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No penalty no tears: Least squares in high-dimensional

linear models

Xiangyu Wang, David Dusnon and Chenlei Leng

Abstract

Ordinary least squares (OLS) is the default method for fitting linear models, but is

not applicable for problems with dimensionality larger than the sample size. For these

problems, we advocate the use of a generalized version of OLS motivated by ridge

regression, and propose two novel three-step algorithms involving least squares fitting

and hard thresholding. The algorithms are methodologically simple to understand

intuitively, computationally easy to implement efficiently, and theoretically appealing

for choosing models consistently. Numerical exercises comparing our methods with

penalization-based approaches in simulations and data analyses illustrate the great

potential of the proposed algorithms.

1 Introduction

Long known for its consistency, simplicity and optimality under mild conditions, ordinary

least squares (OLS) is the most widely used technique for fitting linear models. Developed

originally for fitting fixed dimensional linear models, unfortunately, classical OLS fails in high

dimensional linear models where the number of predictors p far exceeds the number of obser-

vations n. To deal with this problem, Tibshirani[1] proposed `1-penalized regression, a.k.a,

lasso, which triggered the recent overwhelming exploration in both theory and methodology

of penalization-based methods. These methods usually assume that only a small number of

coefficients are nonzero (known as the sparsity assumption), and minimize the same least

squares loss function as OLS by including an additional penalty on the coefficients, with

the typical choice being the `1 norm. Such “penalization” constrains the solution space to

certain directions favoring sparsity of the solution, and thus overcomes the non-unique issue

with OLS. It yields a sparse solution and achieves model selection consistency and estimation

consistency under certain conditions [2, 3, 4, 5].
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Despite the success of the methods based on regularization, there are important issues

that can not be easily neglected. On the one hand, methods using convex penalties, such as

lasso, usually require strong conditions for model selection consistency[2, 6]. On the other

hand, methods using non-convex penalties[3, 4] that can achieve model selection consistency

under mild conditions often require huge computational expense. These concerns have lim-

ited the practical use of regularized methods, motivating alternative strategies such as direct

hard thresholding [7].

In this article, we aim to solve the problem of fitting high-dimensional sparse linear mod-

els by reconsidering OLS and answering the following simple question: Can ordinary least

squares consistently fit these models with some suitable algorithms? Our result provides an

affirmative answer to this question under fairly general settings. In particular, we give a

generalized form of OLS in high dimensional linear regression, and develop two algorithms

that can consistently estimate the coefficients and recover the support. These algorithms

involve least squares type of fitting and hard thresholding, and are non-iterative in nature.

Extensive empirical experiments are provided in Section 4 to compare the proposed esti-

mators to many existing penalization methods. The performance of the new estimators is

very competitive under various setups in terms of model selection, parameter estimation and

computational time.

Related works The work that is most closely related to ours is [8], in which the au-

thors proposed an algorithm based on OLS and the ridge regression. However, both their

methodology and theory are still within the `1 regularization framework, and their condi-

tions (especially their C-Ridge and C-OLS conditions) are overly strong and can be easily

violated in practice. [7] proposed an iterative hard thresholding algorithm for sparse regres-

sion, which shares a similar spirit of hard thresholding as our algorithm. Nevertheless, their

motivation is completely different, their algorithm lacks theoretical guarantees for consistent

support recovery, and they require an iterative estimation procedure.

Our contributions We provide a generalized form of OLS for fitting high dimensional data

motivated by ridge regression, and develop two algorithms that can consistently fit a sparse

linear model and recover its support. We summarize the advantages of our new algorithms in

three points. First, our algorithms work for highly correlated features under random designs.

The consistency of the algorithms only needs a conditional number constraint, as opposed

to the strong irrepresentable condition[2, 9] required by lasso. Second, our algorithms can

achieve consistent support recovery for general noise (with finite second-order moment) in

the ultra-high dimension setting where log p = o(n). This is remarkable as most methods
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(c.f. [4, 8, 10, 9, 11, 12]) that work for log p = o(n) case rely on a sub-Gaussian tail/bounded

error assumption, which might fail to hold for general noise. [6] proved that lasso also works

for a second-order condition similar to ours, but requires two additional strong assumptions.

Third, the algorithms are simple, efficient and scale well for large p. In particular, the

matrix operations are fully parallelizable with very few communications for very large p,

while regularization methods are either hard to be computed in parallel in the feature space,

or the parallelization requires a large amount of machine communications.

The remainder of this article is organized as follows. In Section 2 we generalize the

ordinary least squares estimator for high dimensional problems where p > n, and propose

two three-step algorithms consisting only of least squares fitting and hard thresholding in a

loose sense. Section 3 provides consistency theory for the algorithms. Section 4 evaluates

the empirical performance. We conclude and discuss further implications of our algorithms

in the last section. All the proofs are provided in the supplementary materials.

2 High dimensional ordinary least squares

Consider the usual linear model

Y = Xβ + ε,

where X is the n× p design matrix, Y is the n× 1 response vector and β is the coefficient.

As is common in the high dimensional literature, we assume that most βi’s are zero except

for a small subset S = supp(β) with cardinality s; i.e., S = {i|βi 6= 0} is the support of β

and s = card(S).

To carefully tailor the low-dimensional OLS estimator for a high dimensional scenario,

one needs to answer the following two questions. i) What is the correct form of OLS in

the high dimensional setting? ii) How to correctly use this estimator? To answer these, we

reconsider OLS from a different perspective. In fact, OLS can be viewed as the limit of the

ridge estimator when the ridge parameter goes to zero, i.e.,

(XTX)−1XTY = lim
r→0

(XTX + rIp)
−1XTY.

One nice property of the ridge estimator is that it exists regardless of the relationship between

p and n. A keen observation[12] reveals the following relationship immediately.
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Lemma 1. For any p, n, r > 0, we have

(XTX + rIp)
−1XTY = XT (XXT + rIn)−1Y. (1)

Notice that the right hand side of (1) exists when p > n and r = 0. Consequently, we

can naturally extend the classical OLS to the high dimensional scenario by letting r tend to

zero in (1). Denote this high dimensional version of the OLS as

β̂(HD) = lim
r→0

XT (XXT + rIn)−1Y = XT (XXT )−1Y.

