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Homogeneous spaces of Dirac groupoids

M. Jotz

Abstract

A Poisson structure on a homogeneous space of a Poisson groupoid is homogeneous
if the action of the Lie groupoid on the homogeneous space is compatible with
the Poisson structures. According to a result of Liu, Weinstein and Xu, Poisson
homogeneous spaces of a Poisson groupoid are in correspondence with suitable Dirac
structures in the Courant algebroid defined by the Lie bialgebroid of the Poisson
groupoid. We show that this correspondence result fits into a more natural context:
the one of Dirac groupoids, which are objects generalizing Poisson groupoids and
multiplicative closed 2-forms on groupoids.
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1 Introduction

Poisson groups were introduced by Drinfel′d [7, 6] as classical counterpart of quantum
groups. A Poisson group (G, π) is a Lie group G with a multiplicative Poisson bivector
π, i.e. such that the multiplication G × G → G is a Poisson map. The dual g∗ of
the Lie algebra g of G inherits then a Lie algebra structure from the multiplicative
Poisson structure on G. The two Lie algebras are compatible; they form together a Lie
bialgebra. Drinfel′d showed in[7] that this defines a bijection between simply connected
Poisson Lie groups and Lie bialgebras. The product g × g∗ carries then the induced
structure of a quadratic Lie algebra, i.e. of a Lie algebra with a nondegenerate symmetric
pairing. Drinfel′d established then in [8] a bijection between a special class of maximal
isotropic subalgebras of g × g∗ and Poisson homogeneous spaces of the Poisson group.
A homogeneous space of a Poisson group is a Poisson structure on a homogeneous space
of the Lie group, such that the transitive action of the group on the homogeneous space
is a Poisson map.

Liu, Weinstein and Xu studied the counterpart of this last result in the situation of
Poisson groupoids. They defined in [18] the notion of Courant algebroid, generalizing
the structure found by Courant [5] on the Pontryagin bundle TM ⊕ T ∗M of a smooth
manifoldM . They also showed that a Lie bialgebroid structure on a pair (A,A∗) of vector
bundles induces a Courant algebroid structure on the direct sum A⊕A∗. Lie bialgebroids
(with first component an integrable Lie algebroid) where shown by Mackenzie and Xu
[23, 24] to be in one-one correspondence with source simply connected Poisson groupoids.
Liu, Weinstein and Xu proved in [19] that Poisson homogeneous spaces of a Poisson
groupoid correspond to a special class of Dirac structures in the corresponding Courant
algebroid.

This paper shows that any Dirac structure in this Courant algebroid corresponds in
fact to a Dirac homogeneous space of the Poisson groupoid. We have shown in [10] the
counterpart of this result in the special case of Poisson groups, and more generally of
Dirac groups and their homogeneous spaces.

Let us now be more explicit. Let G⇉M be a Lie groupoid endowed with a Poisson
bivector field πG ∈ Γ(

∧2 TG). The bivector field πG is multiplicative if the vector bundle

map π♯
G : T ∗G → TG is a Lie groupoid morphism over some map A∗ → TM [23], where

A∗ is the dual of the Lie algebroid A of G⇉M , and TG⇉TM and T ∗G⇉A∗ are endowed
with the tangent and cotangent Lie groupoid structures (see [4], [27], [22]). Equivalently,

the graph of π♯
G, Graph(π♯

G) ⊆ TG⊕ T ∗G, is a subgroupoid of the Pontryagin groupoid
(TG ⊕ T ∗G)⇉(TM ⊕ A∗). The pair (G⇉M,πG) is then a Poisson groupoid. Poisson
groupoids were introduced by Weinstein [30] as a common generalization of Poisson
groups and symplectic groupoids (see also [16] and references therein).

A Poisson groupoid (G⇉M,πG) induces a Lie algebroid structure on A∗ [23] and a
Courant algebroid structure on the direct sum A ⊕ A∗ [18]. The pair (A,A∗) is the
Lie bialgebroid associated to (G⇉M,πG). If G ⇉ M is a target-simply connected Lie
groupoid, and if (A,A∗) has a Lie bialgebroid structure, then there exists a unique
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multiplicative Poisson structure πG on G such that (G⇉M,πG) is a Poisson groupoid
with Lie bialgebroid (A,A∗) [24].

In the same spirit, a closed 2-form ωG on a Lie groupoid G⇉M is multiplicative if
the map ω♭

G : TG → T ∗G associated to ωG is a Lie groupoid morphism over a map
λ : TM → A∗. It is shown in [3] and [1] that multiplicative closed 2-forms on a Lie
groupoid G⇉M are in one-one correspondence with IM-2-forms: vector bundle maps
σ : A → T ∗M satisfying some compatibility conditions with the Lie algebroid structure
on A.

Dirac structures unify Poisson brackets and closed 2-forms in the sense that the graphs
of the vector bundle morphisms π♯ : T ∗M → TM and ω♭ : TM → T ∗M associated to
a Poisson bivector π on M and a closed 2-form ω ∈ Ω2(M) define Dirac structures on
the manifold M . Hence, it is natural to ask how to recover the two results above on
classification of multiplicative Poisson bivectors and closed 2-forms on a Lie groupoid in
terms of data on its algebroid, which are by nature very different, as special cases of a
more general result about the infinitesimal description of Dirac groupoids. These objects
have been defined in [26] (see also [17]); a Dirac groupoid is a groupoid endowed with a
Dirac structure that is a subgroupoid of the Pontryagin groupoid (TG⊕T ∗G)⇉ (TM ⊕
A∗). This paper is the first part of a series of papers devoted to the study of the
infinitesimal description of Dirac groupoids [11, 15].

We show in this paper that, given a Dirac groupoid (G⇉M,D), there is an induced
Lie algebroid structure on the units U = D ∩ (TM ⊕ A∗) of the multiplicative Dirac
structure (Theorem 3.15). This was predicted by [26] and, since U is the graph of the
anchor map of A∗ in the Poisson case, generalizes the construction of a Lie algebroid
structure on A∗ from a multiplicative Poisson structure on G⇉M . We show then that
the Courant algebroid structure on TG⊕ T ∗G defines naturally a Courant algebroid B

over M (Theorem 3.23). In the Poisson case, we recover exactly the Courant algebroid
A ⊕ A∗ → M defined by the Lie bialgebroid (A,A∗). This new approach therefore
shows that the Courant algebroid A ⊕ A∗ defined by the Lie bialgebroid (A,A∗) of a
Poisson groupoid as a suitable restriction and reduction of the ambient Courant algebroid
structure on TG⊕ T ∗G.

We then focus on Dirac homogeneous spaces of Dirac groupoids. A Poisson homo-
geneous space (X,πX) of a Poisson groupoid (G⇉M,πG) is a homogeneous space X of
G⇉M endowed with a Poisson structure πX that is compatible with the action of G⇉M
on J : X → M (see [19] for more details).

The paper [8] proves that the Poisson homogeneous spaces of a Poisson group are
classified by a special class of Lagrangian subalgebras of the double Lie algebra g × g∗

defined by the Lie bialgebra (g, g∗) of the Poisson group. This result is extended to
Poisson homogeneous spaces of Poisson groupoids in [18], and to Dirac homogeneous
spaces of Dirac groups in [10]. Poisson homogeneous spaces of a Poisson groupoid are in
one-one correspondence with a special class of Dirac structures in the Courant algebroid
A⊕A∗.
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Here, we establish a one-one correspondence between (G⇉M,D)-homogeneous Dirac
manifolds and maximal isotropic subspaces of B satisfying a natural condition, both in
the closed and general cases. Dirac homogeneous spaces of a Dirac groupoid are related
in this manner to Dirac structures in B (Theorem 4.16). In the case of almost Dirac
structures, we classify the homogeneous spaces in terms of an action of the bisections
of G⇉M on the vector bundle B. This classification theorem for Dirac homogeneous
spaces of Dirac groupoids unifies the theorems in [8], [18] and [10].

The problem is easier to tackle in the Lie group case than in the Lie groupoid setting.
The Lie bialgebra of a Dirac group can be defined using the theory of Poisson groups:
multiplicative Dirac structures on a Lie group are only a slight generalization of the
graphs of multiplicative bivector fields [25, 10]. In the present paper, we first construct
the object B that will play the role of the Lie bialgebroid in this more general setting.
Because we find a suitable object for the classification of the homogeneous spaces, our
classification theorem suggests that a lot of information about the Dirac groupoid is
contained in the triple (A,U,B).

In [11], we completely describe Dirac algebroids via the associated Lie algebroid U and
the Courant algebroid B. A Dirac algebroid is a Lie algebroid endowed with a compatible
Dirac structure [26]. Since Dirac algebroids are the infinitesimal counterpart in the sense
of [26] of Dirac groupoids, this leads to a method to recover a Dirac groupoid from the
triple (A,U,B). This is explained in [15].

Outline of the paper. Some background about Lie groupoids, their Lie algebroids and
Courant algebroids are recalled in §2.1 and some generalities about Dirac manifolds are
recalled in §2.2.

The definition of a Dirac groupoid is given in §3.1. In §3.2, we study the set U of units
of the Dirac structure, seen as a subgroupoid of (TG⊕T ∗G)⇉ (TM⊕A∗). We show that
there is a Lie algebroid structures on this vector bundle over M . The existence of Lie
algebroid structures on the cores Ks and Kt is then a consequence. We find a canonical
Courant algebroid over M associated to a closed Dirac groupoid (G⇉M,D). In the case
of a Poisson groupoid, this is the Courant algebroid defined by the Lie bialgebroid. In
§3.4, we prove that there is an induced action of the bisections of G⇉M on the vector
bundle defined in §3.3.

Dirac homogeneous spaces of Dirac groupoids are defined in Section 4. We prove then
our main theorem (Theorem 4.16) on the correspondence between (closed) Dirac homo-
geneous spaces of a (closed) Dirac groupoid and Lagrangian subspaces (subalgebroids)
of the Courant algebroid B.

Notations and conventions. Let M be a smooth manifold. We will denote by X(M)
and Ω1(M) the spaces of smooth sections of the tangent and the cotangent bundle,
respectively. For an arbitrary vector bundle E → M , the space of sections of E will be
written Γ(E). We will write Dom(σ) for the open subset of the smooth manifold M
where the local section σ ∈ Γ(E) is defined.
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The Pontryagin bundle of M is the direct sum TM ⊕T ∗M → M . The zero section in
TM will be considered as a trivial vector bundle over M and written 0M , and the zero
section in T ∗M will be written 0∗M . The pullback or restriction of a vector bundle E → M
to an embedded submanifold N of M will be written E|N . In the special case of the
tangent and cotangent spaces of M , we will write TNM and T ∗

NM . The annihilator in
T ∗M of a smooth subbundle F ⊆ TM will be written F ◦ ⊆ T ∗M . Let finally f : M → N
be a surjective submersion. Then the kernel of Tf is a smooth subbundle of TM . We
write T fM = ker(Tf).
A groupoid G with base M will be written G⇉M . The set M will be considered most

of the time as a subset of G, that is, the unity 1p will be identified with p for all p ∈ M .
The manifolds underlying Lie groupoids will always assumed to be Hausdorff.

Acknowledgements. The results presented in this paper are all contained in the au-
thor’s PhD thesis. The author is very grateful to Kirill Mackenzie for useful comments,
to Tudor Ratiu for his advice, and to Ping Xu for drawing her attention to his paper
[19] and thus to the problem solved in Section 4.

2 Review of necessary background

2.1 Lie groupoids and Lie algebroids

The general theory of Lie groupoids and their Lie algebroids can be found in [22]. We
fix here some notation and conventions.

For g ∈ G, the right translation by g is written Rg : s−1(t(g)) → s−1(s(g)), and the
left translation Lg : t−1(s(g)) → t−1(t(g)).

A bisection of G⇉M is a smooth map κ : M → G which is right-inverse to t : G → M
and is such that s ◦ κ is a diffeomorphism. The set of bisections of G is denoted by
B(G). If κ : M → G is a bisection of G⇉M , then the right translation by κ is defined
as follows:

Rκ : G → G, g 7→ Rκ(s(g))(g) = g · κ(s(g)).

We will also use the left translation by κ,

Lκ : G → G, g 7→ Lκ((s◦κ)−1(t(g)))(g).

The set B(G) of bisections of G has the structure of a group. For κ, λ ∈ B(G), the
product λ ⋆ κ is given by λ ⋆ κ : M → G, (λ ⋆ κ)(p) = λ(p) · κ((s ◦ λ)(p)) for all p ∈ M.

We will also consider local bisections of G and local right translations in the following,
without always saying it explicitly. We will write BU (G) for the set of local bisections
of G⇉M with the domain of definition U ⊆ M .

The Lie algebroid of a Lie groupoid In this paper, the Lie algebroid of the Lie groupoid
G⇉M is A := T t

MG, equipped with the anchor map T s|A and the Lie bracket defined
by the left invariant vector fields. We write (A, ρ, [· , ·]) for the Lie algebroid of the Lie
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groupoid G. Note that the vector field al ∈ X(G), for a ∈ Γ (A), satisfies al ∼s ρ(a) ∈
X(M). We write (Ã, ρ̃, [· , ·]Ã) for the Lie algebroid of G⇉M defined by right-invariant
vector fields.

