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Abstract

An Equivalent Circuit Model (ECM) of a lithium ion (Li-ion) battery is an

empirical, linear dynamic model and the bandwidth of the input current sig-

nal and level of non-linearity in the voltage response are important for the

model’s validity. An ECM is, however, generally parametrised with a pulse

current signal, which is low in signal bandwidth (Part 1) and any non-linear

dependence of the voltage on the current due to transport limitations is ig-

nored. This paper presents a general modelling methodology which utilises

the higher bandwidth and number of signal levels of a pulse-multisine sig-

nal to estimate the battery dynamics and non-linear characteristics without

the need of a 3D look-up table for the model parameters. In the proposed

methodology a non-parametric estimate of the battery dynamics and non-

linear characteristics are first obtained which assists in the model order se-

lection, and to assess the level of non-linearity. The new model structure,

termed as the Non-linear ECM (NL-ECM), gives a lower Root Mean Square
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(RMS) and peak error when compared to an ECM estimated using a pulse

data set.

Keywords: Multisine signals, Drive-cycle, Li-ion battery, Equivalent

Circuit Modelling, Sigmoid function

Abbreviations

BMS Battery Management System

DFT Discrete Fourier Transform

ECM Equivalent Circuit Model

EIS Electrochemical Impedance Spectroscopy

EV Electric Vehicle

FFT Fast Fourier Transform

LPM Local Polynomial Method

NCA Nickel Cobalt Aluminium oxide

NL-ECM Non-linear Equivalent Circuit Model

OCV Open-circuit-voltage

pk-error Peak error

PPC Pulse Power Current
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RMSE Root Mean Square Error

SoC State-of-Charge

Notations

Ak : Amplitude of the kth multisine harmonic

α : Scale factor for smallest base-signal pulse 0 < α < 1

C1 : C-rate of largest pulse in the base-signal

C2 : C-rate of smallest pulse in the base-signal

Ccmax : Maximum applicable 10s charge C-rate

Cdmax : Maximum applicable 10s discharge C-rate

Cθ̂ : Estimated covariance matrix of parameter vector θ

E : Error vector when estimating the impedance via the LPM

η : Over-potential (V)

F : Highest excited multisine harmonic number

fs : Sampling frequency (Hz)

γ : Scale factor for largest base-signal pulse 0 < γ < 1

Hexc : Set of excited multisine harmonics
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I(k) : DFT of ī(n) at harmonic k

i(n) : Sampled current signal (A)

ī(n) : Sampled current signal averaged over periods (A)

id : Current density (A.cm−2)

K : Regressor matrix when estimating the impedance via the LPM

L[•] : A linear transform operator

N : Number of samples per period of the multisine signal

ωk : Discrete angular frequency ωk = 2πkfs/N (rad.s−1)

P : Number of applied pulse-multisine periods

φk : Phase of the kth multisine harmonic

S : Polynomial order of the LPM

σẐ(k) : Estimated standard deviation of impedance at harmonic k

T1 : Time interval of largest base-signal pulse (s)

T2 : Time interval of first rest period in the base-signal (s)

T4 : Time interval of last rest period in the base-signal (s)

θ : Parameter vector when estimating the impedance via the LPM

V (k) : DFT of v̄0(n) at harmonic k
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v(n) : Sampled voltage signal (V) sort

v̄0(n) : Over-voltage signal averaged over periods (V) sort

v̄(n) : Sampled voltage signal averaged over periods (V)

vl(n) : Simulated linear over-voltage signal (V)

v̄l(n) : Simulated linear over-voltage signal averaged over periods (V)

Z(k) : Impedance at harmonic k

Zm(k) : Transfer function model evaluated at harmonic k

Ẑ(k) : Estimated impedance at harmonic k

1. Introduction

Part 1 of this paper series demonstrated that the bandwidth of a Pulse

Power Current (PPC) test is limited to around 100mHz (for a 10 second

pulse), which is lower than that of a drive-cycle signal. Additionally a new

signal design technique to generate a more realistic current signal known as a

pulse-multisine was presented [1]. A pulse-multisine is a signal with charac-

teristics resembling the bandwidth of a drive cycle and the signal spans the

full applicable current range of a battery. Part 1 discussed how the increased

bandwidth, periodicity and high number of signal levels of a pulse-multisine

are advantageous for modelling battery dynamics. These properties are used

to present a new modelling methodology and model structure for lithium

ion (Li-ion) battery dynamics appropriate for use in a Battery Management

System (BMS).
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The development and use of a Li-ion battery model is motivated by its

application. A BMS in an Electric (EV) or a Hybrid Electric Vehicle (HEV)

is one such application which relies on an accurate battery model to assess the

battery pack health and power delivering capabilities [? ]. With the battery

current assumed as the independent variable the model should accurately

predict the voltage response given the initial states of the battery. This

mapping from current to voltage has been realised extensively in the form of

an Equivalent Circuit Model (ECM) [2, 3, 4, 5]. Models that do not rely on

the current to voltage causality have also been developed in [6], and in [7] a

Li-ion Bond Graph model is presented.