The above equation indicates that β̂(HD) is essentially an orthogonal projection of β onto the

row space of X. Unfortunately, this (low dimensional) projection does not have good gen-

eral performance in estimating sparse vectors in high-dimensional cases. Instead of directly

estimating β as β̂HD, however, this new estimator of β may be used for dimension reduction

by observing β̂(HD) = XT (XXT )−1Xβ + XT (XXT )−1ε = Φβ + η [12]. Since η is stochas-

tically small, if Φ is close to a diagonally dominant matrix and β is sparse, then the zero

and non-zero coefficients can be separated by simply thresholding the small entries of β̂(HD).

The exact meaning of this statement will be discussed in next section. Some simple exam-

ples demonstrating the diagonal dominance of XT (XXT )−1X are illustrated immediately in

Figure 1, where the rows of X in the left two plots are drawn from N(0,Σ) with σij = 0.6 or

σij = 0.99|i−j|. The sample size and data dimension are chosen as (n, p) = (50, 1000). The

right plot takes the standardized design matrix directly from the real data in Section 4 with

(n, p) = (120, 5000). A clear diagonal dominance pattern is visible in each plot.

XT(XXT)-1X: <ij = 0.6 XT(XXT)-1X: <ij = 0.99|i - j| XT(XXT)-1X: Real data

Figure 1: Examples for XT (XXT )−1X. Left: X ∼ N(0,Σ) with σij = 0.6 and σii = 1;
Middle: X ∼ N(0,Σ) with σij = 0.9|i−j|; Right: Real data from Section 4.

This ability to separate zero and non-zero coefficients allows us to first obtain a smaller

model with size d such that s < d < p which includes all the nonzero variables in S. Once

d is below n, one can directly apply the usual OLS to obtain an estimator, which will be

thresholded further to obtain a more refined model. The final estimator will then be obtained
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by an OLS fit on the refined model. This three-stage non-iterative algorithm is termed Least-

squares adaptive thresholding (LAT) and the concrete procedure is described in Algorithm

1.

Algorithm 1 The Least-squares Adaptive Thresholding Algorithm (LAT)

Initialization:
1: Input (Y,X), d, δ
2: # where X, Y are standardized data, n is the sample size, p is the number of features,
d is the number of variables selected at stage 1 and δ ∈ (0, 1) is a tuning parameter
determining the selection confidence

Stage 1 : Pre-selection
3: Compute β̂(HD) = XT (XXT )−1Y . Rank the importance of the variables by |β̂(HD)

i |;
4: Denote the model corresponding to the d largest |β̂(HD)

i | as M̃d. Alternatively use eBIC
in [13] in conjunction with the obtained variable importance to select the best submodel.

Stage 2 : Hard thresholding
5: β̂(OLS) = (XT

M̃d
XM̃d

)−1XT
M̃d
Y ;

6: σ̂2 =
∑n

i=1(y − ŷ)2/(n− d);
7: C̄ = (XT

M̃d
XM̃d

)−1;

8: Hard threshold β̂(OLS) by mean(
√

2σ̂2C̄ii log(4d/δ)) or use BIC to select the best sub-

model. Denote the chosen model as M̂.
Stage 3 : Refinement

9: β̂M̂ = (XT
M̂XM̂)−1XT

M̂Y ;

10: β̂i = 0,∀i 6∈ M̂;
11: return β̂

The C̄ in Stage 2 can be replaced by its ridge version (XT
M̃d
XM̃d

+ rId)
−1 to stabilize

numerical computation. This variant of the algorithm is referred to as the Ridge Adaptive

Thresholding (RAT) algorithm.

3 Theory

In this section, we prove the consistency of Algorithm 1 in selecting the true model and

provide concrete forms for all the values needed for the algorithm to work. Recall the

linear model Y = Xβ + ε. We consider the random design where the rows of X are drawn

from a multivariate Gaussian distribution N(0,Σ). This random design allows for various

correlation structures among predictors and is widely used to illustrate methods that rely

on the restricted eigenvalue conditions [14, 15]. The noise ε, as mentioned earlier, is only

assumed to have the second-order moment, i.e., var(ε) = σ2 < ∞, in contrast to the sub-

Gaussian/bounded error assumption seen in most high dimension literature [4, 8, 10, 9,

11]. This relaxation is similar to [6]; however we do not require any further assumptions

needed by [6]. In Algorithm 1, we also propose to use extended BIC and BIC for parameter
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tuning. However, the corresponding details will not be pursued here, as their consistency

is straightforwardly implied by the results from this section and the existing literature on

extended BIC and BIC [13].

Define κ = cond(Σ) and τ = mini∈S |βi|. We state our result in three theorems.

Theorem 1. Assume p > c0n for some c0 > 1 and var(Y ) ≤ M0. If s log p = O(nν) for

some ν < 1, n > 4c0/(c0− 1)2, and γ is chosen to be γ = c1κ−1τ
2

n
p
, where c1 is some absolute

constant specified in Lemma 2 in the supplementary materials, then for any δ ∈ (0, 1) we

have

P

(
max
i 6∈S
|β̂(HD)
i | ≤ γ ≤ min

i∈S
|β̂(HD)
i |

)
= 1−O

(
σ2κ4 log p

τ 2n1−δ

)
.

Theorem 1 guarantees the model selection consistency of the first stage of Algorithm 1.

The proof of Theorem 1 relies on the diagonal dominance of matrix Φ = XT (XXT )−1X. In

particular, it is shown that the diagonal terms of Φ are O(n
p
) while the off-diagonal terms

are O(
√
n
p

) [16]. Thus, with an appropriate signal-to-noise ratio and true model size, Φβ is

likely to preserve a correct magnitude order of zero and nonzero coefficients, which can then

be separated by a threshold γ. As γ is not easily computable based on data, we propose to

rank the |β̂i|′s and select d largest coefficients. Alternatively, we can construct a series of

nested models formed by ranking the largest n coefficients and adopt the extended BIC [13]

to select the best submodel. Once the submodel M̃d is obtained, we proceed to the second

stage by obtaining an estimate via ordinary least squares β̂(OLS) corresponding to M̃d. From

Theorem 1, if d > s, we have that with probability tending to one,M∗ ⊆ M̃d, whereM∗ is

the true model. Then for β̂(OLS) we have the following result.

Theorem 2. Assume n ≥ 64κd log p, log p = O(nν) and d − s ≤ c̃ for some ν < 1 and

c̃ > 0. If there exists some δ ∈ (0, 1) such that τ ≥ 2σ
nδ/2

, then by choosing γ′ = σ
nδ/2

we have

P

(
max
i 6∈S
|β̂(OLS)
i | ≤ γ′ ≤ min

i∈S
|β̂(OLS)
i |

)
= 1−O

(
κ log p log d

n1−δ

)
.