We also recall the definition of the exponential map for a Lie groupoid :

Proposition 2.1 [22, Proposition 3.6.1] Let G⇉M be a Lie groupoid, choose a ∈ Γ(A)
and set W = Dom(a). For all p ∈ W there exists an open neighborhood V of p in
W , a flow neighborhood for a, an ε > 0 and a unique smooth family of local bisections
Exp(ta) ∈ BV (G), |t| < ε, such that:

1. d
dt


t=0

Exp(ta) = a,

2. Exp(0 · a) = IdV ,

3. Exp((t+ s)a) = Exp(ta) · Exp(sa), if |t|, |s|, |s+ t| < ε,

4. Exp(−ta) = (Exp(ta)) ∈ V ,

5. {s ◦ Exp(ta) : V → Vt} is a local 1-parameter group of transformations for ρ(a) ∈
X(M).

Let G⇉M be a Lie groupoid and let Cp be the connectedness component of p in
t−1(p). Then the union

C(G) :=
⋃

p∈M

Cp

is a wide Lie subgroupoid of G⇉M (see [22]), the identity-component subgroupoid of
G⇉M . The set of values Exp(ta)(p), for all a ∈ Γ(A), p ∈ M and t ∈ R where this makes
sense, is the identity-component subgroupoid C(G) of G⇉M (see [24],[22]). Hence, if
G⇉M is t-connected, that is, if all the t-fibers of G are connected, then G = C(G) is
the set of values of Exp(ta)(p), a ∈ Γ(A), p ∈ M and t ∈ R where defined.

Note that, in the same manner, the flow of a right invariant vector field br is the left
translation by a family of bisections {Lt} of G satisfying s ◦Lt = Id on their domains of
definition and such that t ◦ Lt are diffeomorphisms on their images. Hence, the flow of
br commutes with the flow of al for any left invariant vector field al and we get the fact
that

[
br, al

]
= 0 for all b ∈ Γ(T s

MG) and a ∈ Γ(A).

The tangent prolongation of a Lie groupoid Let G⇉M be a Lie groupoid. Applying
the tangent functor to each of the maps defining G yields a Lie groupoid structure on TG
with base TM , source T s, target T t (these maps will be written s and t in the following)
and multiplication Tm : T (G ×M G) → TG. The identity at vp ∈ TpM is 1vp = Tpǫvp.
This defines the tangent prolongation of G⇉M or the tangent groupoid associated to
G⇉M . We write vg ⋆ vh = Tm(vg, vh) for compatible vg, vh ∈ TG.
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The cotangent Lie groupoid defined by a Lie groupoid If G⇉M is a Lie groupoid,
then there is an induced Lie groupoid structure on T ∗G⇉A∗ = (TM)◦. The source map
ŝ : T ∗G → A∗ is given by

ŝ(αg) ∈ A∗
s(g)G for αg ∈ T ∗

gG, ŝ(αg)(as(g)) = αg(Ts(g)Lgas(g))

for all as(g) ∈ As(g)G, and the target map t̂ : T ∗G → A∗ is given by

t̂(αg) ∈ A∗
t(g)G, t̂(αg)(at(g)) = αg

(
Tt(g)Rg(at(g) − Tt(g)sat(g))

)

for all at(g) ∈ At(g)G. If ŝ(αg) = t̂(αh), then the product αg ⋆ αh is defined by

(αg ⋆ αh)(vg ⋆ vh) = αg(vg) + αh(vh)

for all composable pairs (vg, vh) ∈ T(g,h)(G×M G).

This Lie groupoid structure was introduced in [4] (see also [27] and [22]).

The Pontryagin groupoid defined by a Lie groupoid If G⇉M is a Lie groupoid, there
is hence an induced Lie groupoid structure on PG = TG⊕ T ∗G over TM ⊕A∗. We will
write Tt for the target map PG → TM ⊕ A∗, and Ts : PG → TM ⊕ A∗ for the source
map. Here again, we write pg ⋆ ph for the product1 of compatible pg, ph ∈ PG.

The proof of the following two lemmas is straightforward.

Lemma 2.2 Let G⇉M be a Lie groupoid. Choose g, h ∈ G and κ ∈ B(G). Choose
(vh, αh) ∈ PG(h), (vg, αg) ∈ PG(g) such that Ts (vg, αg) = Tt (vh, αh). Then

Tg⋆hRκ(vg ⋆ vh) = vg ⋆ (ThRκvh) (1)

and

αg ⋆
((

TRκ(h)R
−1
κ

)∗
αh

)
=
(
TRκ(g⋆h)R

−1
κ

)∗
(αg ⋆ αh). (2)

Lemma 2.3 Let G⇉M be a Lie groupoid. Choose g ∈ G and set p = t(g). Then, for
all αp ∈ T ∗

pM , we have

−(Tg−1s)∗αp = ((Tgt)
∗αp)

−1 .

Remark 2.4 If (vp, (Tps)
∗αp) is such that Tptvp = 0p, then Tt(vp, (Tps)

∗αp) = (0p, 0p).
It is easy to check that if g ∈ G is such that s(g) = p, then (0g, 0g) ⋆ (vp, (Tps)

∗αp) =
(TpLgvp, (Tgs)

∗αp) for all g ∈ s−1(p). △

1Note that in order to simplify the notation, we also use the symbol ⋆ for the products in TG⇉TM , in
T

∗
G⇉A

∗, and for the product of bisections. It should nevertheless always be clear from the context
to which multiplication this symbol refers.
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Homogeneous spaces Let G⇉M be a Lie groupoid and X a set with a map J : X →
M . Consider the set G ×M X = {(g, x) ∈ G × X | s(g) = J(x)}. A groupoid action
of G⇉M on J : X → M is a map Φ : G ×M X → X, Φ(g, x) = g · x = gx such that
J(g · x) = t(g) for all (g, x) ∈ G ×M X, g · (h · x) = (g · h) · x for all (h, x) ∈ G ×M X,
and g ∈ G such that s(g) = t(h), and J(x) · x = x for all x ∈ X.

Let G⇉M be a Lie groupoid and H⇉M a wide subgroupoid of G. Define the equiv-
alence relation

g ∼H g′ ⇐⇒ ∃ h ∈ H such that g · h = g′

on G and G/H := {gH | g ∈ G}, where gH = {g · h | s(g) = t(h) and h ∈ H}. The map
t factors to a map J : G/H → M , J(gH) = t(g) for all gH ∈ G/H. The multiplication
m : G×MG → G factors to a groupoid action Φ of G⇉M on J : G/H → M , Φ(g, g′H) =
(g · g′)H for all (g, g′H) ∈ G×M (G/H).

The topological space G/H with H a wide subgroupoid of G⇉M is a homogeneous
space of G⇉M [19].

Example 2.5 Let G⇉M be a groupoid. The two extreme examples of homogeneous
spaces of G are the following.

1. In the case where the wide subgroupoid is M , the equivalence classes are gM =
{g · p | p ∈ M,p = s(g)} = {g} and the quotient is just G/M = G, where G⇉M
acts on t : G → M via the multiplication.

2. If the wide subgroupoid is G itself, then the equivalence classes are gG = {g · h |
h ∈ G, t(h) = s(g)} = t−1(t(g)) and the quotient is G/G = M , with projection
equal to the target map t : G → G/G ≃ M . G⇉M acts on IdM : M → M via
Φ : G×M M → M , (g, p) 7→ t(g · p) = t(g). ♦

Assume that H is a t-connected wide Lie subgroupoid of G and that G/H is a smooth
manifold such that the projection q : G → G/H is a smooth surjective submersion.

Consider the vector bundle AH = T t

MH ⊆ TMH ⊆ TMG over M and the subbundle
H ⊆ TG defined as the left invariant image of AH, i.e. H(g) = Ts(g)LgAs(g)H for all
g ∈ G. Then H = kerTq and G/H is the leaf space of the foliation on G defined by the
involutive subbundle H ⊆ TG.

Consider the set B(H) of (local) bisections κ : U ⊆ M → H of H such that t◦κ = IdU
and s ◦ κ is a diffeomorphism. We have gH = {Rκ(g) | κ ∈ B(H)} and G/H is the
quotient of G by the right action of B(H) on G. A function f ∈ C∞(G) pushes forward
to the quotient G/H if and only if it is invariant under Rκ for all bisections κ ∈ B(H).

Courant algebroids A Courant algebroid [18, 28] over a manifold M is a vector bundle
E → M equipped with a fibrewise nondegenerate symmetric bilinear form 〈· , ·〉, a bilinear
bracket J· , ·K on the smooth sections Γ(E), and a vector bundle map ρ : E → TM over
the identity called the anchor, which satisfy the following conditions

1. Je1, Je2, e3KK = JJe1, e2K, e3K + Je2, Je1, e3KK,
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2. ρ(e1)〈e2, e3〉 = 〈Je1, e2K, e3〉+ 〈e2, Je1, e3K〉,

3. Je1, e2K + Je2, e1K = D〈e1, e2〉

for all e1, e2, e3 ∈ Γ(E) and ϕ ∈ C∞(M). Here, we use the notation D := ρ∗ ◦
d : C∞(M) → Γ(E), using 〈· , ·〉 to identify E with E∗:

〈Dϕ, e〉 = ρ(e)(ϕ)

for all ϕ ∈ C∞(M) and e ∈ Γ(E). The following conditions

4. ρ(Je1, e2K) = [ρ(e1), ρ(e2)],

5. Je1, ϕe2K = ϕJe1, e2K + (ρ(e1)ϕ)e2

are then also satisfied. They are often part of the definition in the literature, but it was
already observed in [29] that they follow from (1)− (3).

Example 2.6 Let (A,A∗) be a pair of dual vector bundles, both endowed with Lie
algebroid structures (A → M,ρ, [· , ·]) and (A∗ → M,ρ⋆, [· , ·]⋆).

The direct sum A⊕A∗ is naturally endowed with an anchor map c := ρ+ρ⋆ : A⊕A∗ →
TM , c(x, ξ) = ρ(x) + ρ⋆(ξ) and the symmetric bracket 〈· , ·〉 given by

〈(xm, ξm), (ym, ηm)〉 = ξm(ym) + ηm(xm) (3)

for all m ∈ M , xm, ym ∈ TmM and ξm, ηm ∈ T ∗
mM . Define the bracket

J(X, ξ), (Y, η)KA⊕A∗ = ([X,Y ] +£ξY − iηdA∗X, [ξ, η]⋆ +£Xη − iY dAξ)

for all (X, ξ), (Y, η) ∈ Γ(A⊕A∗). Then (A⊕A∗, c, 〈· , ·〉, J· , ·KA⊕A∗) is a Courant algebroid
if and only if (A,A∗) is a Lie bialgebroid2.

Here, £X : Γ(A∗) → Γ(A∗) is the derivation that is dual to the derivation [X, ·] :
Γ(A) → Γ(A), i.e. 〈£Xη, Y 〉 = ρ(X)〈η, Y 〉 − 〈η, [X,Y ]〉. In the same manner, £ξ :
Γ(A) → Γ(A) is dual to [ξ, ·]⋆ : Γ(A∗) → Γ(A∗). The operator dA : Γ(Λ•A∗) →
Γ(Λ•+1A∗) is the differential associated to (A, ρ, [· , ·]). In the case of sections of A∗, it
is hence simply

dAξ(X,Y ) = ρ(X)(ξ(Y ))− ρ(Y )(ξ(X))− ξ([X,Y ]),

ξ ∈ Γ(A∗), X,Y ∈ Γ(A).

Note that in the case of the Lie bialgebroid (TM, T ∗M), where T ∗M is endowed with
the trivial Lie algebroid structure, we get the standard Courant algebroid structure on
the Pontryagin bundle TM⊕T ∗M , with anchor prTM and the Courant-Dorfman bracket
on its set of sections:

J(X,α), (Y, β)K = ([X,Y ],£Xβ − iY dα) ,

X, Y ∈ X(M), α, β ∈ Ω1(M). ♦

2Since we do not need the explicit definition of a Lie bialgebroid, we will take this to be the definition.
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Remark 2.7 Let G⇉M be a Lie groupoid. Then

kerTt = (kerTs)⊥ and kerTs = (kerTt)⊥ (4)

relative to the pairing (3) on TG⊕T ∗G. Later results will show that the sets of sections of
kerTt and kerTs are both closed under the Courant-Dorfman bracket on Γ(TG⊕T ∗G).△

2.2 Dirac structures

As we have seen in Example 2.6, the Pontryagin bundle PM := TM ⊕T ∗M of a smooth
manifold M is endowed with the non-degenerate symmetric fiberwise pairing of signature
(dimM, dimM) given by (3). An almost Dirac structure (see [5]) on M is a Lagrangian
vector subbundle D ⊂ PM . That is, D coincides with its orthogonal relative to (3) and
so its fibers are necessarily dimM -dimensional.

Let (M,D) be a Dirac manifold. For each m ∈ M , the Dirac structure D defines a
subspace G0(m) = D(m) ∩ TmM ⊂ TmM by

G0(m) := {vm ∈ TmM | (vm, 0) ∈ D(m)}.

The almost Dirac structure D is a Dirac structure if

JΓ(D),Γ(D)K ⊂ Γ(D). (5)

The restriction of the Courant bracket to the sections of a Dirac bundle is skew-symmetric
and satisfies the Jacobi identity.
Note that in the following, we work in the general setting of almost Dirac

structures. To simplify the notation, we will simply call almost Dirac struc-
tures “Dirac structures” and always state it explicitely if the integrability
condition (5) is assumed to be satisfied. We will say in this case that the
Dirac structure is closed.3

(Closed) Dirac structures can be defined in the same manner in an arbitrary Courant
algebroid.