The success of the ECM is due to the limited number of model parame-

ters required and the ease of simulation. The type of test data typically used

for an ECM parametrisation include Open-Circuit-Voltage (OCV) measure-

ments and PPC or Electrochemical Impedance Spectroscopy (EIS) frequency

data. The OCV data is used to characterise the thermodynamic potential

and hysteresis of a Li-ion battery and the PPC or EIS data are used to model

the potential drops due to Ohmic losses, charge-transfer kinetics, double layer

effect and mass transport [8].

PPC tests are recorded at different SoC and temperatures allowing a

range of ECM parameters to be estimated, and when in simulation be inter-

polated (via a 2D look-up table), over the range of SoC and temperatures

values [9, 10, 11]. Furthermore, by estimating two separate sets of ECM

parameters for charge and discharge the model fidelity can be increased to

include SoC, temperature and current direction (charge or discharge) [12].

At lower temperatures (≤ 10 ◦C ) and high C-rates, however, ion trans-
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port diffusion limitations can occur [8]. This leads to a non-linear dependence

of the voltage on the current. The ECM parameters should therefore also be

a function of current magnitude or C-rate and as well as temperature. In [13]

an ECM is estimated whereby the circuit parameters for each of the PPC

pulses are included in a 3D look-up table for interpolation and simulation.

A 3D look-up table, however, requires that the ECM parameters are avail-

able for each combination of current, SoC and temperature. This requirement

imposes practical difficulties since at lower temperatures the increase in in-

ternal resistance will not permit all of the standard PPC current pulses to

be applied as the battery voltage reaches its minimum and maximum cut-off

limits. As such the current dependence of the ECM parameters via a look-

up table is usually omitted and only characterised as a function of current

direction, SoC and temperature.

In this paper a new modelling methodology is presented to estimate a

non-linear ECM (NL-ECM). The NL-ECM consists of a linear ECM and a

non-linear over-voltage function. The linear ECM captures the Li-ion battery

kinetics (internal resistance and charge transfer dynamics) and the non-linear

over-voltage function captures the non-linear dependence of the voltage on

the current due to diffusion limitations without the need of a 3D lookup

table. To parametrise the linear ECM the voltage response based on a pulse-

multisine [1] at a particular SoC and temperature is used to estimate the

battery impedance, which in turns allows an appropriate ECM model order

to be estimated. The large number of C-rates of a pulse-multisine, as opposed

to a few distinct C-rates of a PPC, is then used to characterise the non-linear

over-voltage function.
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The methodology however still requires OCV data to characterise the

thermodynamic voltage and battery hysteresis. It is shown that the new

model structure together with the pulse-multisine signal lead to a reduction

of the model root mean square error (RMSE) and peak error when com-

pared to a linear ECM estimated with PPC data. The procedure therefore

combines the advantages of a pulse-multisine signal, which includes a con-

siderable reduction in experimental time (to several minutes) per SoC and

temperature, and estimate a more accurate model over the bandwidth of

interest for a BMS.

Part 2 of this paper series is structured as follows, in Section 2 the battery

and experiment details for the model development are described. Sections 3

and 4 give an explain of model estimation and validation and in Sections 5

and 6 model complexity and the main conclusions of the modelling procedure

are discussed.

2. Experiment details

In this work the current to voltage relationship of four 18650 3.03Ah

LiNiCoAlO2 (NCA) batteries are modelled using pulse-multisine current sig-

nals. Similar to a PPC test procedure where the model parameters are ob-

tained over different SoCs and temperatures, a pulse-multisine is applied at

five SoCs which were 10%, 20%, 50%, 80% and 95% and at four temperatures

0 ◦C , 10 ◦C , 25 ◦C and 45 ◦C to parametrise the model.

The maximum applicable 10 s discharge/charge current (Cdmax and Ccmax)

is known from the battery specifications. As such the five design parameters

of the pulse-multisine are, α the scale factor, T1, T2, T4 the time interval of
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the largest pulse and two rest periods respectively and Hexc the excitation

bandwidth of the random phase multisine, as described in Part 1 of this se-

ries, were set for each SoC and temperature. These parameter values are

given in Table A.2.

In all cases the sampling frequency was set to fs = 10 Hz and the max-

imum harmonic in Hexc was selected to span a bandwidth of at most 1Hz.