Theorem 2 states that if τ = mini∈S |βi| ≥ γ′, where γ′ = σ/nδ/2, then by thresholding

β̂(OLS) at γ′, we can identify the exact model with probability tending to 1. In fact, we have

a similar result for ridge regression.

Theorem 3 (Ridge regression). Assume the conditions in Theorem 2. If there exists some
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δ ∈ (0, 1) such that τ ≥ 4σ
nδ/2

, then if the ridge parameter r satisfies that

r ≤ O

{
min

(√
n

κ
,
σ

1
2n1−δ/4

82M
1
2

0 κ
3
2

)}
,

where M0 is defined in Theorem 1, then by choosing γ′ = 2σ
nδ/2

we have

P

(
max
i 6∈S
|β̂(Ridge)
i (r)| ≤ γ′ ≤ min

i∈S
|β̂(Ridge)
i (r)|

)
= 1−O

(
κ log p log d

n1−δ

)
.

Note that the ridge parameter r can be chosen as a constant, bypassing the need to

specify r at least in theory. When the noise follows a Gaussian distribution, we can obtain

a more explicit form of the threshold γ′, as the following Corollary shows.

Corollary 1 (Gaussian noise). Assume ε ∼ N(0, σ2). For any δ ∈ (0, 1), define γ′ =

8
√

2σ̂
√

2κ log(4d/δ)
n

, where σ̂ is the estimated standard error as σ̂2 =
∑n

i=1(yi − ŷi)2/(n − d).

For sufficiently large n, if d ≤ n − 4K2 log(2/δ)/c for some absolute constants c, K and

τ ≥ 24σ
√

2κ log(4d/δ)
n

, then with probability at least 1− 2δ, we have

|β̂(OLS)
i | ≥ γ′ ∀i ∈ S and |β̂(OLS)

i | ≤ γ′ ∀i 6∈ S.

Write C̄ = (XT
M̃d
XM̃d

)−1 as in Algorithm 1. In practice, we propose to use γ′ =

mean(
√

2σ̂2C̄ii log(4d/δ)) as the threshold (see Algorithm 1), because the estimation er-

ror takes a form of
√
σ2C̄ii log(4d/δ). Alternatively, instead of identifying an explicit form

of the threshold value (as is hard for general noise), one may also use BIC on nested models

formed by ranking |β̂(OLS)| to search for the true model. Once the final model is obtained,

as in Stage 3 of Algorithm 1, we refit it again using ordinary least squares. The final output

will have the same output as if we knew the true model a priori with probability tending to

1, i.e., we have the following result.

Theorem 4. Let M̂ and β̂ be the final output from LAT or RAT. Assume all conditions in

Theorem 1, 2 and 3. Then with probability at least 1−O
(
σ2κ4 log p
τ2n1−δ + κ log p log d

n1−δ

)
we have

M̂ =M∗, ‖β̂ − β‖2
2 ≤

2sσ2

nδ
, and ‖β̂ − β‖∞ ≤

2σ

nδ/2
.

As implied by Theorem 1 – 4, LAT and RAT achieve consistent support recovery in the

ultra-high dimensional (log p = o(n)) setting only with two assumptions: τ = O(
√

(log p)/n)

and var(ε) <∞, in contrast to most existing methods that require ε ∼ N(0, σ2) or ‖ε‖∞ <

∞.
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4 Experiments

In this section, we provide extensive numerical experiments for assessing the performance of

LAT and RAT. In particular, we compare the two methods to existing penalized methods

including lasso, elastic net (enet [5]), scad [3] and mc+ [4]. As it is well-known that the lasso

estimator is biased, we also consider two variations of it by combining lasso with Stage 2 and

3 of our LAT and RAT algorithms, denoted as lasLAT (las1 in Figures) and lasRAT (las2 in

Figures) respectively. We code LAT and RAT in Matlab, use glmnet[17] for enet and lasso,

and SparseReg[18, 19] for scad and mc+.

4.1 Synthetic datasets

The model used in this section for comparison is the linear model Y = Xβ + ε, where

ε ∼ N(0, σ2) and X ∼ N(0,Σ). To control the signal-to-noise ratio, we define r = ‖β‖2/σ,

which is chosen to be 2.3 for all experiments. The sample size and the data dimension are

chosen to be (n, p) = (200, 1000) or (n, p) = (500, 10000) for all experiments. For evaluation

purposes, we consider four different structures of Σ below.

(i) Independent predictors. The support is set as S = {1, 2, 3, 4, 5}. We generate Xi from

a standard multivariate normal distribution with independent components. The coefficients

are specified as

βi = (−1)ui(|N(0, 1)|+ 1), where ui ∼ Ber(0.5) for i ∈ S and βi = 0 for i 6∈ S.

(ii) Compound symmetry . All predictors are equally correlated with correlation ρ = 0.6.

The coefficients are set to be βi = 3 for i = 1, ..., 5 and βi = 0 otherwise.

(iii) Group structure . This example is Example 4 in [5], for which we allocate the 15 true

variables into three groups. Specifically, the predictors are generated as

x1+3m = z1 +N(0, 0.01), x2+3m = z2 +N(0, 0.01), x3+3m = z3 +N(0, 0.01),

where m = 0, 1, 2, 3, 4 and zi ∼ N(0, 1) are independent. The coefficients are set as

βi = 3, i = 1, 2, · · · , 15; βi = 0, i = 16, · · · , p.

(iv) Factor models. This model is also considered in [20] and [21]. Let φj, j = 1, 2, · · · , k
be independent standard normal variables. We set predictors as xi =

∑k
j=1 φjfij + ηi, where

fij and ηi are generated from independent standard normal distributions. The number of
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factors is chosen as k = 5 in the simulation while the coefficients are specified the same as

in Example (ii).