The class of Dirac structures given in the next example will be very important in the
following.

Example 2.8 Let M be a smooth manifold endowed with a globally defined bivector

field π ∈ Γ
(∧2 TM

)
. Then the subdistribution Dπ ⊆ PM defined by

Dπ(m) =
{
(π♯(αm), αm) | αm ∈ T ∗

mM
}

for all m ∈ M,

where π♯ : T ∗M → TM is defined by π♯(α) = π(α, ·) ∈ X(M) for all α ∈ Ω1(M), is a
Dirac structure on M . It is closed if and only if the bivector field satisfies [π, π] = 0,
that is, if and only if (M,π) is a Poisson manifold. ♦

3We prefer the terminology “closed” to “integrable” because integrability of a Dirac structure can also
signify that it is integrable as a Lie algebroid, i.e. it integrates to a presymplectic groupoid as in [2].
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Dirac maps and Dirac reduction Let (M,DM ) and (N,DN ) be two Dirac manifolds and
F : M → N a smooth map. Then F is a forward Dirac map if for all n ∈ N , m ∈ F−1(n)
and (vn, αn) ∈ DN (n) there exists (vm, αm) ∈ DM (m) such that TmFvm = vn and
αm = (TmF )∗αn. The map F is a backward Dirac map if for all m ∈ M , n = F (m)
and (vm, αm) ∈ DM (m) there exists (vn, αn) ∈ DN (n) such that TmFvm = vn and
αm = (TmF )∗αn.

Assume that G⇉M is a Lie groupoid, and that G is endowed with a Dirac structure.
LetH be a t-connected, wide Lie subgroupoid ofG such thatG/H has a smooth manifold
structure and q : G → G/H is a smooth surjective submersion. Since G/H is the leaf
space of H, where H is the left invariant image of AH (see the previous section), we
can apply the results in [32] (see also [13]) for Dirac reduction. Assume that the Dirac
structure D on G is such that D ∩ (TG⊕H

◦) has constant rank on G and

JΓ(D),Γ(H ⊕ {0})K ⊆ Γ(D+ (H ⊕ {0})), (6)

then D induces a Dirac structure q(D) on the quotient G/H. The Dirac structure q(D)
on G/H is given by

Γ(q(D)) = {(X̄, ᾱ) ∈ Γ(PG/H) | ∃X ∈ X(G) such that X ∼q X̄ and (X, q∗ᾱ) ∈ Γ(D)}.

In other words, q(D) is the forward Dirac image of D under q : G → G/H. If the Dirac
structure D is closed, then q(D) is closed.

If H ⊕ {0} ⊆ D, then D = q∗(q(D)), where for any Dirac structure D̄ on G/H, its
pullback q∗(D̄) to G is the Dirac structure on G defined by

q∗(D̄)(g) = {(vg, (Tgq)
∗αgH) ∈ PG(g) | (Tgqvg, αgH) ∈ D̄(gH)}

for all g ∈ G. (The bundle q∗(D) is the backward Dirac image of D under q.)

Note that if we can verify that

(R∗
κX,R∗

κα) ∈ Γ(D) for all (X,α) ∈ Γ(D) and κ ∈ B(H), (7)

then condition (6) is satisfied.

3 The geometry of Dirac groupoids.

3.1 Definition and examples

Definition 3.1 ([26]) A Dirac groupoid is a Lie groupoid G ⇉ M endowed with a
Dirac structure D such that D ⊆ TG ⊕ T ∗G is a Lie subgroupoid. The Dirac structure
D is then said to be multiplicative.

Note that in [26], Dirac manifolds are always closed by definition.
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Example 3.2 Poisson groupoids were introduced in [30] and studied in [30], [31], [23]
among other, see also [22]. It is shown in [23] that (G⇉M,πG) is a Poisson groupoid if

and only if the vector bundle map π♯
G : T ∗G → TG associated to πG is a morphism of

Lie groupoids over some map a∗ : A∗ → TM (the restriction of π♯
G to A∗). Using this,

it is easy to see that (G⇉M,πG) is a Poisson groupoid if and only if (G⇉M,DπG) is a
closed Dirac groupoid. ♦

Example 3.3 Let G⇉M be a Lie groupoid. A 2-form ωG on G is multiplicative if the
partial multiplication map m : G ×M G → G satisfies m∗ωG = pr∗1 ωG + pr∗2 ωG. The
graph DωG = Graph(ω♭

G : TG → T ∗G) ⊆ PG is then multiplicative, and (G⇉M,DωG) is
a Dirac groupoid, see [26], [1]. If the 2-form is closed, then the Dirac groupoid is closed.

Note that presymplectic groupoids have been studied in [3], [2]. These are Lie groupoids
endowed with closed, multiplicative 2-forms satisfying some additional non degeneracy
properties. ♦

Example 3.4 Let (G,D) be a Dirac group in the sense of [10]. We have seen there that
it is a Dirac group in the sense of [26], that is, D is a subgroupoid of the Pontryagin
groupoid TG ⊕ TG∗⇉{0} ⊕ g∗. The set of units is here D(e) ∩ ({0} ⊕ g∗) = {0} ⊕ p1
since we know that D(e) is equal to a direct sum g0 ⊕ g◦0 ⊆ g⊕ g∗, with g0 an ideal in g

and g◦0 ⊆ g∗ its annihilator. ♦

Example 3.5 Consider a smooth Dirac manifold (M,DM ) and the pair groupoid M ×
M⇉M associated to M . The tangent groupoid T (M × M)⇉TM of M × M ⇉M is
then TM × TM ⇉TM , the pair groupoid associated to TM .

The dual A∗(M ×M) is given by A∗
(m,m)(M ×M) = {(−αm, αm) | αm ∈ T ∗

mM} for

all m ∈ M and the structure of the cotangent groupoid T ∗(M × M)⇉A∗(M × M)
can be described as follows. If (αm, αn) ∈ T ∗

(m,n)(M × M), it is easy to check that

t̂(αm, αn) = (αm,−αm) and ŝ(αm, αn) = (−αn, αn). The multiplication is then given by

(αm, αn) ⋆ (−αn, αp) = (αm, αp).

It is easy to check that the Dirac structure DM ⊖ DM , defined by

(DM ⊖ DM )(m,n) =

{
((vm,−vn), (αm, αn)) ∈ PM×M (m,n)

∣∣∣∣
(vm, αm) ∈ DM (m)
and (vn, αn) ∈ DM (n)

}

for all (m,n) ∈ M × M , is a multiplicative Dirac structure on M × M ⇉M . This
generalizes the fact that if (M,πM ) is a Poisson manifold, then M ×M ⇉M endowed
with πM ⊕ (−πM ) is a Poisson groupoid.

We call the Dirac groupoid (M×M ⇉M,DM⊖DM ) the pair Dirac groupoid associated
to (M,DM ). It is closed if and only if (M,DM ) is closed. ♦

Remark 3.6 In the Poisson case, it is known by results in [30] that any multiplicative
Poisson structure on a pair groupoid is πM ⊕ (−πM ) for some Poisson bivector πM on
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M . This is not true in general. For instance, let M be a smooth manifold with a
smooth free action of a Lie group H with Lie algebra h. Then the diagonal action of
H on M × M is by Lie groupoid morphisms, and its vertical space V ⊆ T (M × M),
V(m,n) = {(ξM (m), ξM (n)) | ξ ∈ h} for all m,n ∈ M , is multiplicative (see for instance
[12]). The Dirac structure V⊕V

◦ is then multiplicative, but cannot be written as a pair
Dirac structure on M ×M . △

We now study some immediate properties of Dirac groupoids.

Definition 3.7 1. Let (G⇉M,D) be a Dirac groupoid and U the set of units of D,
i.e. the subdistribution D ∩ (TM ⊕ A∗) of TM ⊕ A∗. We write ρ⋆ : U → TM for
the map prTM |U .

2. We write kerTs, respectively kerTt for the kernel T sG⊕(T tG)◦ (respectively T tG⊕
(T sG)◦) of the source map Ts : PG → TM ⊕ A∗ (respectively the target map
Tt : PG → TM ⊕A∗). We denote by Ks the restriction to M of D ∩ kerTs, i.e.

Ks = D ∩ (T s

MG⊕ (T t

MG)◦) = (D ∩ kerTs)|M .

In the same manner, we write Kt := D ∩ (T t

MG⊕ (T s

MG)◦) = (D ∩ kerTt)|M .

Theorem 3.8 Let (G⇉M,DG) be a Dirac groupoid. Then the Dirac subspace D|M splits
as a direct sum

D|M = U ⊕Kt

and in the same manner

D|M = U ⊕Ks.

The three intersections U , Ks, Kt of vector bundles over M are smooth and have constant
rank on M .

Proof: Choose p ∈ M and (vp, αp) ∈ D(p). Then we have Tt(vp, αp) ∈ D(p) and hence
also (vp, αp)−Tt(vp, αp) ∈ D(p). We find that vp−Tptvp ∈ T t

pG and Tpt(vp) ∈ TpM , and
in the same manner t̂(αp) ∈ A∗

pG = (TpM)◦, by definition, and αp − t̂(αp) ∈ (T s
pG)◦.

Since

(vp, αp) = Tt(vp, αp) + ((vp, αp)− Tt(vp, αp)) ,

we have shown the first equality. The second formula can be shown in the same manner,
using the map Ts : D(p) → D(p) ∩ (TpM ×A∗

pG).

Next, we show that the intersection of D with TM ⊕ A∗ is smooth. Choose p ∈ M
and (vp, αp) ∈ D(p) ∩ (TpM × A∗

pG). Since D is a smooth vector bundle on G, we find
a section (X,α) ∈ Γ(D) defined on a neighborhood of p such that (X,α)(p) = (vp, αp).
The restriction (X,α)|M is then a smooth section of D|M . We have Ts((X,α)|M ) ∈
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Γ(D ∩ (TM ⊕ A∗)) and Ts(X,α)(p) = (Tpsvp, αp|T t
pG) = (vp, αp) since vp ∈ TpM and

αp ∈ A∗
pG = (TpM)◦.

Thus, we have found a smooth section of D ∩ (TM ⊕ A∗) defined on a neighborhood
of p in M and taking value (vp, αp) at p.

Since (D|M )⊥ = D|M and Tm ⊕ A∗ = (TM ⊕A∗)⊥ are smooth subbundles of PG|M ,
we get from Proposition 4.4 in [14] that D ∩ (TM ⊕ A∗) has constant rank on M . By
the splittings shown above and the fact that D|M has constant rank on M , we find that
the two other intersections have constant rank on M , and are thus smooth. �

In the case of a Dirac group, the bundle Ks → M is g0 → {e}, as is shown in the
next example. We will see later that Ks has a crucial role in the construction of the
Courant algebroid associated to a Dirac groupoid (G⇉M,D). The fact that the left and
right invariant images of this subspace are exactly the characteristic distribution of the
Dirac structure is a very special and convenient feature in the group case, that makes
the Dirac groups much easier to understand than arbitrary Dirac groupoids (see [10]).

Example 3.9 Let (G,D) be a Dirac group (Example 3.4) and set p1 = P1(e) ⊆ g∗ and
g0 = G0(e) ⊆ g, where e is the neutral element of G We have M = {e},

D(e) ∩ (TeM × (TeM)◦) = D(e) ∩ ({0} × g∗) = {0} × p1

and

D(e) ∩ (T s

eG× (T t

eG)◦) = D(e) ∩ (g× {0}) = g0 × {0}.

We recover hence the equality D(e) = g0 × p1 [10].

In this particular case, D is a Poisson structure if and only if D(e) is equal to the set
of units of TG⊕T ∗G⇉{0}× g∗, i.e. g0 = {0} and p1 = g∗. This is not true in general.♦

The following lemma is immediate.

Lemma 3.10 Let (G⇉M,D) be a Dirac groupoid. For all g ∈ G, we have

D(g) ∩ kerTt = (0g, 0g) ⋆ K
t

s(g)

and

D(g) ∩ kerTs = Ks

t(g) ⋆ (0g, 0g).

The intersections D ∩ kerTt and D ∩ kerTs have consequently constant rank on G.

Example 3.11 If (G⇉M,πG) is a Poisson groupoid, then π♯
G(d(s

∗f)) ∈ Γ(T tG) for
all f ∈ C∞(M) (see [30]). The intersection DπG ∩ kerTt is hence spanned by the

sections (π♯
G(d(s

∗f)),d(s∗f)), with f ∈ C∞(M), and has constant rank. The intersection

DπG ∩ kerTs is spanned by the sections (π♯
G(d(t

∗f)),d(t∗f)) with f ∈ C∞(M). ♦
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3.2 The units of a Dirac groupoid

In this section, we show how the set of units U of a closed multiplicative Dirac structure
is endowed with a Lie algebroid structure. The Dirac structure is then an LA-groupoid.
We then prove a crucial formula for the derivative of specials sections of the Dirac
structure, the star-sections, along left-invariant vector fields.

Proposition 3.12 Let u be a section of D∩(TM⊕A∗) = U . Then there exists a smooth
section d of D such that d|M = u and Ts ◦ d = u ◦ s.

Following [21], we then say that the section d of D is a s-star section or simply star
section and we write d ∼s u. Note that outside of M , d is unique up to sections of
D ∩ kerTs.