Five periods (let P denote number of periods) of the designed pulse-multisine

(denoted as i(n)) were applied and the corresponding voltage response (de-

noted as v(n)) was measured. The number of periods is selected such that

the battery dynamics reach steady-state while limiting the surface temper-

ature increase to approximately 2-3 ◦C . Through several experiment runs

five periods were found sufficient to fulfil both criteria. Figure 1 shows an

example of five periods of the current pulse-multisine and voltage response

measured at 20 % SoC and 45◦C .
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(a) Five periods of the pulse-multisine current

Time (s)
0 50 100 150 200 250 300 350

V
ol
ta
ge

(V
)

2.5

3

3.5

4

4.5

(b) Five periods of the voltage response

Figure 1: Five periods (P = 5) of the pulse-multisine current and voltage response at 20

% SoC 45 ◦C of a 18650 Li-ion NCA battery.
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3. Model estimation

As current is the controlled variable in the experiments the development

of a current input model is described in this section. The NL-ECM model

consists of three elemental blocks which includes a linear ECM, a nonlinear

over-voltage function f(vl) and an OCV coupled with hysteresis block (Figure

2).

f(vl)i(t) v(t)vl(t)ECM

OCV +
Hysteresis

Figure 2: Li-ion battery NL-ECM structure. The overall model consists of a linear ECM

followed by a non-linear over-voltage function and a parallel OCV and hysteresis model

block.

The following subsections describes the identification of the corresponding

model blocks.

3.1. Impedance estimate and equivalent circuit transfer function

The typical approach for estimating an ECM is to directly fit or optimise

the model parameters based on the measured current and voltage data set

(normally a PPC data set). Doing so, however, requires a prior assumption

of an ECM model structure. In this paper an intermediate step is per-

formed whereby the battery impedance, which is a non-parametric estimate

of the battery dynamics, and its standard deviation are first estimated. This
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impedance estimate will assist in deciding an appropriate ECM model order

and structure in the form of a transfer function which can be fitted to obtain

the ECM model parameters.

As impedance is defined under steady-state conditions, to reduce the

influence of any transient behaviour, the first period of the measured voltage

and current is discarded when estimating the impedance. The remaining

P − 1 periods are then averaged over periods as

ī(n) =
1

P − 1

P∑
p=2

i(N(p− 1) + n), v̄(n) =
1

P − 1

P∑
p=2

v(N(p− 1) + n)

n = 0, . . . , N − 1 (1)

In equation (1) N is the number of samples per period of the applied pulse-

multisine.

The mean voltage around which the voltage measurements are made is

then removed from v̄(n) prior to estimating the impedance and will sub-

sequently be accounted for by the OCV and hysteresis model block. The

resulting zero-mean voltage, denoted as v̄0(n), is defined in this work as the

over-voltage signal and is

v̄0(n) = v̄(n)− 1

N

N−1∑
n=0

v̄(n) (2)

The Discrete Fourier Transform (DFT) of ī(n) (the averaged current signal)

and v̄0(n) (the over-voltage signal) is then computed as

I(k) =
N−1∑
n=0

ī(n)e−2jπkn/N , V (k) =
N−1∑
n=0

v̄0(n)e−2jπkn/N

k = 0, . . . , N − 1 (3)
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where I(k) and V (k) in equation (3) denote the DFT of ī(n) and v̄0(n) at

the kth harmonic.

The DFT voltage is related to the DFT current through the product with

the battery impedance (equation (4)).

V (k) = Z(k)I(k) + E(k) (4)

Z(k) is the impedance which is to be estimated and E(k) is an error term

accounting for any measurement error and for any error arising from non-

linear battery behaviour.

In order to estimate Z(k), given I(k) and V (k), the influence of the error

term should be minimised (typically in a least squares sense). A procedure

known as the local-polynomial method (LPM) is used in this work which al-

lows for both the impedance and standard deviation to be estimated. Details

on the LPM are found in [14] while a brief description of the procedure is

presented in Appendix B.

The estimated impedance (magnitude and phase) and standard deviation

of the battery when at 20 % and 45 ◦C is shown in Figure (3). The magnitude

response (3a) of the impedance has an increasing gain at low frequencies and

the phase response (3b) approaches 180◦ as the frequency increases. Such a

response can be attributed to mass transport from diffusion at low (≤ 1 Hz)

frequencies [8].

When fitting a transfer function to the impedance, the increase in low

frequency magnitude indicates the presence of a pole1 close to the origin

in the complex domain. The phase approach to 180◦ indicates a transfer

1A pole is defined as a root of the transfer function denominator
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Figure 3: Estimated impedance and standard deviation at 20 % SoC 45 ◦C of a 18650

Li-ion NCA battery.

function with a negative gain factor and an equal numerator and denominator

polynomial degree of the form

Zm(k) = −
(
bnb(jωk)

nb + · · ·+ b1jωk + b0
(jωk)nb + · · ·+ a1jωk + a0

)
(5)

In equation (5) Zm(k) denotes the transfer function model, where ωk =

2πkfs/N is the discrete angular frequency at harmonic k and nb is the model

order.