To compare the performance of all methods, we simulate 200 synthetic datasets for

(n, p) = (200, 1000) and 100 for (n, p) = (500, 10000) for each example, and record i) the

root mean squared error (RMSE): ‖β̂ − β‖2, ii) the false negatives (# FN), iii)

the false positives (# FP) and iv) the actual runtime (in milliseconds). We use the

extended BIC [13] to choose the parameters for any regularized algorithm. Due to the huge

computation expense for scad and mc+, we only find the first d√pe predictors on the solution

path (because we know s <<
√
p). For RAT and LAT, d is set to 0.3 × n. For RAT and

larsRidge, we adopt a 10-fold cross-validation procedure to tune the ridge parameter r for a

better finite-sample performance, although the theory allows r to be fixed as a constant. For

all hard-thresholding steps, we fix δ = 0.5. The results for (n, p) = (200, 1000) are plotted in

Figure 2, 3, 4 and 5 and more comprehensive results (average values for RMSE, # FPs,

# FNs, runtime) are summarized in Table 1 and 2.

LAT RATlasso las1 las2 Enet scad mc+
0

0.5

1

1.5

2

2.5
Square root of error

LAT RAT lasso las1 las2 Enet scad mc+

0

0.5

1

1.5

2

2.5
False positives

LAT RATlasso las1 las2 Enet scad mc+

0

0.5

1

1.5

2

2.5
False negatives

Figure 2: The boxplots for Example (i). Left: Estimation error; Middle: False positives;
Right: False negatives

LAT RATlasso las1 las2 Enet scad mc+
0

0.5

1

1.5

2

2.5

3

3.5
Square root of error

LAT RAT lasso las1 las2 Enet scad mc+
0

5

10

15
False positives

LAT RAT lasso las1 las2 Enet scad mc+
0

1

2

3

4

5

False negatives

Figure 3: The boxplots for Example (ii). Left: Estimation error; Middle: False positives;
Right: False negatives

As can be seen from both the plots and the tables, the performance of LAT and RAT

are on par with lasLAT for Example (i), (ii) and (iv), and are often among the best of
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LAT RATlasso las1 las2 Enet scad mc+
0

5

10

15

20

25
Square root of error

LAT RAT lasso las1 las2 Enet scad mc+

0

0.5

1

1.5

2

2.5
False positives

LAT RATlasso las1 las2 Enet scad mc+
0

2

4

6

8

10

12

14

16
False negatives

Figure 4: The boxplots for Example (iii). Left: Estimation error; Middle: False positives;
Right: False negatives

LAT RATlasso las1 las2 Enetscad mc+
0

1

2

3

4

5

6
Square root of error

LAT RAT lasso las1 las2 Enet scad mc+
0

5

10

15

20

25
False positives

LAT RATlasso las1 las2 Enetscadmc+
0

1

2

3

4

5

False negatives

Figure 5: The boxplots for Example (iv). Left: Estimation error; Middle: False positives;
Right: False negatives

all methods. For Example (iii), RAT and enet achieve the best performance while all the

other methods fail to work. In addition, the runtime of LAT and RAT are also competitive

compared to that of lasso and enet. We thus conclude that LAT and RAT achieve similar

or even better performance compared to the usual regularized methods.

4.2 Real data

This dataset, taken from [22], was collected to study mammalian eye diseases, with gene

expression for the eye tissues of 120 twelve-week-old male F2 rats recorded. One gene coded

as TRIM32 responsible for causing Bardet-Biedl syndrome is of particular interest, and is

the response of interest.

Following the method in [22], 18976 probes were selected as they exhibited sufficient

signal for reliable analysis and at least 2-fold variation in expressions. Because TRIM32 is

believed to be only linked to a small number of genes, we confine our attention to the top

5000 genes with the highest sample variance. The eight methods used in the simulation

study are compared, where the performance is assessed via 10-fold cross validation. Because

extended BIC does not offer a competitive prediction accuracy (It focuses on ensuring a good
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Table 1: Results for (n, p) = (200, 1000)

Example LAT RAT lasso lasLAT lasRAT enet scad mc+

RMSE 0.398 0.397 1.117 0.329 0.329 1.476 1.110 1.089
Ex. (i) # FPs 0.425 0.450 0.330 0.270 0.270 0.620 0.320 0.325

# FNs 0.075 0.075 0.000 0.000 0.000 0.005 0.005 0.005
Time 9.9 46.4 40.4 40.6 54.3 40.2 326.6 289.1
RMSE 0.348 0.352 1.323 0.539 0.541 1.861 1.346 1.321

Ex. (ii) # FPs 0.440 0.405 1.470 0.240 0.245 6.535 2.020 1.930
# FNs 0.040 0.055 0.200 0.200 0.200 0.445 0.215 0.190
Time 8.4 44.6 40.8 41.0 54.7 46.7 356.9 317.2
RMSE 17.338 2.115 9.960 14.632 11.151 2.453 10.129 14.416

Ex. (iii) # FPs 0.000 0.005 0.125 0.000 0.000 0.150 0.140 0.140
# FNs 8.920 0.030 3.900 14.305 6.910 0.000 4.385 7.695
Time 8.9 47.0 42.4 42.7 58.1 36.5 2025.9 1133.5
RMSE 0.255 0.260 1.396 0.475 0.475 2.438 2.300 2.260

Ex. (iv) # FPs 0.855 0.855 11.850 0.245 0.245 14.165 7.380 7.170
# FNs 0.030 0.035 0.265 0.270 0.270 1.715 1.540 1.515
Time 8.0 42.3 40.0 40.3 55.5 46.1 680.2 671.8

Table 2: Results for (n, p) = (500, 10000)

Example LAT RAT lasso lasLAT lasRAT enet scad mc+

RMSE 0.263 0.264 0.781 0.214 0.214 1.039 0.762 0.755
Ex.(i) # FPs 0.550 0.580 0.190 0.190 0.190 0.470 0.280 0.280

# FNs 0.010 0.010 0.000 0.000 0.000 0.000 0.000 0.000
Time 36.1 41.8 72.7 72.7 74.1 71.8 1107.5 1003.2
RMSE 0.204 0.204 0.979 0.260 0.260 1.363 0.967 0.959

Ex. (ii) # FPs 0.480 0.480 1.500 0.350 0.350 10.820 2.470 2.400
# FNs 0.000 0.000 0.040 0.040 0.040 0.040 0.020 0.020
Time 34.8 40.8 76.1 76.1 77.5 82.0 1557.6 1456.1
RMSE 9.738 1.347 7.326 17.621 3.837 1.843 7.285 8.462

Ex. (iii) # FPs 0.000 0.000 0.060 0.000 0.000 0.120 0.120 0.090
# FNs 4.640 0.000 1.440 13.360 1.450 0.000 1.800 2.780
Time 35.0 41.6 75.6 75.6 77.5 74.4 6304.4 4613.8
RMSE 0.168 0.168 1.175 0.256 0.256 1.780 0.389 0.368

Ex. (iv) # FPs 0.920 0.920 21.710 0.260 0.260 37.210 6.360 6.270
# FNs 0.010 0.010 0.140 0.140 0.140 0.450 0.000 0.000
Time 34.5 41.1 78.7 78.7 80.8 81.4 1895.6 1937.1
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variable selection performance) for regularized methods, for a fair comparison, we apply the

conventional BIC instead of the extended BIC to all regularization methods, and record the

means and the standard errors of the cross-validation. As a reference, we also report these

values for the null model.