Proof: We have shown in Lemma 3.10 that D ∩ kerTs is a subbundle of D. Hence,
we can consider the smooth vector bundle D/(D ∩ kerTs) over G. Since D is a Lie
subgroupoid of PG⇉(TM ⊕A∗), we can consider the restriction to D of the source map,
Ts : D → U . Since D∩kerTs is the kernel of this map, we have an induced smooth vector
bundle homomorphism Ts : D/(D∩ kerTs) → U over the source map s : G → M , that is
bijective in every fiber. Hence, there exists a unique smooth section [d] of D/(D∩kerTs)
such that Ts([d](g)) = u(s(g)) for all g ∈ G. If d ∈ Γ(D) is a representative of [d] such
that d|M = u, then Ts ◦ d = u ◦ s. �

Lemma 3.13 Choose star sections d ∼s u, d′ ∼s u′ of D. Then, if d = (X,α) and
d′ = (Y, β), the identity

〈(£alX,£alα), (Y, β)〉 = s
∗
(
〈(£alX,£alα), (Y, β)〉|M

)
(8)

holds for any section a ∈ Γ(A).

Proof: Choose g ∈ G and set p = s(g). For all t ∈ (−ε, ε) for a small ε, we have

d(g · Exp(ta)(p)) = d(g · Exp(ta)(p)) ⋆
(
d(Exp(ta)(p))

)−1
⋆ d(Exp(ta)(p)).

The product

d(g · Exp(ta)(p)) ⋆
(
d(Exp(ta)(p))

)−1

is an element of D(g) for all t ∈ (−ε, ε) and will be written δt(g) to simplify the notation.
Then

(
TRExp(ta)(g)RExp(−ta)X(g · Exp(ta)(p)), α(g · Exp(ta)(p)) ◦ TgRExp(ta)

)

= δt(g) ⋆
(
TExp(ta)RExp(−ta)X(Exp(ta)(p)), α(Exp(ta)(p)) ◦ TpRExp(ta)

)
(9)

15



and so

(β(£alX) + (£alα)(Y )) (g)

=

〈
d′(g),

d

dt


t=0

((
R∗

Exp(ta)X
)
(g),

(
R∗

Exp(ta)α
)
(g)
)〉

(9)
=

d

dt


t=0

〈
d′(g) ⋆ u′(p), δt(g) ⋆

((
R∗

Exp(ta)X
)
(p),

(
R∗

Exp(ta)α
)
(p)
)〉

=
d

dt


t=0

〈
d′(g), δt(g)

〉
+

d

dt


t=0

〈
u′(p),

((
R∗

Exp(ta)X
)
(p),

(
R∗

Exp(ta)α
)
(p)
)〉

=

(
d

dt


t=0

0

)
+
〈
u′, (£alX,£alα)

〉
(p) = (β(£alX) + (£alα)(Y )) (s(g)). �

Proposition 3.14 Let (G⇉M,D) be a Dirac groupoid. Choose star sections d ∼s u,
d′ ∼s u

′ of D. Then the Courant-Dorfman bracket Jd, d′K is again a star section.

Proof: We write d = (X,α), d′ = (Y, β), u = (X̄, ξ) and u′ = (Ȳ , η). Since X ∼s X̄
and Y ∼s Ȳ , we know that [X,Y ] ∼s [X̄, Ȳ ]. Since X|M = X̄, Y |M = Ȳ the value of
[X,Y ] on points in M is equal to the value of [X̄, Ȳ ] ∈ X(M). We check that for all
p ∈ M , we have ŝ ((£Xβ − iY dα)(g)) = (£Xβ − iY dα)(p) for any g ∈ s−1(p).

We have for any a ∈ Γ(A):

ŝ ((£Xβ − iY dα) (g)) (a(p)) = (£Xβ − iY dα)
(
al
)
(g).

Hence, we compute with (8)

(£Xβ − iY dα) (a
l) =X(β(al)) + β(£alX)− Y (α(al)) + al(α(Y ))− α(£alY )

=X(s∗(η(a))) + β(£alX)− Y (s∗(ξ(a))) + (£alα)(Y )

= s
∗
(
X̄(η(a)) + Ȳ (£alX)− η(ξ(a)) + (£alα)(Ȳ )

)
.

Then we also have

(£Xβ − iY dα) (a(p)) =
(
X̄(η(a)) + η(£alX)− Ȳ (ξ(a)) + (£alα)(Ȳ )

)
(p)

for p ∈ M . It is easy to check as well that £Xβ − iY dα vanishes on TM . We get that
(£Xβ − iY dα) |M is a section of A∗ = TM◦ and

ŝ ((£Xβ − iY dα) (g)) = (£Xβ − iY dα) (s(g))

for all g ∈ G. �

Theorem 3.15 Let (G⇉M,D) be a Dirac groupoid. Then there is an induced skew-
symmetric bracket

[· , ·]⋆ : Γ(U)× Γ(U) → Γ(TM ⊕A∗)

defined by [u, u′]⋆ = Jd, d′K|M for any choice of star sections d ∼s u and d′ ∼s u
′ of D. If

(G⇉M,D) is closed, then (U, [· , ·]⋆, ρ⋆) is a Lie algebroid over M .
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Proof: We use the same notation as in the previous proof. By Proposition 3.14, we
have

J(X,α), (Y, β)K ∼s

(
[X̄, Ȳ ], (£Xβ − iY dα) |M

)
.

Thus, we first have to show that the right-hand side of this equation does not depend on
the choice of the sections d and d′. Choose a star section δ ∼s 0 of D, i.e. δ = (Z, γ) ∈
Γ(D ∩ kerTs) with δ|M = 0. For any a ∈ Γ(A), we find, as in the proof of Proposition
3.14, (£Zα− iXdγ)

(
al
)
= −〈£ald, δ〉 and hence, at any p ∈ M :

(£Zα− iXdγ)(a(p)) = −〈£ald(p), (0p, 0p)〉 = 0.

Thus, we find (£Zα − iXdγ)(p) = 0p since we know by the previous proposition that
(£Zα − iXdγ)(p) ∈ A∗

pG = TpM
◦. We get hence Jδ, dK (p) = (0p, 0p) and the bracket

on Γ(U) is well-defined. Since the Courant-Dorfman bracket on sections of D is skew-
symmetric, [· , ·]⋆ is skew-symmetric.

If D is closed, then for all star sections d, d′ ∈ Γ(D), the bracket Jd, d′K is also a section
of D and its restriction to M is a section of U . The Jacobi identity is satisfied by [· , ·]⋆
because the Courant-Dorfman bracket on sections of D satisfies it. For any u, u′ ∈ Γ(U)
and f ∈ C∞(M), we have

ρ⋆
[
u, u′

]
⋆
=
[
X̄, Ȳ

]
=
[
ρ⋆(u), ρ⋆(u

′)
]

and

[
u, f · u′

]
⋆
(p) =

q
d, (s∗f)d′

y
(p) = X(s∗f)d′(p) + (s∗f)

q
d, d′

y
(p)

= X̄(f)(p) · u′(p) + f(p) ·
[
u, u′

]
⋆
(p)

= ρ⋆(u)(f)(p) · u
′(p) + f(p) ·

[
u, u′

]
⋆
(p)

for all p ∈ M . �

LetG⇉M be a Lie groupoid, TG⇉TM its tangent prolongation and (A → M,ρ, [· , ·]ρ)
a Lie algebroid over M . Let Ω be a smooth manifold. The quadruple (Ω;G,A;M) is
an LA-groupoid [21] if Ω has both a Lie groupoid structure over A and a Lie algebroid
structure over G such that the two structures on Ω commute in the sense that the maps
defining the groupoid structure are all Lie algebroid morphisms. (The bracket on sec-
tions of U can be defined in the same manner with the target map, and the fact that the
multiplication in T ∗G⊕ TG is a Lie algebroid morphism is shown in [26].) The double
source map (q̃, s̃) : Ω → G⊕A has furthermore to be a surjective submersion.

Recall from [5] that if D is closed, then D → G has the structure of a Lie algebroid with
the Courant-Dorfman bracket and the projection to TG as anchor. Thus, the previous
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theorem shows that the quadruple (D;G,U ;M) is an LA-groupoid (see also [26]):

D
Ts //

Tt

//

q

��

πTG

!!

U

��

ρ⋆

""
TG

T s //

T t

//

}}

TM

||
G

s //

t

// M

It is shown in [21] (see also [20]), that the bracket of two star sections is again a star
section. Here, we have shown this fact in Proposition 3.14 and get as a consequence the
fact that U has the structure of a Lie algebroid over M .
The next interesting object in [21] is the core K of Ω. It is defined as the pullback

vector bundle across ǫ : M →֒ G of the kernel ker(s̃ : Ω → A). Hence, it is here exactly
the vector bundle Ks over M . It comes equipped with the vector bundle morphisms
δU : Ks → U , (vp, αp) 7→ Tt(vp, αp) and δ

Ã
: Ks → Ã, (vp, αp) 7→ vp. We have then

ρ̃ ◦ δ
Ã
= ρ⋆ ◦ δU =: k. Furthermore, there is an induced bracket [· , ·]Ks on sections of Ks

such that (Ks, [· , ·]Ks , k) is a Lie algebroid over M . We prove directly this fact for our
special situation in the following proposition.
Recall that if (vp, αp), p ∈ M , is an element of Ks

p, then αp can be written (Tpt)
∗βp

with some βp ∈ T ∗
pM . Furthermore, if σ is a section of Ks ⊆ (T sG ⊕ (T tG)◦)|M , then

σr defined by σr(g) = σ(t(g)) ⋆ (0g, 0g) for all g ∈ G is a section of D∩ kerTs by Lemma
3.10 and Remark 2.4.

Proposition 3.16 Let (G⇉M,D) be a Dirac groupoid. Define [· , ·]Ks : Γ(Ks)×Γ(Ks) →
Γ((kerTs)|M ) by

([σ, τ ]Ks)r = Jσr, τ rK
for all sections σ, τ ∈ Γ(Ks), i.e. if σ = (a, t∗θ|M ) and τ = (b, t∗ω|M ), then

[σ, τ ]Ks =
(
[a, b]

Ã
, (t∗(£ρ̃(a)ω − iρ̃(b)dθ))|M

)
.

If D is closed, this bracket has image in Γ(Ks) and Ks has the structure of a Lie algebroid
over M with the anchor map k defined by k(ap, θp) = ρ̃(ap) for all (ap, θp) ∈ Ks

p, p ∈ M .

Note that if D is closed, the space Kt has in a similar manner the structure of an
algebroid over M .

Proof: Assume that D is closed. The bracket

Jσr, τ rK = J(ar, t∗θ) , (br, t∗ω)K

is then a section of D. The identity

J(ar, t∗θ) , (br, t∗ω)K =
(
[a, b]

Ã
r, t∗(£ρ̃(a)ω − iρ̃(b)dθ)

)

shows hence that Jσr, τ rK ∈ Γ(D ∩ kerTs) is right invariant and consequently that
[σ, τ ]Ks ∈ Γ(Ks). �
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As in [21], we have thus four Lie algebroids over M :

Ks

!!
δ
Ã

��

δU // U

||
ρ⋆

��

M

Ã

>>

ρ̃
// TM

aa

Remark 3.17 The integrability of a mutliplicative Dirac structure is completely en-
coded in the square of Lie algebroids associated to it as above. Let (G⇉M,D) be a
Dirac groupoid. Assume that G⇉M is t-connected. It is shown in [9] that D is closed if
and only if:

1. the bracket [· , ·]⋆ has image in Γ(U) and satisfies the Jacobi identity and

2. the bracket [· , ·]Ks has image in Γ(Ks). △

Next, we compute the Lie algebroid U → M for our three “standard” examples.

Example 3.18 Let (G⇉M,πG) be a Poisson groupoid and DπG the graph of the vec-

tor bundle homomorphism π♯
G : T ∗G → TG associated to πG. The pair (G⇉M,DπG) is a

closed Dirac groupoid. The set U of units of DπG equals here Graph
(
π♯
G


A∗

: A∗ → TM
)

and is hence isomorphic to A∗ as a vector bundle, via the maps Θ := prA∗ : U → A∗

and Θ−1 =
(
π♯
G


A∗

, IdA∗

)
: A∗ → U over IdM .

The vector bundle A∗ has the structure of a Lie algebroid over M with anchor map
given by A∗ → TM , αp 7→ π♯

G(αp) ∈ TpM and with bracket the restriction to A∗ of the
bracket [· , ·]πG on Ω1(G) defined by πG: [α, β]πG = £

π♯
G(α)

β − £
π♯
G(β)

α − dπG(α, β) for

all α, β ∈ Ω1(G) [4]. Thus, A∗ with this Lie algebroid structure and U are isomorphic
as Lie algebroids via Θ and Θ−1. ♦

Example 3.19 Let ωG be a multiplicative closed 2-form on a Lie groupoid G⇉M and
consider the associated multiplicative Dirac structure DωG on G. The Lie algebroid
U → M is here equal to

U = Graph
(
ω♭
G|TM : TM → A∗

)

with anchor map ρ⋆ : U → TM given by ρ⋆
(
vp, ω

♭
G(vp)

)
= vp. The bracket of two

sections
(
X̄, ω♭

G(X̄)
)
,
(
Ȳ , ω♭

G(Ȳ )
)
∈ Γ(U) is simply given by

r(
X̄, ω♭

G(X̄)
)
,
(
Ȳ , ω♭

G(Ȳ )
)z

=
(
[X̄, Ȳ ], ω♭

G

(
[X̄, Ȳ ]

))
.

