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Abstract 

 

The present study investigated the feasibility of the immobilisation of sulphate bearing 

radioactive wastes in blast furnace slag (BFS)-based binders. BaSO4-BFS composites were 

produced via two methods using Na2SO4 as a waste simulant, along with Ba(OH)2 to promote 

precipitation of BaSO4 in an insoluble sulphate form and the consequent  activation of the 

BFS. BaSO4 was effectively formed by both methods, and solid wasteforms were 

successfully produced. Although both methods produced BaSO4 embedded in the cement-like 

composites, different reaction products including ettringite and witherite were produced, 

depending on the order Ba(OH)2 was mixed with the system. These results show that the 

immobilisation of soluble sulphate-bearing aqueous wastes is achievable in Na2SO4-

Ba(OH)2-BFS composites. 
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1.   Introduction 

 

One of the most important challenges facing the global nuclear industry is the safe and secure 

disposal of radioactive wastes. Various technologies have been adopted for the encapsulation 

and immobilisation of radioactive waste, and the most successful examples are vitrification1 

and encapsulation in Portland cement-based materials (also known as cementation).2 

However, the encapsulation of sulphate bearing radioactive waste e.g., ion exchange resins in 

the UK nuclear waste stream3 is difficult to achieve via vitrification in borosilicate matrices 

http://prl.aps.org/abstract/PRL/v104/i19/e197202
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due to its low solubility, which leads to the formation of secondary phases and the swelling of 

the vitreous mass.4 In the case of cementation with Portland cement, the excess of dissolved 

sulphate ions promotes microstructural changes, i.e the transformation of calcium 

monosulphoaluminate (AFm phase, Ca4Al 2(OH)12(SO4).6H2O) to ettringite 

(Ca6Al 2(OH)12(SO4)3.26H2O) whose large molar volume causes expansion and cracking, 

resulting in the potential release of radionuclides into the environment.5-7  

 

Alkali-activated binders are materials produced through the chemical reaction between an 

aluminosilicate source and an alkali activator that develop high mechanical strength, along 

with reduced permeability, at early times of curing. In recent years it has been suggested that 

alkaline activated slag (AAS) might be a better option for stabilisation/solidification of 

low/intermediate level waste (LLW/ILW) than Portland cement due to its low permeability, 

low reaction heat, and high resistance to aggressive chemical attack 8-10. The activation of 

slag using near-neutral salts such as Na2CO3 and Na2SO4 has been considered a potential 

alternative for the immobilisation of nuclear wastes including reactive metals.11 The other 

utilisation of these binders in the area of radioactive waste treatment includes the 

solidification of spent ion exchange resins,12 and stabilisation/ solidification (S/S) treatment 

of radioisotopes including 152Eu, 60Co and 59Fe,13 99Tc,14, 15 and 129I.15 This elucidates that 

these alternative cements have the potential to play an important role in the current and future 

radioactive waste clean-up. 

 

Asano et al.16 recently reported a possible S/S process for sulphate-rich aqueous LLW using 

Ba(OH)2 and BFS via a two-step process in which a cement-like solid can be formed. In the 

first step, Na2SO4 (simulated waste) solution was mixed with Ba(OH)2, stabilising the 

sulphate ions through the precipitation of BaSO4 and forming cement-like solids in the second 

step. Composite cement-like systems of this type would be beneficial not only for the 

formation of very low-solubility BaSO4 (Ksp ≈ 10-10 mol2/L2), but may also be valuable 

because BaSO4 can enhance the radiation shielding properties of concrete due to the high 

atomic number of Ba.18 

 

The aim of the present study is the synthesis and characterisation of BaSO4-BFS composite 

cement-like systems for immobilisation of sulphate-bearing nuclear wastes via two methods. 

A two-step process based on the work of Asano et al.16 was further studied, with initial 

mixing of sulphate-containing waste stimulant (Na2SO4) and Ba(OH)2 and later blending with 
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BFS (“method A”). An alternative one-step process (“method B”) was also tested, where the 

Na2SO4 and Ba(OH)2 are blended directly with BFS promoting the simultaneous formation of 

BaSO4 and the binding phases derived from the alkali-activation of the BFS. The reaction 

products formed from both methods are studied using X-ray diffraction (XRD), 

thermogravimetry and scanning electron microscopy, to assess the feasibility of these 

methods. 

 

2. Materials and methods  

 

2.1. Materials 

 

A BFS from Redcar steel works with a specific surface of 286 m2/kg was used as the main 

binding precursor, whose chemical composition is presented in Table 1. Barium hydroxide 

octa-hydrate (Ba(OH)2∙8H2O, 97% purity), and sodium sulphate (Na2SO4, 99% purity) from 

Alfa Aesar were used for producing the composites.  