Table 3: Analysis of the eye disease data via different methods

methods CV mean CV standard error average model size total runtime (sec)

LAT 0.015 0.0157 2.6 0.29
RAT 0.014 0.0100 1.5 0.40
lasso 0.012 0.0100 76.8 1.20
lasLAT 0.019 0.0265 18.3 1.21
lasRAT 0.014 0.0064 12.7 2.33
enet 0.011 0.0109 62.2 1.38
scad 0.017 0.0245 12.4 73.12
mc+ 0.017 0.0252 10.1 55.13
null 0.022 0.0257 0 —

It can be seen that enet and lasso achieve the smallest cross-validation errors overall,

followed by RAT and LAT. One caveat for the good performance of enet or lasso is the

large number of variables it selected. If a more parsimonious model for interpretability is

preferred, one might want to trade-off some accuracy by obtaining a model with a fewer

number of variables given by LAT or RAT.

5 Conclusion

We have proposed two novel algorithms Lat and Rat that only rely on least-squares type

of fitting and hard thresholding, based on a high-dimensional generalization of OLS. The

two methods are simple, easily implementable, and can consistently fit a high dimensional

linear model and recover its support. The performance of the two methods are competitive

compared to existing regularization methods. It is of great interest to further extend this

framework to other models such as generalized linear models and models for survival analysis.
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Appendix A: Proof of Theorem 1

Recall the estimator β̂(HD) = XT (XXT )−1Y = XT (XXT )−1Xβ + XT (XXT )−1ε = ξ + η.

The following two lemmas will be used to bound ξ and η respectively.

Lemma 2. Let Φ = XT (XXT )−1X. Assume p > c0n for some c0 > 1, then for any C > 0

there exists some 0 < c1 < 1 < c2 and c3 > 0 such that for any t > 0 and any i ∈ Q, j 6= i,

P

(
|Φii| < c1κ

−1n

p
) ≤ 2e−Cn, P (|Φii| > c2κ

n

p

)
≤ 2e−Cn (2)

and

P

(
|Φij| > c4κt

√
n

p

)
≤ 5e−Cn + 2e−t

2/2, (3)

where c4 =

√
c2(c0−c1)√
c3(c0−1)

.

This is exactly the Lemma 3 in [16].

Lemma 3. Assume X follows N(0,Σ). If var(ε) = σ2 and log p = o(n), then for any

0 < δ < 1 we have

P

(
‖η‖∞ ≤

c1κ
−1τ

4

n

p

)
≥ 1−O

(
σ2κ4 log p

τ 2n1−δ

)
,

where τ = mini∈S |βi| and κ = cond(Σ).

To prove Lemma 3 we need the following two propositions.

Proposition 1. (Lounici, 2008 [6]; Nemirovski, 2000 [23]) Let Yi ∈ Rp be random vectors

with zero means and finite variances. Then we have for any k norm with k ∈ [2,∞] and

p ≥ 3, we have

E
∥∥ n∑
i=1

Yi
∥∥2

k
≤ C̃ min{k, log p}

n∑
i=1

E‖Yi‖2
k, (4)

where C̃ is some absolute constant.

As each row of X is an iid draw from N(0,Σ), we define Z = XΣ−1/2, then Z ∼ N(0, Ip).

For Z, we have the following result.
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Proposition 2. Let Z ∼ N(0, Ip), then we have the minimum eigenvalue of ZZT/p satisfies

that

P

(
λmin(ZZT/p) > (1− n

p
− t

p
)2

)
≥ 1− 2 exp(−t2/2)

for any t > 0. Assume p > c0n for c0 > 1 and take t =
√
n. When n > 4c2

0/(c0 − 1)2, we

have

P

(
λmin(ZZT/p) > c

)
≥ 1− 2 exp(−n/2), (5)

where c = (c0−1)2

4c20
.

The proof follows Corollary 5.35 in [24].

Proof of Lemma 3. Let A = pXT (XXT )−1 and define Z = XΣ−1/2. Consider the stan-

dard SVD on Z as Z = V DUT , where V and D are n× n matrices and U is a p× n matrix.

Because Z is a matrix of iid Gaussian variables, its distribution is invariant under both left

and right orthogonal transformation. In particular, for any T ∈ O(n), we have

TV DUT (d)
= V DUT ,

i.e., V is uniformly distributed onO(n) conditional on U and D (they are in fact independent,

but we don’t need such a strong condition). Therefore, we have

A = pXT (XXT )−1 = pΣ
1
2ZT (ZΣZT )−1 = pΣ

1
2UDV T (V DUTΣUDV T )−1

= pΣ
1
2U(UTΣU)−1D−1V T =

√
pΣ

1
2U(UTΣU)−1

( D
√
p

)−1
V T .

Because V is uniformly distributed conditional on U and D, the distribution of A is also

invariant under right orthogonal transformation conditional on U and D, i.e., for any T ∈
O(n), we have

A
(d)
= AT. (6)

Our first goal is to bound the magnitude of individual entries Aij. Let vi = eTi AA
T ei, which

is a function of U and D (see below). From (6), we know that eTi A is uniformly distributed
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on the sphere Sn−1(
√
vi) if conditional on vi (i.e., conditional on U,D), which implies that

eTi A
(d)
=
√
vi

(
x1√∑n
j=1 x

2
j

,
x2√∑n
j=1 x

2
j

, · · · , xn√∑n
j=1 x

2
j

)
, (7)

where x′js are iid standard Gaussian variables. Thus, Aij can be bounded easily if we can

bound vi. Notice that for vi we have

vi = eTi AA
T ei = peTi Σ

1
2U(UTΣU)−1

(D2

p

)−1
(UTΣU)−1UTΣ

1
2 ei.