The Lie algebroid U is obviously isomorphic to the tangent Lie algebroid TM → M
of M . ♦
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Example 3.20 Let (M,DM ) be a smooth Dirac manifold and (M×M ⇉M,DM ⊖DM )
the associated pair Dirac groupoid as in Example 3.5. The set U is here defined by

U(m,m) = {(vm, vm, αm,−αm) | (vm, αm) ∈ DM (m)}

for all m ∈ M . Hence, we have an isomorphism U → DM over the map pr1 : ∆M → M .
If (M,DM ) is closed, the Lie algebroid structure on U corresponds to the Lie algebroid
structure on DM (see [5]). ♦

We conclude this section with the following theorem, which statement is in our opin-
ion the most important feature of Dirac groupoids. This result will be crucial for the
constructions in the next sections and in [15].

Theorem 3.21 Let (G⇉M,D) be a Dirac groupoid, d ∼s u a star section of D and
a ∈ Γ(A). Then the derivative £ald can be written as a sum

£ald = Lad+ (σd,a)
l (10)

with Lad a star section of D and σd,a ∈ Γ(ker(Tt)|M ). We have Laξ ∼s Tt (£ald|M ) in
the sense that

Ts (Lad(g)) = Tt (£ald(s(g)))

for all g ∈ G.
In addition, if d ∼s 0, then £ald ∈ Γ(D ∩ kerTs). In particular, its restriction to M

is a section of Ks.

The following lemma will be useful for the proof of this theorem. The proof is easy
and shall be omitted.

Lemma 3.22 Let G⇉M be a Lie groupoid. Choose τ ∈ Γ((kerTt)|M ) and σ ∈ Γ((kerTs)|M ).
Then we have r

τ l, σr
z
= 0. (11)

In particular, we have for a ∈ Γ(A):

£alσ
r = 0. (12)

Proof (of Theorem 3.21): Note first that, in general, £ald is a section of D+kerTt:
for all σr ∈ Γ(D ∩ kerTs), we have

〈£ald, σ
r〉 = £al〈d, σ

r〉 − 〈d,£alσ
r〉 = 0

using D = D⊥ and (12). This leads to £ald ∈ Γ
(
(D ∩ kerTs)⊥

)
= Γ(D + kerTt). We

write here d = (X,α) and u = (X̄, ξ). Choose g ∈ G. Then

Tgs(£alX)(g) = Tgs

[
al, X

]
(g) =

[
ρ(a), X̄

]
(s(g))
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and for any b ∈ Γ(A)

ŝ(£alα(g))(b(s(g))) = (£alα)(b
l)(g) = (al(s∗(ξ(b)))− s

∗(ξ([a, b]A)))(g)

=
(
ρ(a)(ξ(b))− ξ([a, b]A)

)
(s(g)).

This shows that Ts (£ald(g)) depends only on the values of a and u at s(g).

Set

σl
d,a(g) := (0g, 0g) ⋆

(
£ald(s(g))− Tt (£ald(s(g)))

)

and

Lad(g) := £ald(g)− σl
d,a(g)

for all g ∈ G. Then σl
d,a is a smooth left-invariant section of kerTt and Lad is a star

section since

Ts(Lad(g)) = Lad(s(g))

for all g ∈ G.

It remains hence to show that Lad is a section of D. The equality

〈σr,Lad〉 = 〈σr,£ald〉 −
〈
σr, σl

d,a

〉
= 0

holds for all σr ∈ Γ(kerTs ∩ D), and for all star sections d′ ∼s u
′ of D, we compute

〈
d′,Lad

〉
(g) =

〈
d′,£ald− σl

d,a

〉
(g)

=
〈
d′,£ald

〉
(g)−

〈
d′(g) ⋆ u′(s(g)), (0g, 0g) ⋆ (£ald(s(g))− Tt (£ald(s(g))))

〉

(8)
=
〈
u′(s(g)),£ald(s(g))

〉
−
〈
u′(s(g)),£ald(s(g))− Tt (£ald(s(g)))

〉

=
〈
u′(s(g)),Tt (£ald(s(g)))

〉
= 0

since TM ⊕A∗ = (TM ⊕A∗)⊥. Thus, we have shown that Lad ∈ Γ(D⊥) = Γ(D).

For the proof of the second statement, assume that d ∼s u = 0. For all left invariant
sections σ = (b, s∗θ|M ) of kerTt|M , we have

〈
£ald, σ

l
〉
= £al

〈
d, σl

〉
−
〈
d,£alσ

l
〉
= £al (s

∗〈u, σ〉)− s
∗〈u, ([a, b]A, s

∗(£ρ(a)θ)|M )〉 = 0.

Choose any star section d′ ∼s u
′ of D. Then

〈
£ald, d

′
〉
= £al

〈
d, d′

〉
−
〈
d,£ald

′
〉
= 0

since £ald
′ ∈ Γ

(
(D ∩ kerTs)⊥

)
. We have also £ald ∈ Γ

(
(D ∩ kerTs)⊥

)
and, because

the star sections of D and the sections of D ∩ kerTs span D, this shows that £ald ∈
Γ
(
(D+ kerTt)⊥

)
= Γ(D ∩ kerTs). �
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3.3 The Courant algebroid associated to a closed Dirac groupoid

The dual space of U can be identified with PG|M/U⊥. Since

U⊥ = D|M + (TM ⊕A∗) = Kt ⊕ (TM ⊕A∗)

and
PG|M = (TM ⊕A∗) + kerTt|M ,

we have

U∗ ≃
kerTt|M

Kt
.

Since D|M ⊆ U ⊕ kerTt|M , we have Ks ⊆ U ⊕ kerTt|M and the quotient

B :=
U ⊕ kerTt|M

Ks

is a smooth vector bundle over M . Consider the map

Ψ : kerTt|M ⊕ U → B,

Ψ(σ + u) = σ + u+Ks =: σ ⊕ u

for all σ ∈ Γ(kerTt|M ) and u ∈ Γ(U). If Ψ(σ + u) = Ks, then we have σ + u ∈ Γ(D|M )
and hence σ ∈ Γ(D|M ) since u ∈ Γ(D|M ). This yields σ ∈ Γ(Kt) and the map Ψ factors
to a vector bundle morphism

Ψ̄ : U∗ ⊕ U → B

over the identity IdM .
The map Ψ̄ is surjective and a dimension count shows that it is an isomorphism.

Since (kerTt|M ⊕ U)⊥ = (kerTt|M + D|M )⊥ = Ks, the bracket 〈· , ·〉 restricts to a non
degenerate symmetric bracket on B:

〈u⊕ σ, u′ ⊕ τ ′〉 = η(a) + ξ(b) + θ(Ȳ + ρ(b)) + ω(X̄ + ρ(a))

where u = (X̄, ξ), u′ = (Ȳ , η), σ = (a, s∗θ) and τ = (b, s∗ω).

Recall from Example 3.18 that if (G⇉M,DπG) is a Poisson groupoid, the bundle U

is equal to Graph(π♯
G|A∗) ≃ A∗, ρ⋆(ξ) = π♯

G(ξ) for all ξ ∈ Γ(A∗) and the bracket on
sections of U is the bracket induced by the Poisson structure. In the same manner,

we have U∗ = kerTt|M/K = kerTt|M/Graph
(
π♯
G|(T s

MG)◦

)
which is isomorphic as a

vector bundle to A. The vector bundle B is thus the vector bundle underlying the
Courant algebroid associated to (G⇉M,π). We will study this example in more detail
in Example 3.24, where we will show that B carries a natural Courant algebroid structure
that makes it isomorphic as a Courant algebroid to A⊕A∗.

We show here that if the Dirac groupoid (G⇉M,D) is closed, the vector bundle
B → M always inherits the structure of a Courant algebroid from the ambient standard
Courant algebroid structure of PG.
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Theorem 3.23 Let (G⇉M,D) be a closed Dirac groupoid,

B =
U ⊕ kerTt|M

Ks
→ M

and set b : B → TM , b((vp, αp) +Ks(p)) = Tpsvp. Define

[· , ·] : Γ(B)× Γ(B) → Γ(B)

by

[
u⊕ σ, u′ ⊕ τ

]
=

r
d+ σl, d′ + τ l

z
M

+Ks

for all σ, τ ∈ Γ (kerTt|M ), u, u′ ∈ Γ(U) and star sections d ∼s u, d
′ ∼s u

′ of D. Then
(B, b, [· , ·], 〈· , ·〉) is a Courant algebroid.

Proof: The map b is well-defined since Tpsvp = 0p for all (vp, αp) ∈ Ks. We show that
the bracket on sections of B is well-defined, that is, that it has image in Γ(B) and does
not depend on the choice of the sections u+ σ and u′ + τ representing u⊕ σ and u′ ⊕ τ ,
and neither on the choices of star sections d, d′ over u and u′.

We have, writing d = (X,α), d′ = (Y, β), u = (X̄, ξ), u′ = (Ȳ , η), σl =
(
al, s∗θ

)
and

τ l =
(
bl, s∗ω

)
:

Jd+ σl, d′ + τ lK

=
r
(X + al, α+ s

∗θ), (Y + bl, β + s
∗ω)

z

=
q
d, d′

y
+£ald

′ −£bld+

(
[a, b]lAG, s

∗
(
£ρ(a)+X̄ω − iρ(b)+Ȳ dθ + d〈ξ, b〉

))
(13)

By Theorems 3.15 and 3.21, the restriction of this to M is a section of U ⊕ kerTt|M and
depends on the choice of the star sections d, d′ only by sections of Ks.

If u+σ ∈ Γ(Ks), then as above, we find that σ ∈ Γ(Kt). The section d+σl− (u+σ)r

is then a section of D that is a star section s-related to 0. Since by the considerations
above, we know that

r
d+ σl − (u+ σ)r, d′ + τ l

z
M

∈ Γ(Ks)

and r
(u+ σ)r, d′ + τ l

z
M

∈ Γ(Ks)

for all star sections d′ ∼s u
′ of D and τ ∈ Γ((ker(Tt))|M ). This yields

q
d+ σl, d′ + τ l

y
M

∈

Γ(Ks). In the same manner, we get
q
d′ + τ l, d+ σl

y
M

∈ Γ(Ks) and we have shown
that the bracket does not depend on the choice of the representatives for u⊕σ and u′⊕τ .
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We next show that (B, b, [· , ·], 〈· , ·〉) is a Courant algebroid. The map

D : C∞(M) → Γ(B)

is simply given by
Df = (0, s∗df) +Ks

since 〈
Df, (vm, αm)

〉
= b

(
(vm, αm)

)
(f) = Tmsvm(f)

for all (vm, αm) ∈ B(m). We check all the Courant algebroid axioms. Choose u1 ⊕
σ1, u2⊕σ2 and u3⊕σ3 ∈ Γ(B) and let f be an arbitrary element of C∞(M). Choose also
star sections di ∼s ui for i = 1, 2, 3. As before, we write ui = (X̄i, ξi) and di = (Xi, αi).
Note first that

〈d1 + σl
1, d2 + σl

2〉 = s
∗〈u1 ⊕ σ1, u2 ⊕ σ2〉 (14)

We now verify the three axioms for Courant algebroids (see page 8). By (13), the
bracket r

d2 + σl
2, d3 + σl

3

z

can be taken as the section extending

[u2 ⊕ σ2, u3 ⊕ σ3]

to compute its bracket with u1 ⊕ σ1. Since PG is a Courant algebroid, we have

r
d1 + σl

1,
r
d2 + σl

2, d3 + σl
3

zz

=
rr

d1 + σl
1, d2 + σl

2

z
, d3 + σl

3

z
+

r
d2 + σl

2,
r
d1 + σl

1, d3 + σl
3

zz

This restricts to

[u1 ⊕ σ1, [u2 ⊕ σ2, u3 ⊕ σ3]]

= [[u1 ⊕ σ1, u2 ⊕ σ2] , u3 ⊕ σ3] + [u2 ⊕ σ2, [u1 ⊕ σ1, u3 ⊕ σ3]]

on M .

We have

(X1 + al1)〈d2 + σl
2, d3 + σl

3〉

=
〈r

d1 + σl
1, d2 + σl

2

z
, d3 + σl

3

〉
+
〈
d2 + σl

2,
r
d1 + σl

1, d3 + σl
3

z〉

By (13) and (14), the right-hand side restricts to

〈[u1 ⊕ σ1, u2 ⊕ σ2], u3 ⊕ σ3〉+ 〈u2 ⊕ σ2, [u1 ⊕ σ1, u3 ⊕ σ3]〉
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on M . Again by (14), the left-hand side equals

s
∗
(
(X̄1 + ρ(a1))〈u2 ⊕ σ2, u3 ⊕ σ3〉

)
.

Since b(u1 ⊕ σ1) = X̄1 + ρ(a1), this proves

b(u1 ⊕ σ1)〈u2 ⊕ σ2, u3 ⊕ σ3〉

=〈[u1 ⊕ σ1, u2 ⊕ σ2], u3 ⊕ σ3〉+ 〈u2 ⊕ σ2, [u1 ⊕ σ1, u3 ⊕ σ3]〉

Using (14), it is easy to see that the equality

r
d1 + σl

1, d2 + σl
2

z
+

r
d2 + σl

2, d1 + σl
1

z
=
(
0,d〈d1 + σl

1, d2 + σl
2〉
)

restricts to

[u1 ⊕ σ1, u2 ⊕ σ2] + [u2 ⊕ σ2, u1 ⊕ σ1] = D〈u1 ⊕ σ1, u2 ⊕ σ2〉 �

on M .