 

Table 1. Composition of blast furnace slag, from X-ray fluorescence analysis. LOI is loss on 

ignition at 1000°C 

Component  

(mass % as oxides) 
CaO SiO2 Al 2O3 Fe2O3 MgO K2O Na2O Others LOI Total 

BFS 42.1 34.5 13.7 0.97 7.29 0.49 0.22 0.69 -1.05 98.9 

 

 

2.2. Mixing procedures  

 

Method A - A simulated aqueous sulphate waste was prepared by dissolving 10 wt.% Na2SO4 

in distilled water at 40°C. Ba(OH)2∙8H2O was weighed and added to the simulated sulphate 

waste with a molar ratio of Ba/SO4 of 1.3:1, and mixed for 3 hours at 60°C. The obtained 

slurry was added to BFS at water to binder (w/b) ratio of 0.35 and placed in a sealed plastic 

centrifugal tube. The samples were manually shaken for 2 to 5 minutes at room temperature 

and then further mixed for 5 minutes using a Whirh Mixer. This formulation was identified as 

optimal by Asano et al.16 who achieved a 98% conversion of Na2SO4 to the BaSO4, and it is 

used in this study as a reference to evaluate the effectiveness of method B. 
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Method B – A simulated aqueous sulphate waste prepared with the same procedure used in 

Method A was mixed with an homogenous blend of unreacted BFS and powdered 

Ba(OH)2∙8H2O. The samples were manually shaken for 2 to 5 minutes in a sealed centrifuge 

tube at room temperature, then further mixed for 5 minutes using a Whirh Mixer. Detailed 

formulations of the specimens produced are given in Table 2. 

 

Table 2. Formulations of Na2SO4-Ba(OH)2-BFS composites produced via method B 

Sample ID 
BFS 

(g) 

Ba(OH)2∙8H2O 

(g) 

H2O 

(g) 

Ba2+/SO4
2- 

molar ratio 

water/binder 

ratio 

M0 100 0 35 0 : 1 0.35 

M1 100 8.64 35 1.0 : 1 0.35 

M1.1 100 9.51 35 1.1 : 1 0.35 

M1.2 100 10.37 35 1.2 : 1 0.35 

M1.3 100 11.23 35 1.3 : 1 0.35 

 

Hardened specimens stored for 33 days at room temperature were de-moulded, crushed and 

immersed in acetone to arrest the reaction process. After several days, the samples were 

removed from the acetone, air dried and desiccated under vacuum. The dried samples were 

kept in sealed containers prior to analysis to avoid carbonation. The phase analysis of the 

products was conducted by XRD using a Siemens D500 X-ray diffractometer with 

monochromatic Cu KĮ radiation (Ȝ=1.5405 Å), operated at a step size of 0.02° and scanning 

speed of 2°/min between 5° and 65° 2ș. The samples were also subjected to 

thermogravimetric analysis using a Perkin Elmer Pyris 1 TGA. Approximately 40 mg of 

powdered samples were weighed, placed and heated in an alumina crucible under flowing 

nitrogen. A constant heating rate of 10°C/min was used from room temperature up to 1000°C. 

Microstructural characterisation was performed by Scanning Electron Microscopy (SEM) 

using a JEOL JSM 6400 electron microscope with a 20 kV accelerating voltage and a 

working distance of 10 mm. Carbon coated polished samples were evaluated using 

backscattered electron mode. A Link-Isis (Oxford Instruments) X-ray energy dispersive 

(EDX) detector was used for the elemental analysis. 

 

3. Results and discussion 
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3.1. Method A 

 

 The X-ray diffractograms of the anhydrous BFS (Figure 1) show peaks attributed to 

gehlenite (Ca2Al 2SiO7) and calcite (CaCO3). In addition to these phases, calcium silicate 

hydrate (C-S-H) and hydrotalcite (Mg3[Al(OH)8](CO3)0.5) were identified in the product from 

Method A. High-intensity peaks for BaSO4 are also observed, confirming the formation of 

this salt in the two step procedure. 

 

Fig. 1. X-ray diffractograms of the unreacted slag, and the sulphate-BFS composite produced 

via Method A. Peaks marked are BaSO4 (BS), gehlenite (g: Ca2Al 2SiO7), hydrotalcite (HT: 

Mg3[Al(OH)8](CO3)0.5), calcite (CC: CaCO3) and calcium silicate hydrate (C-S-H) 

 

Thermogravimetry results for this specimen (not shown) indicated a total mass loss of 11%, 

including a significant mass loss (~7%) between 25°C and 400°C, associated with the 

dehydration of the C-S-H and hydrotalcite18, and 4% mass loss between 550°C and 680°C 

assigned to the decomposition of the calcite both of which confirms the XRD results. The 

formation of C-S-H and hydrotalcite in the BFS system have been reported from NaOH 

activation18. Therefore, the obtained result suggests that in method A, NaOH was produced as 

a secondary product during the formation of BaSO4 in the first step as shown in Eq. 1, and 

acted as an alkaline activator to promote the hardening of the BaSO4-BFS composite. 