= peTi H(UTΣU)−
1
2

(D2

p

)−1
(UTΣU)−

1
2HT ei

≤ peTi HH
T ei · λ−1

min(UTΣU) · λ−1
min

(D2

p

)
Here H = Σ

1
2U(UTΣU)−1/2 is defined the same as in [12] and can be bounded as eTi HH

T ei ≤
c2nκ/p with probability 1 − 2 exp(−Cn) (see the proof of Lemma 3 in [16]). Therefore, we

have

P

(
vi ≤ c2κ

2λ−1
min

(D2

p

)
n

)
≥ 1− 2 exp(−Cn)

Now applying the tail bound and the concentration inequality to (7) we have for any t > 0

and any C > 0

P (|xj| > t) ≤ 2 exp(−t2/2) P

(∑n
j=1 x

2
j

n
≤ c3

)
≤ exp(−Cn). (8)

Putting the pieces all together, we have for any t > 0 and any C > 0 that

P

(
max
ij
|Aij| ≤ κt

√
c2

c3

λ
− 1

2
min

(D2

p

))
≥ 1− 2np exp(−t2/2)− 3p exp(−Cn).

Now according to (5), we can further bound λmin(D2/p) and obtain that

P

(
max
ij
|Aij| ≤

√
c2

cc3

κt

)
≥ 1− 2np exp(−t2/2)− 3p exp(−Cn)− 2 exp(−n/2). (9)

The second step is to use (9) and Proposition 1 to bound η. The procedure follows

almost the same as in Lounici’s paper. Define Zj = (A1jεj, A2jεj, · · · , Apjεj). It’s clear that
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η =
∑n

j=1 Zj/p. Applying Proposition 1 to Z ′js and choosing the l∞ norm, we have

E
∥∥ n∑
j=1

Zj
∥∥2

∞ ≤ log p
n∑
j=1

E‖Zj‖2
∞ ≤

c2

cc3

σ2κ2t2n log p.

Using the Markov inequality on η, we have for any r > 0

P

(
‖η‖∞ ≥

√
nr

p

)
= P

(
p√
n
‖η‖∞ ≥ r

)
≤ p2E‖η‖2

∞
nr2

=
E‖
∑n

j=1 Zj‖2
∞

nr2

≤ c2σ
2κ2t2 log p

cc3r2
.

To match our previous result, we take r = c1

√
nτκ−1/4 and t = nδ/2 for some small δ,

P

(
‖η‖∞ ≤

c1κ
−1τ

4

n

p

)
≥ 1− c2σ

2κ4

c2
1cc3τ 2

log p

n1−δ − 2np exp(−nδ/2)− 3p exp(−Cn)− 2 exp(−n/2)

≥ 1−O
(
σ2κ4 log p

τ 2n1−δ

)
.

Now we are ready to prove Theorem 1

Proof of Theorem 1. Recall the definition of ξ as ξ = XT (XXT )−1Xβ. For any i ∈ S
we have

ξi = eTi X
T (XXT )−1Xβ =

∑
j∈S

Φiiβi +
∑

j 6=i,j∈S

Φijβj,

and for i 6∈ S,

ξi = eTi X
T (XXT )−1Xβ =

∑
j∈S

Φijβj.

According to our assumption we have mini∈S |βi| ≥ τ and var(Y ) = var(Xβ) = βTΣβ ≤
M0 for some M0. The latter one imples that

M0 ≥ βTΣβ ≥ λmin(Σ)‖β‖2
2.

Therefore, we have for any i ∈ S

|ξi| ≥ c1κ
−1τ

n

p
− ‖β‖2

√ ∑
j 6=i,j∈S

Φ2
ij ≥ c1κ

−1τ
n

p
− c4κ

√
sM0t

λ
1
2
min(Σ)

√
n

p
=

3c1κ
−1τ

4

n

p
,
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if t is taken to be t =
c1λ

1
2
min(Σ)κ−2τ

√
n

4c4
√
M0s

≥ c1κ
− 5

2 τ
√
n

4c4
√
M0s

. Hence, one can compute the probability

to be greater than 1− 7 exp(−Cn)− 2 exp
(
− c21κ

−5τ2

32c24M0s
n
)
. Similarly, with the same t we can

show that for i 6∈ S

|ξi| ≤ ‖β‖2

√ ∑
j 6=i,j∈S

Φ2
ij ≤

c1κ
−1τ

4

n

p
,

with probability greater than 1 − 7 exp(−Cn) − 2 exp
(
− c21κ

−5τ2

32c24M0s
n
)
. Next, using the result

from Lemma 3, we can obtain

P

(
min
i∈S
|β̂i| ≥

c1κ
−1τ

2

n

p

)
≥ 1−O

(
σ2κ4 log p

τ 2n1−δ

)
,

and

P

(
max
i∈6S
|β̂i| ≤

c1κ
−1τ

2

n

p

)
≥ 1−O

(
σ2κ4 log p

τ 2n1−δ

)
.

Taking γ = c1κ−1τ
2

np, we have

P

(
min
i∈S
|β̂i| ≥ γ ≥ max

i 6∈S
|β̂i|
)
≥ 1−O

(
σ2κ4 log p

τ 2n1−δ

)
.

Proof of Theorem 2 and 3

Lemma 4. Let M̃d be a submodel that contains the true model M∗ and has a size of d.

Define A = n(XT
M̃d
XM̃d

)−1XT
M̃d

where XM̃d
is the principal submatrix indexed by M̃d. Then

for any t > 0 and C > 0, there exists some c3 > 0 such that

P

(
max

|M̃d|=d,M∗⊆M̃d

max
ij
|Aij| ≤

t√
c3λ0

)
≥ 1− 2dn(p− s)d−s exp

(
− t2

2

)
− d(p− s)d−s exp(−Cn),

where λ0 = min|M̃d|=d,M∗⊆M̃d
λmin(XT

M̃d
XM̃d

/n).

Proof of Lemma 4. The proof is similar to the argument in Lemma 3. For a given M̃d,

XM̃d
follows N(0,ΣM̃d

). Similarly, defining Z = XΣ
−1/2

M̃d
, then Z ∼ N(0, I). Assuming the

singular value decomposition of Z is Z = V DUT where V is a n × d matrix and D,U are

d × d matrices, and conditional on U,D, V is uniformly distributed on Vn,d. Therefore, we
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have

A = n(XT
M̃d
XM̃d

)−1XT
M̃d

= nΣ
1/2

M̃d
(ZTZ)−1ZT = nΣ

1/2

M̃d
UD−1V T .