For a given model order the transfer function coefficients are estimated

by minimising a cost-function (J) and is defined as the sum of the weighted

squared errors between the estimated impedance and the transfer function
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model.

J =
∑

k∈Hexc

∣∣∣∣Z(k)− Zm(k)

σẐ(k)

∣∣∣∣2 (6)

In equation (6) σẐ(k) is the estimated standard deviation of the impedance

and is the first diagonal entry of the estimated covariance matrxCθ̂ (equation

(B.5)). For this optimisation the Frequency Domain System Identification

Toolbox in Matlab R© is used [15], to which the estimated impedance and

standard deviation are passed along with a transfer function order as function

arguments.

Figure 4 shows a 1st and 2nd order fit of the impedance and the cost

function for the two models are J = 638.0 and J = 56.4 respectively. Using

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
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gn

it
u
d
e
(d
B
)

-31
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h
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2nd order fit

2nd order fit

1st order fit

1st order fit

Figure 4: A 2nd order transfer function gives a better fit than a 1st order transfer function.

Fit shown for impedance estimated at 20 % SoC and 45 ◦C of a 18650 Li-ion NCA battery.
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orders greater than two generally improved the fit, however, this improvement

was for 25 ◦C and 45 ◦C data. For impedances estimated at 0 ◦C and 10 ◦C

a 2nd order transfer function gave better fits than higher order models. As

such the model order over all temperatures of interest is selected to equal

two and the transfer function coefficients are estimated as a function of SoC

and temperature.

Each estimated 2nd order transfer function can be used in subsequent

simulations, however, if an ECM as shown in Figure 5 is required the transfer

function is expanded via a partial fraction expansion to obtain the circuit

parameters.

R0(SoC, T )

Cp1(SoC, T )

Rp1(SoC, T )

Cp2(SoC, T )

Rp2(SoC, T )

I(t)

vl(t)

Figure 5: The 2nd order ECM structure used to represent the estimated transfer function.

The OCV is not included since it is added at a later stage.

The partial fraction expansion of the 2nd order transfer function yields a

direct term and two first order transfer functions of the form

Zm(k) = −R0 −
Rp1

τ1jωk + 1
− Rp2

τ2jωk + 1
(7)

where R0 is assumed to represent the internal resistance, Rp1 and Rp2 the

polarisation resistances and τ1 and τ2 the time constants. The Matlab R©
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function residue can be used to perform this expansion, whereby the trans-

fer function coefficients bnb, . . . , b0, anb−1, a0 are passed as arguments and the

function returns −R0, the pole and gain of the two first order systems. The

negative gain values then correspond to the polarisation resistances and the

negative reciprocal of the poles to the time constants (equivalently the ca-

pacitances Cp1 = τ1/Rp1 and Cp2 = τ2/Rp2 are obtained).

3.2. Non-linear over-voltage function

The non-linear over-voltage function in the model (Figure 2) is motivated

by the Tafel relation in electrochemical kinetics. As SoC and temperature

decrease a higher over-potential is required to sustain a given current density.

If the over-potential is sufficiently large the Butler-Volmer kinetics simplifies

to the Tafel relation which is of the form

η = a+ b log id (8)

where η is the over-potential (normally at a particular electrode), id is the

current density and a and b are two constants.

Figure 6a shows a plot of the Tafel and Butler-Volmer kinetics relating

an electrode over-potential to the current density. Mathematically, replacing

the current density by any linear transformation will preserve the “S”-shape

characteristic between the over-potential and transformed variable as shown

in Figure 6b.

Given that the ECM is a linear model it linearly transforms an applied

current i(t) to a voltage vl(t) (see Figure 2). This voltage can be considered

as the model over-voltage due to linear kinetic phenomena. Therefore, by

plotting the measured over-voltage (equation (2)) against the modelled linear
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Figure 6: A linear transformation of the current density preserves the Tafel and Butler-

Volmer shape.

over-voltage (vl(t)), at each SoC and temperature, the presence of any non-

linear deviations due to kinetic limitations can be examined and captured

through a non-linear function.

To calculate vl(t) each of the designed pulse-mutisine signals (i(n)) is

simulated with the corresponding estimated ECM to generate a linear over-

voltage signal vl(n) and is denoted as

vl(n) = ECM[i(n)] n = 0, . . . , NP − 1 (9)

To reduce the effects of transients the first period of vl(n) is discarded and the

remaining P −1 periods are averaged to obtain the model linear over-voltage

signal v̄l(n) under steady-state conditions (equation 10).

v̄l(n) =
1

P − 1

P∑
p=2

vl(N(p− 1) + n) n = 0, . . . , N − 1 (10)

The measured over-voltage v̄0(n) (equation 2) can now be plotted against the

modelled linear over-voltage v̄l(n) (equation 10) to investigate any non-linear
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characteristics.