Example 3.24 In the special case of a Poisson groupoid (G⇉M,DπG), the obtained
Courant algebroid is isomorphic to the Courant algebroid defined by the Lie bialgebroid
associated to (G⇉M,πG), see [18], [19]. This shows how the Courant algebroid structure
on A ⊕ A∗ induced by the Lie bialgebroid of the Poisson groupoid (G⇉M,πG) can be
related to the standard Courant algebroid structure on PG = TG⊕ T ∗G.

The isomorphism Ψ : A⊕A∗ → B is given by

Ψ(a, ξ) = (a+ ρ∗(ξ), ξ) +Ks,

with inverse

Ψ−1((vp, αp) +Ks(p)) = (vp − π♯
G(αp), ŝ(αp)).

The verification of the equalities Ψ−1 ◦Ψ = IdA⊕A∗ and Ψ◦Ψ−1 = IdB is easy. We check
in [9] that

Ψ−1 ([Ψ(a, ξ),Ψ(b, η)]B) = [(a, ξ), (b, η)]A⊕A∗

for (a, ξ), (b, η) ∈ Γ(A ⊕ A∗). Since the computations are long, but straightforward, we
omit them here. ♦

Example 3.25 Consider a Lie groupoid G⇉M endowed with a closed multiplicative
2-form ωG ∈ Ω2(G). The Courant algebroid B is given here by

B =
(
Graph(ω♭

G|TM : TM → A∗) + kerTt|M

)
/Graph

(
ω♭
G|T s

MG : T s

MG → (T t

MG)◦
)
.
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We show in [9] that it is isomorphic as a Courant algebroid to the standard Courant
algebroid PM = TM ⊕ T ∗M , via the maps

Λ : B → TM ⊕ T ∗M, Λ
(
(vp, αp)

)
= (Tpsvp, βp),

where (Tps)
∗βp = αp − ω♭

G(vp), and

Λ−1 : TM ⊕ T ∗M → B, Λ−1 (vp, αp) = (ǫ(vp), (Tps)∗αp + ω♭
G(ǫ(vp))).

Example 3.26 Consider the pair Dirac groupoid (M ×M ⇉M,DM ⊖DM ) associated
to a closed Dirac manifold (M,DM ) (see Example 3.5). The vector bundle B → ∆M is
defined here by

B(m,m) =
U(m,m) + {0} × TmM × {0} × T ∗

mM

{(vm, 0m, αm, 0m) | (vm, αm) ∈ DM (m)}

for all m ∈ M (recall that U is given in Example 3.20). Hence, we get an isomorphism

Π : B → TM ⊕ T ∗M, (vm, wm, αm, βm) 7→ (wm, βm) (15)

over pr1 : ∆M → M , with inverse

Π−1 : TM ⊕ T ∗M → B, (wm, βm) 7→ (0m, wm, 0m, βm).

The Courant bracket on B is easily seen to correspond via this isomorphism to the
standard Courant bracket on TM ⊕ T ∗M (and hence, does not depend on DM ). ♦

3.4 Induced action of the group of bisections on B

We show here how the action of G on g/g0 × p1 found in [10] in the Lie group case can
be generalized to the setting of Dirac groupoids. In this section, the Dirac groupoids
that we consider are not necessarily closed. Hence, the vector bundle B exists, but does
not necessarily have a Courant algebroid structure.

We begin with a lemma, which will also be useful in the following section about Dirac
homogeneous spaces.

Lemma 3.27 Let G⇉M be a Lie groupoid, d ∼s u a star-section of TG ⊕ T ∗G and
(vp, αp) ∈ TpG × T ∗

pG such that Tt(vp, αp) = u(p). Then (vp, αp) = u(p) + σ(p) with
some σ ∈ Γ((ker(Tt)|M ) and

d(g) ⋆ (vp, αp) = d(g) + σl(g)

for any g ∈ s−1(p).

Proof: This proof is just a computation. We leave it to the reader. �
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Theorem 3.28 Let (G⇉M,D) be a Dirac groupoid. Choose a bisection κ ∈ B(G) and
consider

rκ : U ⊕ kerTt|M → B

rκ(vp, αp) =
(
Tκ(p)−1Rκ(vκ(p)−1 ⋆ vp),

(
T(s◦κ)(p)R

−1
κ

)∗
(ακ(p)−1 ⋆ αp)

)
+Ks((s ◦ κ)(p)),

where (vκ(p)−1 , ακ(p)−1) ∈ D(κ(p)−1) is such that

Ts
(
vκ(p)−1 , ακ(p)−1

)
= Tt(vp, αp).

The map rκ is well-defined and induces the right translation by κ,

ρκ : B → B

(vp, αp) +Ks(p) 7→ rκ(vp, αp).

The map ρ : B(G)× B → B is a right action.

Proof (of Theorem 3.28): First, we check that the map rκ is well-defined, that is,
that it has image in B and does not depend on the choices made.

Choose p ∈ M , (vp, αp) ∈ U(p) × (kerTt)(p) and κ ∈ B(G). Set κ(p) = g. Since the
map rκ is linear in every fiber of U ⊕ (kerTt)|M , it suffices to show that the image of
(0p, 0p) is Ks(s(g)) for any choice of (vg−1 , αg−1) ∈ D(g−1) such that Ts(vg−1 , αg−1) =
(0p, 0p) to prove that it is well-defined. Using (1) and (2), we get

Tg−1Rκ(vg−1 ⋆ 0p) = vg−1 ⋆ (TpRκ0p) = vg−1 ⋆ 0g

(αg−1 ⋆ 0p) ◦ Ts(g)Rκ−1 = αg−1 ⋆ (0p ◦ TgRκ−1) = αg−1 ⋆ 0g.

Thus, we have shown that

rκ(0p, 0p) = (vg−1 , αg−1) ⋆ (0g, 0g) ∈ D(s(g)) ∩ kerTs = Ks(s(g)).

Choose next (vp, αp) ∈ U ⊕ (kerTt)|M such that (vp, αp) ∈ Ks(p), that is, such that

(vp, αp) = 0 in B. Choose (vg−1 , αg−1) ∈ D(g−1) such that Ts(vg−1 , αg−1) = Tt(vp, αp).
Then we have Tg−1Rκ(vg−1 ⋆vp) = Tg−1Rκ(vg−1 ⋆vp ⋆0p) = vg−1 ⋆vp ⋆0g, since Tpsvp = 0.
We have also ŝ(αp) = 0, and by (2):

(Ts(g)R
−1
κ )∗(αg−1 ⋆ αp) = (Ts(g)R

−1
κ )∗(αg−1 ⋆ αp ⋆ 0p) = αg−1 ⋆ αp ⋆ 0g.

Thus, rκ(vp, αp) = (vg−1 , αg−1) ⋆ (vp, αp) ⋆ (0g, 0g) ∈ Ks(s ◦ κ(p)). The map ρκ : B → B

is consequently well-defined.

The second claim of the theorem is easy to check. �

Example 3.29 Let (M,D) be a smooth Dirac manifold and consider the pair Dirac
groupoid (M ×M ⇉M,D⊖D) associated to it. The set of bisections of M ×M ⇉M is
equal to B(M×M) = {IdM}×Diff(M). For κ = (IdM , φκ) ∈ B(M×M), p := (m,m) ∈
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∆M and (vm, wm, αm, βm) ∈ B. Then it is easy to check that ρκ

(
(vm, wm, αm, βm)

)
is

given by

ρκ

(
(vm, wm, αm, βm)

)
= (0n, Tmφκwm, 0n, (Tnφ

−1
κ )∗βm).

Recall that B is isomorphic to PM via (15). The action of B(M × M) on B corre-
sponds via this identification to the action of Diff(M) on PM given by φ · (vm, αm) =
(Tmφvm, (Tφ(m)φ

−1)∗αm) for all φ ∈ Diff(M) and (vm, αm) ∈ PM (m). ♦

4 Classification of Dirac homogeneous spaces

We show here that Dirac structures in the Courant algebroid found in Section 3 corre-
spond to Dirac homogeneous spaces of the Dirac groupoid.
We prove our main theorem (Theorem 4.16) about the correspondence between (closed)

Dirac homogeneous spaces of a (closed) Dirac groupoid and Lagrangian subspaces (sub-
algebroids) of the Euclidean vector bundle (Courant algebroid) B. This result generalizes
the result of [8] about the Poisson homogeneous spaces of Poisson Lie groups, of [19]
about Poisson homogeneous spaces of Poisson groupoids and the result in [10] about
the Dirac homogeneous spaces of Dirac groups. To be able to define the notion of a
homogeneous Dirac structure on a homogeneous space of a Lie groupoid, we need the
following proposition. The proof is straightforward and is left to the reader.

Proposition 4.1 Let G⇉M be a Lie groupoid acting on a smooth manifold P with
momentum map J : P → M . Then there is an induced action of TG⇉TM on TJ :
TP → TM .

Assume that P ≃ G/H is a smooth homogeneous space of G and let q : G → G/H be
the projection and Φ the action of G on G/H. The map Ĵ : T ∗(G/H) → A∗, Ĵ(αgH) =

t̂ ((Tgq)
∗αgH) for all gH ∈ G/H is well-defined and Φ̂ : T ∗G×A∗ T ∗(G/H) → T ∗(G/H)

given by (
Φ̂(αg′ , αgH)

) (
T(g′,gH)Φ(vg′ , vgH)

)
= αg′(vg′) + αgH(vgH)

defines an action of T ∗G⇉A∗ on Ĵ : T ∗(G/H) → A∗.

In the following, we write αg · αg′H for Φ̂(αg, αg′H).

Corollary 4.2 If G/H is a smooth homogeneous space of G⇉M , there is an induced
action TΦ = (TΦ, Φ̂) of

(TG⊕ T ∗G)⇉ (TM ⊕A∗)

on
TJ := TJ× Ĵ : T (G/H)⊕ T ∗(G/H) → (TM ⊕A∗).

The following definition generalizes in a natural manner the notions of Poisson ho-
mogeneous space of a Poisson groupoid and Dirac homogeneous space of a Dirac group.
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Definition 4.3 Let (G⇉M,D) be a Dirac groupoid, and G/H a smooth homogeneous
space of G⇉M endowed with a Dirac structure DG/H . The pair (G/H,DG/H) is a
Dirac homogeneous space of the Dirac groupoid (G⇉M,D) if the induced action of
(TG ⊕ T ∗G)⇉ (TM ⊕ A∗) on TJ : (T (G/H) ×G/H T ∗(G/H)) → (TM ⊕ A∗) restricts
to an action of

D⇉U on TJ|DG/H
: DG/H → U.

Example 4.4 Consider a Poisson homogeneous space (G/H, π) of a Poisson groupoid
(G⇉M,πG), i.e. the graph Graph(Φ) ⊆ G × G/H × G/H is a coisotropic submanifold
(see [19]).
Consider the Dirac groupoid (G⇉M,DπG) defined by (G⇉M,πG) and the Dirac man-

ifold (G/H,DG/H), defined by DG/H = Graph(π♯ : T ∗(G/H) → T (G/H)). The verifica-
tion of the fact that (G/H,DG/H) is a Dirac homogeneous space of the Dirac groupoid
(G⇉M,DπG) is straightforward.

Conversely, if TΦ restricts to an action of DπG on Dπ, then the graph of the left action
of G on G/H is coisotropic. ♦

Example 4.5 Let (G⇉M,ωG) be a presymplectic groupoid and H a wide subgroupoid
of G⇉M . Assume that G/H has a smooth manifold structure such that the projection
q : G → G/H is a surjective submersion. Let ω be a closed 2-form on G/H such that
the action Φ : G ×M (G/H) → G/H is a presymplectic groupoid action, i.e. Φ∗ω =
pr∗G/H ω + pr∗G ωG [2]. Let Dω be the graph of the vector bundle map ω♭ : T (G/H) →

T ∗(G/H) associated to ω. It is easy to check that the pair (G/H,Dω) is a closed Dirac
homogeneous space of the closed Dirac groupoid (G⇉M,DωG), see Example 3.3. ♦

Example 4.6 Let (G⇉M,D) be a Dirac groupoid. Then (t : G → M,D) is a Dirac
homogeneous space of (G⇉M,D). ♦

4.1 The homogeneous Dirac structure on the classes of the units

Let G⇉M be a Lie groupoid and G/H a smooth homogeneous space of G⇉M endowed
with a Dirac structure DG/H . Consider the Dirac bundle D = q∗(DG/H)|M ⊆ PG|M over
the units M . More explicitly, we have

D(p) =

{
(vp, αp) ∈ TpG× T ∗

pG

∣∣∣∣
∃(vpH , αpH) ∈ DG/H(pH) such that

αp = (Tpq)
∗αpH and Tpqvp = vpH

}
(16)

for all p ∈ M .