We observe that

‖eTi A‖2
2 = n2Σ

1/2

M̃d
UD−2UTΣ

1/2

M̃d
= n2(XT

M̃d
XM̃d

)−1 ≤ n

λmin(XT
M̃d
XM̃d

/n)
.

Next, following exactly the same argument in Lemma 3, we know that the distribution of A

is invariant under the right orthogonal transformation and conditional on vi = ‖eTi A‖2, eTi A

is uniformly distributed on Sn−1(vi). Using the same inequality in (8), we have

P

(
max
ij
|Aij| ≤

t√
c3λmin(XT

M̃d
XM̃d

/n)

)
≥ 1− 2dn exp(−t2/2)− d exp(−Cn).

Now the total number of possible M̃d is bounded by (p−s)× (p−s−1)×· · ·× (p−d+1) ≤
(p− s)(d−s). Therefore, we have

P

(
max

|M̃d|=d,M∗⊆M̃d

max
ij
|Aij| ≤

t√
c3λ0

)
≥ 1− 2dn(p− s)d−s exp

(
− t2

2

)
− d(p− s)d−s exp(−Cn),

where λ0 = min|M̃d|=d,M∗⊆M̃d
λmin(XT

M̃d
XM̃d

/n).

Lemma 5 (Garvesh, Wainwright and Yu. (2010) [15]). There exists some absolute constant

c′, c′′ > 0 such that

‖Xv‖2√
n
≥ 1

4
‖Σ

1
2v‖2 − 9ρ(Σ)

√
log p

n
‖v‖1, ∀v ∈ Rp,

with probability at least 1− c′′ exp(−c′n), where ρ(Σ) = maxi=1,2,··· ,p Σii.

In our case, for any v with d nonzero coordinates, we have ‖v‖1 ≤
√
d‖v‖2, ρ(Σ) = 1

and ‖Σ1/2v‖2 ≥ κ−
1
2‖v‖2. Therefore,

‖Xv‖2√
n
≥
(
κ−1/2

4
− 9

√
d log p

n

)
‖v‖2, ‖v‖0 ≤ d.

Proof of Theorem 2. Lemma 5 essentially states that for any d × d principal submatrix

of X, we can bound its smallest eigenvalue. Therefore, for any selected submodel M̃d from
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the first stage, we have with probability at least 1−O(exp(−c′n))

min
|M̃d|=d

λ
1
2
min(XT

M̃d
XM̃d

/n) ≥ κ−1/2

4
− 9

√
d log p

n
≥ κ−1/2

8
,

as long as n ≥ 64κd log p, i.e., λ0 ≥ κ−1

64
, where λ0 is defined in Lemma 4.

A direct calculation shows that β̂(OLS) = β+ (XT
M̃d
XM̃d

)−1XT
M̃d
ε. Therefore, we want to

bound the error

η̃ = (XT
M̃d
XM̃d

)−1XT
M̃d
ε = Aε/n.

Following the same argument as Lemma 3, we define Zj = (A1jεj, · · · , Adjεj) and η̃ =∑n
j=1 Zj/n. Using Proposition 1 and Lemma 4 we have with probability at least 1− 2d(p−

s)d−s exp(−t2/2)− d(p− s)d−s exp(−Cn)

E
∥∥ n∑
j=1

Zj
∥∥2

∞ ≤ log d
n∑
j=1

E‖Zj‖2
∞ ≤

σ2nt2 log d

c3λ0

≤ 64c−1
3 κσ2t2n log d. (10)

Thus, for any r > 0

P

(
‖η̃‖∞ ≥

r

n

)
= P

(∥∥ n∑
j=1

Zj
∥∥
∞ ≥ r

)
≤
E
∥∥∑n

j=1 Zj
∥∥2

∞
r2

≤ 64κnσ2t2 log d

c3r2
.

If we take t =
√

2(c̃+ 3) log p for any δ ∈ (0, 1), then it is ensured that

1− 2dn(p− s)d−s exp

(
− t2

2

)
− d(p− s)d−s exp(−Cn)

≥ 1− 2 exp

(
(c̃+ 2) log p− (c̃+ 3) log p

)
− exp

(
(c̃+ 1) log p− Cn

)
= 1−O

(
1

p

)
≥ 1−O

(
1

n

)
.

Now taking r = σn1−δ/2 for any δ ∈ (0, 1) we have

P

(
‖η̃‖∞ ≤

σ

nδ/2

)
≥ 1−O

(
κ log p log d

n1−δ

)
. (11)

Consequently, for any δ > 0 we have

‖β̂(OLS) − βM̃d
‖∞ ≤

σ

nδ/2
, (12)

with probability at least 1 − O
(
κ log p log d

n1−δ

)
. So if τ ≥ 2σ

nδ/2
, then by choosing γ′ = σ

nδ/2
we
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have

min
i∈S
|β̂(OLS)
i | ≥ γ′ ≥ max

i 6∈S
|β̂(OLS)
i |.

Proof of Theorem 3. Denoting XM̃d
by X, the definition of β̂(r)(Ridge) becomes

β̂(r)(Ridge) = (XTX + rId)
−1XTXβ + (XTX + rId)

−1XT ε

= β − r(XTX + rId)
−1β + (XTX + rId)

−1XT ε

= β − ξ̃(r) + η̃(r).

For ξ̃(r) we have

max |ξ̃(r)| ≤ r2βT (XTX + rId)
−2β ≤ r2‖β‖2

2

n2λ2
min(XTX/n+ r/n)

≤ 84r2κ3M0

n2

with probability 1 − c′′ exp(−c′n) if n ≥ 64κd log p. This result is because of Lemma 5 and

M0 ≥ var(Y ) ≥ ‖β‖2
2λmax(Σ).