A plot of the measured vs modelled over-voltage when the battery is at

20 % SoC and 45 ◦C is shown in Figure 7a and the characteristic when the

ambient temperature is at 0 ◦C is given in Figure 7b. While a strong linear

Model over-voltage (V)
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(a) Sigmoid function fit at 20 % SoC 45 ◦C
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d
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(b) Sigmoid function fit at 20 % SoC 0 ◦C

Figure 7: The non-linear characteristic and sigmoid function fitting at 45 ◦C and 0 ◦C

when at 20 % SoC of a 18650 Li-ion NCA battery. A non-linear behaviour is present at

low SoC and low temperature.

dependence is observed when at 45 ◦C (Figure 7a) a non-linear deviation

resembling that of a S-shape characteristic is observed when the battery is

at 0 ◦C.

Such a characteristic can be modelled using a sigmoid function. Though

the impact on modelling when choosing among the class of sigmoids is not

studied here, to choose from a sigmoid class, as opposed to polynomials, is

important as sigmoids are bounded, differentiable and if extrapolated the

over-voltage will not diverge. Here, the following sigmoid function is used to

fit the measured against modelled over-voltage data

f(v̄l) =
c1v̄l√

1 + c2v̄2l
(11)
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while other possibilities include the logistic and hyperbolic tangent.

In equation (11) c1 and c2 are the sigmoid coefficients and need to be

estimated. As f(v̄l) is non-linear with respect to c2 a non-linear optimisation

routine is required to estimate c1 and c2 at each SoC and temperature. In this

work the lsqcurvefit function from the Matlab R© Optimsation Toolbox is

used to perform the sigmoid function parameter estimation. The estimated

coefficients are then tabulated in a linear look-up table for each SoC and

temperature for model simulation.

3.3. OCV and hysteresis model block

The last block of the proposed Li-ion battery model structure (Figure 2)

is the OCV and hysteresis block. One approach to estimate the open circuit

voltage is to discharge and charge the battery with a low current (usually

C/25), and average the measured charge and discharge voltages [5, 16, 17].

A low current is used to minimise any battery kinetics, however, even with a

low discharge/charge current the battery will experience kinetic contributions

when it is reaches complete discharge or charge leading to a high voltage drop;

and the measured voltage can then no longer be assumed as the battery OCV.

In this work the method proposed in [18] is used to characterise OCV

and hysteresis. The method involves discharging/charging the battery incre-

mentally (e.g. at 4 % SoC intervals) followed by a rest period of 4 hours

to allow the battery dynamics to relax and reach equilibrium. The voltage

recorded from this method, also known as the incremental OCV method,

better resembles the thermodynamic OCV estimate of the battery since the

electrode kinetics are allowed to reach equilibrium.

To assess the magnitude of hysteresis incremental OCV tests are carried
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out for discharging and charging a battery. The difference between the charge

and discharge OCV curve is the battery hysteresis voltage. While lithium

iron phosphate cathode batteries are known to exhibit hysteresis ([19, 20]),

the work in [18] experimentally demonstrated the presence of a non-negligible

level of hysteresis in other Li-ion systems. For the 3.03Ah LiNiCoAlO2 bat-

teries tested a 10-20 mV magnitude of hysteresis voltage is measured over 5

% - 95 % SoC. Following the details of [5] and [18], a first order transition

model with regards to the SoC is then used to transit between the charge

and discharge OCV curves.

Unlike the ECM and non-linear over voltage blocks, the OCV and hys-

teresis model block does not have any unknown parameters to be estimated.

The model block is fully characterised though the incremental OCV tests.

4. Model Validation

A NL-ECM is estimated for each of the four tested 18650 Li-ion NCA

batteries using the set of pulse-multisines as given in Appendix A. The mean

and standard deviation of the estimated parameters R0, Rp1, Rp2, τ1, and τ2

of the ECM (equation 7) and c1 and c2 of the non-linear over-voltage function

(equation 11) are given in Table A.3.

Using the mean estimated parameters the NL-ECM model was validated

with a drive-cycle current profile recorded from a prototype electric vehicle

when driving in an urban environment with frequent accelerations and re-

generative braking events (Figure 8a). The agreement between the measured

and model voltage when at 70 % SoC and 10 ◦C and error are shown in Fig-

ure 8. The model root mean square error (RMSE) and peak error (pk-error)
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Figure 8: Validation profile and measured and model voltage at 70 % SoC 10 ◦C of a

18650 Li-ion NCA battery.

calculated over the drive-cycle currents applied at three conditions, 70 % 10

◦C , 70 % 15 ◦C and 30 % 35 ◦C are given in Table 1.

