, Appl. Phys. Lett. 91, 061901 (2007).

96 C. Groves, J. C. Blakesley, and N. C. Greenham, Nano Lett. 10, 1063 (2010).

97 T. M. Burke and M. D. McGehee, Adv. Mater. 26, 1923 (2013).

98 M. Sarovar, A. Ishizaki, G. R. Fleming, and K. B. Whaley, Nature Phys. 6, 462 (2010).

99 M. W. B. Wilson, A. Rao, J. Clark, R. S. S. Kumar, D. Brida, G. Cerullo, and R. H. Friend,

J. Am. Chem. Soc. 133, 11830 (2011).

100 S. Gélinas, A. Rao, A. Kumar, S. L. Smith, A. W. Chin, J. Clark, T. S. van der Poll, G. C.

24



Bazan, and R. H. Friend, Science 343, 512 (2014).

101 A. E. Jailaubekov, A. P. Willard, J. R. Tritsch, W.-L. Chan, N. Sai, R. Gearba, L. G. Kaake,

K. J. Williams, K. Leung, P. J. Rossky, et al., Nature Mater. 12, 66 (2013).

102 The localized basis is also convenient to ensure that the total Hamiltonian is size consistent,

i.e., the bath and the system size can be increased in a consistent way if one needs to consider

systems of different sizes.

103 Increasing εc also leads to a slightly faster decay of the population due to an increase of J(ε)

at ε = ∆E12 as a result of the broadening of the bath spectral density and the shift of the peak

position of the spectral density towards higher energy.

104 The validity of setting Nexc=2 was tested for a dimer for each intramolecular and intermolecular

relaxation pathway. We found that setting Nexc larger than 2 does not change the population

dynamics at all.

25