For η̃(r), we follow the same technique in the proof of Theorem 2. Basically, one just

needs to show a similar result as Lemma 4 exists. Let A = n(XTX)−1XT , which is the key

quantity in Lemma 4, and Ã = n(XTX + rId)
−1XT . If we can show that Ã does not differ

too much from A, then the proof is completed. Consider the singular value decomposition

directly on X as X = V DUT (not on Z), where V is a n× d matrix and D and U are d× d
matrices. We then have

A = n(UD2UT )−1UDV T = nUD−1V T ,

and

Ã = n(UD2UT + rId)
−1UDV T = nUD−1

{
Id +

r

n

(
D√
n

)−2}−1

V T .
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When r ≤ nλmin(XTX/n)/2, we can apply Taylor expansion on the inverse. Thus

Ã = nUD−1

{
Id +

∞∑
k=1

(
r

n

)k(
D√
n

)−2k}
V T

= A+ rUD−1

(
D√
n

)−2

V T + nUD−1

{ ∞∑
k=2

(
r

n

)k(
D√
n

)−2k}
V T

= A+
rU(D/

√
n)−3V T

n1/2
+ nUD−1

{ ∞∑
k=2

(
r

n

)k(
D√
n

)−2k}
V T .

Clearly, we have

λmax

(
rU(D/

√
n)−3V T

n1/2

)
≤ 83rκ3/2

√
n

,

and

λmax

[
nUD−1

{ ∞∑
k=2

(
r

n

)k(
D√
n

)−2k}
V T

]
≤
√
nλ−1

min

(
D√
n

) ∞∑
k=2

rk

nk
λ−kmin

(
D2

n

)

≤
√
n(8κ

1
2 )
∞∑
k=2

(
82rκ

n

)k
≤
√
n(8κ

1
2 )(82rκ

n
)2

1− 82rκ
n

≤ 2 · 85κ
5
2 r2

n3/2
.

The last inequality is because we assume r ≤ nλmin(XTX/n)/2. Together, we have

‖Ã‖∞ ≤ ‖A‖∞ +
83rκ3/2

√
n

+
2 · 85κ

5
2 r2

n3/2
,

with probability at least 1 − c′′ exp(−c′n) if n ≥ 64κd log p and r ≤ n
128κ

. In the proof

of Theorem 2, the value of t in Lemma 4 is chosen to be O(log p). Thus, as long as r ≤
O(κ−1

√
n), (10) and (11) hold for η̃(r) as well, i.e., for any δ ∈ (0, 1) we have

P

(
‖η̃(r)‖∞ ≤

σ

nδ/2

)
≥ 1−O

(
κ log p log d

n1−δ

)
.

On the other hand, if we require r ≤ 8−2M
−1/2
0 κ−3/2σ1/2n1−δ/4, then we have

max |ξ̃(r)| ≤ 84r2κ3M0

n2
≤ σ

nδ/2
.

23



Consequently, if the tuning parameter satisfies that

r ≤ O

{
min

(√
n

κ
,
σ

1
2n1−δ/4

82M
1
2

0 κ
3
2

)}
,

and n ≥ 64κd log p, then we have

P

(
‖β̂(Ridge)(r)− βM̃d

‖∞ ≤
σ

nδ/2

)
≥ 1−O

(
κ log p log d

n1−δ

)
. (13)

Therefore, if τ ≥ 4σ
nδ/2

, then by choosing γ′(r) = 2σ
nδ/2

we have

min
i∈S
|β̂(Ridge)
i (r)| ≥ γ′ ≥ max

i 6∈S
|β̂(Ridge)
i (r)|.

Proof of Corollary 1. As mentioned before, we have β̂(OLS) = βM̃d
+(XT

M̃d
XM̃d

)−1XM̃d
ε.

Because εi ∼ N(0, σ2) for i = 1, 2, · · · , n, we have for any i ∈ M̃d,

η̃i = eTi (XT
M̃d
XM̃d

)−1XT
M̃d
ε ∼ N(0, σ2eTi (XT

M̃d
XM̃d

)−1ei)
(d)
= σ

√
eTi (XT

M̃d
XM̃d

)−1eiN(0, 1).

(14)

Likewise in the proof of Lemma 4, we know that as long as n ≥ 64κd log p

λmin(XT
M̃d
XM̃d

/n) ≥ 1

64κ
.

Thus, we have

max
i∈M̃d

eTi (XT
M̃d
XM̃d

)−1ei ≤ 64κ/n.

Therefore, for any t > 0 and i ∈ M̃d, with probability at least 1 − c′′ exp(−c′n) −
2 exp(−t2/2) we have

|η̃i| ≤ σt
√
eTi (XT

M̃d
XM̃d

)−1ei ≤
8κ

1
2σt√
n
.

Then for any δ > 0, if n > log(2c′′/δ)/c′, then with probability at least 1− δ we have

max
i∈M̃d

|η̃i| ≤ 8σ

√
2κ log(4d/δ)

n
. (15)

Because σ needs to estimated from the data, we need to obtain a bound as well. Notice that
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σ̂2 is an unbiased estimator for σ, and

σ̂2 = σ2εT (In −XM̃d
(XT
M̃d
XM̃d

)−1XM̃d
)ε ∼ σ2X 2(n− d)

n− d
,

where X 2(k) denotes a chi-square random variable with degree of freedom k. Using Propo-

sition 5.16 in [24], we can bound σ̂2 as follows. Let K = ‖X 2(1)− 1‖ψ1 . There exists some

c5 > 0 such that for any t ≥ 0 we have,

P

(∣∣∣∣X 2(n− d)

n− d
− 1

∣∣∣∣ ≥ t

)
≤ 2 exp

{
− c5 min

(
t2(n− d)

K2
,
t(n− d)

K

)}
.

Hence for any δ > 0, if n > d+4K2 log(2/δ)/c5, then with probability at least 1−δ we have,

|σ̂2 − σ2| ≤ σ2/2,

which implies that

1

2
σ2 ≤ σ̂2 ≤ 3

2
σ2.

Then we know that

max
i∈M̃d

|η̃i| ≤ 8σ

√
2κ log(4d/δ)

n
≤ 8
√

2σ̂

√
2κ log(4d/δ)

n
≤ 8
√

3σ

√
2κ log(4d/δ)

n
.

Now define γ′ = 8
√

2σ̂
√

2κ log(4d/δ)
n

. If the signal τ = mini∈S |βi| satisfies that

τ ≥ 24σ

√
2κ log(4d/δ)

n
,

then with probability at least 1− 2δ, for any i 6∈ S

|β̂i| = |η̃i| ≤ 8σ

√
2κ log(4d/δ)

n
≤ γ′,

and for i ∈ S we have

|β̂i| ≥ τ − max
i∈M̃d

|η̃i| ≥ 16σ

√
2κ log(4d/δ)

n
≥ γ′.
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Proof of Theorem 4

The result of Theorem 4 can be immediately implied from Theorem 1, 2, 3, (12) and (13).
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