In addition to the NL-ECM, a first-order linear ECM model was estimated

using PPC test data at the same SoC and temperature points as the pulse-

multisines. As shown in [2] a first-order ECM is sufficient to model pulse

responses and as explained in the introduction the ECM is estimated as a

function of SoC, temperature and current direction together with OCV with

hysteresis. For comparison the two models are estimated at the same SoC

and temperature points and are validated with the same drive-cycle current

profiles. The RMSE and pk-error for the linear ECM is also given in Table

1.
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70 % SoC 10 ◦C 70 % SoC 15 ◦C 30 % SoC 35 ◦C

RMSE Pk Error RMSE Pk Error RMSE PK Error

(V) (V) (V) (V) (V) (V)

NL-ECM 2.49E-02 5.16E-02 2.75E-02 5.72E-02 1.18E-02 3.26E-02

Linear ECM 3.30E-02 1.35E-01 3.20E-02 1.20E-01 1.36E-02 6.74E-02

Reduction (%) 24.5% 61.6% 14.2% 52.4% 13.0% 51.6%

Table 1: RMSE and pk-error of the proposed model (NL-ECM) estimated using pulse-

multisines and a first-order model (ECM) estimated with PPC tests. The NL-ECM gives

consistently reduced RMSE and pk-error for the 18650 Li-ion NCA battery.

The results indicate that both the RMSE and pk-error of the NL-ECM

improve when compared to the linear ECM by 13 % - 25 % and 52 % - 62 %

respectively due to the estimated second order ECM and inclusion of a non-

linear over-voltage function. The improvement of the RMSE and pk-error at

lower temperature demonstrates that the effect of the non-linear over-voltage

function is more prominent at lower temperatures. As the sigmoid function

is linear at higher temperatures (Figure 7a) the reduction in RMSE and pk-

error with increase in temperature is due to the second order ECM estimated

based on the battery impedance.

5. Discussion

As a measure of model complexity it is worth comparing the number

of model parameters of the NL-ECM to a linear ECM. The NL-ECM re-

quires a total of seven parameters, with the second-order ECM consisting

of five parameters and the non-linear over-voltage function consisting of two

parameters. For the linear ECM, if a first-order ECM is estimated it will
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require a total of six parameters, three parameters to represent discharge

dynamics and three for the charge dynamics.

Though a linear ECM may seem a simpler model, due to one fewer pa-

rameter to estimate, it does not capture any non-linear dependence of the

voltage on the current but only any dependence on the sign of the current,

SoC and temperature. To further reduce a linear ECM’s RMSE will require

the use of a second-order ECM. Doing so will then increase the total number

of model parameters to ten (five each for discharge and charge dynamics).

As such the NL-ECM offers a good balance in model complexity while ac-

counting for both charge and discharge dynamics and non-linearity without

the need of a separate charge/discharge, or 3D, look-up table.

The 18650 Li-ion NCA batteries examined here are classed as energy

batteries. It is worthwhile to further examine if the non-linear over-voltage

function will show a stronger non-linear characteristic if higher currents than

the recommended 10 s rating are used to drive such battery. Similarly, the

level of non-linearity of Li-ion batteries optimised for power can also be exam-

ined. As such batteries are, however, designed to deliver high currents with

low over-potentials, it is expected that the non-linear over-voltage function in

the estimated NL-ECM model will be fairly linear even at low temperatures.

This characteristic will be examined in further work.

6. Conclusions

The periodic and dynamic nature of a pulse-multisine signal enables the

estimation of the impedance of a Li-ion battery and allows parametrisation

over a broader bandwidth than a pulse signal. Furthermore, the large number
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of signal amplitude levels allows any non-linearity from transport limitations

at lower temperatures or SoCs to be characterised. By parametrising the

non-linearity with a sigmoid function the proposed NL-ECM is a current

dependent model without the need of a 3D look-up table for the model pa-

rameters.

The NL-ECM model of the 18650 Li-ion NCA battery resulted in a lower

RMSE and pk-error (13 % - 25 % and 52 % - 62 % respectively) in comparison

to the ECM estimated with PPC data. Including the non-linear over-voltage

function improved both the RMSE and pk-error when operating below room

temperature.