  

       Na2SO4 + Ba(OH)2                   BaSO4 + 2NaOH             (1) 
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In the backscattered electron image of the specimens produced via method A (Fig. 2), un-

reacted BFS is identified as light grey angular particles, corresponding to the areas enriched 

in Ca and Si in the elemental maps. The small white particles intermixed with the binding 

phase are confirmed to be BaSO4 by the distribution of Ba and S in the elemental map. 

 

 

Fig. 2. Backscattered electron image and elemental maps of sulphate-BFS composite cement 

produced via method A. The elemental maps show the same region as the backscattered 

electron image. 

 

3.2. Method B 

 

The XRD patterns of the samples produced via this method (Fig. 3) again showed gehlenite 

and calcite from the unreacted slag. As main crystalline products, BaSO4, ettringite, 

portlandite (Ca(OH)2) and witherite (BaCO3) were observed in addition to C-S-H. The 

formation of ettringite was clear in the sample without Ba(OH)2 (Figure 3, sample M0), due 

to the high concentration of sulphates in the system. In samples including Ba(OH)2 (Samples 

M1.1, M1.2 and M1.3), formation of BaSO4 was observed. The intensities of the BaSO4 and 

C-S-H peaks appeared to increase with higher contents of Ba(OH)2, suggesting that the 

addition of Ba(OH)2 promotes a higher extent of BaSO4 formation as well as higher BFS 

dissolution, as it is likely contributing to increase the alkalinity of the system.  

 

Reduction in the intensity of the ettringite peaks was also observed with increasing Ba(OH)2 

addition and the higher alkalinity provided to the system, consistent with the increased BaSO4 

formation. Witherite peaks were also observed in the binders including Ba(OH)2, whose 

BFS 

BaSO4 
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intensity increases with a higher content of Ba2+ in the system, along with the formation of 

higher intensity peaks of portlandite. This may suggest that Ba(OH)2 is reacting with the 

CaCO3 present in the system as shown in Eq. 2: 

 

Ba(OH)2 + CaCO3               BaCO3 + Ca(OH)2   (2) 

 

This reaction is thermodynamically favourable (ǻG = -51.66 kJ/mol) at 25°C. The formation 

of BaCO3 might also be indicating the preferential carbonation of Ba2+ in the pore solution 

instead of carbonation of Na+ or Ca2+, driving the system towards the formation of BaCO3. 

 

Fig. 3. X-ray diffractograms of sulphate-BFS composite produced via the method B, as a 

function of the sulphate:Ba(OH)2 ratio. Peaks marked are BaSO4 (BS), gehlenite (g: 

Ca2Al 2SiO7), calcite (CC: CaCO3), calcium silicate hydrate (C-S-H), portlandite (P: 

Ca(OH)2), witherite (W: BaCO3) and ettringite (E: Ca6Al 2(OH)12(SO4)3.26H2O). 

 

Fig. 4 shows the derivative thermograms (DTG) of the composite binders. The total mass loss 

for these samples varies between 10% and 11%, independently of the Ba2+:SO4
2- molar ratio.  

In the specimen without Ba(OH)2 (M0), a high intensity peak between 70°C and 200°C was 

observed, which is attributed to the release of evaporable water in the system, and the starting 

dehydration of the monosulphoaluminate 19 and ettringite 20 identified through XRD. The 

progressive mass loss between 200°C and 400°C is assigned to the decomposition of the C-S-
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H forming in this specimen also identified through XRD. The low intensity shoulder around 

550°C is attributed to the decomposition of calcite 21.  

 

 

 

Fig. 4. Derivative thermograms (mass loss downwards) of BaSO4-BFS composites as a 

function of the Ba(OH)2:Na2SO4 ratio in the system. Dashed lines show the baseline for each 

data set. 

 

Samples including lower concentrations of Ba(OH)2 (Fig. 4., sample M1.0) showed a 

significant broadening and a reduced intensity of the first part of mass loss between 70°C and 

200°C when compared with the specimen without Ba(OH)2 (M0), possibility of less ettringite 

formation in the system. In this case the peaks identified approximately at 80°C to 100°C 

correspond to the release of evaporable water and the dehydration of the mono-

sulphoaluminates and ettringite as discussed above. An increased mass loss from 100°C up to 

250°C could be assigned to the dehydration of water from small pores in C-S-H, or 

potentially from disordered hydrotalcite or AFm type phases,22 as these are often observed in 

slag-containing binders. The amount of these phases could be small as they were not 

observed in the XRD results, it is also possible that the inclusion of Ba in these systems 

induces modification of the structure of these types of products via a cation exchange 
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mechanism between Ba2+ and Ca2+ or Mg2+ (comparable to the mechanisms identified in 

zeolites 23), making the phases disordered and rendering identification through XRD difficult.   