Proposition 4.7 Let (G⇉M,D) be a Dirac groupoid and (G/H,DG/H) a Dirac homo-
geneous space of (G⇉M,D). Then D ⊆ PG|M defined as in (16) satisfies

Ks ⊆ D ⊆ U ⊕ (kerTt)|M . (17)

Thus, the quotient D̄ = D/Ks is a smooth subbundle of B. We have by definition
AH ⊕ {0} ⊆ D.
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Proof: Choose p ∈ M and (vp, αp) ∈ Ks(p) = D(p)∩kerTs. Then Ts(vp, αp) = (0p, 0p)
and the product (vp, αp) · (0pH , 0pH) makes sense. Since (0pH , 0pH) ∈ DG/H(pH), we
have then (Tpqvp, αp · 0pH) = (vp, αp) · (0pH , 0pH) ∈ DG/H(pH). But αp · 0pH is such that
(Tpq)

∗(αp · 0pH) = αp ⋆ ((Tpq)
∗0pH) = αp, and we get (vp, αp) ∈ D(p) by definition of D.

The inclusion Ks ⊆ D yields immediately D = D⊥ ⊆ Ks⊥ = D|M + (kerTt)|M =
U ⊕ (kerTt)|M . �

Theorem 4.8 Let (G⇉M,D) be a Dirac groupoid and D a Dirac subspace of PG|M
satisfying (17). Then the set L = D ·D ⊆ PG defined by

L(g) =



(vg, αg) ⋆ (vs(g), αs(g))

∣∣∣∣∣∣

(vg, αg) ∈ D(g),
(vs(g), αs(g)) ∈ D(s(g)),

Ts(vg, αg) = Tt(vs(g), αs(g))





is a Dirac structure on G and (G, L) is a Dirac homogeneous space of (G⇉M,D).

Note that D ∩ kerTs ⊆ L by construction: for all (vg, αg) ∈ D(g) ∩ kerTs, we have
Ts(vg, αg) = (0s(g), 0s(g)) ∈ D(s(g)) and hence (vg, αg) = (vg, αg) ⋆ (0s(g), 0s(g)) ∈ L(g).

Proof: By Lemma 3.27, L is spanned by sections d + σl, such that u + σ is a section
of D (with d ∼s u a star section of U and σ ∈ Γ((kerTt)|M ) ) and all the sections of
D ∩ kerTs. This shows that L is smooth.
Choose (vg, αg)⋆(vs(g), αs(g)) and (wg, βg)⋆(ws(g), βs(g)) ∈ L(g), that is, with (vg, αg), (wg, βg) ∈

D(g) and (vs(g), αs(g)), (ws(g), βs(g)) ∈ D(s(g)). We have then

〈
(vg, αg) ⋆ (vs(g), αs(g)), (wg, βg) ⋆ (ws(g), βs(g))

〉

= 〈(vg, αg), (wg, βg)〉+ 〈(vs(g), αs(g)), (ws(g), βs(g))〉 = 0.

This shows L ⊆ L⊥.
For the converse inclusion, choose (wg, βg) ∈ L(g)⊥. Then

(wg, βg) ∈ (D(g) ∩ kerTs)⊥ = (D+ kerTt)(g)

and consequently, we get the fact that Tt(wg, βg) ∈ Tt(D(g)) = U(t(g)). We write
t(g) = p and Tt(wg, βg) = u(p) for some section u ∈ Γ(U). Consider a section d ∈ Γ(D)
such that d ∼s u. Then we have for all (vs(g), αs(g)) ∈ D(s(g)) and (vg, αg) ∈ D(g) such
that Tt(vs(g), αs(g)) = Ts(vg, αg):

〈
d(g−1) ⋆ (wg, βg),

(
vs(g), αs(g)

)〉
=
〈
d(g−1) ⋆ (wg, βg), (vg, αg)

−1 ⋆ (vg, αg) ⋆ (vs(g), αs(g))
〉

= 〈(wg, βg), (vg, αg) ⋆ (vs(g), αs(g))〉+ 〈d(g−1), (vg, αg)
−1〉

=0,

since (vg, αg) ⋆ (vs(g), αs(g)) ∈ L(g) and (vg, αg)
−1 ∈ D(g−1). This proves that

d(g−1) ⋆ (wg, βg) ∈ D(s(g))⊥ = D(s(g)),

30



and hence, if we write d(g−1) ⋆ (wg, βg) = (ws(g), βs(g)) ∈ D(s(g)),

(wg, βg) =
(
d(g−1)

)−1
⋆ (ws(g), βs(g)) ∈ L(g).

The second claim is obvious since the restriction to L of the map TJ has image in
Tt(D) = U and, by construction of L, the map D ×U L, ((vg, αg), (vh, αh)) 7→ (vg, αg) ⋆
(vh, αh) is a well-defined Lie groupoid action. �

Theorem 4.9 In the situation of the preceding theorem, if D is the restriction to M of
the pullback q∗(DG/H) (as in (16)) for some Dirac homogeneous space (G/H,DG/H) of
(G⇉M,D), then L = q∗(DG/H).

Proof: Choose (vg, αg) ∈ q∗
(
DG/H

)
(g). Then αg is equal to (Tgq)

∗αgH for some αgH ∈
T ∗
gH(G/H) such that (Tgqvg, αgH) ∈ DG/H(gH). Then TJ(Tgqvg, αgH) = Tt(vg, αg) ∈

U(t(g)) and there exists (wg−1 , βg−1) ∈ D(g−1) such that

Ts(wg−1 , βg−1) = TJ(Tgqvg, αgH).

Set p = s(g) and consider (upH , γpH) := (wg−1 , βg−1) · (Tgqvg, αgH) ∈ DG/H(pH). Then
we have

(Tpq)
∗γpH = βg−1 ⋆ ((Tgq)

∗αgH) = βg−1 ⋆ αg

by Proposition 4.1 about the action of T ∗G⇉A∗ on Ĵ : T ∗(G/H) → A∗, and

upH = wg−1 · (Tgqvg) = T(g−1,gH)Φ(wg−1 , Tgqvg) = Tpq(wg−1 ⋆ vg).

Thus, (up, γp) := (wg−1 , βg−1) ⋆ (vg, αg) is an element of D(p), and we have (vg, αg) =
(wg−1 , βg−1)−1 ⋆ (up, γp). Since D is multiplicative and (wg−1 , βg−1) ∈ D(g−1), the pair
(wg−1 , βg−1)−1 is an element of D(g) and we have shown that (vg, αg) ∈ L(g).
Since q∗(DG/H) ⊆ L is an inclusion of Dirac structures, we have then equality. �

Remark 4.10 Note that Theorem 4.9 shows that if (G⇉M,D) is a Dirac groupoid,
a D-homogeneous Dirac structure on G/H is uniquely determined by its restriction to
q(M) ⊆ G/H. △

Example 4.11 We have seen in Example 4.6 that if (G⇉M,D) is a Dirac groupoid,
then (t : G → M,D) is a Dirac homogeneous space of (G⇉M,D).
The space D is here the direct sum Ks ⊕ U . The corresponding Dirac structure L is

equal to D by construction. ♦

4.2 The classification

Recall that if (G⇉M,D) is a Dirac groupoid, then there is an induced action of the set
of bisections B(G) of G on the vector bundle B associated to D (see Theorem 3.28). If
H is a wide Lie subgroupoid of G⇉M , this action restricts to an action of B(H) on B.
We use this action to characterize D-homogeneous Dirac structures on G/H.
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Theorem 4.12 Let (G⇉M,D) be a Dirac groupoid, H a t-connected wide subgroupoid
of G such that the homogeneous space G/H has a smooth manifold structure and q : G →
G/H is a smooth surjective submersion. Let D be a Dirac subspace of PG|M satisfying
(17) and such that AH ⊕ {0} ⊆ D. Then the following are equivalent:

1. D is the pullback q∗(DG/H)|M as in (16), where DG/H is some D-homogeneous
Dirac structure on G/H.

2. D̄ = D/Ks ⊆ B is invariant under the induced action of B(H) on B.

3. The D-homogeneous Dirac structure L = D · D ⊆ PG as in Theorem 4.8 pushes-
forward to a (D-homogeneous) Dirac structure on the quotient G/H.

Note that, together with Theorem 4.9, this shows that a Dirac structure DG/H on
G/H is D-homogeneous if and only if Ks ⊆ (q∗DG/H)|M and q∗DG/H = D · (q∗DG/H)|M ,
that is, (G/H,DG/H) is (G⇉M,D)-homogeneous if and only if (G, q∗DG/H) is.
We will need the following lemma for the proof of Theorem 4.12.

Lemma 4.13 In the situation of Theorem 4.8, we have D = L|M .

Proof: Choose p ∈ M and (vp, αp) ∈ D(p). Then Tt(vp, αp) ∈ U(p) ⊆ D(p) and
(vp, αp) = Tt(vp, αp) ⋆ (vp, αp) ∈ L(p). This shows D ⊆ L|M and we are done since both
vector bundles have the same rank. �

Proof (of Theorem 4.12): Assume first thatD = q∗(DG/H)|M for some D-homogeneous
Dirac structure DG/H on G/H and choose κ ∈ B(H) and (vp, αp) ∈ D(p), p ∈ M . Then
there exists αpH ∈ T ∗

pH(G/H) such that αp = (Tpq)
∗αpH and (Tpqvp, αpH) ∈ DG/H(pH).

If we set κ(p) =: h ∈ H and write (vp, αp) for (vp, αp) +Ks(p) ∈ D̄(p) ⊆ B, we have

ρκ

(
(vp, αp)

)
=
(
Th−1Rκ(vh−1 ⋆ vp), (Ts(h)R

−1
κ )∗(αh−1 ⋆ αp)

)
+Ks(s(h))

for any (vh−1 , αh−1) ∈ D(h−1) satisfying Ts(vh−1 , αh−1) = Tt(vp, αp). Since

TJ(Tpqvp, αpH) = Tt(vp, αp) = Ts(vh−1 , αh−1),

the product (vh−1 , αh−1) · (Tpqvp, αpH) is defined and an element of DG/H(s(h)H). Note
that since κ ∈ B(H), we have q◦Rκ = q. The pair (Th−1Rκ(vh−1 ⋆vp), (Ts(h)R

−1
κ )∗(αh−1 ⋆

αp)) satisfies

Ts(h)q(Th−1Rκ(vh−1 ⋆ vp)) = vh−1 · (Tpqvp) ∈ Ts(h)H(G/H)

and

(Ts(h)R
−1
κ )∗(αh−1 ⋆ αp) = (Ts(h)q)

∗(αh−1 · αpH).

Thus, (Th−1Rκ(vh−1⋆vp), (Ts(h)R
−1
κ )∗(αh−1⋆αp)) is an element ofD(s(h)) and ρκ

(
(vp, αp)

)

is an element of D̄(s(h)). This shows (1) ⇒ (2).
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Assume now that D̄ is invariant under the action of B(H) on B. Set K = H ⊕ 0T ∗G,
and hence K

⊥ = TG⊕H
◦.

We have AH ⊕ {0} ⊆ D by hypothesis. By definition of L and H, this yields imme-
diately K = H ⊕ {0} ⊆ L, hence L ⊆ K

⊥ and L ∩K
⊥ = L has constant rank on G. By

(7), we have to show that L is invariant under the right action of B(H) on G. We will
use the fact that L is spanned by the sections σr ∈ Γ(D ∩ kerTs) for all σ ∈ Γ(Ks) and
d+ τ l, d ∼s u, for all sections u+ τ ∈ Γ(D) ⊆ Γ(U ⊕ (kerTt)|M ).
Choose κ ∈ B(H). It is easy to verify that

R∗
κσ

r = σr for all σ ∈ Γ(kerTs|M ).

Choose a section d + τ l of L. We want to show that R∗
κ(d + τ l) is then again a section

of L. Choose g ∈ G and set for simplicity h = κ(s(g)) ∈ H, p = s(h), q = t(h) = s(g),
d = (X,α) and (u+ τ)(p) = (vp, αp). Then

(
d+ τ l

)
(g · h) = d(g · h) ⋆ (u+ τ)(p) and we

can compute

R∗
κ(d+ τ l)(g) =

(
Tg·hR

−1
κ , (TgRκ)

∗
)
(d(gh) ⋆ (u+ τ)(p)).

Choose (vg, αg) ∈ D(g) such that Tt(vg, αg) = Tt(d(gh)). Then the product (wh, αh) :=
(vg, αg)

−1 ⋆ d(gh) is an element of D(h) such that Ts(wh, αh) = u(p) and we have

R∗
κ(d+ τ l)(g)

=(vg, αg) ⋆
(
ThR

−1
κ

(
v−1
g ⋆ X(gh) ⋆ vp

)
, (TgRκ)

∗
(
α−1
g ⋆ α(gh) ⋆ αp

))

=(vg, αg) ⋆
(
ThR

−1
κ (wh ⋆ vp) , (TqRκ)

∗ (βh ⋆ αp)
)
.

But since D̄ is invariant under the action of B(H) on B and (u⊕ τ)(p) is an element of
D̄(p), we have

(
ThR

−1
κ (wh ⋆ vp) , (TqRκ)

∗ (βh ⋆ αp)
)
+Ks(q) = ρκ−1 ((u⊕ τ)(p)) ∈ D̄(q).