The impedance estimation of a battery via the LPM algorithm and non-

linear over-voltage function estimation methodology is a general technique

that can be used to model any Li-ion battery (high energy or power) dynamics

and assess the level of non-linear behaviour. Part 1 [1] and Part 2 of this

paper series presented a new signal design methodology (pulse-multisine),

with a higher estimation bandwidth similar to a drive-cycle than a PPC test,

and a new Li-ion model model structure (NL-ECM) with improved accuracy

for use in BMS applications.
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Appendix A. Pulse-multisine design parameter settings and esti-

mated Li-ion battery model parameters

SoC

10 % 20 % 50 % 80 % 95 %

Cdmax 1 1.2 2 3 2

Ccmax 1.2 1.2 2 1.5 0.5

α 0.5 0.6 0.6 0.6 0.5

T1 5 10 10 10 5

T2 20 20 20 20 20

T4 20 20 20 20 20

Hexc 1Hz 1Hz 1Hz 1Hz 1Hz

(a) For 0◦C

SoC

10 % 20 % 50 % 80 % 95 %

Cdmax 1.8 1.8 4 4 2

Ccmax 1.8 1.8 3 2 0.5

α 0.6 0.6 0.5 0.5 0.6

T1 10 10 10 5 5

T2 20 20 20 20 20

T4 20 20 20 20 20

Hexc 1Hz 1Hz 1Hz 1Hz 1Hz

(b) For 10◦C

SoC

10 % 20 % 50 % 80 % 95 %

Cdmax 2 3.8 5.6 7 1.2

Ccmax 3 3.8 3 6.5 0.5

α 0.6 0.6 0.6 0.6 0.6

T1 10 10 10 10 10

T2 20 20 20 20 20

T4 20 20 20 20 20

Hexc 1Hz 1Hz 1Hz 1Hz 1Hz

(c) For 25◦C

SoC

10 % 20 % 50 % 80 % 95 %

Cdmax 6 6 8 8 4

Ccmax 6 6 4 2 1

α 0.6 0.6 0.5 0.6 0.6

T1 10 10 10 10 10

T2 20 20 20 20 20

T4 20 20 20 20 20

Hexc 1Hz 1Hz 1Hz 1Hz 1Hz

(d) For 45◦C

Table A.2: Pulse-multisine design parameter values used for the 18650 Li-ion NCA battery

model estimation.
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Temperature

Ro 0 ◦C 10 ◦C 25 ◦C 45 ◦C

S
oC

10% 82.1 ± 1.3 45.6 ± 0.5 43.3 ± 0.7 32.9 ± 0.4

20 % 82.6 ± 0.9 57.5 ± 0.4 42.6 ± 0.4 29.9 ± 0.4

50 % 71.8 ± 0.7 48.6 ± 0.6 35.4 ± 0.4 27.3 ± 0.4

80 % 63.1 ± 0.4 52.8 ± 0.7 35.8 ± 0.5 27.5 ± 0.4

95 % 57 ± 5 44 ± 2 47.0 ± 0.4 31.2 ± 0.5

(a) Ohmic resistance Ro (mΩ)

Temperature

Rp1 0 ◦C 10 ◦C 25 ◦C 45 ◦C

S
oC

10 % 58.1 ± 1.2 29.7 ± 0.6 22.8 ± 0.4 1.945 ± 0.010

20 % 67.9 ± 1.9 23.4 ± 1.1 3.9 ± 0.3 1.19 ± 0.02

50 % 19.4 ± 0.7 4.51 ± 0.11 1.50 ± 0.04 1.45 ± 0.07

80 % 18.1 ± 0.9 5.73 ± 0.13 1.60 ± 0.02 1.26 ± 0.03

95 % 55 ± 5 32 ± 3 6.4 ± 0.6 1.6 ± 0.2

(b) Polarisation resistance Rp1 (mΩ)

Temperature

Rp2 0 ◦C 10 ◦C 25 ◦C 45 ◦C

S
oC

10 % 118 ± 3 69 ± 3 28.9 ± 1.0 14.6 ± 0.3

20 % 55.1 ± 1.4 22.6 ± 0.3 18.8 ± 0.3 11.91 ± 0.13

50 % 35.3 ± 1.3 20.1 ± 0.3 15.4 ± 0.2 9.98 ± 0.15

80 % 32.5 ± 0.3 28.4 ± 0.5 15.5 ± 0.2 9.1 ± 0.4

95 % 39.6 ± 0.7 26.2 ± 0.3 18.5 ± 1.1 11.1 ± 0.9

(c) Polarisation resistance Rp2 (mΩ)

Temperature

τ1 0 ◦C 10 ◦C 25 ◦C 45 ◦C

S
oC

10 % 0.45 ± 0.02 0.147 ± 0.003 0.265 ± 0.008 0.41 ± 0.02

20 % 0.526 ± 0.004 0.228 ± 0.006 0.239 ± 0.005 0.80 ± 0.02

50 % 0.228 ± 0.003 0.203 ± 0.006 0.90 ± 0.02 0.76 ± 0.10

80 % 0.18 ± 0.02 0.226 ± 0.005 0.45 ± 0.02 0.70 ± 0.04

95 % 0.126 ± 0.016 0.102 ± 0.008 0.19 ± 0.03 1.1 ± 0.4

(d) Time constant τ1 (s)