 

In sulphate-activated binders traces of mirabilite (Na2SO4·10H2O) is often identified 24, 

which forms as a result of excess of Na2SO4 in the system and precipitates from the pore 

solution during the drying of the samples. Considering the high content of dissolved sulphates 

included in the method B binders, traces of mirabilite can be expected at the lower Ba(OH)2 

concentrations, although it was not identified by XRD.  Based on this, part of the intensity of 

the first mass loss could be assigned to the dehydration of mirabilite, which occurs at 40°C. 

The progressive mass loss between 250°C and 400°C is again assigned to the thermal 

decomposition of highly crosslinked C-S-H forming in this binder, which seems to have 

water more tightly bound than C-S-H formed in the specimen formulated without Ba(OH)2. 

The shoulder assigned to calcite decomposition seems to become more distinct in the 

specimens M1.0, M1.1 and M1.2 than in the sample without Ba(OH)2 (M0), indicating an 

extended carbonation of the M1.0, M1.1 and M1.2  samples, which could be consequence of 

the increased alkalinity in the system associated with the inclusion of Ba(OH)2.  

 

A similar trend was identified in specimens with increased Ba(OH)2 (Fig. 4. samples M1.1, 

M1.2 and M1.3), where reductions in the intensity of the peak around 80°C with increasing 

addition of Ba(OH)2 are observed, consistent with an extended reaction between the Na2SO4 

and the Ba(OH)2 towards the formation of BaSO4, and a possible reduction of ettringite as 

identified by XRD. A more defined and higher intensity shoulder was observed between 

100°C and 250°C, indicating the formation of a larger amount of reaction products in these 

composites with the increment of Ba(OH)2, as a rise of alkalinity favoured the dissolution of 

the BFS. In specimens formulated with higher Ba(OH)2 concentrations, a peak at 800°C was 

observed, which was due to the decomposition of either the small quantity of excess Ba(OH)2 

or BaCO3 present. Increased intensity of this peak was observed with higher Ba2+ in the 

system, along with reduced intensities of the mass loss assigned to decomposition of calcite, 

consistent with Eq. 1. 

 

Fine white particles intermixed in the binding matrix of activated BFS were identified in the 

composites produced via method B (Fig. 5), consistent with that identified in the specimens 

produced via method A (Fig. 2). However in contrast to the observations for the specimen 
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produced via method A (Fig. 2), BaSO4 clusters were not identified in this specimen, which 

might suggest a better intermixing and distribution of the BaSO4 particles. 

 

 

Fig. 5. Backscattered electron image and EDX spectra of sulphate-BFS composite (M1.2) 

produced via method B 

 

In terms of immobilisation of sulphate ions, method A thus allows a better control, and closer 

approach to completion of the reaction to convert all of the sulphate ions into BaSO4, with a 

minor excess of Ba2+ within the system; although, lower extents of reaction of BFS could be 

expected in these binders when compared with the one-step method, as the amount of NaOH 

formed as a secondary product during the formation of BaSO4 might not be sufficient for the 

complete dissolution of the BFS required for producing the solid composite. 

In method B, on the other hand, the formation of BaSO4 occurs in parallel with the 

dissolution of BFS and the consequent formation of reaction products derived from the alkali-

activation reaction. This means that Ba(OH)2 plays a double role in these systems: it is acting 

as activator to promote the hardening of the slag, and as a precursor reacting with Na2SO4 to 
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form BaSO4. No traces of unreacted Na2SO4 in this system suggests the largely complete 

conversion of sulphate ions to BaSO4 in the composition range assessed. 

 

5. Conclusions 

 

These results reveal that the immobilisation of soluble sulphate-bearing aqueous wastes is 

effectively achievable in Ba(OH)2-BFS composites via either a one-step or two-step process, 

promoting the simultaneous formation of BaSO4 and the activation of the BFS, favouring the 

formation of a stable cement-like composite. The order of mixing of Ba(OH)2 in the system 

has a strong effect on the phase development of the cement wasteforms. A two-step process 

favours the formation of hydrotalcite and C-S-H, typically identified as main reaction 

products in NaOH-activated BFS binders. In the one step process crystalline hydrotalcite is 

not identified, and instead ettringite, barium carbonate and portlandite are formed. The direct 

inclusion of Ba(OH)2 with the BFS and sulphate seems to provide extra alkalinity to the 

system, favouring an extended reaction of the BFS, and more formation of C-S-H products, 

along with the formation of BaSO4.  

 

This study has demonstrated that Ba(OH)2-BFS composites represent an attractive and 

feasible alternative for surpassing the challenges associated with the immobilisation of 

sulphate aqueous wastes in the nuclear industry. 
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