Because Ks(q) ⊆ D(q), we have consequently

(
ThR

−1
κ (wh ⋆ vp) , (TqRκ)

∗ (βh ⋆ αp)
)
∈ D(q)

and hence

R∗
κ(d+ τ l)(g) = (vg, αg) ⋆

(
ThR

−1
κ (wh ⋆ vp) , (TqRκ)

∗ (βh ⋆ αp)
)
∈ L(g)

since (vg, αg) ∈ D(g).
We show then that the push-forward q(L) is a D-homogeneous Dirac structure on

G/H. By definition of TJ, we have TJ(q(L)) = Tt(L) ⊆ Tt(D) = U . Choose (vgH , αgH) ∈
q(L)(gH) and (wg′ , βg′) ∈ D(g′) such that Ts(wg′ , βg′) = TJ(vgH , αgH). Then there exists
vg ∈ TgG such that Tgqvg = vgH and (vg, (Tgq)

∗αgH) ∈ L(g). The pair (vg, (Tgq)
∗αgH)

satisfies then Tt(vg, (Tgq)
∗αgH) = TJ(vgH , αgH) = Ts(wg′ , βg′) and since (G, L) is a Dirac

homogeneous space of (G⇉M,D), we have (wg′ , βg′) ⋆ (vg, (Tgq)
∗αgH) ∈ L(g′ · g) and the

identities (Tg′·gq)
∗(βg′ · αgH) = βg′ ⋆ (Tgq)

∗αgH and Tg′·gq(wg′ ⋆ vg) = wg′ · (Tgqvg) =
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wg′ · vgH . Thus, the pair (wg′ , βg′) · (vgH , αgH) is an element of q(L)(gg′H) and q(L) is
shown to be D-homogeneous. Hence, we have shown (2) ⇒ (3).

To show that (3) implies (1), we have just to show that the vector bundle D → M is
the restriction to M of the pullback q∗(q(L)). Since L|M = D by Lemma 4.13, this follows
from L = q∗(q(L)). But this is an easy consequence of the inclusion H ⊕ 0T ∗G ⊆ L. �

Theorem 4.14 Let (G⇉M,D) be a closed Dirac groupoid. In the situation of the pre-
ceding theorem, the following are equivalent:

1. The Dirac structure q(L) = DG/H is closed.

2. The Dirac structure L is closed.

3. The set of sections of D̄ ⊆ B is closed under the bracket on the sections of the
Courant algebroid B.

Proof: If L is closed, then q(L) is closed by a Theorem in [32] about Dirac reduction by
foliations (see also Section 2.2). Conversely, assume that q(L) is closed. By L ⊆ TG⊕H

◦

and the proof of Theorem 4.12, the Dirac structure L is spanned by q-descending sections,
that is, sections (X,α) such that α ∈ Γ(H◦) and R∗

κ(X,α) = (X,α) for all κ ∈ B(H).
Choose two descending sections (X,α), (Y, β) of L. Choose (X̄, ᾱ), (Ȳ , β̄) ∈ Γ(q(L)) such
that (X,α) ∼q (X̄, ᾱ) and (Y, β) ∼q (Ȳ , β̄). Then the bracket J(X,α), (Y, β)K descends
to J(X̄, ᾱ), (Ȳ , β̄)K which is a section of q(L) since (G/H, q(L)) is closed. But since
H ⊕ 0T ∗G ⊆ L, we have L = q∗(q(L)). Since J(X,α), (Y, β)K is a section of q∗(q(L)), we
have shown that J(X,α), (Y, β)K ∈ Γ(L). This proves (1) ⇐⇒ (2).

Assume that (G, L) is closed and choose two sections u⊕ τ, u′ ⊕ τ ′ of D̄ ⊆ B. Then, if
d ∼s u and d′ ∼s u

′, the two pairs d+τ l, d′+τ ′l are smooth sections of L by construction
and since (G, L) is closed, we have Jd + τ l, d′ + τ ′lK ∈ Γ(L). But since D = L|M and
[u⊕ τ, u′ ⊕ τ ′] = Jd+ τ l, d′ + τ ′lK|M +Ks, this yields [u⊕ τ, u′ ⊕ τ ′] ∈ Γ(D̄).

Conversely, assume that Γ(D̄) is closed under the Courant bracket on sections of
B and choose two spanning sections d + τ l, d′ + τ ′l of L corresponding to u + τ and
u′+ τ ′ ∈ Γ(D) ⊆ Γ(U ⊕ (kerTt)|M ). Since [u⊕ τ, u′⊕ τ ′] is then an element of Γ(D̄) and
Ks ⊆ D, we have

Jd+ τ l, d′ + τ ′
lK|M ∈ Γ(D)

by definition of the bracket on the sections of B. We write τ l = (al, s∗θ) and τ ′l = (bl, s∗ω)
with a, b ∈ Γ(A) and θ, ω ∈ Ω1(M). Recall that (13) shows that Jd+ τ l, d′ + τ ′lK equals
the sum of Jd, d′K+Lad

′−Lbd with a left-invariant term σl. Hence, by Lemma 3.27, the
value of Jd+ τ l, d′ + τ ′lK at g ∈ G equals

((
Jd, d′K + Lad

′ − Lbd
)
(g)
)
⋆
(r

d+ τ l, d′ + τ ′
l
z
(s(g))

)

and we find that Jd + τ l, d′ + τ ′lK is a section of L, since the first factor is an element
of D(g) and the second an element of D(s(g)). A straightforward computation yields
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Jd + τ l, σrK ∈ Γ(D ∩ kerTs) for all σ ∈ Γ(Ks). Finally, since D is closed, we know that
Jσr

1, σ
r
2K ∈ Γ(D) for all σ1, σ2 ∈ Γ(D ∩ kerTs). Thus, by the Leibniz identity for the

restriction to Γ(L) of the Courant bracket on PG, we have shown that (G, L) is closed.�

Remark 4.15 Assume that (G⇉M,D) is a closed Dirac groupoid, D ⊆ PG|M a Dirac
subspace satisfying (17) and AH ⊕ {0} ⊆ D for some t-connected wide Lie subgroupoid
H of G⇉M , and such that D/Ks ⊆ B is closed under the bracket on B. It is easy to
check (as in the proof of Theorem 4.14) that we have then

q
(al, 0), d

y
∈ Γ(D · D) for

all d ∈ Γ(D · D) and a ∈ Γ(AH). Since H is t-connected, we get then the fact that
R∗

κd ∈ Γ(D · D) for all bisections κ ∈ B(H) and the Dirac structure D · D projects
to a Dirac structure on G/H, that is D-homogeneous. The quotient D/Ks is then
automatically invariant under the induced action of the bisections B(H) on B and this
shows that the condition 2 of Theorem 4.12 is always satisfied if D is closed, D/Ks is
closed under the Courant bracket on sections of B and H is t-connected. △

Using this, we get our main result as a corollary of the Theorems 4.8, 4.9, 4.12, and
4.14. This theorem generalizes the correspondence theorems in [8], [19] and [10].

Theorem 4.16 Let (G⇉M,D) be a Dirac groupoid. Let H be a wide Lie subgroupoid
of G such that the quotient G/H is a smooth manifold and the map q : G → G/H a
smooth surjective submersion.

1. There is a one-one correspondence between D-homogeneous Dirac structures on
G/H and maximal isotropic subspaces D of PG|M such that

a) AH ⊕ {0}+Ks ⊆ D ⊆ U ⊕ (kerTt)|M and

b) D̄ := D/Ks is a B(H)-invariant Dirac subspace of B.

2. If (G⇉M,D) is closed, then closed D-homogeneous Dirac structures on G/H are
in one-one correspondence with closed Dirac structures D̄ = D/Ks in B such that
AH ⊕ {0}+Ks ⊆ D ⊆ U ⊕ (kerTt)|M .

Example 4.17 In [19], it is shown that for a Poisson groupoid (G⇉M,πG), there is a
one to one correspondence between πG-homogeneous Poisson structures on smooth ho-
mogeneous spaces G/H and regular closed Dirac structures L of the Courant algebroid
A⊕A∗, such that H is the t-connected subgroupoid of G corresponding to the subalge-
broid L ∩ (A⊕ 0A∗). Since pullbacks to G of Poisson structures on G/H correspond to
closed Dirac structures on G with characteristic distribution H, we recover this result
as a special case of Theorem 4.16, using Remark 4.15 and the isomorphism in Example
3.24.
Note that in this particular situation of a Poisson groupoid, Theorem 4.16 classifies

not only the Poisson homogeneous spaces of (G⇉M,πG), but all its (not necessarily
closed) Dirac homogeneous spaces. ♦

Example 4.18 Let (G⇉M,πG) be a Poisson groupoid and H a wide subgroupoid of
G. Assume that the Poisson structure descends to the quotient G/H, i.e. that πG is
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invariant under the action of the bisections of H. Let π be the induced structure on
G/H. We show that (G, q∗Dπ) is a Dirac homogeneous space of (G⇉M,πG). This is
equivalent to the fact that (G/H, π) is a Poisson homogeneous space of (G⇉M,πG).

The Dirac structure q∗Dπ is equal to (H⊕0T ∗G)⊕Graph
(
π♯
G


H◦

: H◦ → TG
)
. Since

H ⊆ T tG, the inclusion Tt (q∗Dπ) ⊆ U is obvious. Choose (vg, αg) ∈ (q∗Dπ) (g)

and αh ∈ T ∗
hG such that Ts

(
π♯
G(αh), αh

)
= Tt(vg, αg). Then we have (vg, αg) =

(
ug + π♯

G(αg), αg

)
with some ug ∈ H(g) and the product

(
π♯
G(αh), αh

)
⋆ (vg, αg) is

equal to

(π♯
G(αh), αh) ⋆ (ug + π♯

G(αg), αg) =
(
π♯
G(αh) ⋆ π

♯
G(αg) + 0h ⋆ ug, αg ⋆ αh

)

=
(
π♯
G(αg ⋆ αh) + TgLhug, αg ⋆ αh

)

since πG is multiplicative. The vector TgLhug is an element of H by definition and

consequently, (π♯
G(αh), αh) ⋆ (ug + π♯

G(αg), αg) is an element of q∗(Dπ), which is shown
to be πG-homogeneous. It corresponds to the closed Dirac structure (AH ⊕ 0T ∗M ) ⊕

Graph
(
π♯
G


AH◦

: AH◦ → TM
)
+Ks of B, or more simply, to the closed Dirac structure

AH ⊕AH◦ in the Courant algebroid A⊕A∗.
Thus, Theorem 4.16 together with the isomorphism in Example 3.24 shows that the

multiplicative Poisson structure on G descends to G/H if and only if the Lagrangian
subspace AH ⊕AH◦ is a subalgebroid of the Courant algebroid A⊕A∗.
The Poisson homogeneous space that corresponds in this way to the closed Dirac

structure A ⊕ 0A∗ is the Poisson manifold (M,πM ), where πM is the Poisson structure
induced on M by πG, see [30]. Note that the other trivial Dirac structure 0A ⊕ A∗

corresponds to (G, πG) seen as a Poisson homogeneous space of (G⇉M,πG) (see Example
2.5).
In the same manner, we can show that if a Dirac groupoid (G⇉M,D) is invariant

under the action of a wide subgroupoid H, and the Dirac structure descends to the
quotient G/H, then (G/H, q(D)) is (G⇉M,D)-homogeneous. ♦

Example 4.19 Let (M,DM ) be a smooth Dirac manifold and (M×M ⇉M,DM ⊖DM )
the pair Dirac groupoid associated to it.
The wide Lie subgroupoids of M ×M ⇉M are the equivalence relations R ⊆ M ×M ,

and the corresponding homogeneous spaces are the products M ×M/R. For instance,
if Φ : G × M → M is an action of a Lie group G (with Lie algebra g) on M , the
subset RG = {(m,Φg(m)) | m ∈ M, g ∈ G} is a wide subgroupoid of M × M , and
(M ×M)/RG is easily seen to equal M ×M/G. Hence, if the action is free and proper,
the homogeneous space (M × M)/RG has a smooth manifold structure such that the
projection q : M ×M → M ×M/G is a smooth surjective submersion.
One finds easily that the DM ⊖ DM -homogeneous Dirac structures on M ×M/G are

of the form DM ⊕ D̄ := DM ⊕ qG(D), where qG : M → M/G is the canonical projection
and D a Dirac structure on M that is reducible to M/G. ♦
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Example 4.20 The left invariant Dirac structures on a Lie group G are the homoge-
neous structures relative to the trivial Poisson bracket on G [10]. Hence, if we con-
sider this example in the groupoid situation, we should recover the “right” definition
for left invariant Dirac structures on a Lie groupoid. We say that a Dirac struc-
ture D on a Lie groupoid G⇉M is left-invariant if the action TΦ of TG ⊕ T ∗G on
Tt : TG⊕ T ∗G → TM ⊕A∗ restricts to an action of 0TG ⊕ T ∗G on D, i.e.

(0TG ⊕ T ∗G) · D = D.

In [19], a Dirac structure on a Lie groupoid G⇉M is said to be left-invariant if it is
the pullback under the map

Φ : T tG⊕ T ∗G → A⊕A∗

(vg, αg) 7→ (TgLg−1vg, ŝ(αg)) ∈ As(g)G×A∗
s(g)G

of a Dirac structure in A⊕A∗ (where (A,A∗) is endowed with the trivial Lie bialgebroid
structure, i.e. where the Lie algebroid structure on A∗ is trivial). These two definitions
are easily seen to be equivalent, the inclusion 0TG ⊕ (T tG)◦ ⊆ D is immediate and it
is easy to check that D is invariant under the lifted right actions of the bisections if
and only if the corresponding Dirac structure in B = B(0⊕ T ∗G) is invariant under the
induced action of B(G) on B (compare with Proposition 6.2 in [19]).

The result in Theorem 4.14 implies that a left-invariant Dirac structure D is closed if
and only if the corresponding Dirac structure Φ(D|M ) ⊆ A⊕A∗ is a subalgebroid. ♦
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