Temperature

τ2 0 ◦C 10 ◦C 25 ◦C 45 ◦C

S
oC

10 % 4.4 ± 0.2 7.0 ± 0.2 12.3 ± 0.3 16.1 ± 0.7

20 % 29.8 ± 0.10 16.8 ± 0.2 19.8 ± 0.3 16.8 ± 0.2

50 % 29.1 ± 1.1 21.0 ± 0.4 23.6 ± 0.4 18.6 ± 1.0

80 % 23.7 ± 0.3 20.3 ± 0.5 18.5 ± 0.2 10.9 ± 0.6

95 % 7.4 ± 0.4 16.5 ± 0.8 16.5 ± 1.8 14 ± 3

(e) Time constant τ2 (s)

Temperature

c1 0 ◦C 10 ◦C 25 ◦C 45 ◦C

S
oC

10 % 1.090 ± 0.005 1.374 ± 0.005 1.167 ± 0.002 0.9939 ± 0.0012

20 % 1.072 ± 0.004 1.052 ± 0.003 1.020 ± 0.002 0.9978 ± 0.0008

50 % 1.045 ± 0.004 1.0015 ± 0.0009 0.997 ± 0.0003 0.9896 ± 0.0016

80 % 1.0076 ± 0.0004 1.000 ± 0.002 0.9968 ± 0.0009 0.9711 ± 0.0015

95 % 1.092 ± 0.006 1.0142 ± 0.0014 0.984 ± 0.005 0.980 ± 0.005

(f) Sigmoid coefficient c1

Temperature

c2 0 ◦C 10 ◦C 25 ◦C 45 ◦C

S
oC

10 % 3.11 ± 0.08 2.90 ± 0.06 3.39 ± 0.04 0.003 ± 0.002

20 % 1.32 ± 0.03 1.20 ± 0.05 0.30 ± 0.03 0.011 ± 0.009

50 % 1.27 ± 0.07 0.046 ± 0.013 (0.5 ± 0.2)× 1e-6 (0.48 ± 0.14)× 1e-7

80 % 0.080 ± 0.004 0.077 ± 0.013 (0.6 ± 0.4)× 1e-8 (0.06 ± 0.10)× 1e-8

95 % 0.55 ± 0.03 0.14 ± 0.03 0.002 ± 0.004 (2.7 ± 0.7)× 1e-6

(g) Sigmoid coefficient c2

Table A.3: The mean and standard deviation of the estimated ECM and non-linear over-

voltage function coefficients of the NL-ECM model based on the four 18650 Li-ion NCA

batteries.
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Appendix B. Local Polynomial Method to estimate battery impedance

In LPM Z(k) is approximated via a low degree polynomial in the neigh-

bourhood of k as

Z(k + r) = Z(k) +
S∑
s=1

rszs(k) +RZ lim
S→∞

RZ = 0 (B.1)

In equation (B.1) S is the degree of the polynomial, RZ is the remainder and

the polynomial variable r is the harmonic number relative to k. The voltage

at harmonic k + r can be expressed as

V (k + r) = Z(k + r)I(k + r) + E(k + r) (B.2)

Substituting for Z(k + r) (equation (B.1)) into equation (B.2) results in

a function where the unknown parameters occur linearly. These unknown

parameters are Z(k) and the polynomial coefficients, z1, . . . , zS.

By setting r = −R, . . . , 0, . . . , R, which defines a narrow frequency win-

dow around the kth harmonic, a system of linear equations is obtained. This

can be written in a compact matrix form as

V = Kθ+E (B.3)

where in equation (B.3) V = [V (k −R), . . . , V (k +R)]′ is a C2R+1 vector of

the voltages around harmonic k, K ∈ C(2R+1)×(S+1) is the regressor matrix,

with each row of K being I(k + r)[1, r, . . . , rS], θ = [Z(k), z1(k), . . . , zS(k)]′

is the unknown parameter vector and E ∈ C2R+1 is a vector of errors.

By ensuring that R > S/2 an estimate of the parameters (θ̂), and hence

an estimate of the impedance (Ẑ(k)), and its variance (σ2
Ẑ

(k)) can be ob-

tained via the linear least squares method [21] as

θ̂ = (KHK)−1KHV (B.4)
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and superscript H is the conjugate transpose. The covariance matrix (Cθ̂) of

the parameters is calculated through the residual vector Q as Q = V −Kθ̂,

Cθ̂ is then [21]

Cθ̂ = (KHK)−1QHQ/d (B.5)

where each diagonal entry of Cθ̂ is the variance estimate of the corresponding

parameter. In equation (B.5) d is the difference between the number of har-

monics over which the polynomial is fitted and the number of parameters and

simplifies to d = 2R−S. In this work the polynomial order is set to S = 2 and

a frequency window with R = 2 is used. For any interested person, the LPM

algorithm is available to download as a Matlab function from the following

Github repository https://github.com/WDWidanage/MatlabFunctions/.
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